Java Programming (4343203) - Practicals by Milav Dabgar

Practicals

Practical01

// Practical0Ol.java - Basic Java program demonstrating output methods

public class Practical0Ol {
public static void main(String[] args) {
System.out.println("Demonstrating Different Output Methods in Java:\n");

// 1. Using println() - prints and moves to next line
System.out.println("1l. Using println():");
System.out.println("Hello, World!");
System.out.println("This is a new line");

System.out.println();

// 2. Using print() - prints without moving to next line
System.out.println("2. Using print():");
System.out.print("Hello ");

System.out.print("World ");

System.out.print("without line breaks");

System.out.println("\n");

// 3. Using printf() - formatted output

System.out.println("3. Using printf():");

String name = "Student";

int age = 20;

double height = 5.9;

System.out.printf("Name: %s, Age: %d, Height: %.1f feet%n", name, age, height);
System.out.println();

// 4. Demonstrating escape sequences
System.out.println("4. Using Escape Sequences:");
System.out.println("Using tab:\tAfter tab");
System.out.println("Using new line:\nAfter new line");
System.out.println("Using single quote: \'Hello\'");
System.out.println("Using double quote: \"World\"");
System.out.println("Using backslash: \\");

Practical02

// Practical02.java - Find maximum of three numbers using conditional operator
import java.util.Scanner;

public class Practical02 {

// Method to find maximum using conditional operator

No. 1/59

Java Programming (4343203) - Practicals by Milav Dabgar

public static int findMax(int a, int b, int c) {

return (a > b) ? ((a>c) 2 az:c) : ((b>c) 2 b :c);

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);
System.out.println("Program to Find Maximum of Three Numbers:\n");

// 1. Using hardcoded values

System.out.println("1l. Testing with hardcoded values:");
int x = 25, y = 45, z = 15;

System.out.printf ("Numbers are: %d, %d, %d%n", x, y, 2);

"

System.out.println("Maximum number is: + findMax(x, y, 2));

System.out.println();

// 2. Taking user input
System.out.println("2. Testing with user input:");
System.out.print("Enter first number: ");

int numl = scanner.nextInt();

System.out.print("Enter second number: ");

int num2 = scanner.nextInt();

System.out.print("Enter third number: ");

int num3 = scanner.nextInt();

int max = findMax(numl, num2, num3);
System.out.printf("Maximum number among %d, %d and %d is: %d%n",

numl, num2, num3, max);

// 3. Additional test cases
System.out.println("\n3. Testing with special cases:");

// When all numbers are same

System.out.println("When all numbers are same:");
System.out.println("Max of (5, 5, 5): " + findMax(5, 5, 5));
// When two numbers are same

System.out.println("When two numbers are same:");
System.out.println("Max of (7, 7, 3): " + findMax(7, 7, 3));
// With negative numbers

System.out.println("With negative numbers:");

System.out.println("Max of (-5, -2, -8): " + findMax(-5, -2, -8));

scanner.close();

Practical03

No. 2 /59

Java Programming (4343203) - Practicals by Milav Dabgar

// Practical03.java - Reverse digits of a number using while loop

import java.util.Scanner;

public class Practical03 {
// Method to reverse digits of a number
public static int reverseNumber (int num) {
int reversed = 0;
boolean isNegative = num < 0;

num = Math.abs(num);

while (num > 0) {
int digit = num % 10;
reversed = reversed * 10 + digit;

num /= 10;

return isNegative ? -reversed : reversed;

// Method to display the reversal process

public static void showReversalProcess(int num) {
System.out.println("\nReversal Process:");
int temp = Math.abs(num);

System.out.print("Digits extracted: ");

// Store digits in array for proper display order
int[] digits = new int[10]; // Assuming number won't exceed 10 digits

int count = 0;

while (temp > 0) {
digits[count++] = temp % 10;
temp /= 10;

// Display digits in order of extraction
for (int i = 0; i < count; i++) {
System.out.print(digits[i]);
if (i < count - 1) {

System.out.print(", ");

}
System.out.println();

public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);

System.out.println("Program to Reverse Digits of a Number:\n");

// 1. Using hardcoded values

No. 3 /59

Java Programming (4343203) - Practicals by Milav Dabgar

System.out.println("1l. Testing with hardcoded values:");
int[] testNumbers = {12345, -9876, 1000, 7};

for (int num : testNumbers) {

System.out.println("\nOriginal number: + num);

showReversalProcess (num) ;

System.out.println("Reversed number: + reverseNumber (num));

// 2. Taking user input

System.out.println("\n2. Testing with user input:");
System.out.print("Enter a number to reverse: ");

int userNum = scanner.nextInt();

System.out.println("Original number: + userNum) ;

showReversalProcess (userNum) ;

System.out.println("Reversed number: + reverseNumber (userNum)) ;
// 3. Special cases demonstration

System.out.println("\n3. Special cases:");

// Number ending with zeros
int numWithZeros = 12000;

"

System.out.println("\nNumber ending with zeros: + numWithZeros);

showReversalProcess (numWithZeros) ;

System.out.println("Reversed number: + reverseNumber (numWithZeros));
// Single digit number
int singleDigit = 5;

System.out.println("\nSingle digit number: + singleDigit);

showReversalProcess(singleDigit);

System.out.println("Reversed number: + reverseNumber (singleDigit));

scanner.close();

Practical04

// Practical0O4.java - Add two 3x3 matrices
import java.util.Scanner;

public class Practical04 {
// Method to input matrix elements
public static void inputMatrix(int[][] matrix, Scanner scanner, String matrixName) {

System.out.println("Enter elements for + matrixName + " (3x3):");
for (int i = 0; i < 3; i++) {
for (int j = 0; Jj < 3; j++) {

System.out.printf("Enter element [%d][%d]: ", i, J);

matrix[i][]j] = scanner.nextInt();

No. 4 / 59

Java Programming (4343203) - Practicals by Milav Dabgar

}
System.out.println();

// Method to display matrix
public static void displayMatrix(int[][] matrix, String matrixName) {
System.out.println(matrixName + ":");
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
System.out.printf("%$4d ", matrix[i][]]);
}
System.out.println();

}
System.out.println();

// Method to add two matrices
public static int[][] addMatrices(int[][] matrixl, int[][] matrix2) {
int[][] result = new int[3][3];
for (int 1 = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {

result[i][J] = matrix1[i][j] + matrix2[i]l[]];
}
return result;
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);

System.out.println("Program to Add Two 3x3 Matrices:\n");

// 1. Using hardcoded matrices

System.out.println("1l. Testing with hardcoded matrices:");

int[][] matrixl = {
{l, 2, 3%,
{4, 5, 6},
{7, 8, 9}

bi

int[][] matrix2 = {
{9, 8, 7},
{6, 5, 4},
{3, 2, 1}

}i

displayMatrix(matrixl, "First Matrix");

displayMatrix(matrix2, "Second Matrix");

int[][] resultl = addMatrices(matrixl, matrix2);

displayMatrix(resultl, "Result Matrix (Hardcoded)");

No. 5/ 59

Java Programming (4343203) - Practicals by Milav Dabgar

// 2. Taking user input
System.out.println("2. Testing with user input:");

int[][] userMatrixl = new int[3][3];

int[][] userMatrix2 = new int[3][3];

inputMatrix(userMatrixl, scanner, "First Matrix");

inputMatrix(userMatrix2, scanner, "Second Matrix");

System.out.println("Entered matrices:");
displayMatrix(userMatrixl, "First Matrix");

displayMatrix(userMatrix2, "Second Matrix");

int[][] result2 = addMatrices(userMatrixl, userMatrix2);

displayMatrix(result2, "Result Matrix (User Input)");

// 3. Special case demonstration
System.out.println("3. Special case - Adding zero matrix:");

int[][] zeroMatrix = new int[3][3]; // All elements are 0 by default

displayMatrix(matrixl, "Original Matrix");

displayMatrix(zeroMatrix, "Zero Matrix");

int[][] result3 = addMatrices(matrixl, zeroMatrix);

displayMatrix(result3, "Result Matrix (Adding Zero Matrix)");

scanner.close();

Practical05

// Practical05.java - Generate first n prime numbers
import java.util.Scanner;

public class Practical05 {
// Method to check if a number is prime
public static boolean isPrime(int number) {
if (number < 2) {
return false;
}
for (int i = 2; i <= Math.sqrt(number); i++) {
if (number % i == 0) {

return false;

}

return true;

// Method to generate first n prime numbers

No. 6 /59

i)

Java Programming (4343203) - Practicals by Milav Dabgar

public static void generatePrimes(int n) {
if (n <= 0) {
System.out.println("Please enter a positive number.");

return;

System.out.println("First " + n + prime numbers are:");
int count = 0;

int number = 2;

while (count < n) {
if (isPrime(number)) {
System.out.print (number) ;

count++;

// Add formatting
if (count < n) {

System.out.print(", ");

}
if (count % 10 == 0) {
System.out.println();
}
}
number++;

}
System.out.println();

// Method to show prime checking process

public static void demonstratePrimeCheck(int number) {
System.out.printf("\nChecking if %d is prime:%n", number);
if (number < 2) {

"

System.out.println(number + is not prime (less than 2)");

return;

for (int i = 2; i <= Math.sqrt(number); i++) {

System.out.printf("Checking divisibility by %d: ", i);
if (number & i == 0) {

System.out.printf("%d is divisible by %d, so it's not prime%n", number,

return;

}
System.out.println("Not divisible");

}

System.out.println(number +

is prime");

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

System.out.println("Program to Generate First N Prime Numbers:\n");

No. 7 /59

Java Programming (4343203) - Practicals by Milav Dabgar

// 1. Using hardcoded value

System.out.println("1l. Testing with hardcoded value (n=10):");

generatePrimes(10);

