Q.1 [14 marks]#
Fill in the blanks using appropriate choice from the given options
Q1.1 [1 mark]#
$\begin{vmatrix} \sin \theta & -\cos \theta \ \cos \theta & \sin \theta \end{vmatrix} = $ _____________
Answer: c. 1
Solution: $\begin{vmatrix} \sin \theta & -\cos \theta \ \cos \theta & \sin \theta \end{vmatrix} = \sin \theta \cdot \sin \theta - (-\cos \theta) \cdot \cos \theta$ $= \sin^2 \theta + \cos^2 \theta = 1$
Q1.2 [1 mark]#
If $f(x) = x^3 - 1$ then $f(-1) = $ _________
Answer: d. -2
Solution: $f(x) = x^3 - 1$ $f(-1) = (-1)^3 - 1 = -1 - 1 = -2$
Q1.3 [1 mark]#
$\log 1 \times \log 2 \times \log 3 \times \log 4 = $ ______________
Answer: a. 0
Solution: Since $\log 1 = 0$, we have: $\log 1 \times \log 2 \times \log 3 \times \log 4 = 0 \times \log 2 \times \log 3 \times \log 4 = 0$
Q1.4 [1 mark]#
$\log x - \log y = $ _____________
Answer: b. $\log \frac{x}{y}$
Solution: Using logarithm property: $\log x - \log y = \log \frac{x}{y}$
Q1.5 [1 mark]#
Principal Period of $\sin(2x + 7) = $ _________
Answer: c. $\pi$
Solution: For $\sin(ax + b)$, the period is $\frac{2\pi}{|a|}$ Here, $a = 2$, so period = $\frac{2\pi}{2} = \pi$
Q1.6 [1 mark]#
$450° = $ __________$radian$
Answer: c. $\frac{5\pi}{2}$
Solution: $450° = 450 \times \frac{\pi}{180} = \frac{450\pi}{180} = \frac{5\pi}{2}$ radians
Q1.7 [1 mark]#
$\tan^{-1} x + \cot^{-1} x = $ _________
Answer: d. $\frac{\pi}{2}$
Solution: This is a standard identity: $\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$ for all $x > 0$
Q1.8 [1 mark]#
$|2i - 3j + 4k| = $ _______
Answer: a. $\sqrt{29}$
Solution: $|2i - 3j + 4k| = \sqrt{2^2 + (-3)^2 + 4^2} = \sqrt{4 + 9 + 16} = \sqrt{29}$
Q1.9 [1 mark]#
For vector $\vec{a} \times \vec{a} = $ _________
Answer: d. 0
Solution: The cross product of any vector with itself is always zero: $\vec{a} \times \vec{a} = 0$
Q1.10 [1 mark]#
If two lines having slopes $m_1$ and $m_2$ are perpendicular to each other then _________
Answer: c. $m_1 \cdot m_2 = -1$
Solution: For perpendicular lines, the product of their slopes equals -1.
