Java Programming by Milav Dabgar

1. Introduction to Java Programming Language
1.1. Java Overview
1.1.1. Brief History & Evolution of Java
1.1.2. Java Features
1.1.3. Java Applications
1.2. Java Environment Setup & Basic Java Syntax
1.2.1. Java Components
1.2.2. Setting up Java Development Environment
1.2.3. Structure of a Java Program
1.2.3.1. Class Declaration
1.2.3.2. Main Method
1.2.3.3. Outputin Java
1.2.3.3.1. The println() Method
1.2.3.3.2. The print() Method
1.2.3.4. Comments
1.2.3.4.1. Single-line Comments
1.2.3.4.2. Multi-line Comments
1.2.4. Compilation and Execution of Java Program
1.2.5. Importance of Bytecode & Garbage Collection
1.3. Data Types
1.3.1. Primitive Data Types
1.3.2. Non-Primitive Data Types
1.3.3. Type Conversion and Casting
1.3.3.1. Implicit Conversion (Widening)
1.3.3.2. Explicit Conversion (Narrowing)
1.4. Identifiers
1.4.1. Naming Rules & Conventions
1.4.1.1. Naming Rules
1.4.1.2. Naming Conventions
1.4.2. Variables
1.4.3. Constants (final Keyword)
1.4.4. Scope of Variables
1.5. Arrays
1.5.1. One-dimensional Arrays
1.5.2. Multidimensional Arrays
1.6. Operators
1.6.1. Arithmetic Operators
1.6.2. Assignment Operators
1.6.3. Relational (Comparison) Operators
1.6.4. Logical Operators
1.6.5. Bitwise Operators
1.6.6. Conditional (Ternary) Operator
1.6.7. Operator Precedence
1.7. Control Flow Statements
1.7.1. Selection Statements
1.7.1.1. The if Statement
1.7.1.2. The if-else Statement
1.7.1.3. The if-else-if Ladder
1.7.1.4. Switch-Case Statements
1.7.1.4.1. break Keyword
1.7.1.4.2. default Keyword
1.7.2. Looping Statements
1.7.2.1. While Loop
1.7.2.2. Do/While Loop

No. 1/168

Java Programming by Milav Dabgar

1.7.2.3. For Loop
1.7.2.4. The For-Each Loop
1.7.2.5. Nested Loops
1.7.3. Jump Statements
1.7.3.1. break Statement
1.7.3.2. continue Statement
1.7.3.3. return Statement
2. Object-Oriented Programming
2.1. Procedure-Oriented vs. Object-Oriented Programming
2.1.1. Characteristics
2.1.2. Differences
2.2. OOP Concepts
2.2.1. Classes and Objects
2.2.2. Encapsulation
2.2.3. Abstraction
2.2.4. Inheritance
2.2.5. Polymorphism
2.3. Classes and Objects
2.3.1. Creating Classes
2.3.2. Creating Objects
2.3.2.1. Multiple Objects
2.3.2.2. Using Multiple Classes
2.3.2.3. this Keyword
2.4, Class Attributes
2.4.1. Accessing Attributes
2.4.2. Modify Attributes
2.4.3. Attributes of Multiple Objects
2.4.4. Multiple Attributes of same Object
2.5. Class Methods
2.5.1. Create a Method
2.5.2. Call a Method
2.5.3. Method Parameters and Arguments
2.5.3.1. Multiple Parameters
2.5.4. Return Values
2.5.5. Access Methods With an Object
2.5.6. Method Signatures
2.5.7. Passing Arguments
2.5.8. Returning Values
2.6. Constructors
2.6.1. Types of Constructors
2.6.1.1. Default Constructors
2.6.1.2. Parameterized Constructors
2.6.1.3. Copy Constructors
2.6.2. Constructor Overloading
2.7. Modifiers
2.7.1. Access Modifiers
2.7.2. Non-Access Modifiers
2.7.2.1. final
2.7.2.2. static
2.7.2.3. abstract
2.8. string Class
2.8.1. Strings - Special Characters
2.8.2. Common String Methods
2.9. scanner Class (User Input)
2.9.1. Input Types

No.2/168

Java Programming by Milav Dabgar

2.9.2. Using Scanner Class
2.10. Command-line Arguments
3. Inheritance, Packages, and Interfaces
3.1. Inheritance
3.1.1. Basics of Inheritance
3.1.2. Types of Inheritance
3.1.3. extends Keyword
3.1.4. super Keyword
3.1.5. Polymorphism
3.1.5.1. Method Overloading
3.1.5.2. Method Overriding
3.1.5.2.1. Overriding Object Class Methods
3.1.6. Method Dynamic Dispatch
3.2. Interfaces
3.2.1. Defining Interfaces
3.2.2. Implementing Interfaces
3.2.3. Multiple Inheritance Using Interfaces
3.3. Abstraction
3.3.1. Abstract Class
3.3.2. Abstract Method
3.3.3. Differences from Interfaces
3.4. Final Class
3.4.1. Final Class Syntax
3.4.2. Final Method
3.5. Inner Classes
3.5.1. Private Inner Class
3.5.2. Static Inner Class
3.5.3. Access Outer Class From Inner Class
3.6. Packages & API
3.6.1. Built-in Packages
3.6.2. Import a Class
3.6.3. Import a Package
3.6.4. User-defined Packages
3.6.5. Access Rules: Access Control Within Packages
3.6.6. Example: Access Control
4. Exception Handling and Multithreading
4.1. Exception Handling in Java
4.1.1. Errors vs. Exceptions
4.1.2. Java try and catch
4.1.3. try-catch-finally Blocks
4.2. Throwing Exceptions
4.2.1. Common Built-in Exceptions
4.2.2. Creating Custom Exceptions
4.2.3. Benefits of Exception Handling
4.3. Multi-threading in Java
4.3.1. Concepts of Threads and Processes
4.3.2. Multi-threading Benefits
4.3.3. Creating a Thread
4.3.3.1. Extend Syntax
4.3.3.2. Implement Syntax
4.3.4. Running Threads
4.3.4.1. Extend Example
4.3.4.2. Implement Example
4.3.4.3. Differences between "extending" and "implementing" Threads
4.3.5. Concurrency Problems

No.3/168

Java Programming by Milav Dabgar

4.3.6. Thread Lifecycle
4.3.7. Thread Priority
4.3.8. Thread Exception Handling
4.3.9. Synchronization
5. File Handling and Collections Framework
5.1. File Handling using File Class
5.1.1. Create a File
5.1.2. Write To a File
5.1.3. Read a File
5.1.4. Get File Information
5.1.5. Delete a File
5.1.6. Delete a Folder
5.2. File Handling using Streams Class
5.2.1. Streams and Stream Classes
5.2.2. FileInputStream and FileOutputStream
5.2.3. FileOutputStream to Write to File
5.2.4. FileInputStream to Read from a File
5.2.5. Closing Streams
5.3. Collections Framework in Java
5.3.1. Overview and Hierarchy
5.3.2. Arraylist
5.3.2.1. Creating an ArrayList
5.3.2.2. Add Items
5.3.2.3. Access an Item
5.3.2.4. Change an Item
5.3.2.5. Remove an Item
5.3.2.6. ArrayList Size
5.3.2.7. Loop Through an ArrayList
5.3.2.8. Other Types
5.3.2.9. Sort an ArrayList
5.3.3. LinkedList
5.3.3.1. ArrayList vs. LinkedList
5.3.3.2. How the ArrayList works
5.3.3.3. How the LinkedList works
5.3.3.4. When To Use
5.3.3.5. LinkedList Methods
5.3.4. HashMap
5.3.4.1. Add Items
5.3.4.2. Access an Item
5.3.4.3. Remove an Item
5.3.4.4. HashMap Size
5.3.4.5. Loop Through a HashMap
5.3.4.6. Other Types
5.3.5. HashSet
5.3.5.1. Add Items
5.3.5.2. Check If an Item Exists
5.3.5.3. Remove an Item
5.3.5.4. HashSet Size
5.3.5.5. Loop Through a HashSet
5.3.5.6. Other Types
5.3.6. Iterator
5.3.6.1. Getting an Iterator
5.3.6.2. Looping Through a Collection
5.3.6.3. Removing Items from a Collection
6. Java Programming GTU Paper Solutions

No.4 /168

6.1.

6.2.

Java Programming by Milav Dabgar

4341602 - Java: Winter 2023 Paper Solution
6.1.1. Q1a: List out basic concepts of Java OOP. Explain any one in detail.
6.1.2. Q1b: Explain JVM in detail.
6.1.3. Q1c: Write a program in java to print Fibonacci series for n terms.
6.1.4. Q1c: Write a program in java to find out minimum from any ten numbers using command line
argument.
6.1.5. Q2a: What is Java wrapper class? Explain with example.
6.1.6. Q2b: List out different features of java. Explain any two.
6.1.7. Q2c: What is method overload in Java ? Explain with example.
6.1.8. Q2a: Explain Garbage collection in java.
6.1.9. Q2b: Explain final keyword in Java with example.
6.1.10. Q2c: What is constructor in Java? Explain parameterized constructor with example.
6.1.11. Q3a: Explain super keyword in Java with example.
6.1.12. Q3b: List out different types of inheritance in Java. Explain multilevel inheritance.
6.1.13. Q3c: What is Java interface? Explain multiple inheritance with example.
6.1.14. Q3a: Explain Java static keyword with example.
6.1.15. Q3b: Explain different access controls in Java.
6.1.16. Q3c: What is Java package? Write steps to create a package in Java and give example of it.
6.1.17. Q4a: Explain Java thread priorities with suitable example.
6.1.18. Q4b: What is Java Thread? Explain Thread life cycle.
6.1.19. Q4c: Write a program in java that create the multiple threads by implementing the Thread
class.
6.1.20. Q4a: List four different inbuilt exceptions of Java. Explain any one inbuilt exception.
6.1.21. Q4b: Explain multiple catch with suitable example in Java.
6.1.22. Q4c: What is Java Exception? Write a program that show the use of Arithmetic Exception in
Java.
6.1.23. Q5a: Explain ArraylndexOutOfBound Exception in Java with example.
6.1.24. Q5b: Explain basics of Java stream classes.
6.1.25. Q5c: Write a java program to create a text file and perform read operation on the text file.
6.1.26. Q5a: Explain Divide by Zero Exception in Java with example.
6.1.27. Q5b: Explain java I/0 process.
6.1.28. Q5c: Write a java program to display the content of a text file and perform append operation
on the text file.
4341602 - Java: Summer 2023 Paper Solution
6.2.1. Q1a: Differentiate between Procedure-Oriented Programming (POP) and Object-Oriented
Programming (OOP).
6.2.2. Q1b: Explain Super keyword in inheritance with suitable example.
6.2.3. Q1c: Define: Method Overriding. List out Rules for method overriding. Write a java program
that implements method overriding.
6.2.4. Q1cOR: Describe: Interface. Write a java program using interface to demonstrate multiple
inheritance.
6.2.5. Q2a: Explain the Java Program Structure with example.
6.2.6. Q2b: Explain static keyword with suitable example.
6.2.7. Q2c: Define: Constructor. List out types of it. Explain Parameterized and copy constructor with
suitable example.
6.2.7.1. Parameterized Constructor Example:
6.2.7.2. Copy Constructor Example:
6.2.8. Q2a: Explain the Primitive Data Types and User Defined DataTypes in java.
6.2.8.1. Primitive Data Types:
6.2.8.2. User-Defined Data Types:
6.2.9. Q2b: Explain this keyword with suitable example.
6.2.10. Q2c: Define Inheritance. List out types of it. Explain multilevel and hierarchical inheritance
with suitable example.
6.2.10.1. Multilevel Inheritance Example:
6.2.10.2. Hierarchical Inheritance Example:
6.2.11. Q3a: Explain Type Conversion and Casting in java.

No.5/168

Java Programming by Milav Dabgar

6.2.11.1. Implicit Type Conversion (Widening Conversion):
6.2.11.2. Explicit Type Conversion (Narrowing Conversion):
6.2.11.3. Type Casting:
6.2.12. Q3b: Explain different visibility controls used in Java.
6.2.13. Q3c: Define: Thread. List different methods used to create Thread. Explain Thread life cycle in
detail.
6.2.13.1. Definition of Thread:
6.2.13.2. Methods to Create Thread:
6.2.13.3. Thread Life Cycle:
6.2.13.4. Detailed Explanation of Thread Life Cycle:
6.2.14. Q3a: Explain the purpose of JVM in java.
6.2.14.1. Platform Independence:
6.2.14.2. Security:
6.2.14.3. Performance:
6.2.14.4. Multithreading and Synchronization:
6.2.14.5. Load and Execution of Code:
6.2.14.6. Platform-Specific Features:
6.2.14.7. Tooling and Debugging:
6.2.15. Q3b: Define: Package. Write the steps to create a Package with suitable example.
6.2.15.1. Definition of Java Package:
6.2.15.2. Steps to Create a Java Package:
6.2.15.3. Example of Creating a Java Package:
6.2.15.4. Explanation:
6.2.16. Q3c: Explain Synchronization in Thread with suitable example.
6.2.16.1. Synchronization with synchronized Keyword:
6.2.16.2. Example: Bank Account Simulation with Synchronization:
6.2.16.3. Usage of Bank Account Class in Multiple Threads:

6.2.17. Q4a: Differentiate between String class and StringBuffer class.
6.2.17.1. String Class:
6.2.17.2. StringBuffer Class:
6.2.17.3. Example:
6.2.18. Q4b: Write a Java Program to find sum and average of 10 numbers of an array.
6.2.19. Q4c: Explain abstract class with suitable example. Explain final class with suitable example.
6.2.19.1. Key Points:
6.2.19.2. Example:
6.2.19.3. Explanation:
6.2.19.4. Key Points:
6.2.19.5. Example:
6.2.20. Q4a: Explain Garbage Collection in Java.
6.2.20.1. Key Concepts:
6.2.20.2. Garbage Collection Process:
6.2.20.3. Advantages of Garbage Collection:
6.2.21. Q4b: Write a Java program to handle user defined exception for ‘DividebyZero’ error.
6.2.22. Q4c: Write a java program to demonstrate multiple try block and multiple catch block
exception.
6.2.23. Q5a: Write a program in Java to create a file and perform write operation on this file.
6.2.24. Q5b: Explain throw and finally in Exception Handling with example.
6.2.24.1. The throw Keyword
6.2.24.2. The finally Block
6.2.25. Q5c: Describe: Polymorphism. Explain run time polymorphism with suitable example in java.
6.2.25.1. Polymorphism:
6.2.25.2. Runtime Polymorphism:
6.2.25.3. Example of Runtime Polymorphism in Java:
6.2.25.4. Benefits of Runtime Polymorphism:

No.6/ 168

Java Programming by Milav Dabgar

6.2.26. Q5a: Write a program in Java that read the content of a file byte by byte and copy it into
another file.

6.2.27. Q5b: Explain the different I/0 Classes available with Java.

6.2.28. Q5c: Write a java program that executes two threads. One thread displays “Java
Programming” every 3 seconds, and the other displays “Semester - 4th IT” every 6 seconds.(Create
the threads by extending the Thread class)

No.7/168

1.

Java Programming by Milav Dabgar

Introduction to Java Programming

Language

1.1. Java Overview

Java is a high-level, class-based, object-oriented programming language that is designed to have as
few implementation dependencies as possible. It was originally developed by James Gosling at Sun
Microsystems (which is now a subsidiary of Oracle Corporation) and released in 1995 as a core
component of Sun Microsystems' Java platform.

1.1.1. Brief History & Evolution of Java

Inception (1991): Sun Microsystems initiated the Java project under James Gosling, aiming
for embedded devices. Java was originally called "Oak".

Public Debut (1995): Java was unveiled, focusing on web applets and its "Write Once, Run
Anywhere" (WORA) philosophy.

Growth & Refinement: Subsequent releases (Java 2 and beyond) introduced major
platforms (J2SE, J2EE, J2ME), significant language improvements, and vast libraries.

Oracle Acquisition (2010): Oracle took ownership, driving Java's evolution.

Modern Era: Java remains a powerhouse, adapting to cloud computing, big data, and modern
development paradigms.

1.1.2. Java Features

Platform Independent: Java code is compiled into bytecode, which can run on any device
equipped with a JVM, enabling the famous principle of "write once, run anywhere" (WORA).

Object-Oriented: Java strictly follows the object-oriented programming model, including
concepts like inheritance, encapsulation, polymorphism, and abstraction.

Robust and Secure: Java offers strong memory management, exception handling, and type-
checking mechanismes. Its security features include the sandbox environment of the JVM.

Multithreaded: Java supports multithreaded programming, allowing developers to build
applications that can perform multiple tasks simultaneously.

Rich API: Java provides a comprehensive standard library (API) that includes tools for
networking, 1/0, data structures, concurrency, and more.

High Performance: While the early versions were criticized for performance, Java has
significantly improved with the introduction of Just-In-Time (JIT) compilation and various
optimization techniques.

1.1.3. Java Applications

Desktop Applications: Java is used to develop cross-platform desktop applications. Swing
and JavaFX are notable APIs for creating rich graphical user interfaces.

Web Applications: Java is widely used in web development, with technologies such as
Servlets, JSPs (JavaServer Pages), and frameworks like Spring and Hibernate facilitating the
development of robust web applications.

No. 8/ 168

af://n7623
af://n3814
af://n3816
af://n3828
af://n3842

Java Programming by Milav Dabgar
e Mobile Applications: Java was the official language for Android app development until the
introduction of Kotlin as an alternative. It remains widely used for Android development.

e Enterprise Applications: Java EE (Enterprise Edition) provides APIs and runtime
environments for developing and running large-scale, multi-tiered, scalable, and secure
network applications.

e Big Data: Tools within the Java ecosystem (like Hadoop, Spark) are widely used for processing
vast datasets.

e Embedded Systems: Java finds use in certain embedded systems and loT (Internet of Things)
devices.

e Scientific Applications: Popular for computation, modeling, and simulation.

Java's versatility, robustness, and widespread adoption have cemented its place as a cornerstone
of modern software development, covering a wide array of computing platforms from embedded
devices to enterprise servers and supercomputers.

1.2. Java Environment Setup & Basic Java Syntax

1.2.1. Java Components

e JVM (Java Virtual Machine): JVM is an abstract computing machine that enables Java
bytecode to be executed on different platforms. It interprets the bytecode into machine-
specific instructions.

¢ JRE (Java Runtime Environment): A subset of the DK, focused on running Java programs.
JRE includes JVM along with libraries and other components required to run Java applications
but does not include development tools.

¢ JDK (Java Development Kit): The essential package for developing Java applications. DK is a
full-featured software development kit that includes JRE, compilers, debuggers, and other
tools necessary for developing Java applications.

1.2.2. Setting up Java Development Environment

To set up aJava development environment:

1. Download JDK: Visit the official Oracle website or adopt open]DK distributions and download
the JDK appropriate for your operating system.

2. Install JDK: Follow the installation instructions provided by Oracle or the respective
distribution. This usually involves running an installer program.

3. Set up Environment Variables: Set the JAVA_HOME environment variable to point to the JDK
installation directory and add the JDK's bin directory to the PATH environment variable.

4. Verify Installation: Open a command prompt or terminal and type java -version and

javac -version to verify that Java and the Java compiler are installed correctly.

1.2.3. Structure of a Java Program

A basic Java program consists of:

No.9/168

af://n3859
af://n3860
af://n3868
af://n3879

Java Programming by Milav Dabgar

public class MyFirstProgram {
public static void main(String[] args) {
System.out.println("Hello, World!"); // Output

1.2.3.1. Class Declaration

Every Java program begins with a class declaration. The class name should match the filename.

1.2.3.2. Main Method

The main method is the entry point of a Java program. It has the following syntax:

e 'Public' means the class/method is accessible from anywhere.
e 'static’ allows the JVM to call this method without creating an object of the class.
e 'void' means the method doesn't return a value.

e 'main'is a special method name.

public static void main(String[] args) {
// Program logic goes here

1.2.3.3. Output in Java

Outputin Java is typically achieved using the System.out.println() method. System is a built-in
Java class that contains useful members, such as out, which is short for "output".

1.2.3.3.1. The println() Method

The println() method, short for "printline", is used to print a value to the screen (or a file). You
should also note that each code statement must end with a semicolon (;).

System.out.println("Hello, World!");

1.2.3.3.2. The print() Method

Thereis also a print() method, which is similar to println() . The only difference is that it does
not insert a new line at the end of the output:

System.out.print("Hello World! ");
System.out.print("I will print on the same line.");

You can also use the println() method to print numbers. However, unlike text, we don't put
numbers inside double quotes:

System.out.println(3);
System.out.println(358);
System.out.println(50000);
System.out.println(3 + 3);
System.out.println(2 * 5);

No.10/168

af://n3882
af://n3884
af://n3896
af://n3898
af://n3901

Java Programming by Milav Dabgar
1.2.3.4. Comments

Java supports single-line (//) and multi-line (/* */) comments for documenting code.

Comments can be used to explain Java code, and to make it more readable. It can also be used to
prevent execution when testing alternative code.

1.2.3.4.1. Single-line Comments

Single-line comments start with two forward slashes (/7). Any text between // and the end of
the line is ignored by Java (will not be executed). This example uses a single-line comment before a
line of code:

// This is a comment
System.out.println("Hello World");

This example uses a single-line comment at the end of a line of code:
System.out.println("Hello World"); // This is a comment

1.2.3.4.2. Multi-line Comments
Multi-line comments start with /* and ends with */. Any text between /* and */ will be

ignored by Java. This example uses a multi-line comment (a comment block) to explain the code:

/* The code below will print the words Hello World
to the screen, and it is amazing */
System.out.println("Hello World");

1.2.4. Compilation and Execution of Java Program

To compile and execute a Java program:

1. Write Code: Create a Java source file with the .java extension containing the Java code.

2. Compile Code: Open a terminal or command prompt, navigate to the directory containing
the Java file, and use the javac command to compile the code:

javac YourProgram.java
3. Execute Program: After successfully compiling, use the java command followed by the
name of the class containing the main method (without the .class extension) to execute the
program:
java YourProgram
1.2.5. Importance of Bytecode & Garbage Collection

e Bytecode: Java source code is compiled into bytecode, which is a platform-independent
intermediate representation. This bytecode can be executed on any device with a JVM,
enabling Java's "write once, run anywhere" capability.

No.11/168

af://n3906
af://n3909
af://n3914
af://n3917
af://n3928

Java Programming by Milav Dabgar

e Garbage Collection: Java employs automatic memory management through garbage
collection. It automatically deallocates memory occupied by objects that are no longer in use,
preventing memory leaks and simplifying memory management for developers. Garbage
collection helps ensure memory efficiency and program stability in Java applications.

1.3. Data Types

Avariable in Java must be a specified data type:

int myNum = 5; // Integer (whole number)
float myFloatNum = 5.99f; // Floating point number
char myLetter = 'D'; // Character

boolean myBool = true; // Boolean

String myText = "Hello"; // String

Data types are divided into two groups:

e Primitive data types - includes byte, short, int, long, float, double, boolean and

char

e Non-primitive data types - such as String, Arrays and Classes.

1.3.1. Primitive Data Types

A primitive data type specifies the size and type of variable values, and it has no additional
methods. There are eight primitive data types in Java.

Data . A
Size Description
Type
byte 1 byte Stores whole numbers from -128 to 127
2
short Stores whole numbers from -32,768 to 32,767
bytes
4
int bytes Stores whole numbers from -2,147,483,648 to 2,147,483,647
0 8 Stores whole numbers from -9,223,372,036,854,775,808 to
on
= bytes 9,223,372,036,854,775,807
4 -
float bytes Stores fractional numbers. Sufficient for storing 6 to 7 decimal digits
double byt Stores fractional numbers. Sufficient for storing 15 decimal digits
es
boolean 1 bit Stores true or false values
2 .
char Stores a single character/letter or ASClI values
bytes
e Numeric:

o Integer Types:

No.12/168

af://n3934
af://n3943

Java Programming by Milav Dabgar

byte (8 bits): The byte data type can store whole numbers from -128 to 127. This
can be used instead of int or other integer types to save memory when you are
certain that the value will be within -128 and 127

® short (16 bits):The short data type can store whole numbers from -32768 to
32767:

= int (32 bits): The int data type can store whole numbers from -2147483648 to
2147483647. In general, and in our topic, the int data type is the preferred data

type when we create variables with a numeric value.

® long (64 bits):The long data type can store whole numbers from
-9223372036854775808 to 9223372036854775807. This is used when int is not
large enough to store the value. Note that you should end the value with an "L":

o Floating-Point Types: You should use a floating point type whenever you need a
number with a decimal, such as 9.99 or 3.14515. The float and double data types can
store fractional numbers. Note that you should end the value with an "f" for floats and
"d" for doubles:

m float (32-bit single precision):

= double (64-bit double precision):
o Character:

o char (16-bit Unicode character): The char data type is used to store a single
character. The character must be surrounded by single quotes, like 'A' or 'c":

e Boolean:

o boolean (true or false): Very often in programming, you will need a data type that can
only have one of two values, like: YES / NO, ON / OFF, TRUE / FALSE. For this, Java has a
boolean data type, which can only take the values true or false

1.3.2. Non-Primitive Data Types

Non-primitive data types are called reference types because they refer to objects. The main
difference between primitive and non-primitive data types are:

e Primitive types are predefined (already defined) in Java. Non-primitive types are created by
the programmer and is not defined by Java (except for String).

e Non-primitive types can be used to call methods to perform certain operations, while
primitive types cannot.

e A primitive type has always a value, while non-primitive types can be null.

e A primitive type starts with a lowercase letter, while non-primitive types starts with an
uppercase letter.

Examples of non-primitive types are Strings, Arrays, Classes, Interface, etc.

1.3.3. Type Conversion and Casting

1.3.3.1. Implicit Conversion (Widening)

Java automatically converts smaller data types to larger ones to prevent loss of data. For example,
int can be implicitly converted to long.

byte -> short -> char -> int -> long -> float -> double

No. 137168

af://n4014
af://n4026
af://n4027

Java Programming by Milav Dabgar

public class Main {
public static void main(String[] args) {
int myInt = 9;
double myDouble = myInt; // Automatic casting: int to double

System.out.println(myInt); // Outputs 9
System.out.println(myDouble); // Outputs 9.0

1.3.3.2. Explicit Conversion (Narrowing)

When converting larger data types to smaller ones, explicit casting is required to avoid loss of
data. For example: int myInt = (int) 3.14;

double -> float -> long -> int -> char -> short -> byte

public class Main {
public static void main(String[] args) {
double myDouble = 9.78d;
int myInt = (int) myDouble; // Manual casting: double to int

System.out.println(myDouble); // Outputs 9.78
System.out.println(myInt); // Outputs 9

1.4. Identifiers

Identifiers are names given to classes, methods, variables, etc., in Java. They must start with a
letter, underscore (_), or dollar sign ($), followed by letters, digits, underscores, or dollar signs.

1.4.1. Naming Rules & Conventions

1.4.1.1. Naming Rules

e Names can contain letters, digits, underscores, and dollar signs

e Names must begin with a letter

e Names should start with a lowercase letter, and cannot contain whitespace
e Names can also begin with $ and _ (but we will not use it here)

e Names are case-sensitive ("myVar" and "myvar" are different variables)

e Reserved words (like Java keywords, such as int or boolean) cannot be used as names

1.4.1.2. Naming Conventions

e (Class names should start with an uppercase letter and follow CamelCase (e.g., MyClass).

e Variable and method names should start with a lowercase letter and follow camelCase (e.g.,
myVariable, myMethod).

e (Constants should be all uppercase with underscores separating words (e.g., MAX_SIZE).

No. 14 /168

af://n4031
af://n4035
af://n4037
af://n4038
af://n4052

Java Programming by Milav Dabgar

1.4.2. Variables

e Variable Declaration: Variables are containers for storing data values. Variables are declared
with a data type followed by a name:

int myVariable;

e Variable Initialization: Variables can be initialized at the time of declaration or later in the
code:

int myvariable = 10; // Initialization at declaration
myVariable = 20; // Later initialization

e Declare Many Variables: To declare more than one variable of the same type, you can use a
comma-separated list:

int x =5, y =6, z = 50;
System.out.println(x + vy + z);

e One Value to Multiple Variables: You can also assign the same value to multiple variables
in one line:

int x, vy, z;
X =y =12z = 50,
System.out.println(x + y + z);

1.4.3. Constants (final Keyword)
If you don't want others (or yourself) to overwrite existing values, use the final keyword (this will
declare the variable as "final" or "constant", which means unchangeable and read-only):
e Declaration: Constants in Java are declared using the final keyword.
final int myNum = 15;

myNum = 20; // will generate an error: cannot assign a value to a final
variable

e Immutable: The value of a constant cannot be changed once initialized.

e By convention, constant names are written in uppercase letters with underscores separating
words.

1.4.4. Scope of Variables

e Instance Variables: Variables declared within a class but outside any method are instance
variables. They exist as long as the object they belong to exists.

e Local Variables: Variables declared within a method or block have local scope. They exist
only within the method or block where they are declared.

No.15/168

af://n4060
af://n4074
af://n4084

Java Programming by Milav Dabgar

public class Main {
public static void main(String[] args) {
// Code here CANNOT use x
{ // This is a block
// Code here CANNOT use X
int x = 100;
// Code here CAN use x
System.out.println(x);
} // The block ends here
// Code here CANNOT use X

}

e Class Variables (Static Variables): Variables declared with the static keyword within a
class are class variables. They are shared among all instances of the class.

1.5. Arrays

An array is a data structure that stores a fixed-size collection of elements of the same data type.
Each element is accessed by its index (position) within the array.

1.5.1. One-dimensional Arrays

e Declaration: To declare a one-dimensional array, specify the type of elements followed by
square brackets []:

int[] numbers;

e [|nitialization: Arrays can be initialized using the new keyword followed by the type and the
number of elements, or directly with values enclosed in curly braces {}:

int[] numbers = new int[5]; // Initializing with size
{1, 2, 3, 4, 5}, // Initializing with values

int[] numbers

e Accessing Elements: Elements of an array are accessed using the index (starting from 0):

int[] numbers = {1, 2, 3, 4, 53%};
int firstElement = numbers[0]; // Accessing first element

e Key points
o Array indices start at 0 and go up to the length of the array minus 1.

o Trying to access an element outside the array bounds will result in an
ArrayIndexOutOfBoundsException.

1.5.2. Multidimensional Arrays

e Declaration: To declare a two-dimensional array, specify the type of elements followed by
two sets of square brackets [1[]:

int[][] matrix;

No. 16/ 168

af://n4094
af://n4096
af://n4114

Java Programming by Milav Dabgar

e [|nitialization: Two-dimensional arrays can be initialized similarly to one-dimensional arrays,
with each row enclosed in curly braces {}:

int[][] matrix = new int[3][3]; // Instantiation with size
int[][] matrix = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}; // Initializing with

values

e Accessing Elements: Elements of a two-dimensional array are accessed using row and
column indices:

int[][] matrix = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};
int element = matrix[1][2]; // Accessing element at row 1, column 2 (value:
6)

e Iterating Through a Two-dimensional Array: Nested loops are commonly used to iterate
through all elements of a two-dimensional array:

for (int 1 = 0; i < matrix.length; i++) {
for (int j = 0; j < matrix[i].length; j++) {
// Accessing each element using matrix[i][]]
System.out.println(matrix[i][]j]);

Things to remember

e Multidimensional arrays can have more than two dimensions.
e Rows and columns in a multidimensional array can have different lengths.

e Two-dimensional arrays can represent matrices, tables, grids, etc., and are useful for storing
and processing structured data in Java.

1.6. Operators

Operators are used to perform operations on variables and values. In the example below, we use
the + operator to add together two values:

int x = 100 + 50;

Although the + operator is often used to add together two values, like in the example above, it
can also be used to add together a variable and a value, or a variable and another variable:

int suml = 100 + 50; // 150 (100 + 50)
int sum2 = suml + 250; // 400 (150 + 250)
int sum3 = sum2 + sum2; // 800 (400 + 400)

Java divides the operators into the following groups:

e Arithmetic operators
e Assignment operators

e Comparison operators

No.17 /168

af://n4136

e |ogical operators

e Bitwise operators

Java Programming by Milav Dabgar

1.6.1. Arithmetic Operators

Arithmetic operators are used to perform mathematical operations.

Operator Name Description Example
+ Addition Adds together two values X+y
- Subtraction Subtracts one value from another X-y
* Multiplication Multiplies two values X*y
/ Division Divides one value by another x/y
% Modulus Returns the division remainder X%y
++ Increment Increases the value of a variable by 1 ++X
- Decrement Decreases the value of a variable by 1 --X
int a = 10;

int b = 3;

int sum = a + b; // Addition

int difference = a - b; // Subtraction

int product = a * b; // Multiplication

int quotient = a / b; // Division

int remainder = a % b; // Modulus (remainder)

1.6.2. Assignment Operators

Assignment operators are used to assign values to variables.

Operator

>>=

Example Same As
x=5 x=5
X+=3 X=X+3
X-=3 Xx=x-3
X *=3 X=X*3
X /=3 X=x/3
X %= 3 X=X%3
X &=3 X=X&3
x|=3 X=x|3
XA=3 X=XN"3
X>>=3 X=X>>3

No. 18/ 168

af://n4153
af://n4197

Java Programming by Milav Dabgar

Operator Example Same As
<<= X <<= 3 X=xX<<3
int a = 10;

a += 5; // Equivalent to a = a + 5;

1.6.3. Relational (Comparison) Operators

Relational operators are used to establish relationships between two values. This is important in
programming, because it helps us to find answers and make decisions. The return value of a
comparison is either true or false. These values are known as Boolean values, and you will learn

more about them in the Booleans and If..Else topic.