// 2. Demonstrate prime checking

process

System.out.println("\n2. Demonstrating prime checking process:");

int[] testNumbers = {7, 12, 23,
testNumbers) {
demonstratePrimeCheck (num) ;

for (int num

// 3. Taking user input

System.out.println("\n3. Testing
System.out.print("Enter how many
int n = scanner.nextInt();

generatePrimes(n);

// 4. Handle special cases
System.out.println("\n4. Testing
System.out.println("Generating 0

generatePrimes(0);

System.out.println("\nGenerating

generatePrimes(1);

scanner.close();

Practical06

35};

with user input:");

prime numbers you want to generate:

special cases:");

prime numbers:");

1 prime number:");

// Practical06.java - Create Student class and demonstrate object creation

class Student {
private String enrollmentNo;

private String name;

// Constructor

public Student(String enrollmentNo, String name) {

this.enrollmentNo =

this.name = name;

// Getter methods
public String getEnrollmentNo() {

return enrollmentNo;

public String getName() {

return name;

enrollmentNo;

No. 8 /59

")

.
’

Java Programming (4343203) - Practicals by Milav Dabgar

// Setter methods
public void setEnrollmentNo(String enrollmentNo) {

this.enrollmentNo = enrollmentNo;

public void setName(String name) {

this.name = name;

// Method to display student details
public void displayDetails() {
System.out.println("Student Details:");

"

System.out.println("Enrollment No: + enrollmentNo) ;

n

System.out.println("Name: + name);

System.out.println();

public class Practical06 {
public static void main(String[] args) {

System.out.println("Demonstrating Student Class and Objects:\n");

// 1. Creating three student objects

System.out.println("1l. Creating and displaying three students:");
Student studentl = new Student("Al101", "John Smith");

Student student2 = new Student("Al102", "Emma Watson");

Student student3 = new Student("Al103", "Michael Johnson");

// Display student information
studentl.displayDetails();
student2.displayDetails();
student3.displayDetails();

// 2. Demonstrating getter methods

System.out.println("2. Using getter methods:");
System.out.println("Student 1:");

System.out.println("Enrollment No: " + studentl.getEnrollmentNo());
System.out.println("Name: " + studentl.getName());
System.out.println();

// 3. Demonstrating setter methods

System.out.println("3. Using setter methods to update student details:");
System.out.println("Updating student2's information:");
student2.setName("Emma Thompson");

System.out.println("After update:");

student2.displayDetails();

// 4. Creating array of students

System.out.println("4. Working with array of students:");
Student[] students = {

No. 9 /59

Java Programming (4343203) - Practicals by Milav Dabgar

new Student("B101", "Alice Brown"),
new Student("B102", "Bob Wilson"),
new Student("B103", "Carol White")

}i

System.out.println("Displaying all students in array:");
for (Student student : students) {
student.displayDetails();

Practical07

// Practical07.java - Rectangle class with constructor initialization

class Rectangle {
private double height;
private double width;

// Default constructor

public Rectangle() {
this.height = 0.0;
this.width = 0.0;

// Parameterized constructor

public Rectangle(double height, double width) {
this.height = height;
this.width = width;

// Copy constructor

public Rectangle(Rectangle other) {
this.height = other.height;
this.width = other.width;

// Getter methods
public double getHeight() {

return height;

public double getWidth() {
return width;

// Setter methods
public void setHeight(double height) {
this.height = height;

No. 10 / 59

Java Programming (4343203) - Practicals by Milav Dabgar

public void setWidth(double width) {
this.width = width;

// Method to calculate area
public double calculateArea() {
return height * width;

// Method to calculate perimeter
public double calculatePerimeter() {
return 2 * (height + width);

// Method to display rectangle details

public void displayDetails() {
System.out.println("Rectangle Details:");
System.out.printf("Height: %.2f units%n", height);
System.out.printf("Width: %.2f units%n", width);
System.out.printf("Area: %.2f square units%n", calculateArea());
System.out.printf("Perimeter: %.2f units%n", calculatePerimeter());

System.out.println();

public class Practical07 {
public static void main(String[] args) {
System.out.println("Demonstrating Rectangle Class with Constructors:\n");

// 1. Using default constructor
System.out.println("1l. Creating rectangle using default constructor:");
Rectangle rectl = new Rectangle();

rectl.displayDetails();

// 2. Using parameterized constructor

System.out.println("2. Creating rectangle using parameterized constructor:");
Rectangle rect2 = new Rectangle(5.0, 3.0);

rect2.displayDetails();

// 3. Using copy constructor

System.out.println("3. Creating rectangle using copy constructor:");
Rectangle rect3 = new Rectangle(rect2);

System.out.println("Copied rectangle details:");

rect3.displayDetails();

// 4. Demonstrating setter methods
System.out.println("4. Using setter methods:");
rectl.setHeight(4.0);

rectl.setWidth(6.0);

System.out.println("After setting new dimensions:");

rectl.displayDetails();

No. 11/ 59

Java Programming (4343203) - Practicals by Milav Dabgar

// 5. Demonstrating getter methods

System.out.println("5. Using getter methods:");
System.out.printf("Rectangle 2 height: %.2f units%n", rect2.getHeight());
System.out.printf("Rectangle 2 width: %.2f units%n", rect2.getWidth());
System.out.println();

// 6. Array of rectangles
System.out.println("6. Working with array of rectangles:");
Rectangle[] rectangles = {

new Rectangle(2.0, 3.0),

new Rectangle(4.0, 4.0),

new Rectangle(3.0, 5.0)

}i

System.out.println("Details of all rectangles:");
for (Rectangle rect : rectangles) {

rect.displayDetails();

// 7. Find rectangle with largest area
System.out.println("7. Finding rectangle with largest area:");
Rectangle maxAreaRect = rectangles[0];
for (Rectangle rect : rectangles) {
if (rect.calculateArea() > maxAreaRect.calculateArea()) {

maxAreaRect = rect;

}
System.out.println("Rectangle with largest area:");
maxAreaRect.displayDetails();

Practical08

// Practical(08.java - Demonstrate use of 'this' keyword

public class Practical08 {
private int number;

private String text;

// Constructor using 'this' to distinguish parameters from instance variables
public Practical08(int number, String text) {

this.number = number;

this.text = text;

// Method using 'this' to call another method of current object
public void display() {

System.out.println("Number: + this.number);

System.out.println("Text: " + this.text);

No. 12 / 59

Java Programming (4343203) - Practicals by Milav Dabgar

this.showMore(); // Using 'this' to call another method

// Method using 'this' to pass current object as parameter
public void showMore() {
System.out.println("Demonstrating method call using 'this'");

this.processObject(this); // Passing current object as parameter

// Method accepting object of same class as parameter

public void processObject(Practical08 obj) {

System.out.println("Processing object with number: + obj.number);

// Method returning current object using 'this'
public Practical08 updateNumber (int number) {
this.number = number;

return this; // Method chaining by returning current object

public static void main(String[] args) {

System.out.println("Demonstrating the use of 'this' keyword:\n");

// Creating object and demonstrating various uses of 'this'
Practical08 obj = new Practical08(42, "Hello");

System.out.println("Initial object state:");
obj.display();

System.out.println("\nDemonstrating method chaining using 'this':");

obj.updateNumber (100).display();

// Creating another object to show constructor usage of 'this'
System.out.println("\nCreating another object:");

Practical08 obj2 = new Practical08(99, "World");
obj2.display():;

Practical09

// Practical(09.java - Demonstrate use of 'static' keyword

public class Practical09 {
// Static variable

private static int instanceCount = 0;
// Non-static variables

private int id;

private String name;

No. 13 /59

Java Programming (4343203) - Practicals by Milav Dabgar

// Static constant

private static final String COLLEGE_NAME = "My College";

// Static block - executed when class is loaded

static {
System.out.println("Static block executed - Class loading...");
System.out.println("College Name: " + COLLEGE_NAME);

// Constructor
public Practical09(String name) {
this.id = ++instanceCount;

this.name = name;

// Static method
public static int getInstanceCount() {

return instanceCount;

// Static method to display college info
public static void displayCollegeInfo() {
System.out.println("College Name: " + COLLEGE_NAME) ;

System.out.println("Total Students: + getInstanceCount());

// Non-static method
public void displayStudentInfo() {
System.out.println("Student ID: " + this.id);

System.out.println("Student Name:
System.out.println("College: " + COLLEGE NAME); // Static variable accessed in

+ this.name);

non-static method

}

public static void main(String[] args) {

System.out.println("Demonstrating static keyword usage:\n");

// Accessing static method before creating any object

"

System.out.println("Initial instance count: + Practical09.getInstanceCount());
// Creating objects and demonstrating static variable
System.out.println("\nCreating student objects:");

Practical09 studentl = new Practical09("John");

Practical09 student2 = new PracticalO9("Emma");

Practical09 student3 = new Practical09("Michael");

// Displaying individual student information
System.out.println("\nStudent Information:");
studentl.displayStudentInfo();
System.out.println();
student2.displayStudentInfo();
System.out.println();

No. 14 / 59

Java Programming (4343203) - Practicals by Milav Dabgar

student3.displayStudentInfo();

// Displaying college information using static method
System.out.println("\nCollege Information:");

Practical09.displayCollegeInfo();

// Demonstrating that static variable is shared

System.out.println("\nFinal instance count: " + Practical09.getInstanceCount());

Practical10

// PracticallO.java - Demonstrate use of 'final' keyword

// Final class - cannot be inherited
final class FinalClass {
public void display() {
System.out.println("This class cannot be inherited");

class Parent {
// Final method - cannot be overridden
final void showMessage() {
System.out.println("This method cannot be overridden");

class Child extends Parent {
// This would cause error if uncommented:

// void showMessage() { } // Cannot override final method

void displayChild() {
System.out.println("Child class calling parent's final method:");

showMessage() ;

public class Practicalll {
// Final variable - must be initialized and cannot be changed

private final int MAX VALUE = 100;

// Final reference variable
private final StringBuilder builder = new StringBuilder();

// Final static constant

private static final double PI = 3.14159;

// Blank final variable - must be initialized in constructor

private final String message;

No. 15 / 59

Java Programming (4343203) - Practicals by Milav Dabgar

// Constructor to initialize final variable
public PracticallO(String msg) {

this.message = msg; // Initializing blank final variable

public void demonstrateFinal() {
// This would cause error:
// MAX VALUE = 200; // Cannot modify final variable

// Can modify object state even though reference is final
builder.append("Hello ");
builder.append("World");

System.out.println("Final variable MAX VALUE: " + MAX VALUE);
System.out.println("Final StringBuilder content: " + builder.toString());
System.out.println("Final static PI: " + PI);

System.out.println("Final message: + message);

public static void main(String[] args) {

System.out.println("Demonstrating final keyword usage:\n");

// Demonstrating final variables
Practicall0 obj = new PracticallO("This is a final message");

obj.demonstrateFinal();

// Demonstrating final class
System.out.println("\nDemonstrating final class:");
FinalClass finalObj = new FinalClass();

finalObj.display();

// Demonstrating final method
System.out.println("\nDemonstrating final method:");
Child child = new Child();

child.displayChild();

// Demonstrating final parameter in lambda expression
System.out.println("\nDemonstrating final parameter in lambda:");
Runnable run = () -> {

final String param = "Hello";

System.out.println("Parameter cannot be modified: + param);

}i

run.run();

// Demonstrating final local variable
final int number = 100;

System.out.println("\nFinal local variable: + number) ;
// This would cause error:

// number = 200; // Cannot modify final variable

No. 16 / 59

Java Programming (4343203) - Practicals by Milav Dabgar

Practical11

// Practicalll.java - Demonstrate method overloading with Shape class

public class Practicalll {
// Class to demonstrate method overloading
public class Shape {
// Method to calculate area of circle
public float area(float radius) {

return (float) (Math.PI * radius * radius);

// Overloaded method to calculate area of rectangle
public float area(float length, float width) {
return length * width;

// Additional overloaded methods to show more variations
public float area(int radius) {
// Overloaded method with different parameter type

return (float) (Math.PI * radius * radius);

public double area(double radius) {
// Overloaded method with different return type

return Math.PI * radius * radius;

public float area(float base, float height, String shape) {
// Overloaded method for triangle if shape is "triangle"
if (shape.equalsIgnoreCase("triangle")) {
return 0.5f * base * height;
}

return 0; // Return 0 for invalid shape

public static void main(String[] args) {
Practicalll practical = new Practicalll();

Shape shape = practical.new Shape();

// Test values

float radius = 5.0f;
float length = 6.0f;
float width = 4.0f;
float base = 8.0f;
float height = 3.0f;

System.out.println("Demonstrating Method Overloading:\n");

No. 17 / 59

Java Programming (4343203) - Practicals by Milav Dabgar

// Calculate and display area of circle using float parameter

System.out.println("Area of Circle (float radius = + radius + "):");

System.out.printf("%$.2f square units\n\n", shape.area(radius));

// Calculate and display area of rectangle

System.out.println("Area of Rectangle (length = " + length + ", width = " + width
+")");

System.out.printf("%.2f square units\n\n", shape.area(length, width));

// Calculate and display area of circle using int parameter
System.out.println("Area of Circle (int radius = 5):");

System.out.printf("%.2f square units\n\n", shape.area(5));

// Calculate and display area of circle using double parameter
System.out.println("Area of Circle (double radius = 5.0):");

System.out.printf("%.2f square units\n\n", shape.area(5.0));

// Calculate and display area of triangle
System.out.println("Area of Triangle (base = " + base + ", height = " + height +
"yt

System.out.printf("%.2f square units\n\n", shape.area(base, height, "triangle"));

// Demonstrate method selection based on parameter type

System.out.println("Demonstrating automatic method selection based on parameter
type:");

System.out.println("Calling area(5.0f) - selects float version: " +

shape.area(5.0f));

System.out.println("Calling area(5) - selects int version: + shape.area(5));
System.out.println("Calling area(5.0) - selects double version: " +
shape.area(5.0));

}

Practical12

// Practicall2.java - Demonstrate constructor overloading

public class Practicall2 {
// Instance variables
private String name;
private int age;
private String city;

private String occupation;

// Default constructor
public Practicall2() {
System.out.println("Default Constructor Called");
this.name = "Unknown";
this.age = 0;
this.city = "Not Specified";

this.occupation = "Not Specified";

No. 18 / 59

Java Programming (4343203) - Practicals by Milav Dabgar

// Constructor with name parameter
public Practicall2(String name) {
System.out.println("Constructor with

this.name = name;

this.age = 0;

this.city = "Not Specified";
this.occupation = "Not Specified";

name parameter Called");

// Constructor with name and age parameters

public Practicall2(String name, int age)

System.out.println("Constructor with

this.name = name;

this.age = age;

this.city = "Not Specified";
this.occupation = "Not Specified";

// Constructor with all parameters
public Practicall2(String name, int age,

System.out.println("Constructor with

this.name = name;

this.age = age;

this.city = city;
this.occupation = occupation;

// Constructor using another constructor
public Practicall2(Practicall2 other) {

System.out.println("Copy Constructor

this.name = other.name;

this.age = other.age;

this.city = other.city;
this.occupation = other.occupation;

// Method to display person details
public void displayDetails() {

System.out.println("\nPerson Details:

System.out.println("Name: " + name);
System.out.println("Age: " + age);
System.out.println("City: " + city);

System.out.println("Occupation:

public static void main(String[] args) {

{

name and

String city, String occupation)

all parameters Called");

(Copy constructor)

Called");

+ occupation);

System.out.println("Demonstrating Constructor Overloading:\n");

// Creating objects using different constructors

System.out.println("l. Creating object with default constructor:");

No. 19 /59

age parameters Called");

Java Programming (4343203) - Practicals by Milav Dabgar

Practicall2 personl = new Practicall2();

personl.displayDetails();

System.out.println("\n2. Creating object with name parameter:");
Practicall2 person2 = new Practicall2("John");

person2.displayDetails();

System.out.println("\n3. Creating object with name and age parameters:");
Practicall2 person3 = new Practicall2("Emma", 25);

person3.displayDetails();

System.out.println("\n4. Creating object with all parameters:");
Practicall2 person4 = new Practicall2("Michael", 30, "New York", "Engineer");

persond.displayDetails();

System.out.println("\n5. Creating object using copy constructor:");
Practicall2 person5 = new Practicall2(personé);

personb5.displayDetails();

Practical13

// Practicall3.java - Demonstrate String class methods

public class Practicall3 {

// Method to demonstrate charAt()

public static void demonstrateCharAt(String str) {
System.out.println("\nDemonstrating charAt() method:");
System.out.println("String: " + str);
System.out.println("Character at index 0: " + str.charAt(0));
System.out.println("Character at index 4: " + str.charAt(4));
System.out.println("Last character: " + str.charAt(str.length() - 1));

// Method to demonstrate contains()

public static void demonstrateContains(String str) {
System.out.println("\nDemonstrating contains() method:");
System.out.println("String: " + str);

System.out.println("Contains 'Java'? + str.contains("Java"));

System.out.println("Contains 'Python'? " + str.contains("Python"));

System.out.println("Contains 'programming'? + str.contains("programming"));

// Method to demonstrate format()
public static void demonstrateFormat() {
System.out.println("\nDemonstrating format() method:");
String formatted = String.format("Name: %s, Age: %d, Height: %.2f", "John", 25,
509) 5
System.out.println(formatted);

No. 20 /59

Java Programming (4343203) - Practicals by Milav Dabgar

// More format examples

System.out.println(String.format("Binary: %b, Character: %c",

true, 'A'));

System.out.println(String.format("Hex: %x, Scientific: %e", 255, 123.456));

System.out.println(String.format("Left justified: '%-10s'", "Hello"));

System.out.println(String.format("Right justified: '%$10s'", "Hello"));

// Method to demonstrate length()
public static void demonstrateLength(String str) {

System.out.println("\nDemonstrating length() method:");
System.out.println("String: " + str);
System.out.println("Length: " + str.length());

// Additional length examples

String empty = 5

String withSpaces = Hello 8

System.out.println("Empty string length: + empty.length());

System.out.println("String with spaces length:

// Method to demonstrate split()
public static void demonstrateSplit() {

System.out.println("\nDemonstrating split() method:");

// Split by space
String sentence = "Java Programming is fun";

System.out.println("Original string: + sentence);
System.out.println("Splitting by space:");

String[] words = sentence.split(" ");

for (int i = 0; i < words.length; it++) {

System.out.println("Word " + (i + 1) + ":

+ words[i]);

// Split by comma

String csvData = "John,25,New York,Engineer";
System.out.println("\nSplitting CSV data:");
String[] data = csvData.split(",");
System.out.println("Name: " + data[0]);
System.out.println("Age: " + data[l]);
System.out.println("City: " + data[2]);
System.out.println("Occupation: " + data[3]);

public static void main(String[] args) {

System.out.println("Demonstrating String Class Methods:");
String testString = "Java Programming";

// Demonstrate all methods

demonstrateCharAt (testString);

demonstrateContains(testString);

demonstrateFormat () ;

No. 21 /59

+ withSpaces.

length());

Java Programming (4343203) - Practicals by Milav Dabgar

demonstrateLength(testString);
demonstrateSplit();

Practical14

// Practicall4d.java - Demonstrate single inheritance

// Parent class
class Animal {
protected String name;

protected int age;

