
1. Introduction to Java Programming
Language

1.1. Java Overview
Java is a high-level, class-based, object-oriented programming language that is designed to have as few
implementation dependencies as possible. It was originally developed by James Gosling at Sun
Microsystems (which is now a subsidiary of Oracle Corporation) and released in 1995 as a core component
of Sun Microsystems' Java platform.

1.1.1. Brief History & Evolution of Java

Inception (1991): Sun Microsystems initiated the Java project under James Gosling, aiming for
embedded devices. Java was originally called "Oak".

Public Debut (1995): Java was unveiled, focusing on web applets and its "Write Once, Run Anywhere"
(WORA) philosophy.

Growth & Refinement: Subsequent releases (Java 2 and beyond) introduced major platforms (J2SE,
J2EE, J2ME), significant language improvements, and vast libraries.

Oracle Acquisition (2010): Oracle took ownership, driving Java's evolution.

Modern Era: Java remains a powerhouse, adapting to cloud computing, big data, and modern
development paradigms.

1.1.2. Java Features

Platform Independent: Java code is compiled into bytecode, which can run on any device equipped
with a JVM, enabling the famous principle of "write once, run anywhere" (WORA).

Object-Oriented: Java strictly follows the object-oriented programming model, including concepts like
inheritance, encapsulation, polymorphism, and abstraction.

Robust and Secure: Java offers strong memory management, exception handling, and type-checking
mechanisms. Its security features include the sandbox environment of the JVM.

Multithreaded: Java supports multithreaded programming, allowing developers to build applications
that can perform multiple tasks simultaneously.

Rich API: Java provides a comprehensive standard library (API) that includes tools for networking, I/O,
data structures, concurrency, and more.

High Performance: While the early versions were criticized for performance, Java has significantly
improved with the introduction of Just-In-Time (JIT) compilation and various optimization techniques.

1.1.3. Java Applications

Desktop Applications: Java is used to develop cross-platform desktop applications. Swing and JavaFX
are notable APIs for creating rich graphical user interfaces.

Java Programming Language Book by Milav Dabgar

No. 1 / 166

Web Applications: Java is widely used in web development, with technologies such as Servlets, JSPs
(JavaServer Pages), and frameworks like Spring and Hibernate facilitating the development of robust
web applications.

Mobile Applications: Java was the official language for Android app development until the
introduction of Kotlin as an alternative. It remains widely used for Android development.

Enterprise Applications: Java EE (Enterprise Edition) provides APIs and runtime environments for
developing and running large-scale, multi-tiered, scalable, and secure network applications.

Big Data: Tools within the Java ecosystem (like Hadoop, Spark) are widely used for processing vast
datasets.

Embedded Systems: Java finds use in certain embedded systems and IoT (Internet of Things) devices.

Scientific Applications: Popular for computation, modeling, and simulation.

Java's versatility, robustness, and widespread adoption have cemented its place as a cornerstone of modern
software development, covering a wide array of computing platforms from embedded devices to enterprise
servers and supercomputers.

1.2. Java Environment Setup & Basic Java Syntax

1.2.1. Java Components

JVM (Java Virtual Machine): JVM is an abstract computing machine that enables Java bytecode to be
executed on different platforms. It interprets the bytecode into machine-specific instructions.

JRE (Java Runtime Environment): A subset of the JDK, focused on running Java programs. JRE includes
JVM along with libraries and other components required to run Java applications but does not include
development tools.

JDK (Java Development Kit): The essential package for developing Java applications. JDK is a full-
featured software development kit that includes JRE, compilers, debuggers, and other tools necessary
for developing Java applications.

1.2.2. Setting up Java Development Environment

To set up a Java development environment:

1. Download JDK: Visit the official Oracle website or adopt openJDK distributions and download the JDK
appropriate for your operating system.

2. Install JDK: Follow the installation instructions provided by Oracle or the respective distribution. This
usually involves running an installer program.

3. Set up Environment Variables: Set the JAVA_HOME environment variable to point to the JDK
installation directory and add the JDK's bin directory to the PATH environment variable.

4. Verify Installation: Open a command prompt or terminal and type java -version and javac -
version to verify that Java and the Java compiler are installed correctly.

1.2.3. Structure of a Java Program

A basic Java program consists of:

Java Programming Language Book by Milav Dabgar

No. 2 / 166

1.2.3.1. Class Declaration

Every Java program begins with a class declaration. The class name should match the filename.

1.2.3.2. Main Method

The main method is the entry point of a Java program. It has the following syntax:

'Public' means the class/method is accessible from anywhere.

'static' allows the JVM to call this method without creating an object of the class.

'void' means the method doesn't return a value.

'main' is a special method name.

1.2.3.3. Output in Java

Output in Java is typically achieved using the System.out.println() method. System is a built-in Java class
that contains useful members, such as out , which is short for "output".

1.2.3.3.1. The println() Method

The println() method, short for "print line", is used to print a value to the screen (or a file). You should
also note that each code statement must end with a semicolon (;).

1.2.3.3.2. The print() Method

There is also a print() method, which is similar to println() . The only difference is that it does not insert
a new line at the end of the output:

You can also use the println() method to print numbers. However, unlike text, we don't put numbers
inside double quotes:

public class MyFirstProgram {

 public static void main(String[] args) {
 System.out.println("Hello, World!"); // Output
 }
}

public static void main(String[] args) {

 // Program logic goes here
}

System.out.println("Hello, World!");

System.out.print("Hello World! ");

System.out.print("I will print on the same line.");

Java Programming Language Book by Milav Dabgar

No. 3 / 166

1.2.3.4. Comments

Java supports single-line (//) and multi-line (/* */) comments for documenting code.

Comments can be used to explain Java code, and to make it more readable. It can also be used to prevent
execution when testing alternative code.

1.2.3.4.1. Single-line Comments

Single-line comments start with two forward slashes (//). Any text between // and the end of the line is
ignored by Java (will not be executed). This example uses a single-line comment before a line of code:

This example uses a single-line comment at the end of a line of code:

1.2.3.4.2. Multi-line Comments

Multi-line comments start with /* and ends with */ . Any text between /* and */ will be ignored by Java.
This example uses a multi-line comment (a comment block) to explain the code:

1.2.4. Compilation and Execution of Java Program

To compile and execute a Java program:

1. Write Code: Create a Java source file with the .java extension containing the Java code.

2. Compile Code: Open a terminal or command prompt, navigate to the directory containing the Java file,
and use the javac command to compile the code:

3. Execute Program: After successfully compiling, use the java command followed by the name of the
class containing the main method (without the .class extension) to execute the program:

System.out.println(3);

System.out.println(358);

System.out.println(50000);

System.out.println(3 + 3);

System.out.println(2 * 5);

// This is a comment

System.out.println("Hello World");

System.out.println("Hello World"); // This is a comment

/* The code below will print the words Hello World

to the screen, and it is amazing */

System.out.println("Hello World");

javac YourProgram.java

java YourProgram

Java Programming Language Book by Milav Dabgar

No. 4 / 166

1.2.5. Importance of Bytecode & Garbage Collection

Bytecode: Java source code is compiled into bytecode, which is a platform-independent intermediate
representation. This bytecode can be executed on any device with a JVM, enabling Java's "write once,
run anywhere" capability.

Garbage Collection: Java employs automatic memory management through garbage collection. It
automatically deallocates memory occupied by objects that are no longer in use, preventing memory
leaks and simplifying memory management for developers. Garbage collection helps ensure memory
efficiency and program stability in Java applications.

1.3. Data Types
A variable in Java must be a specified data type:

Data types are divided into two groups:

Primitive data types - includes byte , short , int , long , float , double , boolean and char

Non-primitive data types - such as String , Arrays and Classes.

1.3.1. Primitive Data Types

A primitive data type specifies the size and type of variable values, and it has no additional methods. There
are eight primitive data types in Java.

int myNum = 5; // Integer (whole number)
float myFloatNum = 5.99f; // Floating point number
char myLetter = 'D'; // Character
boolean myBool = true; // Boolean
String myText = "Hello"; // String

Java Programming Language Book by Milav Dabgar

No. 5 / 166

Data
Type

Size Description

byte 1 byte Stores whole numbers from -128 to 127

short
2
bytes

Stores whole numbers from -32,768 to 32,767

int
4
bytes

Stores whole numbers from -2,147,483,648 to 2,147,483,647

long
8
bytes

Stores whole numbers from -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

float
4
bytes

Stores fractional numbers. Sufficient for storing 6 to 7 decimal digits

double
8
bytes

Stores fractional numbers. Sufficient for storing 15 decimal digits

boolean 1 bit Stores true or false values

char
2
bytes

Stores a single character/letter or ASCII values

Numeric:

Integer Types:

byte (8 bits): The byte data type can store whole numbers from -128 to 127. This can be
used instead of int or other integer types to save memory when you are certain that the
value will be within -128 and 127

short (16 bits):The short data type can store whole numbers from -32768 to 32767:

int (32 bits): The int data type can store whole numbers from -2147483648 to
2147483647. In general, and in our topic, the int data type is the preferred data type when
we create variables with a numeric value.

long (64 bits):The long data type can store whole numbers from -9223372036854775808
to 9223372036854775807. This is used when int is not large enough to store the value. Note
that you should end the value with an "L":

Floating-Point Types: You should use a floating point type whenever you need a number with a
decimal, such as 9.99 or 3.14515. The float and double data types can store fractional
numbers. Note that you should end the value with an "f" for floats and "d" for doubles:

float (32-bit single precision):

double (64-bit double precision):

Character:

char (16-bit Unicode character): The char data type is used to store a single character. The
character must be surrounded by single quotes, like 'A' or 'c':

Java Programming Language Book by Milav Dabgar

No. 6 / 166

Boolean:

boolean (true or false): Very often in programming, you will need a data type that can only have
one of two values, like: YES / NO, ON / OFF, TRUE / FALSE. For this, Java has a boolean data type,
which can only take the values true or false

1.3.2. Non-Primitive Data Types

Non-primitive data types are called reference types because they refer to objects. The main difference
between primitive and non-primitive data types are:

Primitive types are predefined (already defined) in Java. Non-primitive types are created by the
programmer and is not defined by Java (except for String).

Non-primitive types can be used to call methods to perform certain operations, while primitive types
cannot.

A primitive type has always a value, while non-primitive types can be null .

A primitive type starts with a lowercase letter, while non-primitive types starts with an uppercase letter.

Examples of non-primitive types are Strings, Arrays, Classes, Interface, etc.

1.3.3. Type Conversion and Casting

1.3.3.1. Implicit Conversion (Widening)

Java automatically converts smaller data types to larger ones to prevent loss of data. For example, int can
be implicitly converted to long .

byte -> short -> char -> int -> long -> float -> double

1.3.3.2. Explicit Conversion (Narrowing)

When converting larger data types to smaller ones, explicit casting is required to avoid loss of data. For
example: int myInt = (int) 3.14;

double -> float -> long -> int -> char -> short -> byte

public class Main {

 public static void main(String[] args) {
 int myInt = 9;
 double myDouble = myInt; // Automatic casting: int to double

 System.out.println(myInt); // Outputs 9
 System.out.println(myDouble); // Outputs 9.0
 }

}

Java Programming Language Book by Milav Dabgar

No. 7 / 166

1.4. Identifiers
Identifiers are names given to classes, methods, variables, etc., in Java. They must start with a letter,
underscore (_), or dollar sign ($), followed by letters, digits, underscores, or dollar signs.

1.4.1. Naming Rules & Conventions

1.4.1.1. Naming Rules

Names can contain letters, digits, underscores, and dollar signs

Names must begin with a letter

Names should start with a lowercase letter, and cannot contain whitespace

Names can also begin with $ and _ (but we will not use it here)

Names are case-sensitive ("myVar" and "myvar" are different variables)

Reserved words (like Java keywords, such as int or boolean) cannot be used as names

1.4.1.2. Naming Conventions

Class names should start with an uppercase letter and follow CamelCase (e.g., MyClass).

Variable and method names should start with a lowercase letter and follow camelCase (e.g.,
myVariable , myMethod).

Constants should be all uppercase with underscores separating words (e.g., MAX_SIZE).

1.4.2. Variables

Variable Declaration: Variables are containers for storing data values. Variables are declared with a
data type followed by a name:

Variable Initialization: Variables can be initialized at the time of declaration or later in the code:

public class Main {

 public static void main(String[] args) {
 double myDouble = 9.78d;
 int myInt = (int) myDouble; // Manual casting: double to int

 System.out.println(myDouble); // Outputs 9.78
 System.out.println(myInt); // Outputs 9
 }

}

int myVariable;

int myVariable = 10; // Initialization at declaration

myVariable = 20; // Later initialization

Java Programming Language Book by Milav Dabgar

No. 8 / 166

Declare Many Variables: To declare more than one variable of the same type, you can use a comma-
separated list:

One Value to Multiple Variables: You can also assign the same value to multiple variables in one
line:

1.4.3. Constants (final Keyword)

If you don't want others (or yourself) to overwrite existing values, use the final keyword (this will declare
the variable as "final" or "constant", which means unchangeable and read-only):

Declaration: Constants in Java are declared using the final keyword.

Immutable: The value of a constant cannot be changed once initialized.

By convention, constant names are written in uppercase letters with underscores separating words.

1.4.4. Scope of Variables

Instance Variables: Variables declared within a class but outside any method are instance variables.
They exist as long as the object they belong to exists.

Local Variables: Variables declared within a method or block have local scope. They exist only within
the method or block where they are declared.

int x = 5, y = 6, z = 50;

System.out.println(x + y + z);

int x, y, z;

x = y = z = 50;

System.out.println(x + y + z);

final int myNum = 15;

myNum = 20; // will generate an error: cannot assign a value to a final variable

public class Main {

 public static void main(String[] args) {
 // Code here CANNOT use x
 { // This is a block
 // Code here CANNOT use x
 int x = 100;
 // Code here CAN use x
 System.out.println(x);
 } // The block ends here
 // Code here CANNOT use x
 }

}

Java Programming Language Book by Milav Dabgar

No. 9 / 166

Class Variables (Static Variables): Variables declared with the static keyword within a class are
class variables. They are shared among all instances of the class.

1.5. Arrays
An array is a data structure that stores a fixed-size collection of elements of the same data type. Each
element is accessed by its index (position) within the array.

1.5.1. One-dimensional Arrays

Declaration: To declare a one-dimensional array, specify the type of elements followed by square
brackets []:

Initialization: Arrays can be initialized using the new keyword followed by the type and the number of
elements, or directly with values enclosed in curly braces {}:

Accessing Elements: Elements of an array are accessed using the index (starting from 0):

Key points

Array indices start at 0 and go up to the length of the array minus 1.

Trying to access an element outside the array bounds will result in an
ArrayIndexOutOfBoundsException .

1.5.2. Multidimensional Arrays

Declaration: To declare a two-dimensional array, specify the type of elements followed by two sets of
square brackets [][]:

Initialization: Two-dimensional arrays can be initialized similarly to one-dimensional arrays, with each
row enclosed in curly braces {}:

Accessing Elements: Elements of a two-dimensional array are accessed using row and column indices:

int[] numbers;

int[] numbers = new int[5]; // Initializing with size

int[] numbers = {1, 2, 3, 4, 5}; // Initializing with values

int[] numbers = {1, 2, 3, 4, 5};

int firstElement = numbers[0]; // Accessing first element

int[][] matrix;

int[][] matrix = new int[3][3]; // Instantiation with size

int[][] matrix = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}; // Initializing with values

Java Programming Language Book by Milav Dabgar

No. 10 / 166

Iterating Through a Two-dimensional Array: Nested loops are commonly used to iterate through all
elements of a two-dimensional array:

Things to remember

Multidimensional arrays can have more than two dimensions.

Rows and columns in a multidimensional array can have different lengths.

Two-dimensional arrays can represent matrices, tables, grids, etc., and are useful for storing and
processing structured data in Java.

1.6. Operators
Operators are used to perform operations on variables and values. In the example below, we use the +
operator to add together two values:

Although the + operator is often used to add together two values, like in the example above, it can also be
used to add together a variable and a value, or a variable and another variable:

Java divides the operators into the following groups:

Arithmetic operators

Assignment operators

Comparison operators

Logical operators

Bitwise operators

1.6.1. Arithmetic Operators

Arithmetic operators are used to perform mathematical operations.

int[][] matrix = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};

int element = matrix[1][2]; // Accessing element at row 1, column 2 (value: 6)

for (int i = 0; i < matrix.length; i++) {

 for (int j = 0; j < matrix[i].length; j++) {
 // Accessing each element using matrix[i][j]
 System.out.println(matrix[i][j]);
 }
}

int x = 100 + 50;

int sum1 = 100 + 50; // 150 (100 + 50)
int sum2 = sum1 + 250; // 400 (150 + 250)
int sum3 = sum2 + sum2; // 800 (400 + 400)

Java Programming Language Book by Milav Dabgar

No. 11 / 166

Operator Name Description Example

+ Addition Adds together two values x + y

- Subtraction Subtracts one value from another x - y

* Multiplication Multiplies two values x * y

/ Division Divides one value by another x / y

% Modulus Returns the division remainder x % y

++ Increment Increases the value of a variable by 1 ++x

-- Decrement Decreases the value of a variable by 1 --x

Operator Example Same As

= x = 5 x = 5

+= x += 3 x = x + 3

-= x -= 3 x = x - 3

*= x *= 3 x = x * 3

/= x /= 3 x = x / 3

%= x %= 3 x = x % 3

&= x &= 3 x = x & 3

|= x |= 3 x = x | 3

^= x ^= 3 x = x ^ 3

>>= x >>= 3 x = x >> 3

<<= x <<= 3 x = x << 3

1.6.2. Assignment Operators

Assignment operators are used to assign values to variables.

int a = 10;

int b = 3;

int sum = a + b; // Addition
int difference = a - b; // Subtraction

int product = a * b; // Multiplication
int quotient = a / b; // Division
int remainder = a % b; // Modulus (remainder)

Java Programming Language Book by Milav Dabgar

No. 12 / 166

Operator Name Example

== Equal to x == y

!= Not equal x != y

> Greater than x > y

< Less than x < y

>= Greater than or equal to x >= y

<= Less than or equal to x <= y

Operator Name Description Example

&& Logical and Returns true if both statements are true x < 5 && x < 10

|| Logical or Returns true if one of the statements is true x < 5 || x < 4

! Logical not Reverse the result, returns false if the result is true !(x < 5 && x < 10)

1.6.3. Relational (Comparison) Operators

Relational operators are used to establish relationships between two values. This is important in
programming, because it helps us to find answers and make decisions. The return value of a comparison is
either true or false . These values are known as Boolean values, and you will learn more about them in
the Booleans and If..Else topic.

1.6.4. Logical Operators

You can also test for true or false values with logical operators. Logical operators are used to determine
the logic between variables or values.

int a = 10;

a += 5; // Equivalent to a = a + 5;

int a = 10;

int b = 5;

boolean greater = a > b;

boolean lesserOrEqual = a <= b;

boolean isEqual = a == b;

boolean notEqual = a != b;

boolean x = true;

boolean y = false;

boolean result1 = x && y; // Logical AND

boolean result2 = x || y; // Logical OR

boolean result3 = !x; // Logical NOT (negation)

Java Programming Language Book by Milav Dabgar

No. 13 / 166

1.6.5. Bitwise Operators

Bitwise operators perform bitwise operations on integer operands.

1.6.6. Conditional (Ternary) Operator

The conditional operator is a ternary operator that evaluates a boolean expression and returns one of two
values depending on whether the expression is true or false.

This is also called as a short-hand if else.

It is known as the ternary operator because it consists of three operands.

It can be used to replace multiple lines of code with a single line, and is most often used to replace
simple if else statements:

Syntax: *variable* = (*condition*) ? *expressionTrue* : *expressionFalse*;

Instead of writing:

You can simply write:

These operators are fundamental in Java for performing various operations and making decisions based on
conditions.

1.6.7. Operator Precedence

Java follows a specific order for evaluating expressions with multiple operators (similar to mathematical
order of operations). You can find a detailed precedence table online.

int a = 5; // Binary: 101
int b = 3; // Binary: 011
int bitwiseAnd = a & b; // Bitwise AND
int bitwiseOr = a | b; // Bitwise OR
int bitwiseXor = a ^ b; // Bitwise XOR
int bitwiseComplement = ~a; // Bitwise complement
int leftShift = a << 1; // Left shift
int rightShift = a >> 1; // Right shift

int time = 20;

if (time < 18) {

 System.out.println("Good day.");
} else {

 System.out.println("Good evening.");
}

int time = 20;

String result = (time < 18) ? "Good day." : "Good evening.";

System.out.println(result);

Java Programming Language Book by Milav Dabgar

No. 14 / 166

1.7. Control Flow Statements
Control flow statements in Java are used to control the flow of execution in a program based on certain
conditions or loops.

1.7.1. Selection Statements

Java has the following conditional statements:

Use if to specify a block of code to be executed, if a specified condition is true

Use else to specify a block of code to be executed, if the same condition is false

Use else if to specify a new condition to test, if the first condition is false

Use switch to specify many alternative blocks of code to be executed

1.7.1.1. The if Statement

Use the if statement to specify a block of Java code to be executed if a condition is true .

Note that if is in lowercase letters. Uppercase letters (If or IF) will generate an error.

In the example below, we test two values to find out if 20 is greater than 18. If the condition is true , print
some text:

We can also test variables:

int x = 5 + 3 * 2; // x will be 11 (Multiplication first)
boolean isGreater = 10 >= 5; // isGreater will be true

int y = 10;

y++; // Postfix increment, y is now 11

++y; // Prefix increment, y is now 12

int result = (2 > 3) ? 10 : 20; // result will be 20

// Syntax

if (condition) {

 // block of code to be executed if the condition is true
}

// Example

if (20 > 18) {

 System.out.println("20 is greater than 18");
}

int x = 20;

int y = 18;

if (x > y) {

 System.out.println("x is greater than y");
}

Java Programming Language Book by Milav Dabgar

No. 15 / 166

In the example above we use two variables, x and y, to test whether x is greater than y (using the >
operator). As x is 20, and y is 18, and we know that 20 is greater than 18, we print to the screen that "x is
greater than y".

1.7.1.2. The if-else Statement

Use the else statement to specify a block of code to be executed if the condition is false .

In the example above, time (20) is greater than 18, so the condition is false . Because of this, we move on
to the else condition and print to the screen "Good evening". If the time was less than 18, the program
would print "Good day".

1.7.1.3. The if-else-if Ladder

Use the else if statement to specify a new condition if the first condition is false .

// Syntax

if (condition) {

 // block of code to be executed if the condition is true
} else {

 // block of code to be executed if the condition is false
}

// Example

int time = 20;

if (time < 18) {

 System.out.println("Good day.");
} else {

 System.out.println("Good evening.");
}

// Outputs "Good evening."

// Syntax

if (condition1) {

 // block of code to be executed if condition1 is true
} else if (condition2) {

 // block of code to be executed if the condition1 is false and condition2 is true
} else {

 // block of code to be executed if the condition1 is false and condition2 is false
}

Java Programming Language Book by Milav Dabgar

No. 16 / 166

In the example above, time (22) is greater than 10, so the first condition is false . The next condition, in
the else if statement, is also false , so we move on to the else condition since condition1 and
condition2 is both false - and print to the screen "Good evening".

However, if the time was 14, our program would print "Good day."

1.7.1.4. Switch-Case Statements

Instead of writing many if..else statements, you can use the switch statement.

The switch statement selects one of many code blocks to be executed:

This is how it works:

The switch expression is evaluated once.

The value of the expression is compared with the values of each case .

If there is a match, the associated block of code is executed.

The break and default keywords are optional, and will be described later here

The example below uses the weekday number to calculate the weekday name:

// Example

int time = 22;

if (time < 10) {

 System.out.println("Good morning.");
} else if (time < 18) {

 System.out.println("Good day.");
} else {

 System.out.println("Good evening.");
}

// Outputs "Good evening."

// Syntax

switch(expression) {

 case x:
 // code block
 break;
 case y:
 // code block
 break;
 default:
 // code block
}

// Example

int day = 4;

switch (day) {

 case 1:
 System.out.println("Monday");

Java Programming Language Book by Milav Dabgar

No. 17 / 166

1.7.1.4.1. break Keyword

When Java reaches a break keyword, it breaks out of the switch block.

1.7.1.4.2. default Keyword

The default keyword specifies some code to run if there is no case match:

Note that if the default statement is used as the last statement in a switch block, it does not need a break.

1.7.2. Looping Statements

Loops can execute a block of code as long as a specified condition is reached. Loops are handy because
they save time, reduce errors, and they make code more readable.

1.7.2.1. While Loop

 break;
 case 2:
 System.out.println("Tuesday");
 break;
 case 3:
 System.out.println("Wednesday");
 break;
 case 4:
 System.out.println("Thursday");
 break;
 case 5:
 System.out.println("Friday");
 break;
 case 6:
 System.out.println("Saturday");
 break;
 case 7:
 System.out.println("Sunday");
 break;
}

// Outputs "Thursday" (day 4)

int day = 4;

switch (day) {

 case 6:
 System.out.println("Today is Saturday");
 break;
 case 7:
 System.out.println("Today is Sunday");
 break;
 default:
 System.out.println("Looking forward to the Weekend");
}

// Outputs "Looking forward to the Weekend"

Java Programming Language Book by Milav Dabgar

No. 18 / 166

The while loop loops through a block of code as long as a specified condition is true :

In the example below, the code in the loop will run, over and over again, as long as a variable (i) is less than
5:

Note: Do not forget to increase the variable used in the condition, otherwise the loop will never end!

1.7.2.2. Do/While Loop

The do/while loop is a variant of the while loop. This loop will execute the code block once, before
checking if the condition is true, then it will repeat the loop as long as the condition is true.

The example below uses a do/while loop. The loop will always be executed at least once, even if the
condition is false, because the code block is executed before the condition is tested:

Do not forget to increase the variable used in the condition, otherwise the loop will never end!

1.7.2.3. For Loop

When you know exactly how many times you want to loop through a block of code, use the for loop
instead of a while loop:

// Syntax

while (condition) {

 // code block to be executed
}

int i = 0;

while (i < 5) {

 System.out.println(i);
 i++;
}

// Syntax

do {

 // code block to be executed
}

while (condition);

int i = 0;do {

 System.out.println(i);
 i++;
}

while (i < 5);

// Syntax

for (statement 1; statement 2; statement 3) {

 // code block to be executed
}

Java Programming Language Book by Milav Dabgar

No. 19 / 166

Statement 1 is executed (one time) before the execution of the code block. Statement 2 defines the
condition for executing the code block. Statement 3 is executed (every time) after the code block has been
executed.

The example below will print the numbers 0 to 4:

Statement 1 sets a variable before the loop starts (int i = 0). Statement 2 defines the condition for the loop
to run (i must be less than 5). If the condition is true, the loop will start over again, if it is false, the loop will
end. Statement 3 increases a value (i++) each time the code block in the loop has been executed.

This example will only print even values between 0 and 10:

1.7.2.4. The For-Each Loop

The for-each loop, also known as the enhanced for loop, provides a simple way to iterate over collections
and arrays in Java.

The following example outputs all elements in the cars array, using a "for-each" loop:

The for-each loop iterates over each element in the collection sequentially, without the need for explicit
indexing or iterators.

1.7.2.5. Nested Loops

It is also possible to place a loop inside another loop. This is called a nested loop. The "inner loop" will be
executed one time for each iteration of the "outer loop":

for (int i = 0; i < 5; i++) {

 System.out.println(i);
}

for (int i = 0; i <= 10; i = i + 2) {

 System.out.println(i);
}

String[] cars = {"Volvo", "BMW", "Ford", "Mazda"};

for (String i : cars) {

 System.out.println(i);
}

ArrayList<String> list = new ArrayList<>();

list.add("Java");

list.add("Python");

list.add("C++");

for (String language : list) {

 System.out.println(language);
}

Java Programming Language Book by Milav Dabgar

No. 20 / 166

1.7.3. Jump Statements

1.7.3.1. break Statement

Terminates the loop or switch statement and transfers control to the statement immediately following the
loop or switch.

1.7.3.2. continue Statement

The continue statement breaks one iteration (in the loop), if a specified condition occurs, and continues
with the next iteration in the loop.

1.7.3.3. return Statement

Exits the current method and returns a value (if applicable) to the caller.

These control flow statements provide essential mechanisms for directing the flow of execution in Java
programs, allowing developers to implement conditional logic and repetitive tasks efficiently.

2. Object-Oriented Programming

// Outer loop

for (int i = 1; i <= 2; i++) {

 System.out.println("Outer: " + i); // Executes 2 times

 // Inner loop
 for (int j = 1; j <= 3; j++) {
 System.out.println(" Inner: " + j); // Executes 6 times (2 * 3)
 }

}

for (int i = 0; i < 5; i++) {

 if (i == 3) {
 break; // Terminates the loop when i equals 3
 }
 System.out.println("Iteration: " + i);
}

for (int i = 0; i < 5; i++) {

 if (i == 3) {
 continue; // Skips iteration when i equals 3
 }
 System.out.println("Iteration: " + i);
}

public int add(int a, int b) {

 return a + b; // Returns the sum of a and b
}

Java Programming Language Book by Milav Dabgar

No. 21 / 166

2.1. Procedure-Oriented vs. Object-Oriented
Programming

2.1.1. Characteristics

Procedure-Oriented Programming (POP):

1. Focus: POP focuses on functions or procedures that operate on data.

2. Data and Functions: Data and functions are separate entities.

3. Global Data: Relies heavily on global data, which can lead to data integrity issues.

4. Procedural Abstraction: Emphasizes procedural abstraction, breaking down a problem into a
sequence of steps.

5. Top-Down Approach: Follows a top-down approach, where the problem is broken down into smaller
sub-problems.

6. Examples: C, FORTRAN, Pascal, BASIC

Object-Oriented Programming (OOP):

1. Focus: OOP focuses on objects that encapsulate data and behavior.

2. Data Encapsulation: Data and functions are encapsulated within objects, promoting data hiding and
encapsulation.

3. Class and Object: Relies on classes and objects to model real-world entities and interactions.

4. Inheritance and Polymorphism: Supports inheritance and polymorphism, enabling code reuse and
flexibility.

5. Bottom-Up Approach: Often follows a bottom-up approach, where objects are identified and modeled
to represent real-world entities.

6. Examples: Java, Python, C++, C#

2.1.2. Differences

Java Programming Language Book by Milav Dabgar

No. 22 / 166

Characteristic Procedure-Oriented Object-Oriented

Focus Functions or procedures Objects (data + behavior)

Program
Structure

Top-down approach,
functions within a program

Bottom-up approach, objects as building blocks

Data
Global or passed between
functions

Encapsulated within objects, accessed mainly via
methods

Security
Less secure – data more
exposed

Improved security through data hiding and access
control

Modularity Code can be less modular High modularity due to objects

Reusability Less reusable
Code reusability enhanced through inheritance
and classes

Design
Complexity

Suitable for smaller
programs

Preferred for large, complex systems due to
better modeling of real-world systems

In summary, while POP emphasizes procedures and functions, OOP revolves around objects and their
interactions, offering better encapsulation, code reusability, and maintainability for complex software
systems. The choice between them often depends on the nature and scale of the project, as well as the
preferences of the development team.

2.2. OOP Concepts
Object-Oriented Programming (OOP) is a programming paradigm that revolves around the concept of
objects, which encapsulate data and behavior. OOP provides several key concepts to facilitate modular and
organized software design.

2.2.1. Classes and Objects

Class: A class is a blueprint for creating objects. It defines the properties (attributes) and behaviors
(methods) that objects of the class will have.

public class Car {

 String color;
 int speed;

 void accelerate() {
 // Method to increase speed
 }

 void brake() {
 // Method to decrease speed
 }
}

Java Programming Language Book by Milav Dabgar

No. 23 / 166

Object: An object is an instance of a class. It represents a real-world entity and encapsulates both data
(attributes) and behavior (methods).