Operator Name Example
== Equal to X==Yy

1= Not equal xl=y

> Greater than X>y

< Less than X<y

>= Greater than or equal to X>=y

= Less than or equal to X<=y
int a = 10;

int b = 5;

boolean greater = a > b;
boolean lesserOrEqual = a <= b;
boolean iskEqual = a == b;
boolean notEqual = a != b;

1.6.4. Logical Operators

You can also test for true or false values with logical operators. Logical operators are used to
determine the logic between variables or values.

Operator Name Description Example
Logical)

&& q Returns true if both statements are true X<5&&x<10
an

|| Logical or Returns true if one of the statements is true x<5]| x<4

| Logical Reverse the result, returns false if the result I(x<5&&x<

’ not is true 10)

No.19/168

af://n4249
af://n4281

Java Programming by Milav Dabgar

boolean x true;
boolean y = false;
boolean resultl = x && y; // Logical AND
boolean result2 = x || y; // Logical OR

boolean result3 = !x; // Logical NOT (negation)
1.6.5. Bitwise Operators
Bitwise operators perform bitwise operations on integer operands.

int a = 5; // Binary: 101
int b = 3; // Binary: 011

int bitwiseAnd = a & b; // Bitwise AND

int bitwiseOr = a | b; // Bitwise OR

int bitwiseXor = a A b; // Bitwise XOR

int bitwiseComplement = ~a; // Bitwise complement
int leftShift = a << 1; // Left shift

int rightShift = a >> 1; // Right shift

1.6.6. Conditional (Ternary) Operator

The conditional operator is a ternary operator that evaluates a boolean expression and returns
one of two values depending on whether the expression is true or false.

e This is also called as a short-hand if else.

e [tis known as the ternary operator because it consists of three operands.

e |t can be used to replace multiple lines of code with a single line, and is most often used to
replace simple if else statements:

Syntax: *variable* = (*condition*) ? *expressionTrue* : *expressionFalse*;

Instead of writing:

int time = 20;

if (time < 18) {
System.out.println("Good day.");

} else {
System.out.println("Good evening.");

You can simply write:
int time = 20;

String result = (time < 18) ? "Good day." : "Good evening.";
System.out.println(result);

These operators are fundamental in Java for performing various operations and making decisions
based on conditions.

No.20/168

af://n4305
af://n4308

Java Programming by Milav Dabgar

1.6.7. Operator Precedence

Java follows a specific order for evaluating expressions with multiple operators (similar to
mathematical order of operations). You can find a detailed precedence table online.

int x =5+ 3 * 2; // x will be 11 (Multiplication first)
boolean isGreater = 10 >= 5; // isGreater will be true

int y = 10;

y++; // Postfix increment, y is now 11

++y; // Prefix increment, y is now 12

int result = (2 > 3) ? 10 : 20; // result will be 20

1.7. Control Flow Statements

Control flow statements in Java are used to control the flow of execution in a program based on
certain conditions or loops.

1.7.1. Selection Statements

Java has the following conditional statements:
e Use if to specify a block of code to be executed, if a specified condition is true
e Use else to specify a block of code to be executed, if the same condition is false
e Use else if to specify a new condition to test, if the first condition is false

e Use switch to specify many alternative blocks of code to be executed

1.7.1.1. The if Statement
Use the if statement to specify a block of Java code to be executed if a condition is true.
// Syntax

if (condition) {
// block of code to be executed if the condition is true

Note that if isin lowercase letters. Uppercase letters (If or IF) will generate an error.
In the example below, we test two values to find out if 20 is greater than 18. If the condition is

true, print some text:

// Example
if (20 > 18) {
System.out.println("20 is greater than 18");

We can also test variables:

int x = 20;
int y = 18;
if (x >y) {

System.out.println("x is greater than y");

No.21/168

af://n4323
af://n4326
af://n4328
af://n4339

Java Programming by Milav Dabgar

In the example above we use two variables, x and y, to test whether x is greater than y (using the
> operator). As x is 20, and y is 18, and we know that 20 is greater than 18, we print to the screen
that "x is greater than y".

1.7.1.2. The if-else Statement

Use the else statement to specify a block of code to be executed if the condition is false.

// Syntax
if (condition) {

// block of code to be executed if the condition is true
} else {

// block of code to be executed if the condition is false

// Example

int time = 20;

if (time < 18) {
System.out.println("Good day.");

} else {
System.out.println("Good evening.");

}
// Outputs "Good evening."

In the example above, time (20) is greater than 18, so the condition is false . Because of this, we
move on to the else condition and print to the screen "Good evening". If the time was less than
18, the program would print "Good day".

1.7.1.3. The if-else-if Ladder

Use the else if statement to specify a new condition if the first condition is false.

// Syntax
if (conditioni) {

// block of code to be executed if conditionl is true
} else if (condition2) {

// block of code to be executed if the conditionl is false and condition2 is
true
} else {

// block of code to be executed if the conditionl is false and condition2 is
false

}

No.22/168

af://n4348
af://n4353

Java Programming by Milav Dabgar

// Example

int time = 22;

if (time < 10) {
System.out.println("Good morning.");

} else if (time < 18) {
System.out.println("Good day.");

} else {
System.out.println("Good evening.");

}
// Outputs "Good evening."

In the example above, time (22) is greater than 10, so the first condition is false . The next
condition, in the else if statement, is also false, so we move on to the else condition since
condition1 and condition2 is both false - and print to the screen "Good evening".

However, if the time was 14, our program would print "Good day."
1.7.1.4. Switch-Case Statements

Instead of writing many if..else statements, you can use the switch statement.

The switch statement selects one of many code blocks to be executed:

// Syntax
switch(expression) {
case X:
// code block
break;
case y:
// code block
break;
default:
// code block

This is how it works:

e The switch expression is evaluated once.
e The value of the expression is compared with the values of each case.
e [f there is a match, the associated block of code is executed.

e The break and default keywords are optional, and will be described later here

The example below uses the weekday number to calculate the weekday name:

// Example
int day = 4;
switch (day) {
case 1:
System.out.println("Monday");
break;
case 2:
System.out.println("Tuesday");
break;

No.23/168

af://n4359

Java Programming by Milav Dabgar

case 3:
System.out.println("Wednesday");
break;

case 4:
System.out.println("Thursday");
break;

case 5:
System.out.println("Friday");
break;

case 6:
System.out.println("Saturday");
break;

case 7:
System.out.println("Sunday");
break;

}
// Outputs "Thursday" (day 4)

1.7.1.4.1. break Keyword
When Java reaches a break keyword, it breaks out of the switch block.
1.7.1.4.2. default Keyword

The default keyword specifies some code to run if there is no case match:

int day = 4;
switch (day) {
case 6:
System.out.println("Today is Saturday");
break;
case 7:
System.out.println("Today is Sunday");
break;
default:
System.out.println("Looking forward to the Weekend");

}
// Outputs "Looking forward to the Weekend"

Note that if the default statementis used as the last statement in a switch block, it does not
need a break.

1.7.2. Looping Statements

Loops can execute a block of code as long as a specified condition is reached. Loops are handy
because they save time, reduce errors, and they make code more readable.

1.7.2.1. While Loop

The while loop loops through a block of code as long as a specified condition is true:

No.24 /168

af://n4375
af://n4377
af://n4381
af://n4383

Java Programming by Milav Dabgar

// Syntax
while (condition) {
// code block to be executed

In the example below, the code in the loop will run, over and over again, as long as a variable (i) is
less than 5:

int 1 = 0;
while (i < 5) {
System.out.println(i);

i++;

Note: Do not forget to increase the variable used in the condition, otherwise the loop will never
end!

1.7.2.2. Do/While Loop

The do/while loop is a variant of the while loop. This loop will execute the code block once,

before checking if the condition is true, then it will repeat the loop as long as the condition is true.

// Syntax
do {
// code block to be executed

}

while (condition);

The example below uses a do/while loop. The loop will always be executed at least once, even if
the condition is false, because the code block is executed before the condition is tested:

int i = 0;do {
System.out.println(i);
i++;

}

while (i < 5);

Do not forget to increase the variable used in the condition, otherwise the loop will never end!
1.7.2.3. For Loop

When you know exactly how many times you want to loop through a block of code, use the for

loop instead of a while loop:

// Syntax
for (statement 1; statement 2; statement 3) {
// code block to be executed

Statement 1 is executed (one time) before the execution of the code block. Statement 2 defines
the condition for executing the code block. Statement 3 is executed (every time) after the code
block has been executed.

No.25/168

af://n4389
af://n4395

Java Programming by Milav Dabgar
The example below will print the numbers 0 to 4:

for (int 1 = 0; i < 5; i++) {
System.out.println(i);

Statement 1 sets a variable before the loop starts (int i = 0). Statement 2 defines the condition for
the loop to run (i must be less than 5). If the condition is true, the loop will start over again, if it is
false, the loop will end. Statement 3 increases a value (i++) each time the code block in the loop
has been executed.

This example will only print even values between 0 and 10:

for (int 1 = 0; i <=10; i=1+ 2) {
System.out.println(i);

1.7.2.4. The For-Each Loop

The for-each loop, also known as the enhanced for loop, provides a simple way to iterate over
collections and arrays in Java.

The following example outputs all elements in the cars array, using a "for-each" loop:

String[] cars = {"Volvo", "BMW", "Ford", "Mazda"};
for (String i : cars) {
System.out.println(i);

The for-each loop iterates over each element in the collection sequentially, without the need for
explicit indexing or iterators.

ArraylList<String> list = new ArrayList<>();
list.add("Java");

list.add("Python");

list.add("C++");

for (String language : list) {
System.out.println(language);

1.7.2.5. Nested Loops

It is also possible to place a loop inside another loop. This is called a nested loop. The "inner loop"
will be executed one time for each iteration of the "outer loop":

No. 26/ 168

af://n4404
af://n4410

Java Programming by Milav Dabgar

// Outer loop
for (int i = 1; i <= 2; i++) {
System.out.println("Outer: " + 1); // Executes 2 times

// Inner loop
for (int j = 1; j <= 3; j++) {
System.out.println(" Inner: " + j); // Executes 6 times (2 * 3)

1.7.3. Jump Statements

1.7.3.1. break Statement

Terminates the loop or switch statement and transfers control to the statement immediately

following the loop or switch.

for (int 1 = 0; i < 5; i++) {
if (1 == 3) {
break; // Terminates the loop when i equals 3

}

System.out.println("Iteration: " + 1i);

1.7.3.2. continue Statement

The continue statement breaks one iteration (in the loop), if a specified condition occurs, and

continues with the next iteration in the loop.

for (int i = 0; i < 5; i++) {
if (1 == 3) {
continue; // Skips iteration when i equals 3

}

System.out.println("Iteration: " + 1i);

1.7.3.3. return Statement

Exits the current method and returns a value (if applicable) to the caller.

public int add(int a, int b) {
return a + b; // Returns the sum of a and b

These control flow statements provide essential mechanisms for directing the flow of execution in
Java programs, allowing developers to implement conditional logic and repetitive tasks efficiently.

No.27 /168

af://n4413
af://n4414
af://n4417
af://n4420

Java Programming by Milav Dabgar

2. Object-Oriented Programming

2.1. Procedure-Oriented vs. Object-Oriented
Programming

2.1.1. Characteristics

Procedure-Oriented Programming (POP):

1. Focus: POP focuses on functions or procedures that operate on data.

2. Data and Functions: Data and functions are separate entities.

3. Global Data: Relies heavily on global data, which can lead to data integrity issues.
4

. Procedural Abstraction: Emphasizes procedural abstraction, breaking down a problem into
a sequence of steps.

5. Top-Down Approach: Follows a top-down approach, where the problem is broken down into
smaller sub-problems.

6. Examples: C, FORTRAN, Pascal, BASIC
Object-Oriented Programming (OOP):

1. Focus: OOP focuses on objects that encapsulate data and behavior.

2. Data Encapsulation: Data and functions are encapsulated within objects, promoting data
hiding and encapsulation.

3. Class and Object: Relies on classes and objects to model real-world entities and interactions.

4. Inheritance and Polymorphism: Supports inheritance and polymorphism, enabling code
reuse and flexibility.

5. Bottom-Up Approach: Often follows a bottom-up approach, where objects are identified and
modeled to represent real-world entities.

6. Examples: Java, Python, C++, C#

2.1.2. Differences

Characteristic Procedure-Oriented Object-Oriented
Focus Functions or procedures Objects (data + behavior)

Top-down approach,

Program) o Bottom-up approach, objects as building
functions within a

Structure blocks
program

Dt Global or passed between Encapsulated within objects, accessed

ata

functions mainly via methods

Securit Less secure - data more Improved security through data hiding

Y exposed and access control
Modularity Code can be less modular High modularity due to objects

No. 28 /168

af://n4424
af://n4425
af://n4426
af://n4455

Java Programming by Milav Dabgar

Characteristic Procedure-Oriented Object-Oriented

Code reusability enhanced through

Reusability Less reusable]]

inheritance and classes
Design Suitable for smaller Preferred for large, complex systems due
Complexity programs to better modeling of real-world systems

In summary, while POP emphasizes procedures and functions, OOP revolves around objects and
their interactions, offering better encapsulation, code reusability, and maintainability for complex
software systems. The choice between them often depends on the nature and scale of the project,
as well as the preferences of the development team.

2.2. OOP Concepts

Object-Oriented Programming (OOP) is a programming paradigm that revolves around the
concept of objects, which encapsulate data and behavior. OOP provides several key concepts to
facilitate modular and organized software design.

2.2.1. Classes and Objects

e Class: A class is a blueprint for creating objects. It defines the properties (attributes) and
behaviors (methods) that objects of the class will have.

public class Car {
String color;
int speed;

void accelerate() {
// Method to increase speed

void brake() {
// Method to decrease speed

e Object: An object is an instance of a class. It represents a real-world entity and encapsulates
both data (attributes) and behavior (methods).

Car myCar = new Car();
myCar.color = "Red";
myCar.speed = 60;
myCar .accelerate();

2.2.2. Encapsulation

e Bundling: Combining data (attributes) and code (methods) that operates on that data within
a single unit (class).

e Protection: Controlling the visibility of data members using access modifiers (public, private,
protected) to protect data integrity and hide implementation details.

No.29/168

af://n4490
af://n4492
af://n4500

Java Programming by Milav Dabgar

Example:

The attributes of a BankAccount object are encapsulated within the class, accessible and
modifiable mainly through its methods.

public class BankAccount {
private double balance;

public void deposit(double amount) {
// Method to deposit money

public void withdraw(double amount) {
// Method to withdraw money

2.2.3. Abstraction

Abstraction refers to the process of hiding the implementation details of a class and showing only
the essential features to the outside world. It focuses on what an object does rather than how it
does it.

e Simplification: Focusing on essential characteristics and hiding complex details. Exposing
only the necessary interface.

e Levels of Abstraction: Can be achieved through classes, abstract classes, and interfaces.

Example:

interface Shape {
void draw();

class Circle implements Shape {
public void draw() {
// Method to draw a circle

class Rectangle implements Shape {
public void draw() {
// Method to draw a rectangle

2.2.4. Inheritance

Inheritance is a mechanism in which a new class (derived class or subclass) inherits properties and
behaviors from an existing class (base class or superclass). It promotes code reuse and establishes
a hierarchical relationship between classes.

e Hierarchy: Creating new classes (subclasses) that inherit properties and behaviors of
existing classes (superclasses)

e Code Reusability: Subclasses can reuse code from the superclass.
No.30/168

af://n4509
af://n4518

Java Programming by Milav Dabgar
e Extensibility: Subclasses can add their own unique properties and behaviors.

Example:

class Animal {
void eat() {
// Method to eat

class Dog extends Animal {
void bark() {
// Method to bark

2.2.5. Polymorphism

Polymorphism allows objects to be treated as instances of their superclass or as instances of their
subclass. It enables flexibility and dynamic behaviour in the program.

e Many Forms: The ability of an object to take on different forms or behaviours depending on
the situation.

e Method Overloading: Multiple methods in a class with the same name but different
parameters.

e Method Overriding: A subclass provides a specific implementation of a method inherited
from its superclass.

Example:

class Animal {
void makeSound() {
// Method to make a generic animal sound

class Dog extends Animal {
void makeSound() {
// Method to make a dog sound

class Cat extends Animal {
void makeSound() {
// Method to make a cat sound

These OOP concepts form the foundation of object-oriented design and programming. They
enable developers to create modular, maintainable, and scalable software systems by modeling
real-world entities and interactions in a structured and organized manner.

No.31/168

af://n4529
af://n4541

Java Programming by Milav Dabgar

2.3. Classes and Objects

2.3.1. Creating Classes

In Java, a class is a blueprint for creating objects. It defines the structure and behavior of objects of
that type.

Syntax

public class MyClass {
// Class body

Example

public class Car { // 'public' allows access from anywhere
// Fields (member variables) define attributes
private String model; // 'private' limits access to within the class
private int year;
private String color;

// Constructor: Special method to initialize an object

public Car(String model, int year, String color) {
this.model = model; // 'this' refers to the current object
this.year = year;
this.color = color;

// Methods define behaviors
public void startEngine() {
System.out.println("Engine Starting...");

public void brake() {
System.out.println("Braking...");

// Getters and setters (accessors and mutators) for controlled access
public String getModel() {
return model;

public void setModel(String model) {
this.model = model;

// ... more getters and setters

No.32/168

af://n4541
af://n4542

Java Programming by Milav Dabgar

2.3.2. Creating Objects

In Java, an object is created from a class. Objects are instances of classes. They are created using
the new keyword followed by the class constructor

To create an object of Main, specify the class name, followed by the object name, and use the
keyword new : Create an object called " myobj " and print the value of x:

public class Main {
int x = 5;

public static void main(String[] args) {
Main myObj = new Main();
System.out.println(myObj.x);

2.3.2.1. Multiple Objects
You can create multiple objects of one class:

Create two objects of Main:

public class Main {

int x = 5;

public static void main(String[] args) {
Main myObjl = new Main(); // Object 1
Main myObj2 = new Main(); // Object 2
System.out.println(myObj1.x);
System.out.println(my0Obj2.x);

2.3.2.2. Using Multiple Classes

You can also create an object of a class and access it in another class. This is often used for better
organization of classes (one class has all the attributes and methods, while the other class holds
the main() method (code to be executed)).

Remember that the name of the java file should match the class name. In this example, we have
created two files in the same directory/folder:

e Main.java

e Second.java

//Main. java
public class Main {
int x = 5;

No.33/168

af://n4548
af://n4552
af://n4556

Java Programming by Milav Dabgar

//Second. java
class Second {
public static void main(String[] args) {
Main myObj = new Main();
System.out.println(myObj.x);

2.3.2.3. this Keyword

Inside a method or constructor, this refers to the current object. It is used to differentiate
between instance variables and local variables with the same name.

public class Person {
String name;

public void setName(String name) {
this.name = name; // Assigning the parameter value to the instance
variable

}

2.4. Class Attributes

Attributes are variables that define the state of objects. They represent the data associated with
objects of the class.

Create a class called " Main " with two attributes: x and y:

public class Main {
int x = 5;
int y = 3;

Another term for class attributes is fields.

2.4.1. Accessing Attributes

You can access attributes by creating an object of the class, and by using the dot syntax (.):

The following example will create an object of the Main class, with the name myobj . We use the
x attribute on the object to print its value:

Create an object called " myobj " and print the value of x:

public class Main {
int x = 5;

public static void main(String[] args) {

Main myObj = new Main();
System.out.println(myObj.x);

No.34 /168

af://n4566
af://n4569
af://n4574

Java Programming by Milav Dabgar

2.4.2. Modify Attributes

You can also modify attribute values: Set the value of x to 40:

public class Main {
int x;

public static void main(String[] args) {
Main myObj = new Main();
myObj.x = 40;
System.out.println(myObj.x);

Or override existing values: Change the value of x to 25:

public class Main {
int x = 10;

public static void main(String[] args) {
Main myObj = new Main();
myObj.x = 25; // x is now 25
System.out.println(myObj.x);

If you don't want the ability to override existing values, declare the attribute as final:

public class Main {
final int x = 10;

public static void main(String[] args) {
Main myObj = new Main();
myObj.x = 25; // will generate an error: cannot assign a value to a final
variable

System.out.println(myObj.x);

The final keyword is useful when you want a variable to always store the same value, like PI
(3.14159...).

2.4.3. Attributes of Multiple Objects

If you create multiple objects of one class, you can change the attribute values in one object,
without affecting the attribute values in the other: Change the value of x to 25in myobj2, and
leave x in myobj1 unchanged:

No.35/168

af://n4579
af://n4587

Java Programming by Milav Dabgar

public class Main {
int x = 5;

public static void main(String[] args) {
new Main(); // Object 1
new Main(); // Object 2

Main myObj1

Main myObj2
myObj2.x = 25;

System.out.println(myObji1.x); // Outputs 5
System.out.println(myObj2.x); // Outputs 25

2.4.4. Multiple Attributes of same Object

You can specify as many attributes as you want:

public class Main {
String fname = "John";
String lname = "Doe";
int age = 24;

public static void main(String[] args) {
Main myObj = new Main();
System.out.println("Name: " + myObj.fname + " " + myObj.lname);
System.out.println("Age: " + myObj.age);

e Methods: Methods are functions that define the behavior of objects. They represent the
actions that objects of the class can perform.

public class Car {
void accelerate() {
// Method to increase speed

void brake() {
// Method to decrease speed

2.5. Class Methods

e A method is a block of code which only runs when it is called.
e You can pass data, known as parameters, into a method.
e Methods are used to perform certain actions, and they are also known as functions.

e Why use methods? To reuse code: define the code once, and use it many times.

No.36/168

af://n4590
af://n4597

Java Programming by Milav Dabgar

2.5.1. Create a Method

A method must be declared within a class. It is defined with the name of the method, followed by
parentheses (). Java provides some pre-defined methods, such as System.out.println(), but
you can also create your own methods to perform certain actions:

Create a method inside Main:

public class Main {
static void myMethod() {
// code to be executed

e myMethod() isthe name of the method

e static means that the method belongs to the Main class and not an object of the Main
class. You will learn more about objects and how to access methods through objects later
here.

e void means that this method does not have a return value. You will learn more about return

values later here

2.5.2. Call a Method

To call a method in Java, write the method's name followed by two parentheses () and a

semicolon;

In the following example, myMethod() is used to print a text (the action), when it is called:

Inside main, call the myMethod() method:

public class Main {
static void myMethod() {
System.out.println("I just got executed!");

public static void main(String[] args) {
myMethod();

// Outputs "I just got executed!"

A method can also be called multiple times:

public class Main {
static void myMethod() {
System.out.println("I just got executed!");

public static void main(String[] args) {
myMethod();
myMethod();
myMethod();

No.37/168

af://n4607
af://n4618

Java Programming by Milav Dabgar

// I just got executed!
// I just got executed!
// I just got executed!

2.5.3. Method Parameters and Arguments

Information can be passed to methods as parameter. Parameters act as variables inside the
method.

Parameters are specified after the method name, inside the parentheses. You can add as many
parameters as you want, just separate them with a comma.

The following example has a method that takes a string called fname as parameter. When the

method is called, we pass along a first name, which is used inside the method to print the full
name:

public class Main {
static void myMethod(String fname) {
System.out.println(fname + " Refsnes");

public static void main(String[] args) {
myMethod("Liam");
myMethod("Jenny");
myMethod("Anja");

}

// Liam Refsnes
// Jenny Refsnes
// Anja Refsnes

When a parameter is passed to the method, it is called an argument. So, from the example
above: fname is a parameter, while Liam, Jenny and Anja are arguments.

2.5.3.1. Multiple Parameters

You can have as many parameters as you like:

public class Main {
static void myMethod(String fname, int age) {
System.out.println(fname + " is " + age);

public static void main(String[] args) {
myMethod("Liam", 5);
myMethod("Jenny", 8);
myMethod("Anja", 31);

// Liam is 5
// Jenny is 8

No.38/168

af://n4625
af://n4631

Java Programming by Milav Dabgar

// Anja is 31

Note that when you are working with multiple parameters, the method call must have the same
number of arguments as there are parameters, and the arguments must be passed in the same
order.

2.5.4. Return Values

The void keyword, used in the examples above, indicates that the method should not return a

value. If you want the method to return a value, you can use a primitive data type (such as int,
char , etc.) instead of void, and use the return keyword inside the method:

public class Main {
static int myMethod(int x) {
return 5 + Xx;

public static void main(String[] args) {
System.out.println(myMethod(3));

}
// Outputs 8 (5 + 3)

This example returns the sum of a method's two parameters:

public class Main {
static int myMethod(int x, int y) {
return x + vy;

public static void main(String[] args) {
System.out.println(myMethod(5, 3));

}
// Outputs 8 (5 + 3)

You can also store the result in a variable (recommended, as it is easier to read and maintain):

public class Main {
static int myMethod(int x, int y) {
return x +vy;

public static void main(String[] args) {
int z = myMethod(5, 3);
System.out.println(z);

}
// Outputs 8 (5 + 3)

No.39/168

af://n4635

Java Programming by Milav Dabgar

2.5.5. Access Methods With an Object

Create a Car object named mycar . Call the fullThrottle() and speed() methods on the myCar
object, and run the program:

// Create a Main class
public class Main {

// Create a fullThrottle() method
public void fullThrottle() {
System.out.println("The car is going as fast as it can!");

// Create a speed() method and add a parameter
public void speed(int maxSpeed) {
System.out.println("Max speed is: " + maxSpeed);

// Inside main, call the methods on the myCar object
public static void main(String[] args) {

Main myCar = new Main(); // Create a myCar object
myCar.fullThrottle(); // Call the fullThrottle() method
myCar .speed(200); // Call the speed() method

// The car is going as fast as it can!
// Max speed is: 200

2.5.6. Method Signatures

A method signature consists of the method name and the parameter list (type and order of
parameters). The return type may also be considered part of the method signature, but it's not
required for method overloading.

The unique identifier of a method. It consists of:

e Name: What the method is called.
e Parameter List: The types and order of arguments the method accepts.

e Return Type: The type of value returned by the method (void if it doesn't return anything).

public void methodName(int parameterl, String parameter2) {
// Method body

2.5.7. Passing Arguments

e Passing by Value: Primitive data types are passed by value, meaning a copy of the value is
passed to the method. Changes to the parameter inside the method do not affect the original
value.

No.40/ 168

af://n4642
af://n4645
af://n4656

Java Programming by Milav Dabgar

public void modifyValue(int x) {
X = X + 1; // Changes made to x are local to this method

3

e Passing by Reference: Objects are passed by reference, meaning the reference to the object
is passed to the method. Changes to the object's state inside the method affect the original
object.

public void modifyObjectValue(MyObject obj) {
obj.setvalue(10); // Changes made to the object's state affect the
original object

}

2.5.8. Returning Values

Methods can return values using the return statement.

e The return statement exits the method and sends a value back to where the method was
called.

e The return type in the method signature must match the data type of the value being
returned.

e Methods with a void return type don't return anything.

public int add(int a, int b) {
return a + b;

These concepts help in organizing code, improving code reusability, and managing resources
effectively in Java programs.

2.6. Constructors

A constructor in Java is a special method that is used to initialize objects. The constructor is called
when an object of a class is created. It can be used to set initial values for object attributes

e Have the same name as the class.

e Do not have a return type, not even void .

// Create a Main class
public class Main {
int x; // Create a class attribute
// Create a class constructor for the Main class
public Main() {
X = 5; // Set the initial value for the class attribute x

public static void main(String[] args) {
Main myObj = new Main(); // Create an object of class Main (This will call the
constructor)
System.out.println(myObj.x); // Print the value of x

No.41/168

af://n4664
af://n4675

Java Programming by Milav Dabgar

// Outputs 5

All classes have constructors by default: if you do not create a class constructor yourself, Java
creates one for you. However, then you are not able to set initial values for object attributes.

2.6.1. Types of Constructors

2.6.1.1. Default Constructors

e |f you don't define a constructor, Java provides a no-argument default constructor.

e |t typically initializes members to their default values (e.g., 0 for numbers, null for objects).
2.6.1.2. Parameterized Constructors

Parameterized constructors allow initialisation of object attributes with specific values passed as
arguments during object creation. Used to provide flexibility when creating objects.

public class Student {
private String name;
private int rollNumber;

// Parameterized constructor

public Student(String name, int rollNumber) {
this.name = name;
this.rollNumber = rollNumber;

2.6.1.3. Copy Constructors

A copy constructor creates a new object by copying the attributes of an existing object. It takes an
object of the same class as a parameter.

public class Student {

// ... (fields and other constructors)

// Copy constructor

public Student(Student otherStudent) {
this.name = otherStudent.name;
this.rollNumber = otherStudent.rollNumber;

2.6.2. Constructor Overloading

Constructor overloading allows a class to have multiple constructors with different parameter lists.
Java differentiates between constructors based on the number and types of parameters.

public class MyClass {
int value;

// Non Parameterized constructor
public MyClass() {

No.42 /168

af://n4684
af://n4685
af://n4691
af://n4694
af://n4697

Java Programming by Milav Dabgar

value = 0;

// Parameterized constructor
public MyClass(int v) {
value = v;

// Overloaded constructor
public MyClass(int vi1, int v2) {
value = vl + v2;

In the example above, MyClass has three constructors: a default constructor, a parameterized
constructor with one parameter, and an overloaded constructor with two parameters.

Constructors are essential for initializing objects and setting up their initial state. They provide
flexibility in object creation and initialization in Java.

2.7. Modifiers

We divide modifiers into two groups:

e Access Modifiers - controls the access level

¢ Non-Access Modifiers - do not control access level, but provides other functionality

2.7.1. Access Modifiers

Access modifiers control the visibility of classes, attributes, methods, and constructors.

These access modifiers help in encapsulating and controlling the access to the members of a class,
ensuring data hiding and security in Java programs.

For classes, you can use either public or default:

Modifier Description
public The class is accessible by any other class

The class is only accessible by classes in the same package. This is used when
default you don't specify a modifier. You will learn more about packages in the
Packages topic

For attributes, methods and constructors, you can use the one of the following:

Modifier Description
public Class, Package, Other Packages: The code is accessible for all classes
private Class only: The code is only accessible within the declared class

Class, Package: The code is only accessible in the same package. This is used
default when you don't specify a modifier. You will learn more about packages in the
Packages topic

No.43/168

af://n4702
af://n4709

Java Programming by Milav Dabgar

Modifier Description

Class, Package, Subclasses (even in different packages): The code is
protected accessible in the same package and subclasses. You will learn more about
subclasses and superclasses in the Inheritance topic

public class MyClass {
public int publicAttribute;
protected int protectedAttribute;
private int privateAttribute;
int defaultAttribute;

public void publicMethod() {
// Code

protected void protectedMethod() {
// Code

private void privateMethod() {
// Code

void defaultMethod() {
// Code

2.7.2. Non-Access Modifiers

For classes, you can use either final or abstract:

Modifier Description

The class cannot be inherited by other classes (You will learn more about

final

inheritance in the Inheritance topic)

The class cannot be used to create objects (To access an abstract class, it must
abstract be inherited from another class. You will learn more about inheritance and

abstraction in the Inheritance and Abstraction topics)

For attributes and methods, you can use the one of the following:

Modifier Description
final Attributes and methods cannot be overridden/modified
static Attributes and methods belongs to the class, rather than an object

No. 44 /168

af://n4741

Java Programming by Milav Dabgar

Modifier Description

Can only be used in an abstract class, and can only be used on methods.
The method does not have a body, for example abstract void run();. The

abstract body is provided by the subclass (inherited from). You will learn more
about inheritance and abstraction in the Inheritance and Abstraction
topics

Attributes and methods are skipped when serializing the object containing

transient
them
synchronized Methods can only be accessed by one thread at a time
. The value of an attribute is not cached thread-locally, and is always read
volatile

from the "main memory"

2.7.21. final

If you don't want the ability to override existing attribute values, declare attributes as final:

public class Main {
final int x = 10;
final double PI = 3.14;

public static void main(String[] args) {
Main my0Obj = new Main();
myObj.x = 50; // will generate an error: cannot assign a value to a final
variable
myObj.PI = 25; // will generate an error: cannot assign a value to a final
variable
System.out.println(myObj.x);

2.7.2.2. static

The static keyword is used to create class-level variables and methods. These belong to the

class rather than to individual objects of the class. They can be accessed without creating an
instance of the class.

e Class-level Methods: Methods declared static don't require an instance of the class to be
called. They belong to the class itself. Use Cases:

o Utility methods not tied to a specific object.

o The main method is static sinceit's your program's entry point.

A static method means that it can be accessed without creating an object of the class, unlike

public.

An example to demonstrate the differences between static and public methods:

public class Main {
// Static method
static void myStaticMethod() {

No.45/168

af://n4776
af://n4779

Java Programming by Milav Dabgar

System.out.println("Static methods can be called without creating objects");

// Public method
public void myPublicMethod() {
System.out.println("Public methods must be called by creating objects");

// Main method

public static void main(String[] args) {
myStaticMethod(); // Call the static method
// myPublicMethod(); This would output an error

Main myObj = new Main(); // Create an object of Main
myObj.myPublicMethod(); // Call the public method

e Accessing Members: static methods can only directly access other static members and
cannot use the this keyword (since they don't operate on an object).

public class Mathutils {
public static double findCircumference(double radius) {
return 2 * Math.PI * radius;

e Static Variables:

public class MyClass {
static int count;

e Static Methods:

public class MyClass {
static void printMessage() {
System.out.println("Hello, world!");

Static methods can be accessed using the class name:

MyClass.printMessage();

Static variables and methods are shared among all instances of the class and can be accessed
directly from the class itself.

