Java Programming (4343203) - Practicals by Milav Dabgar

Practicals

Practical01

// Practical0Ol.java - Basic Java program demonstrating output methods

public class Practical0Ol {
public static void main(String[] args) {
System.out.println("Demonstrating Different Output Methods in Java:\n");

// 1. Using println() - prints and moves to next line
System.out.println("1l. Using println():");
System.out.println("Hello, World!");
System.out.println("This is a new line");

System.out.println();

// 2. Using print() - prints without moving to next line
System.out.println("2. Using print():");
System.out.print("Hello ");

System.out.print("World ");

System.out.print("without line breaks");

System.out.println("\n");

// 3. Using printf() - formatted output

System.out.println("3. Using printf():");

String name = "Student";

int age = 20;

double height = 5.9;

System.out.printf("Name: %s, Age: %d, Height: %.1f feet%n", name, age, height);
System.out.println();

// 4. Demonstrating escape sequences
System.out.println("4. Using Escape Sequences:");
System.out.println("Using tab:\tAfter tab");
System.out.println("Using new line:\nAfter new line");
System.out.println("Using single quote: \'Hello\'");
System.out.println("Using double quote: \"World\"");
System.out.println("Using backslash: \\");

Practical02

// Practical02.java - Find maximum of three numbers using conditional operator
import java.util.Scanner;

public class Practical02 {

// Method to find maximum using conditional operator
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public static int findMax(int a, int b, int c) {

return (a > b) ? ((a>c) 2 az:c) : ((b>c) 2 b :c);

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);
System.out.println("Program to Find Maximum of Three Numbers:\n");

// 1. Using hardcoded values

System.out.println("1l. Testing with hardcoded values:");
int x = 25, y = 45, z = 15;

System.out.printf ("Numbers are: %d, %d, %d%n", x, y, 2);

"

System.out.println("Maximum number is: + findMax(x, y, 2));

System.out.println();

// 2. Taking user input
System.out.println("2. Testing with user input:");
System.out.print("Enter first number: ");

int numl = scanner.nextInt();

System.out.print("Enter second number: ");

int num2 = scanner.nextInt();

System.out.print("Enter third number: ");

int num3 = scanner.nextInt();

int max = findMax(numl, num2, num3);
System.out.printf("Maximum number among %d, %d and %d is: %d%n",

numl, num2, num3, max);

// 3. Additional test cases
System.out.println("\n3. Testing with special cases:");

// When all numbers are same

System.out.println("When all numbers are same:");
System.out.println("Max of (5, 5, 5): " + findMax(5, 5, 5));
// When two numbers are same

System.out.println("When two numbers are same:");
System.out.println("Max of (7, 7, 3): " + findMax(7, 7, 3));
// With negative numbers

System.out.println("With negative numbers:");

System.out.println("Max of (-5, -2, -8): " + findMax(-5, -2, -8));

scanner.close();

Practical03
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// Practical03.java - Reverse digits of a number using while loop

import java.util.Scanner;

public class Practical03 {
// Method to reverse digits of a number
public static int reverseNumber (int num) {
int reversed = 0;
boolean isNegative = num < 0;

num = Math.abs(num);

while (num > 0) {
int digit = num % 10;
reversed = reversed * 10 + digit;

num /= 10;

return isNegative ? -reversed : reversed;

// Method to display the reversal process

public static void showReversalProcess(int num) {
System.out.println("\nReversal Process:");
int temp = Math.abs(num);

System.out.print("Digits extracted: ");

// Store digits in array for proper display order
int[] digits = new int[10]; // Assuming number won't exceed 10 digits

int count = 0;

while (temp > 0) {
digits[count++] = temp % 10;
temp /= 10;

// Display digits in order of extraction
for (int i = 0; i < count; i++) {
System.out.print(digits[i]);
if (i < count - 1) {

System.out.print(", ");

}
System.out.println();

public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);

System.out.println("Program to Reverse Digits of a Number:\n");

// 1. Using hardcoded values
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System.out.println("1l. Testing with hardcoded values:");
int[] testNumbers = {12345, -9876, 1000, 7};

for (int num : testNumbers) {

System.out.println("\nOriginal number: + num);

showReversalProcess (num) ;

System.out.println("Reversed number: + reverseNumber (num));

// 2. Taking user input

System.out.println("\n2. Testing with user input:");
System.out.print("Enter a number to reverse: ");

int userNum = scanner.nextInt();

System.out.println("Original number: + userNum) ;

showReversalProcess (userNum) ;

System.out.println("Reversed number: + reverseNumber (userNum) ) ;
// 3. Special cases demonstration

System.out.println("\n3. Special cases:");

// Number ending with zeros
int numWithZeros = 12000;

"

System.out.println("\nNumber ending with zeros: + numWithZeros);

showReversalProcess (numWithZeros) ;

System.out.println("Reversed number: + reverseNumber (numWithZeros));
// Single digit number
int singleDigit = 5;

System.out.println("\nSingle digit number: + singleDigit);

showReversalProcess(singleDigit);

System.out.println("Reversed number: + reverseNumber (singleDigit));

scanner.close();

Practical04

// Practical0O4.java - Add two 3x3 matrices
import java.util.Scanner;

public class Practical04 {
// Method to input matrix elements
public static void inputMatrix(int[][] matrix, Scanner scanner, String matrixName) {

System.out.println("Enter elements for + matrixName + " (3x3):");
for (int i = 0; i < 3; i++) {
for (int j = 0; Jj < 3; j++) {

System.out.printf("Enter element [%d][%d]: ", i, J);

matrix[i][]j] = scanner.nextInt();
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}
System.out.println();

// Method to display matrix
public static void displayMatrix(int[][] matrix, String matrixName) {
System.out.println(matrixName + ":");
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
System.out.printf("%$4d ", matrix[i][]]);
}
System.out.println();

}
System.out.println();

// Method to add two matrices
public static int[][] addMatrices(int[][] matrixl, int[][] matrix2) {
int[][] result = new int[3][3];
for (int 1 = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {

result[i][J] = matrix1[i][j] + matrix2[i]l[]];
}
return result;
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);

System.out.println("Program to Add Two 3x3 Matrices:\n");

// 1. Using hardcoded matrices

System.out.println("1l. Testing with hardcoded matrices:");

int[ ][] matrixl = {
{l, 2, 3%,
{4, 5, 6},
{7, 8, 9}

bi

int[][] matrix2 = {
{9, 8, 7},
{6, 5, 4},
{3, 2, 1}

}i

displayMatrix(matrixl, "First Matrix");

displayMatrix(matrix2, "Second Matrix");

int[][] resultl = addMatrices(matrixl, matrix2);

displayMatrix(resultl, "Result Matrix (Hardcoded)");
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// 2. Taking user input
System.out.println("2. Testing with user input:");

int[][] userMatrixl = new int[3][3];

int[][] userMatrix2 = new int[3][3];

inputMatrix(userMatrixl, scanner, "First Matrix");

inputMatrix(userMatrix2, scanner, "Second Matrix");

System.out.println("Entered matrices:");
displayMatrix(userMatrixl, "First Matrix");

displayMatrix(userMatrix2, "Second Matrix");

int[][] result2 = addMatrices(userMatrixl, userMatrix2);

displayMatrix(result2, "Result Matrix (User Input)");

// 3. Special case demonstration
System.out.println("3. Special case - Adding zero matrix:");

int[][] zeroMatrix = new int[3][3]; // All elements are 0 by default

displayMatrix(matrixl, "Original Matrix");

displayMatrix(zeroMatrix, "Zero Matrix");

int[][] result3 = addMatrices(matrixl, zeroMatrix);

displayMatrix(result3, "Result Matrix (Adding Zero Matrix)");

scanner.close();

Practical05

// Practical05.java - Generate first n prime numbers
import java.util.Scanner;

public class Practical05 {
// Method to check if a number is prime
public static boolean isPrime(int number) {
if (number < 2) {
return false;
}
for (int i = 2; i <= Math.sqrt(number); i++) {
if (number % i == 0) {

return false;

}

return true;

// Method to generate first n prime numbers
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public static void generatePrimes(int n) {
if (n <= 0) {
System.out.println("Please enter a positive number.");

return;

System.out.println("First " + n + prime numbers are:");
int count = 0;

int number = 2;

while (count < n) {
if (isPrime(number)) {
System.out.print (number) ;

count++;

// Add formatting
if (count < n) {

System.out.print(", ");

}
if (count % 10 == 0) {
System.out.println();
}
}
number++;

}
System.out.println();

// Method to show prime checking process

public static void demonstratePrimeCheck(int number) {
System.out.printf("\nChecking if %d is prime:%n", number);
if (number < 2) {

"

System.out.println(number + is not prime (less than 2)");

return;

for (int i = 2; i <= Math.sqrt(number); i++) {

System.out.printf("Checking divisibility by %d: ", i);
if (number & i == 0) {

System.out.printf("%d is divisible by %d, so it's not prime%n", number,

return;

}
System.out.println("Not divisible");

}

System.out.println(number +

is prime");

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

System.out.println("Program to Generate First N Prime Numbers:\n");
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// 1. Using hardcoded value

