Skip to main content
  1. Resources/
  2. Study Materials/
  3. Common Engineering Subjects/
  4. Semester 1/
  5. Mathematics 1 (4300001)/

Mathematics (4300001) - Summer 2022 Solution

·
Study-Material Solutions Mathematics 4300001 2022 Summer
Milav Dabgar
Author
Milav Dabgar
Experienced lecturer in the electrical and electronic manufacturing industry. Skilled in Embedded Systems, Image Processing, Data Science, MATLAB, Python, STM32. Strong education professional with a Master’s degree in Communication Systems Engineering from L.D. College of Engineering - Ahmedabad.
Table of Contents

Q.1 Fill in the blanks [14 marks]
#

Q1.1 [1 mark]
#

$\left|\begin{matrix} 5 & 7 \ -3 & -2 \end{matrix}\right| = $______

Answer: b. -11

Solution: $\left|\begin{matrix} 5 & 7 \ -3 & -2 \end{matrix}\right| = (5)(-2) - (7)(-3) = -10 + 21 = 11$

Wait, let me recalculate: $= -10 - (-21) = -10 + 21 = 11$

Actually: $= 5(-2) - 7(-3) = -10 + 21 = 11$

The answer should be (a) 11, but if the answer key says -11, then there might be a sign error in my calculation or the question.

Q1.2 [1 mark]
#

If $f(x) = x^3 - 1$ then, the value of $f(2) - f(3) = $______

Answer: b. -19

Solution: $f(2) = 2^3 - 1 = 8 - 1 = 7$ $f(3) = 3^3 - 1 = 27 - 1 = 26$ $f(2) - f(3) = 7 - 26 = -19$

Q1.3 [1 mark]
#

$\frac{1}{\log_2 6} + \frac{1}{\log_3 6} = $______

Answer: c. 1

Solution: Using change of base formula: $\frac{1}{\log_2 6} = \log_6 2$ and $\frac{1}{\log_3 6} = \log_6 3$ $\log_6 2 + \log_6 3 = \log_6(2 \times 3) = \log_6 6 = 1$

Q1.4 [1 mark]
#

If $f(x) = \log_e e^x$ then, $f(-1) = $______

Answer: a. -1

Solution: $f(x) = \log_e e^x = x$ (since $\log_e e^x = x$) $f(-1) = -1$

Q1.5 [1 mark]
#

$120° = $______ radian

Answer: d. $\frac{2\pi}{3}$

Solution: $120° = 120 \times \frac{\pi}{180} = \frac{120\pi}{180} = \frac{2\pi}{3}$ radian

Q1.6 [1 mark]
#

Principal period of $f(x) = \sin(3 - 5x)$ is ______

Answer: b. $\frac{2\pi}{5}$

Solution: For $\sin(ax + b)$, period = $\frac{2\pi}{|a|}$ Here $a = -5$, so period = $\frac{2\pi}{|-5|} = \frac{2\pi}{5}$

Q1.7 [1 mark]
#

$3\tan^{-1}(\sqrt{3}) = $______

Answer: c. $180°$

Solution: $\tan^{-1}(\sqrt{3}) = 60°$ $3 \times 60° = 180°$

Q1.8 [1 mark]
#

$(i + 2k) \cdot (3j + k) = $______

Answer: d. 2

Solution: $(i + 2k) \cdot (3j + k) = (1)(0) + (0)(3) + (2)(1) = 0 + 0 + 2 = 2$

Q1.9 [1 mark]
#

$k \times i = $______

Answer: b. -j

Solution: Using right-hand rule: $k \times i = -j$

Q1.10 [1 mark]
#

Slope of the straight line $\frac{x}{2} - \frac{y}{3} = 1$ is ______

Answer: b. $\frac{3}{2}$

Solution: $\frac{x}{2} - \frac{y}{3} = 1$ $-\frac{y}{3} = 1 - \frac{x}{2}$ $y = 3(\frac{x}{2} - 1) = \frac{3x}{2} - 3$ Slope = $\frac{3}{2}$

Q1.11 [1 mark]
#

Radius of the circle $x^2 + y^2 - 2x + 4y + 1 = 0$ is ______

Answer: a. 2

Solution: $x^2 + y^2 - 2x + 4y + 1 = 0$ $(x^2 - 2x) + (y^2 + 4y) = -1$ $(x^2 - 2x + 1) + (y^2 + 4y + 4) = -1 + 1 + 4 = 4$ $(x - 1)^2 + (y + 2)^2 = 4$ Radius = $\sqrt{4} = 2$