No. 46/ 168

Java Programming by Milav Dabgar
2.7.2.3. abstract

An abstract method belongs to an abstract class, and it does not have a body. The body is
provided by the subclass:

// Code from filename: Main.java
// abstract classabstract class Main {
public String fname = "John";
public int age = 24;
public abstract void study(); // abstract method

// Subclass (inherit from Main)
class Student extends Main {
public int graduationYear = 2018;
public void study() { // the body of the abstract method is provided here

System.out.println("Studying all day long");

3

// End code from filename: Main.java

// Code from filename: Second.java
class Second {
public static void main(String[] args) {
// create an object of the Student class (which inherits attributes and
methods from Main)
Student myObj = new Student();

System.out.println("Name: " + myObj.fname);
System.out.println("Age: " + myObj.age);
System.out.println("Graduation Year: " + myObj.graduationYear);
myObj.study(); // call abstract method }

2.8. String Class

e InJava, strings are treated as objects of the String class. This class provides numerous
methods for manipulating and working with strings.

e Immutability: It's important to remember that String objects in Java are immutable. Once
a String is created, its contents cannot be changed.

String str = "Hello, Wworld!";

2.8.1. Strings - Special Characters

Because strings must be written within quotes, Java will misunderstand this string, and generate

an error:
String txt = "We are the so-called "Vikings" from the north.";

The solution to avoid this problem, is to use the backslash escape character. The backslash (\)
escape character turns special characters into string characters:

No.47 /168

af://n4807
af://n4810
af://n4817

Java Programming by Milav Dabgar

Escape character Result Description
' ' Single quote
" " Double quote

\ \ Backslash
The sequence \" inserts a double quote in a string:

String txt = "We are the so-called \"Vikings\" from the north.";
The sequence \' inserts a single quote in a string:

String txt = "It\'s alright.";
The sequence \\ inserts a single backslash in a string:

String txt = "The character \\ is called backslash.";

Other common escape sequences that are valid in Java are:

Code Result

\n New Line

\r Carriage Return
\t Tab

\b Backspace

\f Form Feed

2.8.2. Common String Methods

e String Concatenation: The + operator can be used between strings to combine them. This
is called concatenation:

String firstName = "John";
String lastName = "Doe";
System.out.println(firstName + " " + lastName);

Note that we have added an empty text (" ") to create a space between firstName and
lastName on print. You can also use the concat() method to concatenate two strings:

String firstName = "John ";
String lastName = "Doe";
System.out.println(firstName.concat(lastName));

e charAt(int index): Returns the character at the specified index.

No. 48 /168

af://n4864

Java Programming by Milav Dabgar

char ch = str.charAt(0); // Returns 'H'

e contains(CharSequence s): Checks if the string contains the specified sequence of
characters.

boolean contains = str.contains("World"); // Returns true

e format(String format, Object... args): Returns a formatted string using the specified format
string and arguments.

String formattedString = String.format("Hello, %s!", "John"); // Returns
"Hello, John!"

¢ length(): Returns the length of the string.

int length = str.length(); // Returns 13

e split(String regex): Splits the string into an array of substrings based on the specified regular
expression.

String[] parts = str.split(", "); // Splits the string into parts separated
by n , n

e substring(int beginindex): Returns a substring starting from the specified index.

String substring = str.substring(7); // Returns "World!"

e substring(int beginindex, int endIindex): Returns a substring from the specified begin index
(inclusive) to the specified end index (exclusive).

String substring = str.substring(7, 12); // Returns "World"

e toLowerCase(): Converts all characters in the string to lowercase.

String lowercase = str.toLowerCase(); // Returns "hello, world!"

e toUpperCase(): Converts all characters in the string to uppercase.

String uppercase = str.toUpperCase(); // Returns "HELLO, WORLD!"

e trim(): Removes leading and trailing whitespace from the string.

String trimmed = " Hello, World! ".trim(); // Returns "Hello, World!"

These are some of the commonly used methods provided by the String class in Java for
manipulating and working with strings. They enable various operations such as substring
extraction, case conversion, searching, and splitting.

Additional points

e String Concatenation: You can use the + operator to join strings together.

No.49/168

Java Programming by Milav Dabgar
e String Comparison:
o Use .equals() for content comparison.

o == inthe case of strings compares object references, not always the content.

e StringBuilder: For frequent modifications, look into the StringBuilder class, which is
mutable and may be more efficient.

2.9. Scanner Class (User Input)

In Java, the Scanner class is commonly used to read user input from the console. It provides
various methods to read different types of input, such as integers, floating-point numbers, and
strings.

2.9.1. Input Types

In the example above, we used the nextLine() method, which is used to read Strings. To read
other types, look at the table below:

Method Description

nextBoolean() Reads a boolean value from the user
nextByte() Reads a byte value from the user
nextDouble() Reads a double value from the user
nextFloat() Reads a float value from the user
nextInt() Reads a int value from the user
nextLine() Reads a String value from the user
nextLong() Reads a long value from the user
nextShort() Reads a short value from the user

2.9.2. Using Scanner Class

1. Import Scanner class: First, import the Scanner class from the java.util package.
import java.util.Scanner;

2. Create a Scanner object: Create an instance of the Scanner class to read input.
Scanner scanner = new Scanner(System.in);

3. Read input: Use the Scanner object's methods to read input from the console.

System.out.println("Enter your name: ");
String name = scanner.nextLine(); // Read a line of text

No.50/ 168

af://n4915
af://n4917
af://n4947

Java Programming by Milav Dabgar

System.out.println("Enter your age: ");
int age = scanner.nextInt(); // Read an integer

4. Close the Scanner: It's good practice to close the Scanner object after reading input to

release system resources.

scanner.close();

In the example below, we use different methods to read data of various types:

import java.util.Scanner;

class Main {
public static void main(String[] args) {
Scanner myObj = new Scanner (System.in);

System.out.println("Enter name, age and salary:");

// String input
String name = myObj.nextLine();

// Numerical input
int age = myObj.nextInt();
double salary = myObj.nextDouble();

// Output input by user
System.out.println("Name: " + name);
System.out.println("Age: " + age);
System.out.println("Salary: " + salary);

Note: If you enter wrong input (e.g. text in a numerical input), you will get an exception/error
message (like " InputMismatchException").

2.10. Command-line Arguments

Java programs can also accept command-line arguments, which are passed to the main method
when the program is executed from the command line.

Command-line arguments can be accessed from the args array within the main method. Each
element of the array corresponds to a command-line argument passed to the program.

e Arguments passed to your program when it's started from the command line.

e Accessed inthe string[] args parameter of the main method.

Example

No.51/168

af://n4965

Java Programming by Milav Dabgar

public class CommandLineDemo {
public static void main(String[] args) {
if (args.length > 0) {
System.out.println("The first argument is: " + args[0]);
System.out.println("There were " + args.length + " arguments

passed.");
} else {
System.out.println("No command-line arguments provided.");
}
}
}

Run this from the command line like:
java CommandLineDemo hello world
Command-line arguments are useful for passing information to a Java program when it is

executed, such as configuration settings or file paths. They can be accessed and processed as
needed within the program.

No.52/168

Java Programming by Milav Dabgar

3. Inheritance, Packages, and Interfaces

3.1. Inheritance

Inheritance is a key concept in object-oriented programming (OOP) that allows a class to inherit
properties and behavior from another class. It promotes code reuse and establishes a hierarchical
relationship between classes.

3.1.1. Basics of Inheritance

e Base Class (Superclass): The class whose properties and behavior are inherited by another
class is called the base class or superclass.

e Derived Class (Subclass): The class that inherits properties and behavior from another class
is called the derived class or subclass.

e Syntax: In Java, inheritance is achieved using the extends keyword.

// Base class
class Vehicle {
// Properties and methods

// Derived class inheriting from Vehicle
class Car extends Vehicle {
// Additional properties and methods

3.1.2. Types of Inheritance

1. Single Inheritance: A subclass inherits from only one superclass.

class Animal { ... }
class Dog extends Animal { ... }

2. Multiple Inheritance (Not directly supported in Java): A subclass inheriting from multiple
superclasses. Java avoids this using interfaces (we'll cover interfaces later).

3. Multilevel Inheritance: A subclass inherits from a class that is itself a subclass.

class Animal { ... }
class Dog extends Animal { ... }
class GoldenRetriever extends Dog { ... }

4. Hierarchical Inheritance: Multiple subclasses inherit from a single superclass.

class Vehicle { ... }
class Car extends Vehicle { ... }
class Truck extends Vehicle { ... }

5. Hybrid Inheritance: A combination of multiple inheritance types. This can get complex, and
Java doesn't directly support all variations.

No.53/168

af://n4978
af://n4979
af://n4981
af://n4990

Java Programming by Milav Dabgar
3.1.3. extends Keyword

The extends keyword is used to establish an inheritance relationship between classes in Java.

class Subclass extends Superclass {
// Subclass definition

3.1.4. super Keyword

The super keyword is used to refer to the superclass or call superclass constructors and methods
from the subclass.

e Referring to Superclass Members: Use super to access superclass members (fields and
methods) from the subclass.

class Subclass extends Superclass {
void display() {
super.display(); // Call superclass method
// Additional subclass code

e Calling Superclass Constructor: Use super () to call the superclass constructor from the
subclass constructor.

class Subclass extends Superclass {
Subclass() {
super(); // Call superclass constructor
// Subclass constructor code

In summary, inheritance allows classes to inherit properties and behavior from other classes,
promoting code reuse and establishing a hierarchical relationship between classes. Java supports
various types of inheritance, and the extends and super keywords are used to implement and

work with inheritance in Java programs.

3.1.5. Polymorphism

The word "polymorphism" means "many forms." In Java, it refers to the ability of objects to behave
differently depending on their specific type, enabling us to write more flexible and reusable code.

Polymorphism means "many forms", and it occurs when we have many classes that are related to
each other by inheritance.

Like we specified in the previous topic; Inheritance lets us inherit attributes and methods from
another class. Polymorphism uses those methods to perform different tasks. This allows us to
perform a single action in different ways.

For example, think of a superclass called Animal that has a method called animalSound() .

Subclasses of Animals could be Pigs, Cats, Dogs, Birds - And they also have their own
implementation of an animal sound (the pig oinks, and the cat meows, etc.):

No.54 /168

af://n5005
af://n5008
af://n5018

Java Programming by Milav Dabgar

class Animal {
public void animalSound() {
System.out.println("The animal makes a sound");

class Pig extends Animal {
public void animalSound() {
System.out.println("The pig says: wee wee");

class Dog extends Animal {
public void animalSound() {
System.out.println("The dog says: bow wow");

Remember from the Inheritance topic that we use the extends keyword to inherit from a class.

Now we can create Pig and Dog objects and call the animalSound() method on both of them:

class Animal {
public void animalSound() {
System.out.println("The animal makes a sound");

class Pig extends Animal {
public void animalSound() {
System.out.println("The pig says: wee wee");

class Dog extends Animal {
public void animalSound() {
System.out.println("The dog says: bow wow");

class Main {
public static void main(String[] args) {
Animal myAnimal = new Animal(); // Create a Animal object
Animal myPig = new Pig(); // Create a Pig object
Animal myDog = new Dog(); // Create a Dog object
myAnimal.animalSound();
myPig.animalSound();
myDog.animalSound();

No.55/168

Java Programming by Milav Dabgar

3.1.5.1. Method Overloading

Method overloading allows a class to have multiple methods with the same name but different
parameter lists. The methods must have different parameter types or a different number of
parameters.

e Definition: Having multiple methods with the same name within the same class, but with
different parameter lists (different number of parameters or different parameter types).

e Resolution at Compile Time: The compiler determines at compile time which version of the
method to call based on the arguments provided.

class Calculator {
int add(int a, int b) {
return a + b;

double add(double a, double b) {
return a + b;

3.1.5.2. Method Overriding

Method overriding occurs when a subclass provides a specific implementation of a method that is
already defined in its superclass. The method signature (name and parameters) must be the same.

e Definition: A subclass redefines a method it inherits from a superclass. The subclass
provides its own specific implementation of the inherited method.

e Resolution at Runtime: The JVM determines at runtime which version to call (subclass or
superclass) based on the type of the object. This is the essence of dynamic dispatch.

e Use of @override Annotation: Marking overridden methods with @override helps avoid
errors.

class Animal {
void makeSound() {
System.out.println("Animal makes a sound");

class Dog extends Animal {
@override
void makeSound() {
System.out.println("Dog barks");

3.1.5.2.1. Overriding Object Class Methods

Java provides a set of methods in the object class that can be overridden in subclasses to provide
custom behavior. Commonly overridden methods include:

e equals(Object obj): Compares two objects for equality.
e toString(): Returns a string representation of the object.

No. 56/ 168

af://n5027
af://n5035
af://n5045

Java Programming by Milav Dabgar

¢ finalize(): Called by the garbage collector before reclaiming the object's memory.

e hashCode(): Returns a hash code value for the object.

class Student {
int id;
String name;
// Overriding equals method
@Override

public boolean equals(Object obj) {
// Custom equality check logic

// Overriding toString method
@override
public String toString() {
return "Student[id=" + id + ", name=" + name + "]";

3.1.6. Method Dynamic Dispatch

Method dynamic dispatch (or dynamic method dispatch) is the process by which the correct
version of a method is invoked at runtime, based on the actual type of the object.

Animal animal = new Dog();
animal.makeSound(); // Dynamic dispatch invokes Dog's makeSound() method

In the example above, even though the reference animal is of type Animal, the makeSound()
method of the Dog class is invoked because animal is referring to a Dog object. This allows for
polymorphic behavior, where the same method call can exhibit different behavior depending on
the actual type of the object at runtime.

Polymorphism, achieved through method overloading, overriding, and dynamic dispatch, allows
for flexible and reusable code by enabling objects of different types to be treated uniformly.

3.2. Interfaces

e Aninterface is like a contract. It defines a set of methods that a class must implement,
ensuring certain behaviors are guaranteed by the class.

e Abstract: Interfaces cannot be instantiated directly. They are used to achieve abstraction and
provide a way to achieve multiple inheritance in Java through interface implementation.

e Methods without Bodies: Methods in an interface are by default abstract (without a body).

e implements Keyword: Classes implement interfaces using the implements keyword.

3.2.1. Defining Interfaces

An interface is declared using the interface keyword followed by the interface name and a list of
method signatures (without method bodies).

No.57 /168

af://n5057
af://n5062
af://n5072

Java Programming by Milav Dabgar

interface Shape {
double area();
double perimeter();

3.2.2. Implementing Interfaces

To implement an interface, a class uses the implements keyword followed by the interface name.
The class must provide implementations for all the methods declared in the interface.

class Circle implements Shape {
double radius;

// Implementing area method
@Override
public double area() {

return Math.PI * radius * radius;

// Implementing perimeter method

@Override

public double perimeter() {
return 2 * Math.PI * radius;

3.2.3. Multiple Inheritance Using Interfaces

Java supports multiple inheritance through interfaces, as a class can implement multiple
interfaces. This allows a class to inherit from multiple sources, providing flexibility in code design.

interface Drawable {
void draw();

interface Colorable {
void setColor(String color);

class Rectangle implements Drawable, Colorable {
// Implementing draw method
@override
public void draw() {
// Draw rectangle

// Implementing setColor method

@Override

public void setColor(String color) {
// Set rectangle color

No. 58/ 168

af://n5075
af://n5078

Java Programming by Milav Dabgar

In the example above, the Rectangle class implements both the Drawable and Colorable
interfaces, allowing it to provide implementations for methods defined in both interfaces.

Notes on Interfaces:

e |ike abstract classes, interfaces cannot be used to create objects (in the example above, it is
not possible to create an "Animal" object in the MyMainClass)

¢ Interface methods do not have a body - the body is provided by the "implement" class
e Onimplementation of an interface, you must override all of its methods

e Interface methods are by default abstract and public

e |Interface attributes are by default public, static and final

¢ An interface cannot contain a constructor (as it cannot be used to create objects)
Why And When To Use Interfaces?

1. To achieve security - hide certain details and only show the important details of an object
(interface).

2. Java does not support "multiple inheritance" (a class can only inherit from one superclass).
However, it can be achieved with interfaces, because the class can implement multiple
interfaces. Note: To implement multiple interfaces, separate them with a comma (see
example below).

Benefits of Interfaces:

e Polymorphism: You can treat objects of different classes that implement the same interface
uniformly.

e Multiple Inheritance (via Interfaces): A class can implement multiple interfaces,
overcoming Java's restriction on direct multiple inheritance of classes.

e Abstraction: Interfaces help to enforce a separation between interface (what an object can
do) and implementation (how it does it).

e Loose Coupling: Using interfaces helps to reduce dependencies between classes, making
your code more flexible and maintainable.

Interfaces provide a way to achieve abstraction, decoupling the definition of methods from their
implementation. They also enable code reuse and multiple inheritance, making Java programs
more flexible and maintainable.

3.3. Abstraction

Data abstraction is the process of hiding certain details and showing only essential information to
the user.

Abstraction can be achieved with either abstract classes or interfaces (which you will learn more
about in the next topic).

The abstract keyword is a non-access modifier, used for classes and methods:

e Abstract class: is a restricted class that cannot be used to create objects (to access it, it must
be inherited from another class).

e Abstract method: can only be used in an abstract class, and it does not have a body. The
body is provided by the subclass (inherited from).

No.59/168

af://n5113

Java Programming by Milav Dabgar

// Abstract class
abstract class Animal {
// Abstract method (does not have a body)
public abstract void animalSound();
// Regular method
public void sleep() {
System.out.println("zzz");

// Subclass (inherit from Animal)
class Pig extends Animal {
public void animalSound() {
// The body of animalSound() is provided here
System.out.println("The pig says: wee wee");

class Main {
public static void main(String[] args) {
Pig myPig = new Pig(); // Create a Pig object
myPig.animalSound();
myPig.sleep();

3.3.1. Abstract Class

An abstract class in Java is a class that cannot be instantiated directly and may contain abstract
methods, which are declared but not implemented in the abstract class itself. Abstract classes are
used to define a common interface for a group of subclasses while allowing subclasses to provide
specific implementations for abstract methods.

An abstract class is declared using the abstract keyword. It can contain both abstract and non-
abstract methods.

e abstract Keyword: Abstract classes are declared using the abstract keyword.

e Abstract Methods: Can contain abstract methods (methods declared without a body, ending
with a semicolon). Subclasses must implement these methods.

e Concrete Methods: Can also have regular methods with implementations.

abstract class Shape {
abstract double area(); // Abstract method
double perimeter() { // Non-abstract method

return 0;

No. 60/ 168

af://n5122

Java Programming by Milav Dabgar

3.3.2. Abstract Method

An abstract method is declared using the abstract keyword and does not have an

implementation in the abstract class. Subclasses must provide implementations for all abstract

methods.

Example

abstract class Vehicle {
private String model;

public Vehicle(String model) {
this.model = model;

// Abstract method
public abstract void startEngine();

// Concrete method
public void accelerate() {
System.out.println("Accelerating...");

3.3.3. Differences from Interfaces

Feature Interface

o Cannot be instantiated
Instantiation

directly
Method Only abstract method
Declaration declarations

Provides no default

Implementation .]
implementation

Multiple A class can implement
Inheritance multiple interfaces

When to Use an Abstract Class

Abstract Class

Cannot be instantiated directly

Can have abstract methods AND
concrete methods

Can provide default implementations
for some methods

A class can extend only one abstract
class

e Common functionality across subclasses, but not all methods make sense at the base level.

e Default implementations exist for some behaviors.

e You want to enforce a certain structure on your class hierarchy.

3.4. Final Class

e Definition: A class declared final cannot have any subclasses. It's like the end of an

inheritance chain.
e Use Cases:

o Prevent unwanted inheritance.

No. 61/168

af://n5133
af://n5137
af://n5167

Java Programming by Milav Dabgar

o Classes with immutable characteristics (like String).

o Classes with security-sensitive functionality.

Final classes are typically used when a class should not be extended or when all its methods are
already implemented and should not be overridden.

3.4.1. Final Class Syntax

Afinal class is declared using the final keyword.

final class FinalClass {
// Class definition

3.4.2. Final Method

In addition to final classes, individual methods can also be marked as final. A final method cannot
be overridden by subclasses.

class Parent {
final void display() {
// Method implementation

class Child extends Parent {
// This will cause a compile-time error

void display() {
// Method implementation

Summary

e Abstract classes provide a way to define a common interface for a group of subclasses and
allow for both abstract and non-abstract methods.

e Final classes cannot be subclassed, and final methods cannot be overridden.

e Abstract classes are used when a class should not be instantiated directly, while final classes
are used when a class should not be extended.

e You cannot have a class that is both abstract and final. They represent opposite concepts
in terms of inheritance.

3.5. Inner Classes

In Java, it is also possible to nest classes (a class within a class). The purpose of nested classes is to
group classes that belong together, which makes your code more readable and maintainable.

To access the inner class, create an object of the outer class, and then create an object of the inner

class:

class OuterClass {
int x = 10;

No. 62 /168

af://n5181
af://n5184
af://n5197

Java Programming by Milav Dabgar

class InnerClass {
int y = 5;

public class Main {
public static void main(String[] args) {
OuterClass myOuter = new OuterClass();
OuterClass.InnerClass myInner = myOuter.new InnerClass();
System.out.println(myInner.y + myOuter.Xx);

// Outputs 15 (5 + 10)

3.5.1. Private Inner Class

Unlike a "regular” class, an inner class can be private or protected. If you don't want outside
objects to access the inner class, declare the class as private:

class OuterClass {
int x = 10;

private class InnerClass {
int y = 5;

public class Main {
public static void main(String[] args) {
OuterClass myOuter = new OuterClass();
OuterClass.InnerClass myInner = myOuter.new InnerClass();
System.out.println(myInner.y + myOuter.X);

If you try to access a private inner class from an outside class, an error occurs:

Main.java:13: error: OuterClass.InnerClass has private access in OuterClass
OuterClass.InnerClass myInner = myOuter.new InnerClass(); N

3.5.2. Static Inner Class

An inner class can also be static, which means that you can access it without creating an object

of the outer class:

class OuterClass {
int x = 10;

static class InnerClass {
int y = 5;

No. 63/ 168

af://n5201
af://n5206

Java Programming by Milav Dabgar

public class Main {
public static void main(String[] args) {
OuterClass.InnerClass myInner = new OuterClass.InnerClass();
System.out.println(myInner.y);

// Outputs 5

Note: just like static attributes and methods, a static inner class does not have access to
members of the outer class.

3.5.3. Access Outer Class From Inner Class

One advantage of inner classes, is that they can access attributes and methods of the outer class:

class OutercClass {
int x = 10;

class InnerClass {
public int myInnerMethod() {
return x;

public class Main {
public static void main(String[] args) {
OuterClass myOuter = new OuterClass();
OuterClass.InnerClass myInner = myOuter.new InnerClass();
System.out.println(myInner.myInnerMethod());

// Outputs 10

3.6. Packages & API

A package in Java is used to group related classes. Think of it as a folder in a file directory. We
use packages to avoid name conflicts, and to write a better maintainable code.

Packages in Java are used to group related classes, interfaces, and sub-packages, making the code
easier to manage and modularize. They help avoid naming conflicts and can also control access to
classes and class members (methods and fields) due to their access levels.

They provide:

e Organisation: Help manage large projects by avoiding naming conflicts.
e Access Control: Control the visibility of classes and members.

e Namespace: Create a unique namespace for your classes and interfaces.

Packages are divided into two categories:

No. 64 /168

af://n5210
af://n5213

Java Programming by Milav Dabgar
e Built-in Packages (packages from the Java API)
e User-defined Packages (create your own packages)

3.6.1. Built-in Packages

The Java APl is a library of prewritten classes, that are free to use, included in the Java
Development Environment.

The library contains components for managing input, database programming, and much much

more. The complete list can be found at Oracles website: https://docs.oracle.com/javase/8/docs/a

pi/.

The library is divided into packages and classes. Meaning you can either import a single class

(along with its methods and attributes), or a whole package that contain all the classes that belong

to the specified package.
Java comes with a rich set of built-in packages in the Java API. Examples:

e java.lang (String, Math, System, etc.)
e java.util (List, ArrayList, Scanner, etc.)

e java.io (File, InputStream, etc.)

To use a class or a package from the library, you need to use the import keyword:

import package.name.Class; // Import a single class
import package.name.*; // Import the whole package

3.6.2. Import a Class

If you find a class you want to use, for example, the Scanner class, which is used to get user

input, write the following code:
import java.util.Scanner;

In the example above, java.util is a package, while Scanner is a class of the java.util
package.

To use the Scanner class, create an object of the class and use any of the available methods

found in the Scanner class documentation. In our example, we will use the nextLine() method,

which is used to read a complete line:

Using the Scanner class to get user input:

No. 65/ 168

af://n5230
https://docs.oracle.com/javase/8/docs/api/
af://n5244

Java Programming by Milav Dabgar

import java.util.Scanner;

class MyClass {
public static void main(String[] args) {
Scanner myObj = new Scanner (System.in);
System.out.println("Enter username");

String userName = myObj.nextLine();
System.out.println("Username is: " + userName);

3.6.3. Import a Package

There are many packages to choose from. In the previous example, we used the Scanner class
from the java.util package. This package also contains date and time facilities, random-number
generator and other utility classes.

To import a whole package, end the sentence with an asterisk sign (*). The following example will

import ALL the classes in the java.util package:

import java.util.*;

3.6.4. User-defined Packages

To create a package, you use the package keyword at the top of your Java source file. Each file can
only declare one package, and all types (classes, interfaces, enums) declared in the file will belong
to that package.

Package Declaration: At the top of your .java files, use the package keyword followed by the

package name.

To create your own package, you need to understand that Java uses a file system directory to store
them. Just like folders on your computer: root/mypack/MyPackageClass.java

To create a package, use the package keyword:
// MyPackageClass. java
package mypack;
class MyPackageClass {

public static void main(String[] args) {
System.out.println("This is my package!");

Save the file as MyPackageClass.java, and compile it, Then compile the package.

The -d keyword specifies the destination for where to save the class file. You can use any
directory name, like c:/user (windows), or, if you want to keep the package within the same
directory, you can use the dot sign" . ", like in the example above.

Note: The package name should be written in lower case to avoid conflict with class names.

When we compiled the package in the example above, a new folder was created, called "mypack".

No. 66/ 168

af://n5251
af://n5255

Java Programming by Milav Dabgar

3.6.5. Access Rules: Access Control Within Packages

Java uses access modifiers to control access levels for classes, constructors, methods, and
variables. The access levels impact how members can be accessed from within their own package
and from other packages.

Access Modifier Access Within

public Class, Package, Other Packages

protected Class, Package, Subclasses (even in different packages)
default (no modifier) Class, Package

private Class only

e public: The member is accessible from any other class or package.

e protected: The member is accessible within its own package and by subclasses (including

those in other packages).

e default (no modifier): The member is accessible only within its own package. If no access

modifier is specified, the default access level is applied.

e private: The member is accessible only within its own class.

3.6.6. Example: Access Control

package packageOne;

public class ClassOne {

public void publicMethod() {} // Accessible from any class

protected void protectedMethod() {} // Accessible within package and
subclasses

void defaultMethod() {} // Accessible only within packageOne

private void privateMethod() {} // Accessible only within ClassOne

If another class in a different package tries to access these methods, only publicMethod() and,
under certain conditions, protectedMethod() (from a subclass) would be accessible.

Packages and access modifiers together provide a robust mechanism for encapsulating and
organizing code, ensuring that internal implementations are well-protected and that the public
interface of classes is clearly defined.

No. 67 /168

af://n5265
af://n5292

Java Programming by Milav Dabgar

4. Exception Handling and
Multithreading

4.1. Exception Handling in Java

Exception handling in Java is a powerful mechanism that handles runtime errors to maintain
normal application flow. An exception is an event that disrupts the normal flow of the program's
instructions.

4.1.1. Errors vs. Exceptions

e Errors: Indicate serious problems that a reasonable application should not try to catch. Most
errors are abnormal conditions. Examples include outofMemoryError and

StackOverflowError .

e Exceptions: Are conditions that a reasonable application might want to catch. Exceptions are
divided into two categories: checked exceptions (those that must be caught or declared to be
thrown) and unchecked exceptions (those that don't need to be explicitly caught or declared
thrown).

4.1.2. Java try and catch

The try statement allows you to define a block of code to be tested for errors while it is being

executed.

The catch statement allows you to define a block of code to be executed, if an error occurs in the

try block.

The try and catch keywords come in pairs:

// Syntax

try {
// Block of code to try

}
catch(Exception e) {
// Block of code to handle errors

Consider the following example:

This will generate an error, because myNumbers[10] does not exist.

public class Main {
public static void main(String[] args) {
int[] myNumbers = {1, 2, 3};
System.out.println(myNumbers[10]); // error!

The output will be something like this:

No. 68 /168

af://n5296
af://n5297
af://n5299
af://n5305

Java Programming by Milav Dabgar

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 10 at
Main.main(Main.java:4)

If an error occurs, we can use try...catch to catch the error and execute some code to handle it:

//Example
public class Main {
public static void main(String[] args) {
try {
int[] myNumbers = {1, 2, 3};
System.out.println(myNumbers[10]);
} catch (Exception e) {
System.out.println("Something went wrong.");

The output will be:

Something went wrong.

4.1.3. try-catch-finally Blocks

e try block: Contains code that might throw an exception.
e catch block: Catches and handles the exception thrown by the try block.

e finally block: Executes after the try/catch block has completed. The finally block will execute
whether or not an exception is caught or thrown. It's typically used for cleanup code.

The finally statement lets you execute code, after try...catch, regardless of the result:

// Syntax
try {
// Code that may throw an exception
} catch (ExceptionType name) {
// Code to handle the exception
} finally {
// Code to be executed after try block ends

}
// Example
try {

int result = 10 / 0; // Might throw an ArithmeticException
} catch (ArithmeticException e) {

System.out.println("Error: Cannot divide by zero");
} finally {

System.out.println("This code always executes.");

No. 69/ 168

af://n5319
af://n5330

Java Programming by Milav Dabgar

4.2. Throwing Exceptions

e throw keyword: Used within a method to throw an exception. Either the method must
handle the exception using a try-catch block, or it must be declared to throw the exception
using the throws keyword in the method signature.

e throws keyword: Indicates that a method may throw one or more exceptions. The calling
method must handle these exceptions.

public void myMethod() throws MyException {
throw new MyException("Something went wrong");

The throw statement is used together with an exception type. There are many exception types
available in Java: ArithmeticException, FileNotFoundException,

ArrayIndexOutOfBoundsException, SecurityException, etc.

4.2.1. Common Built-in Exceptions

e ArithmeticException: Thrown for issues like division by zero.
e NullPointerException:Attempting to access or modify a null object reference.
e ArrayIndexOutOfBoundsException:Accessing an array with an illegal index.

e ClassCastException: Attempting to cast an object to a subclass of which it is not an

instance.

e NumberFormatException : Attempting to convert a string to a numeric type but the string

doesn't have an appropriate format.

e I0Exception: Signals problems during input/output operations.

IllegalArgumentException: When a method passes an invalid argument.

Throw an exception if age is below 18 (print "Access denied"). If age is 18 or older, print "Access

granted":

public class Main {
static void checkAge(int age) {
if (age < 18) {
throw new ArithmeticException("Access denied - You must be at least 18 years
old.");
}
else {
System.out.println("Access granted - You are old enough!");

public static void main(String[] args) {
checkAge(15); // Set age to 15 (which is below 18...)

The output will be:

No.70/168

af://n5330
af://n5338

Java Programming by Milav Dabgar

Exception in thread "main" java.lang.ArithmeticException: Access denied - You must
be at least 18 years old. at Main.checkAge(Main.java:4) at
Main.main(Main.java:12)

If age was 20, you would not get an exception:
checkAge(20);

The output will be:

Access granted - You are old enough!

4.2.2. Creating Custom Exceptions

You can create custom exceptions by extending the Exception class (for checked exceptions) or
the RuntimeException class (for unchecked exceptions).

class MyCustomException extends Exception {
public MyCustomException(String message) {
super (message);

Custom exceptions allow you to create specific error types for your application, improving
readability and maintainability.

4.2.3. Benefits of Exception Handling

e Separation of Error-handling Code: Improves readability and maintainability.
e Graceful Recovery: Allows your program to recover from errors instead of crashing.

e Propagation: Exceptions can bubble up the call stack if not handled locally.

4.3. Multi-threading in Java

Multi-threading in Java allows concurrent execution of multiple threads within a single process,
enabling better utilization of CPU resources and improved application responsiveness. Here's an
overview of key concepts and features:

4.3.1. Concepts of Threads and Processes

® Process: A process is an executing instance of a program that has its own memory space,
resources, and state.

e Thread: A thread is the smallest unit of execution within a process. Threads share the same
memory space and resources within a process.

No.71/168

af://n5362
af://n5366
af://n5374
af://n5376

Java Programming by Milav Dabgar

4.3.2. Multi-threading Benefits

e Responsiveness: Ul remains responsive even during long-running tasks.
e Resource Utilization: Maximize CPU usage by allowing multiple threads to run concurrently.

e Simplification: Can break down complex tasks into smaller, independently running threads.

4.3.3. Creating a Thread

There are two ways to create a thread.

