
Practicals

Practical01

Practical02

// Practical01.java - Basic Java program demonstrating output methods

public class Practical01 {

 public static void main(String[] args) {
 System.out.println("Demonstrating Different Output Methods in Java:\n");

 // 1. Using println() - prints and moves to next line
 System.out.println("1. Using println():");
 System.out.println("Hello, World!");
 System.out.println("This is a new line");
 System.out.println();

 // 2. Using print() - prints without moving to next line
 System.out.println("2. Using print():");
 System.out.print("Hello ");
 System.out.print("World ");
 System.out.print("without line breaks");
 System.out.println("\n");

 // 3. Using printf() - formatted output
 System.out.println("3. Using printf():");
 String name = "Student";
 int age = 20;
 double height = 5.9;
 System.out.printf("Name: %s, Age: %d, Height: %.1f feet%n", name, age, height);
 System.out.println();

 // 4. Demonstrating escape sequences
 System.out.println("4. Using Escape Sequences:");
 System.out.println("Using tab:\tAfter tab");
 System.out.println("Using new line:\nAfter new line");
 System.out.println("Using single quote: \'Hello\'");
 System.out.println("Using double quote: \"World\"");
 System.out.println("Using backslash: \\");
 }
}

// Practical02.java - Find maximum of three numbers using conditional operator

import java.util.Scanner;

public class Practical02 {

 // Method to find maximum using conditional operator

Java Programming (4343203) - Practicals by Milav Dabgar

No. 1 / 59

Practical03

 public static int findMax(int a, int b, int c) {
 return (a > b) ? ((a > c) ? a : c) : ((b > c) ? b : c);
 }

 public static void main(String[] args) {
 Scanner scanner = new Scanner(System.in);

 System.out.println("Program to Find Maximum of Three Numbers:\n");

 // 1. Using hardcoded values
 System.out.println("1. Testing with hardcoded values:");
 int x = 25, y = 45, z = 15;
 System.out.printf("Numbers are: %d, %d, %d%n", x, y, z);
 System.out.println("Maximum number is: " + findMax(x, y, z));
 System.out.println();

 // 2. Taking user input
 System.out.println("2. Testing with user input:");
 System.out.print("Enter first number: ");
 int num1 = scanner.nextInt();

 System.out.print("Enter second number: ");
 int num2 = scanner.nextInt();

 System.out.print("Enter third number: ");
 int num3 = scanner.nextInt();

 int max = findMax(num1, num2, num3);
 System.out.printf("Maximum number among %d, %d and %d is: %d%n",
 num1, num2, num3, max);

 // 3. Additional test cases
 System.out.println("\n3. Testing with special cases:");

 // When all numbers are same
 System.out.println("When all numbers are same:");
 System.out.println("Max of (5, 5, 5): " + findMax(5, 5, 5));

 // When two numbers are same
 System.out.println("When two numbers are same:");
 System.out.println("Max of (7, 7, 3): " + findMax(7, 7, 3));

 // With negative numbers
 System.out.println("With negative numbers:");
 System.out.println("Max of (-5, -2, -8): " + findMax(-5, -2, -8));

 scanner.close();
 }
}

Java Programming (4343203) - Practicals by Milav Dabgar

No. 2 / 59

// Practical03.java - Reverse digits of a number using while loop

import java.util.Scanner;

public class Practical03 {

 // Method to reverse digits of a number
 public static int reverseNumber(int num) {
 int reversed = 0;
 boolean isNegative = num < 0;
 num = Math.abs(num);

 while (num > 0) {
 int digit = num % 10;
 reversed = reversed * 10 + digit;
 num /= 10;
 }

 return isNegative ? -reversed : reversed;
 }

 // Method to display the reversal process
 public static void showReversalProcess(int num) {
 System.out.println("\nReversal Process:");
 int temp = Math.abs(num);
 System.out.print("Digits extracted: ");

 // Store digits in array for proper display order
 int[] digits = new int[10]; // Assuming number won't exceed 10 digits
 int count = 0;

 while (temp > 0) {
 digits[count++] = temp % 10;
 temp /= 10;
 }

 // Display digits in order of extraction
 for (int i = 0; i < count; i++) {
 System.out.print(digits[i]);
 if (i < count - 1) {
 System.out.print(", ");
 }
 }
 System.out.println();
 }

 public static void main(String[] args) {
 Scanner scanner = new Scanner(System.in);

 System.out.println("Program to Reverse Digits of a Number:\n");

 // 1. Using hardcoded values

Java Programming (4343203) - Practicals by Milav Dabgar

No. 3 / 59

Practical04

 System.out.println("1. Testing with hardcoded values:");
 int[] testNumbers = {12345, -9876, 1000, 7};

 for (int num : testNumbers) {
 System.out.println("\nOriginal number: " + num);
 showReversalProcess(num);
 System.out.println("Reversed number: " + reverseNumber(num));
 }

 // 2. Taking user input
 System.out.println("\n2. Testing with user input:");
 System.out.print("Enter a number to reverse: ");
 int userNum = scanner.nextInt();

 System.out.println("Original number: " + userNum);
 showReversalProcess(userNum);
 System.out.println("Reversed number: " + reverseNumber(userNum));

 // 3. Special cases demonstration
 System.out.println("\n3. Special cases:");

 // Number ending with zeros
 int numWithZeros = 12000;
 System.out.println("\nNumber ending with zeros: " + numWithZeros);
 showReversalProcess(numWithZeros);
 System.out.println("Reversed number: " + reverseNumber(numWithZeros));

 // Single digit number
 int singleDigit = 5;
 System.out.println("\nSingle digit number: " + singleDigit);
 showReversalProcess(singleDigit);
 System.out.println("Reversed number: " + reverseNumber(singleDigit));

 scanner.close();
 }
}

// Practical04.java - Add two 3x3 matrices

import java.util.Scanner;

public class Practical04 {

 // Method to input matrix elements
 public static void inputMatrix(int[][] matrix, Scanner scanner, String matrixName) {
 System.out.println("Enter elements for " + matrixName + " (3x3):");
 for (int i = 0; i < 3; i++) {
 for (int j = 0; j < 3; j++) {
 System.out.printf("Enter element [%d][%d]: ", i, j);
 matrix[i][j] = scanner.nextInt();

Java Programming (4343203) - Practicals by Milav Dabgar

No. 4 / 59

 }
 }
 System.out.println();
 }

 // Method to display matrix
 public static void displayMatrix(int[][] matrix, String matrixName) {
 System.out.println(matrixName + ":");
 for (int i = 0; i < 3; i++) {
 for (int j = 0; j < 3; j++) {
 System.out.printf("%4d ", matrix[i][j]);
 }
 System.out.println();
 }
 System.out.println();
 }

 // Method to add two matrices
 public static int[][] addMatrices(int[][] matrix1, int[][] matrix2) {
 int[][] result = new int[3][3];
 for (int i = 0; i < 3; i++) {
 for (int j = 0; j < 3; j++) {
 result[i][j] = matrix1[i][j] + matrix2[i][j];
 }
 }
 return result;
 }

 public static void main(String[] args) {
 Scanner scanner = new Scanner(System.in);

 System.out.println("Program to Add Two 3x3 Matrices:\n");

 // 1. Using hardcoded matrices
 System.out.println("1. Testing with hardcoded matrices:");
 int[][] matrix1 = {
 {1, 2, 3},
 {4, 5, 6},
 {7, 8, 9}
 };

 int[][] matrix2 = {
 {9, 8, 7},
 {6, 5, 4},
 {3, 2, 1}
 };

 displayMatrix(matrix1, "First Matrix");
 displayMatrix(matrix2, "Second Matrix");

 int[][] result1 = addMatrices(matrix1, matrix2);
 displayMatrix(result1, "Result Matrix (Hardcoded)");

Java Programming (4343203) - Practicals by Milav Dabgar

No. 5 / 59

Practical05

 // 2. Taking user input
 System.out.println("2. Testing with user input:");
 int[][] userMatrix1 = new int[3][3];
 int[][] userMatrix2 = new int[3][3];

 inputMatrix(userMatrix1, scanner, "First Matrix");
 inputMatrix(userMatrix2, scanner, "Second Matrix");

 System.out.println("Entered matrices:");
 displayMatrix(userMatrix1, "First Matrix");
 displayMatrix(userMatrix2, "Second Matrix");

 int[][] result2 = addMatrices(userMatrix1, userMatrix2);
 displayMatrix(result2, "Result Matrix (User Input)");

 // 3. Special case demonstration
 System.out.println("3. Special case - Adding zero matrix:");
 int[][] zeroMatrix = new int[3][3]; // All elements are 0 by default

 displayMatrix(matrix1, "Original Matrix");
 displayMatrix(zeroMatrix, "Zero Matrix");

 int[][] result3 = addMatrices(matrix1, zeroMatrix);
 displayMatrix(result3, "Result Matrix (Adding Zero Matrix)");

 scanner.close();
 }
}

// Practical05.java - Generate first n prime numbers

import java.util.Scanner;

public class Practical05 {

 // Method to check if a number is prime
 public static boolean isPrime(int number) {
 if (number < 2) {
 return false;
 }
 for (int i = 2; i <= Math.sqrt(number); i++) {
 if (number % i == 0) {
 return false;
 }
 }
 return true;
 }

 // Method to generate first n prime numbers

Java Programming (4343203) - Practicals by Milav Dabgar

No. 6 / 59

 public static void generatePrimes(int n) {
 if (n <= 0) {
 System.out.println("Please enter a positive number.");
 return;
 }

 System.out.println("First " + n + " prime numbers are:");
 int count = 0;
 int number = 2;

 while (count < n) {
 if (isPrime(number)) {
 System.out.print(number);
 count++;

 // Add formatting
 if (count < n) {
 System.out.print(", ");
 }
 if (count % 10 == 0) {
 System.out.println();
 }
 }
 number++;
 }
 System.out.println();
 }

 // Method to show prime checking process
 public static void demonstratePrimeCheck(int number) {
 System.out.printf("\nChecking if %d is prime:%n", number);
 if (number < 2) {
 System.out.println(number + " is not prime (less than 2)");
 return;
 }

 for (int i = 2; i <= Math.sqrt(number); i++) {
 System.out.printf("Checking divisibility by %d: ", i);
 if (number % i == 0) {
 System.out.printf("%d is divisible by %d, so it's not prime%n", number,
i);

 return;
 }
 System.out.println("Not divisible");
 }
 System.out.println(number + " is prime");
 }

 public static void main(String[] args) {
 Scanner scanner = new Scanner(System.in);

 System.out.println("Program to Generate First N Prime Numbers:\n");