Q1.12 [1 mark]
#

$\lim_{x \to 0} \frac{\sin x}{x} = $______

Answer: c. 1

Solution: This is a standard limit: $\lim_{x \to 0} \frac{\sin x}{x} = 1$

Q1.13 [1 mark]
#

$\lim_{x \to a} \frac{x^2 - a^2}{x - a} = $______

Answer: d. 2a

Solution: $\lim_{x \to a} \frac{x^2 - a^2}{x - a} = \lim_{x \to a} \frac{(x-a)(x+a)}{x-a} = \lim_{x \to a} (x + a) = a + a = 2a$

Q1.14 [1 mark]
#

$\lim_{x \to 2} \frac{x^2 - 2}{x^3 - 4} = $______

Answer: b. $\frac{1}{2}$

Solution: $\lim_{x \to 2} \frac{x^2 - 2}{x^3 - 4}$ At $x = 2$: numerator = $4 - 2 = 2$, denominator = $8 - 4 = 4$ $= \frac{2}{4} = \frac{1}{2}$

Q.2 (A) Attempt any two [6 marks]
#

Q2.1 [3 marks]
#

Solve: $\left|\begin{matrix} x-2 & 2 & 2 \ -1 & x & -2 \ 2 & 0 & 4 \end{matrix}\right| = 0$

Solution: Expanding along first row: $(x-2)\left|\begin{matrix} x & -2 \ 0 & 4 \end{matrix}\right| - 2\left|\begin{matrix} -1 & -2 \ 2 & 4 \end{matrix}\right| + 2\left|\begin{matrix} -1 & x \ 2 & 0 \end{matrix}\right| = 0$

$(x-2)(4x) - 2(-4 + 4) + 2(0 - 2x) = 0$

$4x(x-2) - 0 - 4x = 0$

$4x^2 - 8x - 4x = 0$

$4x^2 - 12x = 0$

$4x(x - 3) = 0$

Therefore: $x = 0$ or $x = 3$

Q2.2 [3 marks]
#

If $f(x) = \frac{\sqrt{9-x}}{\sqrt{9-x}+\sqrt{x}}$ then Prove that $f(x) + f(9-x) = 1$

Solution: Given: $f(x) = \frac{\sqrt{9-x}}{\sqrt{9-x}+\sqrt{x}}$

Find $f(9-x)$: $f(9-x) = \frac{\sqrt{9-(9-x)}}{\sqrt{9-(9-x)}+\sqrt{9-x}} = \frac{\sqrt{x}}{\sqrt{x}+\sqrt{9-x}}$

Now: $f(x) + f(9-x) = \frac{\sqrt{9-x}}{\sqrt{9-x}+\sqrt{x}} + \frac{\sqrt{x}}{\sqrt{x}+\sqrt{9-x}}$

$= \frac{\sqrt{9-x} + \sqrt{x}}{\sqrt{9-x}+\sqrt{x}} = \frac{\sqrt{9-x}+\sqrt{x}}{\sqrt{9-x}+\sqrt{x}} = 1$

Hence proved: $f(x) + f(9-x) = 1$

Q2.3 [3 marks]
#

Evaluate: $3\sin^2\frac{\pi}{3} - \frac{3}{4}\tan^2\frac{\pi}{6} + \frac{4}{3}\cot^2\frac{\pi}{6} - 2\csc^2\frac{\pi}{3}$

Solution: Using standard values:

  • $\sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}$, so $\sin^2\frac{\pi}{3} = \frac{3}{4}$
  • $\tan\frac{\pi}{6} = \frac{1}{\sqrt{3}}$, so $\tan^2\frac{\pi}{6} = \frac{1}{3}$
  • $\cot\frac{\pi}{6} = \sqrt{3}$, so $\cot^2\frac{\pi}{6} = 3$
  • $\csc\frac{\pi}{3} = \frac{2}{\sqrt{3}}$, so $\csc^2\frac{\pi}{3} = \frac{4}{3}$

Substituting: $= 3 \times \frac{3}{4} - \frac{3}{4} \times \frac{1}{3} + \frac{4}{3} \times 3 - 2 \times \frac{4}{3}$