It can be created by extending the Thread class and overriding its run() method:

4.3.3.1. Extend Syntax

public class Main extends Thread {
public void run() {
System.out.println("This code is running in a thread");

Another way to create a thread is to implement the Runnable interface:

4.3.3.2. Implement Syntax

public class Main implements Runnable {
public void run() {
System.out.println("This code is running in a thread");

4.3.4. Running Threads

If the class extends the Thread class, the thread can be run by creating an instance of the class

and call its start() method:

4.3.4.1. Extend Example

public class Main extends Thread {
public static void main(String[] args) {
Main thread = new Main();
thread.start();
System.out.println("This code is outside of the thread");
}
public void run() {
System.out.println("This code is running in a thread");

If the class implements the Runnable interface, the thread can be run by passing an instance of
the classto a Thread object's constructor and then calling the thread's start() method:

No.72/168

af://n5382
af://n5390
af://n5393
af://n5396
af://n5398
af://n5400

Java Programming by Milav Dabgar

4.3.4.2. Implement Example

public class Main implements Runnable {
public static void main(String[] args) {
Main obj = new Main();
Thread thread = new Thread(obj);
thread.start();
System.out.println("This code is outside of the thread");

}

public void run() {
System.out.println("This code is running in a thread");

4.3.4.3. Differences between "extending" and "implementing"” Threads

The major difference is that when a class extends the Thread class, you cannot extend any other
class, but by implementing the Runnable interface, it is possible to extend from another class as
well, like: class MyClass extends OtherClass implements Runnable.

4.3.5. Concurrency Problems

Because threads run at the same time as other parts of the program, there is no way to know in
which order the code will run. When the threads and main program are reading and writing the
same variables, the values are unpredictable. The problems that result from this are called
concurrency problems.

A code example where the value of the variable amount is unpredictable:

public class Main extends Thread {
public static int amount = 0;

public static void main(String[] args) {
Main thread = new Main();
thread.start();
System.out.println(amount);
amount++;
System.out.println(amount);

public void run() {
amount++;

To avoid concurrency problems, it is best to share as few attributes between threads as possible. If
attributes need to be shared, one possible solution is to use the isAlive() method of the thread
to check whether the thread has finished running before using any attributes that the thread can
change.

Use isAlive() to prevent concurrency problems:

public class Main extends Thread {
public static int amount = 0;

No.73/168

af://n5403
af://n5405
af://n5407

Java Programming by Milav Dabgar

public static void main(String[] args) {
Main thread = new Main();
thread.start();
// Wait for the thread to finish
while(thread.isAlive()) {

System.out.println("waiting...");
}
// Update amount and print its value
System.out.println("Main: " + amount);
amount++;
System.out.println("Main: " + amount);
}

public void run() {
amount++;

4.3.6. Thread Lifecycle

The lifecycle of a thread in Java consists of several states:

New: The thread is in the new state before it is started.

Runnable: The thread is in the runnable state when it's ready to run, but the scheduler has
not selected it to be the running thread.

Running: The thread is in the running state when the processor is actively executing its code.

Blocked/Waiting: The thread is in the blocked/waiting state when it's waiting for a resource
or another thread to perform a task.

Terminated: The thread is in the terminated state when it has completed its execution.

4.3.7. Thread Priority

Thread priority is used by the scheduler to determine the order of thread execution.

Range from 1 (lowest) to 10 (highest), default is 5, where higher values indicate higher
priority.

thread.setPriority(), thread.getPriority()

The OS scheduler uses priorities as suggestions, the behavior might be OS-dependent.

thread.setPriority(Thread.MAX_PRIORITY); // Set highest priority
thread.setPriority(Thread.MIN_PRIORITY); // Set lowest priority

4.3.8. Thread Exception Handling

Exception handling in threads is similar to exception handling in other Java programs.

e Uncaught Exceptions: If an exception isn't caught within a thread's run method, it

terminates the thread.

e UncaughtExceptionHandler: Set a default handler per thread

(thread.setUncaughtExceptionHandler()) or for all threads
(Thread.setDefaultUncaughtExceptionHandler ()) to log or handle these exceptions.

No. 74 /168

af://n5414
af://n5427
af://n5437

Java Programming by Milav Dabgar

e You can catch exceptions within the run() method or propagate them to the caller using

throws clause.

class MyThread extends Thread {
public void run() {

try {

// Code that may throw an exception
} catch (Exception e) {

// Handle the exception

4.3.9. Synchronization

Synchronization in Java is used to control access to shared resources by multiple threads. It
prevents concurrent access to shared resources, avoiding data corruption and inconsistency.

e Critical Sections: Code blocks that should be executed by only one thread at a time.

e synchronized keyword: Use on methods or blocks to acquire a lock (monitor) on the object.

e wait(), notify(), notifyAll() : For more advanced thread coordination inside

synchronized blocks.

¢ Synchronized methods:

public synchronized void synchronizedMethod() {
// Synchronized method body

e Synchronized blocks:

synchronized (obj) {
// Synchronized block

Summary

Multithreading in Java allows concurrent execution of multiple threads within a single process. It
enables better utilization of CPU resources, improves application responsiveness, and supports
concurrent programming paradigms. Understanding thread concepts, lifecycle, synchronization,
and exception handling is crucial for building robust multithreaded applications.

No.75/168

af://n5447

Java Programming by Milav Dabgar

5. File Handling and Collections
Framework

File handling in Java involves reading from and writing to files. Java has several methods for
creating, reading, updating, and deleting files.

5.1. File Handling using File Class

The File class from the java.io package, allows us to work with files.

To use the File class, create an object of the class, and specify the filename or directory name:

import java.io.File; // Import the File class

File myObj = new File("filename.txt"); // Specify the filename

The File class has many useful methods for creating and getting information about files. For

example:
Method Type Description
canRead() Boolean Tests whether the file is readable or not
canWrite() Boolean Tests whether the file is writable or not
createNewFile() Boolean Creates an empty file
delete() Boolean Deletes a file
exists() Boolean Tests whether the file exists
getName() String Returns the name of the file
getAbsolutePath() String Returns the absolute pathname of the file
length() Long Returns the size of the file in bytes
list() String|] Returns an array of the files in the directory
mkdir() Boolean Creates a directory

5.1.1. Create a File

To create afile in Java, you can use the createNewFile() method. This method returns a boolean
value: true if the file was successfully created, and false if the file already exists. Note that the
method is enclosed ina try...catch block. This is necessary because it throws an I0OException
if an error occurs (if the file cannot be created for some reason):

import java.io.File; // Import the File class
import java.io.IOException; // Import the IOException class to handle errors

public class CreateFile {

No. 76/ 168

af://n5464
af://n5466
af://n5516

Java Programming by Milav Dabgar

public static void main(String[] args) {

try {
File myObj = new File("filename.txt");

if (myObj.createNewFile()) {

System.out.println("File created: " + myObj.getName());
} else {

System.out.println("File already exists.");

}

} catch (IOException e) {
System.out.println("An error occurred.");
e.printStackTrace();

The output will be:

File created: filename.txt

To create afile in a specific directory (requires permission), specify the path of the file and use
double backslashes to escape the "\ " character (for Windows). On Mac and Linux you can just
write the path, like: /Users/name/filename.txt

File myObj = new File("C:\\Users\\MyName\\filename.txt");

5.1.2. Write To a File

In the following example, we use the Filewriter class together with its write() method to write
some text to the file we created in the example above. Note that when you are done writing to the
file, you should close it with the close() method:

import java.io.FileWriter; // Import the FileWriter class
import java.io.IOException; // Import the IOException class to handle errors

public class WriteToFile {
public static void main(String[] args) {

try {
FileWriter myWriter = new FileWriter("filename.txt");
myWriter.write("Files in Java might be tricky, but it is fun enough!");
myWriter.close();
System.out.println("Successfully wrote to the file.");

} catch (IOException e) {
System.out.println("An error occurred.");
e.printStackTrace();

The output will be:

Successfully wrote to the file.

No. 77 /168

af://n5523

Java Programming by Milav Dabgar

5.1.3. Read a File

In the previous topic, you learned how to create and write to a file.

In the following example, we use the Scanner class to read the contents of the text file we created
in the previous topic:

import java.io.File; // Import the File class
import java.io.FileNotFoundException; // Import this class to handle errors
import java.util.Scanner; // Import the Scanner class to read text files

public class ReadFile {
public static void main(String[] args) {
try {
File myObj = new File("filename.txt");
Scanner myReader = new Scanner(my0bj);
while (myReader.hasNextLine()) {
String data = myReader.nextLine();
System.out.println(data);
}
myReader.close();
} catch (FileNotFoundException e) {
System.out.println("An error occurred.");
e.printStackTrace();

The output will be:

Files in Java might be tricky, but it is fun enough!

5.1.4. Get File Information

To get more information about a file, use any of the File methods:

import java.io.File; // Import the File class

public class GetFileInfo { public static void main(String[] args) {

File myObj = new File("filename.txt");

if (myObj.exists()) {
System.out.println("File name: " + myObj.getName());
System.out.println("Absolute path: " + myObj.getAbsolutePath());
System.out.println("Writeable: " + myObj.canwWrite());
System.out.println("Readable " + myObj.canRead());
System.out.println("File size in bytes " + myObj.length());

} else {
System.out.println("The file does not exist.");

The output will be:

No. 78/ 168

af://n5528
af://n5534

Java Programming by Milav Dabgar

File name: filename.txtAbsolute path: C:\Users\MyName\filename.txtWriteable:
trueReadable: trueFile size in bytes: 0

Note: There are many available classes in the Java API that can be used to read and write files in
Java: FileReader, BufferedReader, Files, Scanner, FileInputStream, FileWriter,

Bufferedwriter, FileOutputStream, etc. Which one to use depends on the Java version you're
working with and whether you need to read bytes or characters, and the size of the file/lines etc.

Tip: To delete a file, read our Java Delete Files topic.

5.1.5. Delete a File

To delete a file in Java, use the delete() method:

import java.io.File; // Import the File class

public class DeleteFile {
public static void main(String[] args) {
File myObj = new File("filename.txt");
if (myObj.delete()) {
System.out.println("Deleted the file: " + myObj.getName());
} else {

System.out.println("Failed to delete the file.");

The output will be:

Deleted the file: filename.txt

5.1.6. Delete a Folder

You can also delete a folder. However, it must be empty:
import java.io.File;

public class DeleteFolder {
public static void main(String[] args) {
File myObj = new File("C:\\Users\\MyName\\Test");
if (myObj.delete()) {
System.out.println("Deleted the folder: " + myObj.getName());
} else {
System.out.println("Failed to delete the folder.");

The output will be:

Deleted the folder: Test

No.79/168

af://n5541
af://n5546
af://n5551

Java Programming by Milav Dabgar

5.2. File Handling using Streams Class

5.2.1. Streams and Stream Classes

File handling in Java can be achieved using streams and various stream classes provided by the
java.io package.

e Stream: A sequence of data elements made available over time. In Java, streams are used to
perform input and output operations.

e Types:
o Byte Streams: Handle raw binary data (files, network).
o Character Streams: Handle character-based data (text files).

e Stream Classes: Java provides a variety of stream classes for handling input and output
operations. These include byte streams (InputStream, OutputStream)and character

streams (Reader, Writer).

5.2.2. FileInputStream and FileOutputStream

e FileInputStream: Used for reading data from a file as a stream of bytes.

e FileOutputStream: Used for writing data to a file as a stream of bytes.

// Example of using FileInputStream to read from a file
try (FileInputStream fis = new FileInputStream("input.txt")) {
int data;
while ((data = fis.read()) != -1) {
// Process the data
}
} catch (IOException e) {
e.printStackTrace();

// Example of using FileOutputStream to write to a file

try (FileOutputStream fos = new FileOutputStream("output.txt")) {
String data = "Hello, world!";
fos.write(data.getBytes());

} catch (IOException e) {
e.printStackTrace();

5.2.3. FileOutputStream to Write to File

You can use file output streams (FileOutputStream, FileWriter) to write to a file.

try (BufferedwWriter writer = new BufferedwWriter(new FileWriter("output.txt"))) {
writer.write("Hello, world!");

} catch (IOException e) {
e.printStackTrace();

import java.io.FileOutputStream;

No. 80/ 168

af://n5551
af://n5552
af://n5566
af://n5573

Java Programming by Milav Dabgar
import java.io.IOException;

public class WriteToFile {
public static void main(String[] args) {
try (FileOutputStream outputStream = new

FileOutputStream("myNewFile.txt")) {
String text = "Hello, this is some text for the file.";

byte[] data = text.getBytes();

outputStream.write(data);
System.out.println("Data written successfully!");

} catch (IOException e) {
System.out.println("An error occurred.");

e.printStackTrace();

5.2.4. FileInputStream to Read from a File

You can use file input streams (FileInputStream, FileReader)to read from a file.

import java.io.FileInputStream;
import java.io.IOException;

public class ReadFromFile {

public static void main(String[] args) {
try (FileInputStream inputStream = new FileInputStream("myNewFile.txt")) {

int data;
while ((data = inputStream.read())

System.out.print((char) data);

1= -1) { // Read byte by byte

}
} catch (IOException e) {
System.out.println("An error occurred.");

e.printStackTrace();

5.2.5. Closing Streams

It's important to close streams after using them to release system resources.

try (FileInputStream fis = new FileInputStream("input.txt")) {

// Code to read from the input stream

} catch (IOException e) {

e.printStackTrace();
} // Stream will be closed automatically after the try block

Summary

No. 817168

af://n5577
af://n5580

Java Programming by Milav Dabgar

File handling in Java involves reading from and writing to files using streams and stream classes.
FileInputStream and FileOutputStream are used for byte-level file handling, while FileReader
and FilewWriter are used for character-level file handling. It's essential to properly handle
exceptions and close streams after using them to avoid resource leaks.

Important Considerations

e Closing Streams: Always close streams using close() or try-with-resources to release
resources.

e Character Encoding: Be mindful of character encoding when dealing with text files (e.g., UTF-
8).

e Other File Operations: Java provides classes for deleting, renaming, and getting file
metadata.

e Buffered Streams: For performance optimization, use BufferedInputStream and
BufferedoutputStream to wrap file streams.

5.3. Collections Framework in Java

The Collections Framework in Java provides a unified architecture for representing and
manipulating collections of objects. It includes interfaces, implementations, and algorithms for
working with collections efficiently.

5.3.1. Overview and Hierarchy

The Collections Framework includes several key interfaces and classes organized in a hierarchy:

Foundation: The java.util package contains the core classes and interfaces.

Interfaces: Collection, List, Set, Map, etc.

Classes: ArraylList, LinkedList, HashSet, HashMap, etc.

Hierarchy:
o cCollection: Root interface - represents a group of objects.
m List: Ordered collection with duplicates allowed (e.g., ArrayList, LinkedList)
® Set: Unordered collection with no duplicates (e.g., HashSet)

o Map: Key-value pairs (e.g., HashMap)

Collection
I

+---List
| |-- ArraylList
| | -- LinkedList
|
+---Set
| | -- HashSet
I
+---Map

| -- HashMap

No.82/168

af://n5595
af://n5597

Java Programming by Milav Dabgar
5.3.2. ArraylList

The ArrayList class is a resizable [array], which can be found in the java.util package.

The difference between a built-in array and an ArrayList inJava, is that the size of an array
cannot be modified (if you want to add or remove elements to/from an array, you have to create a
new one). While elements can be added and removed from an ArrayList whenever you want.

e |Implements the List interface.
e Resizable-array implementation of the List interface.
e Provides dynamic resizing, fast random access, and fast iteration.

e Efficient for accessing elements by index, but less efficient for insertion and deletion in the
middle of the list.

5.3.2.1. Creating an ArraylList

import java.util.ArraylList; // import the ArrayList class
ArrayList<String> cars = new ArraylList<String>(); // Create an ArraylList object

5.3.2.2. Add Items

The ArrayList class has many useful methods. For example, to add elements to the ArrayList,
use the add() method:

import java.util.ArraylList;

public class Main {
public static void main(String[] args) {
ArraylList<String> cars = new ArrayList<String>();
cars.add("Volvo");
cars.add("BMW");
cars.add("Ford");
cars.add("Mazda");
System.out.println(cars);

5.3.2.3. Access an Item

To access an element in the ArrayList, use the get() method and refer to the index number:

cars.get(0);

Remember: Array indexes start with 0: [0] is the first element. [1] is the second element, etc.
5.3.2.4. Change an Item

To modify an element, use the set() method and refer to the index number:

cars.set(0, "Opel");

No. 837168

af://n5619
af://n5631
af://n5633
af://n5636
af://n5640

Java Programming by Milav Dabgar
5.3.2.5. Remove an Item

To remove an element, use the remove() method and refer to the index number:

cars.remove(0);

To remove all the elements in the ArrayList, use the clear() method:

cars.clear();

5.3.2.6. ArraylList Size

To find out how many elements an ArrayList have, use the size method:

cars.size();

5.3.2.7. Loop Through an ArraylList

Loop through the elements of an ArrayList with a for loop, and use the size() method to
specify how many times the loop should run:

public class Main {
public static void main(String[] args) {
ArraylList<String> cars = new ArrayList<String>();
cars.add("Volvo");
cars.add("BMW");
cars.add("Ford");
cars.add("Mazda");
for (int 1 = 0; 1 < cars.size(); i++) {
System.out.println(cars.get(1i));

You can also loop through an ArrayList with the for-each loop:

public class Main {
public static void main(String[] args) {
ArraylList<String> cars = new ArrayList<String>();
cars.add("Volvo");
cars.add("BMW");
cars.add("Ford");
cars.add("Mazda");
for (String i : cars) {
System.out.println(i);

No. 84 /168

af://n5643
af://n5648
af://n5651

Java Programming by Milav Dabgar

5.3.2.8. Other Types

Elements in an ArrayList are actually objects. In the examples above, we created elements (objects)
of type "String". Remember that a String in Java is an object (not a primitive type). To use other
types, such as int, you must specify an equivalent wrapper class: Integer . For other primitive

types, use: Boolean for boolean, Character for char, bouble for double, etc:

Create an ArrayList to store numbers (add elements of type Integer):

import java.util.ArraylList;

public class Main {
public static void main(String[] args) {

ArraylList<Integer> myNumbers = new ArraylList<Integer>();
myNumbers.add(10);

myNumbers.add(15);

myNumbers.add(20);

myNumbers.add(25);

for (int i : myNumbers) {

System.out.println(i);

5.3.2.9. Sort an ArrayList

Another useful class in the java.util package isthe Collections class, which include the
sort() method for sorting lists alphabetically or numerically:

Sort an ArrayList of Strings:

import java.util.ArraylList;
import java.util.Collections; // Import the Collections class

public class Main {
public static void main(String[] args) {
ArraylList<String> cars = new ArrayList<String>();
cars.add("Volvo");
cars.add("BMw");
cars.add("Ford");
cars.add("Mazda");
Collections.sort(cars); // Sort cars
for (String i : cars) {
System.out.println(i);

Sort an ArrayList of Integers:

import java.util.ArraylList;
import java.util.Collections; // Import the Collections class

public class Main {

No. 85/ 168

af://n5656
af://n5660

Java Programming by Milav Dabgar

public static void main(String[] args) {
ArrayList<Integer> myNumbers = new ArrayList<Integer>();
myNumbers.add(33);
myNumbers.add(15);
myNumbers.add(20);
myNumbers.add(34);
myNumbers.add(8);
myNumbers.add(12);

Collections.sort(myNumbers); // Sort myNumbers

for (int i : myNumbers) {
System.out.println(i);

5.3.3. LinkedList

In the previous topic, you learned about the ArrayList class. The LinkedList class is almost
identical to the ArrayList.

e Implements the List interface.
e Doubly-linked list implementation of the List interface.

e Provides fast insertion and deletion operations at both ends of the list.

e |ess efficient for random access compared to ArrayList.

// Import the LinkedList class
import java.util.LinkedList;

public class Main {
public static void main(String[] args) {
LinkedList<String> cars = new LinkedList<String>();
cars.add("Volvo");
cars.add("BMwW");
cars.add("Ford");
cars.add("Mazda");
System.out.println(cars);

5.3.3.1. ArrayList vs. LinkedList

The LinkedList class is a collection which can contain many objects of the same type, just like the
ArrayList.

The LinkedList class has all of the same methods as the ArrayList class because they both
implement the List interface. This means that you can add items, change items, remove items
and clear the list in the same way.

However, while the ArrayList class and the LinkedList class can be used in the same way, they
are built very differently.

No. 86/ 168

af://n5666
af://n5678

Java Programming by Milav Dabgar

5.3.3.2. How the ArrayList works

The ArrayList class has a regular array inside it. When an element is added, it is placed into the
array. If the array is not big enough, a new, larger array is created to replace the old one and the
old one is removed.

5.3.3.3. How the LinkedList works

The LinkedList stores its items in "containers." The list has a link to the first container and each
container has a link to the next container in the list. To add an element to the list, the element is
placed into a new container and that container is linked to one of the other containers in the list.

5.3.3.4. When To Use
Use an ArrayList for storing and accessing data, and LinkedList to manipulate data.

5.3.3.5. LinkedList Methods

For many cases, the ArrayList is more efficient as it is common to need access to random items

in the list, but the LinkedList provides several methods to do certain operations more efficiently:

Method Description

addFirst() Adds an item to the beginning of the list.
addLast() Add an item to the end of the list
removeFirst() Remove an item from the beginning of the list.
removelast() Remove an item from the end of the list
getFirst() Get the item at the beginning of the list
getlLast() Get the item at the end of the list

5.3.4. HashMap

Inthe ArrayList topic, you learned that Arrays store items as an ordered collection, and you
have to access them with an index number (int type). A HashMap however, store items in

"key/value" pairs, and you can access them by an index of another type (e.g. a String).

One object is used as a key (index) to another object (value). It can store different types: String

keys and Integer values, or the same type, like: String keys and String values.

e Implements the Map interface.
e Hash table-based implementation of the Map interface.
e Stores key-value pairs.

e Provides constant-time performance for the basic operations (get and put) on average.

Create a HashMap object called capitalCities that will store string keys and String values:
import java.util.HashMap; // import the HashMap class
HashMap<String, String> capitalCities = new HashMap<String, String>();

No. 87 /168

af://n5682
af://n5684
af://n5686
af://n5688
af://n5712

Java Programming by Milav Dabgar
5.3.4.1. Add Items

The HashMap class has many useful methods. For example, to add items to it, use the put()
method:

// Import the HashMap class
import java.util.HashMap;

public class Main {

public static void main(String[] args) {
// Create a HashMap object called capitalCities
HashMap<String, String> capitalCities = new HashMap<String, String>();
// Add keys and values (Country, City)
capitalCities.put("England", "London");
capitalCities.put("Germany", "Berlin");
capitalCities.put("Norway", "Oslo");

capitalCities.put("USA", "washington DC");
System.out.println(capitalCities);

5.3.4.2. Access an ltem

To access a value in the HashMap, use the get() method and refer to its key:
capitalCities.get("England");

5.3.4.3. Remove an Item

To remove an item, use the remove() method and refer to the key:
capitalCities.remove("England");
To remove all items, use the clear() method:

capitalCities.clear();

5.3.4.4. HashMap Size

To find out how many items there are, use the size() method:

capitalCities.size();

5.3.4.5. Loop Through a HashMap

Loop through the items of a HashMap with a for-each loop.

Note: Use the keySet() method if you only want the keys, and use the values() method if you
only want the values:

No. 88 /168

af://n5726
af://n5729
af://n5732
af://n5737
af://n5740

Java Programming by Milav Dabgar

// Print keys
for (String i : capitalCities.keySet()) {
System.out.println(i);

// Print values
for (String i : capitalCities.values()) {
System.out.println(i);

// Print keys and values
for (String i : capitalCities.keySet()) {
System.out.println("key: " + i + " value: " + capitalCities.get(i));

5.3.4.6. Other Types

Keys and values in a HashMap are actually objects. In the examples above, we used objects of type
"String". Remember that a String in Java is an object (not a primitive type). To use other types, such
as int, you must specify an equivalent wrapper class: Integer . For other primitive types, use:
Boolean for boolean, character for char, Double for double, etc:

Create a HashMap object called people that will store string keys and Integer values:

// Import the HashMap class
import java.util.HashMap;

public class Main {
public static void main(String[] args) {
// Create a HashMap object called people
HashMap<String, Integer> people = new HashMap<String, Integer>();
// Add keys and values (Name, Age)
people.put("John", 32);
people.put("Steve", 30);
people.put("Angie", 33);
for (String i : people.keySet()) {
System.out.println("key: " + i + " value: " + people.get(i));

5.3.5. HashSet

A HashSet is a collection of items where every item is unique, and it is found in the java.util
package.

e Implements the Set interface.
e Hash table-based implementation of the Set interface.
e Stores unique elements, does not allow duplicates.

e Provides constant-time performance for the basic operations (add, remove, contains) on
average.

No. 89/ 168

af://n5746
af://n5750

Java Programming by Milav Dabgar

Create a HashSet object called cars that will store strings:

import java.util.HashSet; // Import the HashSet class

HashSet<String> cars = new HashSet<String>();

5.3.5.1. Add Items

The HashSet class has many useful methods. For example, to add items to it, use the add()
method:

// Import the HashSet class
import java.util.HashSet;

public class Main {
public static void main(String[] args) {
HashSet<String> cars = new HashSet<String>();
cars.add("vVolvo");
cars.add("BMW");
cars.add("Ford");
cars.add("BMw");

cars.add("Mazda");
System.out.println(cars);

Note: In the example above, even though BMW is added twice it only appears once in the set
because every item in a set has to be unique.

5.3.5.2. Check If an Item Exists

To check whether an item exists in a HashSet, use the contains() method:

cars.contains("Mazda");

5.3.5.3. Remove an Item

To remove an item, use the remove() method:

cars.remove("Volvo");

To remove all items, use the clear() method:

cars.clear();

5.3.5.4. HashSet Size

To find out how many items there are, use the size method:

cars.size();

No.90/ 168

af://n5763
af://n5767
af://n5770
af://n5775

Java Programming by Milav Dabgar
5.3.5.5. Loop Through a HashSet

Loop through the items of an Hashset with a for-each loop:

for (String i : cars) {
System.out.println(i);

5.3.5.6. Other Types

Items in an HashSet are actually objects. In the examples above, we created items (objects) of type
"String". Remember that a String in Java is an object (not a primitive type). To use other types, such
as int, you must specify an equivalent wrapper class: Integer . For other primitive types, use:
Boolean for boolean, character for char, Double for double, etc:

Use a HashSet that stores Integer objects:

import java.util.HashSet;

public class Main {
public static void main(String[] args) {

// Create a HashSet object called numbers
HashSet<Integer> numbers = new HashSet<Integer>();

// Add values to the set
numbers.add(4);
numbers.add(7);
numbers.add(8);

// Show which numbers between 1 and 10 are in the set
for(int 1 = 1; i <= 10; i++) {
if(numbers.contains(i)) {
System.out.println(i + " was found in the set.");
} else {
System.out.println(i + " was not found in the set.");

The Collections Framework in Java provides a powerful and efficient way to work with collections
of objects. Understanding its interfaces and implementations, such as ArrayList, LinkedList,

HashMap, and HashSet , along with the for-each loop, is essential for effective Java programming.

5.3.6. Iterator

An Iterator is an object that can be used to loop through collections, like ArrayList and HashSet.
Itis called an "iterator" because "iterating" is the technical term for looping.

To use an Iterator, you must import it from the java.util package.

No.91/168

af://n5778
af://n5781
af://n5786

Java Programming by Milav Dabgar
5.3.6.1. Getting an Iterator

The iterator() method can be used to get an Iterator for any collection:

// Import the ArrayList class and the Iterator class
import java.util.ArraylList;
import java.util.Iterator;

public class Main {
public static void main(String[] args) {

// Make a collection

ArraylList<String> cars = new ArraylList<String>();
cars.add("Volvo");

cars.add("BMw");

cars.add("Ford");

cars.add("Mazda");

// Get the iterator
Iterator<String> it = cars.iterator();

// Print the first item
System.out.println(it.next());

5.3.6.2. Looping Through a Collection

To loop through a collection, use the hasNext() and next() methods of the Iterator:

while(it.hasNext()) {
System.out.println(it.next());

5.3.6.3. Removing Items from a Collection

Iterators are designed to easily change the collections that they loop through. The remove()

method can remove items from a collection while looping.

Use an iterator to remove numbers less than 10 from a collection:

import java.util.ArraylList;
import java.util.Iterator;

public class Main {
public static void main(String[] args) {
ArrayList<Integer> numbers = new ArraylList<Integer>();
numbers.add(12);
numbers.add(8);
numbers.add(2);
numbers.add(23);
Iterator<Integer> it = numbers.iterator();
while(it.hasNext()) {
Integer i = it.next();

No.92/168

af://n5789
af://n5792
af://n5795

Java Programming by Milav Dabgar

if(i < 10) {
it.remove();

}

System.out.println(numbers);

Note: Trying to remove items using a for loop or a for-each loop would not work correctly
because the collection is changing size at the same time that the code is trying to loop.

No.93/168

Java Programming by Milav Dabgar

6. Java Programming GTU Paper
Solutions

6.1. 4341602 - Java: Winter 2023 Paper Solution

6.1.1. Q1a: List out basic concepts of Java OOP. Explain any
one in detail.

Basic Concepts of Java OOP (Object-Oriented Programming):

1. Classes and Objects: Classes are blueprints for objects. They define the properties
(attributes) and behaviors (methods) that objects of that class will have. Objects are instances
of classes.

2. Encapsulation: Encapsulation refers to the bundling of data (attributes) and methods that
operate on the data into a single unit or class. It hides the internal state of an object from the
outside world and only exposes the necessary functionalities.

3. Inheritance: Inheritance is a mechanism in which a new class inherits properties and
behaviors from an existing class. The new class (subclass or derived class) can reuse the code
of the existing class (superclass or base class) and can also add its own unique features.

4. Polymorphism: Polymorphism allows objects of different classes to be treated as objects of a
common superclass. It allows methods to be called on objects of different classes through a
common interface, often resulting in different behaviors depending on the type of object.

5. Abstraction: Abstraction is the process of hiding the implementation details and showing
only the essential features of the object. It helps in reducing programming complexity and
effort.

6. Association: Association represents a relationship between two or more classes where
objects of one class are connected with objects of another class through a specific type of
relationship. It can be one-to-one, one-to-many, or many-to-many.

7. Composition: Composition is a special form of association where one class contains objects
of another class as part of its state. The composed objects cannot exist independently of the
containing class.

One of the concepts I'll explain in detail is Inheritance:
Inheritance:

Inheritance is one of the fundamental concepts of object-oriented programming. It allows a class
(subclass or derived class) to inherit properties and behaviors from another class (superclass or
base class). This promotes code reusability and establishes a hierarchical relationship between
classes.

Example:
// Base class or superclass
class Animal {

void eat() {
System.out.println("Animal is eating...");

No.94 /168

af://n5800
af://n5801
af://n5802

Java Programming by Milav Dabgar

// Derived class or subclass inheriting from Animal
class Dog extends Animal {
void bark() {
System.out.println("Dog is barking...");

public class Main {
public static void main(String[] args) {
Dog dog = new Dog();
dog.eat(); // inherited from Animal
dog.bark(); // unique to Dog

In this example, Animal is the superclass, and Dog is the subclass. The Dog class inherits the
eat() method from the Animal class. By using inheritance, we can avoid rewriting the eat()
method in the Dog class, thus promoting code reuse.

Inheritance supports the concept of code extensibility, as the subclass can add its own unique
features (such as the bark() method in this example) while retaining the features of the

superclass.

Inheritance also facilitates polymorphism, as objects of the subclass can be treated as objects of
the superclass, enabling more flexible and generic code.

6.1.2. Q1b: Explain JVM in detail.

The Java Virtual Machine (JVM) is a crucial component of the Java Runtime Environment (JRE). It
plays a central role in executing Java bytecode, which is the compiled form of Java source code.
Below, I'll explain the JVM in detail:

1. Execution Environment:

e The JVM provides a runtime environment for executing Java bytecode. It abstracts away the
underlying hardware and operating system details, providing platform independence.
¢ JVM implementations are available for various platforms, including Windows, Linux, macOS,
and others.
2. Just-In-Time (JIT) Compilation:
e The JVM employs a combination of interpretation and Just-In-Time (JIT) compilation
techniques for bytecode execution.

e |nitially, bytecode is interpreted, which involves executing the bytecode instructions one by
one. This allows for quick startup and adaptive optimization.

e Asthe program runs, the JVM identifies frequently executed code segments (hot spots) and
applies JIT compilation to translate these segments into native machine code for improved
performance.

3. Memory Management:

e The JVM manages memory allocation and deallocation for Java objects through automatic
memory management, known as garbage collection.

No.95/168

af://n5827

Java Programming by Milav Dabgar
e |t divides the memory into different areas such as the heap, method area (or permgen space),
and stack.

e The heap is used for storing objects dynamically allocated during program execution.
Garbage collection is responsible for reclaiming memory occupied by unreachable objects in
the heap.

e The stack is used for storing method invocations and local variables.
4. Class Loading and Dynamic Class Loading:

e The JVM dynamically loads Java classes into memory as they are referenced during program
execution.

e (Class loading involves locating the binary representation of a class, reading it into memory,
and then defining it within the JVM.

e JVM supports dynamic class loading, allowing classes to be loaded at runtime based on
specific conditions or requirements, such as through the use of reflection or custom class
loaders.

5. Security and Sandboxing:

e The JVM incorporates various security features to ensure safe execution of Java programs.

e Security Manager: It defines a security policy that specifies the permissions granted to Java
code based on its origin and other factors.

e Bytecode Verification: Before executing bytecode, the JVM performs bytecode verification to
ensure it adheres to the language specifications, preventing malicious code from being
executed.