System.out.println("1l. Testing with hardcoded value (n=10):");

generatePrimes(10);

// 2. Demonstrate prime checking

process

System.out.println("\n2. Demonstrating prime checking process:");

int[] testNumbers = {7, 12, 23,
testNumbers) {
demonstratePrimeCheck (num) ;

for (int num

// 3. Taking user input

System.out.println("\n3. Testing
System.out.print("Enter how many
int n = scanner.nextInt();

generatePrimes(n);

// 4. Handle special cases
System.out.println("\n4. Testing
System.out.println("Generating 0

generatePrimes(0);

System.out.println("\nGenerating

generatePrimes(1);

scanner.close();

Practical06

35};

with user input:");

prime numbers you want to generate:

special cases:");

prime numbers:");

1 prime number:");

// Practical06.java - Create Student class and demonstrate object creation

class Student {
private String enrollmentNo;

private String name;

// Constructor

public Student(String enrollmentNo, String name) {

this.enrollmentNo =

this.name = name;

// Getter methods
public String getEnrollmentNo() {

return enrollmentNo;

public String getName() {

return name;

enrollmentNo;
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// Setter methods
public void setEnrollmentNo(String enrollmentNo) {

this.enrollmentNo = enrollmentNo;

public void setName(String name) {

this.name = name;

// Method to display student details
public void displayDetails() {
System.out.println("Student Details:");

"

System.out.println("Enrollment No: + enrollmentNo) ;

n

System.out.println("Name: + name);

System.out.println();

public class Practical06 {
public static void main(String[] args) {

System.out.println("Demonstrating Student Class and Objects:\n");

// 1. Creating three student objects

System.out.println("1l. Creating and displaying three students:");
Student studentl = new Student("Al101", "John Smith");

Student student2 = new Student("Al102", "Emma Watson");

Student student3 = new Student("Al103", "Michael Johnson");

// Display student information
studentl.displayDetails();
student2.displayDetails();
student3.displayDetails();

// 2. Demonstrating getter methods

System.out.println("2. Using getter methods:");
System.out.println("Student 1:");

System.out.println("Enrollment No: " + studentl.getEnrollmentNo());
System.out.println("Name: " + studentl.getName());
System.out.println();

// 3. Demonstrating setter methods

System.out.println("3. Using setter methods to update student details:");
System.out.println("Updating student2's information:");
student2.setName("Emma Thompson");

System.out.println("After update:");

student2.displayDetails();

// 4. Creating array of students

System.out.println("4. Working with array of students:");
Student[] students = {
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new Student("B101", "Alice Brown"),
new Student("B102", "Bob Wilson"),
new Student("B103", "Carol White")

}i

System.out.println("Displaying all students in array:");
for (Student student : students) {
student.displayDetails();

Practical07

// Practical07.java - Rectangle class with constructor initialization

class Rectangle {
private double height;
private double width;

// Default constructor

public Rectangle() {
this.height = 0.0;
this.width = 0.0;

// Parameterized constructor

public Rectangle(double height, double width) {
this.height = height;
this.width = width;

// Copy constructor

public Rectangle(Rectangle other) {
this.height = other.height;
this.width = other.width;

// Getter methods
public double getHeight() {

return height;

public double getWidth() {
return width;

// Setter methods
public void setHeight(double height) {
this.height = height;
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public void setWidth(double width) {
this.width = width;

// Method to calculate area
public double calculateArea() {
return height * width;

// Method to calculate perimeter
public double calculatePerimeter() {
return 2 * (height + width);

// Method to display rectangle details

public void displayDetails() {
System.out.println("Rectangle Details:");
System.out.printf("Height: %.2f units%n", height);
System.out.printf("Width: %.2f units%n", width);
System.out.printf("Area: %.2f square units%n", calculateArea());
System.out.printf("Perimeter: %.2f units%n", calculatePerimeter());

System.out.println();

public class Practical07 {
public static void main(String[] args) {
System.out.println("Demonstrating Rectangle Class with Constructors:\n");

// 1. Using default constructor
System.out.println("1l. Creating rectangle using default constructor:");
Rectangle rectl = new Rectangle();

rectl.displayDetails();

// 2. Using parameterized constructor

System.out.println("2. Creating rectangle using parameterized constructor:");
Rectangle rect2 = new Rectangle(5.0, 3.0);

rect2.displayDetails();

// 3. Using copy constructor

System.out.println("3. Creating rectangle using copy constructor:");
Rectangle rect3 = new Rectangle(rect2);

System.out.println("Copied rectangle details:");

rect3.displayDetails();

// 4. Demonstrating setter methods
System.out.println("4. Using setter methods:");
rectl.setHeight(4.0);

rectl.setWidth(6.0);

System.out.println("After setting new dimensions:");

rectl.displayDetails();
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// 5. Demonstrating getter methods

System.out.println("5. Using getter methods:");
System.out.printf("Rectangle 2 height: %.2f units%n", rect2.getHeight());
System.out.printf("Rectangle 2 width: %.2f units%n", rect2.getWidth());
System.out.println();

// 6. Array of rectangles
System.out.println("6. Working with array of rectangles:");
Rectangle[] rectangles = {

new Rectangle(2.0, 3.0),

new Rectangle(4.0, 4.0),

new Rectangle(3.0, 5.0)

}i

System.out.println("Details of all rectangles:");
for (Rectangle rect : rectangles) {

rect.displayDetails();

// 7. Find rectangle with largest area
System.out.println("7. Finding rectangle with largest area:");
Rectangle maxAreaRect = rectangles[0];
for (Rectangle rect : rectangles) {
if (rect.calculateArea() > maxAreaRect.calculateArea()) {

maxAreaRect = rect;

}
System.out.println("Rectangle with largest area:");
maxAreaRect.displayDetails();

Practical08

// Practical(08.java - Demonstrate use of 'this' keyword

public class Practical08 {
private int number;

private String text;

// Constructor using 'this' to distinguish parameters from instance variables
public Practical08(int number, String text) {

this.number = number;

this.text = text;

// Method using 'this' to call another method of current object
public void display() {

System.out.println( "Number: + this.number);

System.out.println("Text: " + this.text);
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this.showMore(); // Using 'this' to call another method

// Method using 'this' to pass current object as parameter
public void showMore() {
System.out.println("Demonstrating method call using 'this'");

this.processObject(this); // Passing current object as parameter

// Method accepting object of same class as parameter

public void processObject(Practical08 obj) {

System.out.println("Processing object with number: + obj.number);

// Method returning current object using 'this'
public Practical08 updateNumber (int number) {
this.number = number;

return this; // Method chaining by returning current object

public static void main(String[] args) {

System.out.println("Demonstrating the use of 'this' keyword:\n");

// Creating object and demonstrating various uses of 'this'
Practical08 obj = new Practical08(42, "Hello");

System.out.println("Initial object state:");
obj.display();

System.out.println("\nDemonstrating method chaining using 'this':");

obj.updateNumber (100).display();

// Creating another object to show constructor usage of 'this'
System.out.println("\nCreating another object:");

Practical08 obj2 = new Practical08(99, "World");
obj2.display():;

Practical09

// Practical(09.java - Demonstrate use of 'static' keyword

public class Practical09 {
// Static variable

private static int instanceCount = 0;
// Non-static variables

private int id;

private String name;
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// Static constant

private static final String COLLEGE_NAME = "My College";

// Static block - executed when class is loaded

static {
System.out.println("Static block executed - Class loading...");
System.out.println("College Name: " + COLLEGE_NAME);

// Constructor
public Practical09(String name) {
this.id = ++instanceCount;

this.name = name;

// Static method
public static int getInstanceCount() {

return instanceCount;

// Static method to display college info
public static void displayCollegeInfo() {
System.out.println("College Name: " + COLLEGE_NAME) ;

System.out.println("Total Students: + getInstanceCount());

// Non-static method
public void displayStudentInfo() {
System.out.println("Student ID: " + this.id);

System.out.println("Student Name:
System.out.println("College: " + COLLEGE NAME); // Static variable accessed in

+ this.name);

non-static method

}

public static void main(String[] args) {

System.out.println("Demonstrating static keyword usage:\n");

// Accessing static method before creating any object

"

System.out.println("Initial instance count: + Practical09.getInstanceCount());
// Creating objects and demonstrating static variable
System.out.println("\nCreating student objects:");

Practical09 studentl = new Practical09("John");

Practical09 student2 = new PracticalO9("Emma");

Practical09 student3 = new Practical09("Michael");

// Displaying individual student information
System.out.println("\nStudent Information:");
studentl.displayStudentInfo();
System.out.println();
student2.displayStudentInfo();
System.out.println();
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student3.displayStudentInfo();

// Displaying college information using static method
System.out.println("\nCollege Information:");

Practical09.displayCollegeInfo();

// Demonstrating that static variable is shared

System.out.println("\nFinal instance count: " + Practical09.getInstanceCount());

Practical10

// PracticallO.java - Demonstrate use of 'final' keyword

// Final class - cannot be inherited
final class FinalClass {
public void display() {
System.out.println("This class cannot be inherited");

class Parent {
// Final method - cannot be overridden
final void showMessage() {
System.out.println("This method cannot be overridden");

class Child extends Parent {
// This would cause error if uncommented:

// void showMessage() { } // Cannot override final method

void displayChild() {
System.out.println("Child class calling parent's final method:");

showMessage( ) ;

public class Practicalll {
// Final variable - must be initialized and cannot be changed

private final int MAX VALUE = 100;

// Final reference variable
private final StringBuilder builder = new StringBuilder();

// Final static constant

private static final double PI = 3.14159;

// Blank final variable - must be initialized in constructor

private final String message;
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// Constructor to initialize final variable
public PracticallO(String msg) {

this.message = msg; // Initializing blank final variable

public void demonstrateFinal() {
// This would cause error:
// MAX VALUE = 200; // Cannot modify final variable

// Can modify object state even though reference is final
builder.append("Hello ");
builder.append("World");

System.out.println("Final variable MAX VALUE: " + MAX VALUE);
System.out.println("Final StringBuilder content: " + builder.toString());
System.out.println("Final static PI: " + PI);

System.out.println("Final message: + message);

public static void main(String[] args) {

System.out.println("Demonstrating final keyword usage:\n");

// Demonstrating final variables
Practicall0 obj = new PracticallO("This is a final message");

obj.demonstrateFinal();

// Demonstrating final class
System.out.println("\nDemonstrating final class:");
FinalClass finalObj = new FinalClass();

finalObj.display();

// Demonstrating final method
System.out.println("\nDemonstrating final method:");
Child child = new Child();

child.displayChild();

// Demonstrating final parameter in lambda expression
System.out.println("\nDemonstrating final parameter in lambda:");
Runnable run = () -> {

final String param = "Hello";

System.out.println("Parameter cannot be modified: + param);

}i

run.run();

// Demonstrating final local variable
final int number = 100;

System.out.println("\nFinal local variable: + number) ;
// This would cause error:

// number = 200; // Cannot modify final variable
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Practical11

// Practicalll.java - Demonstrate method overloading with Shape class

public class Practicalll {
// Class to demonstrate method overloading
public class Shape {
// Method to calculate area of circle
public float area(float radius) {

return (float) (Math.PI * radius * radius);

// Overloaded method to calculate area of rectangle
public float area(float length, float width) {
return length * width;

// Additional overloaded methods to show more variations
public float area(int radius) {
// Overloaded method with different parameter type

return (float) (Math.PI * radius * radius);

public double area(double radius) {
// Overloaded method with different return type

return Math.PI * radius * radius;

public float area(float base, float height, String shape) {
// Overloaded method for triangle if shape is "triangle"
if (shape.equalsIgnoreCase("triangle")) {
return 0.5f * base * height;
}

return 0; // Return 0 for invalid shape

public static void main(String[] args) {
Practicalll practical = new Practicalll();

Shape shape = practical.new Shape();

// Test values

float radius = 5.0f;
float length = 6.0f;
float width = 4.0f;
float base = 8.0f;
float height = 3.0f;

System.out.println("Demonstrating Method Overloading:\n");
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// Calculate and display area of circle using float parameter

System.out.println("Area of Circle (float radius = + radius + "):");

System.out.printf("%$.2f square units\n\n", shape.area(radius));

// Calculate and display area of rectangle

System.out.println("Area of Rectangle (length = " + length + ", width = " + width
+")");

System.out.printf("%.2f square units\n\n", shape.area(length, width));

// Calculate and display area of circle using int parameter
System.out.println("Area of Circle (int radius = 5):");

System.out.printf("%.2f square units\n\n", shape.area(5));

// Calculate and display area of circle using double parameter
System.out.println("Area of Circle (double radius = 5.0):");

System.out.printf("%.2f square units\n\n", shape.area(5.0));

// Calculate and display area of triangle
System.out.println("Area of Triangle (base = " + base + ", height = " + height +
"yt

System.out.printf("%.2f square units\n\n", shape.area(base, height, "triangle"));

// Demonstrate method selection based on parameter type

System.out.println("Demonstrating automatic method selection based on parameter
type:");

System.out.println("Calling area(5.0f) - selects float version: " +

shape.area(5.0f));

System.out.println("Calling area(5) - selects int version: + shape.area(5));
System.out.println("Calling area(5.0) - selects double version: " +
shape.area(5.0));

}

Practical12

// Practicall2.java - Demonstrate constructor overloading

public class Practicall2 {
// Instance variables
private String name;
private int age;
private String city;

private String occupation;

// Default constructor
public Practicall2() {
System.out.println("Default Constructor Called");
this.name = "Unknown";
this.age = 0;
this.city = "Not Specified";

this.occupation = "Not Specified";
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// Constructor with name parameter
public Practicall2(String name) {
System.out.println("Constructor with

this.name = name;

this.age = 0;

this.city = "Not Specified";
this.occupation = "Not Specified";

name parameter Called");

// Constructor with name and age parameters

public Practicall2(String name, int age)

System.out.println("Constructor with

this.name = name;

this.age = age;

this.city = "Not Specified";
this.occupation = "Not Specified";

// Constructor with all parameters
public Practicall2(String name, int age,

System.out.println("Constructor with

this.name = name;

this.age = age;

this.city = city;
this.occupation = occupation;

// Constructor using another constructor
public Practicall2(Practicall2 other) {

System.out.println("Copy Constructor

this.name = other.name;

this.age = other.age;

this.city = other.city;
this.occupation = other.occupation;

// Method to display person details
public void displayDetails() {

System.out.println("\nPerson Details:

System.out.println("Name: " + name);
System.out.println("Age: " + age);
System.out.println("City: " + city);

System.out.println("Occupation:

public static void main(String[] args) {

{

name and

String city, String occupation)

all parameters Called");

(Copy constructor)

Called");

+ occupation);

System.out.println("Demonstrating Constructor Overloading:\n");

// Creating objects using different constructors

System.out.println("l. Creating object with default constructor:");
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Practicall2 personl = new Practicall2();

personl.displayDetails();

System.out.println("\n2. Creating object with name parameter:");
Practicall2 person2 = new Practicall2("John");

person2.displayDetails();

System.out.println("\n3. Creating object with name and age parameters:");
Practicall2 person3 = new Practicall2("Emma", 25);

person3.displayDetails();

System.out.println("\n4. Creating object with all parameters:");
Practicall2 person4 = new Practicall2("Michael", 30, "New York", "Engineer");

persond.displayDetails();

System.out.println("\n5. Creating object using copy constructor:");
Practicall2 person5 = new Practicall2(personé);

personb5.displayDetails();

Practical13

// Practicall3.java - Demonstrate String class methods

public class Practicall3 {

// Method to demonstrate charAt()

public static void demonstrateCharAt(String str) {
System.out.println("\nDemonstrating charAt() method:");
System.out.println("String: " + str);
System.out.println("Character at index 0: " + str.charAt(0));
System.out.println("Character at index 4: " + str.charAt(4));
System.out.println("Last character: " + str.charAt(str.length() - 1));

// Method to demonstrate contains()

public static void demonstrateContains(String str) {
System.out.println("\nDemonstrating contains() method:");
System.out.println("String: " + str);

System.out.println("Contains 'Java'? + str.contains("Java"));

System.out.println("Contains 'Python'? " + str.contains("Python"));

System.out.println("Contains 'programming'? + str.contains("programming"));

// Method to demonstrate format()
public static void demonstrateFormat() {
System.out.println("\nDemonstrating format() method:");
String formatted = String.format("Name: %s, Age: %d, Height: %.2f", "John", 25,
509) 5
System.out.println(formatted);
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// More format examples

System.out.println(String.format("Binary: %b, Character: %c",

true, 'A'));

System.out.println(String.format("Hex: %x, Scientific: %e", 255, 123.456));

System.out.println(String.format("Left justified: '%-10s'", "Hello"));

System.out.println(String.format("Right justified: '%$10s'", "Hello"));

// Method to demonstrate length()
public static void demonstrateLength(String str) {

System.out.println("\nDemonstrating length() method:");
System.out.println("String: " + str);
System.out.println("Length: " + str.length());

// Additional length examples

String empty = 5

String withSpaces = Hello 8

System.out.println("Empty string length: + empty.length());

System.out.println("String with spaces length:

// Method to demonstrate split()
public static void demonstrateSplit() {

System.out.println("\nDemonstrating split() method:");

// Split by space
String sentence = "Java Programming is fun";

System.out.println("Original string: + sentence);
System.out.println("Splitting by space:");

String[] words = sentence.split(" ");

for (int i = 0; i < words.length; it++) {

System.out.println("Word " + (i + 1) + ":

+ words[i]);

// Split by comma

String csvData = "John,25,New York,Engineer";
System.out.println("\nSplitting CSV data:");
String[] data = csvData.split(",");
System.out.println("Name: " + data[0]);
System.out.println("Age: " + data[l]);
System.out.println("City: " + data[2]);
System.out.println("Occupation: " + data[3]);

public static void main(String[] args) {

System.out.println("Demonstrating String Class Methods:");
String testString = "Java Programming";

// Demonstrate all methods

demonstrateCharAt (testString);

demonstrateContains(testString);

demonstrateFormat () ;
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demonstrateLength(testString);
demonstrateSplit();