Q1.11 [1 mark]#
If $x^2 + y^2 = 25$ then its radius ______
Answer: c. 5
Solution: Comparing with standard form $x^2 + y^2 = r^2$: $r^2 = 25$, so $r = 5$
Q1.12 [1 mark]#
$\lim_{\theta \to 0} \frac{\sin 5\theta}{\tan 7\theta} = $ _________
Answer: b. $\frac{5}{7}$
Solution: $\lim_{\theta \to 0} \frac{\sin 5\theta}{\tan 7\theta} = \lim_{\theta \to 0} \frac{\sin 5\theta}{\frac{\sin 7\theta}{\cos 7\theta}} = \lim_{\theta \to 0} \frac{\sin 5\theta \cos 7\theta}{\sin 7\theta}$
$= \lim_{\theta \to 0} \frac{\sin 5\theta}{5\theta} \cdot \frac{7\theta}{\sin 7\theta} \cdot \frac{5\theta}{7\theta} \cdot \cos 7\theta$
$= 1 \times 1 \times \frac{5}{7} \times 1 = \frac{5}{7}$
Q1.13 [1 mark]#
$\lim_{x \to 0} \frac{e^x - 1}{x} = $ ___________
Answer: c. 1
Solution: This is a standard limit: $\lim_{x \to 0} \frac{e^x - 1}{x} = 1$
Q1.14 [1 mark]#
$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = $ _________
Answer: d. 2
Solution: $\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x-1)(x+1)}{x - 1} = \lim_{x \to 1} (x + 1) = 1 + 1 = 2$
Q.2(A) [6 marks]#
Attempt any two
Q2.1 [3 marks]#
If $f(x) = \frac{1-x}{1+x}$ then prove that (1) $f(x) \cdot f(-x) = 1$ (2) $f(x) + f(\frac{1}{x}) = 0$
Answer:
Solution:
Part (1): Prove $f(x) \cdot f(-x) = 1$
$f(x) = \frac{1-x}{1+x}$
$f(-x) = \frac{1-(-x)}{1+(-x)} = \frac{1+x}{1-x}$
$f(x) \cdot f(-x) = \frac{1-x}{1+x} \cdot \frac{1+x}{1-x} = \frac{(1-x)(1+x)}{(1+x)(1-x)} = 1$
Part (2): Prove $f(x) + f(\frac{1}{x}) = 0$
$f(\frac{1}{x}) = \frac{1-\frac{1}{x}}{1+\frac{1}{x}} = \frac{\frac{x-1}{x}}{\frac{x+1}{x}} = \frac{x-1}{x+1}$
$f(x) + f(\frac{1}{x}) = \frac{1-x}{1+x} + \frac{x-1}{x+1} = \frac{1-x}{1+x} - \frac{1-x}{1+x} = 0$
Q2.2 [3 marks]#
If $\begin{vmatrix} x & 2 & 3 \ 5 & 0 & 7 \ 3 & 1 & 2 \end{vmatrix} = 30$ then find the value of $x$
Answer:
Solution: Expanding along the second row (which has a zero): $\begin{vmatrix} x & 2 & 3 \ 5 & 0 & 7 \ 3 & 1 & 2 \end{vmatrix} = -5 \begin{vmatrix} 2 & 3 \ 1 & 2 \end{vmatrix} + 0 - 7 \begin{vmatrix} x & 2 \ 3 & 1 \end{vmatrix}$
$= -5(2 \times 2 - 3 \times 1) - 7(x \times 1 - 2 \times 3)$ $= -5(4 - 3) - 7(x - 6)$ $= -5(1) - 7x + 42$ $= -5 - 7x + 42$ $= 37 - 7x$
Given: $37 - 7x = 30$ $7x = 37 - 30 = 7$ $x = 1$
Q2.3 [3 marks]#
Prove that $\tan 55° = \frac{\cos 10° + \sin 10°}{\cos 10° - \sin 10°}$
Answer:
Solution: We know that $55° = 45° + 10°$
Using the tangent addition formula: $\tan(45° + 10°) = \frac{\tan 45° + \tan 10°}{1 - \tan 45° \tan 10°}$
Since $\tan 45° = 1$: $\tan 55° = \frac{1 + \tan 10°}{1 - \tan 10°}$
Now, $\tan 10° = \frac{\sin 10°}{\cos 10°}$