2.2.2. Encapsulation

Bundling: Combining data (attributes) and code (methods) that operates on that data within a single
unit (class).

Protection: Controlling the visibility of data members using access modifiers (public, private,
protected) to protect data integrity and hide implementation details.

Example:

The attributes of a BankAccount object are encapsulated within the class, accessible and modifiable mainly
through its methods.

2.2.3. Abstraction

Abstraction refers to the process of hiding the implementation details of a class and showing only the
essential features to the outside world. It focuses on what an object does rather than how it does it.

Simplification: Focusing on essential characteristics and hiding complex details. Exposing only the
necessary interface.

Levels of Abstraction: Can be achieved through classes, abstract classes, and interfaces.

Example:

Car myCar = new Car();

myCar.color = "Red";

myCar.speed = 60;

myCar.accelerate();

public class BankAccount {

 private double balance;

 public void deposit(double amount) {
 // Method to deposit money
 }

 public void withdraw(double amount) {
 // Method to withdraw money
 }
}

interface Shape {

 void draw();
}

class Circle implements Shape {

 public void draw() {

Java Programming Language Book by Milav Dabgar

No. 24 / 166

2.2.4. Inheritance

Inheritance is a mechanism in which a new class (derived class or subclass) inherits properties and
behaviors from an existing class (base class or superclass). It promotes code reuse and establishes a
hierarchical relationship between classes.

Hierarchy: Creating new classes (subclasses) that inherit properties and behaviors of existing classes
(superclasses)

Code Reusability: Subclasses can reuse code from the superclass.

Extensibility: Subclasses can add their own unique properties and behaviors.

Example:

2.2.5. Polymorphism

Polymorphism allows objects to be treated as instances of their superclass or as instances of their subclass.
It enables flexibility and dynamic behaviour in the program.

Many Forms: The ability of an object to take on different forms or behaviours depending on the
situation.

Method Overloading: Multiple methods in a class with the same name but different parameters.

Method Overriding: A subclass provides a specific implementation of a method inherited from its
superclass.

Example:

 // Method to draw a circle
 }
}

class Rectangle implements Shape {

 public void draw() {
 // Method to draw a rectangle
 }
}

class Animal {

 void eat() {
 // Method to eat
 }
}

class Dog extends Animal {

 void bark() {
 // Method to bark
 }
}

class Animal {

Java Programming Language Book by Milav Dabgar

No. 25 / 166

These OOP concepts form the foundation of object-oriented design and programming. They enable
developers to create modular, maintainable, and scalable software systems by modeling real-world entities
and interactions in a structured and organized manner.

2.3. Classes and Objects

2.3.1. Creating Classes

In Java, a class is a blueprint for creating objects. It defines the structure and behavior of objects of that
type.

Syntax

Example

 void makeSound() {
 // Method to make a generic animal sound
 }
}

class Dog extends Animal {

 void makeSound() {
 // Method to make a dog sound
 }
}

class Cat extends Animal {

 void makeSound() {
 // Method to make a cat sound
 }
}

public class MyClass {

 // Class body
}

public class Car { // 'public' allows access from anywhere

 // Fields (member variables) define attributes
 private String model; // 'private' limits access to within the class
 private int year;
 private String color;

 // Constructor: Special method to initialize an object
 public Car(String model, int year, String color) {
 this.model = model; // 'this' refers to the current object
 this.year = year;
 this.color = color;
 }

 // Methods define behaviors

Java Programming Language Book by Milav Dabgar

No. 26 / 166

2.3.2. Creating Objects

In Java, an object is created from a class. Objects are instances of classes. They are created using the new
keyword followed by the class constructor

To create an object of Main , specify the class name, followed by the object name, and use the keyword
new : Create an object called " myObj " and print the value of x:

2.3.2.1. Multiple Objects

You can create multiple objects of one class:

Create two objects of Main :

 public void startEngine() {
 System.out.println("Engine Starting...");
 }

 public void brake() {
 System.out.println("Braking...");
 }

 // Getters and setters (accessors and mutators) for controlled access
 public String getModel() {
 return model;
 }

 public void setModel(String model) {
 this.model = model;
 }

 // ... more getters and setters
}

public class Main {

 int x = 5;

 public static void main(String[] args) {
 Main myObj = new Main();
 System.out.println(myObj.x);
 }

}

Java Programming Language Book by Milav Dabgar

No. 27 / 166

2.3.2.2. Using Multiple Classes

You can also create an object of a class and access it in another class. This is often used for better
organization of classes (one class has all the attributes and methods, while the other class holds the main()
method (code to be executed)).

Remember that the name of the java file should match the class name. In this example, we have created
two files in the same directory/folder:

Main.java

Second.java

2.3.2.3. this Keyword

Inside a method or constructor, this refers to the current object. It is used to differentiate between
instance variables and local variables with the same name.

2.4. Class Attributes

public class Main {

 int x = 5;

 public static void main(String[] args) {
 Main myObj1 = new Main(); // Object 1
 Main myObj2 = new Main(); // Object 2
 System.out.println(myObj1.x);
 System.out.println(myObj2.x);
 }

}

//Main.java

public class Main {

 int x = 5;
}

//Second.java

class Second {

 public static void main(String[] args) {
 Main myObj = new Main();
 System.out.println(myObj.x);
 }

}

public class Person {

 String name;

 public void setName(String name) {
 this.name = name; // Assigning the parameter value to the instance variable
 }
}

Java Programming Language Book by Milav Dabgar

No. 28 / 166

2.4. Class Attributes
Attributes are variables that define the state of objects. They represent the data associated with objects of
the class.

Create a class called " Main " with two attributes: x and y :

Another term for class attributes is fields.

2.4.1. Accessing Attributes

You can access attributes by creating an object of the class, and by using the dot syntax (.):

The following example will create an object of the Main class, with the name myObj . We use the x
attribute on the object to print its value:

Create an object called " myObj " and print the value of x :

2.4.2. Modify Attributes

You can also modify attribute values: Set the value of x to 40:

Or override existing values: Change the value of x to 25:

public class Main {

 int x = 5;
 int y = 3;
}

public class Main {

 int x = 5;

 public static void main(String[] args) {
 Main myObj = new Main();
 System.out.println(myObj.x);
 }

}

public class Main {

 int x;

 public static void main(String[] args) {
 Main myObj = new Main();
 myObj.x = 40;
 System.out.println(myObj.x);
 }

}

Java Programming Language Book by Milav Dabgar

No. 29 / 166

If you don't want the ability to override existing values, declare the attribute as final :

The final keyword is useful when you want a variable to always store the same value, like PI (3.14159...).

2.4.3. Attributes of Multiple Objects

If you create multiple objects of one class, you can change the attribute values in one object, without
affecting the attribute values in the other: Change the value of x to 25 in myObj2 , and leave x in myObj1
unchanged:

2.4.4. Multiple Attributes of same Object

You can specify as many attributes as you want:

public class Main {

 int x = 10;

 public static void main(String[] args) {
 Main myObj = new Main();
 myObj.x = 25; // x is now 25
 System.out.println(myObj.x);
 }

}

public class Main {

 final int x = 10;

 public static void main(String[] args) {
 Main myObj = new Main();
 myObj.x = 25; // will generate an error: cannot assign a value to a final variable
 System.out.println(myObj.x);
 }

}

public class Main {

 int x = 5;

 public static void main(String[] args) {
 Main myObj1 = new Main(); // Object 1
 Main myObj2 = new Main(); // Object 2
 myObj2.x = 25;
 System.out.println(myObj1.x); // Outputs 5
 System.out.println(myObj2.x); // Outputs 25
 }

}

Java Programming Language Book by Milav Dabgar

No. 30 / 166

Methods: Methods are functions that define the behavior of objects. They represent the actions that
objects of the class can perform.

2.5. Class Methods
A method is a block of code which only runs when it is called.

You can pass data, known as parameters, into a method.

Methods are used to perform certain actions, and they are also known as functions.

Why use methods? To reuse code: define the code once, and use it many times.

2.5.1. Create a Method

A method must be declared within a class. It is defined with the name of the method, followed by
parentheses (). Java provides some pre-defined methods, such as System.out.println() , but you can also
create your own methods to perform certain actions:

Create a method inside Main:

myMethod() is the name of the method

public class Main {

 String fname = "John";
 String lname = "Doe";
 int age = 24;

 public static void main(String[] args) {
 Main myObj = new Main();
 System.out.println("Name: " + myObj.fname + " " + myObj.lname);
 System.out.println("Age: " + myObj.age);
 }

}

public class Car {

 void accelerate() {
 // Method to increase speed
 }

 void brake() {
 // Method to decrease speed
 }
}

public class Main {

 static void myMethod() {
 // code to be executed
 }

}

Java Programming Language Book by Milav Dabgar

No. 31 / 166

static means that the method belongs to the Main class and not an object of the Main class. You will
learn more about objects and how to access methods through objects later here.

void means that this method does not have a return value. You will learn more about return values
later here

2.5.2. Call a Method

To call a method in Java, write the method's name followed by two parentheses () and a semicolon;

In the following example, myMethod() is used to print a text (the action), when it is called:

Inside main , call the myMethod() method:

A method can also be called multiple times:

2.5.3. Method Parameters and Arguments

Information can be passed to methods as parameter. Parameters act as variables inside the method.

Parameters are specified after the method name, inside the parentheses. You can add as many parameters
as you want, just separate them with a comma.

public class Main {

 static void myMethod() {
 System.out.println("I just got executed!");
 }

 public static void main(String[] args) {
 myMethod();
 }

}

// Outputs "I just got executed!"

public class Main {

 static void myMethod() {
 System.out.println("I just got executed!");
 }

 public static void main(String[] args) {
 myMethod();
 myMethod();
 myMethod();
 }

}

// I just got executed!

// I just got executed!

// I just got executed!

Java Programming Language Book by Milav Dabgar

No. 32 / 166

The following example has a method that takes a String called fname as parameter. When the method is
called, we pass along a first name, which is used inside the method to print the full name:

When a parameter is passed to the method, it is called an argument. So, from the example above: fname
is a parameter, while Liam , Jenny and Anja are arguments.

2.5.3.1. Multiple Parameters

You can have as many parameters as you like:

Note that when you are working with multiple parameters, the method call must have the same number of
arguments as there are parameters, and the arguments must be passed in the same order.

2.5.4. Return Values

The void keyword, used in the examples above, indicates that the method should not return a value. If you
want the method to return a value, you can use a primitive data type (such as int , char , etc.) instead of
void , and use the return keyword inside the method:

public class Main {

 static void myMethod(String fname) {
 System.out.println(fname + " Refsnes");
 }

 public static void main(String[] args) {
 myMethod("Liam");
 myMethod("Jenny");
 myMethod("Anja");
 }

}

// Liam Refsnes

// Jenny Refsnes

// Anja Refsnes

public class Main {

 static void myMethod(String fname, int age) {
 System.out.println(fname + " is " + age);
 }

 public static void main(String[] args) {
 myMethod("Liam", 5);
 myMethod("Jenny", 8);
 myMethod("Anja", 31);
 }

}

// Liam is 5

// Jenny is 8

// Anja is 31

Java Programming Language Book by Milav Dabgar

No. 33 / 166

This example returns the sum of a method's two parameters:

You can also store the result in a variable (recommended, as it is easier to read and maintain):

2.5.5. Access Methods With an Object

Create a Car object named myCar . Call the fullThrottle() and speed() methods on the myCar object,
and run the program:

public class Main {

 static int myMethod(int x) {
 return 5 + x;
 }

 public static void main(String[] args) {
 System.out.println(myMethod(3));
 }

}

// Outputs 8 (5 + 3)

public class Main {

 static int myMethod(int x, int y) {
 return x + y;
 }

 public static void main(String[] args) {
 System.out.println(myMethod(5, 3));
 }

}

// Outputs 8 (5 + 3)

public class Main {

 static int myMethod(int x, int y) {
 return x + y;
 }

 public static void main(String[] args) {
 int z = myMethod(5, 3);
 System.out.println(z);
 }

}

// Outputs 8 (5 + 3)

// Create a Main class

public class Main {

 // Create a fullThrottle() method
 public void fullThrottle() {

Java Programming Language Book by Milav Dabgar

No. 34 / 166

2.5.6. Method Signatures

A method signature consists of the method name and the parameter list (type and order of parameters).
The return type may also be considered part of the method signature, but it's not required for method
overloading.

The unique identifier of a method. It consists of:

Name: What the method is called.

Parameter List: The types and order of arguments the method accepts.

Return Type: The type of value returned by the method (void if it doesn't return anything).

2.5.7. Passing Arguments

Passing by Value: Primitive data types are passed by value, meaning a copy of the value is passed to
the method. Changes to the parameter inside the method do not affect the original value.

Passing by Reference: Objects are passed by reference, meaning the reference to the object is passed
to the method. Changes to the object's state inside the method affect the original object.

 System.out.println("The car is going as fast as it can!");
 }

 // Create a speed() method and add a parameter
 public void speed(int maxSpeed) {
 System.out.println("Max speed is: " + maxSpeed);
 }

 // Inside main, call the methods on the myCar object
 public static void main(String[] args) {
 Main myCar = new Main(); // Create a myCar object
 myCar.fullThrottle(); // Call the fullThrottle() method
 myCar.speed(200); // Call the speed() method
 }

}

// The car is going as fast as it can!

// Max speed is: 200

public void methodName(int parameter1, String parameter2) {

 // Method body
}

public void modifyValue(int x) {

 x = x + 1; // Changes made to x are local to this method
}

Java Programming Language Book by Milav Dabgar

No. 35 / 166

2.5.8. Returning Values

Methods can return values using the return statement.

The return statement exits the method and sends a value back to where the method was called.

The return type in the method signature must match the data type of the value being returned.

Methods with a void return type don't return anything.

These concepts help in organizing code, improving code reusability, and managing resources effectively in
Java programs.

2.6. Constructors
A constructor in Java is a special method that is used to initialize objects. The constructor is called when an
object of a class is created. It can be used to set initial values for object attributes

Have the same name as the class.

Do not have a return type, not even void .

All classes have constructors by default: if you do not create a class constructor yourself, Java creates one
for you. However, then you are not able to set initial values for object attributes.

public void modifyObjectValue(MyObject obj) {

 obj.setValue(10); // Changes made to the object's state affect the original
object

}

public int add(int a, int b) {

 return a + b;
}

// Create a Main class

public class Main {

 int x; // Create a class attribute
 // Create a class constructor for the Main class
 public Main() {
 x = 5; // Set the initial value for the class attribute x
 }

 public static void main(String[] args) {
 Main myObj = new Main(); // Create an object of class Main (This will call the
constructor)

 System.out.println(myObj.x); // Print the value of x
 }

}

// Outputs 5

Java Programming Language Book by Milav Dabgar

No. 36 / 166

2.6.1. Types of Constructors

2.6.1.1. Default Constructors

If you don't define a constructor, Java provides a no-argument default constructor.

It typically initializes members to their default values (e.g., 0 for numbers, null for objects).

2.6.1.2. Parameterized Constructors

Parameterized constructors allow initialisation of object attributes with specific values passed as arguments
during object creation. Used to provide flexibility when creating objects.

2.6.1.3. Copy Constructors

A copy constructor creates a new object by copying the attributes of an existing object. It takes an object of
the same class as a parameter.

2.6.2. Constructor Overloading

Constructor overloading allows a class to have multiple constructors with different parameter lists. Java
differentiates between constructors based on the number and types of parameters.

public class Student {

 private String name;
 private int rollNumber;

 // Parameterized constructor
 public Student(String name, int rollNumber) {
 this.name = name;
 this.rollNumber = rollNumber;
 }
}

public class Student {

 // ... (fields and other constructors)

 // Copy constructor
 public Student(Student otherStudent) {
 this.name = otherStudent.name;
 this.rollNumber = otherStudent.rollNumber;
 }
}

public class MyClass {

 int value;

 // Non Parameterized constructor
 public MyClass() {
 value = 0;

Java Programming Language Book by Milav Dabgar

No. 37 / 166

Modifier Description

public The class is accessible by any other class

default
The class is only accessible by classes in the same package. This is used when you don't
specify a modifier. You will learn more about packages in the Packages topic

In the example above, MyClass has three constructors: a default constructor, a parameterized constructor
with one parameter, and an overloaded constructor with two parameters.

Constructors are essential for initializing objects and setting up their initial state. They provide flexibility in
object creation and initialization in Java.

2.7. Modifiers
We divide modifiers into two groups:

Access Modifiers - controls the access level

Non-Access Modifiers - do not control access level, but provides other functionality

2.7.1. Access Modifiers

Access modifiers control the visibility of classes, attributes, methods, and constructors.

These access modifiers help in encapsulating and controlling the access to the members of a class, ensuring
data hiding and security in Java programs.

For classes, you can use either public or default:

For attributes, methods and constructors, you can use the one of the following:

 }

 // Parameterized constructor
 public MyClass(int v) {
 value = v;
 }

 // Overloaded constructor
 public MyClass(int v1, int v2) {
 value = v1 + v2;
 }
}

Java Programming Language Book by Milav Dabgar

No. 38 / 166

Modifier Description

public Class, Package, Other Packages: The code is accessible for all classes

private Class only: The code is only accessible within the declared class

default
Class, Package: The code is only accessible in the same package. This is used when you
don't specify a modifier. You will learn more about packages in the Packages topic

protected

Class, Package, Subclasses (even in different packages): The code is accessible in
the same package and subclasses. You will learn more about subclasses and
superclasses in the Inheritance topic

Modifier Description

final
The class cannot be inherited by other classes (You will learn more about inheritance in
the Inheritance topic)

abstract

The class cannot be used to create objects (To access an abstract class, it must be
inherited from another class. You will learn more about inheritance and abstraction in
the Inheritance and Abstraction topics)

2.7.2. Non-Access Modifiers

For classes, you can use either final or abstract :

For attributes and methods, you can use the one of the following:

public class MyClass {

 public int publicAttribute;
 protected int protectedAttribute;
 private int privateAttribute;
 int defaultAttribute;

 public void publicMethod() {
 // Code
 }

 protected void protectedMethod() {
 // Code
 }

 private void privateMethod() {
 // Code
 }

 void defaultMethod() {
 // Code
 }
}

Java Programming Language Book by Milav Dabgar

No. 39 / 166

Modifier Description

final Attributes and methods cannot be overridden/modified

static Attributes and methods belongs to the class, rather than an object

abstract

Can only be used in an abstract class, and can only be used on methods. The
method does not have a body, for example abstract void run();. The body is
provided by the subclass (inherited from). You will learn more about inheritance
and abstraction in the Inheritance and Abstraction topics

transient Attributes and methods are skipped when serializing the object containing them

synchronized Methods can only be accessed by one thread at a time

volatile
The value of an attribute is not cached thread-locally, and is always read from the
"main memory"

2.7.2.1. final

If you don't want the ability to override existing attribute values, declare attributes as final :

2.7.2.2. static

The static keyword is used to create class-level variables and methods. These belong to the class rather
than to individual objects of the class. They can be accessed without creating an instance of the class.

Class-level Methods: Methods declared static don't require an instance of the class to be called.
They belong to the class itself. Use Cases:

Utility methods not tied to a specific object.

The main method is static since it's your program's entry point.

A static method means that it can be accessed without creating an object of the class, unlike public .

An example to demonstrate the differences between static and public methods:

public class Main {

 final int x = 10;
 final double PI = 3.14;

 public static void main(String[] args) {
 Main myObj = new Main();
 myObj.x = 50; // will generate an error: cannot assign a value to a final variable
 myObj.PI = 25; // will generate an error: cannot assign a value to a final variable
 System.out.println(myObj.x);
 }

}

public class Main {

 // Static method

Java Programming Language Book by Milav Dabgar

No. 40 / 166

Accessing Members: static methods can only directly access other static members and cannot
use the this keyword (since they don't operate on an object).

Static Variables:

Static Methods:

Static methods can be accessed using the class name:

Static variables and methods are shared among all instances of the class and can be accessed directly from
the class itself.

 static void myStaticMethod() {
 System.out.println("Static methods can be called without creating objects");
 }

 // Public method
 public void myPublicMethod() {
 System.out.println("Public methods must be called by creating objects");
 }

 // Main method
 public static void main(String[] args) {
 myStaticMethod(); // Call the static method
 // myPublicMethod(); This would output an error

 Main myObj = new Main(); // Create an object of Main
 myObj.myPublicMethod(); // Call the public method
 }

}

public class MathUtils {

 public static double findCircumference(double radius) {
 return 2 * Math.PI * radius;
 }
}

public class MyClass {

 static int count;
}

public class MyClass {

 static void printMessage() {
 System.out.println("Hello, world!");
 }
}

MyClass.printMessage();

Java Programming Language Book by Milav Dabgar

No. 41 / 166

2.7.2.3. abstract

An abstract method belongs to an abstract class, and it does not have a body. The body is provided by
the subclass:

2.8. String Class
In Java, strings are treated as objects of the String class. This class provides numerous methods for
manipulating and working with strings.

Immutability: It's important to remember that String objects in Java are immutable. Once a String is
created, its contents cannot be changed.

2.8.1. Strings - Special Characters

Because strings must be written within quotes, Java will misunderstand this string, and generate an error:

// Code from filename: Main.java

// abstract classabstract class Main {

 public String fname = "John";
 public int age = 24;
 public abstract void study(); // abstract method
}

// Subclass (inherit from Main)

class Student extends Main {

 public int graduationYear = 2018;
 public void study() { // the body of the abstract method is provided here
 System.out.println("Studying all day long");
 }

}

// End code from filename: Main.java

// Code from filename: Second.java

class Second {

 public static void main(String[] args) {
 // create an object of the Student class (which inherits attributes and methods from
Main)

 Student myObj = new Student();

 System.out.println("Name: " + myObj.fname);
 System.out.println("Age: " + myObj.age);
 System.out.println("Graduation Year: " + myObj.graduationYear);
 myObj.study(); // call abstract method }
}

String str = "Hello, World!";

String txt = "We are the so-called "Vikings" from the north.";

Java Programming Language Book by Milav Dabgar

No. 42 / 166

Escape character Result Description

' ' Single quote

" " Double quote

\ \ Backslash

Code Result

\n New Line

\r Carriage Return

\t Tab

\b Backspace

\f Form Feed

The solution to avoid this problem, is to use the backslash escape character. The backslash (\) escape
character turns special characters into string characters:

The sequence \" inserts a double quote in a string:

The sequence \' inserts a single quote in a string:

The sequence \\ inserts a single backslash in a string:

Other common escape sequences that are valid in Java are:

2.8.2. Common String Methods

String Concatenation: The + operator can be used between strings to combine them. This is called
concatenation:

Note that we have added an empty text (" ") to create a space between firstName and lastName on
print. You can also use the concat() method to concatenate two strings:

String txt = "We are the so-called \"Vikings\" from the north.";

String txt = "It\'s alright.";

String txt = "The character \\ is called backslash.";

String firstName = "John";

String lastName = "Doe";

System.out.println(firstName + " " + lastName);

Java Programming Language Book by Milav Dabgar

No. 43 / 166

charAt(int index): Returns the character at the specified index.

contains(CharSequence s): Checks if the string contains the specified sequence of characters.

format(String format, Object... args): Returns a formatted string using the specified format string
and arguments.

length(): Returns the length of the string.

split(String regex): Splits the string into an array of substrings based on the specified regular
expression.

substring(int beginIndex): Returns a substring starting from the specified index.

substring(int beginIndex, int endIndex): Returns a substring from the specified begin index
(inclusive) to the specified end index (exclusive).

toLowerCase(): Converts all characters in the string to lowercase.

toUpperCase(): Converts all characters in the string to uppercase.

String firstName = "John ";

String lastName = "Doe";

System.out.println(firstName.concat(lastName));

char ch = str.charAt(0); // Returns 'H'

boolean contains = str.contains("World"); // Returns true

String formattedString = String.format("Hello, %s!", "John"); // Returns "Hello,

John!"

int length = str.length(); // Returns 13

String[] parts = str.split(", "); // Splits the string into parts separated by ", "

String substring = str.substring(7); // Returns "World!"

String substring = str.substring(7, 12); // Returns "World"

String lowercase = str.toLowerCase(); // Returns "hello, world!"

String uppercase = str.toUpperCase(); // Returns "HELLO, WORLD!"

Java Programming Language Book by Milav Dabgar

No. 44 / 166

Method Description

nextBoolean() Reads a boolean value from the user

nextByte() Reads a byte value from the user

nextDouble() Reads a double value from the user

nextFloat() Reads a float value from the user

nextInt() Reads a int value from the user

nextLine() Reads a String value from the user

nextLong() Reads a long value from the user

nextShort() Reads a short value from the user

trim(): Removes leading and trailing whitespace from the string.

These are some of the commonly used methods provided by the String class in Java for manipulating and
working with strings. They enable various operations such as substring extraction, case conversion,
searching, and splitting.

Additional points

String Concatenation: You can use the + operator to join strings together.

String Comparison:

Use .equals() for content comparison.

== in the case of strings compares object references, not always the content.

StringBuilder: For frequent modifications, look into the StringBuilder class, which is mutable and
may be more efficient.

2.9. Scanner Class (User Input)
In Java, the Scanner class is commonly used to read user input from the console. It provides various
methods to read different types of input, such as integers, floating-point numbers, and strings.

2.9.1. Input Types

In the example above, we used the nextLine() method, which is used to read Strings. To read other types,
look at the table below:

2.9.2. Using Scanner Class

1. Import Scanner class: First, import the Scanner class from the java.util package.

String trimmed = " Hello, World! ".trim(); // Returns "Hello, World!"

Java Programming Language Book by Milav Dabgar

No. 45 / 166

2. Create a Scanner object: Create an instance of the Scanner class to read input.

3. Read input: Use the Scanner object's methods to read input from the console.

4. Close the Scanner: It's good practice to close the Scanner object after reading input to release system
resources.

In the example below, we use different methods to read data of various types:

Note: If you enter wrong input (e.g. text in a numerical input), you will get an exception/error message (like
" InputMismatchException ").

2.10. Command-line Arguments

import java.util.Scanner;

Scanner scanner = new Scanner(System.in);

System.out.println("Enter your name: ");

String name = scanner.nextLine(); // Read a line of text

System.out.println("Enter your age: ");

int age = scanner.nextInt(); // Read an integer

scanner.close();

import java.util.Scanner;

class Main {

 public static void main(String[] args) {
 Scanner myObj = new Scanner(System.in);

 System.out.println("Enter name, age and salary:");

 // String input
 String name = myObj.nextLine();

 // Numerical input
 int age = myObj.nextInt();
 double salary = myObj.nextDouble();

 // Output input by user
 System.out.println("Name: " + name);
 System.out.println("Age: " + age);
 System.out.println("Salary: " + salary);
 }

}

Java Programming Language Book by Milav Dabgar

No. 46 / 166

Java programs can also accept command-line arguments, which are passed to the main method when the
program is executed from the command line.

Command-line arguments can be accessed from the args array within the main method. Each element of
the array corresponds to a command-line argument passed to the program.

Arguments passed to your program when it's started from the command line.

Accessed in the String[] args parameter of the main method.

Example

Run this from the command line like:

Command-line arguments are useful for passing information to a Java program when it is executed, such as
configuration settings or file paths. They can be accessed and processed as needed within the program.

3. Inheritance, Packages, and Interfaces
3.1. Inheritance
Inheritance is a key concept in object-oriented programming (OOP) that allows a class to inherit properties
and behavior from another class. It promotes code reuse and establishes a hierarchical relationship
between classes.

3.1.1. Basics of Inheritance

Base Class (Superclass): The class whose properties and behavior are inherited by another class is
called the base class or superclass.

Derived Class (Subclass): The class that inherits properties and behavior from another class is called
the derived class or subclass.

Syntax: In Java, inheritance is achieved using the extends keyword.

public class CommandLineDemo {

 public static void main(String[] args) {
 if (args.length > 0) {
 System.out.println("The first argument is: " + args[0]);
 System.out.println("There were " + args.length + " arguments passed.");
 } else {
 System.out.println("No command-line arguments provided.");
 }
 }
}

java CommandLineDemo hello world

Java Programming Language Book by Milav Dabgar

No. 47 / 166

3.1.2. Types of Inheritance

1. Single Inheritance: A subclass inherits from only one superclass.

2. Multiple Inheritance (Not directly supported in Java): A subclass inheriting from multiple
superclasses. Java avoids this using interfaces (we'll cover interfaces later).

3. Multilevel Inheritance: A subclass inherits from a class that is itself a subclass.

4. Hierarchical Inheritance: Multiple subclasses inherit from a single superclass.

5. Hybrid Inheritance: A combination of multiple inheritance types. This can get complex, and Java
doesn't directly support all variations.

3.1.3. extends Keyword

The extends keyword is used to establish an inheritance relationship between classes in Java.

3.1.4. super Keyword

The super keyword is used to refer to the superclass or call superclass constructors and methods from the
subclass.

// Base class

class Vehicle {

 // Properties and methods
}

// Derived class inheriting from Vehicle

class Car extends Vehicle {

 // Additional properties and methods
}

class Animal { ... }

class Dog extends Animal { ... }

class Animal { ... }

class Dog extends Animal { ... }

class GoldenRetriever extends Dog { ... }

class Vehicle { ... }

class Car extends Vehicle { ... }

class Truck extends Vehicle { ... }

class Subclass extends Superclass {

 // Subclass definition
}

Java Programming Language Book by Milav Dabgar

No. 48 / 166

Referring to Superclass Members: Use super to access superclass members (fields and methods)
from the subclass.

Calling Superclass Constructor: Use super() to call the superclass constructor from the subclass
constructor.

In summary, inheritance allows classes to inherit properties and behavior from other classes, promoting
code reuse and establishing a hierarchical relationship between classes. Java supports various types of
inheritance, and the extends and super keywords are used to implement and work with inheritance in
Java programs.

3.1.5. Polymorphism

The word "polymorphism" means "many forms." In Java, it refers to the ability of objects to behave
differently depending on their specific type, enabling us to write more flexible and reusable code.

Polymorphism means "many forms", and it occurs when we have many classes that are related to each
other by inheritance.

Like we specified in the previous topic; Inheritance lets us inherit attributes and methods from another
class. Polymorphism uses those methods to perform different tasks. This allows us to perform a single
action in different ways.

For example, think of a superclass called Animal that has a method called animalSound() . Subclasses of
Animals could be Pigs, Cats, Dogs, Birds - And they also have their own implementation of an animal sound
(the pig oinks, and the cat meows, etc.):

class Subclass extends Superclass {

 void display() {
 super.display(); // Call superclass method
 // Additional subclass code
 }
}

class Subclass extends Superclass {

 Subclass() {
 super(); // Call superclass constructor
 // Subclass constructor code
 }
}

class Animal {

 public void animalSound() {
 System.out.println("The animal makes a sound");
 }

}

class Pig extends Animal {

 public void animalSound() {
 System.out.println("The pig says: wee wee");

Java Programming Language Book by Milav Dabgar

No. 49 / 166

Remember from the Inheritance topic that we use the extends keyword to inherit from a class.

Now we can create Pig and Dog objects and call the animalSound() method on both of them:

3.1.5.1. Method Overloading

Method overloading allows a class to have multiple methods with the same name but different parameter
lists. The methods must have different parameter types or a different number of parameters.

Definition: Having multiple methods with the same name within the same class, but with different
parameter lists (different number of parameters or different parameter types).

Resolution at Compile Time: The compiler determines at compile time which version of the method
to call based on the arguments provided.

 }

}

class Dog extends Animal {

 public void animalSound() {
 System.out.println("The dog says: bow wow");
 }

}

class Animal {

 public void animalSound() {
 System.out.println("The animal makes a sound");
 }

}

class Pig extends Animal {

 public void animalSound() {
 System.out.println("The pig says: wee wee");
 }

}

class Dog extends Animal {

 public void animalSound() {
 System.out.println("The dog says: bow wow");
 }

}

class Main {

 public static void main(String[] args) {
 Animal myAnimal = new Animal(); // Create a Animal object
 Animal myPig = new Pig(); // Create a Pig object
 Animal myDog = new Dog(); // Create a Dog object
 myAnimal.animalSound();
 myPig.animalSound();
 myDog.animalSound();
 }

}

Java Programming Language Book by Milav Dabgar

No. 50 / 166

3.1.5.2. Method Overriding

Method overriding occurs when a subclass provides a specific implementation of a method that is already
defined in its superclass. The method signature (name and parameters) must be the same.