Practical14

// Practicall4d.java - Demonstrate single inheritance

// Parent class
class Animal {
protected String name;

protected int age;

// Constructor
public Animal(String name, int age) {
this.name = name;

this.age = age;

// Methods
public void eat() {

System.out.println(name + is eating.");

public void sleep() {

System.out.println(name + is sleeping.");

public void displayInfo() {

System.out.println( "Name: + name);

System.out.println("Age: + age + years");

// Child class inheriting from Animal
class Dog extends Animal {

private String breed;

// Constructor
public Dog(String name, int age, String breed) {
super (name, age); // Call parent constructor

this.breed = breed;

// Additional methods specific to Dog
public void bark() {

System.out.println(name + " is barking!");

public void fetch() {
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System.out.println(name + " is fetching the ball.");

// Override parent method

@override

public void displayInfo() {
super.displayInfo(); // Call parent method
System.out.println("Breed: " + breed);

public class Practicalld {
public static void main(String[] args) {

System.out.println("Demonstrating Single Inheritance:\n");

// Create instances of parent and child classes
System.out.println("1l. Creating Animal object (Parent class):");
Animal animal = new Animal("Generic Animal", 5);
animal.displayInfo();

animal.eat();

animal.sleep();

System.out.println("\n2. Creating Dog object (Child class):");
Dog dog = new Dog("Buddy", 3, "Golden Retriever");

// Accessing inherited methods
System.out.println("\nAccessing inherited methods:");
dog.displayInfo();

dog.eat();

dog.sleep();

// Accessing Dog-specific methods
System.out.println("\nAccessing Dog-specific methods:");
dog.bark();

dog.fetch();

// Demonstrating polymorphism

System.out.println("\n3. Demonstrating polymorphism:");

Animal animalDog = new Dog('"Max", 2, "German Shepherd");
System.out.println("Calling methods on Dog object through Animal reference:");
animalDog.displayInfo();

animalDog.eat();

animalDog.sleep();

// Note: Can't call bark() or fetch() through Animal reference

Practical15

// Practicall5.java - Demonstrate multilevel inheritance
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// Grandparent class

class Vehicle {
protected String brand;
protected String model;

public Vehicle(String brand, String model) {
this.brand = brand;

this.model = model;

public void start() {

System.out.println("Vehicle is starting...");

public void stop() {
System.out.println("Vehicle is stopping...");

public void displayInfo() {
System.out.println("Brand: " + brand);
System.out.println("Model: " + model);

// Parent class inheriting from Vehicle
class Car extends Vehicle {
private int numDoors;

private String fuelType;

public Car(String brand, String model, int numDoors, String fuelType) {
super (brand, model);
this.numDoors = numDooOrs;

this.fuelType = fuelType;

public void accelerate() {

System.out.println("Car is accelerating...");

public void brake() {

System.out.println("Car is braking...");

@Override
public void displayInfo() {
super.displayInfo();

System.out.println("Number of Doors: + numDoors) ;

System.out.println("Fuel Type: + fuelType);

// Child class inheriting from Car

No. 24 / 59



Java Programming (4343203) - Practicals by Milav Dabgar

class ElectricCar extends Car {
private int batteryCapacity;

private int range;

public ElectricCar(String brand, String model, int numDoors,
int batteryCapacity, int range) {
super (brand, model, numDoors, "Electric");
this.batteryCapacity = batteryCapacity;

this.range = range;

public void charge() {

System.out.println("Electric car is charging...");

public void displayBatteryStatus() ({
System.out.println("Battery Status: 75%");

@Override
public void displayInfo() {
super.displayInfo();

System.out.println("Battery Capacity: + batteryCapacity + " kWh");

n

System.out.println("Range: + range + " km");

public class Practicall5 {
public static void main(String[] args) {

System.out.println("Demonstrating Multilevel Inheritance:\n");

// Create instances of all three classes

System.out.println("l. Creating Vehicle object (Grandparent class):");
Vehicle vehicle = new Vehicle("Generic", "Basic");
vehicle.displayInfo();

vehicle.start();

vehicle.stop();

System.out.println("\n2. Creating Car object (Parent class):");
Car car = new Car("Toyota", "Camry", 4, "Petrol");
car.displayInfo();

car.start(); // Inherited from Vehicle

car.accelerate(); // Car's own method

car.brake(); // Car's own method

car.stop(); // Inherited from Vehicle

System.out.println("\n3. Creating ElectricCar object (Child class):");
ElectricCar electricCar = new ElectricCar("Tesla", "Model 3", 4, 75, 350);
electricCar.displayInfo();

electricCar.start(); // Inherited from Vehicle

electricCar.accelerate(); // Inherited from Car

electricCar.charge(); // ElectricCar's own method
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electricCar.displayBatteryStatus(); // ElectricCar's own method

electricCar.stop(); // Inherited from Vehicle

// Demonstrating polymorphism

System.out.println("\n4. Demonstrating polymorphism:");

Vehicle polymorphicCar = new ElectricCar("Tesla", "Model S", 4, 100, 400);
System.out.println("Calling methods on ElectricCar through Vehicle reference:");
polymorphicCar.displayInfo(); // Will call ElectricCar's version
polymorphicCar.start();

polymorphicCar.stop();

Practical16

// Practicallé6.java - Demonstrate hierarchical inheritance

// Parent class

class Employee {
protected int id;
protected String name;
protected double baseSalary;

public Employee(int id, String name, double baseSalary) {
this.id = id;
this.name = name;

this.baseSalary = baseSalary;

public void work() {

System.out.println(name + is working");

public double calculateSalary() {
return baseSalary;

public void displayInfo() {
System.out.println("ID: " + id);

System.out.println("Name: + name);

System.out.println("Salary: $" + calculateSalary());

// First child class
class Developer extends Employee {
private String programmingLanguage;

private double bonus;

public Developer(int id, String name, double baseSalary,

String programmingLanguage, double bonus) {
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super (id, name, baseSalary);
this.programmingLanguage = programmingLanguage;

this.bonus = bonus;

public void code() ({

" n

System.out.println(name + is coding in + programmingLanguage) ;

@override
public double calculateSalary() {

return baseSalary + bonus;

@Override

public void displayInfo() {
super.displayInfo();
System.out.println("Role: Developer");

"

System.out.println("Programming Language: + programmingLanguage) ;

System.out.println("Bonus: $" + bonus);

// Second child class
class Designer extends Employee {
private String designTool;

private int projectsCompleted;

public Designer(int id, String name, double baseSalary,
String designTool, int projectsCompleted) {
super (id, name, baseSalary);
this.designTool = designTool;

this.projectsCompleted = projectsCompleted;

public void design() {

" "

System.out.println(name + is designing using + designTool);

@override
public double calculateSalary() {
return baseSalary + (projectsCompleted * 100); // $100 bonus per project

@override

public void displayInfo() {
super.displayInfo();
System.out.println("Role: Designer");

System.out.println("Design Tool: + designTool);

System.out.println("Projects Completed: + projectsCompleted);
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// Third child class
class Manager extends Employee {
private int teamSize;

private double managementBonus;

public Manager(int id, String name, double baseSalary,
int teamSize, double managementBonus) {
super (id, name, baseSalary);
this.teamSize = teamSize;

this.managementBonus = managementBonus;

public void manage() {

System.out.println(name + is managing a team of + teamSize + people");

@Override
public double calculateSalary() {
return baseSalary + managementBonus + (teamSize * 100); // $100 per team member

@Override

public void displayInfo() {
super.displayInfo();
System.out.println("Role: Manager");

System.out.println("Team Size: + teamSize);

System.out.println("Management Bonus: $" + managementBonus);

public class Practicallé6 {
public static void main(String[] args) {
System.out.println("Demonstrating Hierarchical Inheritance:\n");

// Creating objects of different employee types
Developer dev = new Developer (101, "John", 70000, "Java", 5000);
Designer designer = new Designer (102, "Emma", 65000, "Adobe XD", 5);

Manager manager = new Manager (103, "Michael", 80000, 8, 10000);

// Demonstrating Developer
System.out.println("1l. Developer Details:");
dev.displayInfo();

dev.work(); // Inherited method

dev.code(); // Specific method

// Demonstrating Designer
System.out.println("\n2. Designer Details:");
designer.displayInfo();

designer.work(); // Inherited method

designer.design(); // Specific method
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// Demonstrating Manager
System.out.println("\n3. Manager Details:");
manager.displayInfo();

manager.work(); // Inherited method

manager.manage(); // Specific method

// Demonstrating polymorphism

System.out.println("\n4. Demonstrating polymorphism:");

Employee[] employees = {dev, designer, manager};

for (Employee emp : employees) {
System.out.println("\nEmployee Information:");

emp.displayInfo();

Practical17

// Practicall7.java - Demonstrate method overriding

// Parent class
class Shape {

protected String color;

public Shape(String color) {

this.color = color;

// Method to be overridden
public void draw() {

System.out.println("Drawing a shape");

public void getInfo() {

" "