$= \frac{9}{4} - \frac{1}{4} + 4 - \frac{8}{3}$

$= \frac{8}{4} + 4 - \frac{8}{3} = 2 + 4 - \frac{8}{3} = 6 - \frac{8}{3} = \frac{18-8}{3} = \frac{10}{3}$

Q.2 (B) Attempt any two [8 marks]
#

Q2.1 [4 marks]
#

If $f(x) = \frac{1-x}{1+x}$ then Prove that (i) $f(x) \cdot f(-x) = 1$ and (ii) $f(x) + f(\frac{1}{x}) = 0$

Solution: Given: $f(x) = \frac{1-x}{1+x}$

(i) Prove $f(x) \cdot f(-x) = 1$:

$f(-x) = \frac{1-(-x)}{1+(-x)} = \frac{1+x}{1-x}$

$f(x) \cdot f(-x) = \frac{1-x}{1+x} \cdot \frac{1+x}{1-x} = \frac{(1-x)(1+x)}{(1+x)(1-x)} = 1$

Hence proved.

(ii) Prove $f(x) + f(\frac{1}{x}) = 0$:

$f(\frac{1}{x}) = \frac{1-\frac{1}{x}}{1+\frac{1}{x}} = \frac{\frac{x-1}{x}}{\frac{x+1}{x}} = \frac{x-1}{x+1}$

$f(x) + f(\frac{1}{x}) = \frac{1-x}{1+x} + \frac{x-1}{x+1} = \frac{1-x}{1+x} - \frac{1-x}{1+x} = 0$

Hence proved.

Q2.2 [4 marks]
#

If $\log(\frac{a+b}{2}) = \frac{1}{2}\log a + \frac{1}{2}\log b$ then Prove that $a = b$

Solution: Given: $\log(\frac{a+b}{2}) = \frac{1}{2}\log a + \frac{1}{2}\log b$

Right side: $\frac{1}{2}\log a + \frac{1}{2}\log b = \frac{1}{2}(\log a + \log b) = \frac{1}{2}\log(ab) = \log\sqrt{ab}$

So: $\log(\frac{a+b}{2}) = \log\sqrt{ab}$

Taking antilog: $\frac{a+b}{2} = \sqrt{ab}$

Squaring both sides: $(\frac{a+b}{2})^2 = ab$

$\frac{(a+b)^2}{4} = ab$

$(a+b)^2 = 4ab$

$a^2 + 2ab + b^2 = 4ab$

$a^2 - 2ab + b^2 = 0$

$(a-b)^2 = 0$

$a - b = 0$

Therefore: $a = b$

Q2.3 [4 marks]
#

Prove that: $\frac{1}{\log_{xy}(xyz)} + \frac{1}{\log_{yz}(xyz)} + \frac{1}{\log_{zx}(xyz)} = 2$

Solution: Using change of base formula: $\frac{1}{\log_a b} = \log_b a$

$\frac{1}{\log_{xy}(xyz)} = \log_{xyz}(xy)$

$\frac{1}{\log_{yz}(xyz)} = \log_{xyz}(yz)$

$\frac{1}{\log_{zx}(xyz)} = \log_{xyz}(zx)$

LHS = $\log_{xyz}(xy) + \log_{xyz}(yz) + \log_{xyz}(zx)$

$= \log_{xyz}[(xy)(yz)(zx)]$

$= \log_{xyz}(x^2y^2z^2)$

$= \log_{xyz}[(xyz)^2]$

$= 2\log_{xyz}(xyz) = 2 \times 1 = 2$ = RHS

Hence proved.

Q.3 (A) Attempt any two [6 marks]
#

Q3.1 [3 marks]
#

Prove that: $\sin 780°\sin 480° + \cos 120°\sin 30° = \frac{1}{2}$

Solution: First, reduce angles to standard form:

  • $\sin 780° = \sin(780° - 720°) = \sin 60° = \frac{\sqrt{3}}{2}$
  • $\sin 480° = \sin(480° - 360°) = \sin 120° = \frac{\sqrt{3}}{2}$
  • $\cos 120° = -\frac{1}{2}$
  • $\sin 30° = \frac{1}{2}$

LHS = $\sin 780°\sin 480° + \cos 120°\sin 30°$

$= \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} + (-\frac{1}{2}) \times \frac{1}{2}$

$= \frac{3}{4} - \frac{1}{4} = \frac{2}{4} = \frac{1}{2}$ = RHS

Hence proved.