// Constructor
public Animal(String name, int age) {
this.name = name;

this.age = age;

// Methods
public void eat() {

System.out.println(name + is eating.");

public void sleep() {

System.out.println(name + is sleeping.");

public void displayInfo() {

System.out.println("Name: + name);

System.out.println("Age: + age + years");

// Child class inheriting from Animal
class Dog extends Animal {

private String breed;

// Constructor
public Dog(String name, int age, String breed) {
super (name, age); // Call parent constructor

this.breed = breed;

// Additional methods specific to Dog
public void bark() {

System.out.println(name + " is barking!");

public void fetch() {

No. 22 / 59

Java Programming (4343203) - Practicals by Milav Dabgar

System.out.println(name + " is fetching the ball.");

// Override parent method

@override

public void displayInfo() {
super.displayInfo(); // Call parent method
System.out.println("Breed: " + breed);

public class Practicalld {
public static void main(String[] args) {

System.out.println("Demonstrating Single Inheritance:\n");

// Create instances of parent and child classes
System.out.println("1l. Creating Animal object (Parent class):");
Animal animal = new Animal("Generic Animal", 5);
animal.displayInfo();

animal.eat();

animal.sleep();

System.out.println("\n2. Creating Dog object (Child class):");
Dog dog = new Dog("Buddy", 3, "Golden Retriever");

// Accessing inherited methods
System.out.println("\nAccessing inherited methods:");
dog.displayInfo();

dog.eat();

dog.sleep();

// Accessing Dog-specific methods
System.out.println("\nAccessing Dog-specific methods:");
dog.bark();

dog.fetch();

// Demonstrating polymorphism

System.out.println("\n3. Demonstrating polymorphism:");

Animal animalDog = new Dog('"Max", 2, "German Shepherd");
System.out.println("Calling methods on Dog object through Animal reference:");
animalDog.displayInfo();

animalDog.eat();

animalDog.sleep();

// Note: Can't call bark() or fetch() through Animal reference

Practical15

// Practicall5.java - Demonstrate multilevel inheritance

No. 23 /59

Java Programming (4343203) - Practicals by Milav Dabgar

// Grandparent class

class Vehicle {
protected String brand;
protected String model;

public Vehicle(String brand, String model) {
this.brand = brand;

this.model = model;

public void start() {

System.out.println("Vehicle is starting...");

public void stop() {
System.out.println("Vehicle is stopping...");

public void displayInfo() {
System.out.println("Brand: " + brand);
System.out.println("Model: " + model);

// Parent class inheriting from Vehicle
class Car extends Vehicle {
private int numDoors;

private String fuelType;

public Car(String brand, String model, int numDoors, String fuelType) {
super (brand, model);
this.numDoors = numDooOrs;

this.fuelType = fuelType;

public void accelerate() {

System.out.println("Car is accelerating...");

public void brake() {

System.out.println("Car is braking...");

@Override
public void displayInfo() {
super.displayInfo();

System.out.println("Number of Doors: + numDoors) ;

System.out.println("Fuel Type: + fuelType);

// Child class inheriting from Car

No. 24 / 59

Java Programming (4343203) - Practicals by Milav Dabgar

class ElectricCar extends Car {
private int batteryCapacity;

private int range;

public ElectricCar(String brand, String model, int numDoors,
int batteryCapacity, int range) {
super (brand, model, numDoors, "Electric");
this.batteryCapacity = batteryCapacity;

this.range = range;

public void charge() {

System.out.println("Electric car is charging...");

public void displayBatteryStatus() ({
System.out.println("Battery Status: 75%");

@Override
public void displayInfo() {
super.displayInfo();

System.out.println("Battery Capacity: + batteryCapacity + " kWh");

n

System.out.println("Range: + range + " km");

public class Practicall5 {
public static void main(String[] args) {

System.out.println("Demonstrating Multilevel Inheritance:\n");

// Create instances of all three classes

System.out.println("l. Creating Vehicle object (Grandparent class):");
Vehicle vehicle = new Vehicle("Generic", "Basic");
vehicle.displayInfo();

vehicle.start();

vehicle.stop();

System.out.println("\n2. Creating Car object (Parent class):");
Car car = new Car("Toyota", "Camry", 4, "Petrol");
car.displayInfo();

car.start(); // Inherited from Vehicle

car.accelerate(); // Car's own method

car.brake(); // Car's own method

car.stop(); // Inherited from Vehicle

System.out.println("\n3. Creating ElectricCar object (Child class):");
ElectricCar electricCar = new ElectricCar("Tesla", "Model 3", 4, 75, 350);
electricCar.displayInfo();

electricCar.start(); // Inherited from Vehicle

electricCar.accelerate(); // Inherited from Car

electricCar.charge(); // ElectricCar's own method

No. 25 /59

Java Programming (4343203) - Practicals by Milav Dabgar

electricCar.displayBatteryStatus(); // ElectricCar's own method

electricCar.stop(); // Inherited from Vehicle

// Demonstrating polymorphism

System.out.println("\n4. Demonstrating polymorphism:");

Vehicle polymorphicCar = new ElectricCar("Tesla", "Model S", 4, 100, 400);
System.out.println("Calling methods on ElectricCar through Vehicle reference:");
polymorphicCar.displayInfo(); // Will call ElectricCar's version
polymorphicCar.start();

polymorphicCar.stop();

Practical16

// Practicallé6.java - Demonstrate hierarchical inheritance

// Parent class

class Employee {
protected int id;
protected String name;
protected double baseSalary;

public Employee(int id, String name, double baseSalary) {
this.id = id;
this.name = name;

this.baseSalary = baseSalary;

public void work() {

System.out.println(name + is working");

public double calculateSalary() {
return baseSalary;

public void displayInfo() {
System.out.println("ID: " + id);

System.out.println("Name: + name);

System.out.println("Salary: $" + calculateSalary());

// First child class
class Developer extends Employee {
private String programmingLanguage;

private double bonus;

public Developer(int id, String name, double baseSalary,

String programmingLanguage, double bonus) {

No. 26 / 59

Java Programming (4343203) - Practicals by Milav Dabgar

super (id, name, baseSalary);
this.programmingLanguage = programmingLanguage;

this.bonus = bonus;

public void code() ({

" n

System.out.println(name + is coding in + programmingLanguage) ;

@override
public double calculateSalary() {

return baseSalary + bonus;

@Override

public void displayInfo() {
super.displayInfo();
System.out.println("Role: Developer");

"

System.out.println("Programming Language: + programmingLanguage) ;

System.out.println("Bonus: $" + bonus);

// Second child class
class Designer extends Employee {
private String designTool;

private int projectsCompleted;

public Designer(int id, String name, double baseSalary,
String designTool, int projectsCompleted) {
super (id, name, baseSalary);
this.designTool = designTool;

this.projectsCompleted = projectsCompleted;

public void design() {

" "

System.out.println(name + is designing using + designTool);

@override
public double calculateSalary() {
return baseSalary + (projectsCompleted * 100); // $100 bonus per project

@override

public void displayInfo() {
super.displayInfo();
System.out.println("Role: Designer");

System.out.println("Design Tool: + designTool);

System.out.println("Projects Completed: + projectsCompleted);

No. 27 | 59

Java Programming (4343203) - Practicals by Milav Dabgar

// Third child class
class Manager extends Employee {
private int teamSize;

private double managementBonus;

public Manager(int id, String name, double baseSalary,
int teamSize, double managementBonus) {
super (id, name, baseSalary);
this.teamSize = teamSize;

this.managementBonus = managementBonus;

public void manage() {

System.out.println(name + is managing a team of + teamSize + people");

@Override
public double calculateSalary() {
return baseSalary + managementBonus + (teamSize * 100); // $100 per team member

@Override

public void displayInfo() {
super.displayInfo();
System.out.println("Role: Manager");

System.out.println("Team Size: + teamSize);

System.out.println("Management Bonus: $" + managementBonus);

public class Practicallé6 {
public static void main(String[] args) {
System.out.println("Demonstrating Hierarchical Inheritance:\n");

// Creating objects of different employee types
Developer dev = new Developer (101, "John", 70000, "Java", 5000);
Designer designer = new Designer (102, "Emma", 65000, "Adobe XD", 5);

Manager manager = new Manager (103, "Michael", 80000, 8, 10000);

// Demonstrating Developer
System.out.println("1l. Developer Details:");
dev.displayInfo();

dev.work(); // Inherited method

dev.code(); // Specific method

// Demonstrating Designer
System.out.println("\n2. Designer Details:");
designer.displayInfo();

designer.work(); // Inherited method

designer.design(); // Specific method

No. 28 / 59

Java Programming (4343203) - Practicals by Milav Dabgar

// Demonstrating Manager
System.out.println("\n3. Manager Details:");
manager.displayInfo();

manager.work(); // Inherited method

manager.manage(); // Specific method

// Demonstrating polymorphism

System.out.println("\n4. Demonstrating polymorphism:");

Employee[] employees = {dev, designer, manager};

for (Employee emp : employees) {
System.out.println("\nEmployee Information:");

emp.displayInfo();

Practical17

// Practicall7.java - Demonstrate method overriding

// Parent class
class Shape {

protected String color;

public Shape(String color) {

this.color = color;

// Method to be overridden
public void draw() {

System.out.println("Drawing a shape");

public void getInfo() {

" "

System.out.println("This is a + color + shape");

public double calculateArea() {
return 0.0; // Default implementation

// First child class
class Circle extends Shape {

private double radius;
public Circle(String color, double radius) {

super (color) ;
this.radius = radius;

No. 29 /59

Java Programming (4343203) - Practicals by Milav Dabgar

// Override draw method
@Ooverride
public void draw() {

System.out.println("Drawing a circle with radius + radius);