$\tan 55° = \frac{1 + \frac{\sin 10°}{\cos 10°}}{1 - \frac{\sin 10°}{\cos 10°}} = \frac{\frac{\cos 10° + \sin 10°}{\cos 10°}}{\frac{\cos 10° - \sin 10°}{\cos 10°}} = \frac{\cos 10° + \sin 10°}{\cos 10° - \sin 10°}$
Q.2(B) [8 marks]#
Attempt any two
Q2.1 [4 marks]#
Prove that $\frac{1}{\log_{xy} xyz} + \frac{1}{\log_{yz} xyz} + \frac{1}{\log_{zx} xyz} = 2$
Answer:
Solution: Using the change of base formula: $\frac{1}{\log_a b} = \log_b a$
$\frac{1}{\log_{xy} xyz} = \log_{xyz} (xy)$ $\frac{1}{\log_{yz} xyz} = \log_{xyz} (yz)$ $\frac{1}{\log_{zx} xyz} = \log_{xyz} (zx)$
LHS = $\log_{xyz} (xy) + \log_{xyz} (yz) + \log_{xyz} (zx)$ $= \log_{xyz} [(xy)(yz)(zx)]$ $= \log_{xyz} (x^2y^2z^2)$ $= \log_{xyz} (xyz)^2$ $= 2\log_{xyz} (xyz)$ $= 2 \times 1 = 2$ = RHS
Q2.2 [4 marks]#
If $\log(\frac{a+b}{3}) = \frac{1}{2}(\log a + \log b)$ then prove that $a^2 + b^2 = 7ab$
Answer:
Solution: Given: $\log(\frac{a+b}{3}) = \frac{1}{2}(\log a + \log b)$
RHS: $\frac{1}{2}(\log a + \log b) = \frac{1}{2}\log(ab) = \log(ab)^{1/2} = \log\sqrt{ab}$
So: $\log(\frac{a+b}{3}) = \log\sqrt{ab}$
Taking antilog: $\frac{a+b}{3} = \sqrt{ab}$
Squaring both sides: $(\frac{a+b}{3})^2 = ab$
$\frac{(a+b)^2}{9} = ab$
$(a+b)^2 = 9ab$
$a^2 + 2ab + b^2 = 9ab$
$a^2 + b^2 = 9ab - 2ab = 7ab$
Q2.3 [4 marks]#
If $\log x \times \frac{\log 16}{\log 32} = \log 256$ then find the value of $x$
Answer:
Solution: First, let’s simplify the logarithmic terms: $\log 16 = \log 2^4 = 4\log 2$ $\log 32 = \log 2^5 = 5\log 2$ $\log 256 = \log 2^8 = 8\log 2$
$\frac{\log 16}{\log 32} = \frac{4\log 2}{5\log 2} = \frac{4}{5}$
Given equation becomes: $\log x \times \frac{4}{5} = 8\log 2$
$\log x = \frac{5 \times 8\log 2}{4} = 10\log 2$
$\log x = \log 2^{10} = \log 1024$
Therefore: $x = 1024$
Q.3(A) [6 marks]#
Attempt any two
Q3.1 [3 marks]#
Prove that $\frac{\sin(\frac{\pi}{2}+\theta)}{\cos(\pi-\theta)} + \frac{\cot(\frac{3\pi}{2}-\theta)}{\tan(\pi-\theta)} + \frac{\cosec(\frac{\pi}{2}-\theta)}{\sec(\pi+\theta)} = -3$
Answer:
Solution: Using trigonometric identities:
First term: $\sin(\frac{\pi}{2}+\theta) = \cos\theta$ $\cos(\pi-\theta) = -\cos\theta$ $\frac{\sin(\frac{\pi}{2}+\theta)}{\cos(\pi-\theta)} = \frac{\cos\theta}{-\cos\theta} = -1$
Second term: $\cot(\frac{3\pi}{2}-\theta) = \cot(2\pi - \frac{\pi}{2} - \theta) = \cot(-(\frac{\pi}{2} + \theta)) = -\cot(\frac{\pi}{2} + \theta) = -(-\tan\theta) = \tan\theta$ $\tan(\pi-\theta) = -\tan\theta$ $\frac{\cot(\frac{3\pi}{2}-\theta)}{\tan(\pi-\theta)} = \frac{\tan\theta}{-\tan\theta} = -1$