6. Performance Monitoring and Profiling:

e JVMs often include tools for performance monitoring and profiling, allowing developers to
analyze the runtime behavior of Java applications.

e These tools provide insights into CPU utilization, memory usage, garbage collection activity,
and other performance-related metrics, helping developers optimize their code.

In summary, the JVM provides a robust execution environment for Java programs, abstracting
away hardware and operating system details while offering features such as memory
management, dynamic class loading, security, and performance monitoring. Its ability to execute
Java bytecode efficiently makes it a key component of the Java platform, enabling the development
of portable and scalable applications.

6.1.3. Q1c: Write a program in java to print Fibonacci series
for n terms.

Sure, here's a Java program to print the Fibonacci series for n terms:

import java.util.Scanner;

public class FibonacciSeries {
public static void main(String[] args) {
Scanner scanner = new Scanner (System.in);
System.out.print("Enter the number of terms in the Fibonacci series: ");
int n = scanner.nextInt();
scanner.close();

No. 96/ 168

af://n5876

Java Programming by Milav Dabgar

System.out.println("Fibonacci series for " + n + " terms:");
int firstTerm = 0, secondTerm = 1;

// Print the first two terms
System.out.print(firstTerm + " " + secondTerm + " ");

// Generate and print the rest of the terms
for (int i1 = 3; 1 <= n; i++) {
int nextTerm = firstTerm + secondTerm;
System.out.print(nextTerm + " ");
firstTerm = secondTerm;
secondTerm = nextTerm;

This program prompts the user to enter the number of terms (n) they want in the Fibonacci series.
It then calculates and prints the Fibonacci series for n terms. The Fibonacci series starts with 0 and
1, and each subsequent term is the sum of the previous two terms. The loop iterates from the
third term onwards, calculating each term based on the previous two terms. Finally, it prints each
term of the Fibonacci series.

6.1.4. Q1c: Write a program in java to find out minimum from
any ten numbers using command line argument.

Sure, here's a Java program that finds the minimum from any ten numbers using command-line
arguments:

public class MinimumNumberFinder {
public static void main(String[] args) {
if (args.length != 10) {
System.out.println("Please provide exactly 10 numbers as command line
arguments.");
return;

// Parse the command line arguments and find the minimum
int min = Integer.parseInt(args[@]); // Assume the first number as the

minimum initially

for (int 1 = 1; i < args.length; i++) {
int num = Integer.parseInt(args[i]);

if (num < min) {

min num; // Update min if a smaller number is found

System.out.println("The minimum number among the given ten numbers is: " +
min);

3

No. 97 /168

af://n5880

Java Programming by Milav Dabgar

To run this program, compile it using javac MinimumNumberFinder.java and then execute it with
ten numbers as command-line arguments:

java MinimumNumberFinder 5 3 9 2 8 1 7 6 4 10
This will output:

The minimum number among the given ten numbers is: 1

Ensure that exactly ten numbers are provided as command-line arguments when running the
program, otherwise, it will display an error message.

6.1.5. Q2a: What is Java wrapper class? Explain with example.

In Java, a wrapper class is a class that encapsulates (or "wraps") primitive data types into objects.
While primitive data types represent simple values, wrapper classes provide a way to treat these
values as objects. This is particularly useful when dealing with collections, as many collection
classes in Java require objects, not primitives.

The Java platform provides a set of predefined wrapper classes for each primitive data type:

—_

. Byte for byte
. Short for short

. Integer for int

. Float for float

2
3
4. Long for long
5
6. Double for double
7

. Character for char

8. Boolean for boolean

Here's an example to illustrate the usage of wrapper classes:

public class WrapperExample {
public static void main(String[] args) {
// Using primitive data types
int numl = 10;
double num2 = 3.14;
char letter = 'A';

boolean flag = true;

// Using wrapper classes

Integer numObjl = Integer.valueOf(numl); // Wrapping int into Integer

Double numObj2 = Double.valueOf(num2); // Wrapping double into Double

Character charObj = Character.valueOf(letter); // Wrapping char into
Character

Boolean flagObj = Boolean.valueOf(flag); // Wrapping boolean into Boolean

// Displaying values

System.out.println("Wrapped Integer value: " + numObj1);
System.out.println("Wrapped Double value: " + numObj2);
System.out.println("Wrapped Character value: " + charObj);

No. 98/ 168

af://n5888

Java Programming by Milav Dabgar

System.out.println("wWrapped Boolean value: " + flagObj);

In this example, we have primitive variables (num1, num2, letter, flag)representing different

data types. We then use the corresponding wrapper classes (Integer, Double, Character,

Boolean) to wrap these primitive values into objects (numObj1, numObj2, charObj, flagobj).
Finally, we print out the values of these wrapped objects.

Wrapper classes also provide utility methods to convert strings into primitive values and vice
versa, and to perform various operations on the wrapped values. They also facilitate

interoperability between primitive types and objects in Java.

6.1.6. Q2b: List out different features of java. Explain any
two.

Java is a versatile programming language known for its rich set of features that contribute to its
popularity and widespread use. Here are some key features of Java:

1

. Simple: Java was designed to be easy to learn and use. It has a concise, readable syntax,

automatic memory management (garbage collection), and eliminates complex features such
as pointers and operator overloading found in languages like C++,

. Object-Oriented: Java is an object-oriented programming language, which means it supports

the creation of modular, reusable code through classes and objects. It embodies concepts
like encapsulation, inheritance, polymorphism, and abstraction, promoting better code
organization and maintenance.

. Platform-Independent: Java programs are compiled into bytecode, which can be executed

on any platform with a Java Virtual Machine (JVM). This "write once, run anywhere" capability
makes Java platform-independent, enabling the development of cross-platform applications.

. Secure: Java's security features help protect systems from malicious code and unauthorized

access. It incorporates a robust security model with features like bytecode verification, class
loaders, and a Security Manager that enforces access control policies.

. Multithreaded: Java provides built-in support for multithreading, allowing concurrent

execution of multiple threads within a single program. This enables developers to write
efficient, responsive applications that can perform tasks concurrently, enhancing
performance and responsiveness.

. Dynamic: Java supports dynamic memory allocation and dynamic class loading, enabling

applications to adapt to changing runtime conditions. Dynamic features like reflection allow
Java programs to introspect and modify their own structure and behavior at runtime.

. High Performance: While Java's interpreted nature might suggest slower performance

compared to languages like C or C++, modern Java implementations use techniques like Just-
In-Time (JIT) compilation and adaptive optimization to achieve high performance, often
rivaling or surpassing native code performance.

. Distributed: Java's built-in networking capabilities and Remote Method Invocation (RMI)

framework facilitate the development of distributed applications. Java's networking APIs allow
seamless communication between distributed components, making it suitable for building
networked systems.

Let's delve into explanations for two of these features:

No.99/168

af://n5912

Java Programming by Milav Dabgar

1. Platform-Independence:

Java achieves platform-independence through its bytecode compilation. When you compile a Java
source file, it's translated into bytecode, which is a platform-independent intermediate
representation of the program. This bytecode can then be executed on any device or platform that
has a Java Virtual Machine (JVM). The JVM interprets the bytecode and translates it into machine
code that is specific to the underlying hardware and operating system. This allows Java programs
to run on diverse platforms without modification, making it an ideal choice for developing cross-
platform applications.

2. Object-Oriented:

Java is a pure object-oriented programming language, which means it revolves around the concept
of objects. Everything in Java is an object, which has attributes (fields or properties) and behaviors
(methods). Object-oriented programming promotes modularity, reusability, and extensibility of
code. Encapsulation ensures that the internal state of an object is hidden from the outside world,
providing data security and abstraction. Inheritance allows classes to inherit properties and
behaviors from other classes, facilitating code reuse and hierarchical organization. Polymorphism
enables objects to exhibit different behaviors based on their types, enhancing flexibility and code
maintainability. Java's object-oriented features make it well-suited for building large-scale,
maintainable software systems.

6.1.7. Q2c: What is method overload in Java ? Explain with
example.

Method overloading in Java refers to the ability to define multiple methods within the same class
with the same name but different parameter lists. These methods can have different numbers or
types of parameters. Java distinguishes between overloaded methods based on the number, type,
and sequence of their parameters.

When a method is invoked, Java determines which overloaded method to call based on the
arguments provided at the time of invocation. This process is known as compile-time
polymorphism or static polymorphism because the decision on which method to call is made by
the compiler at compile time, rather than at runtime.

Here's an example to illustrate method overloading in Java:

public class Calculator {

// Method to add two integers
public int add(int a, int b) {
return a + b;

// Method to add three integers
public int add(int a, int b, int c¢) {
return a + b + c;

// Method to add two doubles
public double add(double a, double b) {
return a + b;

// Method to concatenate two strings

No. 100/ 168

af://n5934

Java Programming by Milav Dabgar

public String add(String a, String b) {
return a + b;

// Method to add an integer and a double
public double add(int a, double b) {
return a + b;

In this example, the calculator class contains multiple overloaded add methods:

—_

. add(int a, int b):Adds two integers and returns the result.

2. add(int a, int b, int c):Adds three integers and returns the result.
3. add(double a, double b) :Addstwo doubles and returns the result.
4

. add(String a, String b):Concatenates two strings and returns the result.

ol

add(int a, double b):Adds aninteger and a double and returns the result.

These methods have the same name (add) but different parameter lists. Depending on the
arguments passed during the method invocation, Java determines which overloaded method to
call. For example:

public class Main {
public static void main(String[] args) {
Calculator calculator = new Calculator();

int suml = calculator.add(5, 3); // Calls add(int a, int b)

int sum2 = calculator.add(5, 3, 2); // Calls add(int a, int b, int c)

double sum3 = calculator.add(2.5, 3.7); // Calls add(double a, double b)

String concatenatedString = calculator.add("Hello ", "world!"); // Calls
add(String a, String b)

double sum4 = calculator.add(5, 3.7); // Calls add(int a, double b)

System.out.println("Sum 1: " + suml);
System.out.println("Sum 2: " + sum2);
System.out.println("Sum 3: " + sum3);
System.out.println("Concatenated String: " + concatenatedString);
System.out.println("Sum 4: " + sum4);
}
}
Output:
Sum 1: 8
Sum 2: 10
Sum 3: 6.2
Concatenated String: Hello world!
Sum 4: 8.7

In this example, depending on the type and number of arguments provided, Java resolves the
method calls to the appropriate overloaded add method during compilation.

No.101/168

Java Programming by Milav Dabgar

6.1.8. Q2a: Explain Garbage collection in java.

Garbage collection in Java is the automatic process of reclaiming memory occupied by objects that

are no longer in use or reachable by the application. It is a fundamental feature of the Java Virtual
Machine (JVM) that helps manage memory efficiently, prevents memory leaks, and reduces the risk

of memory-related errors such as segmentation faults.

Here's how garbage collection works in Java:

1.

Object Allocation: When you create objects in Java using the new keyword, memory is
allocated from the heap to store those objects. The JVM keeps track of all allocated memory.

. Reachability Analysis: The JVM periodically performs reachability analysis starting from a set

of root objects, typically references held by active threads, static variables, and local variables.
It traverses the object graph, marking objects that are reachable as live objects. Objects that
are not reachable from any root are considered garbage.

. Garbage Collection Process: Once the reachability analysis identifies garbage objects, the

garbage collector (GC) is invoked to reclaim the memory occupied by those objects. The
garbage collector uses different algorithms to reclaim memory, such as the Mark-Sweep
algorithm, Mark-Compact algorithm, or Generational Garbage Collection.

. Reclamation and Compaction: During garbage collection, the memory occupied by garbage

objects is reclaimed, and the memory space is compacted to reduce fragmentation. This
involves moving live objects together to create contiguous free space.

. Finalization: Before reclaiming the memory of objects, the JVM calls the finalize() method

of those objects (if it's overridden) to perform any necessary cleanup operations. However,
it's important to note that the finalize() method is deprecated and is not guaranteed to be

called promptly or at all by the garbage collector.

. Performance Considerations: Garbage collection can impact application performance, as it

involves stopping application threads temporarily to perform garbage collection tasks. To
minimize the impact on application responsiveness, modern JVMs use techniques like
concurrent garbage collection, where garbage collection runs concurrently with the
application, and incremental garbage collection, where garbage collection tasks are divided
into smaller increments.

Here are some key benefits of garbage collection in Java:

Automatic Memory Management: Developers do not need to manually allocate and
deallocate memory, reducing the risk of memory leaks and memory-related bugs.

Simplified Memory Management: Garbage collection eliminates the need for explicit
memory management techniques like manual memory deallocation, reducing the complexity
of programming.

Improved Application Reliability: By preventing memory leaks and segmentation faults
caused by dangling pointers, garbage collection enhances the reliability and stability of Java
applications.

Overall, garbage collection is a critical feature of the Java platform that helps manage memory
efficiently, allowing developers to focus on writing robust and reliable software.

No. 102/ 168

af://n5956

Java Programming by Milav Dabgar

6.1.9. Q2b: Explain final keyword in Java with example.

InJava, the final keyword is used to restrict the behavior of classes, methods, and variables.

When applied to different elements, it signifies different meanings:

1. Final Variables: When applied to a variable, the final keyword indicates that the variable's
value cannot be changed once initialized. It creates a constant.

2. Final Methods: When applied to a method, the final keyword indicates that the method
cannot be overridden by subclasses. It effectively prevents method overriding.

3. Final Classes: When applied to a class, the final keyword indicates that the class cannot be
subclassed. It prevents inheritance.

Here's how final keyword works with examples:

1. Final Variables:

public class FinalExample {
// Declaring final variable
final int constantValue = 10;

public static void main(String[] args) {
FinalExample obj = new FinalExample();
// Trying to modify the final variable will result in a compilation error
// obj.constantValue = 20; // Compilation error: The final field
FinalExample.constantValue cannot be assigned
System.out.println("Constant value: " + obj.constantValue);

In this example, constantvalue is declared as a final variable. Attempting to modify its value after

initialization will result in a compilation error.

2. Final Methods:

public class Parent {
// Final method
public final void display() {
System.out.println("This is a final method.");

public class Child extends Parent {
// Trying to override the final method will result in a compilation error
// @Override
// public void display() {
// System.out.println("Attempting to override a final method.");
// 3}

In this example, the display() method in the Parent class is declared as final. Attempting to
override this method in the child class will result in a compilation error.

3. Final Classes:

No. 103/168

af://n5981

Java Programming by Milav Dabgar

final public class FinalClass {
// Some code

// Trying to subclass a final class will result in a compilation error
// class SubClass extends FinalClass {

// // Some code

//}

In this example, the FinalClass is declared as a final class. Attempting to subclass FinalClass
will result in a compilation error.

In summary, the final keyword in Java is used to create constants, prevent method overriding,
and prevent class inheritance, depending on where it's applied. It helps enforce immutability,
security, and design constraints in Java programs.

6.1.10. Q2c: What is constructor in Java? Explain
parameterized constructor with example.

In Java, a constructor is a special type of method that is automatically called when an instance
(object) of a class is created. It is used to initialize the newly created object and perform any
necessary setup operations. Constructors have the same name as the class and do not have a
return type, not even void.

There are two types of constructors in Java:

1. Default Constructor: A constructor with no parameters is called a default constructor. If you
do not explicitly define any constructors in a class, Java provides a default constructor
automatically. Its purpose is to initialize instance variables to default values.

2. Parameterized Constructor: A constructor with parameters is called a parameterized
constructor. It allows you to initialize instance variables with specified values when the object
is created. Parameterized constructors give more flexibility and control over object
initialization.

Here's an example of a parameterized constructor:

public class Person {
private String name;
private int age;

// Parameterized constructor

public Person(String name, int age) {
this.name = name;
this.age = age;

// Getter methods
public String getName() {
return name;

public int getAge() {
return age;

No. 104 /168

af://n6001

Java Programming by Milav Dabgar

public static void main(String[] args) {
// Creating objects using parameterized constructor
Person personl = new Person("Alice", 30);
Person person2 = new Person("Bob", 25);

// Accessing object properties

System.out.println("Person 1 - Name: " + personl.getName() + ", Age: " +
personl.getAge());

System.out.println("Person 2 - Name: " + person2.getName() + ", Age: " +
person2.getAge());

}

In this example:

e We have a Person class with private instance variables name and age.

e The Person class has a parameterized constructor that takes two parameters: name and

age.

¢ |Inside the constructor, the values of name and age parameters are assigned to the
corresponding instance variables using the this keyword.

e \We then create two Person objects (personi and person2) using the parameterized
constructor, passing different values for name and age.

e Finally, we use getter methods (getName() and getAge()) to retrieve the values of name and
age for each object and print them out.

6.1.11. Q3a: Explain super keyword in Java with example.

In Java, the super keyword is used to refer to the superclass (parent class) of the current object or

to access members (fields or methods) of the superclass. It is often used in subclasses (child
classes) to access superclass constructors, methods, or variables. The super keyword is

particularly useful when there is a need to differentiate between superclass and subclass
members with the same name.

Here are the main uses of the super keyword:

1. Accessing Superclass Constructors: The super() constructor call is used to invoke the
constructor of the superclass from within the constructor of the subclass. It is typically used
when the subclass constructor needs to perform additional initialization that is not handled
by the superclass constructor.

2. Accessing Superclass Methods and Variables: The super keyword can also be used to

access methods and variables of the superclass. This is useful when a subclass overrides a
method from the superclass but still needs to call the superclass implementation of that
method.

Here's an example to illustrate the use of the super keyword:

class Vehicle {
int speed;

Vehicle(int speed) {
this.speed = speed;

No. 105/ 168

af://n6023

Java Programming by Milav Dabgar

void display() {
System.out.println("Vehicle speed: " + speed + " km/h");

class Car extends Vehicle {
int mileage;

Car(int speed, int mileage) {
super(speed); // invoking superclass constructor
this.mileage = mileage;

// overriding superclass method

void display() {
super.display(); // calling superclass method
System.out.println("Car mileage: " + mileage + " km/1");

public class Main {
public static void main(String[] args) {
Car car = new Car(100, 15);
car.display(); // invoking overridden method

In this example:

e We have a superclass Vehicle with a field speed and a constructor to initialize the speed.

e We then have a subclass car that extends the vehicle class. The car class has an
additional field mileage and a constructor to initialize both speed and mileage . Inside the
Car constructor, we use super (speed) to call the constructor of the superclass vehicle.

e The car class also overrides the display() method of the superclass. Inside the overridden
display() method, we use super.display() to call the display() method of the

superclass before displaying the mileage of the car.

e Inthe main() method, we create an instance of the car class and invoke its display()
method. This will print both the vehicle speed and the car mileage.

6.1.12. Q3b: List out different types of inheritance in Java.
Explain multilevel inheritance.

In Java, there are several types of inheritance, each representing different relationships between
classes. These types include:

1. Single Inheritance: In single inheritance, a subclass inherits from only one superclass. Java
supports single inheritance only, meaning a class can have only one direct superclass.

2. Multilevel Inheritance: In multilevel inheritance, a subclass inherits from a superclass, and
then another subclass inherits from the first subclass, creating a chain of inheritance.

No. 106/ 168

af://n6043

Java Programming by Milav Dabgar

3. Hierarchical Inheritance: In hierarchical inheritance, multiple subclasses inherit from a
single superclass, creating a tree-like structure.

4. Multiple Inheritance (not supported in Java): In multiple inheritance, a subclass inherits
from multiple superclasses. Java does not support multiple inheritance of classes to avoid the
diamond problem, where the same member can be inherited from multiple superclasses,
leading to ambiguity.

5. Hybrid Inheritance (not supported in Java): Hybrid inheritance is a combination of multiple
inheritance and hierarchical inheritance. It is also not supported in Java to avoid
complications and ambiguity.

Let's focus on explaining multilevel inheritance:
Multilevel Inheritance:

In multilevel inheritance, a subclass extends a class that is itself a subclass of another class. This
creates a chain of inheritance, where each subclass inherits the properties and behaviors of its
immediate superclass, as well as all of its ancestor classes up the hierarchy chain.

Here's an example of multilevel inheritance:

// Superclass
class Animal {
void eat() {
System.out.println("Animal is eating...");

// Subclass inheriting from Animal
class Dog extends Animal {
void bark() {
System.out.println("Dog is barking...");

// Subclass inheriting from Dog
class Labrador extends Dog {
void color() {
System.out.println("Labrador is black...");

public class Main {
public static void main(String[] args) {
Labrador labrador = new Labrador();
labrador.eat(); // inherited from Animal
labrador.bark(); // inherited from Dog
labrador.color(); // unique to Labrador

In this example:

e Animal is the superclass, Dog is a subclass of Animal, and Labrador is a subclass of Dog.

No. 107 /168

Java Programming by Milav Dabgar

e Labrador inherits the eat() method from Animal, the bark() method from Dog, and it
adds its own method color() to represent the unique characteristic of a Labrador.

e When an instance of Labrador is created, it can access methods from all levels of the
inheritance hierarchy, including methods from its superclass (Animal) and its immediate
superclass (Dog). Additionally, it can access methods specific to the Labrador class.

Multilevel inheritance allows for the creation of a hierarchy of classes, where each subclass can
inherit and extend the functionality of its parent classes, leading to better code organization and
reuse. However, it's important to use multilevel inheritance judiciously to avoid creating overly
complex class hierarchies.

6.1.13. Q3c: What is Java interface? Explain multiple
inheritance with example.

In Java, an interface is a reference type similar to a class that defines a set of abstract methods and
constants. An interface can also contain default methods, static methods, and nested types. It
provides a way to achieve abstraction and multiple inheritance of type. Interfaces are used to

specify a contract that classes must adhere to by implementing the methods declared in the
interface.

Here's the syntax for declaring an interface in Java:
interface MyInterface {
// Constant declarations

int CONSTANT1 = 1,
String CONSTANT2 = "Hello";

// Abstract method declarations
void methodi1();
int method2(int x);

In the above example, MyInterface is an interface that declares a constant CONSTANT1 and
CONSTANT2, along with two abstract methods method1() and method2(int x).

Now, let's discuss multiple inheritance with interfaces:
Multiple Inheritance with Interfaces:

Java supports multiple inheritance of type through interfaces, but it does not support multiple
inheritance of implementation. This means a class can implement multiple interfaces, inheriting
abstract method signatures from all of them, but it cannot extend multiple classes.

Here's an example to illustrate multiple inheritance with interfaces:

interface A {
void methodA();

interface B {
void methodB();

class MyClass implements A, B {

No. 108 /168

af://n6070

Java Programming by Milav Dabgar

// Implementation of methodA from interface A
public void methodA() {
System.out.println("Method A implementation");

// Implementation of methodB from interface B
public void methodB() {
System.out.println("Method B implementation");

public class Main {
public static void main(String[] args) {
MyClass obj = new MyClass();
obj.methodA(); // Method A implementation
obj.methodB(); // Method B implementation

In this example:

e interface A declares an abstract method methodA() .
e interface B declares an abstract method methodB() .

e MyClass implements both interfaces A and B and provides implementations for both
methodA() and methodB() .

e |nthe main method, we create an instance of MyClass and call both methodA() and
methodB() , which will print their respective implementation messages.

By implementing multiple interfaces, MyClass inherits the abstract method signatures from both
A and B, effectively achieving multiple inheritance of type. This allows for increased flexibility and
code reuse while avoiding the complications associated with multiple inheritance of
implementation.

6.1.14. Q3a: Explain Java static keyword with example.

In Java, the static keyword is used to define members (variables and methods) that belong to
the class itself, rather than to instances of the class (objects). These members are shared among
all instances of the class and can be accessed directly through the class name, without the need to
create an object of the class.

Here's how static keyword works with examples:

1. Static Variables (Class Variables): Static variables are shared among all instances of a class.
They are declared using the static keyword and are initialized only once, at the start of the
program execution.

class MyClass {
static int count = 0; // static variable

MyClass() {
count++; // increment count on each object creation

No. 109/ 168

af://n6091

Java Programming by Milav Dabgar

public class Main {
public static void main(String[] args) {
MyClass objl = new MyClass();
MyClass obj2 = new MyClass();
MyClass obj3 = new MyClass();

System.out.println("Total objects created: " + MyClass.count); //
accessing static variable

}

In this example, count is a static variable that keeps track of the total number of objects created
from the MycClass. Since it's static, its value is shared among all instances of the class. The output
will be Total objects created: 3.

2. Static Methods (Class Methods): Static methods are associated with the class itself, rather
than with instances of the class. They are declared using the static keyword and can be
called directly through the class name, without the need to create an object of the class.

class MathuUtils {
static int add(int a, int b) { // static method
return a + b;

public class Main {
public static void main(String[] args) {
int result = MathuUtils.add(5, 3); // calling static method
System.out.println("Result of addition: " + result);

In this example, add is a static method of the Mathutils class. It can be called directly using the

class name Mathutils.add(5, 3) without creating an object of MathuUtils.
Key Points:

e Static members belong to the class, not to individual objects.
e They can be accessed using the class name directly.
e Static variables are initialized only once, at the start of the program execution.

e Static methods cannot access non-static members directly, as they are not associated with
any specific instance of the class.

e Static members are commonly used for utility methods, constants, and for maintaining global
state within a class.

6.1.15. Q3b: Explain different access controls in Java.

In Java, access controls are used to restrict the visibility and accessibility of classes, variables,
methods, and constructors. This helps in encapsulating the implementation details, promoting
code reusability, and enhancing security. Java provides four types of access controls, also known
as access modifiers:

No. 110/ 168

af://n6116

Java Programming by Milav Dabgar

1. Default (No Modifier):
o Accessible within the same package only.
o If no access modifier is specified, it is considered as default.

o Members with default access are not accessible outside the package.

package com.example;

class MyClass {
void method() {
// This method is accessible within the same package

2. Public:
o Accessible from anywhere, both within and outside the package.

o Public members can be accessed by any other class.

package com.example;

public class MyClass {
public void method() {
// This method is accessible from anywhere

3. Private:
o Accessible only within the same class.

o Private members are not visible outside the class, including subclasses.

package com.example;

public class MyClass {
private int num;

private void method() {
// This method is accessible only within this class

4. Protected:

o Accessible within the same package and by subclasses, even if they are in different
packages.

o Protected members are not accessible by classes outside the package that are not
subclasses.

No.111/168

Java Programming by Milav Dabgar
package com.example;

public class MyClass {
protected int num;

protected void method() {
// This method is accessible within the same package and by subclasses

These access controls provide a way to manage the visibility and accessibility of members in Java
classes, allowing developers to design and implement classes with appropriate encapsulation and
access restrictions based on their requirements. Proper use of access controls helps in creating
more modular, maintainable, and secure Java applications.

6.1.16. Q3c: What is Java package? Write steps to create a
package in Java and give example of it.
In Java, a package is a way to organize related classes and interfaces into a single namespace. It

helps in avoiding naming conflicts, improving code organization, and providing access control.
Packages can contain classes, interfaces, sub-packages, and other resources.

Here are the steps to create a package in Java:

1. Choose a Package Name: Determine a meaningful name for your package. Typically,
package names are in reverse domain name notation to ensure uniqueness.

2. Create a Directory Structure: Create a directory structure that matches the package name.
Each component of the package name corresponds to a directory in the file system.

3. Place Java Files in the Directory: Create Java files (. java) containing classes or interfaces
within the directory structure. Each file should contain at most one public class or interface,
and the file name should match the class or interface name.

4. Define the Package Declaration: At the top of each Java file, include a package declaration
statement specifying the package name.

5. Compile Java Files: Compile the Java files using the javac compiler. Make sure the compiler
is invoked from the root directory of the package structure.

Here's an example of creating and using a package in Java:

Suppose we want to create a package named com.example.utils containing a class named
StringUtils with a method to capitalize a string.

Step 1: Choose a Package Name:
com.example.utils
Step 2: Create a Directory Structure:

- com
- example
- utils

No.112/168

af://n6157

Java Programming by Milav Dabgar

Step 3: Place Java Files in the Directory:
Create aJava file named sStringUtils.java containing the Stringutils class within the

com/example/utils directory.

Step 4: Define the Package Declaration:
At the top of StringUtils.java, include the package declaration:

package com.example.utils;

Step 5: Define the Class:
Define the StringUtils class with a method to capitalize a string:

package com.example.utils;

public class StringUtils {
public static String capitalize(String str) {
if (str == null || str.iseEmpty()) {
return str;

}

return str.substring(®, 1).toUpperCase() + str.substring(1);

Step 6: Compile Java Files:
Compile the StringUtils.java file. Make sure the current directory is the parent directory of

com.
javac com/example/utils/StringUtils.java
After compiling, you can use the StringUtils class in other Java files by importing the package:

import com.example.utils.StringUtils;

public class Main {
public static void main(String[] args) {
String str = "hello";
String capitalized = StringUtils.capitalize(str);
System.out.println(capitalized); // Output: Hello

By following these steps, you've created and used a package in Java, demonstrating the
organization and encapsulation benefits it provides.

6.1.17. Q4a: Explain Java thread priorities with suitable
example.

In Java, thread priorities are used to indicate the importance or urgency of a thread's execution
relative to other threads. Thread priorities are represented by integer values ranging from 1 to 10,

where 1 is the lowest priority and 10 is the highest priority. The default priority for a thread is
typically inherited from its parent thread, but it can be explicitly set using the setPriority()

No. 1137168

af://n6187

Java Programming by Milav Dabgar
method.

Thread priorities are used by the Java Virtual Machine's thread scheduler to determine the order in
which threads are scheduled for execution. However, thread priorities are merely hints to the
scheduler, and the JVM's implementation of thread scheduling may vary across different
platforms.

Here's an example to illustrate Java thread priorities:

public class PriorityDemo {
public static void main(String[] args) {
Thread threadl = new Thread(new Worker(), "Thread 1");
Thread thread2 = new Thread(new Worker(), "Thread 2");
Thread thread3 = new Thread(new Worker(), "Thread 3");

// Set thread priorities
threadl.setPriority(Thread.MIN_PRIORITY); // Lowest priority
thread2.setPriority(Thread.NORM_PRIORITY); // Default priority
thread3.setPriority(Thread.MAX _PRIORITY); // Highest priority

// Start the threads
threadl.start();
thread2.start();
thread3.start();

static class Worker implements Runnable {
public void run() {
for (int i = 1; i <= 5; i++) {
System.out.println(Thread.currentThread().getName() + ": " + 1i);

try {
Thread.sleep(1000); // Sleep for 1 second

} catch (InterruptedeException e) {
e.printStackTrace();

In this example:

e We create three threads (thread1, thread2, and thread3)and assign them instances of the
worker class, which implements the Runnable interface.

e \We set different priorities for each thread using the setPriority() method. threadl is set
to the lowest priority (MIN_PRIORITY), thread2 is set to the default priority (NORM_PRIORITY),
and thread3 is set to the highest priority (MAX_PRIORITY).

e Each thread runs a simple loop printing numbers from 1 to 5 with a one-second delay
between each iteration.

e When you run this program, the output may vary depending on the thread scheduler's
behavior, but in general, you may observe that thread3 (highest priority) gets more CPU
time compared to the other threads, followed by thread2 (default priority), and finally
thread1 (lowest priority). However, thread scheduling behavior is platform-dependent, and

No. 114 /168

Java Programming by Milav Dabgar

thread priorities should be used with caution as they may not always have the desired effect.

6.1.18. Q4b: What is Java Thread? Explain Thread life cycle.

In Java, a thread is the smallest unit of execution within a process. It represents an independent
path of execution that can run concurrently with other threads in a Java program. Threads allow
programs to perform multiple tasks simultaneously, making efficient use of CPU resources and
enabling concurrent and parallel processing.

Thread Life Cycle:

The life cycle of a thread in Java consists of several states, and a thread transitions through these
states during its lifetime. The states are typically represented by constants defined in the
Thread.State enumeration. The thread life cycle states are as follows:

1. New: When a thread is created but not yet started, it is in the new state. The Thread object

has been created, but the start() method has not been called.

2. Runnable: After the start() method is called, the thread becomes runnable. In this state,
the thread is eligible to run, but it may or may not be executing, depending on the availability
of CPU resources. Once the scheduler selects the thread for execution, it moves to the
running state.

3. Running: When the thread is executing its code, it is in the running state. The thread
scheduler has allocated CPU time for the thread, and the thread's run() method is being

executed.

4. Blocked/Waiting: A thread can transition to a blocked or waiting state for various reasons,
such as waiting for I/0 operations to complete, waiting for locks, or waiting for other threads
to complete. In these cases, the thread temporarily gives up the CPU and waits for the
condition to be satisfied.

5. Timed Waiting: Similar to the blocked/waiting state, but with a specified timeout. Threads
enter this state when they invoke methods such as sleep() or join() with a timeout

parameter.

6. Terminated: When the run() method of the thread completes or when the thread is
explicitly terminated using the interrupt() method, the thread enters the terminated state.
Once terminated, a thread cannot be restarted or transitioned to any other state.

Here's a simple visual representation of the thread life cycle:

New -> Runnable -> Running -> Terminated

I I N N

v v | |
Blocked Waiting | |
I |

Timed Waiting

Understanding the thread life cycle is crucial for writing multithreaded Java applications efficiently,
as it helps in managing and coordinating the execution of concurrent tasks. It allows developers to
control thread behavior, handle synchronization, and avoid common concurrency issues such as
race conditions and deadlocks.