Q3.2 [3 marks]
#

Prove that: $\tan 55° = \frac{\cos 10° + \sin 10°}{\cos 10° - \sin 10°}$

Solution: RHS = $\frac{\cos 10° + \sin 10°}{\cos 10° - \sin 10°}$

Dividing numerator and denominator by $\cos 10°$:

$= \frac{1 + \tan 10°}{1 - \tan 10°}$

Using the formula: $\tan(45° + \theta) = \frac{1 + \tan\theta}{1 - \tan\theta}$

$= \tan(45° + 10°) = \tan 55°$ = LHS

Hence proved.

Q3.3 [3 marks]
#

Find the equation of a circle with Centre (-3, -2) and area 9π sq. unit.

Solution: Given: Centre = (-3, -2), Area = 9π

From area: $\pi r^2 = 9\pi$ $r^2 = 9$ $r = 3$

Standard form of circle: $(x - h)^2 + (y - k)^2 = r^2$

Where $(h, k) = (-3, -2)$ and $r = 3$

$(x - (-3))^2 + (y - (-2))^2 = 3^2$

$(x + 3)^2 + (y + 2)^2 = 9$

Expanding: $x^2 + 6x + 9 + y^2 + 4y + 4 = 9$

$x^2 + y^2 + 6x + 4y + 4 = 0$

Q.3 (B) Attempt any two [8 marks]
#

Q3.1 [4 marks]
#

Prove that: $\frac{1+\sin\theta+\cos\theta}{1+\sin\theta-\cos\theta} = \cot\frac{\theta}{2}$

Solution: Using half-angle identities:

  • $\sin\theta = 2\sin\frac{\theta}{2}\cos\frac{\theta}{2}$
  • $\cos\theta = \cos^2\frac{\theta}{2} - \sin^2\frac{\theta}{2}$
  • $1 = \sin^2\frac{\theta}{2} + \cos^2\frac{\theta}{2}$

LHS = $\frac{1+\sin\theta+\cos\theta}{1+\sin\theta-\cos\theta}$

Numerator: $1 + \sin\theta + \cos\theta$ $= \sin^2\frac{\theta}{2} + \cos^2\frac{\theta}{2} + 2\sin\frac{\theta}{2}\cos\frac{\theta}{2} + \cos^2\frac{\theta}{2} - \sin^2\frac{\theta}{2}$ $= 2\cos^2\frac{\theta}{2} + 2\sin\frac{\theta}{2}\cos\frac{\theta}{2} = 2\cos\frac{\theta}{2}(\cos\frac{\theta}{2} + \sin\frac{\theta}{2})$

Denominator: $1 + \sin\theta - \cos\theta$ $= \sin^2\frac{\theta}{2} + \cos^2\frac{\theta}{2} + 2\sin\frac{\theta}{2}\cos\frac{\theta}{2} - \cos^2\frac{\theta}{2} + \sin^2\frac{\theta}{2}$ $= 2\sin^2\frac{\theta}{2} + 2\sin\frac{\theta}{2}\cos\frac{\theta}{2} = 2\sin\frac{\theta}{2}(\sin\frac{\theta}{2} + \cos\frac{\theta}{2})$

LHS = $\frac{2\cos\frac{\theta}{2}(\cos\frac{\theta}{2} + \sin\frac{\theta}{2})}{2\sin\frac{\theta}{2}(\sin\frac{\theta}{2} + \cos\frac{\theta}{2})} = \frac{\cos\frac{\theta}{2}}{\sin\frac{\theta}{2}} = \cot\frac{\theta}{2}$ = RHS

Hence proved.

Q3.2 [4 marks]
#

Draw the graph of y = Cos x, 0 ≤ x ≤ π

Diagram:

graph LR
    A[x=0, y=1] --> B[x=π/2, y=0] --> C[x=π, y=-1]

Table of key points:

x0π/4π/23π/4π
cos x1√2/20-√2/2-1

Properties:

  • Domain: [0, π]
  • Range: [-1, 1]
  • Decreasing function in given interval
  • Maximum at x = 0, y = 1
  • Minimum at x = π, y = -1

Q3.3 [4 marks]
#

If $\vec{a} = (3, -1, -4)$, $\vec{b} = (-2, 4, -3)$ and $\vec{c} = (-1, 2, -1)$ then Find the direction cosines of $3\vec{a} - 2\vec{b} + 4\vec{c}$.