@Override

public void getInfo() {

System.out.println("This is a + color + circle with radius + radius);

@Override
public double calculateArea() {
return Math.PI * radius * radius;

// Second child class

class Rectangle extends Shape {
private double length;
private double width;

public Rectangle(String color, double length, double width) {
super (color) ;
this.length = length;
this.width = width;

@Override
public void draw() {
System.out.println("Drawing a rectangle with length " + length + " and width " +
width);
}

@Override

public void getInfo() {

System.out.println("This is a + color + rectangle with length " + length +

" and width " + width);

@Ooverride
public double calculateArea() {
return length * width;

// Third child class

class Triangle extends Shape {
private double base;
private double height;

public Triangle(String color, double base, double height) {

No. 30 /59

Java Programming (4343203) - Practicals by Milav Dabgar

super (color) ;
this.base = base;
this.height = height;

@override
public void draw() {
System.out.println("Drawing a triangle with base " + base + " and height " +
height);
}

@Override

public void getInfo() {

n "

System.out.println("This is a + color + triangle with base " + base +

" and height " + height);

@Override
public double calculateArea() {
return 0.5 * base * height;

public class Practicall7 {
public static void main(String[] args) {

System.out.println("Demonstrating Method Overriding:\n");

// Create objects of different shapes
Circle circle = new Circle("Red", 5.0);
Rectangle rectangle = new Rectangle("Blue", 4.0, 6.0);

Triangle triangle = new Triangle("Green", 3.0, 8.0);

// Demonstrate method overriding for Circle
System.out.println("1l. Circle:");
circle.draw();

circle.getInfo();

System.out.printf("Area: %.2f square units\n", circle.calculateArea());

// Demonstrate method overriding for Rectangle

System.out.println("\n2. Rectangle:");

rectangle.draw();

rectangle.getInfo();

System.out.printf("Area: %.2f square units\n", rectangle.calculateArea());

// Demonstrate method overriding for Triangle

System.out.println("\n3. Triangle:");

triangle.draw();

triangle.getInfo();

System.out.printf("Area: %.2f square units\n", triangle.calculateArea());

// Demonstrate polymorphism with method overriding

System.out.println("\n4. Demonstrating polymorphism:");

No. 31/ 59

Java Programming (4343203) - Practicals by Milav Dabgar

Shape[] shapes = {circle, rectangle, triangle};
for (Shape shape : shapes) {
System.out.println("\nShape details:");

shape.draw(); // Calls overridden method
shape.getInfo(); // Calls overridden method
System.out.printf("Area: %.2f square units\n", shape.calculateArea());
}
}
}
Practical18

// Practicall8.java - Demonstrate toString() method overriding

class Car {
private String name;
private int topSpeed;
private String color;

private double price;

// Constructor

public Car(String name, int topSpeed, String color, double price) {
this.name = name;
this.topSpeed = topSpeed;
this.color = color;

this.price = price;

// Overriding toString() method
@override
public String toString() {
return String.format("Car[name=%s, topSpeed=%d mph, color=%s, price=$%.2f]",

name, topSpeed, color, price);

// Getters
public String getName() {

return name;

public int getTopSpeed() {

return topSpeed;

public String getColor() {

return color;

public double getPrice() {

return price;

No. 32 /59

Java Programming (4343203) - Practicals by Milav Dabgar

public class Practicall8 {
// Method to display car details in a formatted way

public static void displayCarDetails(Car car, int carNumber) {

System.out.println("Car + carNumber + " Details:");

System.out.println("Name: + car.getName());

System.out.println("Top Speed: + car.getTopSpeed() + mph");

System.out.println("Color: + car.getColor());

System.out.printf("Price: $%.2f\n", car.getPrice());

System.out.println("toString() output: + car.toString());

System.out.println();

public static void main(String[] args) {

System.out.println("Demonstrating toString() Method Overriding:\n");

// Create 5 car instances

Car carl = new Car('"Tesla Model S", 200, "Red", 89990.00);
Car car2 = new Car("BMW M3", 180, "Blue", 69900.00);

new Car("Toyota Supra", 155, "Yellow", 43540.00);
Car car4 = new Car("Porsche 911", 182, "Black", 101200.00);
Car car5 = new Car("Ford Mustang", 160, "White", 27205.00);

Car car3

// Store cars in an array

Car[] cars = {carl, car2, car3, caréd4, carb5};

// Display details of each car
for (int i = 0; i < cars.length; i++) {

displayCarDetails(cars[i], i + 1);

// Demonstrate direct use of toString()
System.out.println("Direct println() calls (implicitly uses toString()):");
for (Car car : cars) {

System.out.println(car); // println automatically calls toString()

// Demonstrate toString() in different contexts

System.out.println("\nDemonstrating toString() in different contexts:");

// In string concatenation

String description = "My car is: + carl;

System.out.println(description);

// In StringBuilder
StringBuilder sb = new StringBuilder();
sb.append("Available car: ").append(car2);

System.out.println(sb.toString());

// In formatted string

System.out.printf("Featured car: %s%n", car3);

No. 33 /59

Java Programming (4343203) - Practicals by Milav Dabgar

Practical19

// Practicall9.java - Demonstrate multiple inheritance using

// First interface

interface Printer {
void print();
void checkInk();

// Second interface
interface Scanner {
void scan();

void checkScanQuality();

// Third interface
interface Fax {
void fax(String destination);

void checkFaxLine();

// Class implementing multiple interfaces

class AllInOnePrinter implements Printer, Scanner, Fax {
private String modelName;
private boolean inkAvailable;
private boolean scannerWorking;

private boolean faxLineConnected;

public AllInOnePrinter(String modelName) {
this.modelName = modelName;
this.inkAvailable = true;
this.scannerWorking = true;

this.faxLineConnected = true;

// Implementing Printer interface methods
@override
public void print() {

"

System.out.println(modelName +

@Override

public void checkInk() {

System.out.println("Ink status: " + (inkAvailable ? "Available"

// Implementing Scanner interface methods

No. 34 / 59

interfaces

is printing a document");

"LOW")) ;

Java Programming (4343203) - Practicals by Milav Dabgar

@Override
public void scan() {

System.out.println(modelName + is scanning a document");

@override
public void checkScanQuality() {
System.out.println("Scanner status: " +

(scannerWorking ? "Working properly" : "Needs maintenance"));

// Implementing Fax interface methods
@Override

public void fax(String destination) {

System.out.println(modelName + is faxing to + destination);

@Override
public void checkFaxLine() {
System.out.println("Fax line status: " +

(faxLineConnected ? "Connected" : "Disconnected"));

// Additional method specific to AllInOnePrinter
public void displayStatus() {

System.out.println("\nDevice Status for "
checkInk();

checkScanQuality();

+ modelName + ":");

checkFaxLine();

// Class implementing only Printer and Scanner interfaces
class BasicPrinter implements Printer, Scanner {

private String modelName;

public BasicPrinter(String modelName) {

this.modelName = modelName;

@override
public void print() {

System.out.println(modelName + is printing a document");

@Ooverride
public void checkInk() {

"

System.out.println("Checking ink levels for + modelName) ;

@Override

public void scan() {

No. 35 /59

Java Programming (4343203) - Practicals by Milav Dabgar

System.out.println(modelName + is scanning a document");

@Override
public void checkScanQuality() {

System.out.println("Checking scan quality for + modelName) ;

public class Practicall9 {
public static void main(String[] args) {

System.out.println("Demonstrating Multiple Inheritance Using Interfaces:\n");

// Create an AllInOnePrinter object
AllInOnePrinter allInOne = new AllInOnePrinter("HP OfficeJet Pro");

// Create a BasicPrinter object

BasicPrinter basicPrinter = new BasicPrinter("Canon ImageCLASS");

// Demonstrate AllInOnePrinter functionality
System.out.println("1l. Testing AllInOnePrinter:");
allInOne.print();

allInOne.scan();

allInOne.fax("123-456-7890");
allInOne.displayStatus();

// Demonstrate BasicPrinter functionality
System.out.println("\n2. Testing BasicPrinter:");
basicPrinter.print();

basicPrinter.scan();

basicPrinter.checkInk();

basicPrinter.checkScanQuality();

// Demonstrate polymorphism using interfaces

System.out.println("\n3. Demonstrating polymorphism using interfaces:");

// Using Printer interface

System.out.println("\nTesting through Printer interface:");
Printer printer = allInOne;

printer.print();

printer.checkInk();

// Using Scanner interface

System.out.println("\nTesting through Scanner interface:");
Scanner scanner = allInOne;

scanner.scan();

scanner.checkScanQuality();

// Using Fax interface

System.out.println("\nTesting through Fax interface:");
Fax fax = allInOne;

fax.fax("987-654-3210");

No. 36 / 59

Java Programming (4343203) - Practicals by Milav Dabgar

fax.checkFaxLine();

Practical20

// Practical20.java - Demonstrate abstract class and method overriding

// Abstract class Shape
abstract class Shape {
protected String name;

protected String color;

// Constructor
public Shape(String name, String color) {
this.name = name;

this.color = color;

// Abstract method to calculate area

public abstract double area();

// Concrete method to display shape info
public void displayInfo() {

System.out.println("Shape: + name);

System.out.println("Color: + color);

System.out.printf("Area: %.2f square units\n", area());

// Triangle class
class Triangle extends Shape {
private double base;

private double height;

public Triangle(String color, double base, double height) {
super ("Triangle", color);
this.base = base;
this.height = height;

@Ooverride
public double area() {

return 0.5 * base * height;

@Ooverride
public void displayInfo() {
super.displayInfo();

System.out.println("Base: + base + " units");

System.out.println("Height: " + height + " units");