Third term: $\cosec(\frac{\pi}{2}-\theta) = \frac{1}{\sin(\frac{\pi}{2}-\theta)} = \frac{1}{\cos\theta}$ $\sec(\pi+\theta) = \frac{1}{\cos(\pi+\theta)} = \frac{1}{-\cos\theta}$ $\frac{\cosec(\frac{\pi}{2}-\theta)}{\sec(\pi+\theta)} = \frac{\frac{1}{\cos\theta}}{\frac{1}{-\cos\theta}} = \frac{-\cos\theta}{\cos\theta} = -1$
Therefore: LHS = $(-1) + (-1) + (-1) = -3$ = RHS
Q3.2 [3 marks]#
Prove that $\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3} = \frac{\pi}{4}$
Answer:
Solution: Using the formula: $\tan^{-1}a + \tan^{-1}b = \tan^{-1}(\frac{a+b}{1-ab})$ when $ab < 1$
Let $a = \frac{1}{2}$ and $b = \frac{1}{3}$
$ab = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6} < 1$ ✓
$\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3} = \tan^{-1}(\frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{2} \times \frac{1}{3}})$
$= \tan^{-1}(\frac{\frac{3+2}{6}}{1 - \frac{1}{6}}) = \tan^{-1}(\frac{\frac{5}{6}}{\frac{5}{6}}) = \tan^{-1}(1) = \frac{\pi}{4}$
Q3.3 [3 marks]#
Find the equation of the line passing through points $(1, 6)$ and $(-2, 5)$. Also find the slope of the line.
Answer:
Solution: Step 1: Find the slope $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - 6}{-2 - 1} = \frac{-1}{-3} = \frac{1}{3}$
Step 2: Find the equation using point-slope form Using point $(1, 6)$: $y - 6 = \frac{1}{3}(x - 1)$ $3(y - 6) = x - 1$ $3y - 18 = x - 1$ $x - 3y + 17 = 0$
Table: Line Properties
Property | Value |
---|---|
Slope | $\frac{1}{3}$ |
Equation | $x - 3y + 17 = 0$ |
Q.3(B) [8 marks]#
Attempt any two
Q3.1 [4 marks]#
Draw the graph of $y = \sin x$; $0 \leq x \leq \pi$
Answer:
Solution:
Table of Key Points:
$x$ | $0$ | $\frac{\pi}{6}$ | $\frac{\pi}{4}$ | $\frac{\pi}{3}$ | $\frac{\pi}{2}$ | $\frac{2\pi}{3}$ | $\frac{3\pi}{4}$ | $\frac{5\pi}{6}$ | $\pi$ |
---|---|---|---|---|---|---|---|---|---|
$y = \sin x$ | $0$ | $\frac{1}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{3}}{2}$ | $1$ | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{1}{2}$ | $0$ |
Properties:
- Domain: $[0, \pi]$
- Range: $[0, 1]$
- Maximum: $1$ at $x = \frac{\pi}{2}$
- Zeros: $x = 0$ and $x = \pi$
Q3.2 [4 marks]#
Prove that $\frac{\sin \theta + \sin 2\theta + \sin 4\theta + \sin 5\theta}{\cos \theta + \cos 2\theta + \cos 4\theta + \cos 5\theta} = \tan 3\theta$
Answer:
Solution: We can group the terms strategically:
Numerator: $(\sin \theta + \sin 5\theta) + (\sin 2\theta + \sin 4\theta)$
Using sum-to-product formula: $\sin A + \sin B = 2\sin(\frac{A+B}{2})\cos(\frac{A-B}{2})$
$\sin \theta + \sin 5\theta = 2\sin(\frac{\theta + 5\theta}{2})\cos(\frac{5\theta - \theta}{2}) = 2\sin(3\theta)\cos(2\theta)$