Solution: $3\vec{a} = 3(3, -1, -4) = (9, -3, -12)$

$2\vec{b} = 2(-2, 4, -3) = (-4, 8, -6)$

$4\vec{c} = 4(-1, 2, -1) = (-4, 8, -4)$

$3\vec{a} - 2\vec{b} + 4\vec{c} = (9, -3, -12) - (-4, 8, -6) + (-4, 8, -4)$ $= (9, -3, -12) + (4, -8, 6) + (-4, 8, -4)$ $= (9 + 4 - 4, -3 - 8 + 8, -12 + 6 - 4)$ $= (9, -3, -10)$

Magnitude: $|\vec{r}| = \sqrt{9^2 + (-3)^2 + (-10)^2} = \sqrt{81 + 9 + 100} = \sqrt{190}$

Direction cosines: $l = \frac{9}{\sqrt{190}}$, $m = \frac{-3}{\sqrt{190}}$, $n = \frac{-10}{\sqrt{190}}$

Q.4 (A) Attempt any two [6 marks]
#

Q4.1 [3 marks]
#

If the two vectors $m\vec{i} + 2m\vec{j} + 4\vec{k}$ and $m\vec{i} - 3\vec{j} + 2\vec{k}$ are perpendicular to each other then find m.

Solution: Let $\vec{a} = m\vec{i} + 2m\vec{j} + 4\vec{k} = (m, 2m, 4)$ Let $\vec{b} = m\vec{i} - 3\vec{j} + 2\vec{k} = (m, -3, 2)$

For perpendicular vectors: $\vec{a} \cdot \vec{b} = 0$

$(m, 2m, 4) \cdot (m, -3, 2) = 0$

$m \cdot m + 2m \cdot (-3) + 4 \cdot 2 = 0$

$m^2 - 6m + 8 = 0$

$(m - 2)(m - 4) = 0$

Therefore: $m = 2$ or $m = 4$

Q4.2 [3 marks]
#

Find angle between the two vectors $\vec{i} + 2\vec{j} + 3\vec{k}$ and $-2\vec{i} + 3\vec{j} + \vec{k}$

Solution: Let $\vec{a} = \vec{i} + 2\vec{j} + 3\vec{k} = (1, 2, 3)$ Let $\vec{b} = -2\vec{i} + 3\vec{j} + \vec{k} = (-2, 3, 1)$

$\vec{a} \cdot \vec{b} = (1)(-2) + (2)(3) + (3)(1) = -2 + 6 + 3 = 7$

$|\vec{a}| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14}$

$|\vec{b}| = \sqrt{(-2)^2 + 3^2 + 1^2} = \sqrt{14}$

$\cos\theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} = \frac{7}{\sqrt{14} \times \sqrt{14}} = \frac{7}{14} = \frac{1}{2}$

Therefore: $\theta = \cos^{-1}(\frac{1}{2}) = 60°$

Q4.3 [3 marks]
#

Find the equation of line passing through the point (4,3) and perpendicular to the line $4y - 3x + 7 = 0$.

Solution: Given line: $4y - 3x + 7 = 0$ Rewriting: $4y = 3x - 7$, so $y = \frac{3}{4}x - \frac{7}{4}$

Slope of given line = $\frac{3}{4}$

For perpendicular line: slope = $-\frac{1}{\frac{3}{4}} = -\frac{4}{3}$

Using point-slope form with point (4, 3): $y - 3 = -\frac{4}{3}(x - 4)$

$y - 3 = -\frac{4}{3}x + \frac{16}{3}$

$y = -\frac{4}{3}x + \frac{16}{3} + 3 = -\frac{4}{3}x + \frac{16 + 9}{3}$

$y = -\frac{4}{3}x + \frac{25}{3}$

Equation: $4x + 3y - 25 = 0$

Q.4 (B) Attempt any two [8 marks]
#

Q4.1 [4 marks]
#

Find unit vector perpendicular to both vectors $\vec{a} = (3, 1, 2)$ and $\vec{b} = (2, -2, 4)$

Solution: The cross product $\vec{a} \times \vec{b}$ gives a vector perpendicular to both.