Java Programming (4343203) - Practicals by Milav Dabgar

No. 7 / 59

Practical06

 // 1. Using hardcoded value
 System.out.println("1. Testing with hardcoded value (n=10):");
 generatePrimes(10);

 // 2. Demonstrate prime checking process
 System.out.println("\n2. Demonstrating prime checking process:");
 int[] testNumbers = {7, 12, 23, 35};
 for (int num : testNumbers) {
 demonstratePrimeCheck(num);
 }

 // 3. Taking user input
 System.out.println("\n3. Testing with user input:");
 System.out.print("Enter how many prime numbers you want to generate: ");
 int n = scanner.nextInt();
 generatePrimes(n);

 // 4. Handle special cases
 System.out.println("\n4. Testing special cases:");
 System.out.println("Generating 0 prime numbers:");
 generatePrimes(0);

 System.out.println("\nGenerating 1 prime number:");
 generatePrimes(1);

 scanner.close();
 }
}

// Practical06.java - Create Student class and demonstrate object creation

class Student {

 private String enrollmentNo;
 private String name;

 // Constructor
 public Student(String enrollmentNo, String name) {
 this.enrollmentNo = enrollmentNo;
 this.name = name;
 }

 // Getter methods
 public String getEnrollmentNo() {
 return enrollmentNo;
 }

 public String getName() {
 return name;

Java Programming (4343203) - Practicals by Milav Dabgar

No. 8 / 59

 }

 // Setter methods
 public void setEnrollmentNo(String enrollmentNo) {
 this.enrollmentNo = enrollmentNo;
 }

 public void setName(String name) {
 this.name = name;
 }

 // Method to display student details
 public void displayDetails() {
 System.out.println("Student Details:");
 System.out.println("Enrollment No: " + enrollmentNo);
 System.out.println("Name: " + name);
 System.out.println();
 }
}

public class Practical06 {

 public static void main(String[] args) {
 System.out.println("Demonstrating Student Class and Objects:\n");

 // 1. Creating three student objects
 System.out.println("1. Creating and displaying three students:");
 Student student1 = new Student("A101", "John Smith");
 Student student2 = new Student("A102", "Emma Watson");
 Student student3 = new Student("A103", "Michael Johnson");

 // Display student information
 student1.displayDetails();
 student2.displayDetails();
 student3.displayDetails();

 // 2. Demonstrating getter methods
 System.out.println("2. Using getter methods:");
 System.out.println("Student 1:");
 System.out.println("Enrollment No: " + student1.getEnrollmentNo());
 System.out.println("Name: " + student1.getName());
 System.out.println();

 // 3. Demonstrating setter methods
 System.out.println("3. Using setter methods to update student details:");
 System.out.println("Updating student2's information:");
 student2.setName("Emma Thompson");
 System.out.println("After update:");
 student2.displayDetails();

 // 4. Creating array of students
 System.out.println("4. Working with array of students:");
 Student[] students = {

Java Programming (4343203) - Practicals by Milav Dabgar

No. 9 / 59

Practical07

 new Student("B101", "Alice Brown"),
 new Student("B102", "Bob Wilson"),
 new Student("B103", "Carol White")
 };

 System.out.println("Displaying all students in array:");
 for (Student student : students) {
 student.displayDetails();
 }
 }
}

// Practical07.java - Rectangle class with constructor initialization

class Rectangle {

 private double height;
 private double width;

 // Default constructor
 public Rectangle() {
 this.height = 0.0;
 this.width = 0.0;
 }

 // Parameterized constructor
 public Rectangle(double height, double width) {
 this.height = height;
 this.width = width;
 }

 // Copy constructor
 public Rectangle(Rectangle other) {
 this.height = other.height;
 this.width = other.width;
 }

 // Getter methods
 public double getHeight() {
 return height;
 }

 public double getWidth() {
 return width;
 }

 // Setter methods
 public void setHeight(double height) {
 this.height = height;
 }

Java Programming (4343203) - Practicals by Milav Dabgar

No. 10 / 59

 public void setWidth(double width) {
 this.width = width;
 }

 // Method to calculate area
 public double calculateArea() {
 return height * width;
 }

 // Method to calculate perimeter
 public double calculatePerimeter() {
 return 2 * (height + width);
 }

 // Method to display rectangle details
 public void displayDetails() {
 System.out.println("Rectangle Details:");
 System.out.printf("Height: %.2f units%n", height);
 System.out.printf("Width: %.2f units%n", width);
 System.out.printf("Area: %.2f square units%n", calculateArea());
 System.out.printf("Perimeter: %.2f units%n", calculatePerimeter());
 System.out.println();
 }
}

public class Practical07 {

 public static void main(String[] args) {
 System.out.println("Demonstrating Rectangle Class with Constructors:\n");

 // 1. Using default constructor
 System.out.println("1. Creating rectangle using default constructor:");
 Rectangle rect1 = new Rectangle();
 rect1.displayDetails();

 // 2. Using parameterized constructor
 System.out.println("2. Creating rectangle using parameterized constructor:");
 Rectangle rect2 = new Rectangle(5.0, 3.0);
 rect2.displayDetails();

 // 3. Using copy constructor
 System.out.println("3. Creating rectangle using copy constructor:");
 Rectangle rect3 = new Rectangle(rect2);
 System.out.println("Copied rectangle details:");
 rect3.displayDetails();

 // 4. Demonstrating setter methods
 System.out.println("4. Using setter methods:");
 rect1.setHeight(4.0);
 rect1.setWidth(6.0);
 System.out.println("After setting new dimensions:");
 rect1.displayDetails();

Java Programming (4343203) - Practicals by Milav Dabgar

No. 11 / 59

Practical08

 // 5. Demonstrating getter methods
 System.out.println("5. Using getter methods:");
 System.out.printf("Rectangle 2 height: %.2f units%n", rect2.getHeight());
 System.out.printf("Rectangle 2 width: %.2f units%n", rect2.getWidth());
 System.out.println();

 // 6. Array of rectangles
 System.out.println("6. Working with array of rectangles:");
 Rectangle[] rectangles = {
 new Rectangle(2.0, 3.0),
 new Rectangle(4.0, 4.0),
 new Rectangle(3.0, 5.0)
 };

 System.out.println("Details of all rectangles:");
 for (Rectangle rect : rectangles) {
 rect.displayDetails();
 }

 // 7. Find rectangle with largest area
 System.out.println("7. Finding rectangle with largest area:");
 Rectangle maxAreaRect = rectangles[0];
 for (Rectangle rect : rectangles) {
 if (rect.calculateArea() > maxAreaRect.calculateArea()) {
 maxAreaRect = rect;
 }
 }
 System.out.println("Rectangle with largest area:");
 maxAreaRect.displayDetails();
 }
}

// Practical08.java - Demonstrate use of 'this' keyword

public class Practical08 {

 private int number;
 private String text;

 // Constructor using 'this' to distinguish parameters from instance variables
 public Practical08(int number, String text) {
 this.number = number;
 this.text = text;
 }

 // Method using 'this' to call another method of current object
 public void display() {
 System.out.println("Number: " + this.number);
 System.out.println("Text: " + this.text);

Java Programming (4343203) - Practicals by Milav Dabgar

No. 12 / 59

Practical09

 this.showMore(); // Using 'this' to call another method
 }

 // Method using 'this' to pass current object as parameter
 public void showMore() {
 System.out.println("Demonstrating method call using 'this'");
 this.processObject(this); // Passing current object as parameter
 }

 // Method accepting object of same class as parameter
 public void processObject(Practical08 obj) {
 System.out.println("Processing object with number: " + obj.number);
 }

 // Method returning current object using 'this'
 public Practical08 updateNumber(int number) {
 this.number = number;
 return this; // Method chaining by returning current object
 }

 public static void main(String[] args) {
 System.out.println("Demonstrating the use of 'this' keyword:\n");

 // Creating object and demonstrating various uses of 'this'
 Practical08 obj = new Practical08(42, "Hello");

 System.out.println("Initial object state:");
 obj.display();

 System.out.println("\nDemonstrating method chaining using 'this':");
 obj.updateNumber(100).display();

 // Creating another object to show constructor usage of 'this'
 System.out.println("\nCreating another object:");
 Practical08 obj2 = new Practical08(99, "World");
 obj2.display();
 }
}

// Practical09.java - Demonstrate use of 'static' keyword

public class Practical09 {

 // Static variable
 private static int instanceCount = 0;

 // Non-static variables
 private int id;
 private String name;

Java Programming (4343203) - Practicals by Milav Dabgar

No. 13 / 59

 // Static constant
 private static final String COLLEGE_NAME = "My College";

 // Static block - executed when class is loaded
 static {
 System.out.println("Static block executed - Class loading...");
 System.out.println("College Name: " + COLLEGE_NAME);
 }

 // Constructor
 public Practical09(String name) {
 this.id = ++instanceCount;
 this.name = name;
 }

 // Static method
 public static int getInstanceCount() {
 return instanceCount;
 }

 // Static method to display college info
 public static void displayCollegeInfo() {
 System.out.println("College Name: " + COLLEGE_NAME);
 System.out.println("Total Students: " + getInstanceCount());
 }

 // Non-static method
 public void displayStudentInfo() {
 System.out.println("Student ID: " + this.id);
 System.out.println("Student Name: " + this.name);
 System.out.println("College: " + COLLEGE_NAME); // Static variable accessed in
non-static method

 }

 public static void main(String[] args) {
 System.out.println("Demonstrating static keyword usage:\n");

 // Accessing static method before creating any object
 System.out.println("Initial instance count: " + Practical09.getInstanceCount());

 // Creating objects and demonstrating static variable
 System.out.println("\nCreating student objects:");
 Practical09 student1 = new Practical09("John");
 Practical09 student2 = new Practical09("Emma");
 Practical09 student3 = new Practical09("Michael");

 // Displaying individual student information
 System.out.println("\nStudent Information:");
 student1.displayStudentInfo();
 System.out.println();
 student2.displayStudentInfo();
 System.out.println();

Java Programming (4343203) - Practicals by Milav Dabgar

No. 14 / 59

Practical10

 student3.displayStudentInfo();

 // Displaying college information using static method
 System.out.println("\nCollege Information:");
 Practical09.displayCollegeInfo();

 // Demonstrating that static variable is shared
 System.out.println("\nFinal instance count: " + Practical09.getInstanceCount());
 }
}