Definition: A subclass redefines a method it inherits from a superclass. The subclass provides its own
specific implementation of the inherited method.

Resolution at Runtime: The JVM determines at runtime which version to call (subclass or superclass)
based on the type of the object. This is the essence of dynamic dispatch.

Use of @Override Annotation: Marking overridden methods with @Override helps avoid errors.

3.1.5.2.1. Overriding Object Class Methods

Java provides a set of methods in the Object class that can be overridden in subclasses to provide custom
behavior. Commonly overridden methods include:

equals(Object obj): Compares two objects for equality.

toString(): Returns a string representation of the object.

finalize(): Called by the garbage collector before reclaiming the object's memory.

hashCode(): Returns a hash code value for the object.

class Calculator {

 int add(int a, int b) {
 return a + b;
 }

 double add(double a, double b) {
 return a + b;
 }
}

class Animal {

 void makeSound() {
 System.out.println("Animal makes a sound");
 }
}

class Dog extends Animal {

 @Override
 void makeSound() {
 System.out.println("Dog barks");
 }
}

class Student {

 int id;
 String name;

Java Programming Language Book by Milav Dabgar

No. 51 / 166

3.1.6. Method Dynamic Dispatch

Method dynamic dispatch (or dynamic method dispatch) is the process by which the correct version of a
method is invoked at runtime, based on the actual type of the object.

In the example above, even though the reference animal is of type Animal , the makeSound() method of
the Dog class is invoked because animal is referring to a Dog object. This allows for polymorphic behavior,
where the same method call can exhibit different behavior depending on the actual type of the object at
runtime.

Polymorphism, achieved through method overloading, overriding, and dynamic dispatch, allows for flexible
and reusable code by enabling objects of different types to be treated uniformly.

3.2. Interfaces
An interface is like a contract. It defines a set of methods that a class must implement, ensuring certain
behaviors are guaranteed by the class.

Abstract: Interfaces cannot be instantiated directly. They are used to achieve abstraction and provide
a way to achieve multiple inheritance in Java through interface implementation.

Methods without Bodies: Methods in an interface are by default abstract (without a body).

implements Keyword: Classes implement interfaces using the implements keyword.

3.2.1. Defining Interfaces

An interface is declared using the interface keyword followed by the interface name and a list of method
signatures (without method bodies).

 // Overriding equals method
 @Override
 public boolean equals(Object obj) {
 // Custom equality check logic
 }

 // Overriding toString method
 @Override
 public String toString() {
 return "Student[id=" + id + ", name=" + name + "]";
 }
}

Animal animal = new Dog();

animal.makeSound(); // Dynamic dispatch invokes Dog's makeSound() method

interface Shape {

 double area();
 double perimeter();
}

Java Programming Language Book by Milav Dabgar

No. 52 / 166

3.2.2. Implementing Interfaces

To implement an interface, a class uses the implements keyword followed by the interface name. The class
must provide implementations for all the methods declared in the interface.

3.2.3. Multiple Inheritance Using Interfaces

Java supports multiple inheritance through interfaces, as a class can implement multiple interfaces. This
allows a class to inherit from multiple sources, providing flexibility in code design.

In the example above, the Rectangle class implements both the Drawable and Colorable interfaces,
allowing it to provide implementations for methods defined in both interfaces.

class Circle implements Shape {

 double radius;

 // Implementing area method
 @Override
 public double area() {
 return Math.PI * radius * radius;
 }

 // Implementing perimeter method
 @Override
 public double perimeter() {
 return 2 * Math.PI * radius;
 }
}

interface Drawable {

 void draw();
}

interface Colorable {

 void setColor(String color);
}

class Rectangle implements Drawable, Colorable {

 // Implementing draw method
 @Override
 public void draw() {
 // Draw rectangle
 }

 // Implementing setColor method
 @Override
 public void setColor(String color) {
 // Set rectangle color
 }
}

Java Programming Language Book by Milav Dabgar

No. 53 / 166

Notes on Interfaces:

Like abstract classes, interfaces cannot be used to create objects (in the example above, it is not
possible to create an "Animal" object in the MyMainClass)

Interface methods do not have a body - the body is provided by the "implement" class

On implementation of an interface, you must override all of its methods

Interface methods are by default abstract and public

Interface attributes are by default public , static and final

An interface cannot contain a constructor (as it cannot be used to create objects)

Why And When To Use Interfaces?

1. To achieve security - hide certain details and only show the important details of an object (interface).

2. Java does not support "multiple inheritance" (a class can only inherit from one superclass). However, it
can be achieved with interfaces, because the class can implement multiple interfaces. Note: To
implement multiple interfaces, separate them with a comma (see example below).

Benefits of Interfaces:

Polymorphism: You can treat objects of different classes that implement the same interface
uniformly.

Multiple Inheritance (via Interfaces): A class can implement multiple interfaces, overcoming Java's
restriction on direct multiple inheritance of classes.

Abstraction: Interfaces help to enforce a separation between interface (what an object can do) and
implementation (how it does it).

Loose Coupling: Using interfaces helps to reduce dependencies between classes, making your code
more flexible and maintainable.

Interfaces provide a way to achieve abstraction, decoupling the definition of methods from their
implementation. They also enable code reuse and multiple inheritance, making Java programs more flexible
and maintainable.

3.3. Abstraction
Data abstraction is the process of hiding certain details and showing only essential information to the user.
Abstraction can be achieved with either abstract classes or interfaces (which you will learn more about in
the next topic).

The abstract keyword is a non-access modifier, used for classes and methods:

Abstract class: is a restricted class that cannot be used to create objects (to access it, it must be
inherited from another class).

Abstract method: can only be used in an abstract class, and it does not have a body. The body is
provided by the subclass (inherited from).

// Abstract class

abstract class Animal {

Java Programming Language Book by Milav Dabgar

No. 54 / 166

3.3.1. Abstract Class

An abstract class in Java is a class that cannot be instantiated directly and may contain abstract methods,
which are declared but not implemented in the abstract class itself. Abstract classes are used to define a
common interface for a group of subclasses while allowing subclasses to provide specific implementations
for abstract methods.

An abstract class is declared using the abstract keyword. It can contain both abstract and non-abstract
methods.

abstract Keyword: Abstract classes are declared using the abstract keyword.

Abstract Methods: Can contain abstract methods (methods declared without a body, ending with a
semicolon). Subclasses must implement these methods.

Concrete Methods: Can also have regular methods with implementations.

3.3.2. Abstract Method

 // Abstract method (does not have a body)
 public abstract void animalSound();
 // Regular method
 public void sleep() {
 System.out.println("Zzz");
 }

}

// Subclass (inherit from Animal)

class Pig extends Animal {

 public void animalSound() {
 // The body of animalSound() is provided here
 System.out.println("The pig says: wee wee");
 }

}

class Main {

 public static void main(String[] args) {
 Pig myPig = new Pig(); // Create a Pig object
 myPig.animalSound();
 myPig.sleep();
 }

}

abstract class Shape {

 abstract double area(); // Abstract method
 double perimeter() { // Non-abstract method
 return 0;
 }
}

Java Programming Language Book by Milav Dabgar

No. 55 / 166

Feature Interface Abstract Class

Instantiation Cannot be instantiated directly Cannot be instantiated directly

Method
Declaration

Only abstract method
declarations

Can have abstract methods AND concrete
methods

Implementation
Provides no default
implementation

Can provide default implementations for
some methods

Multiple
Inheritance

A class can implement multiple
interfaces

A class can extend only one abstract class

An abstract method is declared using the abstract keyword and does not have an implementation in the
abstract class. Subclasses must provide implementations for all abstract methods.

Example

3.3.3. Differences from Interfaces

When to Use an Abstract Class

Common functionality across subclasses, but not all methods make sense at the base level.

Default implementations exist for some behaviors.

You want to enforce a certain structure on your class hierarchy.

3.4. Final Class
Definition: A class declared final cannot have any subclasses. It's like the end of an inheritance
chain.

Use Cases:

Prevent unwanted inheritance.

abstract class Vehicle {

 private String model;

 public Vehicle(String model) {
 this.model = model;
 }

 // Abstract method
 public abstract void startEngine();

 // Concrete method
 public void accelerate() {
 System.out.println("Accelerating...");
 }
}

Java Programming Language Book by Milav Dabgar

No. 56 / 166

Classes with immutable characteristics (like String).

Classes with security-sensitive functionality.

Final classes are typically used when a class should not be extended or when all its methods are already
implemented and should not be overridden.

3.4.1. Final Class Syntax

A final class is declared using the final keyword.

3.4.2. Final Method

In addition to final classes, individual methods can also be marked as final. A final method cannot be
overridden by subclasses.

Summary

Abstract classes provide a way to define a common interface for a group of subclasses and allow for
both abstract and non-abstract methods.

Final classes cannot be subclassed, and final methods cannot be overridden.

Abstract classes are used when a class should not be instantiated directly, while final classes are used
when a class should not be extended.

You cannot have a class that is both abstract and final . They represent opposite concepts in terms
of inheritance.

3.5. Inner Classes
In Java, it is also possible to nest classes (a class within a class). The purpose of nested classes is to group
classes that belong together, which makes your code more readable and maintainable.

To access the inner class, create an object of the outer class, and then create an object of the inner class:

final class FinalClass {

 // Class definition
}

class Parent {

 final void display() {
 // Method implementation
 }
}

class Child extends Parent {

 // This will cause a compile-time error
 void display() {
 // Method implementation
 }
}

Java Programming Language Book by Milav Dabgar

No. 57 / 166

3.5.1. Private Inner Class

Unlike a "regular" class, an inner class can be private or protected . If you don't want outside objects to
access the inner class, declare the class as private :

If you try to access a private inner class from an outside class, an error occurs:

3.5.2. Static Inner Class

An inner class can also be static , which means that you can access it without creating an object of the
outer class:

class OuterClass {

 int x = 10;

 class InnerClass {
 int y = 5;
 }

}

public class Main {

 public static void main(String[] args) {
 OuterClass myOuter = new OuterClass();
 OuterClass.InnerClass myInner = myOuter.new InnerClass();
 System.out.println(myInner.y + myOuter.x);
 }

}

// Outputs 15 (5 + 10)

class OuterClass {

 int x = 10;

 private class InnerClass {
 int y = 5;
 }

}

public class Main {

 public static void main(String[] args) {
 OuterClass myOuter = new OuterClass();
 OuterClass.InnerClass myInner = myOuter.new InnerClass();
 System.out.println(myInner.y + myOuter.x);
 }

}

Main.java:13: error: OuterClass.InnerClass has private access in OuterClass

OuterClass.InnerClass myInner = myOuter.new InnerClass(); ^

Java Programming Language Book by Milav Dabgar

No. 58 / 166

Note: just like static attributes and methods, a static inner class does not have access to members of
the outer class.

3.5.3. Access Outer Class From Inner Class

One advantage of inner classes, is that they can access attributes and methods of the outer class:

3.6. Packages & API
A package in Java is used to group related classes. Think of it as a folder in a file directory. We use
packages to avoid name conflicts, and to write a better maintainable code.

class OuterClass {

 int x = 10;

 static class InnerClass {
 int y = 5;
 }

}

public class Main {

 public static void main(String[] args) {
 OuterClass.InnerClass myInner = new OuterClass.InnerClass();
 System.out.println(myInner.y);
 }

}

// Outputs 5

class OuterClass {

 int x = 10;

 class InnerClass {
 public int myInnerMethod() {
 return x;
 }
 }

}

public class Main {

 public static void main(String[] args) {
 OuterClass myOuter = new OuterClass();
 OuterClass.InnerClass myInner = myOuter.new InnerClass();
 System.out.println(myInner.myInnerMethod());
 }

}

// Outputs 10

Java Programming Language Book by Milav Dabgar

No. 59 / 166

Packages in Java are used to group related classes, interfaces, and sub-packages, making the code easier to
manage and modularize. They help avoid naming conflicts and can also control access to classes and class
members (methods and fields) due to their access levels.

They provide:

Organisation: Help manage large projects by avoiding naming conflicts.

Access Control: Control the visibility of classes and members.

Namespace: Create a unique namespace for your classes and interfaces.

Packages are divided into two categories:

Built-in Packages (packages from the Java API)

User-defined Packages (create your own packages)

3.6.1. Built-in Packages

The Java API is a library of prewritten classes, that are free to use, included in the Java Development
Environment.

The library contains components for managing input, database programming, and much much more. The
complete list can be found at Oracles website: https://docs.oracle.com/javase/8/docs/api/.

The library is divided into packages and classes. Meaning you can either import a single class (along with
its methods and attributes), or a whole package that contain all the classes that belong to the specified
package.

Java comes with a rich set of built-in packages in the Java API. Examples:

java.lang (String, Math, System, etc.)

java.util (List, ArrayList, Scanner, etc.)

java.io (File, InputStream, etc.)

To use a class or a package from the library, you need to use the import keyword:

3.6.2. Import a Class

If you find a class you want to use, for example, the Scanner class, which is used to get user input, write
the following code:

In the example above, java.util is a package, while Scanner is a class of the java.util package.

To use the Scanner class, create an object of the class and use any of the available methods found in the
Scanner class documentation. In our example, we will use the nextLine() method, which is used to read a
complete line:

import package.name.Class; // Import a single class
import package.name.*; // Import the whole package

import java.util.Scanner;

Java Programming Language Book by Milav Dabgar

No. 60 / 166

https://docs.oracle.com/javase/8/docs/api/

Using the Scanner class to get user input:

3.6.3. Import a Package

There are many packages to choose from. In the previous example, we used the Scanner class from the
java.util package. This package also contains date and time facilities, random-number generator and
other utility classes.

To import a whole package, end the sentence with an asterisk sign (*). The following example will import
ALL the classes in the java.util package:

3.6.4. User-defined Packages

To create a package, you use the package keyword at the top of your Java source file. Each file can only
declare one package, and all types (classes, interfaces, enums) declared in the file will belong to that
package.

Package Declaration: At the top of your .java files, use the package keyword followed by the package
name.

To create your own package, you need to understand that Java uses a file system directory to store them.
Just like folders on your computer: root/mypack/MyPackageClass.java

To create a package, use the package keyword:

Save the file as MyPackageClass.java, and compile it, Then compile the package.

import java.util.Scanner;

class MyClass {

 public static void main(String[] args) {
 Scanner myObj = new Scanner(System.in);
 System.out.println("Enter username");

 String userName = myObj.nextLine();
 System.out.println("Username is: " + userName);
 }

}

import java.util.*;

// MyPackageClass.java

package mypack;

class MyPackageClass {

 public static void main(String[] args) {
 System.out.println("This is my package!");
 }

}

Java Programming Language Book by Milav Dabgar

No. 61 / 166

Access Modifier Access Within

public Class, Package, Other Packages

protected Class, Package, Subclasses (even in different packages)

default (no modifier) Class, Package

private Class only

The -d keyword specifies the destination for where to save the class file. You can use any directory name,
like c:/user (windows), or, if you want to keep the package within the same directory, you can use the dot
sign " . ", like in the example above.

Note: The package name should be written in lower case to avoid conflict with class names.

When we compiled the package in the example above, a new folder was created, called "mypack".

3.6.5. Access Rules: Access Control Within Packages

Java uses access modifiers to control access levels for classes, constructors, methods, and variables. The
access levels impact how members can be accessed from within their own package and from other
packages.

public : The member is accessible from any other class or package.

protected : The member is accessible within its own package and by subclasses (including those in
other packages).

default (no modifier): The member is accessible only within its own package. If no access modifier is
specified, the default access level is applied.

private : The member is accessible only within its own class.

3.6.6. Example: Access Control

If another class in a different package tries to access these methods, only publicMethod() and, under
certain conditions, protectedMethod() (from a subclass) would be accessible.

Packages and access modifiers together provide a robust mechanism for encapsulating and organizing
code, ensuring that internal implementations are well-protected and that the public interface of classes is
clearly defined.

4. Exception Handling and Multithreading

package packageOne;

public class ClassOne {

 public void publicMethod() {} // Accessible from any class
 protected void protectedMethod() {} // Accessible within package and subclasses
 void defaultMethod() {} // Accessible only within packageOne
 private void privateMethod() {} // Accessible only within ClassOne
}

Java Programming Language Book by Milav Dabgar

No. 62 / 166

4. Exception Handling and Multithreading
4.1. Exception Handling in Java
Exception handling in Java is a powerful mechanism that handles runtime errors to maintain normal
application flow. An exception is an event that disrupts the normal flow of the program's instructions.

4.1.1. Errors vs. Exceptions

Errors: Indicate serious problems that a reasonable application should not try to catch. Most errors are
abnormal conditions. Examples include OutOfMemoryError and StackOverflowError .

Exceptions: Are conditions that a reasonable application might want to catch. Exceptions are divided
into two categories: checked exceptions (those that must be caught or declared to be thrown) and
unchecked exceptions (those that don't need to be explicitly caught or declared thrown).

4.1.2. Java try and catch

The try statement allows you to define a block of code to be tested for errors while it is being executed.

The catch statement allows you to define a block of code to be executed, if an error occurs in the try block.

The try and catch keywords come in pairs:

Consider the following example:

This will generate an error, because myNumbers[10] does not exist.

The output will be something like this:

If an error occurs, we can use try...catch to catch the error and execute some code to handle it:

// Syntax

try {

 // Block of code to try
}

catch(Exception e) {

 // Block of code to handle errors
}

public class Main {

 public static void main(String[] args) {
 int[] myNumbers = {1, 2, 3};
 System.out.println(myNumbers[10]); // error!
 }

}

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 10 at
Main.main(Main.java:4)

Java Programming Language Book by Milav Dabgar

No. 63 / 166

The output will be:

4.1.3. try-catch-finally Blocks

try block: Contains code that might throw an exception.

catch block: Catches and handles the exception thrown by the try block.

finally block: Executes after the try/catch block has completed. The finally block will execute whether
or not an exception is caught or thrown. It's typically used for cleanup code.

The finally statement lets you execute code, after try...catch , regardless of the result:

4.2. Throwing Exceptions

//Example

public class Main {

 public static void main(String[] args) {
 try {
 int[] myNumbers = {1, 2, 3};
 System.out.println(myNumbers[10]);
 } catch (Exception e) {
 System.out.println("Something went wrong.");
 }
 }

}

Something went wrong.

// Syntax

try {

 // Code that may throw an exception
} catch (ExceptionType name) {

 // Code to handle the exception
} finally {

 // Code to be executed after try block ends
}

// Example

try {

 int result = 10 / 0; // Might throw an ArithmeticException
} catch (ArithmeticException e) {

 System.out.println("Error: Cannot divide by zero");
} finally {

 System.out.println("This code always executes.");
}

Java Programming Language Book by Milav Dabgar

No. 64 / 166

throw keyword: Used within a method to throw an exception. Either the method must handle the
exception using a try-catch block, or it must be declared to throw the exception using the throws
keyword in the method signature.

throws keyword: Indicates that a method may throw one or more exceptions. The calling method
must handle these exceptions.

The throw statement is used together with an exception type. There are many exception types available in
Java: ArithmeticException , FileNotFoundException , ArrayIndexOutOfBoundsException ,
SecurityException , etc.

4.2.1. Common Built-in Exceptions

ArithmeticException : Thrown for issues like division by zero.

NullPointerException : Attempting to access or modify a null object reference.

ArrayIndexOutOfBoundsException : Accessing an array with an illegal index.

ClassCastException : Attempting to cast an object to a subclass of which it is not an instance.

NumberFormatException : Attempting to convert a string to a numeric type but the string doesn't have
an appropriate format.

IOException : Signals problems during input/output operations.

IllegalArgumentException : When a method passes an invalid argument.

Throw an exception if age is below 18 (print "Access denied"). If age is 18 or older, print "Access granted":

The output will be:

public void myMethod() throws MyException {

 throw new MyException("Something went wrong");
}

public class Main {

 static void checkAge(int age) {
 if (age < 18) {
 throw new ArithmeticException("Access denied - You must be at least 18 years old.");
 }
 else {
 System.out.println("Access granted - You are old enough!");
 }
 }

 public static void main(String[] args) {
 checkAge(15); // Set age to 15 (which is below 18...)
 }

}

Java Programming Language Book by Milav Dabgar

No. 65 / 166

If age was 20, you would not get an exception:

The output will be:

4.2.2. Creating Custom Exceptions

You can create custom exceptions by extending the Exception class (for checked exceptions) or the
RuntimeException class (for unchecked exceptions).

Custom exceptions allow you to create specific error types for your application, improving readability and
maintainability.

4.2.3. Benefits of Exception Handling

Separation of Error-handling Code: Improves readability and maintainability.

Graceful Recovery: Allows your program to recover from errors instead of crashing.

Propagation: Exceptions can bubble up the call stack if not handled locally.

4.3. Multi-threading in Java
Multi-threading in Java allows concurrent execution of multiple threads within a single process, enabling
better utilization of CPU resources and improved application responsiveness. Here's an overview of key
concepts and features:

4.3.1. Concepts of Threads and Processes

Process: A process is an executing instance of a program that has its own memory space, resources,
and state.

Thread: A thread is the smallest unit of execution within a process. Threads share the same memory
space and resources within a process.

4.3.2. Multi-threading Benefits

Exception in thread "main" java.lang.ArithmeticException: Access denied - You must be at

least 18 years old. at Main.checkAge(Main.java:4) at Main.main(Main.java:12)

checkAge(20);

Access granted - You are old enough!

class MyCustomException extends Exception {

 public MyCustomException(String message) {
 super(message);
 }
}

Java Programming Language Book by Milav Dabgar

No. 66 / 166

Responsiveness: UI remains responsive even during long-running tasks.

Resource Utilization: Maximize CPU usage by allowing multiple threads to run concurrently.

Simplification: Can break down complex tasks into smaller, independently running threads.

4.3.3. Creating a Thread

There are two ways to create a thread.

It can be created by extending the Thread class and overriding its run() method:

4.3.3.1. Extend Syntax

Another way to create a thread is to implement the Runnable interface:

4.3.3.2. Implement Syntax

4.3.4. Running Threads

If the class extends the Thread class, the thread can be run by creating an instance of the class and call its
start() method:

4.3.4.1. Extend Example

If the class implements the Runnable interface, the thread can be run by passing an instance of the class to
a Thread object's constructor and then calling the thread's start() method:

public class Main extends Thread {

 public void run() {
 System.out.println("This code is running in a thread");
 }

}

public class Main implements Runnable {

 public void run() {
 System.out.println("This code is running in a thread");
 }

}

public class Main extends Thread {

 public static void main(String[] args) {
 Main thread = new Main();
 thread.start();
 System.out.println("This code is outside of the thread");
 }

 public void run() {
 System.out.println("This code is running in a thread");
 }

}

Java Programming Language Book by Milav Dabgar

No. 67 / 166

4.3.4.2. Implement Example

4.3.4.3. Differences between "extending" and "implementing" Threads

The major difference is that when a class extends the Thread class, you cannot extend any other class, but
by implementing the Runnable interface, it is possible to extend from another class as well, like: class
MyClass extends OtherClass implements Runnable .

4.3.5. Concurrency Problems

Because threads run at the same time as other parts of the program, there is no way to know in which
order the code will run. When the threads and main program are reading and writing the same variables,
the values are unpredictable. The problems that result from this are called concurrency problems.

A code example where the value of the variable amount is unpredictable:

To avoid concurrency problems, it is best to share as few attributes between threads as possible. If
attributes need to be shared, one possible solution is to use the isAlive() method of the thread to check
whether the thread has finished running before using any attributes that the thread can change.

Use isAlive() to prevent concurrency problems:

public class Main implements Runnable {

 public static void main(String[] args) {
 Main obj = new Main();
 Thread thread = new Thread(obj);
 thread.start();
 System.out.println("This code is outside of the thread");
 }

 public void run() {
 System.out.println("This code is running in a thread");
 }

}

public class Main extends Thread {

 public static int amount = 0;

 public static void main(String[] args) {
 Main thread = new Main();
 thread.start();
 System.out.println(amount);
 amount++;
 System.out.println(amount);
 }

 public void run() {
 amount++;
 }

}

Java Programming Language Book by Milav Dabgar

No. 68 / 166

4.3.6. Thread Lifecycle

The lifecycle of a thread in Java consists of several states:

New: The thread is in the new state before it is started.

Runnable: The thread is in the runnable state when it's ready to run, but the scheduler has not
selected it to be the running thread.

Running: The thread is in the running state when the processor is actively executing its code.

Blocked/Waiting: The thread is in the blocked/waiting state when it's waiting for a resource or another
thread to perform a task.

Terminated: The thread is in the terminated state when it has completed its execution.

4.3.7. Thread Priority

Thread priority is used by the scheduler to determine the order of thread execution.

Range from 1 (lowest) to 10 (highest), default is 5, where higher values indicate higher priority.

thread.setPriority() , thread.getPriority()

The OS scheduler uses priorities as suggestions, the behavior might be OS-dependent.

4.3.8. Thread Exception Handling

Exception handling in threads is similar to exception handling in other Java programs.

public class Main extends Thread {

 public static int amount = 0;

 public static void main(String[] args) {
 Main thread = new Main();
 thread.start();
 // Wait for the thread to finish
 while(thread.isAlive()) {
 System.out.println("Waiting...");
 }

 // Update amount and print its value
 System.out.println("Main: " + amount);
 amount++;
 System.out.println("Main: " + amount);
 }

 public void run() {
 amount++;
 }

}

thread.setPriority(Thread.MAX_PRIORITY); // Set highest priority

thread.setPriority(Thread.MIN_PRIORITY); // Set lowest priority

Java Programming Language Book by Milav Dabgar

No. 69 / 166

Uncaught Exceptions: If an exception isn't caught within a thread's run method, it terminates the
thread.

UncaughtExceptionHandler: Set a default handler per thread
(thread.setUncaughtExceptionHandler()) or for all threads
(Thread.setDefaultUncaughtExceptionHandler()) to log or handle these exceptions.

You can catch exceptions within the run() method or propagate them to the caller using throws
clause.

4.3.9. Synchronization

Synchronization in Java is used to control access to shared resources by multiple threads. It prevents
concurrent access to shared resources, avoiding data corruption and inconsistency.

Critical Sections: Code blocks that should be executed by only one thread at a time.

synchronized keyword: Use on methods or blocks to acquire a lock (monitor) on the object.

wait() , notify() , notifyAll() : For more advanced thread coordination inside synchronized
blocks.

Synchronized methods:

Synchronized blocks:

Summary

Multithreading in Java allows concurrent execution of multiple threads within a single process. It enables
better utilization of CPU resources, improves application responsiveness, and supports concurrent
programming paradigms. Understanding thread concepts, lifecycle, synchronization, and exception
handling is crucial for building robust multithreaded applications.

5. File Handling and Collections Framework

class MyThread extends Thread {

 public void run() {
 try {
 // Code that may throw an exception
 } catch (Exception e) {
 // Handle the exception
 }
 }
}

public synchronized void synchronizedMethod() {

 // Synchronized method body
}

synchronized (obj) {

 // Synchronized block
}

Java Programming Language Book by Milav Dabgar

No. 70 / 166

Method Type Description

canRead() Boolean Tests whether the file is readable or not

canWrite() Boolean Tests whether the file is writable or not

createNewFile() Boolean Creates an empty file

delete() Boolean Deletes a file

exists() Boolean Tests whether the file exists

getName() String Returns the name of the file

getAbsolutePath() String Returns the absolute pathname of the file

length() Long Returns the size of the file in bytes

list() String[] Returns an array of the files in the directory

mkdir() Boolean Creates a directory

5. File Handling and Collections Framework
File handling in Java involves reading from and writing to files. Java has several methods for creating,
reading, updating, and deleting files.

5.1. File Handling using File Class
The File class from the java.io package, allows us to work with files.

To use the File class, create an object of the class, and specify the filename or directory name:

The File class has many useful methods for creating and getting information about files. For example:

5.1.1. Create a File

To create a file in Java, you can use the createNewFile() method. This method returns a boolean value:
true if the file was successfully created, and false if the file already exists. Note that the method is
enclosed in a try...catch block. This is necessary because it throws an IOException if an error occurs (if
the file cannot be created for some reason):

import java.io.File; // Import the File class

File myObj = new File("filename.txt"); // Specify the filename

import java.io.File; // Import the File class
import java.io.IOException; // Import the IOException class to handle errors

public class CreateFile {

 public static void main(String[] args) {

Java Programming Language Book by Milav Dabgar

No. 71 / 166

The output will be:

To create a file in a specific directory (requires permission), specify the path of the file and use double
backslashes to escape the " \ " character (for Windows). On Mac and Linux you can just write the path, like:
/Users/name/filename.txt

5.1.2. Write To a File

In the following example, we use the FileWriter class together with its write() method to write some
text to the file we created in the example above. Note that when you are done writing to the file, you should
close it with the close() method:

The output will be:

 try {
 File myObj = new File("filename.txt");
 if (myObj.createNewFile()) {
 System.out.println("File created: " + myObj.getName());
 } else {
 System.out.println("File already exists.");
 }
 } catch (IOException e) {
 System.out.println("An error occurred.");
 e.printStackTrace();
 }
 }

}

File created: filename.txt

File myObj = new File("C:\\Users\\MyName\\filename.txt");

import java.io.FileWriter; // Import the FileWriter class
import java.io.IOException; // Import the IOException class to handle errors

public class WriteToFile {

 public static void main(String[] args) {
 try {
 FileWriter myWriter = new FileWriter("filename.txt");
 myWriter.write("Files in Java might be tricky, but it is fun enough!");
 myWriter.close();
 System.out.println("Successfully wrote to the file.");
 } catch (IOException e) {
 System.out.println("An error occurred.");
 e.printStackTrace();
 }
 }

}

Java Programming Language Book by Milav Dabgar

No. 72 / 166

5.1.3. Read a File

In the previous topic, you learned how to create and write to a file.

In the following example, we use the Scanner class to read the contents of the text file we created in the
previous topic:

The output will be:

5.1.4. Get File Information

To get more information about a file, use any of the File methods:

Successfully wrote to the file.

import java.io.File; // Import the File class
import java.io.FileNotFoundException; // Import this class to handle errors
import java.util.Scanner; // Import the Scanner class to read text files

public class ReadFile {

 public static void main(String[] args) {
 try {
 File myObj = new File("filename.txt");
 Scanner myReader = new Scanner(myObj);
 while (myReader.hasNextLine()) {
 String data = myReader.nextLine();
 System.out.println(data);
 }
 myReader.close();
 } catch (FileNotFoundException e) {
 System.out.println("An error occurred.");
 e.printStackTrace();
 }
 }

}

Files in Java might be tricky, but it is fun enough!

import java.io.File; // Import the File class

public class GetFileInfo { public static void main(String[] args) {
 File myObj = new File("filename.txt");
 if (myObj.exists()) {
 System.out.println("File name: " + myObj.getName());
 System.out.println("Absolute path: " + myObj.getAbsolutePath());
 System.out.println("Writeable: " + myObj.canWrite());
 System.out.println("Readable " + myObj.canRead());
 System.out.println("File size in bytes " + myObj.length());
 } else {

Java Programming Language Book by Milav Dabgar

No. 73 / 166

The output will be:

Note: There are many available classes in the Java API that can be used to read and write files in Java:
FileReader, BufferedReader, Files, Scanner, FileInputStream, FileWriter, BufferedWriter,

FileOutputStream , etc. Which one to use depends on the Java version you're working with and whether
you need to read bytes or characters, and the size of the file/lines etc.

Tip: To delete a file, read our Java Delete Files topic.