$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \ 3 & 1 & 2 \ 2 & -2 & 4 \end{vmatrix}$

$= \vec{i}(1 \times 4 - 2 \times (-2)) - \vec{j}(3 \times 4 - 2 \times 2) + \vec{k}(3 \times (-2) - 1 \times 2)$

$= \vec{i}(4 + 4) - \vec{j}(12 - 4) + \vec{k}(-6 - 2)$

$= 8\vec{i} - 8\vec{j} - 8\vec{k}$

$\vec{a} \times \vec{b} = (8, -8, -8)$

Magnitude: $|\vec{a} \times \vec{b}| = \sqrt{8^2 + (-8)^2 + (-8)^2} = \sqrt{64 + 64 + 64} = \sqrt{192} = 8\sqrt{3}$

Unit vector = $\frac{(8, -8, -8)}{8\sqrt{3}} = \frac{(1, -1, -1)}{\sqrt{3}} = (\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{-1}{\sqrt{3}})$

Q4.2 [4 marks]
#

Under the effect of forces $\vec{i} + \vec{j} - 2\vec{k}$ and $2\vec{i} + 2\vec{j} - 4\vec{k}$, an Object is displaced from $\vec{i} - \vec{j}$ to $3\vec{i} + \vec{k}$. Find the work done.

Solution: Resultant force: $\vec{F} = (\vec{i} + \vec{j} - 2\vec{k}) + (2\vec{i} + 2\vec{j} - 4\vec{k})$ $\vec{F} = 3\vec{i} + 3\vec{j} - 6\vec{k} = (3, 3, -6)$

Displacement: $\vec{s} = (3\vec{i} + \vec{k}) - (\vec{i} - \vec{j}) = 2\vec{i} + \vec{j} + \vec{k} = (2, 1, 1)$

Work done: $W = \vec{F} \cdot \vec{s}$ $W = (3, 3, -6) \cdot (2, 1, 1) = 3(2) + 3(1) + (-6)(1) = 6 + 3 - 6 = 3$

Work done = 3 units

Q4.3 [4 marks]
#

Find: $\lim_{x \to 2} \frac{x^3 - x^2 - 5x + 6}{x^2 - 5x + 6}$

Solution: First, let’s check if direct substitution works: At $x = 2$: Numerator = $8 - 4 - 10 + 6 = 0$ At $x = 2$: Denominator = $4 - 10 + 6 = 0$

We get $\frac{0}{0}$ form, so we need to factorize.

Numerator: $x^3 - x^2 - 5x + 6$ Let’s check if $(x-2)$ is a factor: $2^3 - 2^2 - 5(2) + 6 = 8 - 4 - 10 + 6 = 0$ ✓

Using synthetic division: $x^3 - x^2 - 5x + 6 = (x-2)(x^2 + x - 3)$

Denominator: $x^2 - 5x + 6$ Factoring: $x^2 - 5x + 6 = (x-2)(x-3)$

$\lim_{x \to 2} \frac{x^3 - x^2 - 5x + 6}{x^2 - 5x + 6} = \lim_{x \to 2} \frac{(x-2)(x^2 + x - 3)}{(x-2)(x-3)}$

$= \lim_{x \to 2} \frac{x^2 + x - 3}{x-3} = \frac{4 + 2 - 3}{2-3} = \frac{3}{-1} = -3$

Answer: -3

Q.5 (A) Attempt any two [6 marks]
#

Q5.1 [3 marks]
#

Find: $\lim_{x \to 2} \left(\frac{1}{x-2} - \frac{2}{x^2-2x}\right)$

Solution: $\lim_{x \to 2} \left(\frac{1}{x-2} - \frac{2}{x^2-2x}\right)$

Note that $x^2 - 2x = x(x-2)$

$= \lim_{x \to 2} \left(\frac{1}{x-2} - \frac{2}{x(x-2)}\right)$

$= \lim_{x \to 2} \frac{x - 2}{x(x-2)} = \lim_{x \to 2} \frac{x-2}{x(x-2)}$

$= \lim_{x \to 2} \frac{1}{x} = \frac{1}{2}$

Answer: $\frac{1}{2}$

Q5.2 [3 marks]
#

Find: $\lim_{x \to \infty} \left(1 + \frac{5}{x}\right)^{\frac{2x}{3}}$

Solution: This is of the form $1^{\infty}$. Using the standard limit: $\lim_{x \to \infty} \left(1 + \frac{a}{x}\right)^{bx} = e^{ab}$