// Practical10.java - Demonstrate use of 'final' keyword

// Final class - cannot be inherited

final class FinalClass {

 public void display() {
 System.out.println("This class cannot be inherited");
 }
}

class Parent {

 // Final method - cannot be overridden
 final void showMessage() {
 System.out.println("This method cannot be overridden");
 }
}

class Child extends Parent {

 // This would cause error if uncommented:
 // void showMessage() { } // Cannot override final method

 void displayChild() {
 System.out.println("Child class calling parent's final method:");
 showMessage();
 }
}

public class Practical10 {

 // Final variable - must be initialized and cannot be changed
 private final int MAX_VALUE = 100;

 // Final reference variable
 private final StringBuilder builder = new StringBuilder();

 // Final static constant
 private static final double PI = 3.14159;

 // Blank final variable - must be initialized in constructor
 private final String message;

Java Programming (4343203) - Practicals by Milav Dabgar

No. 15 / 59

 // Constructor to initialize final variable
 public Practical10(String msg) {
 this.message = msg; // Initializing blank final variable
 }

 public void demonstrateFinal() {
 // This would cause error:
 // MAX_VALUE = 200; // Cannot modify final variable

 // Can modify object state even though reference is final
 builder.append("Hello ");
 builder.append("World");

 System.out.println("Final variable MAX_VALUE: " + MAX_VALUE);
 System.out.println("Final StringBuilder content: " + builder.toString());
 System.out.println("Final static PI: " + PI);
 System.out.println("Final message: " + message);
 }

 public static void main(String[] args) {
 System.out.println("Demonstrating final keyword usage:\n");

 // Demonstrating final variables
 Practical10 obj = new Practical10("This is a final message");
 obj.demonstrateFinal();

 // Demonstrating final class
 System.out.println("\nDemonstrating final class:");
 FinalClass finalObj = new FinalClass();
 finalObj.display();

 // Demonstrating final method
 System.out.println("\nDemonstrating final method:");
 Child child = new Child();
 child.displayChild();

 // Demonstrating final parameter in lambda expression
 System.out.println("\nDemonstrating final parameter in lambda:");
 Runnable run = () -> {
 final String param = "Hello";
 System.out.println("Parameter cannot be modified: " + param);
 };
 run.run();

 // Demonstrating final local variable
 final int number = 100;
 System.out.println("\nFinal local variable: " + number);
 // This would cause error:
 // number = 200; // Cannot modify final variable
 }
}

Java Programming (4343203) - Practicals by Milav Dabgar

No. 16 / 59

Practical11

// Practical11.java - Demonstrate method overloading with Shape class

public class Practical11 {

 // Class to demonstrate method overloading
 public class Shape {
 // Method to calculate area of circle
 public float area(float radius) {
 return (float) (Math.PI * radius * radius);
 }

 // Overloaded method to calculate area of rectangle
 public float area(float length, float width) {
 return length * width;
 }

 // Additional overloaded methods to show more variations
 public float area(int radius) {
 // Overloaded method with different parameter type
 return (float) (Math.PI * radius * radius);
 }

 public double area(double radius) {
 // Overloaded method with different return type
 return Math.PI * radius * radius;
 }

 public float area(float base, float height, String shape) {
 // Overloaded method for triangle if shape is "triangle"
 if (shape.equalsIgnoreCase("triangle")) {
 return 0.5f * base * height;
 }
 return 0; // Return 0 for invalid shape
 }
 }

 public static void main(String[] args) {
 Practical11 practical = new Practical11();
 Shape shape = practical.new Shape();

 // Test values
 float radius = 5.0f;
 float length = 6.0f;
 float width = 4.0f;
 float base = 8.0f;
 float height = 3.0f;

 System.out.println("Demonstrating Method Overloading:\n");

Java Programming (4343203) - Practicals by Milav Dabgar

No. 17 / 59

Practical12

 // Calculate and display area of circle using float parameter
 System.out.println("Area of Circle (float radius = " + radius + "):");
 System.out.printf("%.2f square units\n\n", shape.area(radius));

 // Calculate and display area of rectangle
 System.out.println("Area of Rectangle (length = " + length + ", width = " + width
+ "):");

 System.out.printf("%.2f square units\n\n", shape.area(length, width));

 // Calculate and display area of circle using int parameter
 System.out.println("Area of Circle (int radius = 5):");
 System.out.printf("%.2f square units\n\n", shape.area(5));

 // Calculate and display area of circle using double parameter
 System.out.println("Area of Circle (double radius = 5.0):");
 System.out.printf("%.2f square units\n\n", shape.area(5.0));

 // Calculate and display area of triangle
 System.out.println("Area of Triangle (base = " + base + ", height = " + height +
"):");

 System.out.printf("%.2f square units\n\n", shape.area(base, height, "triangle"));

 // Demonstrate method selection based on parameter type
 System.out.println("Demonstrating automatic method selection based on parameter
type:");

 System.out.println("Calling area(5.0f) - selects float version: " +
shape.area(5.0f));

 System.out.println("Calling area(5) - selects int version: " + shape.area(5));
 System.out.println("Calling area(5.0) - selects double version: " +
shape.area(5.0));

 }
}

// Practical12.java - Demonstrate constructor overloading

public class Practical12 {

 // Instance variables
 private String name;
 private int age;
 private String city;
 private String occupation;

 // Default constructor
 public Practical12() {
 System.out.println("Default Constructor Called");
 this.name = "Unknown";
 this.age = 0;
 this.city = "Not Specified";
 this.occupation = "Not Specified";

Java Programming (4343203) - Practicals by Milav Dabgar

No. 18 / 59

 }

 // Constructor with name parameter
 public Practical12(String name) {
 System.out.println("Constructor with name parameter Called");
 this.name = name;
 this.age = 0;
 this.city = "Not Specified";
 this.occupation = "Not Specified";
 }

 // Constructor with name and age parameters
 public Practical12(String name, int age) {
 System.out.println("Constructor with name and age parameters Called");
 this.name = name;
 this.age = age;
 this.city = "Not Specified";
 this.occupation = "Not Specified";
 }

 // Constructor with all parameters
 public Practical12(String name, int age, String city, String occupation) {
 System.out.println("Constructor with all parameters Called");
 this.name = name;
 this.age = age;
 this.city = city;
 this.occupation = occupation;
 }

 // Constructor using another constructor (Copy constructor)
 public Practical12(Practical12 other) {
 System.out.println("Copy Constructor Called");
 this.name = other.name;
 this.age = other.age;
 this.city = other.city;
 this.occupation = other.occupation;
 }

 // Method to display person details
 public void displayDetails() {
 System.out.println("\nPerson Details:");
 System.out.println("Name: " + name);
 System.out.println("Age: " + age);
 System.out.println("City: " + city);
 System.out.println("Occupation: " + occupation);
 }

 public static void main(String[] args) {
 System.out.println("Demonstrating Constructor Overloading:\n");

 // Creating objects using different constructors
 System.out.println("1. Creating object with default constructor:");

Java Programming (4343203) - Practicals by Milav Dabgar

No. 19 / 59

Practical13

 Practical12 person1 = new Practical12();
 person1.displayDetails();

 System.out.println("\n2. Creating object with name parameter:");
 Practical12 person2 = new Practical12("John");
 person2.displayDetails();

 System.out.println("\n3. Creating object with name and age parameters:");
 Practical12 person3 = new Practical12("Emma", 25);
 person3.displayDetails();

 System.out.println("\n4. Creating object with all parameters:");
 Practical12 person4 = new Practical12("Michael", 30, "New York", "Engineer");
 person4.displayDetails();

 System.out.println("\n5. Creating object using copy constructor:");
 Practical12 person5 = new Practical12(person4);
 person5.displayDetails();
 }
}

// Practical13.java - Demonstrate String class methods

public class Practical13 {

 // Method to demonstrate charAt()
 public static void demonstrateCharAt(String str) {
 System.out.println("\nDemonstrating charAt() method:");
 System.out.println("String: " + str);
 System.out.println("Character at index 0: " + str.charAt(0));
 System.out.println("Character at index 4: " + str.charAt(4));
 System.out.println("Last character: " + str.charAt(str.length() - 1));
 }

 // Method to demonstrate contains()
 public static void demonstrateContains(String str) {
 System.out.println("\nDemonstrating contains() method:");
 System.out.println("String: " + str);
 System.out.println("Contains 'Java'? " + str.contains("Java"));
 System.out.println("Contains 'Python'? " + str.contains("Python"));
 System.out.println("Contains 'programming'? " + str.contains("programming"));
 }

 // Method to demonstrate format()
 public static void demonstrateFormat() {
 System.out.println("\nDemonstrating format() method:");
 String formatted = String.format("Name: %s, Age: %d, Height: %.2f", "John", 25,
5.9);

 System.out.println(formatted);

Java Programming (4343203) - Practicals by Milav Dabgar

No. 20 / 59

 // More format examples
 System.out.println(String.format("Binary: %b, Character: %c", true, 'A'));
 System.out.println(String.format("Hex: %x, Scientific: %e", 255, 123.456));
 System.out.println(String.format("Left justified: '%-10s'", "Hello"));
 System.out.println(String.format("Right justified: '%10s'", "Hello"));
 }

 // Method to demonstrate length()
 public static void demonstrateLength(String str) {
 System.out.println("\nDemonstrating length() method:");
 System.out.println("String: " + str);
 System.out.println("Length: " + str.length());

 // Additional length examples
 String empty = "";
 String withSpaces = " Hello ";
 System.out.println("Empty string length: " + empty.length());
 System.out.println("String with spaces length: " + withSpaces.length());
 }

 // Method to demonstrate split()
 public static void demonstrateSplit() {
 System.out.println("\nDemonstrating split() method:");

 // Split by space
 String sentence = "Java Programming is fun";
 System.out.println("Original string: " + sentence);
 System.out.println("Splitting by space:");
 String[] words = sentence.split(" ");
 for (int i = 0; i < words.length; i++) {
 System.out.println("Word " + (i + 1) + ": " + words[i]);
 }

 // Split by comma
 String csvData = "John,25,New York,Engineer";
 System.out.println("\nSplitting CSV data:");
 String[] data = csvData.split(",");
 System.out.println("Name: " + data[0]);
 System.out.println("Age: " + data[1]);
 System.out.println("City: " + data[2]);
 System.out.println("Occupation: " + data[3]);
 }

 public static void main(String[] args) {
 System.out.println("Demonstrating String Class Methods:");

 String testString = "Java Programming";

 // Demonstrate all methods
 demonstrateCharAt(testString);
 demonstrateContains(testString);
 demonstrateFormat();

Java Programming (4343203) - Practicals by Milav Dabgar

No. 21 / 59

Practical14

 demonstrateLength(testString);
 demonstrateSplit();
 }
}

// Practical14.java - Demonstrate single inheritance

// Parent class

class Animal {

 protected String name;
 protected int age;