5.1.5. Delete a File

To delete a file in Java, use the delete() method:

The output will be:

5.1.6. Delete a Folder

You can also delete a folder. However, it must be empty:

 System.out.println("The file does not exist.");
 }
 }

}

File name: filename.txtAbsolute path: C:\Users\MyName\filename.txtWriteable: trueReadable:

trueFile size in bytes: 0

import java.io.File; // Import the File class

public class DeleteFile {

 public static void main(String[] args) {
 File myObj = new File("filename.txt");
 if (myObj.delete()) {
 System.out.println("Deleted the file: " + myObj.getName());
 } else {
 System.out.println("Failed to delete the file.");
 }
 }

}

Deleted the file: filename.txt

Java Programming Language Book by Milav Dabgar

No. 74 / 166

The output will be:

5.2. File Handling using Streams Class

5.2.1. Streams and Stream Classes

File handling in Java can be achieved using streams and various stream classes provided by the java.io
package.

Stream: A sequence of data elements made available over time. In Java, streams are used to perform
input and output operations.

Types:

Byte Streams: Handle raw binary data (files, network).

Character Streams: Handle character-based data (text files).

Stream Classes: Java provides a variety of stream classes for handling input and output operations.
These include byte streams (InputStream , OutputStream) and character streams (Reader , Writer).

5.2.2. FileInputStream and FileOutputStream

FileInputStream : Used for reading data from a file as a stream of bytes.

FileOutputStream : Used for writing data to a file as a stream of bytes.

import java.io.File;

public class DeleteFolder {

 public static void main(String[] args) {
 File myObj = new File("C:\\Users\\MyName\\Test");
 if (myObj.delete()) {
 System.out.println("Deleted the folder: " + myObj.getName());
 } else {
 System.out.println("Failed to delete the folder.");
 }
 }

}

Deleted the folder: Test

// Example of using FileInputStream to read from a file

try (FileInputStream fis = new FileInputStream("input.txt")) {

 int data;
 while ((data = fis.read()) != -1) {
 // Process the data
 }
} catch (IOException e) {

 e.printStackTrace();
}

Java Programming Language Book by Milav Dabgar

No. 75 / 166

5.2.3. FileOutputStream to Write to File

You can use file output streams (FileOutputStream , FileWriter) to write to a file.

5.2.4. FileInputStream to Read from a File

 You can use file input streams (FileInputStream , FileReader) to read from a file.

// Example of using FileOutputStream to write to a file

try (FileOutputStream fos = new FileOutputStream("output.txt")) {

 String data = "Hello, world!";
 fos.write(data.getBytes());
} catch (IOException e) {

 e.printStackTrace();
}

try (BufferedWriter writer = new BufferedWriter(new FileWriter("output.txt"))) {

 writer.write("Hello, world!");
} catch (IOException e) {

 e.printStackTrace();
}

import java.io.FileOutputStream;

import java.io.IOException;

public class WriteToFile {

 public static void main(String[] args) {
 try (FileOutputStream outputStream = new FileOutputStream("myNewFile.txt")) {
 String text = "Hello, this is some text for the file.";
 byte[] data = text.getBytes();
 outputStream.write(data);
 System.out.println("Data written successfully!");
 } catch (IOException e) {
 System.out.println("An error occurred.");
 e.printStackTrace();
 }
 }
}

import java.io.FileInputStream;

import java.io.IOException;

public class ReadFromFile {

 public static void main(String[] args) {
 try (FileInputStream inputStream = new FileInputStream("myNewFile.txt")) {
 int data;
 while ((data = inputStream.read()) != -1) { // Read byte by byte
 System.out.print((char) data);
 }

Java Programming Language Book by Milav Dabgar

No. 76 / 166

5.2.5. Closing Streams

It's important to close streams after using them to release system resources.

Summary

File handling in Java involves reading from and writing to files using streams and stream classes.
FileInputStream and FileOutputStream are used for byte-level file handling, while FileReader and
FileWriter are used for character-level file handling. It's essential to properly handle exceptions and close
streams after using them to avoid resource leaks.

Important Considerations

Closing Streams: Always close streams using close() or try-with-resources to release resources.

Character Encoding: Be mindful of character encoding when dealing with text files (e.g., UTF-8).

Other File Operations: Java provides classes for deleting, renaming, and getting file metadata.

Buffered Streams: For performance optimization, use BufferedInputStream and
BufferedOutputStream to wrap file streams.

5.3. Collections Framework in Java
The Collections Framework in Java provides a unified architecture for representing and manipulating
collections of objects. It includes interfaces, implementations, and algorithms for working with collections
efficiently.

5.3.1. Overview and Hierarchy

The Collections Framework includes several key interfaces and classes organized in a hierarchy:

Foundation: The java.util package contains the core classes and interfaces.

Interfaces: Collection , List , Set , Map , etc.

Classes: ArrayList , LinkedList , HashSet , HashMap , etc.

Hierarchy:

Collection : Root interface – represents a group of objects.

 } catch (IOException e) {
 System.out.println("An error occurred.");
 e.printStackTrace();
 }
 }
}

try (FileInputStream fis = new FileInputStream("input.txt")) {

 // Code to read from the input stream
} catch (IOException e) {

 e.printStackTrace();
} // Stream will be closed automatically after the try block

Java Programming Language Book by Milav Dabgar

No. 77 / 166

List : Ordered collection with duplicates allowed (e.g., ArrayList , LinkedList)

Set : Unordered collection with no duplicates (e.g., HashSet)

Map : Key-value pairs (e.g., HashMap)

5.3.2. ArrayList

The ArrayList class is a resizable [array], which can be found in the java.util package.

The difference between a built-in array and an ArrayList in Java, is that the size of an array cannot be
modified (if you want to add or remove elements to/from an array, you have to create a new one). While
elements can be added and removed from an ArrayList whenever you want.

Implements the List interface.

Resizable-array implementation of the List interface.

Provides dynamic resizing, fast random access, and fast iteration.

Efficient for accessing elements by index, but less efficient for insertion and deletion in the middle of
the list.

5.3.2.1. Creating an ArrayList

5.3.2.2. Add Items

The ArrayList class has many useful methods. For example, to add elements to the ArrayList , use the
add() method:

Collection

 |
+---List

| |-- ArrayList
| |-- LinkedList
|

+---Set

| |-- HashSet
|
+---Map

 |-- HashMap

import java.util.ArrayList; // import the ArrayList class

ArrayList<String> cars = new ArrayList<String>(); // Create an ArrayList object

Java Programming Language Book by Milav Dabgar

No. 78 / 166

5.3.2.3. Access an Item

To access an element in the ArrayList , use the get() method and refer to the index number:

Remember: Array indexes start with 0: [0] is the first element. [1] is the second element, etc.

5.3.2.4. Change an Item

To modify an element, use the set() method and refer to the index number:

5.3.2.5. Remove an Item

To remove an element, use the remove() method and refer to the index number:

To remove all the elements in the ArrayList , use the clear() method:

5.3.2.6. ArrayList Size

To find out how many elements an ArrayList have, use the size method:

5.3.2.7. Loop Through an ArrayList

Loop through the elements of an ArrayList with a for loop, and use the size() method to specify how
many times the loop should run:

import java.util.ArrayList;

public class Main {

 public static void main(String[] args) {
 ArrayList<String> cars = new ArrayList<String>();
 cars.add("Volvo");
 cars.add("BMW");
 cars.add("Ford");
 cars.add("Mazda");
 System.out.println(cars);
 }

}

cars.get(0);

cars.set(0, "Opel");

cars.remove(0);

cars.clear();

cars.size();

Java Programming Language Book by Milav Dabgar

No. 79 / 166

You can also loop through an ArrayList with the for-each loop:

5.3.2.8. Other Types

Elements in an ArrayList are actually objects. In the examples above, we created elements (objects) of type
"String". Remember that a String in Java is an object (not a primitive type). To use other types, such as int,
you must specify an equivalent wrapper class: Integer . For other primitive types, use: Boolean for
boolean, Character for char, Double for double, etc:

Create an ArrayList to store numbers (add elements of type Integer):

public class Main {

 public static void main(String[] args) {
 ArrayList<String> cars = new ArrayList<String>();
 cars.add("Volvo");
 cars.add("BMW");
 cars.add("Ford");
 cars.add("Mazda");
 for (int i = 0; i < cars.size(); i++) {
 System.out.println(cars.get(i));
 }
 }

}

public class Main {

 public static void main(String[] args) {
 ArrayList<String> cars = new ArrayList<String>();
 cars.add("Volvo");
 cars.add("BMW");
 cars.add("Ford");
 cars.add("Mazda");
 for (String i : cars) {
 System.out.println(i);
 }
 }

}

import java.util.ArrayList;

public class Main {

 public static void main(String[] args) {
 ArrayList<Integer> myNumbers = new ArrayList<Integer>();
 myNumbers.add(10);
 myNumbers.add(15);
 myNumbers.add(20);
 myNumbers.add(25);
 for (int i : myNumbers) {
 System.out.println(i);
 }
 }

Java Programming Language Book by Milav Dabgar

No. 80 / 166

5.3.2.9. Sort an ArrayList

Another useful class in the java.util package is the Collections class, which include the sort()
method for sorting lists alphabetically or numerically:

Sort an ArrayList of Strings:

Sort an ArrayList of Integers:

5.3.3. LinkedList

}

import java.util.ArrayList;

import java.util.Collections; // Import the Collections class

public class Main {

 public static void main(String[] args) {
 ArrayList<String> cars = new ArrayList<String>();
 cars.add("Volvo");
 cars.add("BMW");
 cars.add("Ford");
 cars.add("Mazda");
 Collections.sort(cars); // Sort cars
 for (String i : cars) {
 System.out.println(i);
 }
 }

}

import java.util.ArrayList;

import java.util.Collections; // Import the Collections class

public class Main {

 public static void main(String[] args) {
 ArrayList<Integer> myNumbers = new ArrayList<Integer>();
 myNumbers.add(33);
 myNumbers.add(15);
 myNumbers.add(20);
 myNumbers.add(34);
 myNumbers.add(8);
 myNumbers.add(12);

 Collections.sort(myNumbers); // Sort myNumbers

 for (int i : myNumbers) {
 System.out.println(i);
 }
 }

}

Java Programming Language Book by Milav Dabgar

No. 81 / 166

In the previous topic, you learned about the ArrayList class. The LinkedList class is almost identical to
the ArrayList .

Implements the List interface.

Doubly-linked list implementation of the List interface.

Provides fast insertion and deletion operations at both ends of the list.

Less efficient for random access compared to ArrayList .

5.3.3.1. ArrayList vs. LinkedList

The LinkedList class is a collection which can contain many objects of the same type, just like the
ArrayList .

The LinkedList class has all of the same methods as the ArrayList class because they both implement
the List interface. This means that you can add items, change items, remove items and clear the list in the
same way.

However, while the ArrayList class and the LinkedList class can be used in the same way, they are built
very differently.

5.3.3.2. How the ArrayList works

The ArrayList class has a regular array inside it. When an element is added, it is placed into the array. If
the array is not big enough, a new, larger array is created to replace the old one and the old one is removed.

5.3.3.3. How the LinkedList works

The LinkedList stores its items in "containers." The list has a link to the first container and each container
has a link to the next container in the list. To add an element to the list, the element is placed into a new
container and that container is linked to one of the other containers in the list.

5.3.3.4. When To Use

Use an ArrayList for storing and accessing data, and LinkedList to manipulate data.

5.3.3.5. LinkedList Methods

// Import the LinkedList class

import java.util.LinkedList;

public class Main {

 public static void main(String[] args) {
 LinkedList<String> cars = new LinkedList<String>();
 cars.add("Volvo");
 cars.add("BMW");
 cars.add("Ford");
 cars.add("Mazda");
 System.out.println(cars);
 }

}

Java Programming Language Book by Milav Dabgar

No. 82 / 166

Method Description

addFirst() Adds an item to the beginning of the list.

addLast() Add an item to the end of the list

removeFirst() Remove an item from the beginning of the list.

removeLast() Remove an item from the end of the list

getFirst() Get the item at the beginning of the list

getLast() Get the item at the end of the list

For many cases, the ArrayList is more efficient as it is common to need access to random items in the list,
but the LinkedList provides several methods to do certain operations more efficiently:

5.3.4. HashMap

In the ArrayList topic, you learned that Arrays store items as an ordered collection, and you have to
access them with an index number (int type). A HashMap however, store items in "key/value" pairs, and
you can access them by an index of another type (e.g. a String).

One object is used as a key (index) to another object (value). It can store different types: String keys and
Integer values, or the same type, like: String keys and String values.

Implements the Map interface.

Hash table-based implementation of the Map interface.

Stores key-value pairs.

Provides constant-time performance for the basic operations (get and put) on average.

Create a HashMap object called capitalCities that will store String keys and String values:

5.3.4.1. Add Items

The HashMap class has many useful methods. For example, to add items to it, use the put() method:

import java.util.HashMap; // import the HashMap class

HashMap<String, String> capitalCities = new HashMap<String, String>();

// Import the HashMap class

import java.util.HashMap;

public class Main {

 public static void main(String[] args) {
 // Create a HashMap object called capitalCities
 HashMap<String, String> capitalCities = new HashMap<String, String>();

 // Add keys and values (Country, City)

Java Programming Language Book by Milav Dabgar

No. 83 / 166

5.3.4.2. Access an Item

To access a value in the HashMap , use the get() method and refer to its key:

5.3.4.3. Remove an Item

To remove an item, use the remove() method and refer to the key:

To remove all items, use the clear() method:

5.3.4.4. HashMap Size

To find out how many items there are, use the size() method:

5.3.4.5. Loop Through a HashMap

Loop through the items of a HashMap with a for-each loop.

Note: Use the keySet() method if you only want the keys, and use the values() method if you only want
the values:

 capitalCities.put("England", "London");
 capitalCities.put("Germany", "Berlin");
 capitalCities.put("Norway", "Oslo");
 capitalCities.put("USA", "Washington DC");
 System.out.println(capitalCities);
 }

}

capitalCities.get("England");

capitalCities.remove("England");

capitalCities.clear();

capitalCities.size();

// Print keys

for (String i : capitalCities.keySet()) {

 System.out.println(i);
}

// Print values

for (String i : capitalCities.values()) {

 System.out.println(i);
}

Java Programming Language Book by Milav Dabgar

No. 84 / 166

5.3.4.6. Other Types

Keys and values in a HashMap are actually objects. In the examples above, we used objects of type "String".
Remember that a String in Java is an object (not a primitive type). To use other types, such as int, you must
specify an equivalent wrapper class: Integer . For other primitive types, use: Boolean for boolean,
Character for char, Double for double, etc:

Create a HashMap object called people that will store String keys and Integer values:

5.3.5. HashSet

A HashSet is a collection of items where every item is unique, and it is found in the java.util package.

Implements the Set interface.

Hash table-based implementation of the Set interface.

Stores unique elements, does not allow duplicates.

Provides constant-time performance for the basic operations (add, remove, contains) on average.

Create a HashSet object called cars that will store strings:

5.3.5.1. Add Items

The HashSet class has many useful methods. For example, to add items to it, use the add() method:

// Print keys and values

for (String i : capitalCities.keySet()) {

 System.out.println("key: " + i + " value: " + capitalCities.get(i));
}

// Import the HashMap class

import java.util.HashMap;

public class Main {

 public static void main(String[] args) {
 // Create a HashMap object called people
 HashMap<String, Integer> people = new HashMap<String, Integer>();
 // Add keys and values (Name, Age)
 people.put("John", 32);
 people.put("Steve", 30);
 people.put("Angie", 33);
 for (String i : people.keySet()) {
 System.out.println("key: " + i + " value: " + people.get(i));
 }
 }

}

import java.util.HashSet; // Import the HashSet class

HashSet<String> cars = new HashSet<String>();

Java Programming Language Book by Milav Dabgar

No. 85 / 166

Note: In the example above, even though BMW is added twice it only appears once in the set because every
item in a set has to be unique.

5.3.5.2. Check If an Item Exists

To check whether an item exists in a HashSet, use the contains() method:

5.3.5.3. Remove an Item

To remove an item, use the remove() method:

To remove all items, use the clear() method:

5.3.5.4. HashSet Size

To find out how many items there are, use the size method:

5.3.5.5. Loop Through a HashSet

Loop through the items of an HashSet with a for-each loop:

// Import the HashSet class

import java.util.HashSet;

public class Main {

 public static void main(String[] args) {
 HashSet<String> cars = new HashSet<String>();
 cars.add("Volvo");
 cars.add("BMW");
 cars.add("Ford");
 cars.add("BMW");
 cars.add("Mazda");
 System.out.println(cars);
 }

}

cars.contains("Mazda");

cars.remove("Volvo");

cars.clear();

cars.size();

for (String i : cars) {

 System.out.println(i);
}

Java Programming Language Book by Milav Dabgar

No. 86 / 166

5.3.5.6. Other Types

Items in an HashSet are actually objects. In the examples above, we created items (objects) of type "String".
Remember that a String in Java is an object (not a primitive type). To use other types, such as int, you must
specify an equivalent wrapper class: Integer . For other primitive types, use: Boolean for boolean,
Character for char, Double for double, etc:

Use a HashSet that stores Integer objects:

The Collections Framework in Java provides a powerful and efficient way to work with collections of objects.
Understanding its interfaces and implementations, such as ArrayList , LinkedList , HashMap , and
HashSet , along with the for-each loop, is essential for effective Java programming.

5.3.6. Iterator

An Iterator is an object that can be used to loop through collections, like ArrayList and HashSet. It is
called an "iterator" because "iterating" is the technical term for looping.

To use an Iterator, you must import it from the java.util package.

5.3.6.1. Getting an Iterator

The iterator() method can be used to get an Iterator for any collection:

import java.util.HashSet;

public class Main {

 public static void main(String[] args) {

 // Create a HashSet object called numbers
 HashSet<Integer> numbers = new HashSet<Integer>();

 // Add values to the set
 numbers.add(4);
 numbers.add(7);
 numbers.add(8);

 // Show which numbers between 1 and 10 are in the set
 for(int i = 1; i <= 10; i++) {
 if(numbers.contains(i)) {
 System.out.println(i + " was found in the set.");
 } else {
 System.out.println(i + " was not found in the set.");
 }
 }
 }

}

// Import the ArrayList class and the Iterator class

import java.util.ArrayList;

import java.util.Iterator;

Java Programming Language Book by Milav Dabgar

No. 87 / 166

5.3.6.2. Looping Through a Collection

To loop through a collection, use the hasNext() and next() methods of the Iterator :

5.3.6.3. Removing Items from a Collection

Iterators are designed to easily change the collections that they loop through. The remove() method can
remove items from a collection while looping.

Use an iterator to remove numbers less than 10 from a collection:

public class Main {

 public static void main(String[] args) {

 // Make a collection
 ArrayList<String> cars = new ArrayList<String>();
 cars.add("Volvo");
 cars.add("BMW");
 cars.add("Ford");
 cars.add("Mazda");

 // Get the iterator
 Iterator<String> it = cars.iterator();

 // Print the first item
 System.out.println(it.next());
 }

}

while(it.hasNext()) {

 System.out.println(it.next());
}

import java.util.ArrayList;

import java.util.Iterator;

public class Main {

 public static void main(String[] args) {
 ArrayList<Integer> numbers = new ArrayList<Integer>();
 numbers.add(12);
 numbers.add(8);
 numbers.add(2);
 numbers.add(23);
 Iterator<Integer> it = numbers.iterator();
 while(it.hasNext()) {
 Integer i = it.next();
 if(i < 10) {
 it.remove();
 }
 }

Java Programming Language Book by Milav Dabgar

No. 88 / 166

Note: Trying to remove items using a for loop or a for-each loop would not work correctly because the
collection is changing size at the same time that the code is trying to loop.

6. Java Programming GTU Paper Solutions
6.1. 4341602 - Java: Winter 2023 Paper Solution

6.1.1. Q1a: List out basic concepts of Java OOP. Explain any one in
detail.

Basic Concepts of Java OOP (Object-Oriented Programming):

1. Classes and Objects: Classes are blueprints for objects. They define the properties (attributes) and
behaviors (methods) that objects of that class will have. Objects are instances of classes.

2. Encapsulation: Encapsulation refers to the bundling of data (attributes) and methods that operate on
the data into a single unit or class. It hides the internal state of an object from the outside world and
only exposes the necessary functionalities.

3. Inheritance: Inheritance is a mechanism in which a new class inherits properties and behaviors from
an existing class. The new class (subclass or derived class) can reuse the code of the existing class
(superclass or base class) and can also add its own unique features.

4. Polymorphism: Polymorphism allows objects of different classes to be treated as objects of a
common superclass. It allows methods to be called on objects of different classes through a common
interface, often resulting in different behaviors depending on the type of object.

5. Abstraction: Abstraction is the process of hiding the implementation details and showing only the
essential features of the object. It helps in reducing programming complexity and effort.

6. Association: Association represents a relationship between two or more classes where objects of one
class are connected with objects of another class through a specific type of relationship. It can be one-
to-one, one-to-many, or many-to-many.

7. Composition: Composition is a special form of association where one class contains objects of another
class as part of its state. The composed objects cannot exist independently of the containing class.

One of the concepts I'll explain in detail is Inheritance:

Inheritance:

Inheritance is one of the fundamental concepts of object-oriented programming. It allows a class (subclass
or derived class) to inherit properties and behaviors from another class (superclass or base class). This
promotes code reusability and establishes a hierarchical relationship between classes.

Example:

 System.out.println(numbers);
 }

}

// Base class or superclass

class Animal {

Java Programming Language Book by Milav Dabgar

No. 89 / 166

In this example, Animal is the superclass, and Dog is the subclass. The Dog class inherits the eat()
method from the Animal class. By using inheritance, we can avoid rewriting the eat() method in the Dog
class, thus promoting code reuse.

Inheritance supports the concept of code extensibility, as the subclass can add its own unique features
(such as the bark() method in this example) while retaining the features of the superclass.

Inheritance also facilitates polymorphism, as objects of the subclass can be treated as objects of the
superclass, enabling more flexible and generic code.

6.1.2. Q1b: Explain JVM in detail.

The Java Virtual Machine (JVM) is a crucial component of the Java Runtime Environment (JRE). It plays a
central role in executing Java bytecode, which is the compiled form of Java source code. Below, I'll explain
the JVM in detail:

1. Execution Environment:

The JVM provides a runtime environment for executing Java bytecode. It abstracts away the underlying
hardware and operating system details, providing platform independence.

JVM implementations are available for various platforms, including Windows, Linux, macOS, and
others.

2. Just-In-Time (JIT) Compilation:

The JVM employs a combination of interpretation and Just-In-Time (JIT) compilation techniques for
bytecode execution.

Initially, bytecode is interpreted, which involves executing the bytecode instructions one by one. This
allows for quick startup and adaptive optimization.

As the program runs, the JVM identifies frequently executed code segments (hot spots) and applies JIT
compilation to translate these segments into native machine code for improved performance.

 void eat() {
 System.out.println("Animal is eating...");
 }
}

// Derived class or subclass inheriting from Animal

class Dog extends Animal {

 void bark() {
 System.out.println("Dog is barking...");
 }
}

public class Main {

 public static void main(String[] args) {
 Dog dog = new Dog();
 dog.eat(); // inherited from Animal
 dog.bark(); // unique to Dog
 }
}

Java Programming Language Book by Milav Dabgar

No. 90 / 166

3. Memory Management:

The JVM manages memory allocation and deallocation for Java objects through automatic memory
management, known as garbage collection.

It divides the memory into different areas such as the heap, method area (or permgen space), and
stack.

The heap is used for storing objects dynamically allocated during program execution. Garbage
collection is responsible for reclaiming memory occupied by unreachable objects in the heap.

The stack is used for storing method invocations and local variables.

4. Class Loading and Dynamic Class Loading:

The JVM dynamically loads Java classes into memory as they are referenced during program execution.

Class loading involves locating the binary representation of a class, reading it into memory, and then
defining it within the JVM.

JVM supports dynamic class loading, allowing classes to be loaded at runtime based on specific
conditions or requirements, such as through the use of reflection or custom class loaders.

5. Security and Sandboxing:

The JVM incorporates various security features to ensure safe execution of Java programs.

Security Manager: It defines a security policy that specifies the permissions granted to Java code based
on its origin and other factors.

Bytecode Verification: Before executing bytecode, the JVM performs bytecode verification to ensure it
adheres to the language specifications, preventing malicious code from being executed.

6. Performance Monitoring and Profiling:

JVMs often include tools for performance monitoring and profiling, allowing developers to analyze the
runtime behavior of Java applications.

These tools provide insights into CPU utilization, memory usage, garbage collection activity, and other
performance-related metrics, helping developers optimize their code.

In summary, the JVM provides a robust execution environment for Java programs, abstracting away
hardware and operating system details while offering features such as memory management, dynamic
class loading, security, and performance monitoring. Its ability to execute Java bytecode efficiently makes it
a key component of the Java platform, enabling the development of portable and scalable applications.

6.1.3. Q1c: Write a program in java to print Fibonacci series for n
terms.

Sure, here's a Java program to print the Fibonacci series for n terms:

import java.util.Scanner;

public class FibonacciSeries {

 public static void main(String[] args) {
 Scanner scanner = new Scanner(System.in);

Java Programming Language Book by Milav Dabgar

No. 91 / 166

This program prompts the user to enter the number of terms (n) they want in the Fibonacci series. It then
calculates and prints the Fibonacci series for n terms. The Fibonacci series starts with 0 and 1, and each
subsequent term is the sum of the previous two terms. The loop iterates from the third term onwards,
calculating each term based on the previous two terms. Finally, it prints each term of the Fibonacci series.

6.1.4. Q1c: Write a program in java to find out minimum from any
ten numbers using command line argument.

Sure, here's a Java program that finds the minimum from any ten numbers using command-line arguments:

 System.out.print("Enter the number of terms in the Fibonacci series: ");
 int n = scanner.nextInt();
 scanner.close();

 System.out.println("Fibonacci series for " + n + " terms:");
 int firstTerm = 0, secondTerm = 1;

 // Print the first two terms
 System.out.print(firstTerm + " " + secondTerm + " ");

 // Generate and print the rest of the terms
 for (int i = 3; i <= n; i++) {
 int nextTerm = firstTerm + secondTerm;
 System.out.print(nextTerm + " ");
 firstTerm = secondTerm;
 secondTerm = nextTerm;
 }
 }
}

public class MinimumNumberFinder {

 public static void main(String[] args) {
 if (args.length != 10) {
 System.out.println("Please provide exactly 10 numbers as command line
arguments.");

 return;
 }

 // Parse the command line arguments and find the minimum
 int min = Integer.parseInt(args[0]); // Assume the first number as the minimum
initially

 for (int i = 1; i < args.length; i++) {
 int num = Integer.parseInt(args[i]);
 if (num < min) {
 min = num; // Update min if a smaller number is found
 }
 }

 System.out.println("The minimum number among the given ten numbers is: " + min);
 }

Java Programming Language Book by Milav Dabgar

No. 92 / 166

To run this program, compile it using javac MinimumNumberFinder.java and then execute it with ten
numbers as command-line arguments:

This will output:

Ensure that exactly ten numbers are provided as command-line arguments when running the program,
otherwise, it will display an error message.

6.1.5. Q2a: What is Java wrapper class? Explain with example.

In Java, a wrapper class is a class that encapsulates (or "wraps") primitive data types into objects. While
primitive data types represent simple values, wrapper classes provide a way to treat these values as objects.
This is particularly useful when dealing with collections, as many collection classes in Java require objects,
not primitives.

The Java platform provides a set of predefined wrapper classes for each primitive data type:

1. Byte for byte

2. Short for short

3. Integer for int

4. Long for long

5. Float for float

6. Double for double

7. Character for char

8. Boolean for boolean

Here's an example to illustrate the usage of wrapper classes:

}

java MinimumNumberFinder 5 3 9 2 8 1 7 6 4 10

The minimum number among the given ten numbers is: 1

public class WrapperExample {

 public static void main(String[] args) {
 // Using primitive data types
 int num1 = 10;
 double num2 = 3.14;
 char letter = 'A';
 boolean flag = true;

 // Using wrapper classes
 Integer numObj1 = Integer.valueOf(num1); // Wrapping int into Integer
 Double numObj2 = Double.valueOf(num2); // Wrapping double into Double
 Character charObj = Character.valueOf(letter); // Wrapping char into Character
 Boolean flagObj = Boolean.valueOf(flag); // Wrapping boolean into Boolean

Java Programming Language Book by Milav Dabgar

No. 93 / 166

In this example, we have primitive variables (num1 , num2 , letter , flag) representing different data types.
We then use the corresponding wrapper classes (Integer , Double , Character , Boolean) to wrap these
primitive values into objects (numObj1 , numObj2 , charObj , flagObj). Finally, we print out the values of
these wrapped objects.

Wrapper classes also provide utility methods to convert strings into primitive values and vice versa, and to
perform various operations on the wrapped values. They also facilitate interoperability between primitive
types and objects in Java.

6.1.6. Q2b: List out different features of java. Explain any two.

Java is a versatile programming language known for its rich set of features that contribute to its popularity
and widespread use. Here are some key features of Java:

1. Simple: Java was designed to be easy to learn and use. It has a concise, readable syntax, automatic
memory management (garbage collection), and eliminates complex features such as pointers and
operator overloading found in languages like C++.

2. Object-Oriented: Java is an object-oriented programming language, which means it supports the
creation of modular, reusable code through classes and objects. It embodies concepts like
encapsulation, inheritance, polymorphism, and abstraction, promoting better code organization and
maintenance.

3. Platform-Independent: Java programs are compiled into bytecode, which can be executed on any
platform with a Java Virtual Machine (JVM). This "write once, run anywhere" capability makes Java
platform-independent, enabling the development of cross-platform applications.

4. Secure: Java's security features help protect systems from malicious code and unauthorized access. It
incorporates a robust security model with features like bytecode verification, class loaders, and a
Security Manager that enforces access control policies.

5. Multithreaded: Java provides built-in support for multithreading, allowing concurrent execution of
multiple threads within a single program. This enables developers to write efficient, responsive
applications that can perform tasks concurrently, enhancing performance and responsiveness.

6. Dynamic: Java supports dynamic memory allocation and dynamic class loading, enabling applications
to adapt to changing runtime conditions. Dynamic features like reflection allow Java programs to
introspect and modify their own structure and behavior at runtime.

7. High Performance: While Java's interpreted nature might suggest slower performance compared to
languages like C or C++, modern Java implementations use techniques like Just-In-Time (JIT)
compilation and adaptive optimization to achieve high performance, often rivaling or surpassing native
code performance.

 // Displaying values
 System.out.println("Wrapped Integer value: " + numObj1);
 System.out.println("Wrapped Double value: " + numObj2);
 System.out.println("Wrapped Character value: " + charObj);
 System.out.println("Wrapped Boolean value: " + flagObj);
 }
}

Java Programming Language Book by Milav Dabgar

No. 94 / 166

8. Distributed: Java's built-in networking capabilities and Remote Method Invocation (RMI) framework
facilitate the development of distributed applications. Java's networking APIs allow seamless
communication between distributed components, making it suitable for building networked systems.

Let's delve into explanations for two of these features:

1. Platform-Independence:
Java achieves platform-independence through its bytecode compilation. When you compile a Java source
file, it's translated into bytecode, which is a platform-independent intermediate representation of the
program. This bytecode can then be executed on any device or platform that has a Java Virtual Machine
(JVM). The JVM interprets the bytecode and translates it into machine code that is specific to the underlying
hardware and operating system. This allows Java programs to run on diverse platforms without
modification, making it an ideal choice for developing cross-platform applications.

2. Object-Oriented:
Java is a pure object-oriented programming language, which means it revolves around the concept of
objects. Everything in Java is an object, which has attributes (fields or properties) and behaviors (methods).
Object-oriented programming promotes modularity, reusability, and extensibility of code. Encapsulation
ensures that the internal state of an object is hidden from the outside world, providing data security and
abstraction. Inheritance allows classes to inherit properties and behaviors from other classes, facilitating
code reuse and hierarchical organization. Polymorphism enables objects to exhibit different behaviors
based on their types, enhancing flexibility and code maintainability. Java's object-oriented features make it
well-suited for building large-scale, maintainable software systems.