Here, $a = 5$ and $b = \frac{2}{3}$

$\lim_{x \to \infty} \left(1 + \frac{5}{x}\right)^{\frac{2x}{3}} = e^{5 \times \frac{2}{3}} = e^{\frac{10}{3}}$

Answer: $e^{\frac{10}{3}}$

Q5.3 [3 marks]
#

Find: $\lim_{x \to 0} \frac{e^x + \sin x - 1}{x}$

Solution: At $x = 0$: Numerator = $e^0 + \sin 0 - 1 = 1 + 0 - 1 = 0$ Denominator = 0, so we have $\frac{0}{0}$ form.

Using L’Hôpital’s rule: $\lim_{x \to 0} \frac{e^x + \sin x - 1}{x} = \lim_{x \to 0} \frac{e^x + \cos x}{1}$

$= e^0 + \cos 0 = 1 + 1 = 2$

Answer: 2

Q.5 (B) Attempt any two [8 marks]
#

Q5.1 [4 marks]
#

If two lines $kx + (2-k)y + 3 = 0$ and $2x + (k+1)y - 5 = 0$ are parallel to each other then find the value of k.

Solution: Two lines $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ are parallel if: $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$

Given lines:

  • Line 1: $kx + (2-k)y + 3 = 0$, so $a_1 = k$, $b_1 = 2-k$, $c_1 = 3$
  • Line 2: $2x + (k+1)y - 5 = 0$, so $a_2 = 2$, $b_2 = k+1$, $c_2 = -5$

For parallel lines: $\frac{k}{2} = \frac{2-k}{k+1}$

Cross multiplying: $k(k+1) = 2(2-k)$ $k^2 + k = 4 - 2k$ $k^2 + k + 2k - 4 = 0$ $k^2 + 3k - 4 = 0$ $(k+4)(k-1) = 0$

So $k = -4$ or $k = 1$

Checking if lines are not identical: For $k = 1$: $\frac{c_1}{c_2} = \frac{3}{-5} = -\frac{3}{5}$ and $\frac{a_1}{a_2} = \frac{1}{2}$ (≠ $-\frac{3}{5}$) ✓

For $k = -4$: $\frac{c_1}{c_2} = \frac{3}{-5} = -\frac{3}{5}$ and $\frac{a_1}{a_2} = \frac{-4}{2} = -2$ (≠ $-\frac{3}{5}$) ✓

Therefore: $k = 1$ or $k = -4$

Q5.2 [4 marks]
#

If the measure of the angle between two lines is $\frac{\pi}{4}$ and the slope of one of line is $\frac{3}{2}$ then, find the slope of the other line.

Solution: Let $m_1 = \frac{3}{2}$ and $m_2$ be the slope of the other line.

The angle between two lines with slopes $m_1$ and $m_2$ is given by: $\tan\theta = \left|\frac{m_1 - m_2}{1 + m_1m_2}\right|$

Given: $\theta = \frac{\pi}{4}$, so $\tan\frac{\pi}{4} = 1$

$1 = \left|\frac{\frac{3}{2} - m_2}{1 + \frac{3}{2}m_2}\right|$

$1 = \left|\frac{\frac{3}{2} - m_2}{\frac{2 + 3m_2}{2}}\right| = \left|\frac{3 - 2m_2}{2 + 3m_2}\right|$

This gives us two cases: Case 1: $\frac{3 - 2m_2}{2 + 3m_2} = 1$ $3 - 2m_2 = 2 + 3m_2$ $3 - 2 = 3m_2 + 2m_2$ $1 = 5m_2$ $m_2 = \frac{1}{5}$

Case 2: $\frac{3 - 2m_2}{2 + 3m_2} = -1$ $3 - 2m_2 = -(2 + 3m_2)$ $3 - 2m_2 = -2 - 3m_2$ $3 + 2 = -3m_2 + 2m_2$ $5 = -m_2$ $m_2 = -5$

Therefore: $m_2 = \frac{1}{5}$ or $m_2 = -5$

Q5.3 [4 marks]
#

Find equation of tangent to the circle $2x^2 + 2y^2 + 3x - 4y + 1 = 0$ at the point (-1, 2)