$\sin 2\theta + \sin 4\theta = 2\sin(\frac{2\theta + 4\theta}{2})\cos(\frac{4\theta - 2\theta}{2}) = 2\sin(3\theta)\cos(\theta)$
Numerator = $2\sin(3\theta)\cos(2\theta) + 2\sin(3\theta)\cos(\theta) = 2\sin(3\theta)[\cos(2\theta) + \cos(\theta)]$
Denominator: $(\cos \theta + \cos 5\theta) + (\cos 2\theta + \cos 4\theta)$
$\cos \theta + \cos 5\theta = 2\cos(\frac{\theta + 5\theta}{2})\cos(\frac{5\theta - \theta}{2}) = 2\cos(3\theta)\cos(2\theta)$
$\cos 2\theta + \cos 4\theta = 2\cos(\frac{2\theta + 4\theta}{2})\cos(\frac{4\theta - 2\theta}{2}) = 2\cos(3\theta)\cos(\theta)$
Denominator = $2\cos(3\theta)\cos(2\theta) + 2\cos(3\theta)\cos(\theta) = 2\cos(3\theta)[\cos(2\theta) + \cos(\theta)]$
Therefore: $\frac{\text{Numerator}}{\text{Denominator}} = \frac{2\sin(3\theta)[\cos(2\theta) + \cos(\theta)]}{2\cos(3\theta)[\cos(2\theta) + \cos(\theta)]} = \frac{\sin(3\theta)}{\cos(3\theta)} = \tan(3\theta)$
Q3.3 [4 marks]#
The constant forces $i - j + k$, $i + j - 3k$ and $4i + 5j - 6k$ act on a particle. Under the action of these forces, particle moves from point $3i - 2j + k$ to point $i + 3j - 4k$. Find the total work done by the forces.
Answer:
Solution: Step 1: Find resultant force $\vec{F_{total}} = (i - j + k) + (i + j - 3k) + (4i + 5j - 6k)$ $= (1 + 1 + 4)i + (-1 + 1 + 5)j + (1 - 3 - 6)k$ $= 6i + 5j - 8k$
Step 2: Find displacement Initial position: $3i - 2j + k$ Final position: $i + 3j - 4k$ $\vec{d} = (i + 3j - 4k) - (3i - 2j + k) = -2i + 5j - 5k$
Step 3: Calculate work done $W = \vec{F_{total}} \cdot \vec{d} = (6i + 5j - 8k) \cdot (-2i + 5j - 5k)$ $W = 6(-2) + 5(5) + (-8)(-5) = -12 + 25 + 40 = 53$ units
Table: Work Calculation
Component | Force | Displacement | Work |
---|---|---|---|
x | 6 | -2 | -12 |
y | 5 | 5 | 25 |
z | -8 | -5 | 40 |
Total | 53 |
Q.4(A) [6 marks]#
Attempt any two
Q4.1 [3 marks]#
If $\vec{a} = 3i - j - 4k$, $\vec{b} = 4j - 2i - 3k$ and $\vec{c} = 2j - k - i$ then find $|3\vec{a} - 2\vec{b} + 4\vec{c}|$
Answer:
Solution: First, let’s rewrite the vectors in standard form: $\vec{a} = 3i - j - 4k$ $\vec{b} = -2i + 4j - 3k$ $\vec{c} = -i + 2j - k$
$3\vec{a} = 3(3i - j - 4k) = 9i - 3j - 12k$ $2\vec{b} = 2(-2i + 4j - 3k) = -4i + 8j - 6k$ $4\vec{c} = 4(-i + 2j - k) = -4i + 8j - 4k$
$3\vec{a} - 2\vec{b} + 4\vec{c} = (9i - 3j - 12k) - (-4i + 8j - 6k) + (-4i + 8j - 4k)$ $= 9i - 3j - 12k + 4i - 8j + 6k - 4i + 8j - 4k$ $= (9 + 4 - 4)i + (-3 - 8 + 8)j + (-12 + 6 - 4)k$ $= 9i - 3j - 10k$
$|3\vec{a} - 2\vec{b} + 4\vec{c}| = \sqrt{9^2 + (-3)^2 + (-10)^2} = \sqrt{81 + 9 + 100} = \sqrt{190}$
Q4.2 [3 marks]#
For what value of $m$, the vectors $2i - 3j + 5k$ and $mi - 6j - 8k$ are perpendicular to each other?