 // Constructor
 public Animal(String name, int age) {
 this.name = name;
 this.age = age;
 }

 // Methods
 public void eat() {
 System.out.println(name + " is eating.");
 }

 public void sleep() {
 System.out.println(name + " is sleeping.");
 }

 public void displayInfo() {
 System.out.println("Name: " + name);
 System.out.println("Age: " + age + " years");
 }
}

// Child class inheriting from Animal

class Dog extends Animal {

 private String breed;

 // Constructor
 public Dog(String name, int age, String breed) {
 super(name, age); // Call parent constructor
 this.breed = breed;
 }

 // Additional methods specific to Dog
 public void bark() {
 System.out.println(name + " is barking!");
 }

 public void fetch() {

Java Programming (4343203) - Practicals by Milav Dabgar

No. 22 / 59

Practical15

 System.out.println(name + " is fetching the ball.");
 }

 // Override parent method
 @Override
 public void displayInfo() {
 super.displayInfo(); // Call parent method
 System.out.println("Breed: " + breed);
 }
}

public class Practical14 {

 public static void main(String[] args) {
 System.out.println("Demonstrating Single Inheritance:\n");

 // Create instances of parent and child classes
 System.out.println("1. Creating Animal object (Parent class):");
 Animal animal = new Animal("Generic Animal", 5);
 animal.displayInfo();
 animal.eat();
 animal.sleep();

 System.out.println("\n2. Creating Dog object (Child class):");
 Dog dog = new Dog("Buddy", 3, "Golden Retriever");

 // Accessing inherited methods
 System.out.println("\nAccessing inherited methods:");
 dog.displayInfo();
 dog.eat();
 dog.sleep();

 // Accessing Dog-specific methods
 System.out.println("\nAccessing Dog-specific methods:");
 dog.bark();
 dog.fetch();

 // Demonstrating polymorphism
 System.out.println("\n3. Demonstrating polymorphism:");
 Animal animalDog = new Dog("Max", 2, "German Shepherd");
 System.out.println("Calling methods on Dog object through Animal reference:");
 animalDog.displayInfo();
 animalDog.eat();
 animalDog.sleep();
 // Note: Can't call bark() or fetch() through Animal reference
 }
}

// Practical15.java - Demonstrate multilevel inheritance

Java Programming (4343203) - Practicals by Milav Dabgar

No. 23 / 59

// Grandparent class

class Vehicle {

 protected String brand;
 protected String model;

 public Vehicle(String brand, String model) {
 this.brand = brand;
 this.model = model;
 }

 public void start() {
 System.out.println("Vehicle is starting...");
 }

 public void stop() {
 System.out.println("Vehicle is stopping...");
 }

 public void displayInfo() {
 System.out.println("Brand: " + brand);
 System.out.println("Model: " + model);
 }
}

// Parent class inheriting from Vehicle

class Car extends Vehicle {

 private int numDoors;
 private String fuelType;

 public Car(String brand, String model, int numDoors, String fuelType) {
 super(brand, model);
 this.numDoors = numDoors;
 this.fuelType = fuelType;
 }

 public void accelerate() {
 System.out.println("Car is accelerating...");
 }

 public void brake() {
 System.out.println("Car is braking...");
 }

 @Override
 public void displayInfo() {
 super.displayInfo();
 System.out.println("Number of Doors: " + numDoors);
 System.out.println("Fuel Type: " + fuelType);
 }
}

// Child class inheriting from Car

Java Programming (4343203) - Practicals by Milav Dabgar

No. 24 / 59

class ElectricCar extends Car {

 private int batteryCapacity;
 private int range;

 public ElectricCar(String brand, String model, int numDoors,
 int batteryCapacity, int range) {
 super(brand, model, numDoors, "Electric");
 this.batteryCapacity = batteryCapacity;
 this.range = range;
 }

 public void charge() {
 System.out.println("Electric car is charging...");
 }

 public void displayBatteryStatus() {
 System.out.println("Battery Status: 75%");
 }

 @Override
 public void displayInfo() {
 super.displayInfo();
 System.out.println("Battery Capacity: " + batteryCapacity + " kWh");
 System.out.println("Range: " + range + " km");
 }
}

public class Practical15 {

 public static void main(String[] args) {
 System.out.println("Demonstrating Multilevel Inheritance:\n");

 // Create instances of all three classes
 System.out.println("1. Creating Vehicle object (Grandparent class):");
 Vehicle vehicle = new Vehicle("Generic", "Basic");
 vehicle.displayInfo();
 vehicle.start();
 vehicle.stop();

 System.out.println("\n2. Creating Car object (Parent class):");
 Car car = new Car("Toyota", "Camry", 4, "Petrol");
 car.displayInfo();
 car.start(); // Inherited from Vehicle
 car.accelerate(); // Car's own method
 car.brake(); // Car's own method
 car.stop(); // Inherited from Vehicle

 System.out.println("\n3. Creating ElectricCar object (Child class):");
 ElectricCar electricCar = new ElectricCar("Tesla", "Model 3", 4, 75, 350);
 electricCar.displayInfo();
 electricCar.start(); // Inherited from Vehicle
 electricCar.accelerate(); // Inherited from Car
 electricCar.charge(); // ElectricCar's own method

Java Programming (4343203) - Practicals by Milav Dabgar

No. 25 / 59

Practical16

 electricCar.displayBatteryStatus(); // ElectricCar's own method
 electricCar.stop(); // Inherited from Vehicle

 // Demonstrating polymorphism
 System.out.println("\n4. Demonstrating polymorphism:");
 Vehicle polymorphicCar = new ElectricCar("Tesla", "Model S", 4, 100, 400);
 System.out.println("Calling methods on ElectricCar through Vehicle reference:");
 polymorphicCar.displayInfo(); // Will call ElectricCar's version
 polymorphicCar.start();
 polymorphicCar.stop();
 }
}

// Practical16.java - Demonstrate hierarchical inheritance

// Parent class

class Employee {

 protected int id;
 protected String name;
 protected double baseSalary;

 public Employee(int id, String name, double baseSalary) {
 this.id = id;
 this.name = name;
 this.baseSalary = baseSalary;
 }

 public void work() {
 System.out.println(name + " is working");
 }

 public double calculateSalary() {
 return baseSalary;
 }

 public void displayInfo() {
 System.out.println("ID: " + id);
 System.out.println("Name: " + name);
 System.out.println("Salary: $" + calculateSalary());
 }
}

// First child class

class Developer extends Employee {

 private String programmingLanguage;
 private double bonus;

 public Developer(int id, String name, double baseSalary,
 String programmingLanguage, double bonus) {

Java Programming (4343203) - Practicals by Milav Dabgar

No. 26 / 59

 super(id, name, baseSalary);
 this.programmingLanguage = programmingLanguage;
 this.bonus = bonus;
 }

 public void code() {
 System.out.println(name + " is coding in " + programmingLanguage);
 }

 @Override
 public double calculateSalary() {
 return baseSalary + bonus;
 }

 @Override
 public void displayInfo() {
 super.displayInfo();
 System.out.println("Role: Developer");
 System.out.println("Programming Language: " + programmingLanguage);
 System.out.println("Bonus: $" + bonus);
 }
}

// Second child class

class Designer extends Employee {

 private String designTool;
 private int projectsCompleted;

 public Designer(int id, String name, double baseSalary,
 String designTool, int projectsCompleted) {
 super(id, name, baseSalary);
 this.designTool = designTool;
 this.projectsCompleted = projectsCompleted;
 }

 public void design() {
 System.out.println(name + " is designing using " + designTool);
 }

 @Override
 public double calculateSalary() {
 return baseSalary + (projectsCompleted * 100); // $100 bonus per project
 }

 @Override
 public void displayInfo() {
 super.displayInfo();
 System.out.println("Role: Designer");
 System.out.println("Design Tool: " + designTool);
 System.out.println("Projects Completed: " + projectsCompleted);
 }
}

Java Programming (4343203) - Practicals by Milav Dabgar

No. 27 / 59

// Third child class

class Manager extends Employee {

 private int teamSize;
 private double managementBonus;

 public Manager(int id, String name, double baseSalary,
 int teamSize, double managementBonus) {
 super(id, name, baseSalary);
 this.teamSize = teamSize;
 this.managementBonus = managementBonus;
 }

 public void manage() {
 System.out.println(name + " is managing a team of " + teamSize + " people");
 }

 @Override
 public double calculateSalary() {
 return baseSalary + managementBonus + (teamSize * 100); // $100 per team member
 }

 @Override
 public void displayInfo() {
 super.displayInfo();
 System.out.println("Role: Manager");
 System.out.println("Team Size: " + teamSize);
 System.out.println("Management Bonus: $" + managementBonus);
 }
}

public class Practical16 {

 public static void main(String[] args) {
 System.out.println("Demonstrating Hierarchical Inheritance:\n");

 // Creating objects of different employee types
 Developer dev = new Developer(101, "John", 70000, "Java", 5000);
 Designer designer = new Designer(102, "Emma", 65000, "Adobe XD", 5);
 Manager manager = new Manager(103, "Michael", 80000, 8, 10000);

 // Demonstrating Developer
 System.out.println("1. Developer Details:");
 dev.displayInfo();
 dev.work(); // Inherited method
 dev.code(); // Specific method

 // Demonstrating Designer
 System.out.println("\n2. Designer Details:");
 designer.displayInfo();
 designer.work(); // Inherited method
 designer.design(); // Specific method

Java Programming (4343203) - Practicals by Milav Dabgar

No. 28 / 59

Practical17

 // Demonstrating Manager
 System.out.println("\n3. Manager Details:");
 manager.displayInfo();
 manager.work(); // Inherited method
 manager.manage(); // Specific method

 // Demonstrating polymorphism
 System.out.println("\n4. Demonstrating polymorphism:");
 Employee[] employees = {dev, designer, manager};
 for (Employee emp : employees) {
 System.out.println("\nEmployee Information:");
 emp.displayInfo();
 }
 }
}

// Practical17.java - Demonstrate method overriding

// Parent class

class Shape {

 protected String color;

 public Shape(String color) {
 this.color = color;
 }

 // Method to be overridden
 public void draw() {
 System.out.println("Drawing a shape");
 }

 public void getInfo() {
 System.out.println("This is a " + color + " shape");
 }

 public double calculateArea() {
 return 0.0; // Default implementation
 }
}

// First child class

class Circle extends Shape {

 private double radius;

 public Circle(String color, double radius) {
 super(color);
 this.radius = radius;
 }