System.out.println("This is a + color + shape");

public double calculateArea() {
return 0.0; // Default implementation

// First child class
class Circle extends Shape {

private double radius;
public Circle(String color, double radius) {

super (color) ;
this.radius = radius;
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// Override draw method
@Ooverride
public void draw() {

System.out.println("Drawing a circle with radius + radius);

@Override

public void getInfo() {

System.out.println("This is a + color + circle with radius + radius);

@Override
public double calculateArea() {
return Math.PI * radius * radius;

// Second child class

class Rectangle extends Shape {
private double length;
private double width;

public Rectangle(String color, double length, double width) {
super (color) ;
this.length = length;
this.width = width;

@Override
public void draw() {
System.out.println("Drawing a rectangle with length " + length + " and width " +
width);
}

@Override

public void getInfo() {

System.out.println("This is a + color + rectangle with length " + length +

" and width " + width);

@Ooverride
public double calculateArea() {
return length * width;

// Third child class

class Triangle extends Shape {
private double base;
private double height;

public Triangle(String color, double base, double height) {
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super (color) ;
this.base = base;
this.height = height;

@override
public void draw() {
System.out.println("Drawing a triangle with base " + base + " and height " +
height);
}

@Override

public void getInfo() {

n "

System.out.println("This is a + color + triangle with base " + base +

" and height " + height);

@Override
public double calculateArea() {
return 0.5 * base * height;

public class Practicall7 {
public static void main(String[] args) {

System.out.println("Demonstrating Method Overriding:\n");

// Create objects of different shapes
Circle circle = new Circle("Red", 5.0);
Rectangle rectangle = new Rectangle("Blue", 4.0, 6.0);

Triangle triangle = new Triangle("Green", 3.0, 8.0);

// Demonstrate method overriding for Circle
System.out.println("1l. Circle:");
circle.draw();

circle.getInfo();

System.out.printf("Area: %.2f square units\n", circle.calculateArea());

// Demonstrate method overriding for Rectangle

System.out.println("\n2. Rectangle:");

rectangle.draw();

rectangle.getInfo();

System.out.printf("Area: %.2f square units\n", rectangle.calculateArea());

// Demonstrate method overriding for Triangle

System.out.println("\n3. Triangle:");

triangle.draw();

triangle.getInfo();

System.out.printf("Area: %.2f square units\n", triangle.calculateArea());

// Demonstrate polymorphism with method overriding

System.out.println("\n4. Demonstrating polymorphism:");
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Shape[] shapes = {circle, rectangle, triangle};
for (Shape shape : shapes) {
System.out.println("\nShape details:");

shape.draw(); // Calls overridden method
shape.getInfo(); // Calls overridden method
System.out.printf("Area: %.2f square units\n", shape.calculateArea());
}
}
}
Practical18

// Practicall8.java - Demonstrate toString() method overriding

class Car {
private String name;
private int topSpeed;
private String color;

private double price;

// Constructor

public Car(String name, int topSpeed, String color, double price) {
this.name = name;
this.topSpeed = topSpeed;
this.color = color;

this.price = price;

// Overriding toString() method
@override
public String toString() {
return String.format("Car[name=%s, topSpeed=%d mph, color=%s, price=$%.2f]",

name, topSpeed, color, price);

// Getters
public String getName() {

return name;

public int getTopSpeed() {

return topSpeed;

public String getColor() {

return color;

public double getPrice() {

return price;
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public class Practicall8 {
// Method to display car details in a formatted way

public static void displayCarDetails(Car car, int carNumber) {

System.out.println("Car + carNumber + " Details:");

System.out.println("Name: + car.getName());

System.out.println("Top Speed: + car.getTopSpeed() + mph");

System.out.println("Color: + car.getColor());

System.out.printf("Price: $%.2f\n", car.getPrice());

System.out.println("toString() output: + car.toString());

System.out.println();

public static void main(String[] args) {

System.out.println("Demonstrating toString() Method Overriding:\n");

// Create 5 car instances

Car carl = new Car('"Tesla Model S", 200, "Red", 89990.00);
Car car2 = new Car("BMW M3", 180, "Blue", 69900.00);

new Car("Toyota Supra", 155, "Yellow", 43540.00);
Car car4 = new Car("Porsche 911", 182, "Black", 101200.00);
Car car5 = new Car("Ford Mustang", 160, "White", 27205.00);

Car car3

// Store cars in an array

Car[] cars = {carl, car2, car3, caréd4, carb5};

// Display details of each car
for (int i = 0; i < cars.length; i++) {

displayCarDetails(cars[i], i + 1);

// Demonstrate direct use of toString()
System.out.println("Direct println() calls (implicitly uses toString()):");
for (Car car : cars) {

System.out.println(car); // println automatically calls toString()

// Demonstrate toString() in different contexts

System.out.println("\nDemonstrating toString() in different contexts:");

// In string concatenation

String description = "My car is: + carl;

System.out.println(description);

// In StringBuilder
StringBuilder sb = new StringBuilder();
sb.append("Available car: ").append(car2);

System.out.println(sb.toString());

// In formatted string

System.out.printf("Featured car: %s%n", car3);
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Practical19

// Practicall9.java - Demonstrate multiple inheritance using

// First interface

interface Printer {
void print();
void checkInk();

// Second interface
interface Scanner {
void scan();

void checkScanQuality();

// Third interface
interface Fax {
void fax(String destination);

void checkFaxLine();

// Class implementing multiple interfaces

class AllInOnePrinter implements Printer, Scanner, Fax {
private String modelName;
private boolean inkAvailable;
private boolean scannerWorking;

private boolean faxLineConnected;

public AllInOnePrinter(String modelName) {
this.modelName = modelName;
this.inkAvailable = true;
this.scannerWorking = true;

this.faxLineConnected = true;

// Implementing Printer interface methods
@override
public void print() {

"

System.out.println(modelName +

@Override

public void checkInk() {

System.out.println("Ink status: " + (inkAvailable ? "Available"

// Implementing Scanner interface methods
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@Override
public void scan() {

System.out.println(modelName + is scanning a document");

@override
public void checkScanQuality() {
System.out.println("Scanner status: " +

(scannerWorking ? "Working properly" : "Needs maintenance"));

// Implementing Fax interface methods
@Override

public void fax(String destination) {

System.out.println(modelName + is faxing to + destination);

@Override
public void checkFaxLine() {
System.out.println("Fax line status: " +

(faxLineConnected ? "Connected" : "Disconnected"));

// Additional method specific to AllInOnePrinter
public void displayStatus() {

System.out.println("\nDevice Status for "
checkInk();

checkScanQuality();

+ modelName + ":");

checkFaxLine();

// Class implementing only Printer and Scanner interfaces
class BasicPrinter implements Printer, Scanner {

private String modelName;

public BasicPrinter(String modelName) {

this.modelName = modelName;

@override
public void print() {

System.out.println(modelName + is printing a document");

@Ooverride
public void checkInk() {

"

System.out.println("Checking ink levels for + modelName) ;

@Override

public void scan() {
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System.out.println(modelName + is scanning a document");

@Override
public void checkScanQuality() {

System.out.println("Checking scan quality for + modelName) ;

public class Practicall9 {
public static void main(String[] args) {

System.out.println("Demonstrating Multiple Inheritance Using Interfaces:\n");

// Create an AllInOnePrinter object
AllInOnePrinter allInOne = new AllInOnePrinter("HP OfficeJet Pro");

// Create a BasicPrinter object

BasicPrinter basicPrinter = new BasicPrinter("Canon ImageCLASS");

// Demonstrate AllInOnePrinter functionality
System.out.println("1l. Testing AllInOnePrinter:");
allInOne.print();

allInOne.scan();

allInOne.fax("123-456-7890");
allInOne.displayStatus();

// Demonstrate BasicPrinter functionality
System.out.println("\n2. Testing BasicPrinter:");
basicPrinter.print();

basicPrinter.scan();

basicPrinter.checkInk();

basicPrinter.checkScanQuality();

// Demonstrate polymorphism using interfaces

System.out.println("\n3. Demonstrating polymorphism using interfaces:");

// Using Printer interface

System.out.println("\nTesting through Printer interface:");
Printer printer = allInOne;

printer.print();

printer.checkInk();

// Using Scanner interface

System.out.println("\nTesting through Scanner interface:");
Scanner scanner = allInOne;

scanner.scan();

scanner.checkScanQuality();

// Using Fax interface

System.out.println("\nTesting through Fax interface:");
Fax fax = allInOne;

fax.fax("987-654-3210");
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fax.checkFaxLine();

Practical20

// Practical20.java - Demonstrate abstract class and method overriding

// Abstract class Shape
abstract class Shape {
protected String name;

protected String color;

// Constructor
public Shape(String name, String color) {
this.name = name;

this.color = color;

// Abstract method to calculate area

public abstract double area();

// Concrete method to display shape info
public void displayInfo() {

System.out.println("Shape: + name);

System.out.println("Color: + color);

System.out.printf("Area: %.2f square units\n", area());

// Triangle class
class Triangle extends Shape {
private double base;

private double height;

public Triangle(String color, double base, double height) {
super ("Triangle", color);
this.base = base;
this.height = height;