6.1.7. Q2c: What is method overload in Java ? Explain with example.

Method overloading in Java refers to the ability to define multiple methods within the same class with the
same name but different parameter lists. These methods can have different numbers or types of
parameters. Java distinguishes between overloaded methods based on the number, type, and sequence of
their parameters.

When a method is invoked, Java determines which overloaded method to call based on the arguments
provided at the time of invocation. This process is known as compile-time polymorphism or static
polymorphism because the decision on which method to call is made by the compiler at compile time,
rather than at runtime.

Here's an example to illustrate method overloading in Java:

public class Calculator {

 // Method to add two integers
 public int add(int a, int b) {
 return a + b;
 }

 // Method to add three integers
 public int add(int a, int b, int c) {
 return a + b + c;
 }

 // Method to add two doubles

Java Programming Language Book by Milav Dabgar

No. 95 / 166

In this example, the Calculator class contains multiple overloaded add methods:

1. add(int a, int b) : Adds two integers and returns the result.

2. add(int a, int b, int c) : Adds three integers and returns the result.

3. add(double a, double b) : Adds two doubles and returns the result.

4. add(String a, String b) : Concatenates two strings and returns the result.

5. add(int a, double b) : Adds an integer and a double and returns the result.

These methods have the same name (add) but different parameter lists. Depending on the arguments
passed during the method invocation, Java determines which overloaded method to call. For example:

Output:

 public double add(double a, double b) {
 return a + b;
 }

 // Method to concatenate two strings
 public String add(String a, String b) {
 return a + b;
 }

 // Method to add an integer and a double
 public double add(int a, double b) {
 return a + b;
 }
}

public class Main {

 public static void main(String[] args) {
 Calculator calculator = new Calculator();

 int sum1 = calculator.add(5, 3); // Calls add(int a, int b)
 int sum2 = calculator.add(5, 3, 2); // Calls add(int a, int b, int c)
 double sum3 = calculator.add(2.5, 3.7); // Calls add(double a, double b)
 String concatenatedString = calculator.add("Hello ", "world!"); // Calls
add(String a, String b)

 double sum4 = calculator.add(5, 3.7); // Calls add(int a, double b)

 System.out.println("Sum 1: " + sum1);
 System.out.println("Sum 2: " + sum2);
 System.out.println("Sum 3: " + sum3);
 System.out.println("Concatenated String: " + concatenatedString);
 System.out.println("Sum 4: " + sum4);
 }
}

Java Programming Language Book by Milav Dabgar

No. 96 / 166

In this example, depending on the type and number of arguments provided, Java resolves the method calls
to the appropriate overloaded add method during compilation.

6.1.8. Q2a: Explain Garbage collection in java.

Garbage collection in Java is the automatic process of reclaiming memory occupied by objects that are no
longer in use or reachable by the application. It is a fundamental feature of the Java Virtual Machine (JVM)
that helps manage memory efficiently, prevents memory leaks, and reduces the risk of memory-related
errors such as segmentation faults.

Here's how garbage collection works in Java:

1. Object Allocation: When you create objects in Java using the new keyword, memory is allocated from
the heap to store those objects. The JVM keeps track of all allocated memory.

2. Reachability Analysis: The JVM periodically performs reachability analysis starting from a set of root
objects, typically references held by active threads, static variables, and local variables. It traverses the
object graph, marking objects that are reachable as live objects. Objects that are not reachable from
any root are considered garbage.

3. Garbage Collection Process: Once the reachability analysis identifies garbage objects, the garbage
collector (GC) is invoked to reclaim the memory occupied by those objects. The garbage collector uses
different algorithms to reclaim memory, such as the Mark-Sweep algorithm, Mark-Compact algorithm,
or Generational Garbage Collection.

4. Reclamation and Compaction: During garbage collection, the memory occupied by garbage objects is
reclaimed, and the memory space is compacted to reduce fragmentation. This involves moving live
objects together to create contiguous free space.

5. Finalization: Before reclaiming the memory of objects, the JVM calls the finalize() method of those
objects (if it's overridden) to perform any necessary cleanup operations. However, it's important to
note that the finalize() method is deprecated and is not guaranteed to be called promptly or at all
by the garbage collector.

6. Performance Considerations: Garbage collection can impact application performance, as it involves
stopping application threads temporarily to perform garbage collection tasks. To minimize the impact
on application responsiveness, modern JVMs use techniques like concurrent garbage collection, where
garbage collection runs concurrently with the application, and incremental garbage collection, where
garbage collection tasks are divided into smaller increments.

Here are some key benefits of garbage collection in Java:

Automatic Memory Management: Developers do not need to manually allocate and deallocate
memory, reducing the risk of memory leaks and memory-related bugs.

Simplified Memory Management: Garbage collection eliminates the need for explicit memory
management techniques like manual memory deallocation, reducing the complexity of programming.

Sum 1: 8

Sum 2: 10

Sum 3: 6.2

Concatenated String: Hello world!

Sum 4: 8.7

Java Programming Language Book by Milav Dabgar

No. 97 / 166

Improved Application Reliability: By preventing memory leaks and segmentation faults caused by
dangling pointers, garbage collection enhances the reliability and stability of Java applications.

Overall, garbage collection is a critical feature of the Java platform that helps manage memory efficiently,
allowing developers to focus on writing robust and reliable software.

6.1.9. Q2b: Explain final keyword in Java with example.

In Java, the final keyword is used to restrict the behavior of classes, methods, and variables. When applied
to different elements, it signifies different meanings:

1. Final Variables: When applied to a variable, the final keyword indicates that the variable's value
cannot be changed once initialized. It creates a constant.

2. Final Methods: When applied to a method, the final keyword indicates that the method cannot be
overridden by subclasses. It effectively prevents method overriding.

3. Final Classes: When applied to a class, the final keyword indicates that the class cannot be
subclassed. It prevents inheritance.

Here's how final keyword works with examples:

1. Final Variables:

In this example, constantValue is declared as a final variable. Attempting to modify its value after
initialization will result in a compilation error.

2. Final Methods:

public class FinalExample {

 // Declaring final variable
 final int constantValue = 10;

 public static void main(String[] args) {
 FinalExample obj = new FinalExample();
 // Trying to modify the final variable will result in a compilation error
 // obj.constantValue = 20; // Compilation error: The final field
FinalExample.constantValue cannot be assigned

 System.out.println("Constant value: " + obj.constantValue);
 }
}

public class Parent {

 // Final method
 public final void display() {
 System.out.println("This is a final method.");
 }
}

public class Child extends Parent {

 // Trying to override the final method will result in a compilation error
 // @Override
 // public void display() {

Java Programming Language Book by Milav Dabgar

No. 98 / 166

In this example, the display() method in the Parent class is declared as final. Attempting to override this
method in the Child class will result in a compilation error.

3. Final Classes:

In this example, the FinalClass is declared as a final class. Attempting to subclass FinalClass will result
in a compilation error.

In summary, the final keyword in Java is used to create constants, prevent method overriding, and
prevent class inheritance, depending on where it's applied. It helps enforce immutability, security, and
design constraints in Java programs.

6.1.10. Q2c: What is constructor in Java? Explain parameterized
constructor with example.

In Java, a constructor is a special type of method that is automatically called when an instance (object) of a
class is created. It is used to initialize the newly created object and perform any necessary setup operations.
Constructors have the same name as the class and do not have a return type, not even void .

There are two types of constructors in Java:

1. Default Constructor: A constructor with no parameters is called a default constructor. If you do not
explicitly define any constructors in a class, Java provides a default constructor automatically. Its
purpose is to initialize instance variables to default values.

2. Parameterized Constructor: A constructor with parameters is called a parameterized constructor. It
allows you to initialize instance variables with specified values when the object is created.
Parameterized constructors give more flexibility and control over object initialization.

Here's an example of a parameterized constructor:

 // System.out.println("Attempting to override a final method.");
 // }
}

final public class FinalClass {

 // Some code
}

// Trying to subclass a final class will result in a compilation error

// class SubClass extends FinalClass {

// // Some code
// }

public class Person {

 private String name;
 private int age;

 // Parameterized constructor
 public Person(String name, int age) {
 this.name = name;

Java Programming Language Book by Milav Dabgar

No. 99 / 166

In this example:

We have a Person class with private instance variables name and age .

The Person class has a parameterized constructor that takes two parameters: name and age .

Inside the constructor, the values of name and age parameters are assigned to the corresponding
instance variables using the this keyword.

We then create two Person objects (person1 and person2) using the parameterized constructor,
passing different values for name and age .

Finally, we use getter methods (getName() and getAge()) to retrieve the values of name and age for
each object and print them out.

6.1.11. Q3a: Explain super keyword in Java with example.

In Java, the super keyword is used to refer to the superclass (parent class) of the current object or to access
members (fields or methods) of the superclass. It is often used in subclasses (child classes) to access
superclass constructors, methods, or variables. The super keyword is particularly useful when there is a
need to differentiate between superclass and subclass members with the same name.

Here are the main uses of the super keyword:

1. Accessing Superclass Constructors: The super() constructor call is used to invoke the constructor
of the superclass from within the constructor of the subclass. It is typically used when the subclass
constructor needs to perform additional initialization that is not handled by the superclass constructor.

 this.age = age;
 }

 // Getter methods
 public String getName() {
 return name;
 }

 public int getAge() {
 return age;
 }

 public static void main(String[] args) {
 // Creating objects using parameterized constructor
 Person person1 = new Person("Alice", 30);
 Person person2 = new Person("Bob", 25);

 // Accessing object properties
 System.out.println("Person 1 - Name: " + person1.getName() + ", Age: " +
person1.getAge());

 System.out.println("Person 2 - Name: " + person2.getName() + ", Age: " +
person2.getAge());

 }
}

Java Programming Language Book by Milav Dabgar

No. 100 / 166

2. Accessing Superclass Methods and Variables: The super keyword can also be used to access
methods and variables of the superclass. This is useful when a subclass overrides a method from the
superclass but still needs to call the superclass implementation of that method.

Here's an example to illustrate the use of the super keyword:

In this example:

We have a superclass Vehicle with a field speed and a constructor to initialize the speed .

We then have a subclass Car that extends the Vehicle class. The Car class has an additional field
mileage and a constructor to initialize both speed and mileage . Inside the Car constructor, we use
super(speed) to call the constructor of the superclass Vehicle .

The Car class also overrides the display() method of the superclass. Inside the overridden
display() method, we use super.display() to call the display() method of the superclass before
displaying the mileage of the car.

class Vehicle {

 int speed;

 Vehicle(int speed) {
 this.speed = speed;
 }

 void display() {
 System.out.println("Vehicle speed: " + speed + " km/h");
 }
}

class Car extends Vehicle {

 int mileage;

 Car(int speed, int mileage) {
 super(speed); // invoking superclass constructor
 this.mileage = mileage;
 }

 // overriding superclass method
 void display() {
 super.display(); // calling superclass method
 System.out.println("Car mileage: " + mileage + " km/l");
 }
}

public class Main {

 public static void main(String[] args) {
 Car car = new Car(100, 15);
 car.display(); // invoking overridden method
 }
}

Java Programming Language Book by Milav Dabgar

No. 101 / 166

In the main() method, we create an instance of the Car class and invoke its display() method. This
will print both the vehicle speed and the car mileage.

6.1.12. Q3b: List out different types of inheritance in Java. Explain
multilevel inheritance.

In Java, there are several types of inheritance, each representing different relationships between classes.
These types include:

1. Single Inheritance: In single inheritance, a subclass inherits from only one superclass. Java supports
single inheritance only, meaning a class can have only one direct superclass.

2. Multilevel Inheritance: In multilevel inheritance, a subclass inherits from a superclass, and then
another subclass inherits from the first subclass, creating a chain of inheritance.

3. Hierarchical Inheritance: In hierarchical inheritance, multiple subclasses inherit from a single
superclass, creating a tree-like structure.

4. Multiple Inheritance (not supported in Java): In multiple inheritance, a subclass inherits from multiple
superclasses. Java does not support multiple inheritance of classes to avoid the diamond problem,
where the same member can be inherited from multiple superclasses, leading to ambiguity.

5. Hybrid Inheritance (not supported in Java): Hybrid inheritance is a combination of multiple
inheritance and hierarchical inheritance. It is also not supported in Java to avoid complications and
ambiguity.

Let's focus on explaining multilevel inheritance:

Multilevel Inheritance:

In multilevel inheritance, a subclass extends a class that is itself a subclass of another class. This creates a
chain of inheritance, where each subclass inherits the properties and behaviors of its immediate superclass,
as well as all of its ancestor classes up the hierarchy chain.

Here's an example of multilevel inheritance:

// Superclass

class Animal {

 void eat() {
 System.out.println("Animal is eating...");
 }
}

// Subclass inheriting from Animal

class Dog extends Animal {

 void bark() {
 System.out.println("Dog is barking...");
 }
}

// Subclass inheriting from Dog

class Labrador extends Dog {

 void color() {

Java Programming Language Book by Milav Dabgar

No. 102 / 166

In this example:

Animal is the superclass, Dog is a subclass of Animal , and Labrador is a subclass of Dog .

Labrador inherits the eat() method from Animal , the bark() method from Dog , and it adds its
own method color() to represent the unique characteristic of a Labrador.

When an instance of Labrador is created, it can access methods from all levels of the inheritance
hierarchy, including methods from its superclass (Animal) and its immediate superclass (Dog).
Additionally, it can access methods specific to the Labrador class.

Multilevel inheritance allows for the creation of a hierarchy of classes, where each subclass can inherit and
extend the functionality of its parent classes, leading to better code organization and reuse. However, it's
important to use multilevel inheritance judiciously to avoid creating overly complex class hierarchies.

6.1.13. Q3c: What is Java interface? Explain multiple inheritance
with example.

In Java, an interface is a reference type similar to a class that defines a set of abstract methods and
constants. An interface can also contain default methods, static methods, and nested types. It provides a
way to achieve abstraction and multiple inheritance of type. Interfaces are used to specify a contract that
classes must adhere to by implementing the methods declared in the interface.

Here's the syntax for declaring an interface in Java:

In the above example, MyInterface is an interface that declares a constant CONSTANT1 and CONSTANT2 ,
along with two abstract methods method1() and method2(int x) .

Now, let's discuss multiple inheritance with interfaces:

 System.out.println("Labrador is black...");
 }
}

public class Main {

 public static void main(String[] args) {
 Labrador labrador = new Labrador();
 labrador.eat(); // inherited from Animal
 labrador.bark(); // inherited from Dog
 labrador.color(); // unique to Labrador
 }
}

interface MyInterface {

 // Constant declarations
 int CONSTANT1 = 1;
 String CONSTANT2 = "Hello";

 // Abstract method declarations
 void method1();
 int method2(int x);
}

Java Programming Language Book by Milav Dabgar

No. 103 / 166

Multiple Inheritance with Interfaces:

Java supports multiple inheritance of type through interfaces, but it does not support multiple inheritance
of implementation. This means a class can implement multiple interfaces, inheriting abstract method
signatures from all of them, but it cannot extend multiple classes.

Here's an example to illustrate multiple inheritance with interfaces:

In this example:

interface A declares an abstract method methodA() .

interface B declares an abstract method methodB() .

MyClass implements both interfaces A and B and provides implementations for both methodA()
and methodB() .

In the main method, we create an instance of MyClass and call both methodA() and methodB() ,
which will print their respective implementation messages.

By implementing multiple interfaces, MyClass inherits the abstract method signatures from both A and B ,
effectively achieving multiple inheritance of type. This allows for increased flexibility and code reuse while
avoiding the complications associated with multiple inheritance of implementation.

6.1.14. Q3a: Explain Java static keyword with example.

interface A {

 void methodA();
}

interface B {

 void methodB();
}

class MyClass implements A, B {

 // Implementation of methodA from interface A
 public void methodA() {
 System.out.println("Method A implementation");
 }

 // Implementation of methodB from interface B
 public void methodB() {
 System.out.println("Method B implementation");
 }
}

public class Main {

 public static void main(String[] args) {
 MyClass obj = new MyClass();
 obj.methodA(); // Method A implementation
 obj.methodB(); // Method B implementation
 }
}

Java Programming Language Book by Milav Dabgar

No. 104 / 166

In Java, the static keyword is used to define members (variables and methods) that belong to the class
itself, rather than to instances of the class (objects). These members are shared among all instances of the
class and can be accessed directly through the class name, without the need to create an object of the class.

Here's how static keyword works with examples:

1. Static Variables (Class Variables): Static variables are shared among all instances of a class. They are
declared using the static keyword and are initialized only once, at the start of the program
execution.

In this example, count is a static variable that keeps track of the total number of objects created from the
MyClass . Since it's static, its value is shared among all instances of the class. The output will be Total
objects created: 3 .

2. Static Methods (Class Methods): Static methods are associated with the class itself, rather than with
instances of the class. They are declared using the static keyword and can be called directly through
the class name, without the need to create an object of the class.

class MyClass {

 static int count = 0; // static variable

 MyClass() {
 count++; // increment count on each object creation
 }
}

public class Main {

 public static void main(String[] args) {
 MyClass obj1 = new MyClass();
 MyClass obj2 = new MyClass();
 MyClass obj3 = new MyClass();

 System.out.println("Total objects created: " + MyClass.count); // accessing static
variable

 }
}

class MathUtils {

 static int add(int a, int b) { // static method
 return a + b;
 }
}

public class Main {

 public static void main(String[] args) {
 int result = MathUtils.add(5, 3); // calling static method
 System.out.println("Result of addition: " + result);
 }
}

Java Programming Language Book by Milav Dabgar

No. 105 / 166

In this example, add is a static method of the MathUtils class. It can be called directly using the class
name MathUtils.add(5, 3) without creating an object of MathUtils .

Key Points:

Static members belong to the class, not to individual objects.

They can be accessed using the class name directly.

Static variables are initialized only once, at the start of the program execution.

Static methods cannot access non-static members directly, as they are not associated with any specific
instance of the class.

Static members are commonly used for utility methods, constants, and for maintaining global state
within a class.

6.1.15. Q3b: Explain different access controls in Java.

In Java, access controls are used to restrict the visibility and accessibility of classes, variables, methods, and
constructors. This helps in encapsulating the implementation details, promoting code reusability, and
enhancing security. Java provides four types of access controls, also known as access modifiers:

1. Default (No Modifier):

Accessible within the same package only.

If no access modifier is specified, it is considered as default.

Members with default access are not accessible outside the package.

2. Public:

Accessible from anywhere, both within and outside the package.

Public members can be accessed by any other class.

3. Private:

Accessible only within the same class.

package com.example;

class MyClass {

 void method() {
 // This method is accessible within the same package
 }
}

package com.example;

public class MyClass {

 public void method() {
 // This method is accessible from anywhere
 }
}

Java Programming Language Book by Milav Dabgar

No. 106 / 166

Private members are not visible outside the class, including subclasses.

4. Protected:

Accessible within the same package and by subclasses, even if they are in different packages.

Protected members are not accessible by classes outside the package that are not subclasses.

These access controls provide a way to manage the visibility and accessibility of members in Java classes,
allowing developers to design and implement classes with appropriate encapsulation and access
restrictions based on their requirements. Proper use of access controls helps in creating more modular,
maintainable, and secure Java applications.

6.1.16. Q3c: What is Java package? Write steps to create a package
in Java and give example of it.

In Java, a package is a way to organize related classes and interfaces into a single namespace. It helps in
avoiding naming conflicts, improving code organization, and providing access control. Packages can contain
classes, interfaces, sub-packages, and other resources.

Here are the steps to create a package in Java:

1. Choose a Package Name: Determine a meaningful name for your package. Typically, package names
are in reverse domain name notation to ensure uniqueness.

2. Create a Directory Structure: Create a directory structure that matches the package name. Each
component of the package name corresponds to a directory in the file system.

3. Place Java Files in the Directory: Create Java files (.java) containing classes or interfaces within the
directory structure. Each file should contain at most one public class or interface, and the file name
should match the class or interface name.

package com.example;

public class MyClass {

 private int num;

 private void method() {
 // This method is accessible only within this class
 }
}

package com.example;

public class MyClass {

 protected int num;

 protected void method() {
 // This method is accessible within the same package and by subclasses
 }
}

Java Programming Language Book by Milav Dabgar

No. 107 / 166

4. Define the Package Declaration: At the top of each Java file, include a package declaration statement
specifying the package name.

5. Compile Java Files: Compile the Java files using the javac compiler. Make sure the compiler is
invoked from the root directory of the package structure.

Here's an example of creating and using a package in Java:

Suppose we want to create a package named com.example.utils containing a class named StringUtils
with a method to capitalize a string.

Step 1: Choose a Package Name:

Step 2: Create a Directory Structure:

Step 3: Place Java Files in the Directory:
Create a Java file named StringUtils.java containing the StringUtils class within the
com/example/utils directory.

Step 4: Define the Package Declaration:
At the top of StringUtils.java , include the package declaration:

Step 5: Define the Class:
Define the StringUtils class with a method to capitalize a string:

Step 6: Compile Java Files:
Compile the StringUtils.java file. Make sure the current directory is the parent directory of com .

com.example.utils

- com

 - example

 - utils

package com.example.utils;

package com.example.utils;

public class StringUtils {

 public static String capitalize(String str) {
 if (str == null || str.isEmpty()) {
 return str;
 }
 return str.substring(0, 1).toUpperCase() + str.substring(1);
 }
}

javac com/example/utils/StringUtils.java

Java Programming Language Book by Milav Dabgar

No. 108 / 166

After compiling, you can use the StringUtils class in other Java files by importing the package:

By following these steps, you've created and used a package in Java, demonstrating the organization and
encapsulation benefits it provides.

6.1.17. Q4a: Explain Java thread priorities with suitable example.

In Java, thread priorities are used to indicate the importance or urgency of a thread's execution relative to
other threads. Thread priorities are represented by integer values ranging from 1 to 10, where 1 is the
lowest priority and 10 is the highest priority. The default priority for a thread is typically inherited from its
parent thread, but it can be explicitly set using the setPriority() method.

Thread priorities are used by the Java Virtual Machine's thread scheduler to determine the order in which
threads are scheduled for execution. However, thread priorities are merely hints to the scheduler, and the
JVM's implementation of thread scheduling may vary across different platforms.

Here's an example to illustrate Java thread priorities:

import com.example.utils.StringUtils;

public class Main {

 public static void main(String[] args) {
 String str = "hello";
 String capitalized = StringUtils.capitalize(str);
 System.out.println(capitalized); // Output: Hello
 }
}

public class PriorityDemo {

 public static void main(String[] args) {
 Thread thread1 = new Thread(new Worker(), "Thread 1");
 Thread thread2 = new Thread(new Worker(), "Thread 2");
 Thread thread3 = new Thread(new Worker(), "Thread 3");

 // Set thread priorities
 thread1.setPriority(Thread.MIN_PRIORITY); // Lowest priority
 thread2.setPriority(Thread.NORM_PRIORITY); // Default priority
 thread3.setPriority(Thread.MAX_PRIORITY); // Highest priority

 // Start the threads
 thread1.start();
 thread2.start();
 thread3.start();
 }

 static class Worker implements Runnable {
 public void run() {
 for (int i = 1; i <= 5; i++) {
 System.out.println(Thread.currentThread().getName() + ": " + i);
 try {
 Thread.sleep(1000); // Sleep for 1 second

Java Programming Language Book by Milav Dabgar

No. 109 / 166

In this example:

We create three threads (thread1 , thread2 , and thread3) and assign them instances of the Worker
class, which implements the Runnable interface.

We set different priorities for each thread using the setPriority() method. thread1 is set to the
lowest priority (MIN_PRIORITY), thread2 is set to the default priority (NORM_PRIORITY), and thread3
is set to the highest priority (MAX_PRIORITY).

Each thread runs a simple loop printing numbers from 1 to 5 with a one-second delay between each
iteration.

When you run this program, the output may vary depending on the thread scheduler's behavior, but in
general, you may observe that thread3 (highest priority) gets more CPU time compared to the other
threads, followed by thread2 (default priority), and finally thread1 (lowest priority). However, thread
scheduling behavior is platform-dependent, and thread priorities should be used with caution as they
may not always have the desired effect.

6.1.18. Q4b: What is Java Thread? Explain Thread life cycle.

In Java, a thread is the smallest unit of execution within a process. It represents an independent path of
execution that can run concurrently with other threads in a Java program. Threads allow programs to
perform multiple tasks simultaneously, making efficient use of CPU resources and enabling concurrent and
parallel processing.

Thread Life Cycle:

The life cycle of a thread in Java consists of several states, and a thread transitions through these states
during its lifetime. The states are typically represented by constants defined in the Thread.State
enumeration. The thread life cycle states are as follows:

1. New: When a thread is created but not yet started, it is in the new state. The Thread object has been
created, but the start() method has not been called.

2. Runnable: After the start() method is called, the thread becomes runnable. In this state, the thread
is eligible to run, but it may or may not be executing, depending on the availability of CPU resources.
Once the scheduler selects the thread for execution, it moves to the running state.

3. Running: When the thread is executing its code, it is in the running state. The thread scheduler has
allocated CPU time for the thread, and the thread's run() method is being executed.

4. Blocked/Waiting: A thread can transition to a blocked or waiting state for various reasons, such as
waiting for I/O operations to complete, waiting for locks, or waiting for other threads to complete. In
these cases, the thread temporarily gives up the CPU and waits for the condition to be satisfied.

 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }
 }
}

Java Programming Language Book by Milav Dabgar

No. 110 / 166

5. Timed Waiting: Similar to the blocked/waiting state, but with a specified timeout. Threads enter this
state when they invoke methods such as sleep() or join() with a timeout parameter.

6. Terminated: When the run() method of the thread completes or when the thread is explicitly
terminated using the interrupt() method, the thread enters the terminated state. Once terminated,
a thread cannot be restarted or transitioned to any other state.

Here's a simple visual representation of the thread life cycle:

Understanding the thread life cycle is crucial for writing multithreaded Java applications efficiently, as it
helps in managing and coordinating the execution of concurrent tasks. It allows developers to control
thread behavior, handle synchronization, and avoid common concurrency issues such as race conditions
and deadlocks.

6.1.19. Q4c: Write a program in java that create the multiple
threads by implementing the Thread class.

Here's a simple Java program that creates multiple threads by implementing the Thread class:

New -> Runnable -> Running -> Terminated
 | | ^ ^
 v v | |
 Blocked Waiting | |
 | |
 Timed Waiting

class MyThread extends Thread {

 private String threadName;

 public MyThread(String name) {
 this.threadName = name;
 }

 public void run() {
 System.out.println("Thread " + threadName + " is running.");
 try {
 // Simulating some work being done by the thread
 Thread.sleep(2000); // Sleep for 2 seconds
 } catch (InterruptedException e) {
 System.out.println("Thread " + threadName + " interrupted.");
 }
 System.out.println("Thread " + threadName + " exiting.");
 }
}

public class MultiThreadExample {

 public static void main(String[] args) {
 MyThread thread1 = new MyThread("Thread 1");
 MyThread thread2 = new MyThread("Thread 2");
 MyThread thread3 = new MyThread("Thread 3");

Java Programming Language Book by Milav Dabgar

No. 111 / 166

In this program:

We define a class MyThread that extends the Thread class. This class represents a simple thread that
prints a message, does some simulated work (sleeps for 2 seconds), and then exits.

The run() method is overridden to define the behavior of the thread.

In the MultiThreadExample class, we create three instances of MyThread with different names
(Thread 1 , Thread 2 , and Thread 3).

We start each thread using the start() method. This method initiates the execution of the thread by
invoking its run() method in a separate thread of control.

As a result, all three threads are running concurrently, executing their tasks independently.

The output may vary on each run, but you'll see messages indicating that each thread is running, then
after a 2-second delay, it exits.

This example demonstrates how to create multiple threads by extending the Thread class and starting
them concurrently to achieve parallel execution of tasks.

6.1.20. Q4a: List four different inbuilt exceptions of Java. Explain
any one inbuilt exception.

In Java, there are many built-in exceptions provided by the Java API, which are organized in a hierarchy
under the java.lang.Exception class. Here are four commonly encountered built-in exceptions:

1. NullPointerException: This exception occurs when you try to access or perform an operation on an
object reference that is null .

2. ArrayIndexOutOfBoundsException: This exception occurs when you try to access an element of an
array at an invalid index (i.e., an index that is less than 0 or greater than or equal to the length of the
array).

3. NumberFormatException: This exception occurs when you try to convert a string to a numeric format
(e.g., using Integer.parseInt() or Double.parseDouble()) but the string does not contain a valid
numeric value.

4. FileNotFoundException: This exception occurs when an attempt to open a file or a file pathname
specified by a string in the code fails because the file with the specified pathname does not exist or
cannot be opened for reading.

Let's explain the NullPointerException in more detail:

NullPointerException:

 // Start the threads
 thread1.start();
 thread2.start();
 thread3.start();
 }
}

Java Programming Language Book by Milav Dabgar

No. 112 / 166

A NullPointerException is one of the most common exceptions encountered by Java programmers. It
occurs when you try to access or perform an operation on an object reference that is null , i.e., it does not
refer to any object in memory.

Here's an example to illustrate a NullPointerException :

In this example, we have a String variable str that is initialized to null . When we try to access the
length() method of str , a NullPointerException will be thrown at runtime because we are attempting
to invoke a method on a null reference.

To handle a NullPointerException , you can either check if the reference is null before accessing it or
use try-catch blocks to catch and handle the exception gracefully:

It's important to handle NullPointerExceptions properly in your code to prevent unexpected crashes and
ensure the robustness of your Java applications.

6.1.21. Q4b: Explain multiple catch with suitable example in Java.

In Java, you can use multiple catch blocks to handle different types of exceptions that may occur within a
try block. This allows you to handle each type of exception differently, based on the specific error
conditions that may arise during the execution of the code.

Here's an example to illustrate the usage of multiple catch blocks:

public class NullPointerExceptionExample {

 public static void main(String[] args) {
 String str = null;
 System.out.println(str.length()); // This line will throw a NullPointerException
 }
}

public class NullPointerExceptionExample {

 public static void main(String[] args) {
 String str = null;

 // Using if statement to check for null reference
 if (str != null) {
 System.out.println(str.length());
 } else {
 System.out.println("String is null.");
 }

 // Using try-catch block to handle NullPointerException
 try {
 System.out.println(str.length());
 } catch (NullPointerException e) {
 System.out.println("NullPointerException caught: " + e.getMessage());
 }
 }
}

Java Programming Language Book by Milav Dabgar

No. 113 / 166

In this example:

We have a try block containing two statements that may throw different types of exceptions:

Accessing an element at index 3 of an array (numbers[3]), which may throw an
ArrayIndexOutOfBoundsException .

Attempting to get the length of a null string (str.length()), which may throw a
NullPointerException .

We have multiple catch blocks to handle each type of exception separately:

The first catch block catches ArrayIndexOutOfBoundsException , prints a message, and handles
the exception.

The second catch block catches NullPointerException , prints a message, and handles the
exception.

We also have a generic catch block (catch (Exception e)) at the end to catch any other type of
exception that may occur. This is optional but can be useful for handling unexpected exceptions or
providing a fallback mechanism.

When you run this program, if an ArrayIndexOutOfBoundsException occurs, the first catch block will
handle it and print a message. Similarly, if a NullPointerException occurs, the second catch block will
handle it. If any other type of exception occurs, the generic catch block will handle it.

Using multiple catch blocks allows you to handle different exceptions gracefully and provide appropriate
error messages or recovery mechanisms based on the specific type of exception encountered.