Java Programming (4343203) - Practicals by Milav Dabgar

No. 29 / 59

 // Override draw method
 @Override
 public void draw() {
 System.out.println("Drawing a circle with radius " + radius);
 }

 @Override
 public void getInfo() {
 System.out.println("This is a " + color + " circle with radius " + radius);
 }

 @Override
 public double calculateArea() {
 return Math.PI * radius * radius;
 }
}

// Second child class

class Rectangle extends Shape {

 private double length;
 private double width;

 public Rectangle(String color, double length, double width) {
 super(color);
 this.length = length;
 this.width = width;
 }

 @Override
 public void draw() {
 System.out.println("Drawing a rectangle with length " + length + " and width " +
width);

 }

 @Override
 public void getInfo() {
 System.out.println("This is a " + color + " rectangle with length " + length +
 " and width " + width);
 }

 @Override
 public double calculateArea() {
 return length * width;
 }
}

// Third child class

class Triangle extends Shape {

 private double base;
 private double height;

 public Triangle(String color, double base, double height) {

Java Programming (4343203) - Practicals by Milav Dabgar

No. 30 / 59

 super(color);
 this.base = base;
 this.height = height;
 }

 @Override
 public void draw() {
 System.out.println("Drawing a triangle with base " + base + " and height " +
height);

 }

 @Override
 public void getInfo() {
 System.out.println("This is a " + color + " triangle with base " + base +
 " and height " + height);
 }

 @Override
 public double calculateArea() {
 return 0.5 * base * height;
 }
}

public class Practical17 {

 public static void main(String[] args) {
 System.out.println("Demonstrating Method Overriding:\n");

 // Create objects of different shapes
 Circle circle = new Circle("Red", 5.0);
 Rectangle rectangle = new Rectangle("Blue", 4.0, 6.0);
 Triangle triangle = new Triangle("Green", 3.0, 8.0);

 // Demonstrate method overriding for Circle
 System.out.println("1. Circle:");
 circle.draw();
 circle.getInfo();
 System.out.printf("Area: %.2f square units\n", circle.calculateArea());

 // Demonstrate method overriding for Rectangle
 System.out.println("\n2. Rectangle:");
 rectangle.draw();
 rectangle.getInfo();
 System.out.printf("Area: %.2f square units\n", rectangle.calculateArea());

 // Demonstrate method overriding for Triangle
 System.out.println("\n3. Triangle:");
 triangle.draw();
 triangle.getInfo();
 System.out.printf("Area: %.2f square units\n", triangle.calculateArea());

 // Demonstrate polymorphism with method overriding
 System.out.println("\n4. Demonstrating polymorphism:");

Java Programming (4343203) - Practicals by Milav Dabgar

No. 31 / 59

Practical18

 Shape[] shapes = {circle, rectangle, triangle};
 for (Shape shape : shapes) {
 System.out.println("\nShape details:");
 shape.draw(); // Calls overridden method
 shape.getInfo(); // Calls overridden method
 System.out.printf("Area: %.2f square units\n", shape.calculateArea());
 }
 }
}

// Practical18.java - Demonstrate toString() method overriding

class Car {

 private String name;
 private int topSpeed;
 private String color;
 private double price;

 // Constructor
 public Car(String name, int topSpeed, String color, double price) {
 this.name = name;
 this.topSpeed = topSpeed;
 this.color = color;
 this.price = price;
 }

 // Overriding toString() method
 @Override
 public String toString() {
 return String.format("Car[name=%s, topSpeed=%d mph, color=%s, price=$%.2f]",
 name, topSpeed, color, price);
 }

 // Getters
 public String getName() {
 return name;
 }

 public int getTopSpeed() {
 return topSpeed;
 }

 public String getColor() {
 return color;
 }

 public double getPrice() {
 return price;
 }

Java Programming (4343203) - Practicals by Milav Dabgar

No. 32 / 59

}

public class Practical18 {

 // Method to display car details in a formatted way
 public static void displayCarDetails(Car car, int carNumber) {
 System.out.println("Car " + carNumber + " Details:");
 System.out.println("Name: " + car.getName());
 System.out.println("Top Speed: " + car.getTopSpeed() + " mph");
 System.out.println("Color: " + car.getColor());
 System.out.printf("Price: $%.2f\n", car.getPrice());
 System.out.println("toString() output: " + car.toString());
 System.out.println();
 }

 public static void main(String[] args) {
 System.out.println("Demonstrating toString() Method Overriding:\n");

 // Create 5 car instances
 Car car1 = new Car("Tesla Model S", 200, "Red", 89990.00);
 Car car2 = new Car("BMW M3", 180, "Blue", 69900.00);
 Car car3 = new Car("Toyota Supra", 155, "Yellow", 43540.00);
 Car car4 = new Car("Porsche 911", 182, "Black", 101200.00);
 Car car5 = new Car("Ford Mustang", 160, "White", 27205.00);

 // Store cars in an array
 Car[] cars = {car1, car2, car3, car4, car5};

 // Display details of each car
 for (int i = 0; i < cars.length; i++) {
 displayCarDetails(cars[i], i + 1);
 }

 // Demonstrate direct use of toString()
 System.out.println("Direct println() calls (implicitly uses toString()):");
 for (Car car : cars) {
 System.out.println(car); // println automatically calls toString()
 }

 // Demonstrate toString() in different contexts
 System.out.println("\nDemonstrating toString() in different contexts:");

 // In string concatenation
 String description = "My car is: " + car1;
 System.out.println(description);

 // In StringBuilder
 StringBuilder sb = new StringBuilder();
 sb.append("Available car: ").append(car2);
 System.out.println(sb.toString());

 // In formatted string
 System.out.printf("Featured car: %s%n", car3);

Java Programming (4343203) - Practicals by Milav Dabgar

No. 33 / 59

Practical19

 }
}

// Practical19.java - Demonstrate multiple inheritance using interfaces

// First interface

interface Printer {

 void print();
 void checkInk();
}

// Second interface

interface Scanner {

 void scan();
 void checkScanQuality();
}

// Third interface

interface Fax {

 void fax(String destination);
 void checkFaxLine();
}

// Class implementing multiple interfaces

class AllInOnePrinter implements Printer, Scanner, Fax {

 private String modelName;
 private boolean inkAvailable;
 private boolean scannerWorking;
 private boolean faxLineConnected;

 public AllInOnePrinter(String modelName) {
 this.modelName = modelName;
 this.inkAvailable = true;
 this.scannerWorking = true;
 this.faxLineConnected = true;
 }

 // Implementing Printer interface methods
 @Override
 public void print() {
 System.out.println(modelName + " is printing a document");
 }

 @Override
 public void checkInk() {
 System.out.println("Ink status: " + (inkAvailable ? "Available" : "Low"));
 }

 // Implementing Scanner interface methods

Java Programming (4343203) - Practicals by Milav Dabgar

No. 34 / 59

 @Override
 public void scan() {
 System.out.println(modelName + " is scanning a document");
 }

 @Override
 public void checkScanQuality() {
 System.out.println("Scanner status: " +
 (scannerWorking ? "Working properly" : "Needs maintenance"));
 }

 // Implementing Fax interface methods
 @Override
 public void fax(String destination) {
 System.out.println(modelName + " is faxing to " + destination);
 }

 @Override
 public void checkFaxLine() {
 System.out.println("Fax line status: " +
 (faxLineConnected ? "Connected" : "Disconnected"));
 }

 // Additional method specific to AllInOnePrinter
 public void displayStatus() {
 System.out.println("\nDevice Status for " + modelName + ":");
 checkInk();
 checkScanQuality();
 checkFaxLine();
 }
}

// Class implementing only Printer and Scanner interfaces

class BasicPrinter implements Printer, Scanner {

 private String modelName;

 public BasicPrinter(String modelName) {
 this.modelName = modelName;
 }

 @Override
 public void print() {
 System.out.println(modelName + " is printing a document");
 }

 @Override
 public void checkInk() {
 System.out.println("Checking ink levels for " + modelName);
 }

 @Override
 public void scan() {

Java Programming (4343203) - Practicals by Milav Dabgar

No. 35 / 59

 System.out.println(modelName + " is scanning a document");
 }

 @Override
 public void checkScanQuality() {
 System.out.println("Checking scan quality for " + modelName);
 }
}

public class Practical19 {

 public static void main(String[] args) {
 System.out.println("Demonstrating Multiple Inheritance Using Interfaces:\n");

 // Create an AllInOnePrinter object
 AllInOnePrinter allInOne = new AllInOnePrinter("HP OfficeJet Pro");

 // Create a BasicPrinter object
 BasicPrinter basicPrinter = new BasicPrinter("Canon ImageCLASS");

 // Demonstrate AllInOnePrinter functionality
 System.out.println("1. Testing AllInOnePrinter:");
 allInOne.print();
 allInOne.scan();
 allInOne.fax("123-456-7890");
 allInOne.displayStatus();

 // Demonstrate BasicPrinter functionality
 System.out.println("\n2. Testing BasicPrinter:");
 basicPrinter.print();
 basicPrinter.scan();
 basicPrinter.checkInk();
 basicPrinter.checkScanQuality();

 // Demonstrate polymorphism using interfaces
 System.out.println("\n3. Demonstrating polymorphism using interfaces:");

 // Using Printer interface
 System.out.println("\nTesting through Printer interface:");
 Printer printer = allInOne;
 printer.print();
 printer.checkInk();

 // Using Scanner interface
 System.out.println("\nTesting through Scanner interface:");
 Scanner scanner = allInOne;
 scanner.scan();
 scanner.checkScanQuality();

 // Using Fax interface
 System.out.println("\nTesting through Fax interface:");
 Fax fax = allInOne;
 fax.fax("987-654-3210");

Java Programming (4343203) - Practicals by Milav Dabgar

No. 36 / 59

Practical20

 fax.checkFaxLine();
 }
}

// Practical20.java - Demonstrate abstract class and method overriding

// Abstract class Shape

abstract class Shape {

 protected String name;
 protected String color;

 // Constructor
 public Shape(String name, String color) {
 this.name = name;
 this.color = color;
 }

 // Abstract method to calculate area
 public abstract double area();

 // Concrete method to display shape info
 public void displayInfo() {
 System.out.println("Shape: " + name);
 System.out.println("Color: " + color);
 System.out.printf("Area: %.2f square units\n", area());
 }
}

// Triangle class

class Triangle extends Shape {

 private double base;
 private double height;

 public Triangle(String color, double base, double height) {
 super("Triangle", color);
 this.base = base;
 this.height = height;
 }

 @Override
 public double area() {
 return 0.5 * base * height;
 }

 @Override
 public void displayInfo() {
 super.displayInfo();
 System.out.println("Base: " + base + " units");
 System.out.println("Height: " + height + " units");

