Skip to main content
  1. PaperMod/
  2. Samples/

4 mins·
Milav Dabgar
Author
Milav Dabgar
Experienced lecturer in the electrical and electronic manufacturing industry. Skilled in Embedded Systems, Image Processing, Data Science, MATLAB, Python, STM32. Strong education professional with a Master’s degree in Communication Systems Engineering from L.D. College of Engineering - Ahmedabad.
Table of Contents

Sample Mathematics Solutions
#

Q.1 [14 marks]
#

Fill in the blanks using appropriate choice from the given options

Q1.1 [1 mark]
#

If $A_{2×3}$ and $B_{3×4}$ are two matrices then find order of $AB$ = ______

a. $4×2$ b. $2×4$ c. $3×3$ d. AB is not possible

Answer: a. $2×4$

Solution: For matrix multiplication $AB$ to be possible, the number of columns in matrix $A$ must equal the number of rows in matrix $B$.

Given:

  • Matrix $A$ has order $2×3$ (2 rows, 3 columns)
  • Matrix $B$ has order $3×4$ (3 rows, 4 columns)

Since the number of columns in $A$ (3) equals the number of rows in $B$ (3), multiplication is possible.

The order of the resultant matrix $AB$ will be: $$AB_{(2×3)} \times B_{(3×4)} = (AB)_{(2×4)}$$

Therefore, the order of $AB$ is $2×4$.

Q1.2 [1 mark]
#

If $A = [1\quad 3\quad 2]$ and $B = \begin{bmatrix} 1 \ 2 \ 1 \end{bmatrix}$ then find $AB$ = ______

a. Not possible b. $9$ c. $[1\quad 1]$ d. $[1\quad 6\quad 2]$

Answer: b. $9$

Solution: Given: $$A = [1\quad 3\quad 2] \text{ (order: } 1×3\text{)}$$ $$B = \begin{bmatrix} 1 \ 2 \ 1 \end{bmatrix} \text{ (order: } 3×1\text{)}$$

Since $A$ is $1×3$ and $B$ is $3×1$, multiplication is possible and the result will be $1×1$ (a scalar).

$$AB = [1\quad 3\quad 2] \begin{bmatrix} 1 \ 2 \ 1 \end{bmatrix}$$

$$AB = (1)(1) + (3)(2) + (2)(1)$$ $$AB = 1 + 6 + 2 = 9$$

Q1.3 [1 mark]
#

If $A \cdot I_2 = A$ then $I_2$ = ______

a. $\begin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix}$ b. $\begin{bmatrix} 1 & 0 \ 1 & 0 \end{bmatrix}$ c. $\begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}$ d. $\begin{bmatrix} 0 & 0 \ 0 & 1 \end{bmatrix}$

Answer: c. $\begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}$

Solution: The condition $A \cdot I_2 = A$ means that $I_2$ is the identity matrix of order $2×2$.

The identity matrix has the property that when any matrix is multiplied by it, the original matrix remains unchanged.

The $2×2$ identity matrix is: $$I_2 = \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}$$

Verification: For any $2×2$ matrix $A = \begin{bmatrix} a & b \ c & d \end{bmatrix}$:

$$A \cdot I_2 = \begin{bmatrix} a & b \ c & d \end{bmatrix} \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} = \begin{bmatrix} a & b \ c & d \end{bmatrix} = A$$

Calculus Problems
#

Q1.4 [1 mark]
#

If $\frac{d}{dx}(\sin^2 x + \cos^2 x) = $ ______

a. $1$ b. $0$ c. $-1$ d. $x$

Answer: b. $0$

Solution: We know that $\sin^2 x + \cos^2 x = 1$ (fundamental trigonometric identity).

Since the derivative of a constant is zero: $$\frac{d}{dx}(\sin^2 x + \cos^2 x) = \frac{d}{dx}(1) = 0$$

Alternative approach (step by step): $$\frac{d}{dx}(\sin^2 x + \cos^2 x)$$ $$= \frac{d}{dx}(\sin^2 x) + \frac{d}{dx}(\cos^2 x)$$ $$= 2\sin x \cos x + 2\cos x(-\sin x)$$ $$= 2\sin x \cos x - 2\sin x \cos x = 0$$

Integration Example
#

Evaluate: $\int x^5 dx$

Solution: Using the power rule for integration: $\int x^n dx = \frac{x^{n+1}}{n+1} + C$ where $n \neq -1$

$$\int x^5 dx = \frac{x^{5+1}}{5+1} + C = \frac{x^6}{6} + C$$

Complex Numbers
#

Sample Problem
#

Simplify: $(3+4i)(4-5i)$

Solution: $$(3+4i)(4-5i)$$ $$= 3(4) + 3(-5i) + 4i(4) + 4i(-5i)$$ $$= 12 - 15i + 16i - 20i^2$$

Since $i^2 = -1$: $$= 12 - 15i + 16i - 20(-1)$$ $$= 12 - 15i + 16i + 20$$ $$= 32 + i$$

Differential Equations
#

Sample Problem
#

Solve: $x\frac{dy}{dx} + y = 0$

Solution: This is a separable differential equation.

Rearranging: $x\frac{dy}{dx} = -y$

Separating variables: $\frac{dy}{y} = -\frac{dx}{x}$

Integrating both sides: $$\int \frac{dy}{y} = \int -\frac{dx}{x}$$ $$\ln|y| = -\ln|x| + C_1$$ $$\ln|y| = \ln|x^{-1}| + C_1$$ $$|y| = e^{\ln|x^{-1}| + C_1} = e^{C_1} \cdot |x^{-1}|$$

Let $C = \pm e^{C_1}$, then: $$y = \frac{C}{x}$$

This is the general solution.

Related

Engineering Mathematics (4320002) - Winter 2024 Solution
Study-Material Solutions Mathematics 4320002 2024 Winter
Engineering Mathematics (4320002) - Summer 2024 Solution
Study-Material Solutions Engineering-Mathematics 4320002 2024 Summer Gtu
Engineering Mathematics (4320002) - Summer 2023 Solution
Study-Material Solutions Engineering-Mathematics 4320002 2023 Summer
Engineering Mathematics (4320002) - Winter 2022 Solution
Study-Material Solutions Engineering-Mathematics 4320002 2022 Winter
Applied Mathematics (4320001) - Winter 2022 Solution
Study-Material Solutions Applied-Mathematics 4320001 2022 Winter
Applied Mathematics (4320001) - Winter 2024 Solution
Study-Material Solutions Applied-Mathematics 4320001 2024 Winter