@Ooverride
public double area() {

return 0.5 * base * height;

@Ooverride
public void displayInfo() {
super.displayInfo();

System.out.println("Base: + base + " units");

System.out.println("Height: " + height + " units");

No. 37 /59



Java Programming (4343203) - Practicals by Milav Dabgar

// Rectangle class

class Rectangle extends Shape {
private double length;
private double width;

public Rectangle(String color, double length, double width) {
super ("Rectangle", color);
this.length = length;
this.width = width;

@Override
public double area() {
return length * width;

@Override

public void displayInfo() {
super.displayInfo();
System.out.println("Length: " + length + " units");
System.out.println("width: " + width + " units");

// Circle class
class Circle extends Shape {

private double radius;

public Circle(String color, double radius) {
super("Circle", color);

this.radius = radius;

@Override
public double area() {

return Math.PI * radius * radius;

@Override
public void displayInfo() {
super.displayInfo();

System.out.println("Radius: + radius + units");

public class Practical20 {
// Method to process any shape
public static void processShape(Shape shape) {

System.out.println("\nProcessing shape:");
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shape.displayInfo();

public static void main(String[] args) {
System.out.println("Demonstrating Abstract Class with Shape Hierarchy:\n");

// Create instances of different shapes
Triangle triangle = new Triangle("Red", 6.0, 4.0);
Rectangle rectangle = new Rectangle("Blue", 5.0, 3.0);

Circle circle = new Circle("Green", 3.0);

// Process each shape using polymorphism
processShape(triangle);
processShape (rectangle);

processShape(circle);

// Demonstrate array of shapes
System.out.println("\nProcessing array of shapes:");

Shape[] shapes = {triangle, rectangle, circle};

for (Shape shape : shapes) {
System.out.println("\nShape Details:");
shape.displayInfo();
System.out.println("Calculated area: " + String.format("%$.2f",
shape.area()));

}

// Demonstrate that we cannot instantiate abstract class
// Following line would cause compilation error:

// Shape shape = new Shape("Generic", "Yellow");

// Calculate total area of all shapes

double totalArea = 0;

for (Shape shape : shapes) {
totalArea += shape.area();

}
System.out.printf("\nTotal area of all shapes: %.2f square units\n", totalArea);
}
}
Practical21

// Practical2l.java - Demonstrate use of final class

// Final class - cannot be inherited
final class SecureConfig {
private String serverName;
private String password;
private int port;

private boolean isSSLEnabled;
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// Constructor
public SecureConfig(String serverName, String password, int port) {
this.serverName = serverName;
this.password = password;
this.port = port;
this.isSSLEnabled = true;

// Public methods to access and modify configuration
public String getServerName() {

return serverName;

public int getPort() {

return port;

public boolean isSSLEnabled() {
return isSSLEnabled;

public void setSSLEnabled(boolean enabled) {
this.isSSLEnabled = enabled;

// Method to display configuration (excluding sensitive data)
public void displayConfig() {
System.out.println("Server Configuration:");
System.out.println("Server Name: " + serverName);

System.out.println("Port: + port);
System.out.println("SSL Enabled: " + isSSLEnabled);

System.out.println("Password: ****x"). // Hide actual password

// Method to validate configuration
public boolean validateConfig() {
return serverName != null && !serverName.isEmpty() &&
password != null && !password.isEmpty() &&
port > 0 && port <= 65535;

// This class would cause compilation error if uncommented:
/*
class ExtendedConfig extends SecureConfig { // Error: cannot inherit from final class

private String additionalSetting;

public ExtendedConfig(String serverName, String password, int port) {

super (serverName, password, port);
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public class Practical2l {
public static void main(String[] args) {

System.out.println("Demonstrating Final Class Usage:\n");

// Create instances of SecureConfig
SecureConfig configl = new SecureConfig("prod-server-1", "secretpassl23", 443);

SecureConfig config2 = new SecureConfig("dev-server-1", "devpass456", 8080);

// Demonstrate configl
System.out.println("1l. First Configuration:");
configl.displayConfig();

System.out.println("Configuration valid: + configl.validateConfig());
// Modify SSL settings

configl.setSSLEnabled(false);

System.out.println("\nAfter modifying SSL settings:");
configl.displayConfig();

// Demonstrate config2
System.out.println("\n2. Second Configuration:");
config2.displayConfig();

System.out.println("Configuration valid: + config2.validateConfig());
// Demonstrate accessing individual properties
System.out.println("\n3. Accessing Individual Properties:");

System.out.println("Server Name: + config2.getServerName());

"

System.out.println("Port: + config2.getPort());

System.out.println("SSL Enabled: " + config2.isSSLEnabled());

// Create array of configurations
System.out.println("\n4. Processing Multiple Configurations:");

SecureConfig[] configs = {configl, config2};

for (int i = 0; i < configs.length; i++) {
System.out.println("\nConfiguration " + (i + 1) + ":");

configs[i].displayConfig();

Practical22

// File: Practical22.java
import shapes.Circle;
import shapes.Rectangle;

import util.Calculator;
public class Practical22 {

public static void main(String[] args) {

System.out.println("Demonstrating Package Usage:\n");
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// Create objects of classes from shapes package
Circle circle = new Circle(5.0);

Rectangle rectangle = new Rectangle(4.0, 6.0);

// Calculate and display circle measurements
System.out.println("Circle Measurements:");

System.out.println("Area: " +

"

Calculator.round(circle.getArea(), 2) + square units");
System.out.println("Perimeter: " +

Calculator.round(circle.getPerimeter(), 2) + " units");

// Calculate and display rectangle measurements
System.out.println("\nRectangle Measurements:");
System.out.println("Area: " +
Calculator.round(rectangle.getArea(), 2) + " square units");
System.out.println("Perimeter: " +

Calculator.round(rectangle.getPerimeter(), 2) + " units");

// Demonstrate fully qualified names
System.out.println("\nUsing fully qualified names:");
shapes.Circle circle2 = new shapes.Circle(3.0);
System.out.println("New circle area: " +

"

util.Calculator.round(circle2.getArea(), 2) + square units");

// File: shapes/Circle.java

package shapes;

public class Circle {

private double radius;
public Circle(double radius) {

this.radius = radius;

public double getArea() {
return Math.PI * radius * radius;

public double getPerimeter() {

return 2 * Math.PI * radius;

// File: shapes/Rectangle.java

package shapes;

public class Rectangle {
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private double length;
private double width;

public Rectangle(double length, double width) {
this.length = length;
this.width = width;

public double getArea() {
return length * width;

public double getPerimeter() {
return 2 * (length + width);

// File: util/Calculator.java
package util;

public class Calculator {
public static double round(double value, int places) {
double scale = Math.pow(10, places);

return Math.round(value * scale) / scale;

Practical23

// Practical23.java - Demonstrate user defined exception for divide by zero

// Custom Exception class
class DivideByZeroException extends Exception {
public DivideByZeroException() {

super ("Cannot divide by zero!");

public DivideByZeroException(String message) {
super (message) ;

// Calculator class with division method
class Calculator {
// Method that throws our custom exception
public static double divide(double numerator, double denominator)
throws DivideByZeroException {
if (denominator == 0) {
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throw new DivideByZeroException(

"Division by zero error! Numerator was: + numerator);

}

return numerator / denominator;

public class Practical23 {
// Method to demonstrate division with exception handling
public static void performDivision(double numerator, double denominator) {
try {
double result = Calculator.divide(numerator, denominator);
System.out.printf("%$.2f + $.2f = %.2f\n", numerator, denominator, result);
} catch (DivideByZeroException e) {

System.out.println("Error: + e.getMessage());

public static void main(String[] args) {

System.out.println("Demonstrating User Defined Exception:\n");

// Test cases
System.out.println("1l. Normal division:");

performbDivision(10.0, 2.0);

System.out.println("\n2. Division by zero:");

performDivision(20.0, 0.0);

System.out.println("\n3. Multiple divisions in a loop:");
double[] numerators = {15.0, 25.0, 30.0};
double[] denominators = {3.0, 0.0, 5.0};

for (int i = 0; i < numerators.length; i++) {
System.out.println("\nAttempting division " + (i + 1) + ":");

performDivision(numerators[i], denominators[i]);

// Demonstrating exception handling with try-catch block
System.out.println("\n4. Direct try-catch usage:");
try {
System.out.println("Attempting risky division...");
double result = Calculator.divide(50.0, 0.0);

"

System.out.println("Result of division: + result); // This line won't be
reached
} catch (DivideByZeroException e) {
System.out.println("Caught exception: "
} finally {

System.out.println("Finally block executed");

+ e.getMessage());

// Additional demonstration with successful division

System.out.println("\n5. Another try-catch example with successful division:");
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try {
System.out.println("Attempting safe division...");
double result = Calculator.divide(50.0, 2.0);
System.out.println("Result of division: " + result); // This line will be
reached
} catch (DivideByZeroException e) {
System.out.println("Caught exception: "
} finally {

System.out.println("Finally block executed");

+ e.getMessage());

System.out.println("\n6. Program continues after exception handling");

performDivision(100.0, 25.0);