Java Programming (4343203) - Practicals by Milav Dabgar

No. 37 / 59

 }
}

// Rectangle class

class Rectangle extends Shape {

 private double length;
 private double width;

 public Rectangle(String color, double length, double width) {
 super("Rectangle", color);
 this.length = length;
 this.width = width;
 }

 @Override
 public double area() {
 return length * width;
 }

 @Override
 public void displayInfo() {
 super.displayInfo();
 System.out.println("Length: " + length + " units");
 System.out.println("Width: " + width + " units");
 }
}

// Circle class

class Circle extends Shape {

 private double radius;

 public Circle(String color, double radius) {
 super("Circle", color);
 this.radius = radius;
 }

 @Override
 public double area() {
 return Math.PI * radius * radius;
 }

 @Override
 public void displayInfo() {
 super.displayInfo();
 System.out.println("Radius: " + radius + " units");
 }
}

public class Practical20 {

 // Method to process any shape
 public static void processShape(Shape shape) {
 System.out.println("\nProcessing shape:");

Java Programming (4343203) - Practicals by Milav Dabgar

No. 38 / 59

Practical21

 shape.displayInfo();
 }

 public static void main(String[] args) {
 System.out.println("Demonstrating Abstract Class with Shape Hierarchy:\n");

 // Create instances of different shapes
 Triangle triangle = new Triangle("Red", 6.0, 4.0);
 Rectangle rectangle = new Rectangle("Blue", 5.0, 3.0);
 Circle circle = new Circle("Green", 3.0);

 // Process each shape using polymorphism
 processShape(triangle);
 processShape(rectangle);
 processShape(circle);

 // Demonstrate array of shapes
 System.out.println("\nProcessing array of shapes:");
 Shape[] shapes = {triangle, rectangle, circle};

 for (Shape shape : shapes) {
 System.out.println("\nShape Details:");
 shape.displayInfo();
 System.out.println("Calculated area: " + String.format("%.2f",
shape.area()));

 }

 // Demonstrate that we cannot instantiate abstract class
 // Following line would cause compilation error:
 // Shape shape = new Shape("Generic", "Yellow");

 // Calculate total area of all shapes
 double totalArea = 0;
 for (Shape shape : shapes) {
 totalArea += shape.area();
 }
 System.out.printf("\nTotal area of all shapes: %.2f square units\n", totalArea);
 }
}

// Practical21.java - Demonstrate use of final class

// Final class - cannot be inherited

final class SecureConfig {

 private String serverName;
 private String password;
 private int port;
 private boolean isSSLEnabled;

Java Programming (4343203) - Practicals by Milav Dabgar

No. 39 / 59

 // Constructor
 public SecureConfig(String serverName, String password, int port) {
 this.serverName = serverName;
 this.password = password;
 this.port = port;
 this.isSSLEnabled = true;
 }

 // Public methods to access and modify configuration
 public String getServerName() {
 return serverName;
 }

 public int getPort() {
 return port;
 }

 public boolean isSSLEnabled() {
 return isSSLEnabled;
 }

 public void setSSLEnabled(boolean enabled) {
 this.isSSLEnabled = enabled;
 }

 // Method to display configuration (excluding sensitive data)
 public void displayConfig() {
 System.out.println("Server Configuration:");
 System.out.println("Server Name: " + serverName);
 System.out.println("Port: " + port);
 System.out.println("SSL Enabled: " + isSSLEnabled);
 System.out.println("Password: *****"); // Hide actual password
 }

 // Method to validate configuration
 public boolean validateConfig() {
 return serverName != null && !serverName.isEmpty() &&
 password != null && !password.isEmpty() &&
 port > 0 && port <= 65535;
 }
}

// This class would cause compilation error if uncommented:

/*

class ExtendedConfig extends SecureConfig { // Error: cannot inherit from final class

 private String additionalSetting;

 public ExtendedConfig(String serverName, String password, int port) {
 super(serverName, password, port);
 }
}

*/

Java Programming (4343203) - Practicals by Milav Dabgar

No. 40 / 59

Practical22

public class Practical21 {

 public static void main(String[] args) {
 System.out.println("Demonstrating Final Class Usage:\n");

 // Create instances of SecureConfig
 SecureConfig config1 = new SecureConfig("prod-server-1", "secretpass123", 443);
 SecureConfig config2 = new SecureConfig("dev-server-1", "devpass456", 8080);

 // Demonstrate config1
 System.out.println("1. First Configuration:");
 config1.displayConfig();
 System.out.println("Configuration Valid: " + config1.validateConfig());

 // Modify SSL settings
 config1.setSSLEnabled(false);
 System.out.println("\nAfter modifying SSL settings:");
 config1.displayConfig();

 // Demonstrate config2
 System.out.println("\n2. Second Configuration:");
 config2.displayConfig();
 System.out.println("Configuration Valid: " + config2.validateConfig());

 // Demonstrate accessing individual properties
 System.out.println("\n3. Accessing Individual Properties:");
 System.out.println("Server Name: " + config2.getServerName());
 System.out.println("Port: " + config2.getPort());
 System.out.println("SSL Enabled: " + config2.isSSLEnabled());

 // Create array of configurations
 System.out.println("\n4. Processing Multiple Configurations:");
 SecureConfig[] configs = {config1, config2};

 for (int i = 0; i < configs.length; i++) {
 System.out.println("\nConfiguration " + (i + 1) + ":");
 configs[i].displayConfig();
 }
 }
}

// File: Practical22.java

import shapes.Circle;

import shapes.Rectangle;

import util.Calculator;

public class Practical22 {

 public static void main(String[] args) {
 System.out.println("Demonstrating Package Usage:\n");

Java Programming (4343203) - Practicals by Milav Dabgar

No. 41 / 59

 // Create objects of classes from shapes package
 Circle circle = new Circle(5.0);
 Rectangle rectangle = new Rectangle(4.0, 6.0);

 // Calculate and display circle measurements
 System.out.println("Circle Measurements:");
 System.out.println("Area: " +
 Calculator.round(circle.getArea(), 2) + " square units");
 System.out.println("Perimeter: " +
 Calculator.round(circle.getPerimeter(), 2) + " units");

 // Calculate and display rectangle measurements
 System.out.println("\nRectangle Measurements:");
 System.out.println("Area: " +
 Calculator.round(rectangle.getArea(), 2) + " square units");
 System.out.println("Perimeter: " +
 Calculator.round(rectangle.getPerimeter(), 2) + " units");

 // Demonstrate fully qualified names
 System.out.println("\nUsing fully qualified names:");
 shapes.Circle circle2 = new shapes.Circle(3.0);
 System.out.println("New circle area: " +
 util.Calculator.round(circle2.getArea(), 2) + " square units");
 }
}

// File: shapes/Circle.java

package shapes;

public class Circle {

 private double radius;

 public Circle(double radius) {
 this.radius = radius;
 }

 public double getArea() {
 return Math.PI * radius * radius;
 }

 public double getPerimeter() {
 return 2 * Math.PI * radius;
 }
}

// File: shapes/Rectangle.java

package shapes;

public class Rectangle {

Java Programming (4343203) - Practicals by Milav Dabgar

No. 42 / 59

Practical23

 private double length;
 private double width;

 public Rectangle(double length, double width) {
 this.length = length;
 this.width = width;
 }

 public double getArea() {
 return length * width;
 }

 public double getPerimeter() {
 return 2 * (length + width);
 }
}

// File: util/Calculator.java

package util;

public class Calculator {

 public static double round(double value, int places) {
 double scale = Math.pow(10, places);
 return Math.round(value * scale) / scale;
 }
}

// Practical23.java - Demonstrate user defined exception for divide by zero

// Custom Exception class

class DivideByZeroException extends Exception {

 public DivideByZeroException() {
 super("Cannot divide by zero!");
 }

 public DivideByZeroException(String message) {
 super(message);
 }
}

// Calculator class with division method

class Calculator {

 // Method that throws our custom exception
 public static double divide(double numerator, double denominator)
 throws DivideByZeroException {
 if (denominator == 0) {

Java Programming (4343203) - Practicals by Milav Dabgar

No. 43 / 59

 throw new DivideByZeroException(
 "Division by zero error! Numerator was: " + numerator);
 }
 return numerator / denominator;
 }
}

public class Practical23 {

 // Method to demonstrate division with exception handling
 public static void performDivision(double numerator, double denominator) {
 try {
 double result = Calculator.divide(numerator, denominator);
 System.out.printf("%.2f ÷ %.2f = %.2f\n", numerator, denominator, result);
 } catch (DivideByZeroException e) {
 System.out.println("Error: " + e.getMessage());
 }
 }

 public static void main(String[] args) {
 System.out.println("Demonstrating User Defined Exception:\n");

 // Test cases
 System.out.println("1. Normal division:");
 performDivision(10.0, 2.0);

 System.out.println("\n2. Division by zero:");
 performDivision(20.0, 0.0);

 System.out.println("\n3. Multiple divisions in a loop:");
 double[] numerators = {15.0, 25.0, 30.0};
 double[] denominators = {3.0, 0.0, 5.0};

 for (int i = 0; i < numerators.length; i++) {
 System.out.println("\nAttempting division " + (i + 1) + ":");
 performDivision(numerators[i], denominators[i]);
 }

 // Demonstrating exception handling with try-catch block
 System.out.println("\n4. Direct try-catch usage:");
 try {
 System.out.println("Attempting risky division...");
 double result = Calculator.divide(50.0, 0.0);
 System.out.println("Result of division: " + result); // This line won't be
reached

 } catch (DivideByZeroException e) {
 System.out.println("Caught exception: " + e.getMessage());
 } finally {
 System.out.println("Finally block executed");
 }

 // Additional demonstration with successful division
 System.out.println("\n5. Another try-catch example with successful division:");

Java Programming (4343203) - Practicals by Milav Dabgar

No. 44 / 59

Practical24

 try {
 System.out.println("Attempting safe division...");
 double result = Calculator.divide(50.0, 2.0);
 System.out.println("Result of division: " + result); // This line will be
reached

 } catch (DivideByZeroException e) {
 System.out.println("Caught exception: " + e.getMessage());
 } finally {
 System.out.println("Finally block executed");
 }

 System.out.println("\n6. Program continues after exception handling");
 performDivision(100.0, 25.0);
 }
}