No. 37 /59

Java Programming (4343203) - Practicals by Milav Dabgar

// Rectangle class

class Rectangle extends Shape {
private double length;
private double width;

public Rectangle(String color, double length, double width) {
super ("Rectangle", color);
this.length = length;
this.width = width;

@Override
public double area() {
return length * width;

@Override

public void displayInfo() {
super.displayInfo();
System.out.println("Length: " + length + " units");
System.out.println("width: " + width + " units");

// Circle class
class Circle extends Shape {

private double radius;

public Circle(String color, double radius) {
super("Circle", color);

this.radius = radius;

@Override
public double area() {

return Math.PI * radius * radius;

@Override
public void displayInfo() {
super.displayInfo();

System.out.println("Radius: + radius + units");

public class Practical20 {
// Method to process any shape
public static void processShape(Shape shape) {

System.out.println("\nProcessing shape:");

No. 38 /59

Java Programming (4343203) - Practicals by Milav Dabgar

shape.displayInfo();

public static void main(String[] args) {
System.out.println("Demonstrating Abstract Class with Shape Hierarchy:\n");

// Create instances of different shapes
Triangle triangle = new Triangle("Red", 6.0, 4.0);
Rectangle rectangle = new Rectangle("Blue", 5.0, 3.0);

Circle circle = new Circle("Green", 3.0);

// Process each shape using polymorphism
processShape(triangle);
processShape (rectangle);

processShape(circle);

// Demonstrate array of shapes
System.out.println("\nProcessing array of shapes:");

Shape[] shapes = {triangle, rectangle, circle};

for (Shape shape : shapes) {
System.out.println("\nShape Details:");
shape.displayInfo();
System.out.println("Calculated area: " + String.format("%$.2f",
shape.area()));

}

// Demonstrate that we cannot instantiate abstract class
// Following line would cause compilation error:

// Shape shape = new Shape("Generic", "Yellow");

// Calculate total area of all shapes

double totalArea = 0;

for (Shape shape : shapes) {
totalArea += shape.area();

}
System.out.printf("\nTotal area of all shapes: %.2f square units\n", totalArea);
}
}
Practical21

// Practical2l.java - Demonstrate use of final class

// Final class - cannot be inherited
final class SecureConfig {
private String serverName;
private String password;
private int port;

private boolean isSSLEnabled;

No. 39 /59

Java Programming (4343203) - Practicals by Milav Dabgar

// Constructor
public SecureConfig(String serverName, String password, int port) {
this.serverName = serverName;
this.password = password;
this.port = port;
this.isSSLEnabled = true;

// Public methods to access and modify configuration
public String getServerName() {

return serverName;

public int getPort() {

return port;

public boolean isSSLEnabled() {
return isSSLEnabled;

public void setSSLEnabled(boolean enabled) {
this.isSSLEnabled = enabled;

// Method to display configuration (excluding sensitive data)
public void displayConfig() {
System.out.println("Server Configuration:");
System.out.println("Server Name: " + serverName);

System.out.println("Port: + port);
System.out.println("SSL Enabled: " + isSSLEnabled);

System.out.println("Password: ****x"). // Hide actual password

// Method to validate configuration
public boolean validateConfig() {
return serverName != null && !serverName.isEmpty() &&
password != null && !password.isEmpty() &&
port > 0 && port <= 65535;

// This class would cause compilation error if uncommented:
/*
class ExtendedConfig extends SecureConfig { // Error: cannot inherit from final class

private String additionalSetting;

public ExtendedConfig(String serverName, String password, int port) {

super (serverName, password, port);

No. 40 / 59

Java Programming (4343203) - Practicals by Milav Dabgar

public class Practical2l {
public static void main(String[] args) {

System.out.println("Demonstrating Final Class Usage:\n");

// Create instances of SecureConfig
SecureConfig configl = new SecureConfig("prod-server-1", "secretpassl23", 443);

SecureConfig config2 = new SecureConfig("dev-server-1", "devpass456", 8080);

// Demonstrate configl
System.out.println("1l. First Configuration:");
configl.displayConfig();

System.out.println("Configuration valid: + configl.validateConfig());
// Modify SSL settings

configl.setSSLEnabled(false);

System.out.println("\nAfter modifying SSL settings:");
configl.displayConfig();

// Demonstrate config2
System.out.println("\n2. Second Configuration:");
config2.displayConfig();

System.out.println("Configuration valid: + config2.validateConfig());
// Demonstrate accessing individual properties
System.out.println("\n3. Accessing Individual Properties:");

System.out.println("Server Name: + config2.getServerName());

"

System.out.println("Port: + config2.getPort());

System.out.println("SSL Enabled: " + config2.isSSLEnabled());

// Create array of configurations
System.out.println("\n4. Processing Multiple Configurations:");

SecureConfig[] configs = {configl, config2};

for (int i = 0; i < configs.length; i++) {
System.out.println("\nConfiguration " + (i + 1) + ":");

configs[i].displayConfig();

Practical22

// File: Practical22.java
import shapes.Circle;
import shapes.Rectangle;

import util.Calculator;
public class Practical22 {

public static void main(String[] args) {

System.out.println("Demonstrating Package Usage:\n");

No. 41/59

Java Programming (4343203) - Practicals by Milav Dabgar

// Create objects of classes from shapes package
Circle circle = new Circle(5.0);

Rectangle rectangle = new Rectangle(4.0, 6.0);

// Calculate and display circle measurements
System.out.println("Circle Measurements:");

System.out.println("Area: " +

"

Calculator.round(circle.getArea(), 2) + square units");
System.out.println("Perimeter: " +

Calculator.round(circle.getPerimeter(), 2) + " units");

// Calculate and display rectangle measurements
System.out.println("\nRectangle Measurements:");
System.out.println("Area: " +
Calculator.round(rectangle.getArea(), 2) + " square units");
System.out.println("Perimeter: " +

Calculator.round(rectangle.getPerimeter(), 2) + " units");

// Demonstrate fully qualified names
System.out.println("\nUsing fully qualified names:");
shapes.Circle circle2 = new shapes.Circle(3.0);
System.out.println("New circle area: " +

"

util.Calculator.round(circle2.getArea(), 2) + square units");

// File: shapes/Circle.java

package shapes;

public class Circle {

private double radius;
public Circle(double radius) {

this.radius = radius;

public double getArea() {
return Math.PI * radius * radius;

public double getPerimeter() {

return 2 * Math.PI * radius;

// File: shapes/Rectangle.java

package shapes;

public class Rectangle {

No. 42 /59

Java Programming (4343203) - Practicals by Milav Dabgar

private double length;
private double width;

public Rectangle(double length, double width) {
this.length = length;
this.width = width;

public double getArea() {
return length * width;

public double getPerimeter() {
return 2 * (length + width);

// File: util/Calculator.java
package util;

public class Calculator {
public static double round(double value, int places) {
double scale = Math.pow(10, places);

return Math.round(value * scale) / scale;

Practical23

// Practical23.java - Demonstrate user defined exception for divide by zero

// Custom Exception class
class DivideByZeroException extends Exception {
public DivideByZeroException() {

super ("Cannot divide by zero!");

public DivideByZeroException(String message) {
super (message) ;

// Calculator class with division method
class Calculator {
// Method that throws our custom exception
public static double divide(double numerator, double denominator)
throws DivideByZeroException {
if (denominator == 0) {

No. 43 /59

Java Programming (4343203) - Practicals by Milav Dabgar

throw new DivideByZeroException(

"Division by zero error! Numerator was: + numerator);

}

return numerator / denominator;

public class Practical23 {
// Method to demonstrate division with exception handling
public static void performDivision(double numerator, double denominator) {
try {
double result = Calculator.divide(numerator, denominator);
System.out.printf("%$.2f + $.2f = %.2f\n", numerator, denominator, result);
} catch (DivideByZeroException e) {

System.out.println("Error: + e.getMessage());

public static void main(String[] args) {

System.out.println("Demonstrating User Defined Exception:\n");

// Test cases
System.out.println("1l. Normal division:");

performbDivision(10.0, 2.0);

System.out.println("\n2. Division by zero:");

performDivision(20.0, 0.0);

System.out.println("\n3. Multiple divisions in a loop:");
double[] numerators = {15.0, 25.0, 30.0};
double[] denominators = {3.0, 0.0, 5.0};

for (int i = 0; i < numerators.length; i++) {
System.out.println("\nAttempting division " + (i + 1) + ":");

performDivision(numerators[i], denominators[i]);

// Demonstrating exception handling with try-catch block
System.out.println("\n4. Direct try-catch usage:");
try {
System.out.println("Attempting risky division...");
double result = Calculator.divide(50.0, 0.0);

"

System.out.println("Result of division: + result); // This line won't be
reached
} catch (DivideByZeroException e) {
System.out.println("Caught exception: "
} finally {

System.out.println("Finally block executed");

+ e.getMessage());

// Additional demonstration with successful division

System.out.println("\n5. Another try-catch example with successful division:");

No. 44 [59

Java Programming (4343203) - Practicals by Milav Dabgar

try {
System.out.println("Attempting safe division...");
double result = Calculator.divide(50.0, 2.0);
System.out.println("Result of division: " + result); // This line will be
reached
} catch (DivideByZeroException e) {
System.out.println("Caught exception: "
} finally {

System.out.println("Finally block executed");

+ e.getMessage());

System.out.println("\n6. Program continues after exception handling");

performDivision(100.0, 25.0);

Practical24

// Practical24.java - Banking Application with custom exception

// Custom Exception for insufficient funds
class InsufficientFundsException extends Exception {
private double currentBalance;

private double withdrawAmount;

public InsufficientFundsException(double currentBalance, double withdrawAmount) ({
super (String.format("Not Sufficient Fund! Balance: $%.2f, Withdrawal Amount:

$%.2f",
currentBalance, withdrawAmount));
this.currentBalance = currentBalance;
this.withdrawAmount = withdrawAmount;
}

public double getDeficit() {

return withdrawAmount - currentBalance;