6.1.22. Q4c: What is Java Exception? Write a program that show the
use of Arithmetic Exception in Java.

public class MultipleCatchExample {

 public static void main(String[] args) {
 try {
 int[] numbers = {1, 2, 3};
 System.out.println("Element at index 3: " + numbers[3]); // This will throw
ArrayIndexOutOfBoundsException

 String str = null;
 System.out.println("Length of string: " + str.length()); // This will throw
NullPointerException

 } catch (ArrayIndexOutOfBoundsException e) {
 System.out.println("ArrayIndexOutOfBoundsException caught: " +
e.getMessage());

 } catch (NullPointerException e) {
 System.out.println("NullPointerException caught: " + e.getMessage());
 } catch (Exception e) {
 System.out.println("Generic Exception caught: " + e.getMessage());
 }
 }
}

Java Programming Language Book by Milav Dabgar

No. 114 / 166

In Java, an exception is an event that occurs during the execution of a program that disrupts the normal
flow of instructions. When an exceptional condition arises, an object representing that condition is created
and thrown in the method that caused the error. This object is an instance of a subclass of the Throwable
class, which can be either an Exception or an Error .

An ArithmeticException is a subclass of RuntimeException and is thrown when an arithmetic operation
fails due to certain conditions, such as division by zero or integer overflow.

Here's a program that demonstrates the use of ArithmeticException in Java:

In this program:

We have two integers, dividend and divisor , where divisor is initialized to 0.

We attempt to perform a division operation (dividend / divisor), which will result in an
ArithmeticException when divisor is 0.

We have a try-catch block to handle the potential ArithmeticException . Inside the try block, the
division operation is performed, and if an ArithmeticException occurs, it is caught by the catch
block.

Inside the catch block, we print a message indicating that an ArithmeticException was caught,
along with the error message provided by the exception object (e.getMessage()).

When you run this program, it will output:

This demonstrates how to use try-catch blocks to handle ArithmeticException and gracefully handle the
error condition, preventing the program from crashing. It's important to handle exceptions appropriately in
your code to ensure robustness and provide meaningful error messages to users.

6.1.23. Q5a: Explain ArrayIndexOutOfBound Exception in Java with
example.

public class ArithmeticExceptionExample {

 public static void main(String[] args) {
 int dividend = 10;
 int divisor = 0;

 try {
 int quotient = dividend / divisor; // Division by zero will throw
ArithmeticException

 System.out.println("Quotient: " + quotient);
 } catch (ArithmeticException e) {
 System.out.println("ArithmeticException caught: " + e.getMessage());
 }
 }
}

ArithmeticException caught: / by zero

Java Programming Language Book by Milav Dabgar

No. 115 / 166

In Java, ArrayIndexOutOfBoundsException is a runtime exception that occurs when you try to access an
element of an array at an index that is outside the valid range of indices for that array. This means you are
trying to access an array element with an index that is either negative or greater than or equal to the length
of the array.

Here's an example to illustrate ArrayIndexOutOfBoundsException :

In this example:

We have an integer array numbers containing three elements: 1 , 2 , and 3 .

We attempt to access the element at index 3 using numbers[3] .

However, the valid indices for the array numbers are 0 , 1 , and 2 . Since we are trying to access an
element at an index (3) that is beyond the valid range, it will result in an
ArrayIndexOutOfBoundsException at runtime.

When you run this program, it will throw an ArrayIndexOutOfBoundsException with an error message
similar to:

To prevent ArrayIndexOutOfBoundsException , you should always ensure that the index used to access an
array element is within the valid range of indices (i.e., between 0 and array.length - 1). You can use
conditional statements or loop constructs to check the validity of array indices before accessing elements to
handle such exceptions gracefully in your code.

6.1.24. Q5b: Explain basics of Java stream classes.

In Java, stream classes are part of the Java I/O (Input/Output) API, which provides a way to efficiently read
from and write to data sources and destinations, such as files, network connections, and memory buffers.
Stream classes are used to handle input and output operations in Java programs, allowing data to be
transferred between an application and external sources or sinks.

There are two main types of stream classes in Java:

1. Byte Streams:

public class ArrayIndexOutOfBoundsExceptionExample {

 public static void main(String[] args) {
 int[] numbers = {1, 2, 3};

 // Accessing an element at an invalid index
 System.out.println("Element at index 3: " + numbers[3]); // This will throw
ArrayIndexOutOfBoundsException

 }
}

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: Index 3 out of bounds

for length 3

 at
ArrayIndexOutOfBoundsExceptionExample.main(ArrayIndexOutOfBoundsExceptionExample.java:7)

Java Programming Language Book by Milav Dabgar

No. 116 / 166

Byte streams, represented by classes such as InputStream and OutputStream , are used for
reading and writing raw bytes of data.

Byte streams are suitable for handling binary data or text data where character encoding is not a
concern.

Examples of byte stream classes include FileInputStream , FileOutputStream ,
BufferedInputStream , BufferedOutputStream , etc.

2. Character Streams:

Character streams, represented by classes such as Reader and Writer , are used for reading and
writing character data.

Character streams handle character encoding automatically, converting characters to and from
bytes using the specified character encoding.

Character streams are suitable for reading and writing text data from/to external sources,
ensuring proper character encoding and decoding.

Examples of character stream classes include FileReader , FileWriter , BufferedReader ,
BufferedWriter , etc.

Basics of using Java stream classes:

Reading from Streams: To read data from a stream, you typically create an appropriate input stream
class object (e.g., FileInputStream or BufferedReader), and then use methods provided by the
stream class to read data from the source. For example:

Writing to Streams: To write data to a stream, you create an appropriate output stream class object
(e.g., FileOutputStream or BufferedWriter), and then use methods provided by the stream class to
write data to the destination. For example:

Closing Streams: It's important to close streams after using them to release system resources. You
can use the close() method provided by stream classes to close the stream. Alternatively, you can
use try-with-resources statement introduced in Java 7 to automatically close streams. For example:

BufferedReader reader = new BufferedReader(new FileReader("file.txt"));

String line = reader.readLine();

BufferedWriter writer = new BufferedWriter(new FileWriter("output.txt"));

writer.write("Hello, World!");

try (BufferedReader reader = new BufferedReader(new FileReader("file.txt"))) {

 String line = reader.readLine();
 // Process the data
} catch (IOException e) {

 // Handle exception
}

Java Programming Language Book by Milav Dabgar

No. 117 / 166

Java stream classes provide a flexible and efficient way to perform input and output operations in Java
programs, making it easy to interact with external data sources and sinks. Whether you're reading from
files, network connections, or writing data to them, Java stream classes offer a consistent and convenient
API for handling I/O operations.

6.1.25. Q5c: Write a java program to create a text file and perform
read operation on the text file.

To create a text file and perform a read operation using FileInputStream in Java, you need to use
FileOutputStream for writing to the file since FileInputStream is designed for reading bytes from a file.
Below is a Java program that demonstrates how to create a text file using FileOutputStream and then
reads it back using FileInputStream .

In this program:

1. The main method defines a fileName for the file to be created and a String named content that
holds the text to be written to the file.

2. It uses a FileOutputStream to write the text content to the file. The String content is converted to
bytes using the getBytes() method before writing, as FileOutputStream works with bytes.

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.IOException;

public class FileStreamExample {

 public static void main(String[] args) {
 String fileName = "sample.txt";
 String content = "Hello, World!\nThis is a sample text file.";

 // Write content to file
 try (FileOutputStream fos = new FileOutputStream(fileName)) {
 fos.write(content.getBytes());
 System.out.println("File has been written successfully.");
 } catch (IOException e) {
 System.err.println("Error writing to file: " + e.getMessage());
 }

 // Read content from file
 try (FileInputStream fis = new FileInputStream(fileName)) {
 int i;
 System.out.println("Reading from file: ");
 while ((i = fis.read()) != -1) {
 // i is a byte. Convert it to char and print it
 System.out.print((char) i);
 }
 } catch (IOException e) {
 System.err.println("Error reading from file: " + e.getMessage());
 }
 }
}

Java Programming Language Book by Milav Dabgar

No. 118 / 166

3. After writing the content to the file, it uses a FileInputStream to read the bytes from the file. It reads
the file byte by byte in the while loop until read() returns -1 , indicating the end of the file.

4. Each byte read from the file is cast to a char and printed to the console, allowing the text content of
the file to be displayed.

This program demonstrates the basic use of FileInputStream and FileOutputStream for reading and
writing text files, though it's worth noting that these classes are primarily intended for binary data. For
reading and writing character data, consider using FileReader and FileWriter or BufferedReader and
BufferedWriter for efficiency and simplicity.

6.1.26. Q5a: Explain Divide by Zero Exception in Java with example.

In Java, a DivideByZeroException is not explicitly provided as a standard exception class. Instead, the
exception that occurs when you attempt to divide by zero is called ArithmeticException . This exception is
thrown when an arithmetic operation fails due to certain conditions, such as division by zero.

Here's an example to illustrate ArithmeticException (which commonly occurs due to divide by zero):

In this example:

We have two integers, dividend and divisor , where divisor is initialized to 0 .

We attempt to perform a division operation (dividend / divisor), which will result in an
ArithmeticException when divisor is 0 .

We have a try-catch block to handle the potential ArithmeticException . Inside the try block, the
division operation is performed, and if an ArithmeticException occurs, it is caught by the catch
block.

Inside the catch block, we print a message indicating that an ArithmeticException was caught,
along with the error message provided by the exception object (e.getMessage()).

When you run this program, it will output:

public class DivideByZeroExceptionExample {

 public static void main(String[] args) {
 int dividend = 10;
 int divisor = 0;

 try {
 int quotient = dividend / divisor; // Division by zero will throw
ArithmeticException

 System.out.println("Quotient: " + quotient);
 } catch (ArithmeticException e) {
 System.out.println("ArithmeticException caught: " + e.getMessage());
 }
 }
}

ArithmeticException caught: / by zero

Java Programming Language Book by Milav Dabgar

No. 119 / 166

This demonstrates how attempting to divide by zero results in an ArithmeticException being thrown at
runtime in Java. To prevent such exceptions, it's important to ensure that you handle cases where division
by zero may occur or validate input data to avoid such scenarios.

6.1.27. Q5b: Explain java I/O process.

In Java, Input/Output (I/O) operations involve the exchange of data between a Java program and external
sources or destinations, such as files, network connections, or other programs. The Java I/O process
encompasses several key concepts and classes provided by the Java API to facilitate reading from and
writing to various data sources and sinks.

The Java I/O process typically involves the following steps:

1. Selecting a Data Source or Destination:

Determine the source or destination of the data you want to read from or write to. This could be a
file, network socket, standard input/output streams (e.g., System.in and System.out), or any
other data stream.

2. Creating Stream Objects:

Once you've identified the source or destination, you need to create appropriate stream objects
to interact with it.

For reading data, you typically use input stream classes such as InputStream or Reader .

For writing data, you typically use output stream classes such as OutputStream or Writer .

Stream classes provide methods for reading/writing data in the form of bytes or characters,
depending on the type of data source or destination.

3. Reading from or Writing to Streams:

Use the methods provided by the stream classes to read data from or write data to the associated
data source or destination.

For example, you can use methods like read() or write() to read/write bytes, or readLine()
or writeLine() to read/write characters.

4. Closing Streams:

After you've finished reading from or writing to streams, it's important to close them to release
system resources and ensure proper cleanup.

You can use the close() method provided by stream classes to close the streams.

Alternatively, you can use the try-with-resources statement introduced in Java 7 to automatically
close streams when they are no longer needed.

5. Handling Exceptions:

I/O operations can throw exceptions due to various reasons, such as file not found, network
errors, or invalid data formats.

It's essential to handle these exceptions gracefully using try-catch blocks or propagate them to the
calling code for proper error handling and recovery.

6. Optional: Buffering and Efficiency:

Java Programming Language Book by Milav Dabgar

No. 120 / 166

To improve performance and efficiency, you can use buffered stream classes such as
BufferedReader , BufferedWriter , BufferedInputStream , or BufferedOutputStream .

Buffered stream classes reduce the number of actual I/O operations by reading/writing data in
larger chunks, resulting in improved performance.

Overall, the Java I/O process involves selecting the appropriate stream classes, reading from or writing to
streams, closing streams after use, handling exceptions, and optionally using buffering for improved
efficiency. Understanding these concepts and using the provided Java I/O classes effectively is crucial for
performing input/output operations in Java programs.

6.1.28. Q5c: Write a java program to display the content of a text
file and perform append operation on the text file.

Below is a Java program that displays the content of a text file and performs an append operation on the
text file using FileInputStream and FileOutputStream :

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.IOException;

public class FileDisplayAndAppend {

 public static void main(String[] args) {
 String fileName = "sample.txt";

 // Display the content of the text file
 displayFileContent(fileName);

 // Perform append operation on the text file
 performAppendOperation(fileName);
 }

 // Method to display the content of the text file
 private static void displayFileContent(String fileName) {
 try (FileInputStream fis = new FileInputStream(fileName)) {
 int i;
 System.out.println("Contents of the text file:");
 while ((i = fis.read()) != -1) {
 System.out.print((char) i);
 }
 System.out.println("\n");
 } catch (IOException e) {
 System.err.println("Error reading from file: " + e.getMessage());
 }
 }

 // Method to perform append operation on the text file
 private static void performAppendOperation(String fileName) {
 String appendContent = "\nThis line is appended to the file.";

 try (FileOutputStream fos = new FileOutputStream(fileName, true)) {

Java Programming Language Book by Milav Dabgar

No. 121 / 166

In this program:

1. The displayFileContent() method reads and displays the content of the specified text file using
FileInputStream .

2. The performAppendOperation() method appends a new line of content to the end of the text file
using FileOutputStream with the append parameter set to true .

3. In the main() method, both methods are called sequentially to display the initial content of the file
and then perform the append operation.

4. The content to be appended (appendContent) is specified as a String and converted to bytes using
the getBytes() method before writing to the file.

When you run this program, it will display the initial content of the text file (if it exists) and then append a
new line of content to the file. Make sure to replace "sample.txt" with the actual file name you want to
read from and append to.

6.2. 4341602 - Java: Summer 2023 Paper Solution

6.2.1. Q1a: Differentiate between Procedure-Oriented
Programming (POP) and Object-Oriented Programming (OOP).

Procedure-Oriented Programming (POP) and Object-Oriented Programming (OOP) are two distinct
paradigms in software development. Here's a differentiation between the two:

1. Fundamental Unit:

POP: In POP, the fundamental unit of the program is a function or a procedure, which operates on
data.

OOP: In OOP, the fundamental unit is an object, which combines data (attributes) and behaviors
(methods) into a single entity.

2. Data and Functionality:

POP: Data and functionality are separate entities. Functions operate on data that is often stored in
data structures.

OOP: Data and functionality are bundled together within objects. Objects encapsulate both data
(attributes) and functionality (methods) related to that data.

3. Data Encapsulation:

POP: Encapsulation is not a primary concern. Data can be accessed and modified by any function
that has access to it.

 fos.write(appendContent.getBytes());
 System.out.println("Append operation completed successfully.");
 } catch (IOException e) {
 System.err.println("Error appending to file: " + e.getMessage());
 }
 }
}

Java Programming Language Book by Milav Dabgar

No. 122 / 166

OOP: Encapsulation is a key principle. Data within objects is typically hidden from external access,
and can only be manipulated through defined methods, providing better control and security.

4. Inheritance:

POP: Inheritance is not directly supported.

OOP: Inheritance allows objects to inherit attributes and methods from parent classes, promoting
code reusability and establishing hierarchical relationships.

5. Polymorphism:

POP: Polymorphism is achieved through function overloading and procedure overriding.

OOP: Polymorphism allows objects of different classes to be treated as objects of a common
superclass, enabling flexibility and extensibility in code design.

6. Modifiability and Scalability:

POP: Modifying and scaling code can be more challenging as the program grows larger, due to the
lack of modularization inherent in the procedural approach.

OOP: OOP promotes modularity and scalability through the use of classes and objects, making it
easier to manage and extend code as requirements change.

7. Example Languages:

POP: Languages like C, Fortran, and Pascal primarily follow the procedural paradigm.

OOP: Languages like Java, Python, and C++ are designed with OOP principles in mind, although
many also support procedural programming.

In summary, while both paradigms aim to organize code and facilitate software development, they differ
significantly in their approach to data organization, code structure, and principles of modularity and
reusability.

6.2.2. Q1b: Explain Super keyword in inheritance with suitable
example.

In Java, the super keyword is used to refer to the superclass (parent class) of a subclass (child class). It can
be used to access superclass methods, constructor, and instance variables. This is particularly useful when
the subclass overrides a method or hides an instance variable of the superclass and you want to access the
superclass version.

Let's illustrate the usage of the super keyword with an example involving inheritance and method
overriding:

// Parent class

class Animal {

 String color = "White";

 void display() {
 System.out.println("Animal is " + color);
 }
}

Java Programming Language Book by Milav Dabgar

No. 123 / 166

In this example:

The Animal class defines a variable color and a method display() which prints the color.

The Dog class extends Animal and defines its own color variable, hiding the color variable of the
superclass. It also overrides the display() method to print the dog's color and then calls
super.display() to call the superclass's display() method.

In the main() method, we create an instance of Dog and call its display() method.

Output:

Here's what's happening:

The display() method in the Dog class prints the color of the dog, then it uses super.color to
access the color variable of the superclass (which is "White").

super.display() invokes the display() method of the superclass, printing "Animal is White".

This demonstrates how super can be used to access superclass members from a subclass, allowing for
controlled access to overridden methods and hidden variables.

6.2.3. Q1c: Define: Method Overriding. List out Rules for method
overriding. Write a java program that implements method
overriding.

// Subclass inheriting from Animal

class Dog extends Animal {

 String color = "Black"; // hiding the color variable in parent class

 void display() {
 System.out.println("Dog is " + color);
 System.out.println("Superclass Animal is " + super.color); // accessing superclass
variable

 super.display(); // calling superclass method
 }
}

// Main class

public class Main {

 public static void main(String[] args) {
 Dog dog = new Dog();
 dog.display();
 }
}

Dog is Black

Superclass Animal is White

Animal is White

Java Programming Language Book by Milav Dabgar

No. 124 / 166

Method overriding is a feature in object-oriented programming that allows a subclass to provide a specific
implementation of a method that is already defined in its superclass. This means that a subclass can
redefine the implementation of a method that it inherits from its superclass according to its own
requirements.

Rules for method overriding in Java:

1. Method Signature:

The method in the subclass must have the same name, return type, and parameter list (including
order and type of parameters) as the method in the superclass. Changing the return type or
parameter list results in method overloading instead of overriding.

2. Access Modifier:

The access modifier of the overriding method in the subclass should not be more restrictive than
the access modifier of the overridden method in the superclass. However, it can be less restrictive
or the same.

Access levels in Java: public , protected , package-private (default), and private .

The order of access modifiers from least restrictive to most restrictive is: public , protected ,
package-private, and private .

3. Exception Handling:

The subclass method can only throw exceptions that are subclasses of the exceptions thrown by
the superclass method, or it can choose not to throw any exceptions (this is also known as
"covariant return types").

4. Return Type:

If the return type of the method in the subclass is a subclass of the return type of the method in
the superclass, it's considered a valid overriding (covariant return types).

In Java 5 and later versions, covariant return types allow the return type of the overriding method
to be a subclass of the return type of the overridden method.

5. Method Visibility:

If a method in the superclass is declared as final , it cannot be overridden in any subclass.

If a method in the superclass is declared as static , it cannot be overridden because static
methods belong to the class, not to the instance.

Constructors and private methods cannot be overridden because they are not inherited by
subclasses.

6. Super Keyword:

Within the overriding method, you can use the super keyword to call the overridden method
from the superclass.

This can be useful for extending the functionality of the superclass method while still utilizing its
original implementation.

Method overriding allows for polymorphism in Java, enabling different behavior for objects of the same
superclass type based on their actual runtime types.

Java Programming Language Book by Milav Dabgar

No. 125 / 166

Sure, here's a Java program that demonstrates method overriding:

Output:

Explanation:

We have a superclass Animal with a method makeSound() .

The Dog class and Cat class both extend Animal and override the makeSound() method with their
own implementations.

In the Main class, we create instances of Dog and Cat but store them in Animal references.

// Parent class

class Animal {

 void makeSound() {
 System.out.println("Generic animal sound");
 }
}

// Subclass inheriting from Animal

class Dog extends Animal {

 // Override makeSound method
 @Override
 void makeSound() {
 System.out.println("Woof!");
 }
}

// Another subclass inheriting from Animal

class Cat extends Animal {

 // Override makeSound method
 @Override
 void makeSound() {
 System.out.println("Meow!");
 }
}

// Main class

public class Main {

 public static void main(String[] args) {
 Animal animal1 = new Dog(); // Animal reference, Dog object
 Animal animal2 = new Cat(); // Animal reference, Cat object

 animal1.makeSound(); // Calls Dog's makeSound method
 animal2.makeSound(); // Calls Cat's makeSound method
 }
}

Woof!

Meow!

Java Programming Language Book by Milav Dabgar

No. 126 / 166

When we call the makeSound() method on these instances, Java dynamically dispatches the call to the
appropriate overridden method based on the actual type of the object at runtime, demonstrating
polymorphism through method overriding.

6.2.4. Q1cOR: Describe: Interface. Write a java program using
interface to demonstrate multiple inheritance.

In Java, an interface is a reference type that defines a set of abstract methods along with constants (static
final variables). Interfaces cannot have instance fields (non-static variables) or concrete methods (methods
with a body) until Java 8, where default and static methods were introduced in interfaces.

Interfaces serve as a contract or blueprint for classes, specifying methods that implementing classes must
provide. They facilitate abstraction, allowing for the separation of specification and implementation in
software design. Here are key features and characteristics of interfaces in Java:

1. Declaration:

Interfaces are declared using the interface keyword.

Example: interface MyInterface { ... }

2. Abstract Methods:

An interface can contain abstract methods, which are method declarations without a body.

All methods in an interface are implicitly public and abstract .

Example:

3. Constants:

Interfaces can declare constants, which are implicitly public , static , and final .

Constants are typically used to define immutable values that are relevant to the interface.

Example:

4. Default Methods (Java 8+):

Java 8 introduced the concept of default methods in interfaces, allowing interfaces to have
concrete methods with a default implementation.

Default methods are declared using the default keyword and can be overridden by
implementing classes if needed.

interface MyInterface {

 void method1();
 int method2();
}

interface MyInterface {

 int CONSTANT_VALUE = 10;
}

Java Programming Language Book by Milav Dabgar

No. 127 / 166

Default methods were introduced to provide backward compatibility when introducing new
methods to existing interfaces.

Example:

5. Static Methods (Java 8+):

Java 8 also introduced static methods in interfaces, allowing interfaces to contain static utility
methods.

Static methods are declared using the static keyword and can be invoked using the interface
name.

Example:

6. Multiple Inheritance:

Java allows interfaces to support multiple inheritance, meaning a class can implement multiple
interfaces.

This enables a class to inherit behavior from multiple sources, promoting code reuse and
flexibility.

Example:

interface MyInterface {

 default void defaultMethod() {
 System.out.println("Default method implementation");
 }
}

interface MyInterface {

 static void staticMethod() {
 System.out.println("Static method implementation");
 }
}

interface Interface1 {

 void method1();
}

interface Interface2 {

 void method2();
}

class MyClass implements Interface1, Interface2 {

 public void method1() {
 // Implementation
 }

 public void method2() {
 // Implementation
 }

Java Programming Language Book by Milav Dabgar

No. 128 / 166

7. Implementation:

Classes implement interfaces using the implements keyword.

Implementing classes must provide concrete implementations for all abstract methods declared
in the interface.

Example:

Interfaces play a crucial role in Java's abstraction mechanisms, enabling the definition of contracts and
facilitating polymorphism and code reusability in object-oriented programming. They are widely used in Java
APIs and frameworks to define specifications and promote interoperability between different components.

In Java, multiple inheritance is not directly supported for classes, meaning a class cannot extend multiple
classes simultaneously. However, Java provides a way to achieve a form of multiple inheritance using
interfaces. An interface in Java defines a contract for classes that implement it, specifying a set of methods
that must be implemented by any class that claims to conform to the interface.

Here's a Java program demonstrating multiple inheritance using interfaces:

}

class MyClass implements MyInterface {

 public void method1() {
 // Implementation
 }

 public int method2() {
 // Implementation
 }
}

// Interface 1

interface Animal {

 void eat();
}

// Interface 2

interface Mammal {

 void run();
}

// Class implementing Interface 1

class Dog implements Animal {

 @Override
 public void eat() {
 System.out.println("Dog eats bones");
 }
}

// Class implementing Interface 2

class Horse implements Mammal {

Java Programming Language Book by Milav Dabgar

No. 129 / 166

Output:

Explanation:

We define two interfaces: Animal and Mammal , each with their own set of methods.

We define two classes: Dog and Horse , each implementing one of the interfaces.

We define a class DogHorseHybrid that implements both interfaces, thereby inheriting behavior from
both Animal and Mammal .

In the Main class, we create instances of Dog , Horse , and DogHorseHybrid , and call their respective
methods to demonstrate multiple inheritance through interfaces.

 @Override
 public void run() {
 System.out.println("Horse runs at high speed");
 }
}

// Class implementing both Interface 1 and Interface 2

class DogHorseHybrid implements Animal, Mammal {

 @Override
 public void eat() {
 System.out.println("Dog-Horse Hybrid eats bones and hay");
 }

 @Override
 public void run() {
 System.out.println("Dog-Horse Hybrid runs");
 }
}

// Main class

public class Main {

 public static void main(String[] args) {
 Dog dog = new Dog();
 Horse horse = new Horse();
 DogHorseHybrid hybrid = new DogHorseHybrid();

 dog.eat();
 horse.run();
 hybrid.eat();
 hybrid.run();
 }
}

Dog eats bones

Horse runs at high speed

Dog-Horse Hybrid eats bones and hay

Dog-Horse Hybrid runs

Java Programming Language Book by Milav Dabgar

No. 130 / 166

6.2.5. Q2a: Explain the Java Program Structure with example.

In Java, a program is typically structured into classes, which are the fundamental building blocks of Java
applications. Each class encapsulates data (attributes) and behaviors (methods) related to a specific entity
or concept. The overall structure of a Java program involves one or more classes, with one class containing a
special method called main() where the program execution begins.

Here's an example of a simple Java program structure:

Let's break down the structure of this Java program:

1. Class Declaration:

The program starts with the declaration of a class using the class keyword. In this example, the
class is named HelloWorld .

Class names in Java must start with an uppercase letter and follow camel case convention.

2. Main Method:

Inside the class, we define a special method called main() . This is the entry point of the program
where the execution begins.

The main() method must be declared as public , static , and void .

It accepts a single parameter, an array of strings (String[] args), which allows command-line
arguments to be passed to the program.

3. Program Logic:

Inside the main() method, we write the logic or instructions that we want the program to
execute.

In this example, we have a single statement that prints "Hello, world!" to the console using the
System.out.println() method.

4. Comments:

Comments in Java start with // for single-line comments or /* */ for multi-line comments.

Comments are used to document and explain the code, making it more readable and
understandable.

5. Semicolons:

Java statements are terminated by semicolons (;). They indicate the end of a statement.

// Main class

public class HelloWorld {

 // Main method where the program execution begins
 public static void main(String[] args) {
 // Program logic
 System.out.println("Hello, world!");
 }
}

Java Programming Language Book by Milav Dabgar

No. 131 / 166

Overall, this Java program structure demonstrates the basic elements required for a Java program: a class
declaration, a main method, and program logic. This structure forms the foundation for writing Java
applications of varying complexity.

6.2.6. Q2b: Explain static keyword with suitable example.

In Java, the static keyword is used to declare members (variables and methods) that belong to the class
itself rather than to instances of the class. This means that static members are shared among all
instances of the class and can be accessed directly through the class name without the need to create an
object of the class.

Here's an explanation of the static keyword with a suitable example:

Explanation:

In the Counter class, count is declared as a static variable. This means that all instances of the
Counter class share the same count variable.

class Counter {

 static int count = 0; // Static variable

 // Static method to increment the count
 static void increment() {
 count++;
 }

 // Static method to display the count
 static void displayCount() {
 System.out.println("Count: " + count);
 }
}

public class Main {

 public static void main(String[] args) {
 // Accessing static variable and method using class name
 Counter.increment();
 Counter.displayCount();

 // Creating multiple instances of Counter
 Counter c1 = new Counter();
 Counter c2 = new Counter();

 // Accessing static variable and method using instances
 c1.increment();
 c2.increment();
 Counter.displayCount(); // Output: Count: 3
 }
}

Java Programming Language Book by Milav Dabgar

No. 132 / 166

increment() and displayCount() are static methods. These methods can be called directly using the
class name (Counter.increment() , Counter.displayCount()), without needing to create an object of
the class.

In the Main class, we demonstrate accessing and modifying the static variable and calling static
methods both through the class name and through instances of the class.

The output demonstrates that the static variable count is shared among all instances of the Counter
class. When we increment count using one instance, it reflects the change when accessed through
another instance or the class name itself.

In summary, the static keyword allows for the creation of class-level variables and methods that are
shared among all instances of the class. It provides a way to manage and manipulate shared data and
behavior within the context of a class.

6.2.7. Q2c: Define: Constructor. List out types of it. Explain
Parameterized and copy constructor with suitable example.

A constructor in Java is a special type of method that is automatically called when an object of a class is
created. It is used to initialize the newly created object. Constructors have the same name as the class and
do not have a return type, not even void . Constructors can be used to set initial values for instance
variables, allocate resources, or perform any other initialization tasks needed by the object.

Types of constructors in Java:

1. Default Constructor:

A default constructor is automatically created by Java if no other constructor is defined explicitly.

It has no parameters and typically initializes instance variables to their default values (e.g., 0 for
numeric types, null for reference types).

2. Parameterized Constructor:

A parameterized constructor accepts parameters which are used to initialize instance variables
with specific values.

It allows for custom initialization of objects based on the provided arguments.

3. Copy Constructor:

A copy constructor is a special type of constructor that takes an object of the same class as a
parameter and creates a new object by copying the values of the instance variables from the
passed object.

It is used to create a new object with the same state as an existing object.

Let's explain parameterized and copy constructors with suitable examples:

6.2.7.1. Parameterized Constructor Example:

class Student {

 String name;
 int age;

 // Parameterized Constructor

Java Programming Language Book by Milav Dabgar

No. 133 / 166

In this example:

We define a Student class with instance variables name and age .

The Student class has a parameterized constructor that initializes the name and age instance
variables with the values passed as arguments.

We create two Student objects (student1 and student2) using the parameterized constructor and
display their details.

6.2.7.2. Copy Constructor Example:

 public Student(String name, int age) {
 this.name = name;
 this.age = age;
 }

 void display() {
 System.out.println("Name: " + name);
 System.out.println("Age: " + age);
 }
}

public class Main {

 public static void main(String[] args) {
 // Creating objects using parameterized constructor
 Student student1 = new Student("Alice", 20);
 Student student2 = new Student("Bob", 22);

 // Displaying student details
 student1.display();
 student2.display();
 }
}

class Employee {

 String name;
 int age;

 // Copy Constructor
 public Employee(Employee emp) {
 this.name = emp.name;
 this.age = emp.age;
 }

 void display() {
 System.out.println("Name: " + name);
 System.out.println("Age: " + age);
 }
}

public class Main {

Java Programming Language Book by Milav Dabgar

No. 134 / 166

In this example:

We define an Employee class with instance variables name and age .

The Employee class has a copy constructor that takes an Employee object as a parameter and
initializes the instance variables of the new object with the values from the passed object.

We create an Employee object emp1 , set its name and age , and then create another Employee object
emp2 using the copy constructor with emp1 as an argument.

Both emp1 and emp2 have the same state, demonstrating the use of the copy constructor to create a
new object with the same state as an existing object.

6.2.8. Q2a: Explain the Primitive Data Types and User Defined
DataTypes in java.

In Java, data types specify the type of data that a variable can hold. There are two main categories of data
types: primitive data types and user-defined data types.

6.2.8.1. Primitive Data Types:

Primitive data types are the basic building blocks of data manipulation in Java. They are predefined by the
language and represent simple values. Java provides eight primitive data types:

1. byte: 8-bit signed integer.

2. short: 16-bit signed integer.

3. int: 32-bit signed integer.

4. long: 64-bit signed integer.