// Practical24.java - Banking Application with custom exception

// Custom Exception for insufficient funds

class InsufficientFundsException extends Exception {

 private double currentBalance;
 private double withdrawAmount;

 public InsufficientFundsException(double currentBalance, double withdrawAmount) {
 super(String.format("Not Sufficient Fund! Balance: $%.2f, Withdrawal Amount:
$%.2f",

 currentBalance, withdrawAmount));
 this.currentBalance = currentBalance;
 this.withdrawAmount = withdrawAmount;
 }

 public double getDeficit() {
 return withdrawAmount - currentBalance;
 }
}

// Bank Account class

class BankAccount {

 private double balance;
 private String accountNumber;

 public BankAccount(String accountNumber, double initialDeposit) {
 this.accountNumber = accountNumber;
 this.balance = initialDeposit;
 }

 public void deposit(double amount) {
 if (amount > 0) {
 balance += amount;

Java Programming (4343203) - Practicals by Milav Dabgar

No. 45 / 59

 System.out.printf("Deposited: $%.2f\n", amount);
 displayBalance();
 } else {
 System.out.println("Invalid deposit amount");
 }
 }

 public void withdraw(double amount) throws InsufficientFundsException {
 if (amount > balance) {
 throw new InsufficientFundsException(balance, amount);
 }

 balance -= amount;
 System.out.printf("Withdrawn: $%.2f\n", amount);
 displayBalance();
 }

 public void displayBalance() {
 System.out.printf("Current Balance: $%.2f\n", balance);
 }

 public double getBalance() {
 return balance;
 }

 public String getAccountNumber() {
 return accountNumber;
 }
}

public class Practical24 {

 public static void main(String[] args) {
 System.out.println("Banking Application Demonstration:\n");

 // Create a bank account with initial deposit of $25000
 BankAccount account = new BankAccount("ACC001", 25000);
 System.out.println("Account created successfully!");
 account.displayBalance();

 try {
 // Performing transactions as per requirement
 System.out.println("\n1. Withdrawing $20000:");
 account.withdraw(20000);

 System.out.println("\n2. Withdrawing $4000:");
 account.withdraw(4000);

 System.out.println("\n3. Attempting to withdraw $2000:");
 account.withdraw(2000);

 } catch (InsufficientFundsException e) {
 System.out.println("Transaction Failed: " + e.getMessage());

Java Programming (4343203) - Practicals by Milav Dabgar

No. 46 / 59

Practical25

 System.out.printf("Deficit Amount: $%.2f\n", e.getDeficit());
 }

 // Additional demonstrations
 System.out.println("\nAdditional Operations:");

 try {
 // Deposit some money
 System.out.println("\n4. Depositing $1000:");
 account.deposit(1000);

 // Try withdrawal again
 System.out.println("\n5. Attempting to withdraw $1500:");
 account.withdraw(1500);

 } catch (InsufficientFundsException e) {
 System.out.println("Transaction Failed: " + e.getMessage());
 System.out.printf("Deficit Amount: $%.2f\n", e.getDeficit());
 }

 // Final balance check
 System.out.println("\nFinal Account Status:");
 account.displayBalance();
 }
}

// Practical25.java - Demonstrate thread creation and execution

// First thread class

class Thread1 extends Thread {

 @Override
 public void run() {
 try {
 for (int i = 1; i <= 5; i++) {
 System.out.println("Thread1");
 // Sleep for 1000 milliseconds (1 second)
 Thread.sleep(1000);
 }
 } catch (InterruptedException e) {
 System.out.println("Thread1 interrupted");
 }
 }
}

// Second thread class

class Thread2 extends Thread {

 @Override
 public void run() {
 try {

Java Programming (4343203) - Practicals by Milav Dabgar

No. 47 / 59

 for (int i = 1; i <= 5; i++) {
 System.out.println("Thread2");
 // Sleep for 2000 milliseconds (2 seconds)
 Thread.sleep(2000);
 }
 } catch (InterruptedException e) {
 System.out.println("Thread2 interrupted");
 }
 }
}

public class Practical25 {

 public static void main(String[] args) {
 System.out.println("Demonstrating Thread Creation and Execution:\n");

 // Create thread objects
 Thread1 t1 = new Thread1();
 Thread2 t2 = new Thread2();

 // Set thread names
 t1.setName("Thread-1");
 t2.setName("Thread-2");

 // Display thread information before starting
 System.out.println("Thread States Before Starting:");
 System.out.println(t1.getName() + " State: " + t1.getState());
 System.out.println(t2.getName() + " State: " + t2.getState());

 System.out.println("\nStarting threads...");

 // Start both threads
 t1.start();
 t2.start();

 // Display thread information after starting
 System.out.println("\nThread States After Starting:");
 System.out.println(t1.getName() + " State: " + t1.getState());
 System.out.println(t2.getName() + " State: " + t2.getState());

 // Wait for both threads to complete
 try {
 t1.join();
 t2.join();
 } catch (InterruptedException e) {
 System.out.println("Main thread interrupted");
 }

 // Display final thread states
 System.out.println("\nThread States After Completion:");
 System.out.println(t1.getName() + " State: " + t1.getState());
 System.out.println(t2.getName() + " State: " + t2.getState());

Java Programming (4343203) - Practicals by Milav Dabgar

No. 48 / 59

Practical26

 System.out.println("\nMain thread ending");
 }
}

// Practical26.java - Demonstrate threads printing even and odd numbers

class NumberPrinter {

 private int currentNumber = 1;
 private final int maxNumber = 200;
 private boolean isEvenTurn = false;

 // Method for printing even numbers
 synchronized void printEven() {
 while (currentNumber <= maxNumber) {
 try {
 // Wait if it's not even number's turn
 while (!isEvenTurn && currentNumber <= maxNumber) {
 wait();
 }

 if (currentNumber <= maxNumber) {
 System.out.printf("Even Thread: %d%n", currentNumber);
 currentNumber++;
 isEvenTurn = false;
 notify();
 }
 } catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 }
 }
 }

 // Method for printing odd numbers
 synchronized void printOdd() {
 while (currentNumber <= maxNumber) {
 try {
 // Wait if it's not odd number's turn
 while (isEvenTurn && currentNumber <= maxNumber) {
 wait();
 }

 if (currentNumber <= maxNumber) {
 System.out.printf("Odd Thread: %d%n", currentNumber);
 currentNumber++;
 isEvenTurn = true;
 notify();
 }
 } catch (InterruptedException e) {
 Thread.currentThread().interrupt();

Java Programming (4343203) - Practicals by Milav Dabgar

No. 49 / 59

 }
 }
 }
}

// Thread class for printing even numbers

class EvenPrinter extends Thread {

 private NumberPrinter printer;

 public EvenPrinter(NumberPrinter printer) {
 this.printer = printer;
 }

 @Override
 public void run() {
 printer.printEven();
 }
}

// Thread class for printing odd numbers

class OddPrinter extends Thread {

 private NumberPrinter printer;

 public OddPrinter(NumberPrinter printer) {
 this.printer = printer;
 }

 @Override
 public void run() {
 printer.printOdd();
 }
}

public class Practical26 {

 public static void main(String[] args) {
 System.out.println("Demonstrating Even-Odd Number Printing Using Threads:\n");

 // Create shared number printer object
 NumberPrinter printer = new NumberPrinter();

 // Create even and odd printer threads
 Thread evenThread = new EvenPrinter(printer);
 Thread oddThread = new OddPrinter(printer);

 // Set thread names
 evenThread.setName("EvenThread");
 oddThread.setName("OddThread");

 // Start both threads
 System.out.println("Starting threads to print numbers from 1 to 200...\n");
 oddThread.start();
 evenThread.start();

Java Programming (4343203) - Practicals by Milav Dabgar

No. 50 / 59

Practical27

 // Wait for both threads to complete
 try {
 evenThread.join();
 oddThread.join();
 } catch (InterruptedException e) {
 System.out.println("Main thread interrupted");
 }

 System.out.println("\nBoth threads completed execution");
 }
}

// Practical27.java - Demonstrate read and write operations on a text file

import java.io.*;

import java.util.Scanner;

public class Practical27 {

 // Method to write content to a file
 public static void writeToFile(String fileName, String content) {
 try (FileWriter writer = new FileWriter(fileName);
 BufferedWriter bufferedWriter = new BufferedWriter(writer)) {

 bufferedWriter.write(content);
 System.out.println("Successfully wrote to the file.");

 } catch (IOException e) {
 System.out.println("An error occurred while writing to the file:");
 e.printStackTrace();
 }
 }

 // Method to append content to a file
 public static void appendToFile(String fileName, String content) {
 try (FileWriter writer = new FileWriter(fileName, true);
 BufferedWriter bufferedWriter = new BufferedWriter(writer)) {

 bufferedWriter.write(content);
 System.out.println("Successfully appended to the file.");

 } catch (IOException e) {
 System.out.println("An error occurred while appending to the file:");
 e.printStackTrace();
 }
 }

 // Method to read content from a file using BufferedReader
 public static void readFileUsingBufferedReader(String fileName) {

Java Programming (4343203) - Practicals by Milav Dabgar

No. 51 / 59

 try (FileReader reader = new FileReader(fileName);
 BufferedReader bufferedReader = new BufferedReader(reader)) {

 System.out.println("\nReading file using BufferedReader:");
 String line;
 while ((line = bufferedReader.readLine()) != null) {
 System.out.println(line);
 }

 } catch (IOException e) {
 System.out.println("An error occurred while reading the file:");
 e.printStackTrace();
 }
 }

 // Method to read content from a file using Scanner
 public static void readFileUsingScanner(String fileName) {
 try (Scanner scanner = new Scanner(new File(fileName))) {
 System.out.println("\nReading file using Scanner:");
 while (scanner.hasNextLine()) {
 System.out.println(scanner.nextLine());
 }

 } catch (FileNotFoundException e) {
 System.out.println("File not found:");
 e.printStackTrace();
 }
 }

 public static void main(String[] args) {
 System.out.println("Demonstrating File Operations:\n");

 String fileName = "sample.txt";

 // Write initial content to file
 System.out.println("1. Writing initial content to file:");
 String initialContent = "Hello! This is line 1.\n" +
 "This is line 2.\n" +
 "This is line 3.\n";
 writeToFile(fileName, initialContent);

 // Read the file content using BufferedReader
 readFileUsingBufferedReader(fileName);

 // Append additional content
 System.out.println("\n2. Appending content to file:");
 String additionalContent = "This is line 4 (appended).\n" +
 "This is line 5 (appended).\n";
 appendToFile(fileName, additionalContent);

 // Read the file content using Scanner
 readFileUsingScanner(fileName);