// Bank Account class
class BankAccount {
private double balance;

private String accountNumber;

public BankAccount(String accountNumber, double initialDeposit) {
this.accountNumber = accountNumber;

this.balance = initialDeposit;

public void deposit(double amount) {
if (amount > 0) {

balance += amount;

No. 45 /59

Java Programming (4343203) - Practicals by Milav Dabgar

System.out.printf("Deposited: $%.2f\n", amount);
displayBalance();

} else {
System.out.println("Invalid deposit amount");

public void withdraw(double amount) throws InsufficientFundsException {

if (amount > balance) {
throw new InsufficientFundsException(balance, amount);

balance -= amount;
System.out.printf("Withdrawn: $%.2f\n", amount);

displayBalance();

public void displayBalance() {
System.out.printf("Current Balance: $%.2f\n", balance);

public double getBalance() {

return balance;

public String getAccountNumber () {

return accountNumber;

public class Practical24 {
public static void main(String[] args) {
System.out.println("Banking Application Demonstration:\n");

// Create a bank account with initial deposit of $25000
BankAccount account = new BankAccount("ACC001", 25000);
System.out.println("Account created successfully!");

account.displayBalance();

try {
// Performing transactions as per requirement

System.out.println("\nl. Withdrawing $20000:");
account.withdraw(20000);

System.out.println("\n2. Withdrawing $4000:");

account.withdraw(4000);

System.out.println("\n3. Attempting to withdraw $2000:");

account.withdraw(2000);

} catch (InsufficientFundsException e) {
System.out.println("Transaction Failed: " + e.getMessage());

No. 46 [59

Java Programming (4343203) - Practicals by Milav Dabgar

System.out.printf("Deficit Amount: $%.2f\n", e.getDeficit());

// Additional demonstrations

System.out.println("\nAdditional Operations:");

try {
// Deposit some money

System.out.println("\n4. Depositing $1000:");
account.deposit(1000);

// Try withdrawal again
System.out.println("\n5. Attempting to withdraw $1500:");

account.withdraw(1500);

} catch (InsufficientFundsException e) {
System.out.println("Transaction Failed: " + e.getMessage());
System.out.printf("Deficit Amount: $%.2f\n", e.getDeficit());

// Final balance check
System.out.println("\nFinal Account Status:");

account.displayBalance();

Practical25

// Practical25.java - Demonstrate thread creation and execution

// First thread class
class Threadl extends Thread {
@Override
public void run() {
try {
for (int 1 = 1; i <= 5; i++) {
System.out.println("Threadl");
// Sleep for 1000 milliseconds (1 second)
Thread.sleep(1000);
}
} catch (InterruptedException e) {
System.out.println("Threadl interrupted");

// Second thread class
class Thread2 extends Thread {
@override
public void run() {
try {

No. 47 [59

Java Programming (4343203) - Practicals by Milav Dabgar

1;
System.out.println("Thread2");

for (int i = i <= 5; i++) {

// Sleep for 2000 milliseconds (2 seconds)

Thread.sleep(2000);

}
} catch (InterruptedException e) {

System.out.println("Thread2 interrupted");

public class Practical25 {

public static void main(String[] args) {

System.out.println("Demonstrating Thread Creation and Execution:\n");

// Create thread objects
Threadl tl = new Threadl();
Thread2 t2 = new Thread2();

// Set thread names
tl.setName("Thread-1");

t2.setName("Thread-2");

// Display

thread information before starting

System.out.println("Thread States Before Starting:");

" State:
" State:

System.out.println(tl.getName() +
System.out.println(t2.getName() +

System.out.println("\nStarting threads...")

// Start both threads
tl.start();
t2.start();

//

" + tl.getState());
" + t2.getState());

.
’

Display thread information after starting

System.out.println("\nThread States After Starting:");

" State:
" State:

System.out.println(tl.getName() +
System.out.println(t2.getName() +

// Wait for both threads to complete
try {

tl.join();

t2.join();
} catch (InterruptedException e) {

" + tl.getState());
" + t2.getState());

System.out.println("Main thread interrupted");

// Display final thread states

System.out.println("\nThread States
" State:
" State:

System.out.println(tl.getName() +
System.out.println(t2.getName() +

No. 48 / 59

After Completion:");

" + tl.getState());
" + t2.getState());

Java Programming (4343203) - Practicals by Milav Dabgar

System.out.println("\nMain thread ending");

Practical26

// Practical26.java - Demonstrate threads printing even and odd numbers

class NumberPrinter {
private int currentNumber = 1;
private final int maxNumber = 200;

private boolean isEvenTurn = false;

// Method for printing even numbers
synchronized void printEven() {
while (currentNumber <= maxNumber) {
try {
// Wait if it's not even number's turn
while (!isEvenTurn && currentNumber <= maxNumber) {

wait();

if (currentNumber <= maxNumber) {
System.out.printf("Even Thread: %d%n", currentNumber);
currentNumber++;
isEvenTurn = false;
notify();
}
} catch (InterruptedException e) {

Thread.currentThread().interrupt();

// Method for printing odd numbers
synchronized void printOdd() {
while (currentNumber <= maxNumber) {
try {
// Wait if it's not odd number's turn
while (isEvenTurn && currentNumber <= maxNumber) {

wait();

if (currentNumber <= maxNumber) {
System.out.printf("0dd Thread: %d%n", currentNumber);
currentNumber++;
isEvenTurn = true;
notify();
}
} catch (InterruptedException e) {

Thread.currentThread().interrupt();

No. 49 / 59

Java Programming (4343203) - Practicals by Milav Dabgar

// Thread class for printing even numbers
class EvenPrinter extends Thread ({

private NumberPrinter printer;

public EvenPrinter (NumberPrinter printer) {

this.printer = printer;

@Override
public void run() {

printer.printEven();

// Thread class for printing odd numbers
class OddPrinter extends Thread {

private NumberPrinter printer;

public OddPrinter (NumberPrinter printer) ({

this.printer = printer;

@Override
public void run() {

printer.print0Odd();

public class Practical26 {
public static void main(String[] args) {

System.out.println("Demonstrating Even-Odd Number Printing Using Threads:\n");

// Create shared number printer object

NumberPrinter printer = new NumberPrinter();

// Create even and odd printer threads
Thread evenThread = new EvenPrinter(printer);

Thread oddThread = new OddPrinter(printer);

// Set thread names
evenThread.setName("EvenThread") ;
oddThread.setName("OddThread");

// Start both threads
System.out.println("Starting threads to print numbers from 1 to 200...\n");
oddThread.start();

evenThread.start();

No. 50 / 59

Java Programming (4343203) - Practicals by Milav Dabgar

// Wait for both threads to complete

try {
evenThread. join();
oddThread. join();

} catch (InterruptedException e) {
System.out.println("Main thread interrupted");

System.out.println("\nBoth threads completed execution");

Practical27

// Practical27.java - Demonstrate read and write operations on a text file

import java.io.*;

import java.util.Scanner;

public class Practical27 {
// Method to write content to a file
public static void writeToFile(String fileName, String content) {
try (FileWriter writer = new FileWriter(fileName);
BufferedWriter bufferedWriter = new BufferedWriter(writer)) {

bufferedWriter.write(content);

System.out.println("Successfully wrote to the file.");

} catch (IOException e) {
System.out.println("An error occurred while writing to the file:");

e.printStackTrace();

// Method to append content to a file
public static void appendToFile(String fileName, String content) {
try (FileWriter writer = new FileWriter(fileName, true);
BufferedWriter bufferedWriter = new BufferedWriter(writer)) {

bufferedWriter.write(content);

System.out.println("Successfully appended to the file.");
} catch (IOException e) {

System.out.println("An error occurred while appending to the file:");

e.printStackTrace();

// Method to read content from a file using BufferedReader

public static void readFileUsingBufferedReader (String fileName) {

No. 51/ 59

Java Programming (4343203) - Practicals by Milav Dabgar

try (FileReader reader = new FileReader (fileName);
BufferedReader bufferedReader = new BufferedReader(reader)) {

System.out.println("\nReading file using BufferedReader:");
String line;
while ((line = bufferedReader.readLine()) != null) {

System.out.println(line);

} catch (IOException e) {
System.out.println("An error occurred while reading the file:");

e.printStackTrace();

// Method to read content from a file using Scanner
public static void readFileUsingScanner (String fileName) {
try (Scanner scanner = new Scanner(new File(fileName))) {
System.out.println("\nReading file using Scanner:");
while (scanner.hasNextLine()) {

System.out.println(scanner.nextLine());

} catch (FileNotFoundException e) {
System.out.println("File not found:");

e.printStackTrace();

public static void main(String[] args) {

System.out.println("Demonstrating File Operations:\n");
String fileName = "sample.txt";

// Write initial content to file
System.out.println("1l. Writing initial content to file:");
String initialContent = "Hello! This is line 1.\n" +

"This is line 2.\n" +

"This is line 3.\n";

writeToFile(fileName, initialContent);

// Read the file content using BufferedReader
readFileUsingBufferedReader (fileName);

// Append additional content

System.out.println("\n2. Appending content to file:");

String additionalContent = "This is line 4 (appended).\n" +
"This is line 5 (appended).\n";

appendToFile(fileName, additionalContent);

// Read the file content using Scanner

readFileUsingScanner (fileName) ;

No. 52 /59

Java Programming (4343203) - Practicals by Milav Dabgar

// Demonstrate File class operations
File file = new File(fileName);
System.out.println("\n3. File Information:");

"

System.out.println("File exists: + file.exists());

System.out.println("File name: " + file.getName());
System.out.println("Absolute path: " + file.getAbsolutePath());
System.out.println("File size: " + file.length() + " bytes");