Practical24

// Practical24.java - Banking Application with custom exception

// Custom Exception for insufficient funds
class InsufficientFundsException extends Exception {
private double currentBalance;

private double withdrawAmount;

public InsufficientFundsException(double currentBalance, double withdrawAmount) ({
super (String.format("Not Sufficient Fund! Balance: $%.2f, Withdrawal Amount:

$%.2f",
currentBalance, withdrawAmount));
this.currentBalance = currentBalance;
this.withdrawAmount = withdrawAmount;
}

public double getDeficit() {

return withdrawAmount - currentBalance;

// Bank Account class
class BankAccount {
private double balance;

private String accountNumber;

public BankAccount(String accountNumber, double initialDeposit) {
this.accountNumber = accountNumber;

this.balance = initialDeposit;

public void deposit(double amount) {
if (amount > 0) {

balance += amount;
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System.out.printf("Deposited: $%.2f\n", amount);
displayBalance();

} else {
System.out.println("Invalid deposit amount");

public void withdraw(double amount) throws InsufficientFundsException {

if (amount > balance) {
throw new InsufficientFundsException(balance, amount);

balance -= amount;
System.out.printf("Withdrawn: $%.2f\n", amount);

displayBalance();

public void displayBalance() {
System.out.printf("Current Balance: $%.2f\n", balance);

public double getBalance() {

return balance;

public String getAccountNumber () {

return accountNumber;

public class Practical24 {
public static void main(String[] args) {
System.out.println("Banking Application Demonstration:\n");

// Create a bank account with initial deposit of $25000
BankAccount account = new BankAccount("ACC001", 25000);
System.out.println("Account created successfully!");

account.displayBalance();

try {
// Performing transactions as per requirement

System.out.println("\nl. Withdrawing $20000:");
account.withdraw(20000);

System.out.println("\n2. Withdrawing $4000:");

account.withdraw(4000);

System.out.println("\n3. Attempting to withdraw $2000:");

account.withdraw(2000);

} catch (InsufficientFundsException e) {
System.out.println("Transaction Failed: " + e.getMessage());
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System.out.printf("Deficit Amount: $%.2f\n", e.getDeficit());

// Additional demonstrations

System.out.println("\nAdditional Operations:");

try {
// Deposit some money

System.out.println("\n4. Depositing $1000:");
account.deposit(1000);

// Try withdrawal again
System.out.println("\n5. Attempting to withdraw $1500:");

account.withdraw(1500);

} catch (InsufficientFundsException e) {
System.out.println("Transaction Failed: " + e.getMessage());
System.out.printf("Deficit Amount: $%.2f\n", e.getDeficit());

// Final balance check
System.out.println("\nFinal Account Status:");

account.displayBalance();

Practical25

// Practical25.java - Demonstrate thread creation and execution

// First thread class
class Threadl extends Thread {
@Override
public void run() {
try {
for (int 1 = 1; i <= 5; i++) {
System.out.println("Threadl");
// Sleep for 1000 milliseconds (1 second)
Thread.sleep(1000);
}
} catch (InterruptedException e) {
System.out.println("Threadl interrupted");

// Second thread class
class Thread2 extends Thread {
@override
public void run() {
try {
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1;
System.out.println("Thread2");

for (int i = i <= 5; i++) {

// Sleep for 2000 milliseconds (2 seconds)

Thread.sleep(2000);

}
} catch (InterruptedException e) {

System.out.println("Thread2 interrupted");

public class Practical25 {

public static void main(String[] args) {

System.out.println("Demonstrating Thread Creation and Execution:\n");

// Create thread objects
Threadl tl = new Threadl();
Thread2 t2 = new Thread2();

// Set thread names
tl.setName("Thread-1");

t2.setName("Thread-2");

// Display

thread information before starting

System.out.println("Thread States Before Starting:");

" State:
" State:

System.out.println(tl.getName() +
System.out.println(t2.getName() +

System.out.println("\nStarting threads...")

// Start both threads
tl.start();
t2.start();

//

" + tl.getState());
" + t2.getState());

.
’

Display thread information after starting

System.out.println("\nThread States After Starting:");

" State:
" State:

System.out.println(tl.getName() +
System.out.println(t2.getName() +

// Wait for both threads to complete
try {

tl.join();

t2.join();
} catch (InterruptedException e) {

" + tl.getState());
" + t2.getState());

System.out.println("Main thread interrupted");

// Display final thread states

System.out.println("\nThread States
" State:
" State:

System.out.println(tl.getName() +
System.out.println(t2.getName() +
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System.out.println("\nMain thread ending");

Practical26

// Practical26.java - Demonstrate threads printing even and odd numbers

class NumberPrinter {
private int currentNumber = 1;
private final int maxNumber = 200;

private boolean isEvenTurn = false;

// Method for printing even numbers
synchronized void printEven() {
while (currentNumber <= maxNumber) {
try {
// Wait if it's not even number's turn
while (!isEvenTurn && currentNumber <= maxNumber) {

wait();

if (currentNumber <= maxNumber) {
System.out.printf("Even Thread: %d%n", currentNumber);
currentNumber++;
isEvenTurn = false;
notify();
}
} catch (InterruptedException e) {

Thread.currentThread().interrupt();

// Method for printing odd numbers
synchronized void printOdd() {
while (currentNumber <= maxNumber) {
try {
// Wait if it's not odd number's turn
while (isEvenTurn && currentNumber <= maxNumber) {

wait();

if (currentNumber <= maxNumber) {
System.out.printf("0dd Thread: %d%n", currentNumber);
currentNumber++;
isEvenTurn = true;
notify();
}
} catch (InterruptedException e) {

Thread.currentThread().interrupt();
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// Thread class for printing even numbers
class EvenPrinter extends Thread ({

private NumberPrinter printer;

public EvenPrinter (NumberPrinter printer) {

this.printer = printer;

@Override
public void run() {

printer.printEven();

// Thread class for printing odd numbers
class OddPrinter extends Thread {

private NumberPrinter printer;

public OddPrinter (NumberPrinter printer) ({

this.printer = printer;

@Override
public void run() {

printer.print0Odd();

public class Practical26 {
public static void main(String[] args) {

System.out.println("Demonstrating Even-Odd Number Printing Using Threads:\n");

// Create shared number printer object

NumberPrinter printer = new NumberPrinter();

// Create even and odd printer threads
Thread evenThread = new EvenPrinter(printer);

Thread oddThread = new OddPrinter(printer);

// Set thread names
evenThread.setName("EvenThread") ;
oddThread.setName( "OddThread");

// Start both threads
System.out.println("Starting threads to print numbers from 1 to 200...\n");
oddThread.start();

evenThread.start();
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// Wait for both threads to complete

try {
evenThread. join();
oddThread. join();

} catch (InterruptedException e) {
System.out.println("Main thread interrupted");

System.out.println("\nBoth threads completed execution");

Practical27

// Practical27.java - Demonstrate read and write operations on a text file

import java.io.*;

import java.util.Scanner;

public class Practical27 {
// Method to write content to a file
public static void writeToFile(String fileName, String content) {
try (FileWriter writer = new FileWriter(fileName);
BufferedWriter bufferedWriter = new BufferedWriter(writer)) {

bufferedWriter.write(content);

System.out.println("Successfully wrote to the file.");

} catch (IOException e) {
System.out.println("An error occurred while writing to the file:");

e.printStackTrace();

// Method to append content to a file
public static void appendToFile(String fileName, String content) {
try (FileWriter writer = new FileWriter(fileName, true);
BufferedWriter bufferedWriter = new BufferedWriter(writer)) {

bufferedWriter.write(content);

System.out.println("Successfully appended to the file.");
} catch (IOException e) {

System.out.println("An error occurred while appending to the file:");

e.printStackTrace();

// Method to read content from a file using BufferedReader

public static void readFileUsingBufferedReader (String fileName) {
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try (FileReader reader = new FileReader (fileName);
BufferedReader bufferedReader = new BufferedReader(reader)) {

System.out.println("\nReading file using BufferedReader:");
String line;
while ((line = bufferedReader.readLine()) != null) {

System.out.println(line);

} catch (IOException e) {
System.out.println("An error occurred while reading the file:");

e.printStackTrace();

// Method to read content from a file using Scanner
public static void readFileUsingScanner (String fileName) {
try (Scanner scanner = new Scanner(new File(fileName))) {
System.out.println("\nReading file using Scanner:");
while (scanner.hasNextLine()) {

System.out.println(scanner.nextLine());

} catch (FileNotFoundException e) {
System.out.println("File not found:");

e.printStackTrace();

public static void main(String[] args) {

System.out.println("Demonstrating File Operations:\n");
String fileName = "sample.txt";

// Write initial content to file
System.out.println("1l. Writing initial content to file:");
String initialContent = "Hello! This is line 1.\n" +

"This is line 2.\n" +

"This is line 3.\n";

writeToFile(fileName, initialContent);

// Read the file content using BufferedReader
readFileUsingBufferedReader (fileName);

// Append additional content

System.out.println("\n2. Appending content to file:");

String additionalContent = "This is line 4 (appended).\n" +
"This is line 5 (appended).\n";

appendToFile(fileName, additionalContent);