Answer:
Solution: For two vectors to be perpendicular, their dot product must be zero.
$\vec{A} = 2i - 3j + 5k$ $\vec{B} = mi - 6j - 8k$
$\vec{A} \cdot \vec{B} = 0$ $(2)(m) + (-3)(-6) + (5)(-8) = 0$ $2m + 18 - 40 = 0$ $2m - 22 = 0$ $m = 11$
Q4.3 [3 marks]#
Find the equation of the circle having center $(4, 3)$ and passing through point $(7, -2)$
Answer:
Solution: Step 1: Find radius $r = \sqrt{(7-4)^2 + (-2-3)^2} = \sqrt{3^2 + (-5)^2} = \sqrt{9 + 25} = \sqrt{34}$
Step 2: Write equation Using standard form: $(x - h)^2 + (y - k)^2 = r^2$ $(x - 4)^2 + (y - 3)^2 = 34$
Step 3: Expand $x^2 - 8x + 16 + y^2 - 6y + 9 = 34$ $x^2 + y^2 - 8x - 6y + 25 - 34 = 0$ $x^2 + y^2 - 8x - 6y - 9 = 0$
Table: Circle Properties
Property | Value |
---|---|
Center | $(4, 3)$ |
Radius | $\sqrt{34}$ |
Standard Form | $(x-4)^2 + (y-3)^2 = 34$ |
General Form | $x^2 + y^2 - 8x - 6y - 9 = 0$ |
Q.4(B) [8 marks]#
Attempt any two
Q4.1 [4 marks]#
Prove that the angle between vectors $i + 2j$ and $i + j + 3k$ is $\sin^{-1}\sqrt{\frac{46}{55}}$
Answer:
Solution: Let $\vec{A} = i + 2j$ and $\vec{B} = i + j + 3k$
Step 1: Calculate dot product $\vec{A} \cdot \vec{B} = (1)(1) + (2)(1) + (0)(3) = 1 + 2 + 0 = 3$
Step 2: Calculate magnitudes $|\vec{A}| = \sqrt{1^2 + 2^2 + 0^2} = \sqrt{5}$ $|\vec{B}| = \sqrt{1^2 + 1^2 + 3^2} = \sqrt{11}$
Step 3: Find cosine of angle $\cos \theta = \frac{\vec{A} \cdot \vec{B}}{|\vec{A}||\vec{B}|} = \frac{3}{\sqrt{5} \times \sqrt{11}} = \frac{3}{\sqrt{55}}$
Step 4: Find sine of angle $\sin^2 \theta = 1 - \cos^2 \theta = 1 - \frac{9}{55} = \frac{55 - 9}{55} = \frac{46}{55}$
$\sin \theta = \sqrt{\frac{46}{55}}$
Therefore: $\theta = \sin^{-1}\sqrt{\frac{46}{55}}$
Q4.2 [4 marks]#
If $\vec{x} = -2k + 3i$ and $\vec{y} = 5i + 2j - 4k$ then find the value of $|(\vec{x} + \vec{y}) \times (\vec{x} - \vec{y})|$
Answer:
Solution: First, let’s rewrite in standard form: $\vec{x} = 3i + 0j - 2k$ $\vec{y} = 5i + 2j - 4k$
$\vec{x} + \vec{y} = (3 + 5)i + (0 + 2)j + (-2 - 4)k = 8i + 2j - 6k$ $\vec{x} - \vec{y} = (3 - 5)i + (0 - 2)j + (-2 + 4)k = -2i - 2j + 2k$
$(\vec{x} + \vec{y}) \times (\vec{x} - \vec{y}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \ 8 & 2 & -6 \ -2 & -2 & 2 \end{vmatrix}$