System.out.println("Can read: " + file.canRead());

System.out.println("Can write: " + file.canWrite());

// Clean up - Delete the file
System.out.println("\n4. Cleaning up:");
if (file.delete()) {

System.out.println("File deleted successfully.");
} else {

System.out.println("Failed to delete the file.");

Practical28

// Practical28.java - Demonstrate use of List (ArrayList and LinkedList)
import java.util.*;

public class Practical28 {
// Method to display list contents
public static void displayList(List<?> list, String listName) {

System.out.println(listName +
for (Object item : list) {

contents:");

System.out.print(item + " ");
}
System.out.println("\nSize: " + list.size());

System.out.println();

public static void main(String[] args) {

System.out.println("Demonstrating List Interface Usage:\n");

// Create ArrayList and add weekdays
List<String> weekdays = new ArrayList<>();

System.out.println("1l. ArrayList Operations (Weekdays):");

// Adding weekdays
weekdays.add("Monday") ;
weekdays.add("Tuesday");
weekdays.add ("Wednesday");
weekdays.add("Thursday");
weekdays.add("Friday");

No. 53 /59

Java Programming (4343203) - Practicals by Milav Dabgar

displayList (weekdays, "Weekdays ArrayList");

// Demonstrate ArrayList operations
System.out.println("ArrayList Operations:");

System.out.println("First day: + weekdays.get(0));

System.out.println("Last day: + weekdays.get(weekdays.size() - 1));

System.out.println("Contains 'Wednesday'? + weekdays.contains("Wednesday"));

"

System.out.println("Index of 'Friday': + weekdays.indexOf ("Friday"));
// Create LinkedList and add months
List<String> months = new LinkedList<>();

System.out.println("\n2. LinkedList Operations (Months):");

// Adding months
months.add("January");
months.add("February");
months.add("March");
months.add("April");
months.add("May");

months.add("June");

displayList (months, "Months LinkedList");

// Demonstrate LinkedList specific operations
LinkedList<String> monthsLinked = (LinkedList<String>) months;
System.out.println("LinkedList Specific Operations:");
System.out.println("First month: " + monthsLinked.getFirst());
System.out.println("Last month: " + monthsLinked.getLast());

// Add elements at specific positions
monthsLinked.addFirst("December"); // Add at beginning
monthsLinked.addLast("July"); // Add at end

System.out.println("\nAfter adding elements:");
displayList (months, "Updated Months LinkedList");

// Demonstrate List interface common operations

System.out.println("3. Common List Operations:");

// Sorting

Collections.sort (weekdays);
System.out.println("Sorted weekdays:");
displayList (weekdays, "Sorted Weekdays");

Collections.sort(months);
System.out.println("Sorted months:");

displayList (months, "Sorted Months");
// Removing elements

weekdays.remove("Friday");

months.remove("July");

No. 54 / 59

Java Programming (4343203) - Practicals by Milav Dabgar

System.out.println("After removing elements:");
System.out.println("Weekdays after removing Friday:");
displayList (weekdays, "Modified Weekdays");
System.out.println("Months after removing July:");
displayList (months, "Modified Months");

// Clear lists
weekdays.clear();

months.clear();

System.out.println("4. After clearing lists:");
displayList (weekdays, "Cleared Weekdays");
displayList (months, "Cleared Months");

Practical29

// Practical29.java - Demonstrate HashSet operations with colors

import java.util.HashSet;

import java.util.Iterator;

public class Practical29 {
// Method to display set contents with iteration count
private static void displaySet(HashSet<String> set, String message) {
System.out.println(message);
int count = 1;
for (String color : set) {

System.out.println(count + + color);

count++;

}

System.out.println("Set size: " + set.size() + "\n");

public static void main(String[] args) {

System.out.println("Demonstrating HashSet Operations with Colors:\n");

// Create a HashSet to store colors

HashSet<sString> colors = new HashSet<>();

// 1. Adding colors to the set
System.out.println("1l. Adding colors to HashSet:");
colors.add("Red");

colors.add("Green");

colors.add("Blue");

colors.add("Yellow");

colors.add("Purple");

displaySet(colors, "Initial Set of Colors:");

No. 55 /59

Java Programming (4343203) - Practicals by Milav Dabgar

// 2. Demonstrate duplicate handling
System.out.println("2. Attempting to add duplicate colors:");
boolean addedRed = colors.add("Red");

boolean addedOrange = colors.add("Orange");

System.out.println("Added 'Red' again? " + addedRed);

System.out.println("Added 'Orange'? + addedOrange) ;

displaySet(colors, "Set after attempting duplicates:");

// 3. Different ways of iteration

System.out.println("3. Different iteration methods:");

// Using Iterator

System.out.println("Using Iterator:");

Iterator<String> iterator = colors.iterator();

while (iterator.hasNext()) {
System.out.println(iterator.next());

}
System.out.println();

// Using forEach method
System.out.println("Using forEach method:");
colors.forEach(color -> System.out.println(color));

System.out.println();

// 4. Searching and removing elements
System.out.println("4. Search and remove operations:");
System.out.println("Contains 'Blue'? " + colors.contains("Blue"));

System.out.println("Contains 'Black'? " + colors.contains("Black"));

// Remove a color
boolean removed = colors.remove('"Yellow");

"

System.out.println("Removed 'Yellow'? + removed) ;

displaySet(colors, "Set after removing 'Yellow':");

// 5. Create a new set for set operations
HashSet<String> moreColors = new HashSet<>();
moreColors.add("Pink");

moreColors.add("Blue"); // Duplicate with first set

moreColors.add("Brown");

System.out.println("5. Set operations with new colors:");

displaySet (moreColors, "New set of colors:");

// Add all elements from moreColors to colors
colors.addAll (moreColors);

displaySet(colors, "After adding all new colors:");
// 6. Clear the set

System.out.println("6. Clearing the set:");

colors.clear();

No. 56 / 59

Java Programming (4343203) - Practicals by Milav Dabgar

System.out.println("Is set empty? + colors.isEmpty());

displaySet(colors, "Set after clearing:");

Practical30

// Practical30.java - Demonstrate HashMap with Student Data

import java.util.HashMap;

import java.util.Map;

public class Practical30 {
// Method to display student data

private static void displayStudents(HashMap<String, String> students,

System.out.println(message);
if (students.isEmpty()) {

System.out.println("No students in the map.");
} else {

for (Map.Entry<String, String> entry : students.entrySet()) {

System.out.printf("Enrollment No: %s, Name: %s%n",

entry.getKey(), entry.getValue());

}

System.out.println("Total students: " + students.size() + "\n");

public static void main(String[] args) {

String message)

System.out.println("Demonstrating HashMap Operations with Student Data:\n");

// Create HashMap to store student data

HashMap<String, String> students = new HashMap<>();

// 1. Adding students to the map
System.out.println("1l. Adding students to HashMap:");
students.put("Al101", "John Smith");
students.put("A102", "Emma Watson");
students.put("A103", "Michael Johnson");
students.put("Al04", "Sarah Wilson");
students.put("Al105", "David Brown");

displayStudents(students, "Initial Student List:");

// 2. Accessing specific student
System.out.println("2. Accessing student data:");
String enrollmentNo = "Al103";

System.out.println("Student with enrollment no

+ students.get(enrollmentNo));

// Try accessing non-existent student

No. 57 / 59

+ enrollmentNo +

Java Programming (4343203) - Practicals by Milav Dabgar

System.out.println("Student with enrollment no Al06:
+ students.get("A106"));
System.out.println();

// 3. Updating student data

System.out.println("3. Updating student data:");
students.put("Al01", "John Smith Jr."); // Update existing entry
System.out.println("Updated Al0l's name");
displayStudents(students, "After updating:");

// 4. Checking existence

System.out.println("4. Checking existence:");

System.out.println("Contains enrollment no A102? "
+ students.containsKey("A102"));

System.out.println("Contains student Emma Watson? "

+ students.containsValue("Emma Watson"));

System.out.println();

// 5. Different ways to iterate
System.out.println("5. Different ways to iterate through the map:");

// Using entrySet
System.out.println("Using entrySet:");
for (Map.Entry<String, String> entry : students.entrySet()) {

System.out.println("Key: + entry.getKey() + ", Value: " +

entry.getValue());

}
System.out.println();

// Using keySet

System.out.println("Using keySet:");

for (String key : students.keySet()) {
System.out.println("Enrollment No: " + key);

}
System.out.println();

// Using values
System.out.println("Using values:");
for (String value : students.values()) {

System.out.println("Student Name: + value);

}
System.out.println();

// 6. Removing a student
System.out.println("6. Removing student:");
String removedStudent = students.remove("Al04");

System.out.println("Removed student: + removedStudent) ;

displayStudents(students, "After removing Al1l04:");
// 7. Using getOrDefault

System.out.println("7. Using getOrDefault:");
System.out.println("Student A105: " +

No. 58 / 59

Java Programming (4343203) - Practicals by Milav Dabgar

students.getOrDefault("Al105", "Not Found"));
System.out.println("Student Al06: " +

students.getOrDefault("Al06", "Not Found"));
System.out.println();

// 8. Clear the map
System.out.println("8. Clearing the map:");
students.clear();

System.out.println("Is map empty? + students.isEmpty());

displayStudents(students, "After clearing:");

No. 59 /59

	Practicals
	Practical01
	Practical02
	Practical03
	Practical04
	Practical05
	Practical06
	Practical07
	Practical08
	Practical09
	Practical10
	Practical11
	Practical12
	Practical13
	Practical14
	Practical15
	Practical16
	Practical17
	Practical18
	Practical19
	Practical20
	Practical21
	Practical22
	Practical23
	Practical24
	Practical25
	Practical26
	Practical27
	Practical28
	Practical29
	Practical30