5. float: 32-bit floating-point number.

6. double: 64-bit floating-point number.

7. char: 16-bit Unicode character.

8. boolean: Represents true or false.

Example:

 public static void main(String[] args) {
 // Creating an object
 Employee emp1 = new Employee();
 emp1.name = "John";
 emp1.age = 30;

 // Creating another object using copy constructor
 Employee emp2 = new Employee(emp1);

 // Displaying employee details
 emp1.display();
 emp2.display();
 }
}

Java Programming Language Book by Milav Dabgar

No. 135 / 166

6.2.8.2. User-Defined Data Types:

User-defined data types are created by the programmer to meet specific requirements. They are derived
from primitive data types and/or other user-defined data types. In Java, user-defined data types include
classes, interfaces, arrays, and enumerated types.

1. Classes: Classes are user-defined data types that encapsulate data for a specific object and provide
methods to operate on that data.

2. Interfaces: Interfaces define a contract for classes that implement them, specifying a set of methods
that must be implemented.

3. Arrays: Arrays are collections of elements of the same type that are stored in contiguous memory
locations.

4. Enumerated Types (Enums): Enums define a set of named constants representing a fixed set of
values.

User-defined data types allow programmers to organize and manipulate complex data structures and
represent real-world entities in their programs. They contribute to the modularity, maintainability, and
extensibility of Java code.

6.2.9. Q2b: Explain this keyword with suitable example.

int number = 10;

double pi = 3.14;

char letter = 'A';

boolean isJavaFun = true;

class Car {

 String brand;
 String model;
 int year;
}

interface Shape {

 double area();
 double perimeter();
}

int[] numbers = {1, 2, 3, 4, 5};

enum Day {

 SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY
}

Java Programming Language Book by Milav Dabgar

No. 136 / 166

In Java, the this keyword is a reference to the current object within a method or constructor. It can be
used to access instance variables and methods of the current object, differentiate between instance
variables and local variables with the same name, and to pass the current object as a parameter to other
methods.

Here's an explanation of the this keyword with a suitable example:

class Student {

 String name;
 int age;

 // Parameterized Constructor
 public Student(String name, int age) {
 // Use 'this' to distinguish between instance variables and constructor parameters
 this.name = name;
 this.age = age;
 }

 // Method to display student details
 void display() {
 // Access instance variables using 'this'
 System.out.println("Name: " + this.name);
 System.out.println("Age: " + this.age);
 }

 // Method to compare two Student objects
 public boolean isOlder(Student otherStudent) {
 // Use 'this' to refer to the current object
 return this.age > otherStudent.age;
 }
}

public class Main {

 public static void main(String[] args) {
 // Create a Student object
 Student student1 = new Student("Alice", 20);

 // Call display method
 student1.display();

 // Create another Student object
 Student student2 = new Student("Bob", 22);

 // Compare ages using isOlder method
 if (student1.isOlder(student2)) {
 System.out.println(student1.name + " is older than " + student2.name);
 } else {
 System.out.println(student2.name + " is older than " + student1.name);
 }
 }
}

Java Programming Language Book by Milav Dabgar

No. 137 / 166

Explanation:

In the Student class constructor, this.name and this.age are used to refer to the instance variables
of the current object (Student).

In the display() method, this.name and this.age are used to access the instance variables of the
current object.

In the isOlder() method, this.age is used to access the age of the current object (this) and
compare it with the age of another Student object passed as a parameter.

In the Main class, we create two Student objects (student1 and student2) and call methods using
the this keyword to demonstrate its usage.

6.2.10. Q2c: Define Inheritance. List out types of it. Explain
multilevel and hierarchical inheritance with suitable example.

Inheritance is a fundamental concept in object-oriented programming (OOP) that allows a new class
(subclass or derived class) to inherit attributes and behaviors from an existing class (superclass or base
class). This enables code reuse and promotes the creation of a hierarchy of classes, where classes at higher
levels in the hierarchy share common characteristics, and subclasses can specialize or extend those
characteristics.

Types of Inheritance:

1. Single Inheritance:

A subclass inherits from only one superclass.

2. Multiple Inheritance:

A subclass inherits from more than one superclass. This is not directly supported in Java due to
the potential ambiguity and complexity it introduces.

3. Multilevel Inheritance:

A subclass inherits from a superclass, and another subclass inherits from the first subclass,
forming a chain of inheritance.

4. Hierarchical Inheritance:

Multiple subclasses inherit from a single superclass, forming a tree-like structure.

6.2.10.1. Multilevel Inheritance Example:

// Superclass

class Animal {

 void eat() {
 System.out.println("Animal is eating");
 }
}

// Subclass inheriting from Animal

class Dog extends Animal {

 void bark() {
 System.out.println("Dog is barking");

Java Programming Language Book by Milav Dabgar

No. 138 / 166

Explanation:

In this example, Animal is the superclass, Dog is a subclass inheriting from Animal , and Labrador is
a subclass inheriting from Dog .

Dog inherits the eat() method from Animal and adds its own method bark() .

Labrador inherits both eat() and bark() methods from Dog and adds its own method color() .

The main() method demonstrates calling methods from different levels of the inheritance hierarchy
using an object of the Labrador class.

6.2.10.2. Hierarchical Inheritance Example:

 }
}

// Subclass inheriting from Dog

class Labrador extends Dog {

 void color() {
 System.out.println("Labrador is brown");
 }
}

public class Main {

 public static void main(String[] args) {
 Labrador labrador = new Labrador();
 labrador.eat(); // inherited from Animal
 labrador.bark(); // inherited from Dog
 labrador.color(); // own method
 }
}

// Superclass

class Animal {

 void eat() {
 System.out.println("Animal is eating");
 }
}

// Subclass 1 inheriting from Animal

class Dog extends Animal {

 void bark() {
 System.out.println("Dog is barking");
 }
}

// Subclass 2 inheriting from Animal

class Cat extends Animal {

 void meow() {
 System.out.println("Cat is meowing");
 }
}

Java Programming Language Book by Milav Dabgar

No. 139 / 166

Explanation:

In this example, both Dog and Cat classes inherit the eat() method from the Animal superclass.

Dog adds its own method bark() , while Cat adds its own method meow() .

The main() method demonstrates creating objects of both Dog and Cat classes and calling their
respective methods.

6.2.11. Q3a: Explain Type Conversion and Casting in java.

In Java, type conversion refers to the process of converting one data type into another. This can occur
implicitly, where the conversion is done automatically by the compiler, or explicitly, where the programmer
explicitly specifies the conversion using casting.

6.2.11.1. Implicit Type Conversion (Widening Conversion):

Implicit type conversion occurs when a data type with a smaller range or precision is converted into a
data type with a larger range or precision.

This conversion is performed by the compiler automatically and does not require any explicit casting.

It's also known as widening conversion because the range of the data type is widened.

For example, converting an integer to a floating-point number.

Example:

6.2.11.2. Explicit Type Conversion (Narrowing Conversion):

Explicit type conversion, also known as casting, occurs when a data type with a larger range or
precision is converted into a data type with a smaller range or precision.

Casting requires explicit syntax where the programmer specifies the desired type in parentheses
before the value to be converted.

This conversion may result in loss of data if the target type cannot represent the entire range of the
source type.

public class Main {

 public static void main(String[] args) {
 Dog dog = new Dog();
 dog.eat(); // inherited from Animal
 dog.bark(); // own method

 Cat cat = new Cat();
 cat.eat(); // inherited from Animal
 cat.meow(); // own method
 }
}

int numInt = 10;

double numDouble = numInt; // Implicit conversion from int to double

Java Programming Language Book by Milav Dabgar

No. 140 / 166

It's also known as narrowing conversion because the range of the data type is narrowed.

For example, converting a floating-point number to an integer.

Example:

6.2.11.3. Type Casting:

Type casting is the process of converting a variable from one data type to another.

It's done by explicitly specifying the target data type in parentheses before the variable.

There are two types of casting: primitive type casting and object casting.

Primitive type casting is used for converting between primitive data types, while object casting is used
for converting between reference types.

Example of Primitive Type Casting:

Example of Object Casting:

In summary, type conversion in Java involves converting one data type to another either implicitly or
explicitly through casting. Implicit conversion occurs automatically by the compiler, while explicit conversion
requires the programmer to specify the desired type using casting syntax.

6.2.12. Q3b: Explain different visibility controls used in Java.

In Java, visibility controls, also known as access modifiers, are keywords that determine the accessibility or
visibility of classes, methods, and variables within Java programs. They specify the level of access that other
classes or components have to the members of a class. Java provides four visibility controls:

1. public:

Members marked as public are accessible from any other class.

They can be accessed by classes in the same package as well as by classes in different packages.

Public members form the interface of the class, providing access to its functionality.

double numDouble = 10.5;

int numInt = (int) numDouble; // Explicit conversion (casting) from double to int

double numDouble = 10.5;

int numInt = (int) numDouble; // Primitive type casting from double to int

class Animal {}

class Dog extends Animal {}

public class Main {

 public static void main(String[] args) {
 Animal animal = new Dog();
 Dog dog = (Dog) animal; // Object casting from Animal to Dog
 }
}

Java Programming Language Book by Milav Dabgar

No. 141 / 166

2. protected:

Members marked as protected are accessible within the same package and by subclasses (even
if they are in a different package).

Protected members are useful when you want to provide access to subclasses while still
restricting access from other classes.

3. default (no modifier):

If no access modifier is specified, the default visibility is applied.

Members with default visibility are accessible only within the same package.

They are not accessible by classes outside the package, even if they are subclasses.

4. private:

Members marked as private are accessible only within the same class.

They are not visible to any other class, including subclasses and classes in the same package.

Private members are used to encapsulate the internal state of a class and hide implementation
details.

By using these visibility controls, you can control the access to your classes, methods, and variables, which
helps in enforcing encapsulation, promoting code maintainability, and reducing coupling between classes.

Example:

In this example:

publicVar is accessible from any class, regardless of its location.

protectedVar is accessible within the same package and by subclasses.

defaultVar is accessible only within the same package.

privateVar is accessible only within the same class.

6.2.13. Q3c: Define: Thread. List different methods used to create
Thread. Explain Thread life cycle in detail.

6.2.13.1. Definition of Thread:

In Java, a thread refers to a single sequential flow of control within a program. It is the smallest unit of
execution and represents an independent path of execution in a program. Multiple threads can run
concurrently within a single Java program, allowing for parallel execution of tasks.

package com.example;

public class MyClass {

 public int publicVar;
 protected int protectedVar;
 int defaultVar; // Default visibility
 private int privateVar;
}

Java Programming Language Book by Milav Dabgar

No. 142 / 166

6.2.13.2. Methods to Create Thread:

In Java, there are several ways to create a thread:

1. Extending the Thread Class:

Create a new class that extends the Thread class.

Override the run() method to specify the task to be performed by the thread.

Create an instance of the subclass and call its start() method to start the execution of the
thread.

2. Implementing the Runnable Interface:

Create a class that implements the Runnable interface.

Implement the run() method to specify the task to be performed by the thread.

Create an instance of the class and pass it as a parameter to a Thread object.

Call the start() method of the Thread object to start the execution of the thread.

3. Using Lambda Expressions (Java 8 and later):

Define the task to be performed by the thread using a lambda expression.

Create a Thread object and pass the lambda expression as a parameter to its constructor.

Call the start() method of the Thread object to start the execution of the thread.

6.2.13.3. Thread Life Cycle:

The life cycle of a thread in Java consists of several states, and the thread can transition between these
states during its execution. The states of a thread in Java are as follows:

1. New:

The thread is in the new state if it has been created but has not yet started.

This state is characterized by the creation of a Thread object using the new keyword.

2. Runnable:

The thread is in the runnable state if it is ready to run but the scheduler has not yet selected it to
be the running thread.

A runnable thread may be executing or waiting for its turn to be executed by the scheduler.

3. Running:

The thread is in the running state if it has been selected by the scheduler for execution.

In this state, the thread is actively executing its task.

4. Blocked/Waiting:

The thread is in the blocked or waiting state if it is waiting for a specific condition to occur or for
another thread to release a lock.

A blocked thread cannot proceed until the condition is satisfied or the lock is released.

5. Timed Waiting:

Java Programming Language Book by Milav Dabgar

No. 143 / 166

The thread is in the timed waiting state if it is waiting for a specified period of time.

This state occurs when a thread calls a method that results in it waiting for a specified amount of
time.

6. Terminated:

The thread is in the terminated state if it has completed its task or if it has been explicitly
terminated by calling the stop() method.

6.2.13.4. Detailed Explanation of Thread Life Cycle:

1. New:

The thread is created using the new keyword, but the start() method has not yet been called.

2. Runnable:

The start() method is called, and the thread becomes ready to run.

The thread may be selected by the scheduler to run, or it may wait for its turn if other threads are
currently running.

3. Running:

The scheduler selects the thread to run, and it begins executing its task.

In this state, the thread is actively executing its code.

4. Blocked/Waiting:

The thread may enter the blocked or waiting state if it encounters a blocking operation, such as
waiting for I/O or waiting for a lock to be released.

While in this state, the thread is not executing, but it is not terminated either.

5. Timed Waiting:

Similar to the blocked or waiting state, but the thread waits for a specified period of time before
resuming execution.

6. Terminated:

The thread completes its task or is explicitly terminated by calling the stop() method.

Once terminated, the thread cannot be restarted and its resources are released.

Understanding the life cycle of a thread is important for proper thread management and synchronization in
Java programs. It allows developers to control the execution of threads and handle concurrency-related
issues effectively.

6.2.14. Q3a: Explain the purpose of JVM in java.

The Java Virtual Machine (JVM) is a critical component of the Java Runtime Environment (JRE), serving as the
engine that executes Java bytecode. It is the cornerstone of Java's "write once, run anywhere" (WORA)
philosophy, allowing Java applications to run on any device or operating system that has a compatible JVM.
The purpose and functionalities of the JVM are multifaceted:

6.2.14.1. Platform Independence:

Java Programming Language Book by Milav Dabgar

No. 144 / 166

Code Portability: JVM enables Java applications to be platform-independent. Java programs are
compiled into bytecode, which can be executed on any JVM, regardless of the underlying hardware and
operating system. This means developers can write the code once and run it anywhere, without
needing to modify it for different platforms.

6.2.14.2. Security:

Safe Execution Environment: The JVM provides a secure execution environment by sandboxing the
execution of bytecode. It enforces access controls and provides various security checks, preventing
unauthorized access to system resources and ensuring that Java applications cannot harm the host
system.

Bytecode Verification: Before executing bytecode, the JVM verifies the code to ensure it adheres to
Java's safety rules, further enhancing security.

6.2.14.3. Performance:

Just-In-Time (JIT) Compilation: While the JVM interprets bytecode, it also employs Just-In-Time (JIT)
compilation to improve the performance of Java applications. The JIT compiler translates bytecode into
native machine code just before execution, which allows for faster execution compared to
interpretation alone.

Garbage Collection: JVM manages memory through garbage collection, automatically freeing memory
allocated to objects that are no longer needed. This not only helps in managing resources efficiently
but also reduces the likelihood of memory leaks and other memory-related issues.

6.2.14.4. Multithreading and Synchronization:

Thread Management: The JVM supports multithreaded execution, allowing multiple threads to run
concurrently within a single process. It manages synchronization between threads, ensuring that
resources are properly shared and accessed in a thread-safe manner.

6.2.14.5. Load and Execution of Code:

Dynamic Loading: JVM dynamically loads, links, and initializes classes and interfaces. This means
classes are loaded as needed at runtime, making the execution process more modular and efficient.

6.2.14.6. Platform-Specific Features:

Native Interface and Libraries: While JVM abstracts the details of the underlying platform, it also
provides mechanisms (such as the Java Native Interface - JNI) for Java applications to interact with
native libraries and call platform-specific functions when necessary.

6.2.14.7. Tooling and Debugging:

Support for Development Tools: The JVM ecosystem includes a vast array of development and
debugging tools that leverage JVM capabilities for profiling, debugging, and monitoring Java
applications.

In summary, the JVM is a pivotal technology that not only ensures the portability, security, and performance
of Java applications but also provides a robust platform for developing and executing high-performance,
scalable, and secure applications across diverse computing environments.

Java Programming Language Book by Milav Dabgar

No. 145 / 166

6.2.15. Q3b: Define: Package. Write the steps to create a Package
with suitable example.

6.2.15.1. Definition of Java Package:

In Java, a package is a way of organizing classes and interfaces into namespaces to prevent naming conflicts
and provide a hierarchical structure to the Java codebase. It allows for better organization, management,
and modularization of Java code. Packages also facilitate access control and provide a mechanism for code
reuse.

6.2.15.2. Steps to Create a Java Package:

Creating a Java package involves the following steps:

1. Choose a Package Name:

Select a unique name for your package that reflects its purpose and functionality.

Package names typically follow the reverse domain naming convention, such as
com.example.package .

2. Create Package Directory Structure:

Create a directory structure corresponding to the package name.

Each level of the package name corresponds to a directory in the file system.

For example, if the package name is com.example.package , create the directory structure
com/example/package .

3. Place Java Files in the Package Directory:

Create Java source files (.java files) containing classes or interfaces that belong to the package.

Place these Java files in the directory corresponding to the package name.

Ensure that the package declaration in each Java file matches the package name and directory
structure.

4. Compile Java Files:

Compile the Java source files using the javac command.

Specify the directory containing the package structure as the source path using the -d option to
ensure that compiled class files are placed in the appropriate package directory.

5. Use the Package:

Once the package is created and compiled, you can use it in other Java classes by importing it
using the import statement.

Import the package or specific classes/interfaces from the package into your Java code to access
its functionality.

6.2.15.3. Example of Creating a Java Package:

Suppose we want to create a package named com.example.util containing utility classes for string
manipulation. Here are the steps to create and use this package:

Java Programming Language Book by Milav Dabgar

No. 146 / 166

1. Create Package Directory Structure:

Create a directory named com within your project directory.

Inside the com directory, create a subdirectory named example .

Inside the example directory, create another subdirectory named util .

2. Place Java Files in the Package Directory:

Create a Java source file named StringUtils.java containing utility methods for string
manipulation.

Place this Java file in the util directory.

Add the package declaration package com.example.util; at the beginning of the
StringUtils.java file.

3. Compile Java Files:

Open a terminal or command prompt.

Navigate to the directory containing the com directory.

Compile the StringUtils.java file using the following command:

The -d . option specifies that the compiled class file should be placed in the current directory
(.), maintaining the package structure.

4. Use the Package:

In other Java classes where you want to use the StringUtils class, import it using the import
statement:

You can then use the methods provided by the StringUtils class in your Java code.

By following these steps, you can create and use Java packages to organize and manage your codebase
effectively, promoting modularity, reusability, and maintainability.

Here's a code example demonstrating the creation and usage of a Java package named com.example.util
containing a StringUtils class with utility methods for string manipulation:

1. StringUtils.java (inside com/example/util directory):

javac com/example/util/StringUtils.java -d .

import com.example.util.StringUtils;

package com.example.util;

public class StringUtils {

 // Method to reverse a string
 public static String reverseString(String str) {
 return new StringBuilder(str).reverse().toString();
 }

 // Method to check if a string is palindrome

Java Programming Language Book by Milav Dabgar

No. 147 / 166

2. Main.java (outside the com.example.util package):

6.2.15.4. Explanation:

In the StringUtils.java file, we define a StringUtils class inside the com.example.util package.

This class contains two static methods: reverseString() to reverse a given string and
isPalindrome() to check if a string is a palindrome.

In the Main.java file, we import the StringUtils class from the com.example.util package using
the import statement.

We then use the utility methods provided by the StringUtils class (reverseString() and
isPalindrome()) in the main() method to demonstrate their functionality.

After compiling both files and running the Main class, the output will display the original string, its reversed
form, and whether it is a palindrome or not based on the utility methods provided by the StringUtils
class.

6.2.16. Q3c: Explain Synchronization in Thread with suitable
example.

In Java, synchronization refers to the coordination of multiple threads to ensure proper and orderly access
to shared resources, thereby preventing data corruption and race conditions. When multiple threads access
shared data concurrently, synchronization ensures that only one thread can access the shared resource at a
time, maintaining data integrity and consistency. Java provides several mechanisms for synchronization,
including synchronized blocks and methods, locks, and atomic variables. Let's explore synchronization in
Java in detail with a suitable example.

 public static boolean isPalindrome(String str) {
 String reversed = reverseString(str);
 return str.equals(reversed);
 }
}

import com.example.util.StringUtils;

public class Main {

 public static void main(String[] args) {
 String str = "radar";

 // Using StringUtils methods
 String reversed = StringUtils.reverseString(str);
 boolean isPalindrome = StringUtils.isPalindrome(str);

 System.out.println("Original string: " + str);
 System.out.println("Reversed string: " + reversed);
 System.out.println("Is palindrome? " + isPalindrome);
 }
}

Java Programming Language Book by Milav Dabgar

No. 148 / 166

6.2.16.1. Synchronization with synchronized Keyword:

1. Synchronized Blocks:

In Java, synchronized blocks allow you to specify a block of code that can be executed by only one
thread at a time.

You can synchronize on any object, typically using the this keyword to lock the current object.

Syntax: synchronized (object) { ... }

2. Synchronized Methods:

You can also declare entire methods as synchronized, ensuring that only one thread can execute
the method at a time for a particular instance of the class.

Syntax: public synchronized void methodName() { ... }

6.2.16.2. Example: Bank Account Simulation with Synchronization:

Suppose we have a bank account class BankAccount that allows multiple threads to deposit and withdraw
money. Without synchronization, concurrent access to the account balance could lead to inconsistencies.
Let's see how synchronization can be applied to ensure thread safety:

In this example:

public class BankAccount {

 private double balance;

 public BankAccount(double balance) {
 this.balance = balance;
 }

 // Synchronized method to deposit money
 public synchronized void deposit(double amount) {
 balance += amount;
 System.out.println("Deposited: " + amount);
 }

 // Synchronized method to withdraw money
 public synchronized void withdraw(double amount) {
 if (balance >= amount) {
 balance -= amount;
 System.out.println("Withdrawn: " + amount);
 } else {
 System.out.println("Insufficient balance");
 }
 }

 // Method to get current balance
 public synchronized double getBalance() {
 return balance;
 }
}

Java Programming Language Book by Milav Dabgar

No. 149 / 166

Both the deposit() and withdraw() methods are declared as synchronized, ensuring that only one
thread can execute them at a time for a particular BankAccount instance.

The getBalance() method is also synchronized to prevent race conditions while accessing the
balance.

By using synchronized methods, we ensure that concurrent threads cannot access the BankAccount
methods simultaneously, maintaining data consistency and integrity.

6.2.16.3. Usage of Bank Account Class in Multiple Threads:

In this example:

We create two threads, depositThread and withdrawThread , each performing deposit and
withdrawal operations on the BankAccount instance concurrently.

The synchronized methods in the BankAccount class ensure that deposit and withdrawal operations
are performed atomically, preventing inconsistencies due to concurrent access.

By synchronizing critical sections of code, we ensure thread safety and prevent data corruption in
multithreaded environments, maintaining the integrity and consistency of shared resources.

6.2.17. Q4a: Differentiate between String class and StringBuffer
class.

public class Main {

 public static void main(String[] args) {
 BankAccount account = new BankAccount(1000);

 // Thread to deposit money
 Thread depositThread = new Thread(() -> {
 for (int i = 0; i < 5; i++) {
 account.deposit(100);
 System.out.println("Current balance (deposit thread): " +
account.getBalance());

 }
 });

 // Thread to withdraw money
 Thread withdrawThread = new Thread(() -> {
 for (int i = 0; i < 5; i++) {
 account.withdraw(200);
 System.out.println("Current balance (withdraw thread): " +
account.getBalance());

 }
 });

 // Start deposit and withdraw threads
 depositThread.start();
 withdrawThread.start();
 }
}

Java Programming Language Book by Milav Dabgar

No. 150 / 166

In Java, both the String class and StringBuffer class are used for handling strings, but they have
different characteristics and behaviors. Here's a comparison between the String class and the
StringBuffer class:

6.2.17.1. String Class:

1. Immutable:

Objects of the String class are immutable, meaning once a String object is created, its value
cannot be changed.

Any operation that appears to modify a String object actually creates a new String object with
the modified value.

Example: String str = "Hello"; str = str + " World"; creates a new String object with
the value "Hello World".

2. Thread-Safe:

Since String objects are immutable, they are inherently thread-safe.

Multiple threads can safely share and access String objects without the risk of data corruption
or race conditions.

3. Performance Implications:

Immutable nature leads to frequent object creation, which can impact memory usage and
performance, especially in scenarios involving string concatenation or manipulation.

6.2.17.2. StringBuffer Class:

1. Mutable:

Objects of the StringBuffer class are mutable, meaning their value can be modified after
creation.

StringBuffer provides methods for appending, inserting, deleting, and modifying characters
within the string.

2. Not Thread-Safe:

Unlike String , StringBuffer is not inherently thread-safe. Multiple threads accessing a
StringBuffer object concurrently without proper synchronization can lead to data corruption or
inconsistencies.

3. Better Performance for String Manipulation:

StringBuffer is optimized for string manipulation operations such as concatenation, appending,
and inserting.

It avoids frequent object creation by modifying the contents of the existing buffer, resulting in
better performance compared to String for such operations.

6.2.17.3. Example:

String str = "Hello";

str = str + " World"; // New String object is created

Java Programming Language Book by Milav Dabgar

No. 151 / 166

In summary, the main differences between the String class and the StringBuffer class lie in their
mutability, thread safety, and performance characteristics. Use String when dealing with immutable
strings or when thread safety is a concern, and use StringBuffer when performing extensive string
manipulation operations or when mutability is required.

6.2.18. Q4b: Write a Java Program to find sum and average of 10
numbers of an array.

Here's a Java program to find the sum and average of 10 numbers in an array:

This program defines an array of 10 numbers and then iterates through the array to calculate the sum of all
numbers. It then calculates the average by dividing the sum by the total number of elements in the array.
Finally, it prints the sum and average of the numbers.

6.2.19. Q4c: Explain abstract class with suitable example. Explain
final class with suitable example.

An abstract class in Java is a class that cannot be instantiated, meaning you cannot create objects of an
abstract class. However, it can be subclassed. Abstract classes are used to provide a base for other classes
to extend and implement abstract methods, alongside providing full implementations of other methods.
Abstract classes allow you to define a template for a group of subclasses.

An abstract class may contain abstract methods, which are methods declared without an implementation.
The subclasses of an abstract class must provide implementations for the abstract methods unless the
subclass is also abstract.

StringBuffer buffer = new StringBuffer("Hello");

buffer.append(" World"); // Modifies existing StringBuffer object

public class SumAndAverage {

 public static void main(String[] args) {
 // Define an array of 10 numbers
 int[] numbers = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100};

 // Calculate sum of numbers
 int sum = 0;
 for (int number : numbers) {
 sum += number;
 }

 // Calculate average of numbers
 double average = (double) sum / numbers.length;

 // Display sum and average
 System.out.println("Sum of numbers: " + sum);
 System.out.println("Average of numbers: " + average);
 }
}

Java Programming Language Book by Milav Dabgar

No. 152 / 166

6.2.19.1. Key Points:

If a class includes at least one abstract method, the class itself must be declared abstract.

Abstract classes can include both abstract methods (without a body) and regular methods (with a
body).

You cannot create instances of an abstract class directly.

Abstract classes are useful for defining common templates for a family of subclasses.

6.2.19.2. Example:

Let's consider an example with a simple hierarchy for shapes where we define an abstract class Shape and
concrete classes Circle and Rectangle that extend Shape .

abstract class Shape {

 String color;

 // Constructor
 public Shape(String color) {
 this.color = color;
 }

 // Abstract method
 abstract double area();

 // Concrete method
 public String getColor() {
 return color;
 }
}

class Circle extends Shape {

 double radius;

 public Circle(String color, double radius) {
 super(color); // calling Shape constructor
 this.radius = radius;
 }

 // Implementing the abstract method
 @Override
 double area() {
 return Math.PI * Math.pow(radius, 2);
 }
}

class Rectangle extends Shape {

 double width;
 double height;

 public Rectangle(String color, double width, double height) {

Java Programming Language Book by Milav Dabgar

No. 153 / 166

6.2.19.3. Explanation:

The Shape class is abstract and contains one abstract method area() and a concrete method
getColor() .

The Circle and Rectangle classes extend Shape and provide concrete implementations for the
area() method.

The Shape class cannot be instantiated directly due to its abstract nature, but we can reference
Circle and Rectangle objects using a Shape reference.

This design allows for flexibility and reusability, as other types of shapes can be easily added to the
hierarchy by extending the Shape class and providing an implementation for the area() method.

In Java, a final class is a class that cannot be subclassed or extended. When a class is declared as final, it
means that no other class can inherit from it. This is useful when you want to prevent the class from being
modified or extended further, ensuring that its behavior remains unchanged.

6.2.19.4. Key Points:

A final class cannot have any subclasses.

All methods in a final class are implicitly final, meaning they cannot be overridden by subclasses.

Final classes are typically used for utility classes, immutable classes, or classes with a fixed
implementation that should not be extended.

6.2.19.5. Example:

 super(color); // calling Shape constructor
 this.width = width;
 this.height = height;
 }

 // Implementing the abstract method
 @Override
 double area() {
 return width * height;
 }
}

public class Main {

 public static void main(String[] args) {
 Shape circle = new Circle("Red", 2.5);
 Shape rectangle = new Rectangle("Blue", 4.0, 5.0);

 System.out.println("Circle color: " + circle.getColor() + " and area: " +
circle.area());

 System.out.println("Rectangle color: " + rectangle.getColor() + " and area: " +
rectangle.area());

 }
}

final class FinalClass {

Java Programming Language Book by Milav Dabgar

No. 154 / 166

In this example:

The FinalClass is declared as final, indicating that it cannot be subclassed.

It contains a private field value and a constructor to initialize it.

The getValue() method provides read-only access to the value field.

The display() method is declared as final, meaning it cannot be overridden by subclasses.

Attempting to subclass a final class will result in a compilation error:

By making a class final, you ensure that its behavior remains consistent and cannot be altered by
subclasses, enhancing code stability and predictability. Final classes are particularly useful for creating utility
classes, such as helper methods or constants, where you want to prevent unintended subclassing or
modification of the class's behavior.

6.2.20. Q4a: Explain Garbage Collection in Java.

Garbage Collection (GC) in Java is a process by which the JVM automatically manages memory by reclaiming
memory occupied by objects that are no longer referenced or needed by the program. The main goal of
garbage collection is to free up memory resources by identifying and reclaiming objects that are no longer
in use, thereby preventing memory leaks and allowing for efficient memory management.

6.2.20.1. Key Concepts:

1. Automatic Memory Management:

 private final int value;

 // Constructor
 public FinalClass(int value) {
 this.value = value;
 }

 // Getter method
 public int getValue() {
 return value;
 }

 // This method cannot be overridden in subclasses
 public final void display() {
 System.out.println("Value: " + value);
 }
}

// Compilation error: cannot inherit from final FinalClass

class SubClass extends FinalClass {

 // Attempting to extend a final class
}

Java Programming Language Book by Milav Dabgar

No. 155 / 166

Unlike languages such as C or C++, where developers manually allocate and deallocate memory
using malloc() and free() functions, Java employs automatic memory management through
garbage collection.

Developers do not need to explicitly free memory occupied by objects. Instead, the JVM handles
memory allocation and deallocation automatically.

2. Garbage Collector:

The Garbage Collector (GC) is a component of the JVM responsible for reclaiming memory
occupied by objects that are no longer reachable or referenced by the program.

The GC periodically scans the heap (the region of memory where objects are allocated) to identify
and mark objects that are still in use and reachable from the program.

Objects that are not reachable, either directly or indirectly, from any live threads are considered
garbage and can be safely reclaimed.

3. Heap Memory Management:

In Java, objects are allocated memory on the heap using the new keyword. The heap is divided
into generations (Young Generation, Old Generation, and Permanent Generation in older JVM
versions).