No. 1157168

af://n6202

Java Programming by Milav Dabgar

6.1.19. Q4c: Write a program in java that create the multiple
threads by implementing the Thread class.

Here's a simple Java program that creates multiple threads by implementing the Thread class:

class MyThread extends Thread {
private String threadName;

public MyThread(String name) {
this.threadName = name;

public void run() {
System.out.println("Thread " + threadName + " is running.");

try {
// Simulating some work being done by the thread
Thread.sleep(2000); // Sleep for 2 seconds

} catch (InterruptedException e) {
System.out.println("Thread " + threadName + " interrupted.");

}

System.out.println("Thread " + threadName + " exiting.");

public class MultiThreadExample {
public static void main(String[] args) {
MyThread threadl = new MyThread("Thread 1");
MyThread thread2 = new MyThread("Thread 2");
MyThread thread3 = new MyThread("Thread 3");

// Start the threads
threadl.start();
thread2.start();
thread3.start();

In this program:

e \We define a class MyThread that extends the Thread class. This class represents a simple

thread that prints a message, does some simulated work (sleeps for 2 seconds), and then
exits.

e The run() method is overridden to define the behavior of the thread.

e |nthe MultiThreadExample class, we create three instances of MyThread with different
names (Thread 1, Thread 2, and Thread 3)

e \We start each thread using the start() method. This method initiates the execution of the

thread by invoking its run() method in a separate thread of control.
e As aresult, all three threads are running concurrently, executing their tasks independently.

e The output may vary on each run, but you'll see messages indicating that each thread is
running, then after a 2-second delay, it exits.

No. 116/ 168

af://n6222

Java Programming by Milav Dabgar

This example demonstrates how to create multiple threads by extending the Thread class and
starting them concurrently to achieve parallel execution of tasks.

6.1.20. Q4a: List four different inbuilt exceptions of Java.
Explain any one inbuilt exception.

In Java, there are many built-in exceptions provided by the Java API, which are organized in a
hierarchy under the java.lang.Exception class. Here are four commonly encountered built-in

exceptions:

1. NullPointerException: This exception occurs when you try to access or perform an
operation on an object reference that is null.

2. ArrayindexOutOfBoundsException: This exception occurs when you try to access an
element of an array at an invalid index (i.e., an index that is less than 0 or greater than or
equal to the length of the array).

3. NumberFormatException: This exception occurs when you try to convert a string to a
numeric format (e.g., using Integer.parseInt() or Double.parseDouble()) butthe string
does not contain a valid numeric value.

4. FileNotFoundException: This exception occurs when an attempt to open a file or a file
pathname specified by a string in the code fails because the file with the specified pathname
does not exist or cannot be opened for reading.

Let's explain the NullPointerException in more detail:

NullPointerException:

A NullPointerException is one of the most common exceptions encountered by Java
programmers. It occurs when you try to access or perform an operation on an object reference
thatis null, i.e., it does not refer to any object in memory.

Here's an example to illustrate a NullPointerException:

public class NullPointerExceptionExample {
public static void main(String[] args) {
String str = null;
System.out.println(str.length()); // This line will throw a
NullPointerException

}

In this example, we have a String variable str thatis initialized to null.When we try to access
the length() method of str, a NullPointerException will be thrown at runtime because we

are attempting to invoke a method on a null reference.

To handle a NullPointerException, you can either check if the reference is null before
accessing it or use try-catch blocks to catch and handle the exception gracefully:

public class NullPointerExceptionExample {
public static void main(String[] args) {
String str = null;

// Using if statement to check for null reference
if (str != null) {
No. 117/168

af://n6240

Java Programming by Milav Dabgar

System.out.println(str.length());
} else {
System.out.println("String is null.");

// Using try-catch block to handle NullPointerException

try {
System.out.println(str.length());

} catch (NullPointerException e) {
System.out.println("NullPointerException caught: " + e.getMessage());

It's important to handle NullPointerExceptions properly in your code to prevent unexpected

crashes and ensure the robustness of your Java applications.

6.1.21. Q4b: Explain multiple catch with suitable example in
Java.

In Java, you can use multiple catch blocks to handle different types of exceptions that may occur
within a try block. This allows you to handle each type of exception differently, based on the
specific error conditions that may arise during the execution of the code.

Here's an example to illustrate the usage of multiple catch blocks:

public class MultipleCatchExample {
public static void main(String[] args) {
try {
int[] numbers = {1, 2, 3},
System.out.println("Element at index 3: " + numbers[3]); // This will
throw ArrayIndexOutOfBoundsException
String str = null;
System.out.println("Length of string: " + str.length()); // This will
throw NullPointerException
} catch (ArrayIndexOutOfBoundsException e) {
System.out.println("ArrayIndexOutOfBoundsException caught: " +
e.getMessage());
} catch (NullPointerException e) {
System.out.println("NullPointerException caught: " + e.getMessage());
} catch (Exception e) {
System.out.println("Generic Exception caught: " + e.getMessage());

In this example:

e We have a try block containing two statements that may throw different types of

exceptions:

o Accessing an element at index 3 of an array (numbers[3]), which may throw an

ArrayIndexOutOfBoundsException.

No. 118 /168

af://n6260

Java Programming by Milav Dabgar

o Attempting to get the length of a null string (str.length()), which may throw a
NullPointerException.

e We have multiple catch blocks to handle each type of exception separately:

o The first catch block catches ArrayIndexoutOfBoundsException, prints a message, and
handles the exception.

o The second catch block catches NullPointerException, prints a message, and
handles the exception.

e \We also have a generic catch block (catch (Exception e))atthe end to catch any other
type of exception that may occur. This is optional but can be useful for handling unexpected
exceptions or providing a fallback mechanism.

When you run this program, if an ArrayIndexoutOfBoundsException occurs, the first catch block
will handle it and print a message. Similarly, if a NullPointerException occurs, the second catch

block will handle it. If any other type of exception occurs, the generic catch block will handle it.

Using multiple catch blocks allows you to handle different exceptions gracefully and provide

appropriate error messages or recovery mechanisms based on the specific type of exception
encountered.

6.1.22. Q4c: What is Java Exception? Write a program that
show the use of Arithmetic Exception in Java.

In Java, an exception is an event that occurs during the execution of a program that disrupts the
normal flow of instructions. When an exceptional condition arises, an object representing that
condition is created and thrown in the method that caused the error. This object is an instance of
a subclass of the Throwable class, which can be either an Exception oran Error.

An ArithmeticException is a subclass of RuntimeException and is thrown when an arithmetic
operation fails due to certain conditions, such as division by zero or integer overflow.

Here's a program that demonstrates the use of ArithmeticException in Java:

public class ArithmeticExceptionExample {
public static void main(String[] args) {
int dividend = 10;
int divisor = 0;

try {
int quotient = dividend / divisor; // Division by zero will throw
ArithmeticException
System.out.println("Quotient: " + quotient);
} catch (ArithmeticException e) {
System.out.println("ArithmeticException caught: " + e.getMessage());
}
}
}

In this program:

e We have two integers, dividend and divisor, where divisor is initialized to 0.

e \We attempt to perform a division operation (dividend / divisor), which will resultin an
ArithmeticException when divisor isO.

No.119/168

af://n6284

Java Programming by Milav Dabgar

e We have a try-catch block to handle the potential ArithmeticException. Inside the try
block, the division operation is performed, and if an ArithmeticException occurs, itis
caught by the catch block.

e Inside the catch block, we print a message indicating that an ArithmeticException was
caught, along with the error message provided by the exception object (e.getMessage()).

When you run this program, it will output:

ArithmeticException caught: / by zero

This demonstrates how to use try-catch blocks to handle ArithmeticException and gracefully
handle the error condition, preventing the program from crashing. It's important to handle

exceptions appropriately in your code to ensure robustness and provide meaningful error
messages to users.

6.1.23. Q5a: Explain ArraylndexOutOfBound Exception in Java
with example.

InJava, ArrayIndexOutOfBoundsException is a runtime exception that occurs when you try to
access an element of an array at an index that is outside the valid range of indices for that array.
This means you are trying to access an array element with an index that is either negative or
greater than or equal to the length of the array.

Here's an example to illustrate ArrayIndexOutOfBoundsException :

public class ArrayIndexOutOfBoundsExceptionExample {
public static void main(String[] args) {
int[] numbers = {1, 2, 3};

// Accessing an element at an invalid index

System.out.println("Element at index 3: " + numbers[3]); // This will
throw ArrayIndexOutOfBoundsException

}

In this example:

e We have an integer array numbers containing three elements: 1, 2,and 3.
e We attempt to access the element at index 3 using numbers[3].

e However, the valid indices for the array numbers are @, 1, and 2. Since we are trying to
access an element at an index (3) that is beyond the valid range, it will resultin an

ArrayIndexOutOfBoundsException at runtime.

When you run this program, it will throw an ArrayIndexOutOfBoundsException with an error
message similar to:

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: Index 3 out
of bounds for length 3

at
ArrayIndexOutOfBoundsExceptionExample.main(ArrayIndexOutOfBoundsExceptionExample. j
ava:7)

No. 120/ 168

af://n6302

Java Programming by Milav Dabgar

To prevent ArrayIndexOutOfBoundsException, you should always ensure that the index used to
access an array element is within the valid range of indices (i.e., between 0 and array.length -
1). You can use conditional statements or loop constructs to check the validity of array indices

before accessing elements to handle such exceptions gracefully in your code.

6.1.24. Q5b: Explain basics of Java stream classes.

In Java, stream classes are part of the Java I/0 (Input/Output) API, which provides a way to
efficiently read from and write to data sources and destinations, such as files, network
connections, and memory buffers. Stream classes are used to handle input and output operations
in Java programs, allowing data to be transferred between an application and external sources or
sinks.

There are two main types of stream classes in Java:

1. Byte Streams:

o Byte streams, represented by classes such as InputStream and OutputStream, are
used for reading and writing raw bytes of data.

o Byte streams are suitable for handling binary data or text data where character
encoding is not a concern.

o Examples of byte stream classes include FileInputStream, FileOutputStream,
BufferedInputStream, BufferedOutputStream, etc.

2. Character Streams:

o Character streams, represented by classes such as Reader and Writer, are used for
reading and writing character data.

o Character streams handle character encoding automatically, converting characters to
and from bytes using the specified character encoding.

o Character streams are suitable for reading and writing text data from/to external
sources, ensuring proper character encoding and decoding.

o Examples of character stream classes include FileReader, FileWriter,
BufferedReader, Bufferedwriter, etc.

Basics of using Java stream classes:

e Reading from Streams: To read data from a stream, you typically create an appropriate
input stream class object (e.g., FileInputStream or BufferedReader), and then use
methods provided by the stream class to read data from the source. For example:

BufferedReader reader = new BufferedReader(new FileReader("file.txt"));
String line = reader.readLine();

e Writing to Streams: To write data to a stream, you create an appropriate output stream
class object (e.g., FileOutputStream or Bufferedwriter), and then use methods provided
by the stream class to write data to the destination. For example:

BufferedWriter writer = new Bufferedwriter(new FileWriter("output.txt"));
writer.write("Hello, World!");

No.121/168

af://n6317

Java Programming by Milav Dabgar

e Closing Streams: It's important to close streams after using them to release system
resources. You can use the close() method provided by stream classes to close the stream.

Alternatively, you can use try-with-resources statement introduced in Java 7 to automatically
close streams. For example:

try (BufferedReader reader = new BufferedReader(new FileReader("file.txt")))
{

String line = reader.readLine();

// Process the data
} catch (IOException e) {

// Handle exception

Java stream classes provide a flexible and efficient way to perform input and output operations in
Java programs, making it easy to interact with external data sources and sinks. Whether you're
reading from files, network connections, or writing data to them, Java stream classes offer a
consistent and convenient API for handling I/0 operations.

6.1.25. Q5c: Write a java program to create a text file and
perform read operation on the text file.

To create a text file and perform a read operation using FileInputStream inJava, you need to use
FileOutputStream for writing to the file since FileInputStream is designed for reading bytes
from a file. Below is a Java program that demonstrates how to create a text file using
FileOutputStream and then reads it back using FileInputStream.

import java.io.FileInputStream;
import java.io.FileOutputStreanm;
import java.io.IOException;

public class FileStreamExample {
public static void main(String[] args) {
String fileName = "sample.txt";
String content = "Hello, World!\nThis is a sample text file.";

// Write content to file

try (FileOutputStream fos = new FileOutputStream(fileName)) {
fos.write(content.getBytes());
System.out.println("File has been written successfully.");

} catch (IOException e) {
System.err.println("Error writing to file: " + e.getMessage());

// Read content from file
try (FileInputStream fis = new FileInputStream(fileName)) {
int i;
System.out.println("Reading from file: ");
while ((i = fis.read()) != -1) {
// i is a byte. Convert it to char and print it
System.out.print((char) 1);
}
} catch (IOException e) {
System.err.println("Error reading from file: " + e.getMessage());

No. 122 /168

af://n6353

Java Programming by Milav Dabgar

In this program:

1. The main method defines a fileName for the file to be created and a String named
content that holds the text to be written to the file.

2. ltuses a FileOutputStream to write the text content to the file. The String contentis
converted to bytes using the getBytes() method before writing, as FileOutputStream
works with bytes.

3. After writing the content to the file, it uses a FileInputStream to read the bytes from the file.
It reads the file byte by byte in the while loop until read() returns -1, indicating the end of
the file.

4. Each byte read from the file is cast to a char and printed to the console, allowing the text
content of the file to be displayed.

This program demonstrates the basic use of FileInputStream and FileOutputStream for
reading and writing text files, though it's worth noting that these classes are primarily intended for
binary data. For reading and writing character data, consider using FileReader and Filewriter
or BufferedReader and Bufferedwriter for efficiency and simplicity.

6.1.26. Q5a: Explain Divide by Zero Exception in Java with
example.

InJava, a DivideByZeroException is not explicitly provided as a standard exception class. Instead,
the exception that occurs when you attempt to divide by zero is called ArithmeticException. This
exception is thrown when an arithmetic operation fails due to certain conditions, such as division
by zero.

Here's an example to illustrate ArithmeticException (which commonly occurs due to divide by

Zero):

public class DivideByZeroExceptionExample {
public static void main(String[] args) {
int dividend = 10;
int divisor = 0;

try {
int quotient = dividend / divisor; // Division by zero will throw
ArithmeticException
System.out.println("Quotient: " + quotient);
} catch (ArithmeticException e) {
System.out.println("ArithmeticException caught: " + e.getMessage());
}
}
}

In this example:

e \We have two integers, dividend and divisor, where divisor is initializedto 0.

No. 1237168

af://n6367

Java Programming by Milav Dabgar
e We attempt to perform a division operation (dividend / divisor), which will resultin an
ArithmeticException when divisor is 0.

e We have a try-catch block to handle the potential ArithmeticException. Inside the try

block, the division operation is performed, and if an ArithmeticException occurs, it is
caught by the catch block.

e |Inside the catch block, we print a message indicating that an ArithmeticException was
caught, along with the error message provided by the exception object (e.getMessage()).

When you run this program, it will output:

ArithmeticException caught: / by zero

This demonstrates how attempting to divide by zero results in an ArithmeticException being
thrown at runtime in Java. To prevent such exceptions, it's important to ensure that you handle
cases where division by zero may occur or validate input data to avoid such scenarios.

6.1.27. Q5b: Explain java 1/0 process.

In Java, Input/Output (I/0) operations involve the exchange of data between a Java program and
external sources or destinations, such as files, network connections, or other programs. The Java
I/0 process encompasses several key concepts and classes provided by the Java API to facilitate
reading from and writing to various data sources and sinks.

The Java I/0 process typically involves the following steps:

1. Selecting a Data Source or Destination:

o Determine the source or destination of the data you want to read from or write to. This
could be a file, network socket, standard input/output streams (e.g., System.in and
System.out), or any other data stream.

2. Creating Stream Objects:

o Once you've identified the source or destination, you need to create appropriate stream
objects to interact with it.

o For reading data, you typically use input stream classes such as InputStream or

Reader .

o For writing data, you typically use output stream classes such as OutputStream or

Writer.

o Stream classes provide methods for reading/writing data in the form of bytes or
characters, depending on the type of data source or destination.

3. Reading from or Writing to Streams:

o Use the methods provided by the stream classes to read data from or write data to the
associated data source or destination.

o For example, you can use methods like read() or write() to read/write bytes, or
readLine() or writelLine() to read/write characters.

4. Closing Streams:

o After you've finished reading from or writing to streams, it's important to close them to
release system resources and ensure proper cleanup.

o You can use the close() method provided by stream classes to close the streams.

No. 124 /168

af://n6384

Java Programming by Milav Dabgar

o Alternatively, you can use the try-with-resources statement introduced in Java 7 to
automatically close streams when they are no longer needed.
5. Handling Exceptions:

o 1/0 operations can throw exceptions due to various reasons, such as file not found,
network errors, or invalid data formats.

o It's essential to handle these exceptions gracefully using try-catch blocks or propagate
them to the calling code for proper error handling and recovery.

6. Optional: Buffering and Efficiency:

o Toimprove performance and efficiency, you can use buffered stream classes such as
BufferedReader , Bufferedwriter, BufferedInputStream, or BufferedOutputStream.

o Buffered stream classes reduce the number of actual I/0 operations by reading/writing

data in larger chunks, resulting in improved performance.

Overall, the Java I/0 process involves selecting the appropriate stream classes, reading from or
writing to streams, closing streams after use, handling exceptions, and optionally using buffering
for improved efficiency. Understanding these concepts and using the provided Java I/0 classes
effectively is crucial for performing input/output operations in Java programs.

6.1.28. Q5c: Write a java program to display the content of a
text file and perform append operation on the text file.

Below is a Java program that displays the content of a text file and performs an append operation
on the text file using FileInputStream and FileOutputStream:

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

public class FileDisplayAndAppend {
public static void main(String[] args) {
String fileName = "sample.txt";

// Display the content of the text file
displayFileContent(fileName);

// Perform append operation on the text file
performAppendOperation(fileName);

// Method to display the content of the text file
private static void displayFileContent(String fileName) {
try (FileInputStream fis = new FileInputStream(fileName)) {

int i;
System.out.println("Contents of the text file:");
while ((i = fis.read()) !'= -1) {

System.out.print((char) 1i);

}
System.out.println("\n");

} catch (IOException e) {
System.err.println("Error reading from file: " + e.getMessage());

No.125/168

af://n6435

Java Programming by Milav Dabgar

// Method to perform append operation on the text file
private static void performAppendOperation(String fileName) {
String appendContent = "\nThis line is appended to the file.";

try (FileOutputStream fos = new FileOutputStream(fileName, true)) {
fos.write(appendContent.getBytes());
System.out.println("Append operation completed successfully.");

} catch (IOException e) {
System.err.println("Error appending to file: " + e.getMessage());

In this program:

1. The displayFileContent() method reads and displays the content of the specified text file
using FileInputStream.

2. The performAppendoperation() method appends a new line of content to the end of the
text file using FileoutputStream with the append parameter setto true.

3.Inthe main() method, both methods are called sequentially to display the initial content of
the file and then perform the append operation.

4. The content to be appended (appendContent) is specified as a String and converted to

bytes using the getBytes() method before writing to the file.

When you run this program, it will display the initial content of the text file (if it exists) and then
append a new line of content to the file. Make sure to replace "sample.txt" with the actual file
name you want to read from and append to.

6.2. 4341602 - Java: Summer 2023 Paper Solution

6.2.1. Q1a: Differentiate between Procedure-Oriented
Programming (POP) and Object-Oriented Programming
(OOP).

Procedure-Oriented Programming (POP) and Object-Oriented Programming (OOP) are two distinct
paradigms in software development. Here's a differentiation between the two:

1. Fundamental Unit:

o POP: In POP, the fundamental unit of the program is a function or a procedure, which
operates on data.

o OOP: In OOP, the fundamental unit is an object, which combines data (attributes) and
behaviors (methods) into a single entity.

2. Data and Functionality:

o POP: Data and functionality are separate entities. Functions operate on data that is often
stored in data structures.

o OOP: Data and functionality are bundled together within objects. Objects encapsulate
both data (attributes) and functionality (methods) related to that data.

3. Data Encapsulation:

No. 126/ 168

af://n6449
af://n6450

Java Programming by Milav Dabgar
o POP: Encapsulation is not a primary concern. Data can be accessed and modified by any
function that has access to it.

o OOP: Encapsulation is a key principle. Data within objects is typically hidden from
external access, and can only be manipulated through defined methods, providing
better control and security.

4. Inheritance:

o POP: Inheritance is not directly supported.

o OOP: Inheritance allows objects to inherit attributes and methods from parent classes,
promoting code reusability and establishing hierarchical relationships.

5. Polymorphism:
o POP: Polymorphism is achieved through function overloading and procedure overriding.

o OOP: Polymorphism allows objects of different classes to be treated as objects of a
common superclass, enabling flexibility and extensibility in code design.

6. Modifiability and Scalability:

o POP: Modifying and scaling code can be more challenging as the program grows larger,
due to the lack of modularization inherent in the procedural approach.

o OOP: OOP promotes modularity and scalability through the use of classes and objects,
making it easier to manage and extend code as requirements change.

7. Example Languages:
o POP: Languages like C, Fortran, and Pascal primarily follow the procedural paradigm.

o OOP: Languages like Java, Python, and C++ are designed with OOP principles in mind,
although many also support procedural programming.

In summary, while both paradigms aim to organize code and facilitate software development, they
differ significantly in their approach to data organization, code structure, and principles of
modularity and reusability.

6.2.2. Q1b: Explain Super keyword in inheritance with
suitable example.

InJava, the super keyword is used to refer to the superclass (parent class) of a subclass (child
class). It can be used to access superclass methods, constructor, and instance variables. This is
particularly useful when the subclass overrides a method or hides an instance variable of the
superclass and you want to access the superclass version.

Let's illustrate the usage of the super keyword with an example involving inheritance and method

overriding:

// Parent class
class Animal {
String color = "white";

void display() {
System.out.println("Animal is " + color);

// Subclass inheriting from Animal

No. 127 /168

af://n6503

Java Programming by Milav Dabgar

class Dog extends Animal {
String color = "Black"; // hiding the color variable in parent class

void display() {
System.out.println("Dog is " + color);
System.out.println("Superclass Animal is " + super.color); // accessing
superclass variable
super.display(); // calling superclass method

// Main class
public class Main {
public static void main(String[] args) {
Dog dog = new Dog();
dog.display();

In this example:

e The Animal class defines a variable color and a method display() which prints the color.

e The Dog class extends Animal and defines its own color variable, hiding the color
variable of the superclass. It also overrides the display() method to print the dog's color
and then calls super.display() to call the superclass's display() method.

e Inthe main() method, we create an instance of Dog and call its display() method.

Output:

Dog is Black
Superclass Animal is White
Animal is White

Here's what's happening:

e The display() method in the Dog class prints the color of the dog, then it uses
super.color to access the color variable of the superclass (which is "White").
e super.display() invokesthe display() method of the superclass, printing "Animal is

White".

This demonstrates how super can be used to access superclass members from a subclass,

allowing for controlled access to overridden methods and hidden variables.

6.2.3. Q1c: Define: Method Overriding. List out Rules for
method overriding. Write a java program that implements
method overriding.

Method overriding is a feature in object-oriented programming that allows a subclass to provide a
specific implementation of a method that is already defined in its superclass. This means that a
subclass can redefine the implementation of a method that it inherits from its superclass
according to its own requirements.

Rules for method overriding in Java:

No. 128 /168

af://n6524

Java Programming by Milav Dabgar

1. Method Signature:

o The method in the subclass must have the same name, return type, and parameter list
(including order and type of parameters) as the method in the superclass. Changing the
return type or parameter list results in method overloading instead of overriding.

2. Access Modifier:

o The access modifier of the overriding method in the subclass should not be more
restrictive than the access modifier of the overridden method in the superclass.
However, it can be less restrictive or the same.

o Access levels inJava: public, protected, package-private (default), and private.

o The order of access modifiers from least restrictive to most restrictive is: public,
protected, package-private, and private.

3. Exception Handling:

o The subclass method can only throw exceptions that are subclasses of the exceptions
thrown by the superclass method, or it can choose not to throw any exceptions (this is
also known as "covariant return types").

4. Return Type:

o If the return type of the method in the subclass is a subclass of the return type of the
method in the superclass, it's considered a valid overriding (covariant return types).

o InJava 5 and later versions, covariant return types allow the return type of the overriding
method to be a subclass of the return type of the overridden method.

5. Method Visibility:

o If a method in the superclass is declared as final, it cannot be overridden in any
subclass.

o If a method in the superclass is declared as static, it cannot be overridden because
static methods belong to the class, not to the instance.

o Constructors and private methods cannot be overridden because they are not inherited
by subclasses.

6. Super Keyword:

o Within the overriding method, you can use the super keyword to call the overridden
method from the superclass.

o This can be useful for extending the functionality of the superclass method while still
utilizing its original implementation.

Method overriding allows for polymorphism in Java, enabling different behavior for objects of the
same superclass type based on their actual runtime types.

Sure, here's a Java program that demonstrates method overriding:

// Parent class
class Animal {
void makeSound() {
System.out.println("Generic animal sound");

// Subclass inheriting from Animal

No.129/168

Java Programming by Milav Dabgar

class Dog extends Animal {
// Override makeSound method
@Override
void makeSound() {
System.out.println("woof!");

// Another subclass inheriting from Animal
class Cat extends Animal {
// Override makeSound method
@Override
void makeSound() {
System.out.println("Meow!");

// Main class
public class Main {
public static void main(String[] args) {
Animal animall = new Dog(); // Animal reference, Dog object
Animal animal2 = new Cat(); // Animal reference, Cat object

animall.makeSound(); // Calls Dog's makeSound method
animal2.makeSound(); // Calls Cat's makeSound method

Output:

Woof'!
Meow!

Explanation:

e \We have a superclass Animal with a method makeSound() .

e The Dog class and cat class both extend Animal and override the makeSound() method

with their own implementations.
e Inthe Main class, we create instances of Dog and cat but store them in Animal references.

e When we call the makeSound() method on these instances, Java dynamically dispatches the
call to the appropriate overridden method based on the actual type of the object at runtime,
demonstrating polymorphism through method overriding.

6.2.4. Q1cOR: Describe: Interface. Write a java program using
interface to demonstrate multiple inheritance.

In Java, an interface is a reference type that defines a set of abstract methods along with constants
(static final variables). Interfaces cannot have instance fields (non-static variables) or concrete

methods (methods with a body) until Java 8, where default and static methods were introduced in
interfaces.

No. 130/ 168

af://n6585

Java Programming by Milav Dabgar

Interfaces serve as a contract or blueprint for classes, specifying methods that implementing
classes must provide. They facilitate abstraction, allowing for the separation of specification and
implementation in software design. Here are key features and characteristics of interfaces in Java:

1. Declaration:

o Interfaces are declared using the interface keyword.
o Example: interface MyInterface { ... }

2. Abstract Methods:

o An interface can contain abstract methods, which are method declarations without a
body.

o All methods in an interface are implicitly public and abstract.

o Example:

interface MyInterface {
void methodi();
int method2();

3. Constants:

o Interfaces can declare constants, which are implicitly public, static, and final.

o Constants are typically used to define immutable values that are relevant to the

interface.

o Example:

interface MyInterface {
int CONSTANT_VALUE = 10;

4. Default Methods (Java 8+):

o Java 8 introduced the concept of default methods in interfaces, allowing interfaces to
have concrete methods with a default implementation.

o Default methods are declared using the default keyword and can be overridden by
implementing classes if needed.

o Default methods were introduced to provide backward compatibility when introducing
new methods to existing interfaces.

o Example:

interface MyInterface {
default void defaultMethod() {

System.out.println("Default method implementation");

5. Static Methods (Java 8+):

o Java 8 also introduced static methods in interfaces, allowing interfaces to contain static
utility methods.

No.131/168

Java Programming by Milav Dabgar

o Static methods are declared using the static keyword and can be invoked using the
interface name.

o Example:

interface MyInterface {
static void staticMethod() {
System.out.println("Static method implementation");

}

6. Multiple Inheritance:

o Java allows interfaces to support multiple inheritance, meaning a class can implement
multiple interfaces.

o This enables a class to inherit behavior from multiple sources, promoting code reuse
and flexibility.

o Example:

interface Interfacel {
void methodl();

interface Interface2 {
void method2();

class MyClass implements Interfacel, Interface2 {
public void methodl() {
// Implementation

public void method2() {

// Implementation

7. Implementation:
o Classes implement interfaces using the implements keyword.

o Implementing classes must provide concrete implementations for all abstract methods
declared in the interface.

o Example:

class MyClass implements MyInterface {
public void method1() {
// Implementation

public int method2() {
// Implementation

No.132/168

Java Programming by Milav Dabgar

Interfaces play a crucial role in Java's abstraction mechanisms, enabling the definition of contracts
and facilitating polymorphism and code reusability in object-oriented programming. They are
widely used in Java APIs and frameworks to define specifications and promote interoperability
between different components.

In Java, multiple inheritance is not directly supported for classes, meaning a class cannot extend
multiple classes simultaneously. However, Java provides a way to achieve a form of multiple
inheritance using interfaces. An interface in Java defines a contract for classes that implement it,
specifying a set of methods that must be implemented by any class that claims to conform to the
interface.

Here's a Java program demonstrating multiple inheritance using interfaces:

// Interface 1
interface Animal {
void eat();

// Interface 2
interface Mammal {
void run();

// Class implementing Interface 1
class Dog implements Animal {
@Ooverride
public void eat() {
System.out.println("Dog eats bones");

// Class implementing Interface 2
class Horse implements Mammal {
@Override
public void run() {
System.out.println("Horse runs at high speed");

// Class implementing both Interface 1 and Interface 2
class DogHorseHybrid implements Animal, Mammal {
@override
public void eat() {
System.out.println("Dog-Horse Hybrid eats bones and hay");

@Override
public void run() {
System.out.println("Dog-Horse Hybrid runs");

// Main class
public class Main {
public static void main(String[] args) {

No. 1337168

Java Programming by Milav Dabgar

Dog dog = new Dog();
Horse horse = new Horse();
DogHorseHybrid hybrid = new DogHorseHybrid();

dog.eat();
horse.run();
hybrid.eat();
hybrid.run();

Output:

Dog eats bones

Horse runs at high speed

Dog-Horse Hybrid eats bones and hay
Dog-Horse Hybrid runs

Explanation:

e We define two interfaces: Animal and Mammal, each with their own set of methods.
e We define two classes: Dog and Horse, each implementing one of the interfaces.

e \We define a class DogHorseHybrid that implements both interfaces, thereby inheriting
behavior from both Animal and Mammal.

e Inthe Main class, we create instances of Dog, Horse, and DogHorseHybrid, and call their
respective methods to demonstrate multiple inheritance through interfaces.

6.2.5. Q2a: Explain the Java Program Structure with example.

In Java, a program is typically structured into classes, which are the fundamental building blocks of
Java applications. Each class encapsulates data (attributes) and behaviors (methods) related to a
specific entity or concept. The overall structure of a Java program involves one or more classes,
with one class containing a special method called main() where the program execution begins.

Here's an example of a simple Java program structure:

// Main class
public class Helloworld {
// Main method where the program execution begins
public static void main(String[] args) {
// Program logic
System.out.println("Hello, world!");

Let's break down the structure of this Java program:

1. Class Declaration:

o The program starts with the declaration of a class using the class keyword. In this
example, the class is named Helloworld .

o Class names in Java must start with an uppercase letter and follow camel case
convention.

No. 134 /168

af://n6674

Java Programming by Milav Dabgar

2. Main Method:

o Inside the class, we define a special method called main() . This is the entry point of the

program where the execution begins.
o The main() method must be declared as public, static, and void.

o It accepts a single parameter, an array of strings (String[] args), which allows
command-line arguments to be passed to the program.

3. Program Logic:

o Inside the main() method, we write the logic or instructions that we want the program
to execute.

o In this example, we have a single statement that prints "Hello, world!" to the console
using the System.out.println() method.

4, Comments:

o Comments in Java start with // for single-line comments or /* */ for multi-line
comments.

o Comments are used to document and explain the code, making it more readable and
understandable.

5. Semicolons:

o Java statements are terminated by semicolons (;). They indicate the end of a statement.

Overall, this Java program structure demonstrates the basic elements required for a Java program:
a class declaration, a main method, and program logic. This structure forms the foundation for
writing Java applications of varying complexity.

6.2.6. Q2b: Explain static keyword with suitable example.

In Java, the static keyword is used to declare members (variables and methods) that belong to
the class itself rather than to instances of the class. This means that static members are shared
among all instances of the class and can be accessed directly through the class name without the
need to create an object of the class.

Here's an explanation of the static keyword with a suitable example:

class Counter {
static int count = 0; // Static variable

// Static method to increment the count
static void increment() {
count++;

// Static method to display the count
static void displayCount() {
System.out.println("Count: " + count);

public class Main {
public static void main(String[] args) {
// Accessing static variable and method using class name

No. 1357168

af://n6716

Java Programming by Milav Dabgar

Counter.increment();
Counter.displayCount();

// Creating multiple instances of Counter
Counter cl1l = new Counter();
Counter c2 = new Counter();

// Accessing static variable and method using instances
cl.increment();

c2.increment();

Counter.displayCount(); // Output: Count: 3

Explanation:
e Inthe counter class, count is declared as a static variable. This means that all instances of
the counter class share the same count variable.

e increment() and displayCount() are static methods. These methods can be called directly
using the class name (Counter.increment (), Counter.displayCount()), without needing to

create an object of the class.

e Inthe Main class, we demonstrate accessing and modifying the static variable and calling

static methods both through the class name and through instances of the class.

e The output demonstrates that the static variable count is shared among all instances of the
Counter class. When we increment count using one instance, it reflects the change when

accessed through another instance or the class name itself.