// Read the file content using Scanner

readFileUsingScanner (fileName) ;
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// Demonstrate File class operations
File file = new File(fileName);
System.out.println("\n3. File Information:");

"

System.out.println("File exists: + file.exists());

System.out.println("File name: " + file.getName());
System.out.println("Absolute path: " + file.getAbsolutePath());
System.out.println("File size: " + file.length() + " bytes");

System.out.println("Can read: " + file.canRead());

System.out.println("Can write: " + file.canWrite());

// Clean up - Delete the file
System.out.println("\n4. Cleaning up:");
if (file.delete()) {

System.out.println("File deleted successfully.");
} else {

System.out.println("Failed to delete the file.");

Practical28

// Practical28.java - Demonstrate use of List (ArrayList and LinkedList)
import java.util.*;

public class Practical28 {
// Method to display list contents
public static void displayList(List<?> list, String listName) {

System.out.println(listName +
for (Object item : list) {

contents:");

System.out.print(item + " ");
}
System.out.println("\nSize: " + list.size());

System.out.println();

public static void main(String[] args) {

System.out.println("Demonstrating List Interface Usage:\n");

// Create ArrayList and add weekdays
List<String> weekdays = new ArrayList<>();

System.out.println("1l. ArrayList Operations (Weekdays):");

// Adding weekdays
weekdays.add("Monday") ;
weekdays.add("Tuesday");
weekdays.add ( "Wednesday");
weekdays.add("Thursday");
weekdays.add("Friday");
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displayList (weekdays, "Weekdays ArrayList");

// Demonstrate ArrayList operations
System.out.println("ArrayList Operations:");

System.out.println("First day: + weekdays.get(0));

System.out.println("Last day: + weekdays.get(weekdays.size() - 1));

System.out.println("Contains 'Wednesday'? + weekdays.contains("Wednesday"));

"

System.out.println("Index of 'Friday': + weekdays.indexOf ("Friday"));
// Create LinkedList and add months
List<String> months = new LinkedList<>();

System.out.println("\n2. LinkedList Operations (Months):");

// Adding months
months.add("January");
months.add("February");
months.add("March");
months.add("April");
months.add("May");

months.add("June");

displayList (months, "Months LinkedList");

// Demonstrate LinkedList specific operations
LinkedList<String> monthsLinked = (LinkedList<String>) months;
System.out.println("LinkedList Specific Operations:");
System.out.println("First month: " + monthsLinked.getFirst());
System.out.println("Last month: " + monthsLinked.getLast());

// Add elements at specific positions
monthsLinked.addFirst("December"); // Add at beginning
monthsLinked.addLast("July"); // Add at end

System.out.println("\nAfter adding elements:");
displayList (months, "Updated Months LinkedList");

// Demonstrate List interface common operations

System.out.println("3. Common List Operations:");

// Sorting

Collections.sort (weekdays);
System.out.println("Sorted weekdays:");
displayList (weekdays, "Sorted Weekdays");

Collections.sort(months);
System.out.println("Sorted months:");

displayList (months, "Sorted Months");
// Removing elements

weekdays.remove("Friday");

months.remove("July");
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System.out.println("After removing elements:");
System.out.println("Weekdays after removing Friday:");
displayList (weekdays, "Modified Weekdays");
System.out.println("Months after removing July:");
displayList (months, "Modified Months");

// Clear lists
weekdays.clear();

months.clear();

System.out.println("4. After clearing lists:");
displayList (weekdays, "Cleared Weekdays");
displayList (months, "Cleared Months");

Practical29

// Practical29.java - Demonstrate HashSet operations with colors

import java.util.HashSet;

import java.util.Iterator;

public class Practical29 {
// Method to display set contents with iteration count
private static void displaySet(HashSet<String> set, String message) {
System.out.println(message);
int count = 1;
for (String color : set) {

System.out.println(count + + color);

count++;

}

System.out.println("Set size: " + set.size() + "\n");

public static void main(String[] args) {

System.out.println("Demonstrating HashSet Operations with Colors:\n");

// Create a HashSet to store colors

HashSet<sString> colors = new HashSet<>();

// 1. Adding colors to the set
System.out.println("1l. Adding colors to HashSet:");
colors.add("Red");

colors.add("Green");

colors.add("Blue");

colors.add("Yellow");

colors.add("Purple");

displaySet(colors, "Initial Set of Colors:");
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// 2. Demonstrate duplicate handling
System.out.println("2. Attempting to add duplicate colors:");
boolean addedRed = colors.add("Red");

boolean addedOrange = colors.add("Orange");

System.out.println("Added 'Red' again? " + addedRed);

System.out.println("Added 'Orange'? + addedOrange) ;

displaySet(colors, "Set after attempting duplicates:");

// 3. Different ways of iteration

System.out.println("3. Different iteration methods:");

// Using Iterator

System.out.println("Using Iterator:");

Iterator<String> iterator = colors.iterator();

while (iterator.hasNext()) {
System.out.println(iterator.next());

}
System.out.println();

// Using forEach method
System.out.println("Using forEach method:");
colors.forEach(color -> System.out.println(color));

System.out.println();

// 4. Searching and removing elements
System.out.println("4. Search and remove operations:");
System.out.println("Contains 'Blue'? " + colors.contains("Blue"));

System.out.println("Contains 'Black'? " + colors.contains("Black"));

// Remove a color
boolean removed = colors.remove('"Yellow");

"

System.out.println("Removed 'Yellow'? + removed) ;

displaySet(colors, "Set after removing 'Yellow':");

// 5. Create a new set for set operations
HashSet<String> moreColors = new HashSet<>();
moreColors.add("Pink");

moreColors.add("Blue"); // Duplicate with first set

moreColors.add("Brown");

System.out.println("5. Set operations with new colors:");

displaySet (moreColors, "New set of colors:");

// Add all elements from moreColors to colors
colors.addAll (moreColors);

displaySet(colors, "After adding all new colors:");
// 6. Clear the set

System.out.println("6. Clearing the set:");

colors.clear();
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System.out.println("Is set empty? + colors.isEmpty());

displaySet(colors, "Set after clearing:");

Practical30

// Practical30.java - Demonstrate HashMap with Student Data

import java.util.HashMap;

import java.util.Map;

public class Practical30 {
// Method to display student data

private static void displayStudents(HashMap<String, String> students,

System.out.println(message);
if (students.isEmpty()) {

System.out.println("No students in the map.");
} else {

for (Map.Entry<String, String> entry : students.entrySet()) {

System.out.printf("Enrollment No: %s, Name: %s%n",

entry.getKey(), entry.getValue());

}

System.out.println("Total students: " + students.size() + "\n");

public static void main(String[] args) {

String message)

System.out.println("Demonstrating HashMap Operations with Student Data:\n");

// Create HashMap to store student data

HashMap<String, String> students = new HashMap<>();

// 1. Adding students to the map
System.out.println("1l. Adding students to HashMap:");
students.put("Al101", "John Smith");
students.put("A102", "Emma Watson");
students.put("A103", "Michael Johnson");
students.put("Al04", "Sarah Wilson");
students.put("Al105", "David Brown");

displayStudents(students, "Initial Student List:");

// 2. Accessing specific student
System.out.println("2. Accessing student data:");
String enrollmentNo = "Al103";

System.out.println("Student with enrollment no

+ students.get(enrollmentNo));

// Try accessing non-existent student
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System.out.println("Student with enrollment no Al06:
+ students.get("A106"));
System.out.println();

// 3. Updating student data

System.out.println("3. Updating student data:");
students.put("Al01", "John Smith Jr."); // Update existing entry
System.out.println("Updated Al0l's name");
displayStudents(students, "After updating:");

// 4. Checking existence

System.out.println("4. Checking existence:");

System.out.println("Contains enrollment no A102? "
+ students.containsKey("A102"));

System.out.println("Contains student Emma Watson? "

+ students.containsValue("Emma Watson"));

System.out.println();

// 5. Different ways to iterate
System.out.println("5. Different ways to iterate through the map:");

// Using entrySet
System.out.println("Using entrySet:");
for (Map.Entry<String, String> entry : students.entrySet()) {

System.out.println("Key: + entry.getKey() + ", Value: " +

entry.getValue());

}
System.out.println();

// Using keySet

System.out.println("Using keySet:");

for (String key : students.keySet()) {
System.out.println("Enrollment No: " + key);

}
System.out.println();

// Using values
System.out.println("Using values:");
for (String value : students.values()) {

System.out.println("Student Name: + value);

}
System.out.println();

// 6. Removing a student
System.out.println("6. Removing student:");
String removedStudent = students.remove("Al04");

System.out.println("Removed student: + removedStudent) ;

displayStudents(students, "After removing Al1l04:");
// 7. Using getOrDefault

System.out.println("7. Using getOrDefault:");
System.out.println("Student A105: " +
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students.getOrDefault("Al105", "Not Found"));
System.out.println("Student Al06: " +

students.getOrDefault("Al06", "Not Found"));
System.out.println();

// 8. Clear the map
System.out.println("8. Clearing the map:");
students.clear();

System.out.println("Is map empty? + students.isEmpty());

displayStudents(students, "After clearing:");
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