The garbage collection process typically focuses on reclaiming memory from objects in the Young
Generation, as they are short-lived and often become garbage quickly.

Older objects in the Old Generation undergo less frequent garbage collection cycles.

6.2.20.2. Garbage Collection Process:

1. Mark Phase:

The garbage collector traverses the object graph starting from the root objects (such as global
variables, local variables, and method call stacks).

It marks objects that are reachable and in use as live objects, typically using a technique like
Depth-First Search (DFS) or Tracing.

2. Sweep Phase:

After marking live objects, the garbage collector identifies and reclaims memory occupied by
objects that are not marked (i.e., unreachable objects).

Reclaimed memory is returned to the heap for future allocations.

3. Compact Phase (Optional):

Some garbage collectors perform memory compaction after reclaiming memory to reduce
fragmentation and optimize memory usage.

Memory compaction involves moving live objects closer together to reduce fragmentation and
improve memory access performance.

6.2.20.3. Advantages of Garbage Collection:

Automatic Memory Management: Developers do not need to manually manage memory, reducing
the risk of memory leaks and segmentation faults.

Java Programming Language Book by Milav Dabgar

No. 156 / 166

Improved Developer Productivity: Developers can focus on application logic rather than memory
management, leading to faster development cycles and fewer bugs related to memory management.

Dynamic Memory Allocation: Garbage collection enables dynamic memory allocation and resizing of
objects, allowing for flexible memory usage without the need for manual memory management.

In summary, garbage collection in Java is a crucial mechanism for automatic memory management,
ensuring efficient use of memory resources and preventing memory-related issues such as memory leaks
and segmentation faults. By automatically reclaiming memory occupied by unreachable objects, garbage
collection allows Java applications to run reliably and efficiently.

6.2.21. Q4b: Write a Java program to handle user defined exception
for ‘DividebyZero’ error.

To handle a user-defined exception for a "DivideByZero" error in Java, you can create a custom exception
class that extends the Exception class. Then, you can throw this custom exception when encountering a
divide-by-zero situation. Below is an example Java program demonstrating this:

// Custom exception class for DivideByZero error

class DivideByZeroException extends Exception {

 public DivideByZeroException(String message) {
 super(message);
 }
}

// Class that performs division and throws DivideByZeroException

class Divider {

 public static double divide(int numerator, int denominator) throws
DivideByZeroException {

 if (denominator == 0) {
 throw new DivideByZeroException("Error: Division by zero is not allowed.");
 }
 return (double) numerator / denominator;
 }
}

// Main class to demonstrate handling of DivideByZeroException

public class Main {

 public static void main(String[] args) {
 int numerator = 10;
 int denominator = 0;

 try {
 double result = Divider.divide(numerator, denominator);
 System.out.println("Result of division: " + result);
 } catch (DivideByZeroException e) {
 System.out.println("Error: " + e.getMessage());
 // Additional handling can be done here, such as logging or informing the user
 }
 }
}

Java Programming Language Book by Milav Dabgar

No. 157 / 166

In this example:

We define a custom exception class DivideByZeroException that extends Exception .

The Divider class provides a divide method that takes a numerator and a denominator as
parameters and performs division. If the denominator is zero, it throws a DivideByZeroException .

In the Main class, we attempt to divide by zero within a try-catch block. If a DivideByZeroException is
thrown during the division operation, it is caught, and an appropriate error message is displayed.

This program demonstrates how to handle user-defined exceptions for divide-by-zero errors in Java.
Custom exception classes provide flexibility in handling different types of errors and allow for more
meaningful error messages and error handling strategies.

6.2.22. Q4c: Write a java program to demonstrate multiple try
block and multiple catch block exception.

Certainly! Below is a Java program demonstrating the use of multiple try blocks and multiple catch blocks
to handle different types of exceptions:

public class MultipleTryCatchDemo {

 public static void main(String[] args) {
 try {
 // Division by zero exception
 int result = divideByZero(10, 0);
 System.out.println("Result of division: " + result);
 } catch (ArithmeticException e) {
 System.out.println("ArithmeticException caught: " + e.getMessage());
 }

 try {
 // Array index out of bounds exception
 int[] numbers = {1, 2, 3};
 int index = 4;
 int value = accessArrayElement(numbers, index);
 System.out.println("Value at index " + index + ": " + value);
 } catch (ArrayIndexOutOfBoundsException e) {
 System.out.println("ArrayIndexOutOfBoundsException caught: " +
e.getMessage());

 }

 try {
 // NullPointerException
 String str = null;
 int length = str.length();
 System.out.println("Length of string: " + length);
 } catch (NullPointerException e) {
 System.out.println("NullPointerException caught: " + e.getMessage());
 }
 }

 // Method to perform division and throw ArithmeticException

Java Programming Language Book by Milav Dabgar

No. 158 / 166

In this program:

We have three different try blocks, each attempting an operation that can potentially throw a
different type of exception.

Each try block is followed by a corresponding catch block that handles the specific type of exception
thrown within that try block.

The first try block attempts division by zero, and the catch block catches the ArithmeticException .

The second try block attempts to access an element beyond the bounds of an array, and the catch
block catches the ArrayIndexOutOfBoundsException .

The third try block attempts to invoke a method on a null object reference, leading to a
NullPointerException , which is caught by the corresponding catch block.

This program demonstrates how multiple try blocks and multiple catch blocks can be used to handle
different types of exceptions separately, allowing for more precise error handling in Java programs.

6.2.23. Q5a: Write a program in Java to create a file and perform
write operation on this file.

Below is a Java program that demonstrates how to create a file and perform write operations on it using the
File and FileOutputStream classes:

 public static int divideByZero(int numerator, int denominator) {
 return numerator / denominator;
 }

 // Method to access array element and throw ArrayIndexOutOfBoundsException
 public static int accessArrayElement(int[] array, int index) {
 return array[index];
 }
}

import java.io.File;

import java.io.FileOutputStream;

import java.io.IOException;

public class FileWriteDemo {

 public static void main(String[] args) {
 // Specify the file name and content
 String fileName = "example.txt";
 String content = "Hello, world! This is a sample text file.";

 // Create a File object
 File file = new File(fileName);

 try {
 // Create a FileOutputStream to write to the file
 FileOutputStream fos = new FileOutputStream(file);

 // Convert the content string to bytes and write to the file

Java Programming Language Book by Milav Dabgar

No. 159 / 166

In this program:

We specify the file name (example.txt) and the content that we want to write to the file (Hello,
world! This is a sample text file.).

We create a File object named file with the specified file name.

We create a FileOutputStream named fos to write to the file.

We convert the content string to bytes using the getBytes() method and write these bytes to the file
using the write() method of FileOutputStream .

We close the FileOutputStream after writing to the file.

If an IOException occurs during file creation or writing, we handle it and print an error message.

After running this program, a file named example.txt will be created in the same directory as the Java
program, and the specified content will be written to it.

6.2.24. Q5b: Explain throw and finally in Exception Handling with
example.

In Java, exception handling is a powerful mechanism that allows you to manage runtime errors, ensuring
the program's flow can be maintained even when unexpected events occur. Two key components of this
mechanism are the throw keyword and the finally block.

6.2.24.1. The throw Keyword

The throw keyword in Java is used to explicitly throw an exception from a method or any block of code. You
can throw either checked or unchecked exceptions. The thrown exception must be either caught by a
catch block surrounding the throw statement or declared to be thrown by the method using the throws
keyword.

Example of throw keyword:

 fos.write(content.getBytes());

 // Close the FileOutputStream
 fos.close();

 System.out.println("File '" + fileName + "' has been created and written
successfully.");

 } catch (IOException e) {
 System.out.println("An error occurred: " + e.getMessage());
 e.printStackTrace();
 }
 }
}

public class ThrowExample {

 static void checkAge(int age) {
 if (age < 18) {

Java Programming Language Book by Milav Dabgar

No. 160 / 166

In this example, the checkAge method throws an ArithmeticException if the age parameter is less than
18. The exception is caught in the main method's catch block.

6.2.24.2. The finally Block

The finally block is used to execute a block of code after a try-catch block has completed, regardless of
whether an exception was thrown or caught. It is the ideal place to put cleanup code, such as closing file
streams or releasing resources, ensuring that these operations are carried out regardless of what happens
within the try block.

Example of finally block:

In this example, the try block executes successfully, so the catch block is skipped. However, the finally
block is executed regardless, ensuring the message "Finally block is always executed" is printed to the
console.

Key Points:

The throw keyword allows for manually throwing exceptions, providing control over error reporting.

The finally block ensures certain code is executed after a try-catch block, regardless of the outcome,
making it ideal for cleanup operations.

 throw new ArithmeticException("Access denied - You must be at least 18 years
old.");

 } else {
 System.out.println("Access granted - You are old enough!");
 }
 }

 public static void main(String[] args) {
 try {
 checkAge(15);
 } catch (ArithmeticException e) {
 System.out.println("Exception caught: " + e.getMessage());
 }
 }
}

public class FinallyExample {

 public static void main(String[] args) {
 try {
 int data = 25 / 5;
 System.out.println(data);
 } catch (NullPointerException e) {
 System.out.println(e);
 } finally {
 System.out.println("Finally block is always executed");
 }
 System.out.println("Rest of the code...");
 }
}

Java Programming Language Book by Milav Dabgar

No. 161 / 166

6.2.25. Q5c: Describe: Polymorphism. Explain run time
polymorphism with suitable example in java.

6.2.25.1. Polymorphism:

Polymorphism is a fundamental concept in object-oriented programming that allows objects of different
classes to be treated as objects of a common superclass. It enables a single interface to represent multiple
underlying forms. There are two types of polymorphism in Java: compile-time polymorphism (method
overloading) and runtime polymorphism (method overriding).

6.2.25.2. Runtime Polymorphism:

Runtime polymorphism, also known as dynamic polymorphism, occurs when a subclass provides a specific
implementation of a method that is already defined in its superclass. It allows a method to be overridden in
a subclass with a different implementation, and the decision of which method to execute is made at
runtime based on the actual type of the object.

6.2.25.3. Example of Runtime Polymorphism in Java:

// Superclass

class Animal {

 void sound() {
 System.out.println("Animal makes a sound");
 }
}

// Subclass 1

class Dog extends Animal {

 @Override
 void sound() {
 System.out.println("Dog barks");
 }
}

// Subclass 2

class Cat extends Animal {

 @Override
 void sound() {
 System.out.println("Cat meows");
 }
}

public class Main {

 public static void main(String[] args) {
 // Creating objects of different subclasses
 Animal animal1 = new Dog(); // Upcasting
 Animal animal2 = new Cat(); // Upcasting

 // Calling overridden methods
 animal1.sound(); // Calls Dog's sound method
 animal2.sound(); // Calls Cat's sound method

Java Programming Language Book by Milav Dabgar

No. 162 / 166

In this example:

We have a superclass Animal with a method sound() .

We have two subclasses Dog and Cat , each overriding the sound() method with specific
implementations.

In the main() method, we create objects of the subclasses and assign them to references of the
superclass (Animal). This is called upcasting.

When we call the sound() method on these objects, Java determines which implementation to
execute based on the actual type of the object at runtime. This is runtime polymorphism.

As a result, the output of the program is:

6.2.25.4. Benefits of Runtime Polymorphism:

It allows for flexibility and extensibility in code, enabling subclasses to provide their own
implementations of methods.

It promotes code reusability by allowing common interfaces to be shared across multiple classes.

Runtime polymorphism is a powerful mechanism in Java that facilitates code organization, maintenance,
and flexibility by enabling dynamic method invocation based on the actual type of the object at runtime.

6.2.26. Q5a: Write a program in Java that read the content of a file
byte by byte and copy it into another file.

Below is a Java program that reads the content of a file byte by byte and copies it into another file:

 }
}

Dog barks

Cat meows

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.IOException;

public class FileCopyByteByByte {

 public static void main(String[] args) {
 String sourceFileName = "source.txt";
 String destinationFileName = "destination.txt";

 try (FileInputStream fis = new FileInputStream(sourceFileName);
 FileOutputStream fos = new FileOutputStream(destinationFileName)) {

 int byteRead;
 while ((byteRead = fis.read()) != -1) {
 fos.write(byteRead);
 }

Java Programming Language Book by Milav Dabgar

No. 163 / 166

In this program:

We specify the name of the source file (source.txt) and the destination file (destination.txt).

We use FileInputStream to read bytes from the source file and FileOutputStream to write bytes to
the destination file.

Inside the try-with-resources block, we create instances of FileInputStream and FileOutputStream .

We use a while loop to read bytes from the source file until the read() method returns -1 ,
indicating the end of the file.

Within the loop, each byte read from the source file is written to the destination file using the write()
method.

Any IOException that occurs during file operations is caught and handled, displaying an error
message.

After running this program, the content of the source file (source.txt) will be copied byte by byte into the
destination file (destination.txt).

6.2.27. Q5b: Explain the different I/O Classes available with Java.

In Java, the I/O (Input/Output) classes are used to perform input and output operations, such as reading
from or writing to files, streams, consoles, and network connections. These classes are part of the java.io
package and provide various functionalities for handling different types of I/O operations. Here are some of
the commonly used I/O classes available in Java:

1. InputStream and OutputStream:

InputStream and OutputStream are abstract classes representing input and output streams of
bytes, respectively.

They serve as the base classes for all byte-oriented I/O classes in Java.

2. Reader and Writer:

Reader and Writer are abstract classes representing input and output streams of characters,
respectively.

They serve as the base classes for all character-oriented I/O classes in Java.

InputStreamReader and OutputStreamWriter are bridge classes that convert byte streams to
character streams and vice versa.

3. FileInputStream and FileOutputStream:

FileInputStream and FileOutputStream are used to read from and write to files, respectively,
as streams of bytes.

 System.out.println("File copied successfully.");
 } catch (IOException e) {
 System.out.println("An error occurred: " + e.getMessage());
 e.printStackTrace();
 }
 }
}

Java Programming Language Book by Milav Dabgar

No. 164 / 166

They are commonly used for file I/O operations.

4. FileReader and FileWriter:

FileReader and FileWriter are used to read from and write to files, respectively, as streams of
characters.

They are commonly used for text file I/O operations.

5. BufferedInputStream and BufferedOutputStream:

BufferedInputStream and BufferedOutputStream are used for buffered input and output
operations, respectively.

They improve I/O performance by reducing the number of physical I/O operations.

6. BufferedReader and BufferedWriter:

BufferedReader and BufferedWriter are used for buffered character input and output
operations, respectively.

They provide efficient reading and writing of characters by buffering input and output streams.

7. DataInputStream and DataOutputStream:

DataInputStream and DataOutputStream are used for reading and writing primitive data types
as binary data, respectively.

They provide methods for reading and writing Java primitive data types (e.g., int, double, boolean)
from and to streams.

8. ObjectInputStream and ObjectOutputStream:

ObjectInputStream and ObjectOutputStream are used for reading and writing Java objects,
respectively.

They allow objects to be serialized (converted into a stream of bytes) and deserialized
(reconstructed from the stream of bytes).

These are some of the commonly used I/O classes available in Java. They provide a wide range of
functionalities for performing input and output operations in Java programs, facilitating interactions with
files, streams, consoles, and other I/O sources.

6.2.28. Q5c: Write a java program that executes two threads. One
thread displays “Java Programming” every 3 seconds, and the
other displays “Semester - 4th IT” every 6 seconds.(Create the
threads by extending the Thread class)

Below is a Java program that creates two threads by extending the Thread class. One thread displays "Java
Programming" every 3 seconds, and the other thread displays "Semester - 4th IT" every 6 seconds:

class DisplayThread extends Thread {

 private String message;
 private int interval;

 public DisplayThread(String message, int interval) {

Java Programming Language Book by Milav Dabgar

No. 165 / 166

In this program:

We create a DisplayThread class that extends the Thread class. This class takes a message and an
interval as parameters in its constructor.

In the run() method of DisplayThread , the thread continuously prints the message and then sleeps
for the specified interval.

In the main() method, we create two instances of DisplayThread , one for each message with their
respective intervals.

We start both threads using the start() method, which causes the run() method of each thread to
be executed concurrently.

As a result, the program will continuously display "Java Programming" every 3 seconds and "Semester - 4th
IT" every 6 seconds in separate threads.

 this.message = message;
 this.interval = interval;
 }

 @Override
 public void run() {
 while (true) {
 System.out.println(message);
 try {
 Thread.sleep(interval * 1000); // Convert seconds to milliseconds
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }
}

public class Main {

 public static void main(String[] args) {
 DisplayThread thread1 = new DisplayThread("Java Programming", 3);
 DisplayThread thread2 = new DisplayThread("Semester - 4th IT", 6);

 thread1.start();
 thread2.start();
 }
}

Java Programming Language Book by Milav Dabgar

No. 166 / 166

	1. Introduction to Java Programming Language
	1.1. Java Overview
	1.1.1. Brief History & Evolution of Java
	1.1.2. Java Features
	1.1.3. Java Applications

	1.2. Java Environment Setup & Basic Java Syntax
	1.2.1. Java Components
	1.2.2. Setting up Java Development Environment
	1.2.3. Structure of a Java Program
	1.2.3.1. Class Declaration
	1.2.3.2. Main Method
	1.2.3.3. Output in Java
	1.2.3.3.1. The println() Method
	1.2.3.3.2. The print() Method

	1.2.3.4. Comments
	1.2.3.4.1. Single-line Comments
	1.2.3.4.2. Multi-line Comments

	1.2.4. Compilation and Execution of Java Program
	1.2.5. Importance of Bytecode & Garbage Collection

	1.3. Data Types
	1.3.1. Primitive Data Types
	1.3.2. Non-Primitive Data Types
	1.3.3. Type Conversion and Casting
	1.3.3.1. Implicit Conversion (Widening)
	1.3.3.2. Explicit Conversion (Narrowing)

	1.4. Identifiers
	1.4.1. Naming Rules & Conventions
	1.4.1.1. Naming Rules
	1.4.1.2. Naming Conventions

	1.4.2. Variables
	1.4.3. Constants (final Keyword)
	1.4.4. Scope of Variables

	1.5. Arrays
	1.5.1. One-dimensional Arrays
	1.5.2. Multidimensional Arrays

	1.6. Operators
	1.6.1. Arithmetic Operators
	1.6.2. Assignment Operators
	1.6.3. Relational (Comparison) Operators
	1.6.4. Logical Operators
	1.6.5. Bitwise Operators
	1.6.6. Conditional (Ternary) Operator
	1.6.7. Operator Precedence

	1.7. Control Flow Statements
	1.7.1. Selection Statements
	1.7.1.1. The if Statement
	1.7.1.2. The if-else Statement
	1.7.1.3. The if-else-if Ladder
	1.7.1.4. Switch-Case Statements
	1.7.1.4.1. break Keyword
	1.7.1.4.2. default Keyword

	1.7.2. Looping Statements
	1.7.2.1. While Loop
	1.7.2.2. Do/While Loop
	1.7.2.3. For Loop
	1.7.2.4. The For-Each Loop
	1.7.2.5. Nested Loops

	1.7.3. Jump Statements
	1.7.3.1. break Statement
	1.7.3.2. continue Statement
	1.7.3.3. return Statement

	2. Object-Oriented Programming
	2.1. Procedure-Oriented vs. Object-Oriented Programming
	2.1.1. Characteristics
	2.1.2. Differences

	2.2. OOP Concepts
	2.2.1. Classes and Objects
	2.2.2. Encapsulation
	2.2.3. Abstraction
	2.2.4. Inheritance
	2.2.5. Polymorphism

	2.3. Classes and Objects
	2.3.1. Creating Classes
	2.3.2. Creating Objects
	2.3.2.1. Multiple Objects
	2.3.2.2. Using Multiple Classes
	2.3.2.3. this Keyword

	2.4. Class Attributes
	2.4.1. Accessing Attributes
	2.4.2. Modify Attributes
	2.4.3. Attributes of Multiple Objects
	2.4.4. Multiple Attributes of same Object

	2.5. Class Methods
	2.5.1. Create a Method
	2.5.2. Call a Method
	2.5.3. Method Parameters and Arguments
	2.5.3.1. Multiple Parameters

	2.5.4. Return Values
	2.5.5. Access Methods With an Object
	2.5.6. Method Signatures
	2.5.7. Passing Arguments
	2.5.8. Returning Values

	2.6. Constructors
	2.6.1. Types of Constructors
	2.6.1.1. Default Constructors
	2.6.1.2. Parameterized Constructors
	2.6.1.3. Copy Constructors

	2.6.2. Constructor Overloading

	2.7. Modifiers
	2.7.1. Access Modifiers
	2.7.2. Non-Access Modifiers
	2.7.2.1. final
	2.7.2.2. static
	2.7.2.3. abstract

	2.8. String Class
	2.8.1. Strings - Special Characters
	2.8.2. Common String Methods

	2.9. Scanner Class (User Input)
	2.9.1. Input Types
	2.9.2. Using Scanner Class

	2.10. Command-line Arguments

	3. Inheritance, Packages, and Interfaces
	3.1. Inheritance
	3.1.1. Basics of Inheritance
	3.1.2. Types of Inheritance
	3.1.3. extends Keyword
	3.1.4. super Keyword
	3.1.5. Polymorphism
	3.1.5.1. Method Overloading
	3.1.5.2. Method Overriding
	3.1.5.2.1. Overriding Object Class Methods

	3.1.6. Method Dynamic Dispatch

	3.2. Interfaces
	3.2.1. Defining Interfaces
	3.2.2. Implementing Interfaces
	3.2.3. Multiple Inheritance Using Interfaces

	3.3. Abstraction
	3.3.1. Abstract Class
	3.3.2. Abstract Method
	3.3.3. Differences from Interfaces

	3.4. Final Class
	3.4.1. Final Class Syntax
	3.4.2. Final Method

	3.5. Inner Classes
	3.5.1. Private Inner Class
	3.5.2. Static Inner Class
	3.5.3. Access Outer Class From Inner Class

	3.6. Packages & API
	3.6.1. Built-in Packages
	3.6.2. Import a Class
	3.6.3. Import a Package
	3.6.4. User-defined Packages
	3.6.5. Access Rules: Access Control Within Packages
	3.6.6. Example: Access Control

	4. Exception Handling and Multithreading
	4.1. Exception Handling in Java
	4.1.1. Errors vs. Exceptions
	4.1.2. Java try and catch
	4.1.3. try-catch-finally Blocks

	4.2. Throwing Exceptions
	4.2.1. Common Built-in Exceptions
	4.2.2. Creating Custom Exceptions
	4.2.3. Benefits of Exception Handling

	4.3. Multi-threading in Java
	4.3.1. Concepts of Threads and Processes
	4.3.2. Multi-threading Benefits
	4.3.3. Creating a Thread
	4.3.3.1. Extend Syntax
	4.3.3.2. Implement Syntax

	4.3.4. Running Threads
	4.3.4.1. Extend Example
	4.3.4.2. Implement Example
	4.3.4.3. Differences between "extending" and "implementing" Threads

	4.3.5. Concurrency Problems
	4.3.6. Thread Lifecycle
	4.3.7. Thread Priority
	4.3.8. Thread Exception Handling
	4.3.9. Synchronization

	5. File Handling and Collections Framework
	5.1. File Handling using File Class
	5.1.1. Create a File
	5.1.2. Write To a File
	5.1.3. Read a File
	5.1.4. Get File Information
	5.1.5. Delete a File
	5.1.6. Delete a Folder

	5.2. File Handling using Streams Class
	5.2.1. Streams and Stream Classes
	5.2.2. FileInputStream and FileOutputStream
	5.2.3. FileOutputStream to Write to File
	5.2.4. FileInputStream to Read from a File
	5.2.5. Closing Streams

	5.3. Collections Framework in Java
	5.3.1. Overview and Hierarchy
	5.3.2. ArrayList
	5.3.2.1. Creating an ArrayList
	5.3.2.2. Add Items
	5.3.2.3. Access an Item
	5.3.2.4. Change an Item
	5.3.2.5. Remove an Item
	5.3.2.6. ArrayList Size
	5.3.2.7. Loop Through an ArrayList
	5.3.2.8. Other Types
	5.3.2.9. Sort an ArrayList

	5.3.3. LinkedList
	5.3.3.1. ArrayList vs. LinkedList
	5.3.3.2. How the ArrayList works
	5.3.3.3. How the LinkedList works
	5.3.3.4. When To Use
	5.3.3.5. LinkedList Methods

	5.3.4. HashMap
	5.3.4.1. Add Items
	5.3.4.2. Access an Item
	5.3.4.3. Remove an Item
	5.3.4.4. HashMap Size
	5.3.4.5. Loop Through a HashMap
	5.3.4.6. Other Types

	5.3.5. HashSet
	5.3.5.1. Add Items
	5.3.5.2. Check If an Item Exists
	5.3.5.3. Remove an Item
	5.3.5.4. HashSet Size
	5.3.5.5. Loop Through a HashSet
	5.3.5.6. Other Types

	5.3.6. Iterator
	5.3.6.1. Getting an Iterator
	5.3.6.2. Looping Through a Collection
	5.3.6.3. Removing Items from a Collection

	6. Java Programming GTU Paper Solutions
	6.1. 4341602 - Java: Winter 2023 Paper Solution
	6.1.1. Q1a: List out basic concepts of Java OOP. Explain any one in detail.
	6.1.2. Q1b: Explain JVM in detail.
	6.1.3. Q1c: Write a program in java to print Fibonacci series for n terms.
	6.1.4. Q1c: Write a program in java to find out minimum from any ten numbers using command line argument.
	6.1.5. Q2a: What is Java wrapper class? Explain with example.
	6.1.6. Q2b: List out different features of java. Explain any two.
	6.1.7. Q2c: What is method overload in Java ? Explain with example.
	6.1.8. Q2a: Explain Garbage collection in java.
	6.1.9. Q2b: Explain final keyword in Java with example.
	6.1.10. Q2c: What is constructor in Java? Explain parameterized constructor with example.
	6.1.11. Q3a: Explain super keyword in Java with example.
	6.1.12. Q3b: List out different types of inheritance in Java. Explain multilevel inheritance.
	6.1.13. Q3c: What is Java interface? Explain multiple inheritance with example.
	6.1.14. Q3a: Explain Java static keyword with example.
	6.1.15. Q3b: Explain different access controls in Java.
	6.1.16. Q3c: What is Java package? Write steps to create a package in Java and give example of it.
	6.1.17. Q4a: Explain Java thread priorities with suitable example.
	6.1.18. Q4b: What is Java Thread? Explain Thread life cycle.
	6.1.19. Q4c: Write a program in java that create the multiple threads by implementing the Thread class.
	6.1.20. Q4a: List four different inbuilt exceptions of Java. Explain any one inbuilt exception.
	6.1.21. Q4b: Explain multiple catch with suitable example in Java.
	6.1.22. Q4c: What is Java Exception? Write a program that show the use of Arithmetic Exception in Java.
	6.1.23. Q5a: Explain ArrayIndexOutOfBound Exception in Java with example.
	6.1.24. Q5b: Explain basics of Java stream classes.
	6.1.25. Q5c: Write a java program to create a text file and perform read operation on the text file.
	6.1.26. Q5a: Explain Divide by Zero Exception in Java with example.
	6.1.27. Q5b: Explain java I/O process.
	6.1.28. Q5c: Write a java program to display the content of a text file and perform append operation on the text file.

	6.2. 4341602 - Java: Summer 2023 Paper Solution
	6.2.1. Q1a: Differentiate between Procedure-Oriented Programming (POP) and Object-Oriented Programming (OOP).
	6.2.2. Q1b: Explain Super keyword in inheritance with suitable example.
	6.2.3. Q1c: Define: Method Overriding. List out Rules for method overriding. Write a java program that implements method overriding.
	6.2.4. Q1cOR: Describe: Interface. Write a java program using interface to demonstrate multiple inheritance.
	6.2.5. Q2a: Explain the Java Program Structure with example.
	6.2.6. Q2b: Explain static keyword with suitable example.
	6.2.7. Q2c: Define: Constructor. List out types of it. Explain Parameterized and copy constructor with suitable example.
	6.2.7.1. Parameterized Constructor Example:
	6.2.7.2. Copy Constructor Example:

	6.2.8. Q2a: Explain the Primitive Data Types and User Defined DataTypes in java.
	6.2.8.1. Primitive Data Types:
	6.2.8.2. User-Defined Data Types:

	6.2.9. Q2b: Explain this keyword with suitable example.
	6.2.10. Q2c: Define Inheritance. List out types of it. Explain multilevel and hierarchical inheritance with suitable example.
	6.2.10.1. Multilevel Inheritance Example:
	6.2.10.2. Hierarchical Inheritance Example:

	6.2.11. Q3a: Explain Type Conversion and Casting in java.
	6.2.11.1. Implicit Type Conversion (Widening Conversion):
	6.2.11.2. Explicit Type Conversion (Narrowing Conversion):
	6.2.11.3. Type Casting:

	6.2.12. Q3b: Explain different visibility controls used in Java.
	6.2.13. Q3c: Define: Thread. List different methods used to create Thread. Explain Thread life cycle in detail.
	6.2.13.1. Definition of Thread:
	6.2.13.2. Methods to Create Thread:
	6.2.13.3. Thread Life Cycle:
	6.2.13.4. Detailed Explanation of Thread Life Cycle:

	6.2.14. Q3a: Explain the purpose of JVM in java.
	6.2.14.1. Platform Independence:
	6.2.14.2. Security:
	6.2.14.3. Performance:
	6.2.14.4. Multithreading and Synchronization:
	6.2.14.5. Load and Execution of Code:
	6.2.14.6. Platform-Specific Features:
	6.2.14.7. Tooling and Debugging:

	6.2.15. Q3b: Define: Package. Write the steps to create a Package with suitable example.
	6.2.15.1. Definition of Java Package:
	6.2.15.2. Steps to Create a Java Package:
	6.2.15.3. Example of Creating a Java Package:
	6.2.15.4. Explanation:

	6.2.16. Q3c: Explain Synchronization in Thread with suitable example.
	6.2.16.1. Synchronization with synchronized Keyword:
	6.2.16.2. Example: Bank Account Simulation with Synchronization:
	6.2.16.3. Usage of Bank Account Class in Multiple Threads:

	6.2.17. Q4a: Differentiate between String class and StringBuffer class.
	6.2.17.1. String Class:
	6.2.17.2. StringBuffer Class:
	6.2.17.3. Example:

	6.2.18. Q4b: Write a Java Program to find sum and average of 10 numbers of an array.
	6.2.19. Q4c: Explain abstract class with suitable example. Explain final class with suitable example.
	6.2.19.1. Key Points:
	6.2.19.2. Example:
	6.2.19.3. Explanation:
	6.2.19.4. Key Points:
	6.2.19.5. Example:

	6.2.20. Q4a: Explain Garbage Collection in Java.
	6.2.20.1. Key Concepts:
	6.2.20.2. Garbage Collection Process:
	6.2.20.3. Advantages of Garbage Collection:

	6.2.21. Q4b: Write a Java program to handle user defined exception for ‘DividebyZero’ error.
	6.2.22. Q4c: Write a java program to demonstrate multiple try block and multiple catch block exception.
	6.2.23. Q5a: Write a program in Java to create a file and perform write operation on this file.
	6.2.24. Q5b: Explain throw and finally in Exception Handling with example.
	6.2.24.1. The throw Keyword
	6.2.24.2. The finally Block

	6.2.25. Q5c: Describe: Polymorphism. Explain run time polymorphism with suitable example in java.
	6.2.25.1. Polymorphism:
	6.2.25.2. Runtime Polymorphism:
	6.2.25.3. Example of Runtime Polymorphism in Java:
	6.2.25.4. Benefits of Runtime Polymorphism:

	6.2.26. Q5a: Write a program in Java that read the content of a file byte by byte and copy it into another file.
	6.2.27. Q5b: Explain the different I/O Classes available with Java.
	6.2.28. Q5c: Write a java program that executes two threads. One thread displays “Java Programming” every 3 seconds, and the other displays “Semester - 4th IT” every 6 seconds.(Create the threads by extending the Thread class)