In summary, the static keyword allows for the creation of class-level variables and methods that

are shared among all instances of the class. It provides a way to manage and manipulate shared
data and behavior within the context of a class.

6.2.7. Q2c: Define: Constructor. List out types of it. Explain
Parameterized and copy constructor with suitable example.

A constructor in Java is a special type of method that is automatically called when an object of a
class is created. It is used to initialize the newly created object. Constructors have the same name
as the class and do not have a return type, not even void . Constructors can be used to set initial
values for instance variables, allocate resources, or perform any other initialization tasks needed
by the object.

Types of constructors in Java:

1. Default Constructor:

o A default constructor is automatically created by Java if no other constructor is defined
explicitly.

o It has no parameters and typically initializes instance variables to their default values
(e.g., @ for numeric types, null for reference types).

2. Parameterized Constructor:

o A parameterized constructor accepts parameters which are used to initialize instance
variables with specific values.

No. 136/ 168

af://n6731

Java Programming by Milav Dabgar

o It allows for custom initialization of objects based on the provided arguments.
3. Copy Constructor:

o A copy constructor is a special type of constructor that takes an object of the same class
as a parameter and creates a new object by copying the values of the instance variables
from the passed object.

o Itis used to create a new object with the same state as an existing object.

Let's explain parameterized and copy constructors with suitable examples:

6.2.7.1. Parameterized Constructor Example:

class Student {
String name;
int age;

// Parameterized Constructor

public Student(String name, int age) {
this.name = name;
this.age = age;

void display() {
System.out.println("Name: " + name);
System.out.println("Age: " + age);

public class Main {
public static void main(String[] args) {
// Creating objects using parameterized constructor
Student studentl = new Student("Alice", 20);
Student student2 = new Student("Bob", 22);

// Displaying student details
studentl.display();
student2.display();

In this example:

e We define a Student class with instance variables name and age.

e The Student class has a parameterized constructor that initializes the name and age
instance variables with the values passed as arguments.

e \We create two Student objects (student1l and student2) using the parameterized
constructor and display their details.

6.2.7.2. Copy Constructor Example:

class Employee {
String name;
int age;

No. 137 /168

af://n6757
af://n6767

Java Programming by Milav Dabgar

// Copy Constructor

public Employee(Employee emp) {
this.name = emp.name;
this.age = emp.age;

void display() {
System.out.println("Name: " + name);
System.out.println("Age: " + age);

public class Main {
public static void main(String[] args) {
// Creating an object
Employee empl = new Employee();
empl.name = "John";
empl.age = 30;

// Creating another object using copy constructor
Employee emp2 = new Employee(empl);

// Displaying employee details
empl.display();
emp2.display();

In this example:

e We define an Employee class with instance variables name and age.

e The Employee class has a copy constructor that takes an Employee object as a parameter
and initializes the instance variables of the new object with the values from the passed object.

e \We create an Employee object empl, setits name and age, and then create another

Employee object emp2 using the copy constructor with emp1 as an argument.

e Both empil and emp2 have the same state, demonstrating the use of the copy constructor to
create a new object with the same state as an existing object.

6.2.8. Q2a: Explain the Primitive Data Types and User Defined
DataTypes in java.

In Java, data types specify the type of data that a variable can hold. There are two main categories
of data types: primitive data types and user-defined data types.

6.2.8.1. Primitive Data Types:

Primitive data types are the basic building blocks of data manipulation in Java. They are predefined
by the language and represent simple values. Java provides eight primitive data types:

1. byte: 8-bit signed integer.
2. short: 16-bit signed integer.

3. int: 32-bit signed integer.

No. 138 /168

af://n6779
af://n6781

Java Programming by Milav Dabgar

4. long: 64-bit signed integer.

5. float: 32-bit floating-point number.
6. double: 64-bit floating-point number.
7. char: 16-bit Unicode character.

8. boolean: Represents true or false.

Example:

int number = 10;

double pi = 3.14;

char letter = 'A';
boolean isJavaFun = true;

6.2.8.2. User-Defined Data Types:

User-defined data types are created by the programmer to meet specific requirements. They are
derived from primitive data types and/or other user-defined data types. In Java, user-defined data
types include classes, interfaces, arrays, and enumerated types.

1. Classes: Classes are user-defined data types that encapsulate data for a specific object and
provide methods to operate on that data.

class Car {
String brand;
String model;
int year;

2. Interfaces: Interfaces define a contract for classes that implement them, specifying a set of
methods that must be implemented.

interface Shape {
double area();
double perimeter();

3. Arrays: Arrays are collections of elements of the same type that are stored in contiguous
memory locations.

int[] numbers = {1, 2, 3, 4, 5};

4. Enumerated Types (Enums): Enums define a set of named constants representing a fixed
set of values.

enum Day {
SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY

User-defined data types allow programmers to organize and manipulate complex data structures
and represent real-world entities in their programs. They contribute to the modularity,
maintainability, and extensibility of Java code.

No.139/168

af://n6802

Java Programming by Milav Dabgar

6.2.9. Q2b: Explain this keyword with suitable example.

In Java, the this keyword is a reference to the current object within a method or constructor. It

can be used to access instance variables and methods of the current object, differentiate between
instance variables and local variables with the same name, and to pass the current object as a
parameter to other methods.

Here's an explanation of the this keyword with a suitable example:

class Student {
String name;
int age;

// Parameterized Constructor
public Student(String name, int age) {
// Use 'this' to distinguish between instance variables and constructor
parameters
this.name = name;
this.age = age;

// Method to display student details

void display() {
// Access instance variables using 'this'
System.out.println("Name: " + this.name);
System.out.println("Age: " + this.age);

// Method to compare two Student objects

public boolean isOlder(Student otherStudent) {
// Use 'this' to refer to the current object
return this.age > otherStudent.age;

public class Main {
public static void main(String[] args) {
// Create a Student object
Student studentl = new Student("Alice", 20);

// Call display method
studentl.display();

// Create another Student object
Student student2 = new Student("Bob", 22);

// Compare ages using isOlder method
if (studentl.isOlder(student2)) {

System.out.println(studentl.name + " is older than " + student2.name);
} else {

System.out.println(student2.name + " is older than " + studentil.name);

No. 140/ 168

af://n6818

Java Programming by Milav Dabgar

Explanation:
e |nthe student class constructor, this.name and this.age are used to refer to the instance
variables of the current object (Student).

e Inthe display() method, this.name and this.age are used to access the instance
variables of the current object.

e Inthe isolder() method, this.age is used to access the age of the current object (this)

and compare it with the age of another Sstudent object passed as a parameter.

e Inthe Main class, we create two Student objects (studentl and student2)and call
methods using the this keyword to demonstrate its usage.

6.2.10. Q2c: Define Inheritance. List out types of it. Explain
multilevel and hierarchical inheritance with suitable
example.

Inheritance is a fundamental concept in object-oriented programming (OOP) that allows a new
class (subclass or derived class) to inherit attributes and behaviors from an existing class
(superclass or base class). This enables code reuse and promotes the creation of a hierarchy of
classes, where classes at higher levels in the hierarchy share common characteristics, and
subclasses can specialize or extend those characteristics.

Types of Inheritance:

1. Single Inheritance:
o A subclass inherits from only one superclass.
2. Multiple Inheritance:

o A subclass inherits from more than one superclass. This is not directly supported in Java
due to the potential ambiguity and complexity it introduces.

3. Multilevel Inheritance:

o A subclass inherits from a superclass, and another subclass inherits from the first
subclass, forming a chain of inheritance.

4. Hierarchical Inheritance:

o Multiple subclasses inherit from a single superclass, forming a tree-like structure.

6.2.10.1. Multilevel Inheritance Example:

// Superclass
class Animal {
void eat() {
System.out.println("Animal is eating");

// Subclass inheriting from Animal
class Dog extends Animal {
void bark() {
System.out.println("Dog is barking");

No. 141/168

af://n6832
af://n6856

Java Programming by Milav Dabgar

// Subclass inheriting from Dog
class Labrador extends Dog {
void color() {
System.out.println("Labrador is brown");

public class Main {
public static void main(String[] args) {
Labrador labrador = new Labrador();
labrador.eat(); // inherited from Animal
labrador.bark(); // inherited from Dog
labrador.color(); // own method

Explanation:

e |nthis example, Animal is the superclass, Dog is a subclass inheriting from Animal, and
Labrador is a subclass inheriting from Dog .

e Dog inherits the eat() method from Animal and adds its own method bark() .

e Labrador inherits both eat() and bark() methods from Dog and adds its own method

color().

e The main() method demonstrates calling methods from different levels of the inheritance
hierarchy using an object of the Labrador class.

6.2.10.2. Hierarchical Inheritance Example:

// Superclass
class Animal {
void eat() {
System.out.println("Animal is eating");

// Subclass 1 inheriting from Animal
class Dog extends Animal {
void bark() {
System.out.println("Dog is barking");

// Subclass 2 inheriting from Animal
class Cat extends Animal {
void meow() {
System.out.println("Cat is meowing");

public class Main {
public static void main(String[] args) {
Dog dog = new Dog();

No. 142 /168

af://n6868

Java Programming by Milav Dabgar

dog.eat(); // inherited from Animal
dog.bark(); // own method

Cat cat = new Cat();
cat.eat(); // inherited from Animal
cat.meow(); // own method

Explanation:
e In this example, both Dog and cat classes inherit the eat() method from the Animal
superclass.
e Dog adds its own method bark(), while cat adds its own method meow() .

e The main() method demonstrates creating objects of both Dog and cat classes and calling

their respective methods.

6.2.11. Q3a: Explain Type Conversion and Casting in java.

In Java, type conversion refers to the process of converting one data type into another. This can
occur implicitly, where the conversion is done automatically by the compiler, or explicitly, where
the programmer explicitly specifies the conversion using casting.

6.2.11.1. Implicit Type Conversion (Widening Conversion):
e Implicit type conversion occurs when a data type with a smaller range or precision is
converted into a data type with a larger range or precision.

e This conversion is performed by the compiler automatically and does not require any explicit
casting.

e |t's also known as widening conversion because the range of the data type is widened.

e For example, converting an integer to a floating-point number.

Example:

int numInt = 10;
double numbDouble = numInt; // Implicit conversion from int to double

6.2.11.2. Explicit Type Conversion (Narrowing Conversion):
e Explicit type conversion, also known as casting, occurs when a data type with a larger range
or precision is converted into a data type with a smaller range or precision.

e (Casting requires explicit syntax where the programmer specifies the desired type in
parentheses before the value to be converted.

e This conversion may result in loss of data if the target type cannot represent the entire range
of the source type.

e |t's also known as narrowing conversion because the range of the data type is narrowed.

e For example, converting a floating-point number to an integer.

Example:

No. 143 /168

af://n6878
af://n6880
af://n6892

Java Programming by Milav Dabgar

double numDouble = 10.5;
int numInt = (int) numDouble; // Explicit conversion (casting) from double to int

6.2.11.3. Type Casting:

e Type casting is the process of converting a variable from one data type to another.
e |t's done by explicitly specifying the target data type in parentheses before the variable.
e There are two types of casting: primitive type casting and object casting.

e Primitive type casting is used for converting between primitive data types, while object
casting is used for converting between reference types.

Example of Primitive Type Casting:

double numDouble = 10.5;
int numInt = (int) numbDouble; // Primitive type casting from double to int

Example of Object Casting:

class Animal {}
class Dog extends Animal {}

public class Main {
public static void main(String[] args) {
Animal animal = new Dog();
Dog dog = (Dog) animal; // Object casting from Animal to Dog

In summary, type conversion in Java involves converting one data type to another either implicitly
or explicitly through casting. Implicit conversion occurs automatically by the compiler, while
explicit conversion requires the programmer to specify the desired type using casting syntax.

6.2.12. Q3b: Explain different visibility controls used in Java.

In Java, visibility controls, also known as access modifiers, are keywords that determine the
accessibility or visibility of classes, methods, and variables within Java programs. They specify the
level of access that other classes or components have to the members of a class. Java provides
four visibility controls:

1. public:
o Members marked as public are accessible from any other class.

o They can be accessed by classes in the same package as well as by classes in different
packages.

o Public members form the interface of the class, providing access to its functionality.
2. protected:

o Members marked as protected are accessible within the same package and by
subclasses (even if they are in a different package).

o Protected members are useful when you want to provide access to subclasses while still
restricting access from other classes.

No. 144 /168

af://n6906
af://n6921

Java Programming by Milav Dabgar

3. default (no modifier):

o If no access modifier is specified, the default visibility is applied.

o Members with default visibility are accessible only within the same package.

o They are not accessible by classes outside the package, even if they are subclasses.
4, private:

o Members marked as private are accessible only within the same class.

o They are not visible to any other class, including subclasses and classes in the same
package.

o Private members are used to encapsulate the internal state of a class and hide
implementation details.

By using these visibility controls, you can control the access to your classes, methods, and
variables, which helps in enforcing encapsulation, promoting code maintainability, and reducing
coupling between classes.

Example:

package com.example;

public class MyClass {
public int publicvar;
protected int protectedvar;
int defaultvar; // Default visibility
private int privatevar;

In this example:

e publicvar is accessible from any class, regardless of its location.
e protectedvar is accessible within the same package and by subclasses.
e defaultvar is accessible only within the same package.

e privatevar is accessible only within the same class.

6.2.13. Q3c: Define: Thread. List different methods used to
create Thread. Explain Thread life cycle in detail.

6.2.13.1. Definition of Thread:

In Java, a thread refers to a single sequential flow of control within a program. It is the smallest
unit of execution and represents an independent path of execution in a program. Multiple threads
can run concurrently within a single Java program, allowing for parallel execution of tasks.

6.2.13.2. Methods to Create Thread:

In Java, there are several ways to create a thread:

1. Extending the Thread Class:
o Create a new class that extends the Thread class.

o Override the run() method to specify the task to be performed by the thread.

No. 145/ 168

af://n6971
af://n6972
af://n6974

Java Programming by Milav Dabgar

o Create an instance of the subclass and call its start() method to start the execution of
the thread.
2. Implementing the Runnable Interface:

[e]

Create a class that implements the Runnable interface.

(o]

Implement the run() method to specify the task to be performed by the thread.

[e]

Create an instance of the class and pass it as a parameter to a Thread object.

(o]

Call the start() method of the Thread object to start the execution of the thread.

3. Using Lambda Expressions (Java 8 and later):
o Define the task to be performed by the thread using a lambda expression.

o Create a Thread object and pass the lambda expression as a parameter to its
constructor.

o (Callthe start() method of the Thread object to start the execution of the thread.

6.2.13.3. Thread Life Cycle:

The life cycle of a thread in Java consists of several states, and the thread can transition between
these states during its execution. The states of a thread in Java are as follows:

1. New:

o The thread is in the new state if it has been created but has not yet started.

o This state is characterized by the creation of a Thread object using the new keyword.
2. Runnable:

o The thread is in the runnable state if it is ready to run but the scheduler has not yet
selected it to be the running thread.

o Arunnable thread may be executing or waiting for its turn to be executed by the
scheduler.

3. Running:
o The thread is in the running state if it has been selected by the scheduler for execution.
o In this state, the thread is actively executing its task.

4. Blocked/Waiting:

o The thread is in the blocked or waiting state if it is waiting for a specific condition to
occur or for another thread to release a lock.

o A blocked thread cannot proceed until the condition is satisfied or the lock is released.
5. Timed Waiting:
o The thread is in the timed waiting state if it is waiting for a specified period of time.

o This state occurs when a thread calls a method that results in it waiting for a specified
amount of time.

6. Terminated:

o The thread is in the terminated state if it has completed its task or if it has been explicitly
terminated by calling the stop() method.

No. 146/ 168

af://n7006

Java Programming by Milav Dabgar

6.2.13.4. Detailed Explanation of Thread Life Cycle:

1. New:

o The thread is created using the new keyword, but the start() method has not yet
been called.

2. Runnable:
o The start() method is called, and the thread becomes ready to run.

o The thread may be selected by the scheduler to run, or it may wait for its turn if other
threads are currently running.

3. Running:
o The scheduler selects the thread to run, and it begins executing its task.
o In this state, the thread is actively executing its code.

4. Blocked/Waiting:

o The thread may enter the blocked or waiting state if it encounters a blocking operation,
such as waiting for I/0 or waiting for a lock to be released.

o While in this state, the thread is not executing, but it is not terminated either.
5. Timed Waiting:

o Similar to the blocked or waiting state, but the thread waits for a specified period of time
before resuming execution.

6. Terminated:
o The thread completes its task or is explicitly terminated by calling the stop() method.

o Once terminated, the thread cannot be restarted and its resources are released.

Understanding the life cycle of a thread is important for proper thread management and
synchronization in Java programs. It allows developers to control the execution of threads and
handle concurrency-related issues effectively.

6.2.14. Q3a: Explain the purpose of JVM in java.

The Java Virtual Machine (JVM) is a critical component of the Java Runtime Environment (JRE),
serving as the engine that executes Java bytecode. It is the cornerstone of Java's "write once, run
anywhere" (WORA) philosophy, allowing Java applications to run on any device or operating
system that has a compatible JVM. The purpose and functionalities of the JVM are multifaceted:

6.2.14.1. Platform Independence:

e Code Portability: JVM enables Java applications to be platform-independent. Java programs
are compiled into bytecode, which can be executed on any JVM, regardless of the underlying
hardware and operating system. This means developers can write the code once and run it
anywhere, without needing to modify it for different platforms.

6.2.14.2. Security:

e Safe Execution Environment: The JVM provides a secure execution environment by
sandboxing the execution of bytecode. It enforces access controls and provides various
security checks, preventing unauthorized access to system resources and ensuring that Java
applications cannot harm the host system.

No. 147 /168

af://n7049
af://n7090
af://n7092
af://n7096

Java Programming by Milav Dabgar

e Bytecode Verification: Before executing bytecode, the JVM verifies the code to ensure it
adheres to Java's safety rules, further enhancing security.

6.2.14.3. Performance:

e Just-In-Time (JIT) Compilation: While the JVM interprets bytecode, it also employs Just-In-
Time (JIT) compilation to improve the performance of Java applications. The JIT compiler
translates bytecode into native machine code just before execution, which allows for faster
execution compared to interpretation alone.

e Garbage Collection:]VM manages memory through garbage collection, automatically freeing
memory allocated to objects that are no longer needed. This not only helps in managing
resources efficiently but also reduces the likelihood of memory leaks and other memory-
related issues.

6.2.14.4. Multithreading and Synchronization:

e Thread Management: The JVM supports multithreaded execution, allowing multiple threads
to run concurrently within a single process. It manages synchronization between threads,
ensuring that resources are properly shared and accessed in a thread-safe manner.

6.2.14.5. Load and Execution of Code:

e Dynamic Loading: VM dynamically loads, links, and initializes classes and interfaces. This
means classes are loaded as needed at runtime, making the execution process more modular
and efficient.

6.2.14.6. Platform-Specific Features:

¢ Native Interface and Libraries: While VM abstracts the details of the underlying platform, it
also provides mechanisms (such as the Java Native Interface - JNI) for Java applications to
interact with native libraries and call platform-specific functions when necessary.

6.2.14.7. Tooling and Debugging:

e Support for Development Tools: The JVM ecosystem includes a vast array of development
and debugging tools that leverage JVM capabilities for profiling, debugging, and monitoring
Java applications.

In summary, the JVM is a pivotal technology that not only ensures the portability, security, and
performance of Java applications but also provides a robust platform for developing and executing
high-performance, scalable, and secure applications across diverse computing environments.

6.2.15. Q3b: Define: Package. Write the steps to create a
Package with suitable example.

6.2.15.1. Definition of Java Package:

In Java, a package is a way of organizing classes and interfaces into namespaces to prevent naming
conflicts and provide a hierarchical structure to the Java codebase. It allows for better
organization, management, and modularization of Java code. Packages also facilitate access
control and provide a mechanism for code reuse.

No. 148 /168

af://n7102
af://n7108
af://n7112
af://n7116
af://n7120
af://n7125
af://n7126

Java Programming by Milav Dabgar
6.2.15.2. Steps to Create a Java Package:

Creating a Java package involves the following steps:

1. Choose a Package Name:
o Select a unique name for your package that reflects its purpose and functionality.

o Package names typically follow the reverse domain naming convention, such as
com.example.package.

2. Create Package Directory Structure:
o Create a directory structure corresponding to the package name.
o Each level of the package name corresponds to a directory in the file system.

o For example, if the package name is com.example.package, create the directory

structure com/example/package .
3. Place Java Files in the Package Directory:

o Create Java source files (. java files) containing classes or interfaces that belong to the
package.

o Place these Java files in the directory corresponding to the package name.

o Ensure that the package declaration in each Java file matches the package name and
directory structure.

4. Compile Java Files:

o Compile the Java source files using the javac command.

o Specify the directory containing the package structure as the source path using the -d
option to ensure that compiled class files are placed in the appropriate package
directory.

5. Use the Package:

o Once the package is created and compiled, you can use it in other Java classes by
importing it using the import statement.

o Import the package or specific classes/interfaces from the package into your Java code
to access its functionality.

6.2.15.3. Example of Creating a Java Package:

Suppose we want to create a package named com.example.util containing utility classes for
string manipulation. Here are the steps to create and use this package:

1. Create Package Directory Structure:

o Create a directory named com within your project directory.

o Inside the com directory, create a subdirectory named example .

o Inside the example directory, create another subdirectory named util.
2. Place Java Files in the Package Directory:

o Create aJava source file named StringUtils.java containing utility methods for string
manipulation.

o Place this Java file in the util directory.

No. 149/ 168

af://n7128
af://n7170

Java Programming by Milav Dabgar

o Add the package declaration package com.example.util; atthe beginning of the
StringUtils.java file.
3. Compile Java Files:

o Open a terminal or command prompt.
o Navigate to the directory containing the com directory.

o Compile the StringUtils.java file using the following command:

javac com/example/util/StringUtils.java -d .

o The -d . option specifies that the compiled class file should be placed in the current
directory (.), maintaining the package structure.

4. Use the Package:

o In other Java classes where you want to use the StringUtils class, import it using the

import statement:

import com.example.util.StringUtils;

o You can then use the methods provided by the StringUtils class in your Java code.

By following these steps, you can create and use Java packages to organize and manage your
codebase effectively, promoting modularity, reusability, and maintainability.

Here's a code example demonstrating the creation and usage of a Java package named
com.example.util containinga StringUtils class with utility methods for string manipulation:

1. StringUtils.java (inside com/example/util directory):

package com.example.util;

public class StringUtils {
// Method to reverse a string
public static String reverseString(String str) {
return new StringBuilder(str).reverse().toString();

// Method to check if a string is palindrome
public static boolean isPalindrome(String str) {
String reversed = reverseString(str);
return str.equals(reversed);

2. Main.java (outside the com.example.util package):

import com.example.util.StringUtils;

public class Main {
public static void main(String[] args) {
String str = "radar";

// Using StringUtils methods

No. 150/ 168

Java Programming by Milav Dabgar

String reversed = StringUtils.reverseString(str);
boolean isPalindrome = StringUtils.isPalindrome(str);

System.out.println("Original string: " + str);
System.out.println("Reversed string: " + reversed);
System.out.println("Is palindrome? " + isPalindrome);

6.2.15.4. Explanation:
e |Inthe Stringutils.java file, we define a Stringutils class inside the com.example.util
package.

e This class contains two static methods: reverseString() to reverse a given string and
isPalindrome() to check if a string is a palindrome.

e Inthe Main.java file, we importthe StringUtils class from the com.example.util

package using the import statement.
e We then use the utility methods provided by the StringuUtils class (reverseString() and

isPalindrome())in the main() method to demonstrate their functionality.

After compiling both files and running the Main class, the output will display the original string, its
reversed form, and whether it is a palindrome or not based on the utility methods provided by the
StringUtils class.

6.2.16. Q3c: Explain Synchronization in Thread with suitable
example.

In Java, synchronization refers to the coordination of multiple threads to ensure proper and
orderly access to shared resources, thereby preventing data corruption and race conditions. When
multiple threads access shared data concurrently, synchronization ensures that only one thread
can access the shared resource at a time, maintaining data integrity and consistency. Java provides

several mechanisms for synchronization, including synchronized blocks and methods, locks, and
atomic variables. Let's explore synchronization in Java in detail with a suitable example.

6.2.16.1. Synchronization with synchronized Keyword:

1. Synchronized Blocks:

o In Java, synchronized blocks allow you to specify a block of code that can be executed by
only one thread at a time.

o You can synchronize on any object, typically using the this keyword to lock the current
object.

o Syntax: synchronized (object) { ... }
2. Synchronized Methods:

o You can also declare entire methods as synchronized, ensuring that only one thread can
execute the method at a time for a particular instance of the class.

o Syntax: public synchronized void methodName() { ... }

No. 151/168

af://n7221
af://n7232
af://n7234

Java Programming by Milav Dabgar
6.2.16.2. Example: Bank Account Simulation with Synchronization:

Suppose we have a bank account class BankAccount that allows multiple threads to deposit and
withdraw money. Without synchronization, concurrent access to the account balance could lead to
inconsistencies. Let's see how synchronization can be applied to ensure thread safety:

public class BankAccount {
private double balance;

public BankAccount(double balance) {
this.balance = balance;

// Synchronized method to deposit money

public synchronized void deposit(double amount) {
balance += amount;
System.out.println("Deposited: " + amount);

// Synchronized method to withdraw money
public synchronized void withdraw(double amount) {
if (balance >= amount) {

balance -= amount;
System.out.println("withdrawn: " + amount);
} else {

System.out.println("Insufficient balance");

// Method to get current balance
public synchronized double getBalance() {
return balance;

In this example:
e Both the deposit() and withdraw() methods are declared as synchronized, ensuring that
only one thread can execute them at a time for a particular BankAccount instance.

e The getBalance() method is also synchronized to prevent race conditions while accessing
the balance.

e By using synchronized methods, we ensure that concurrent threads cannot access the
BankAccount methods simultaneously, maintaining data consistency and integrity.

6.2.16.3. Usage of Bank Account Class in Multiple Threads:

public class Main {
public static void main(String[] args) {
BankAccount account = new BankAccount(1000);

// Thread to deposit money
Thread depositThread = new Thread(() -> {

for (int 1 = 0; i < 5; i++) {

No. 152/ 168

af://n7252
af://n7263

Java Programming by Milav Dabgar

account.deposit(100);
System.out.println("Current balance (deposit thread): " +
account.getBalance());

}
B3

// Thread to withdraw money
Thread withdrawThread = new Thread(() -> {
for (int 1 = 0; i < 5; i++) {
account.withdraw(200);
System.out.println("Current balance (withdraw thread): " +
account.getBalance());

}
D

// Start deposit and withdraw threads
depositThread.start();
withdrawThread.start();

In this example:

e We create two threads, depositThread and withdrawThread, each performing deposit and
withdrawal operations on the BankAccount instance concurrently.

e The synchronized methods in the BankAccount class ensure that deposit and withdrawal
operations are performed atomically, preventing inconsistencies due to concurrent access.

By synchronizing critical sections of code, we ensure thread safety and prevent data corruption in
multithreaded environments, maintaining the integrity and consistency of shared resources.

6.2.17. Q4a: Differentiate between String class and
StringBuffer class.

In Java, both the string class and StringBuffer class are used for handling strings, but they
have different characteristics and behaviors. Here's a comparison between the sString class and
the StringBuffer class:

6.2.17.1. String Class:

1. Immutable:

o Objects of the String class are immutable, meaning once a String object is created,

its value cannot be changed.

o Any operation that appears to modify a String object actually creates a new String

object with the modified value.

o Example: String str = "Hello"; str = str + " World"; createsanew String
object with the value "Hello World".

2. Thread-Safe:

o Since string objects are immutable, they are inherently thread-safe.

o Multiple threads can safely share and access String objects without the risk of data
corruption or race conditions.

No. 153/ 168

af://n7272
af://n7274

Java Programming by Milav Dabgar

3. Performance Implications:

o Immutable nature leads to frequent object creation, which can impact memory usage
and performance, especially in scenarios involving string concatenation or manipulation.

6.2.17.2. StringBuffer Class:

1. Mutable:

o Objects of the stringBuffer class are mutable, meaning their value can be modified
after creation.

o stringBuffer provides methods for appending, inserting, deleting, and modifying

characters within the string.
2. Not Thread-Safe:

o Unlike String, StringBuffer is notinherently thread-safe. Multiple threads accessing
a StringBuffer object concurrently without proper synchronization can lead to data
corruption or inconsistencies.

3. Better Performance for String Manipulation:

o stringBuffer is optimized for string manipulation operations such as concatenation,

appending, and inserting.

o It avoids frequent object creation by modifying the contents of the existing buffer,
resulting in better performance compared to String for such operations.

6.2.17.3. Example:

String str = "Hello";
str = str + " World"; // New String object is created

StringBuffer buffer = new StringBuffer("Hello");
buffer.append(" World"); // Modifies existing StringBuffer object

In summary, the main differences between the String class and the stringBuffer class lie in
their mutability, thread safety, and performance characteristics. Use String when dealing with
immutable strings or when thread safety is a concern, and use StringBuffer when performing

extensive string manipulation operations or when mutability is required.

6.2.18. Q4b: Write a Java Program to find sum and average of
10 numbers of an array.

Here's a Java program to find the sum and average of 10 numbers in an array:

public class SumAndAverage {
public static void main(String[] args) {
// Define an array of 10 numbers
int[] numbers = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100};

// Calculate sum of numbers

int sum = 0;

for (int number : numbers) {
sum += number;

No. 154 /168

af://n7297
af://n7318
af://n7322

Java Programming by Milav Dabgar

// Calculate average of numbers
double average = (double) sum / numbers.length;

// Display sum and average
System.out.println("Sum of numbers: " + sum);
System.out.println("Average of numbers: " + average);

This program defines an array of 10 numbers and then iterates through the array to calculate the
sum of all numbers. It then calculates the average by dividing the sum by the total number of
elements in the array. Finally, it prints the sum and average of the numbers.

6.2.19. Q4c: Explain abstract class with suitable example.
Explain final class with suitable example.

An abstract class in Java is a class that cannot be instantiated, meaning you cannot create objects
of an abstract class. However, it can be subclassed. Abstract classes are used to provide a base for
other classes to extend and implement abstract methods, alongside providing full

implementations of other methods. Abstract classes allow you to define a template for a group of
subclasses.

An abstract class may contain abstract methods, which are methods declared without an
implementation. The subclasses of an abstract class must provide implementations for the
abstract methods unless the subclass is also abstract.

6.2.19.1. Key Points:

e |faclassincludes at least one abstract method, the class itself must be declared abstract.

e Abstract classes can include both abstract methods (without a body) and regular methods
(with a body).

e You cannot create instances of an abstract class directly.

e Abstract classes are useful for defining common templates for a family of subclasses.

6.2.19.2. Example:

Let's consider an example with a simple hierarchy for shapes where we define an abstract class
Shape and concrete classes Circle and Rectangle that extend Shape.

abstract class Shape {
String color;

// Constructor
public Shape(String color) {
this.color = color;

// Abstract method
abstract double area();

// Concrete method
public String getColor() {

No. 155/ 168

af://n7326
af://n7329
af://n7339

Java Programming by Milav Dabgar

return color;

class Circle extends Shape {
double radius;

public Circle(String color, double radius) {
super(color); // calling Shape constructor
this.radius = radius;

// Implementing the abstract method
@Ooverride
double area() {

return Math.PI * Math.pow(radius, 2);

class Rectangle extends Shape {
double width;
double height;

public Rectangle(String color, double width, double height) {
super(color); // calling Shape constructor
this.width = width;
this.height = height;

// Implementing the abstract method
@Override
double area() {

return width * height;

public class Main {
public static void main(String[] args) {
Shape circle = new Circle("Red", 2.5);
Shape rectangle = new Rectangle("Blue", 4.0, 5.0);

System.out.println("Circle color: " + circle.getColor() + " and area: " +
circle.area());

System.out.println("Rectangle color: " + rectangle.getColor() + " and
area: " + rectangle.area());

}

6.2.19.3. Explanation:

e The shape class is abstract and contains one abstract method area() and a concrete
method getColor().

e The Circle and Rectangle classes extend Shape and provide concrete implementations
for the area() method.

No. 156 /168

af://n7342

Java Programming by Milav Dabgar
e The shape class cannot be instantiated directly due to its abstract nature, but we can
reference Circle and Rectangle objects using a Shape reference.

e This design allows for flexibility and reusability, as other types of shapes can be easily added
to the hierarchy by extending the shape class and providing an implementation for the
area() method.

In Java, a final class is a class that cannot be subclassed or extended. When a class is declared as
final, it means that no other class can inherit from it. This is useful when you want to prevent the
class from being modified or extended further, ensuring that its behavior remains unchanged.

6.2.19.4. Key Points:

e Afinal class cannot have any subclasses.

e All methods in a final class are implicitly final, meaning they cannot be overridden by
subclasses.

e Final classes are typically used for utility classes, immutable classes, or classes with a fixed
implementation that should not be extended.

6.2.19.5. Example:

final class FinalClass {
private final int value;

// Constructor
public FinalClass(int value) {
this.value = value;

// Getter method
public int getValue() {
return value;

// This method cannot be overridden in subclasses
public final void display() {
System.out.println("value: " + value);

In this example:

e The FinalClass is declared as final, indicating that it cannot be subclassed.
e |t contains a private field value and a constructor to initialize it.
e The getvalue() method provides read-only access to the value field.

e The display() method is declared as final, meaning it cannot be overridden by subclasses.