Java Programming (4343203) - Practicals by Milav Dabgar

No. 52 / 59

Practical28

 // Demonstrate File class operations
 File file = new File(fileName);
 System.out.println("\n3. File Information:");
 System.out.println("File exists: " + file.exists());
 System.out.println("File name: " + file.getName());
 System.out.println("Absolute path: " + file.getAbsolutePath());
 System.out.println("File size: " + file.length() + " bytes");
 System.out.println("Can read: " + file.canRead());
 System.out.println("Can write: " + file.canWrite());

 // Clean up - Delete the file
 System.out.println("\n4. Cleaning up:");
 if (file.delete()) {
 System.out.println("File deleted successfully.");
 } else {
 System.out.println("Failed to delete the file.");
 }
 }
}

// Practical28.java - Demonstrate use of List (ArrayList and LinkedList)

import java.util.*;

public class Practical28 {

 // Method to display list contents
 public static void displayList(List<?> list, String listName) {
 System.out.println(listName + " contents:");
 for (Object item : list) {
 System.out.print(item + " ");
 }
 System.out.println("\nSize: " + list.size());
 System.out.println();
 }

 public static void main(String[] args) {
 System.out.println("Demonstrating List Interface Usage:\n");

 // Create ArrayList and add weekdays
 List<String> weekdays = new ArrayList<>();
 System.out.println("1. ArrayList Operations (Weekdays):");

 // Adding weekdays
 weekdays.add("Monday");
 weekdays.add("Tuesday");
 weekdays.add("Wednesday");
 weekdays.add("Thursday");
 weekdays.add("Friday");

Java Programming (4343203) - Practicals by Milav Dabgar

No. 53 / 59

 displayList(weekdays, "Weekdays ArrayList");

 // Demonstrate ArrayList operations
 System.out.println("ArrayList Operations:");
 System.out.println("First day: " + weekdays.get(0));
 System.out.println("Last day: " + weekdays.get(weekdays.size() - 1));
 System.out.println("Contains 'Wednesday'? " + weekdays.contains("Wednesday"));
 System.out.println("Index of 'Friday': " + weekdays.indexOf("Friday"));

 // Create LinkedList and add months
 List<String> months = new LinkedList<>();
 System.out.println("\n2. LinkedList Operations (Months):");

 // Adding months
 months.add("January");
 months.add("February");
 months.add("March");
 months.add("April");
 months.add("May");
 months.add("June");

 displayList(months, "Months LinkedList");

 // Demonstrate LinkedList specific operations
 LinkedList<String> monthsLinked = (LinkedList<String>) months;
 System.out.println("LinkedList Specific Operations:");
 System.out.println("First month: " + monthsLinked.getFirst());
 System.out.println("Last month: " + monthsLinked.getLast());

 // Add elements at specific positions
 monthsLinked.addFirst("December"); // Add at beginning
 monthsLinked.addLast("July"); // Add at end

 System.out.println("\nAfter adding elements:");
 displayList(months, "Updated Months LinkedList");

 // Demonstrate List interface common operations
 System.out.println("3. Common List Operations:");

 // Sorting
 Collections.sort(weekdays);
 System.out.println("Sorted weekdays:");
 displayList(weekdays, "Sorted Weekdays");

 Collections.sort(months);
 System.out.println("Sorted months:");
 displayList(months, "Sorted Months");

 // Removing elements
 weekdays.remove("Friday");
 months.remove("July");

Java Programming (4343203) - Practicals by Milav Dabgar

No. 54 / 59

Practical29

 System.out.println("After removing elements:");
 System.out.println("Weekdays after removing Friday:");
 displayList(weekdays, "Modified Weekdays");
 System.out.println("Months after removing July:");
 displayList(months, "Modified Months");

 // Clear lists
 weekdays.clear();
 months.clear();

 System.out.println("4. After clearing lists:");
 displayList(weekdays, "Cleared Weekdays");
 displayList(months, "Cleared Months");
 }
}

// Practical29.java - Demonstrate HashSet operations with colors

import java.util.HashSet;

import java.util.Iterator;

public class Practical29 {

 // Method to display set contents with iteration count
 private static void displaySet(HashSet<String> set, String message) {
 System.out.println(message);
 int count = 1;
 for (String color : set) {
 System.out.println(count + ". " + color);
 count++;
 }
 System.out.println("Set size: " + set.size() + "\n");
 }

 public static void main(String[] args) {
 System.out.println("Demonstrating HashSet Operations with Colors:\n");

 // Create a HashSet to store colors
 HashSet<String> colors = new HashSet<>();

 // 1. Adding colors to the set
 System.out.println("1. Adding colors to HashSet:");
 colors.add("Red");
 colors.add("Green");
 colors.add("Blue");
 colors.add("Yellow");
 colors.add("Purple");

 displaySet(colors, "Initial Set of Colors:");

Java Programming (4343203) - Practicals by Milav Dabgar

No. 55 / 59

 // 2. Demonstrate duplicate handling
 System.out.println("2. Attempting to add duplicate colors:");
 boolean addedRed = colors.add("Red");
 boolean addedOrange = colors.add("Orange");

 System.out.println("Added 'Red' again? " + addedRed);
 System.out.println("Added 'Orange'? " + addedOrange);
 displaySet(colors, "Set after attempting duplicates:");

 // 3. Different ways of iteration
 System.out.println("3. Different iteration methods:");

 // Using Iterator
 System.out.println("Using Iterator:");
 Iterator<String> iterator = colors.iterator();
 while (iterator.hasNext()) {
 System.out.println(iterator.next());
 }
 System.out.println();

 // Using forEach method
 System.out.println("Using forEach method:");
 colors.forEach(color -> System.out.println(color));
 System.out.println();

 // 4. Searching and removing elements
 System.out.println("4. Search and remove operations:");
 System.out.println("Contains 'Blue'? " + colors.contains("Blue"));
 System.out.println("Contains 'Black'? " + colors.contains("Black"));

 // Remove a color
 boolean removed = colors.remove("Yellow");
 System.out.println("Removed 'Yellow'? " + removed);
 displaySet(colors, "Set after removing 'Yellow':");

 // 5. Create a new set for set operations
 HashSet<String> moreColors = new HashSet<>();
 moreColors.add("Pink");
 moreColors.add("Blue"); // Duplicate with first set
 moreColors.add("Brown");

 System.out.println("5. Set operations with new colors:");
 displaySet(moreColors, "New set of colors:");

 // Add all elements from moreColors to colors
 colors.addAll(moreColors);
 displaySet(colors, "After adding all new colors:");

 // 6. Clear the set
 System.out.println("6. Clearing the set:");
 colors.clear();

Java Programming (4343203) - Practicals by Milav Dabgar

No. 56 / 59

Practical30

 System.out.println("Is set empty? " + colors.isEmpty());
 displaySet(colors, "Set after clearing:");
 }
}

// Practical30.java - Demonstrate HashMap with Student Data

import java.util.HashMap;

import java.util.Map;

public class Practical30 {

 // Method to display student data
 private static void displayStudents(HashMap<String, String> students, String message)
{

 System.out.println(message);
 if (students.isEmpty()) {
 System.out.println("No students in the map.");
 } else {
 for (Map.Entry<String, String> entry : students.entrySet()) {
 System.out.printf("Enrollment No: %s, Name: %s%n",
 entry.getKey(), entry.getValue());
 }
 }
 System.out.println("Total students: " + students.size() + "\n");
 }

 public static void main(String[] args) {
 System.out.println("Demonstrating HashMap Operations with Student Data:\n");

 // Create HashMap to store student data
 HashMap<String, String> students = new HashMap<>();

 // 1. Adding students to the map
 System.out.println("1. Adding students to HashMap:");
 students.put("A101", "John Smith");
 students.put("A102", "Emma Watson");
 students.put("A103", "Michael Johnson");
 students.put("A104", "Sarah Wilson");
 students.put("A105", "David Brown");

 displayStudents(students, "Initial Student List:");

 // 2. Accessing specific student
 System.out.println("2. Accessing student data:");
 String enrollmentNo = "A103";
 System.out.println("Student with enrollment no " + enrollmentNo + ": "
 + students.get(enrollmentNo));

 // Try accessing non-existent student

Java Programming (4343203) - Practicals by Milav Dabgar

No. 57 / 59

 System.out.println("Student with enrollment no A106: "
 + students.get("A106"));
 System.out.println();

 // 3. Updating student data
 System.out.println("3. Updating student data:");
 students.put("A101", "John Smith Jr."); // Update existing entry
 System.out.println("Updated A101's name");
 displayStudents(students, "After updating:");

 // 4. Checking existence
 System.out.println("4. Checking existence:");
 System.out.println("Contains enrollment no A102? "
 + students.containsKey("A102"));
 System.out.println("Contains student Emma Watson? "
 + students.containsValue("Emma Watson"));
 System.out.println();

 // 5. Different ways to iterate
 System.out.println("5. Different ways to iterate through the map:");

 // Using entrySet
 System.out.println("Using entrySet:");
 for (Map.Entry<String, String> entry : students.entrySet()) {
 System.out.println("Key: " + entry.getKey() + ", Value: " +
entry.getValue());

 }
 System.out.println();

 // Using keySet
 System.out.println("Using keySet:");
 for (String key : students.keySet()) {
 System.out.println("Enrollment No: " + key);
 }
 System.out.println();

 // Using values
 System.out.println("Using values:");
 for (String value : students.values()) {
 System.out.println("Student Name: " + value);
 }
 System.out.println();

 // 6. Removing a student
 System.out.println("6. Removing student:");
 String removedStudent = students.remove("A104");
 System.out.println("Removed student: " + removedStudent);
 displayStudents(students, "After removing A104:");

 // 7. Using getOrDefault
 System.out.println("7. Using getOrDefault:");
 System.out.println("Student A105: " +

Java Programming (4343203) - Practicals by Milav Dabgar

No. 58 / 59

 students.getOrDefault("A105", "Not Found"));
 System.out.println("Student A106: " +
 students.getOrDefault("A106", "Not Found"));
 System.out.println();

 // 8. Clear the map
 System.out.println("8. Clearing the map:");
 students.clear();
 System.out.println("Is map empty? " + students.isEmpty());
 displayStudents(students, "After clearing:");
 }
}

Java Programming (4343203) - Practicals by Milav Dabgar

No. 59 / 59

	Practicals
	Practical01
	Practical02
	Practical03
	Practical04
	Practical05
	Practical06
	Practical07
	Practical08
	Practical09
	Practical10
	Practical11
	Practical12
	Practical13
	Practical14
	Practical15
	Practical16
	Practical17
	Practical18
	Practical19
	Practical20
	Practical21
	Practical22
	Practical23
	Practical24
	Practical25
	Practical26
	Practical27
	Practical28
	Practical29
	Practical30