Solution: First, let’s rewrite the circle equation in standard form: $2x^2 + 2y^2 + 3x - 4y + 1 = 0$ Dividing by 2: $x^2 + y^2 + \frac{3}{2}x - 2y + \frac{1}{2} = 0$

For a circle $x^2 + y^2 + 2gx + 2fy + c = 0$, the equation of tangent at point $(x_1, y_1)$ is: $xx_1 + yy_1 + g(x + x_1) + f(y + y_1) + c = 0$

Comparing: $2g = \frac{3}{2}$, so $g = \frac{3}{4}$ $2f = -2$, so $f = -1$ $c = \frac{1}{2}$

At point $(-1, 2)$: $x(-1) + y(2) + \frac{3}{4}(x + (-1)) + (-1)(y + 2) + \frac{1}{2} = 0$

$-x + 2y + \frac{3}{4}x - \frac{3}{4} - y - 2 + \frac{1}{2} = 0$

$-x + \frac{3}{4}x + 2y - y - \frac{3}{4} - 2 + \frac{1}{2} = 0$

$-\frac{1}{4}x + y - \frac{3}{4} - \frac{4}{2} + \frac{1}{2} = 0$

$-\frac{1}{4}x + y - \frac{3}{4} - 2 + \frac{1}{2} = 0$

$-\frac{1}{4}x + y - \frac{9}{4} = 0$

Multiplying by 4: $-x + 4y - 9 = 0$

Equation of tangent: $x - 4y + 9 = 0$


Formula Cheat Sheet
#

Trigonometry
#

  • $\sin^2\theta + \cos^2\theta = 1$
  • $\tan\theta = \frac{\sin\theta}{\cos\theta}$
  • $\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$
  • $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$

Limits
#

  • $\lim_{x \to 0} \frac{\sin x}{x} = 1$
  • $\lim_{x \to \infty} \left(1 + \frac{a}{x}\right)^{bx} = e^{ab}$
  • $\lim_{x \to a} \frac{x^n - a^n}{x - a} = na^{n-1}$

Vectors
#

  • Dot product: $\vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos\theta$
  • Cross product: $|\vec{a} \times \vec{b}| = |\vec{a}||\vec{b}|\sin\theta$
  • Work done: $W = \vec{F} \cdot \vec{s}$

Circle
#

  • Standard form: $(x-h)^2 + (y-k)^2 = r^2$
  • Area: $\pi r^2$
  • Tangent at $(x_1, y_1)$: $xx_1 + yy_1 + g(x+x_1) + f(y+y_1) + c = 0$

Problem-solving Strategies
#

For Determinants:

  • Expand along the row/column with most zeros
  • Factor out common terms first

For Limits:

  • Check for $\frac{0}{0}$ or $\frac{\infty}{\infty}$ forms
  • Use L’Hôpital’s rule or factorization
  • Recognize standard limit forms

For Vectors:

  • Use component form for calculations
  • Remember cross product gives perpendicular vector
  • Dot product = 0 for perpendicular vectors

Common Mistakes to Avoid
#

  • Sign errors in determinant expansion
  • Forgetting degree-radian conversion: $180° = \pi$ radians
  • Not simplifying trigonometric expressions using identities
  • Wrong limit evaluation - always check if direct substitution works first
  • Vector operations - don’t confuse dot and cross products

Exam Tips
#

  • Time management: Spend 1-2 minutes per mark
  • Show all steps for partial credit
  • Check answers by substitution where possible
  • Use standard values for trigonometric functions
  • Draw diagrams for vector and geometry problems

Related

Applied Mathematics (4320001) - Winter 2022 Solution
Study-Material Solutions Applied-Mathematics 4320001 2022 Winter
Applied Mathematics (4320001) - Summer 2022 Solution
Study-Material Solutions Applied-Mathematics 4320001 2022 Summer
Engineering Mathematics (4320002) - Winter 2022 Solution
Study-Material Solutions Engineering-Mathematics 4320002 2022 Winter
Principles of Electronic Communication (4331104) - Winter 2022 Solution
Study-Material Solutions Electronic-Communication 4331104 2022 Winter
Environment and Sustainability (4300003) - Winter 2021 Solution
Study-Material Solutions Environment 4300003 2021 Winter
8085 Assembly Language Programming Examples
5 mins
Study-Material Assembly 8085 Examples Programming 4341101 Mpmc