Attempting to subclass a final class will result in a compilation error:

// Compilation error: cannot inherit from final FinalClass
class SubClass extends FinalClass {
// Attempting to extend a final class

No. 157 /168

af://n7353
af://n7361

Java Programming by Milav Dabgar

By making a class final, you ensure that its behavior remains consistent and cannot be altered by
subclasses, enhancing code stability and predictability. Final classes are particularly useful for
creating utility classes, such as helper methods or constants, where you want to prevent
unintended subclassing or modification of the class's behavior.

6.2.20. Q4a: Explain Garbage Collection in Java.

Garbage Collection (GC) in Java is a process by which the JVM automatically manages memory by
reclaiming memory occupied by objects that are no longer referenced or needed by the program.
The main goal of garbage collection is to free up memory resources by identifying and reclaiming
objects that are no longer in use, thereby preventing memory leaks and allowing for efficient
memory management.

6.2.20.1. Key Concepts:

1. Automatic Memory Management:

o Unlike languages such as C or C++, where developers manually allocate and deallocate
memory using malloc() and free() functions, Java employs automatic memory

management through garbage collection.

o Developers do not need to explicitly free memory occupied by objects. Instead, the VM
handles memory allocation and deallocation automatically.

2. Garbage Collector:

o The Garbage Collector (GC) is a component of the JVM responsible for reclaiming
memory occupied by objects that are no longer reachable or referenced by the program.

o The GC periodically scans the heap (the region of memory where objects are allocated)
to identify and mark objects that are still in use and reachable from the program.

o Objects that are not reachable, either directly or indirectly, from any live threads are
considered garbage and can be safely reclaimed.

3. Heap Memory Management:

o In Java, objects are allocated memory on the heap using the new keyword. The heap is

divided into generations (Young Generation, Old Generation, and Permanent Generation
in older JVM versions).

o The garbage collection process typically focuses on reclaiming memory from objects in
the Young Generation, as they are short-lived and often become garbage quickly.

o Older objects in the Old Generation undergo less frequent garbage collection cycles.

6.2.20.2. Garbage Collection Process:

1. Mark Phase:

o The garbage collector traverses the object graph starting from the root objects (such as
global variables, local variables, and method call stacks).

o It marks objects that are reachable and in use as live objects, typically using a technique
like Depth-First Search (DFS) or Tracing.

2. Sweep Phase:

o After marking live objects, the garbage collector identifies and reclaims memory
occupied by objects that are not marked (i.e., unreachable objects).

o Reclaimed memory is returned to the heap for future allocations.

No. 158 /168

af://n7376
af://n7378
af://n7405

Java Programming by Milav Dabgar

3. Compact Phase (Optional):

o Some garbage collectors perform memory compaction after reclaiming memory to
reduce fragmentation and optimize memory usage.

o Memory compaction involves moving live objects closer together to reduce
fragmentation and improve memory access performance.

6.2.20.3. Advantages of Garbage Collection:

e Automatic Memory Management: Developers do not need to manually manage memory,
reducing the risk of memory leaks and segmentation faults.

¢ Improved Developer Productivity: Developers can focus on application logic rather than
memory management, leading to faster development cycles and fewer bugs related to
memory management.

e Dynamic Memory Allocation: Garbage collection enables dynamic memory allocation and
resizing of objects, allowing for flexible memory usage without the need for manual memory
management.

In summary, garbage collection in Java is a crucial mechanism for automatic memory
management, ensuring efficient use of memory resources and preventing memory-related issues
such as memory leaks and segmentation faults. By automatically reclaiming memory occupied by
unreachable objects, garbage collection allows Java applications to run reliably and efficiently.

6.2.21. Q4b: Write a Java program to handle user defined
exception for ‘DividebyZero’ error.

To handle a user-defined exception for a "DivideByZero" error in Java, you can create a custom
exception class that extends the Exception class. Then, you can throw this custom exception
when encountering a divide-by-zero situation. Below is an example Java program demonstrating
this:

// Custom exception class for DivideByZero error
class DivideByZeroException extends Exception {
public DivideByZeroException(String message) {
super (message);

// Class that performs division and throws DivideByZeroException
class Divider {
public static double divide(int numerator, int denominator) throws

DivideByZeroException {

if (denominator == 0) {

throw new DivideByZeroException("Error: Division by zero is not

allowed.");

}

return (double) numerator / denominator;

// Main class to demonstrate handling of DivideByZeroException
public class Main {
public static void main(String[] args) {

No. 159/ 168

af://n7428
af://n7437

Java Programming by Milav Dabgar

int numerator = 10;
int denominator = 0;

try {
double result = Divider.divide(numerator, denominator);
System.out.println("Result of division: " + result);
} catch (DivideByZeroException e) {
System.out.println("Error: " + e.getMessage());
// Additional handling can be done here, such as logging or informing
the user
}
}
}

In this example:

e \We define a custom exception class DivideByZeroException that extends Exception.

e The Divider class provides a divide method that takes a numerator and a denominator as
parameters and performs division. If the denominator is zero, it throws a

DivideByZeroException.

e Inthe Main class, we attempt to divide by zero within a try-catch block. If a
DivideByZeroException is thrown during the division operation, it is caught, and an

appropriate error message is displayed.

This program demonstrates how to handle user-defined exceptions for divide-by-zero errors in
Java. Custom exception classes provide flexibility in handling different types of errors and allow for
more meaningful error messages and error handling strategies.

6.2.22. Q4c: Write a java program to demonstrate multiple try
block and multiple catch block exception.

Certainly! Below is a Java program demonstrating the use of multiple try blocks and multiple

catch blocks to handle different types of exceptions:

public class MultipleTryCatchDemo {
public static void main(String[] args) {
try {
// Division by zero exception
int result = divideByZero(10, 0);

System.out.println("Result of division: " + result);
} catch (ArithmeticException e) {
System.out.println("ArithmeticException caught: " + e.getMessage());
}
try {

// Array index out of bounds exception

int[] numbers = {1, 2, 3};

int index = 4;

int value = accessArrayElement(numbers, index);

System.out.println("Value at index " + index + ": " + value);

} catch (ArrayIndexOutOfBoundsException e) {

System.out.println("ArrayIndexOutOfBoundsException caught: " +

e.getMessage());

No. 160/ 168

af://n7449

Java Programming by Milav Dabgar

try {
// NullPointerException
String str = null;
int length = str.length();
System.out.println("Length of string: " + length);
} catch (NullPointerException e) {
System.out.println("NullPointerException caught: " + e.getMessage());

// Method to perform division and throw ArithmeticException
public static int divideByZero(int numerator, int denominator) {
return numerator / denominator;

// Method to access array element and throw ArrayIndexOutOfBoundsException
public static int accessArrayElement(int[] array, int index) {
return array[index];

In this program:

e We have three different try blocks, each attempting an operation that can potentially throw
a different type of exception.

e FEach try block is followed by a corresponding catch block that handles the specific type of
exception thrown within that try block.

e The first try block attempts division by zero, and the catch block catches the

ArithmeticException.

e Thesecond try block attempts to access an element beyond the bounds of an array, and
the catch block catches the ArrayIndexoutOfBoundsException.

e The third try block attempts to invoke a method on a null object reference, leading to a
NullPointerException, which is caught by the corresponding catch block.

This program demonstrates how multiple try blocks and multiple catch blocks can be used to
handle different types of exceptions separately, allowing for more precise error handling in Java
programs.

6.2.23. Q5a: Write a program in Java to create a file and
perform write operation on this file.

Below is a Java program that demonstrates how to create a file and perform write operations on it
using the File and FileOutputStream classes:

import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;

public class FileWriteDemo {
public static void main(String[] args) {

No. 161/168

af://n7465

Java Programming by Milav Dabgar

// Specify the file name and content
String fileName = "example.txt";
String content = "Hello, world! This is a sample text file.";

// Create a File object
File file = new File(fileName);

try {
// Create a FileOutputStream to write to the file
FileOutputStream fos = new FileOutputStream(file);

// Convert the content string to bytes and write to the file
fos.write(content.getBytes());

// Close the FileOutputStream
fos.close();

System.out.println("File '" + fileName + "' has been created and

written successfully.");

} catch (IOException e) {
System.out.println("An error occurred: " + e.getMessage());
e.printStackTrace();

In this program:

We specify the file name (example. txt) and the content that we want to write to the file

(Hello, world! This is a sample text file.)
We create a File object named file with the specified file name.
We create a FileOutputStream named fos to write to the file.

We convert the content string to bytes using the getBytes() method and write these bytes
to the file using the write() method of FileOutputStream.

We close the FileOutputStream after writing to the file.

If an TO0Exception occurs during file creation or writing, we handle it and print an error
message.

After running this program, a file named example.txt will be created in the same directory as the
Java program, and the specified content will be written to it.

6.2.24. Q5b: Explain throw and finally in Exception Handling
with example.

In Java, exception handling is a powerful mechanism that allows you to manage runtime errors,

ensuring the program's flow can be maintained even when unexpected events occur. Two key
components of this mechanism are the throw keyword and the finally block.

No. 162 /168

af://n7483

Java Programming by Milav Dabgar
6.2.24.1. The throw Keyword

The throw keyword in Java is used to explicitly throw an exception from a method or any block of
code. You can throw either checked or unchecked exceptions. The thrown exception must be
either caught by a catch block surrounding the throw statement or declared to be thrown by the
method using the throws keyword.

Example of throw keyword:

public class ThrowExample {
static void checkAge(int age) {
if (age < 18) {
throw new ArithmeticException("Access denied - You must be at least 18
years old.");
} else {
System.out.println("Access granted - You are old enough!");

public static void main(String[] args) {

try {
checkAge(15);

} catch (ArithmeticException e) {
System.out.println("Exception caught: " + e.getMessage());

In this example, the checkAge method throws an ArithmeticException if the age parameteris
less than 18. The exception is caught in the main method's catch block.

6.2.24.2. The finally Block

The finally block is used to execute a block of code after a try-catch block has completed,
regardless of whether an exception was thrown or caught. It is the ideal place to put cleanup code,
such as closing file streams or releasing resources, ensuring that these operations are carried out
regardless of what happens within the try block.

Example of finally block:

public class FinallyExample {
public static void main(String[] args) {

try {
int data = 25 / 5;
System.out.println(data);

} catch (NullPointerException e) {
System.out.println(e);

} finally {
System.out.println("Finally block is always executed");

}
System.out.println("Rest of the code...");

No. 163/ 168

af://n7485
af://n7490

Java Programming by Milav Dabgar

In this example, the try block executes successfully, so the catch block is skipped. However, the
finally block is executed regardless, ensuring the message "Finally block is always executed" is
printed to the console.

Key Points:

e The throw keyword allows for manually throwing exceptions, providing control over error

reporting.

e The finally block ensures certain code is executed after a try-catch block, regardless of the

outcome, making it ideal for cleanup operations.

6.2.25. Q5c: Describe: Polymorphism. Explain run time
polymorphism with suitable example in java.

6.2.25.1. Polymorphism:

Polymorphism is a fundamental concept in object-oriented programming that allows objects of
different classes to be treated as objects of a common superclass. It enables a single interface to
represent multiple underlying forms. There are two types of polymorphism in Java: compile-time
polymorphism (method overloading) and runtime polymorphism (method overriding).

6.2.25.2. Runtime Polymorphism:

Runtime polymorphism, also known as dynamic polymorphism, occurs when a subclass provides a
specific implementation of a method that is already defined in its superclass. It allows a method to
be overridden in a subclass with a different implementation, and the decision of which method to
execute is made at runtime based on the actual type of the object.

6.2.25.3. Example of Runtime Polymorphism in Java:

// Superclass
class Animal {
void sound() {
System.out.println("Animal makes a sound");

// Subclass 1
class Dog extends Animal {
@Override
void sound() {
System.out.println("Dog barks");

// Subclass 2
class Cat extends Animal {
@Override
void sound() {
System.out.println("Cat meows");

public class Main {

No. 164 /168

af://n7501
af://n7502
af://n7504
af://n7506

Java Programming by Milav Dabgar

public static void main(String[] args) {
// Creating objects of different subclasses
Animal animall = new Dog(); // Upcasting
Animal animal2 = new Cat(); // Upcasting

// Calling overridden methods
animall.sound(); // Calls Dog's sound method
animal2.sound(); // Calls Cat's sound method

In this example:

e We have a superclass Animal with a method sound() .

e We have two subclasses Dog and cat, each overriding the sound() method with specific
implementations.

In the main() method, we create objects of the subclasses and assign them to references of
the superclass (Animal). This is called upcasting.

When we call the sound() method on these objects, Java determines which implementation
to execute based on the actual type of the object at runtime. This is runtime polymorphism.

As a result, the output of the program is:

Dog barks
Cat meows

6.2.25.4. Benefits of Runtime Polymorphism:

e |t allows for flexibility and extensibility in code, enabling subclasses to provide their own
implementations of methods.

e |t promotes code reusability by allowing common interfaces to be shared across multiple
classes.

Runtime polymorphism is a powerful mechanism in Java that facilitates code organization,
maintenance, and flexibility by enabling dynamic method invocation based on the actual type of
the object at runtime.

6.2.26. Q5a: Write a program in Java that read the content of
a file byte by byte and copy it into another file.

Below is a Java program that reads the content of a file byte by byte and copies it into another file:

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

public class FileCopyByteByByte {
public static void main(String[] args) {
String sourceFileName = "source.txt";

String destinationFileName = "destination.txt";

try (FileInputStream fis = new FileInputStream(sourceFileName);

No. 165/ 168

af://n7521
af://n7528

Java Programming by Milav Dabgar

FileOutputStream fos = new FileOutputStream(destinationFileName)) {

int byteRead;
while ((byteRead = fis.read()) !'= -1) {
fos.write(byteRead);

System.out.println("File copied successfully.");

} catch (IOException e) {
System.out.println("An error occurred: " + e.getMessage());
e.printStackTrace();

In this program:
e We specify the name of the source file (source. txt) and the destination file

(destination.txt).

e \Weuse FileInputStream to read bytes from the source file and FileOutputStream to write
bytes to the destination file.

¢ |Inside the try-with-resources block, we create instances of FileInputStream and

FileOutputStream.

e We use a while loop to read bytes from the source file until the read() method returns -1,
indicating the end of the file.

e Within the loop, each byte read from the source file is written to the destination file using the
write() method.

e Any IOException that occurs during file operations is caught and handled, displaying an
error message.

After running this program, the content of the source file (source. txt) will be copied byte by byte
into the destination file (destination. txt).

6.2.27. Q5b: Explain the different I/0 Classes available with
Java.

In Java, the I/0 (Input/Output) classes are used to perform input and output operations, such as
reading from or writing to files, streams, consoles, and network connections. These classes are
part of the java.io package and provide various functionalities for handling different types of /0
operations. Here are some of the commonly used 1/O classes available in Java:

1. InputStream and OutputStream:

© InputStream and OutputStream are abstract classes representing input and output
streams of bytes, respectively.

o They serve as the base classes for all byte-oriented I/0 classes in Java.

2. Reader and Writer:

o Reader and Writer are abstract classes representing input and output streams of
characters, respectively.

o They serve as the base classes for all character-oriented I/0 classes in Java.

No. 166 / 168

af://n7546

Java Programming by Milav Dabgar

© InputStreamReader and OutputStreamwWriter are bridge classes that convert byte
streams to character streams and vice versa.
3. FileInputStream and FileOutputStream:

© FileInputStream and FileOutputStream are used to read from and write to files,
respectively, as streams of bytes.

o They are commonly used for file I/0 operations.
4. FileReader and FileWriter:

o FileReader and FileWriter are used to read from and write to files, respectively, as
streams of characters.

o They are commonly used for text file I/O operations.
5. BufferedInputStream and BufferedOutputStream:

o BufferedInputStream and BufferedOutputStream are used for buffered input and
output operations, respectively.

o They improve I/0O performance by reducing the number of physical I/0 operations.

6. BufferedReader and BufferedWriter:

o BufferedReader and Bufferedwriter are used for buffered character input and
output operations, respectively.

o They provide efficient reading and writing of characters by buffering input and output
streams.

7. DatalnputStream and DataOutputStream:

© DatalInputStream and DataOutputStream are used for reading and writing primitive
data types as binary data, respectively.

o They provide methods for reading and writing Java primitive data types (e.g., int, double,
boolean) from and to streams.

8. ObjectinputStream and ObjectOutputStream:

0 ObjectInputStream and ObjectOutputStream are used for reading and writing Java

objects, respectively.

o They allow objects to be serialized (converted into a stream of bytes) and deserialized
(reconstructed from the stream of bytes).

These are some of the commonly used /0O classes available in Java. They provide a wide range of
functionalities for performing input and output operations in Java programs, facilitating

interactions with files, streams, consoles, and other I/0 sources.

6.2.28. Q5c: Write a java program that executes two threads.
One thread displays “Java Programming” every 3 seconds,
and the other displays “Semester - 4th IT” every 6 seconds.
(Create the threads by extending the Thread class)

Below is a Java program that creates two threads by extending the Thread class. One thread

displays "Java Programming" every 3 seconds, and the other thread displays "Semester - 4th IT"
every 6 seconds:

class DisplayThread extends Thread {

No. 167 /168

af://n7608

Java Programming by Milav Dabgar

private String message;
private int interval;

public DisplayThread(String message, int interval) {
this.message = message;
this.interval = interval;

@Override
public void run() {
while (true) {
System.out.println(message);

try {
Thread.sleep(interval * 1000); // Convert seconds to milliseconds

} catch (InterruptedException e) {
e.printStackTrace();

public class Main {
public static void main(String[] args) {
DisplayThread threadl = new DisplayThread('"Java Programming", 3);
DisplayThread thread2 = new DisplayThread("Semester - 4th IT", 6);

threadl.start();
thread2.start();

In this program:

e \We create a DisplayThread class that extends the Thread class. This class takes a message
and an interval as parameters in its constructor.

e Inthe run() method of DisplayThread, the thread continuously prints the message and
then sleeps for the specified interval.

e Inthe main() method, we create two instances of DisplayThread, one for each message
with their respective intervals.

e \We start both threads using the start() method, which causes the run() method of each

thread to be executed concurrently.

As a result, the program will continuously display "Java Programming" every 3 seconds and
"Semester - 4th IT" every 6 seconds in separate threads.

No. 168 /168

	1. Introduction to Java Programming Language
	1.1. Java Overview
	1.1.1. Brief History & Evolution of Java
	1.1.2. Java Features
	1.1.3. Java Applications

	1.2. Java Environment Setup & Basic Java Syntax
	1.2.1. Java Components
	1.2.2. Setting up Java Development Environment
	1.2.3. Structure of a Java Program
	1.2.3.1. Class Declaration
	1.2.3.2. Main Method
	1.2.3.3. Output in Java
	1.2.3.3.1. The println() Method
	1.2.3.3.2. The print() Method

	1.2.3.4. Comments
	1.2.3.4.1. Single-line Comments
	1.2.3.4.2. Multi-line Comments

	1.2.4. Compilation and Execution of Java Program
	1.2.5. Importance of Bytecode & Garbage Collection

	1.3. Data Types
	1.3.1. Primitive Data Types
	1.3.2. Non-Primitive Data Types
	1.3.3. Type Conversion and Casting
	1.3.3.1. Implicit Conversion (Widening)
	1.3.3.2. Explicit Conversion (Narrowing)

	1.4. Identifiers
	1.4.1. Naming Rules & Conventions
	1.4.1.1. Naming Rules
	1.4.1.2. Naming Conventions

	1.4.2. Variables
	1.4.3. Constants (final Keyword)
	1.4.4. Scope of Variables

	1.5. Arrays
	1.5.1. One-dimensional Arrays
	1.5.2. Multidimensional Arrays

	1.6. Operators
	1.6.1. Arithmetic Operators
	1.6.2. Assignment Operators
	1.6.3. Relational (Comparison) Operators
	1.6.4. Logical Operators
	1.6.5. Bitwise Operators
	1.6.6. Conditional (Ternary) Operator
	1.6.7. Operator Precedence

	1.7. Control Flow Statements
	1.7.1. Selection Statements
	1.7.1.1. The if Statement
	1.7.1.2. The if-else Statement
	1.7.1.3. The if-else-if Ladder
	1.7.1.4. Switch-Case Statements
	1.7.1.4.1. break Keyword
	1.7.1.4.2. default Keyword

	1.7.2. Looping Statements
	1.7.2.1. While Loop
	1.7.2.2. Do/While Loop
	1.7.2.3. For Loop
	1.7.2.4. The For-Each Loop
	1.7.2.5. Nested Loops

	1.7.3. Jump Statements
	1.7.3.1. break Statement
	1.7.3.2. continue Statement
	1.7.3.3. return Statement

	2. Object-Oriented Programming
	2.1. Procedure-Oriented vs. Object-Oriented Programming
	2.1.1. Characteristics
	2.1.2. Differences

	2.2. OOP Concepts
	2.2.1. Classes and Objects
	2.2.2. Encapsulation
	2.2.3. Abstraction
	2.2.4. Inheritance
	2.2.5. Polymorphism

	2.3. Classes and Objects
	2.3.1. Creating Classes
	2.3.2. Creating Objects
	2.3.2.1. Multiple Objects
	2.3.2.2. Using Multiple Classes
	2.3.2.3. this Keyword

	2.4. Class Attributes
	2.4.1. Accessing Attributes
	2.4.2. Modify Attributes
	2.4.3. Attributes of Multiple Objects
	2.4.4. Multiple Attributes of same Object

	2.5. Class Methods
	2.5.1. Create a Method
	2.5.2. Call a Method
	2.5.3. Method Parameters and Arguments
	2.5.3.1. Multiple Parameters

	2.5.4. Return Values
	2.5.5. Access Methods With an Object
	2.5.6. Method Signatures
	2.5.7. Passing Arguments
	2.5.8. Returning Values

	2.6. Constructors
	2.6.1. Types of Constructors
	2.6.1.1. Default Constructors
	2.6.1.2. Parameterized Constructors
	2.6.1.3. Copy Constructors

	2.6.2. Constructor Overloading

	2.7. Modifiers
	2.7.1. Access Modifiers
	2.7.2. Non-Access Modifiers
	2.7.2.1. final
	2.7.2.2. static
	2.7.2.3. abstract

	2.8. String Class
	2.8.1. Strings - Special Characters
	2.8.2. Common String Methods

	2.9. Scanner Class (User Input)
	2.9.1. Input Types
	2.9.2. Using Scanner Class

	2.10. Command-line Arguments

	3. Inheritance, Packages, and Interfaces
	3.1. Inheritance
	3.1.1. Basics of Inheritance
	3.1.2. Types of Inheritance
	3.1.3. extends Keyword
	3.1.4. super Keyword
	3.1.5. Polymorphism
	3.1.5.1. Method Overloading
	3.1.5.2. Method Overriding
	3.1.5.2.1. Overriding Object Class Methods

	3.1.6. Method Dynamic Dispatch

	3.2. Interfaces
	3.2.1. Defining Interfaces
	3.2.2. Implementing Interfaces
	3.2.3. Multiple Inheritance Using Interfaces

	3.3. Abstraction
	3.3.1. Abstract Class
	3.3.2. Abstract Method
	3.3.3. Differences from Interfaces

	3.4. Final Class
	3.4.1. Final Class Syntax
	3.4.2. Final Method

	3.5. Inner Classes
	3.5.1. Private Inner Class
	3.5.2. Static Inner Class
	3.5.3. Access Outer Class From Inner Class

	3.6. Packages & API
	3.6.1. Built-in Packages
	3.6.2. Import a Class
	3.6.3. Import a Package
	3.6.4. User-defined Packages
	3.6.5. Access Rules: Access Control Within Packages
	3.6.6. Example: Access Control

	4. Exception Handling and Multithreading
	4.1. Exception Handling in Java
	4.1.1. Errors vs. Exceptions
	4.1.2. Java try and catch
	4.1.3. try-catch-finally Blocks

	4.2. Throwing Exceptions
	4.2.1. Common Built-in Exceptions
	4.2.2. Creating Custom Exceptions
	4.2.3. Benefits of Exception Handling

	4.3. Multi-threading in Java
	4.3.1. Concepts of Threads and Processes
	4.3.2. Multi-threading Benefits
	4.3.3. Creating a Thread
	4.3.3.1. Extend Syntax
	4.3.3.2. Implement Syntax

	4.3.4. Running Threads
	4.3.4.1. Extend Example
	4.3.4.2. Implement Example
	4.3.4.3. Differences between "extending" and "implementing" Threads

	4.3.5. Concurrency Problems
	4.3.6. Thread Lifecycle
	4.3.7. Thread Priority
	4.3.8. Thread Exception Handling
	4.3.9. Synchronization

	5. File Handling and Collections Framework
	5.1. File Handling using File Class
	5.1.1. Create a File
	5.1.2. Write To a File
	5.1.3. Read a File
	5.1.4. Get File Information
	5.1.5. Delete a File
	5.1.6. Delete a Folder

	5.2. File Handling using Streams Class
	5.2.1. Streams and Stream Classes
	5.2.2. FileInputStream and FileOutputStream
	5.2.3. FileOutputStream to Write to File
	5.2.4. FileInputStream to Read from a File
	5.2.5. Closing Streams

	5.3. Collections Framework in Java
	5.3.1. Overview and Hierarchy
	5.3.2. ArrayList
	5.3.2.1. Creating an ArrayList
	5.3.2.2. Add Items
	5.3.2.3. Access an Item
	5.3.2.4. Change an Item
	5.3.2.5. Remove an Item
	5.3.2.6. ArrayList Size
	5.3.2.7. Loop Through an ArrayList
	5.3.2.8. Other Types
	5.3.2.9. Sort an ArrayList

	5.3.3. LinkedList
	5.3.3.1. ArrayList vs. LinkedList
	5.3.3.2. How the ArrayList works
	5.3.3.3. How the LinkedList works
	5.3.3.4. When To Use
	5.3.3.5. LinkedList Methods

	5.3.4. HashMap
	5.3.4.1. Add Items
	5.3.4.2. Access an Item
	5.3.4.3. Remove an Item
	5.3.4.4. HashMap Size
	5.3.4.5. Loop Through a HashMap
	5.3.4.6. Other Types

	5.3.5. HashSet
	5.3.5.1. Add Items
	5.3.5.2. Check If an Item Exists
	5.3.5.3. Remove an Item
	5.3.5.4. HashSet Size
	5.3.5.5. Loop Through a HashSet
	5.3.5.6. Other Types

	5.3.6. Iterator
	5.3.6.1. Getting an Iterator
	5.3.6.2. Looping Through a Collection
	5.3.6.3. Removing Items from a Collection

	6. Java Programming GTU Paper Solutions
	6.1. 4341602 - Java: Winter 2023 Paper Solution
	6.1.1. Q1a: List out basic concepts of Java OOP. Explain any one in detail.
	6.1.2. Q1b: Explain JVM in detail.
	6.1.3. Q1c: Write a program in java to print Fibonacci series for n terms.
	6.1.4. Q1c: Write a program in java to find out minimum from any ten numbers using command line argument.
	6.1.5. Q2a: What is Java wrapper class? Explain with example.
	6.1.6. Q2b: List out different features of java. Explain any two.
	6.1.7. Q2c: What is method overload in Java ? Explain with example.
	6.1.8. Q2a: Explain Garbage collection in java.
	6.1.9. Q2b: Explain final keyword in Java with example.
	6.1.10. Q2c: What is constructor in Java? Explain parameterized constructor with example.
	6.1.11. Q3a: Explain super keyword in Java with example.
	6.1.12. Q3b: List out different types of inheritance in Java. Explain multilevel inheritance.
	6.1.13. Q3c: What is Java interface? Explain multiple inheritance with example.
	6.1.14. Q3a: Explain Java static keyword with example.
	6.1.15. Q3b: Explain different access controls in Java.
	6.1.16. Q3c: What is Java package? Write steps to create a package in Java and give example of it.
	6.1.17. Q4a: Explain Java thread priorities with suitable example.
	6.1.18. Q4b: What is Java Thread? Explain Thread life cycle.
	6.1.19. Q4c: Write a program in java that create the multiple threads by implementing the Thread class.
	6.1.20. Q4a: List four different inbuilt exceptions of Java. Explain any one inbuilt exception.
	6.1.21. Q4b: Explain multiple catch with suitable example in Java.
	6.1.22. Q4c: What is Java Exception? Write a program that show the use of Arithmetic Exception in Java.
	6.1.23. Q5a: Explain ArrayIndexOutOfBound Exception in Java with example.
	6.1.24. Q5b: Explain basics of Java stream classes.
	6.1.25. Q5c: Write a java program to create a text file and perform read operation on the text file.
	6.1.26. Q5a: Explain Divide by Zero Exception in Java with example.
	6.1.27. Q5b: Explain java I/O process.
	6.1.28. Q5c: Write a java program to display the content of a text file and perform append operation on the text file.

	6.2. 4341602 - Java: Summer 2023 Paper Solution
	6.2.1. Q1a: Differentiate between Procedure-Oriented Programming (POP) and Object-Oriented Programming (OOP).
	6.2.2. Q1b: Explain Super keyword in inheritance with suitable example.
	6.2.3. Q1c: Define: Method Overriding. List out Rules for method overriding. Write a java program that implements method overriding.
	6.2.4. Q1cOR: Describe: Interface. Write a java program using interface to demonstrate multiple inheritance.
	6.2.5. Q2a: Explain the Java Program Structure with example.
	6.2.6. Q2b: Explain static keyword with suitable example.
	6.2.7. Q2c: Define: Constructor. List out types of it. Explain Parameterized and copy constructor with suitable example.
	6.2.7.1. Parameterized Constructor Example:
	6.2.7.2. Copy Constructor Example:

	6.2.8. Q2a: Explain the Primitive Data Types and User Defined DataTypes in java.
	6.2.8.1. Primitive Data Types:
	6.2.8.2. User-Defined Data Types:

	6.2.9. Q2b: Explain this keyword with suitable example.
	6.2.10. Q2c: Define Inheritance. List out types of it. Explain multilevel and hierarchical inheritance with suitable example.
	6.2.10.1. Multilevel Inheritance Example:
	6.2.10.2. Hierarchical Inheritance Example:

	6.2.11. Q3a: Explain Type Conversion and Casting in java.
	6.2.11.1. Implicit Type Conversion (Widening Conversion):
	6.2.11.2. Explicit Type Conversion (Narrowing Conversion):
	6.2.11.3. Type Casting:

	6.2.12. Q3b: Explain different visibility controls used in Java.
	6.2.13. Q3c: Define: Thread. List different methods used to create Thread. Explain Thread life cycle in detail.
	6.2.13.1. Definition of Thread:
	6.2.13.2. Methods to Create Thread:
	6.2.13.3. Thread Life Cycle:
	6.2.13.4. Detailed Explanation of Thread Life Cycle:

	6.2.14. Q3a: Explain the purpose of JVM in java.
	6.2.14.1. Platform Independence:
	6.2.14.2. Security:
	6.2.14.3. Performance:
	6.2.14.4. Multithreading and Synchronization:
	6.2.14.5. Load and Execution of Code:
	6.2.14.6. Platform-Specific Features:
	6.2.14.7. Tooling and Debugging:

	6.2.15. Q3b: Define: Package. Write the steps to create a Package with suitable example.
	6.2.15.1. Definition of Java Package:
	6.2.15.2. Steps to Create a Java Package:
	6.2.15.3. Example of Creating a Java Package:
	6.2.15.4. Explanation:

	6.2.16. Q3c: Explain Synchronization in Thread with suitable example.
	6.2.16.1. Synchronization with synchronized Keyword:
	6.2.16.2. Example: Bank Account Simulation with Synchronization:
	6.2.16.3. Usage of Bank Account Class in Multiple Threads:

	6.2.17. Q4a: Differentiate between String class and StringBuffer class.
	6.2.17.1. String Class:
	6.2.17.2. StringBuffer Class:
	6.2.17.3. Example:

	6.2.18. Q4b: Write a Java Program to find sum and average of 10 numbers of an array.
	6.2.19. Q4c: Explain abstract class with suitable example. Explain final class with suitable example.
	6.2.19.1. Key Points:
	6.2.19.2. Example:
	6.2.19.3. Explanation:
	6.2.19.4. Key Points:
	6.2.19.5. Example:

	6.2.20. Q4a: Explain Garbage Collection in Java.
	6.2.20.1. Key Concepts:
	6.2.20.2. Garbage Collection Process:
	6.2.20.3. Advantages of Garbage Collection:

	6.2.21. Q4b: Write a Java program to handle user defined exception for ‘DividebyZero’ error.
	6.2.22. Q4c: Write a java program to demonstrate multiple try block and multiple catch block exception.
	6.2.23. Q5a: Write a program in Java to create a file and perform write operation on this file.
	6.2.24. Q5b: Explain throw and finally in Exception Handling with example.
	6.2.24.1. The throw Keyword
	6.2.24.2. The finally Block

	6.2.25. Q5c: Describe: Polymorphism. Explain run time polymorphism with suitable example in java.
	6.2.25.1. Polymorphism:
	6.2.25.2. Runtime Polymorphism:
	6.2.25.3. Example of Runtime Polymorphism in Java:
	6.2.25.4. Benefits of Runtime Polymorphism:

	6.2.26. Q5a: Write a program in Java that read the content of a file byte by byte and copy it into another file.
	6.2.27. Q5b: Explain the different I/O Classes available with Java.
	6.2.28. Q5c: Write a java program that executes two threads. One thread displays “Java Programming” every 3 seconds, and the other displays “Semester - 4th IT” every 6 seconds.(Create the threads by extending the Thread class)