$= \hat{i}(2 \times 2 - (-6) \times (-2)) - \hat{j}(8 \times 2 - (-6) \times (-2)) + \hat{k}(8 \times (-2) - 2 \times (-2))$ $= \hat{i}(4 - 12) - \hat{j}(16 - 12) + \hat{k}(-16 + 4)$ $= -8\hat{i} - 4\hat{j} - 12\hat{k}$
$|(\vec{x} + \vec{y}) \times (\vec{x} - \vec{y})| = \sqrt{(-8)^2 + (-4)^2 + (-12)^2}$ $= \sqrt{64 + 16 + 144} = \sqrt{224} = 4\sqrt{14}$
Q4.3 [4 marks]#
Evaluate: $\lim_{n \to \infty} (\sqrt{n^2 + n + 1} - n)$
Answer:
Solution: We have the indeterminate form $\infty - \infty$. Let’s rationalize:
$\lim_{n \to \infty} (\sqrt{n^2 + n + 1} - n)$
Multiply and divide by the conjugate: $= \lim_{n \to \infty} \frac{(\sqrt{n^2 + n + 1} - n)(\sqrt{n^2 + n + 1} + n)}{\sqrt{n^2 + n + 1} + n}$
$= \lim_{n \to \infty} \frac{(n^2 + n + 1) - n^2}{\sqrt{n^2 + n + 1} + n}$
$= \lim_{n \to \infty} \frac{n + 1}{\sqrt{n^2 + n + 1} + n}$
Divide numerator and denominator by $n$: $= \lim_{n \to \infty} \frac{1 + \frac{1}{n}}{\sqrt{1 + \frac{1}{n} + \frac{1}{n^2}} + 1}$
$= \frac{1 + 0}{\sqrt{1 + 0 + 0} + 1} = \frac{1}{1 + 1} = \frac{1}{2}$
Q.5(A) [6 marks]#
Attempt any two
Q5.1 [3 marks]#
Evaluate: $\lim_{x \to -2} \frac{x^3 + 2x^2 + x + 2}{x^2 + x - 2}$
Answer:
Solution: Direct substitution at $x = -2$: Numerator: $(-2)^3 + 2(-2)^2 + (-2) + 2 = -8 + 8 - 2 + 2 = 0$ Denominator: $(-2)^2 + (-2) - 2 = 4 - 2 - 2 = 0$
We get $\frac{0}{0}$ form, so we need to factor.
Factoring numerator: $x^3 + 2x^2 + x + 2$ $= x^2(x + 2) + 1(x + 2) = (x + 2)(x^2 + 1)$
Factoring denominator: $x^2 + x - 2$ $= (x + 2)(x - 1)$
$\lim_{x \to -2} \frac{x^3 + 2x^2 + x + 2}{x^2 + x - 2} = \lim_{x \to -2} \frac{(x + 2)(x^2 + 1)}{(x + 2)(x - 1)}$
$= \lim_{x \to -2} \frac{x^2 + 1}{x - 1} = \frac{(-2)^2 + 1}{-2 - 1} = \frac{4 + 1}{-3} = \frac{5}{-3} = -\frac{5}{3}$
Q5.2 [3 marks]#
Evaluate: $\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\cos^2 x}$
Answer:
Solution: Direct substitution at $x = \frac{\pi}{2}$: Numerator: $1 - \sin \frac{\pi}{2} = 1 - 1 = 0$ Denominator: $\cos^2 \frac{\pi}{2} = 0^2 = 0$
We get $\frac{0}{0}$ form.
Using the identity: $\cos^2 x = 1 - \sin^2 x$
$\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\cos^2 x} = \lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{1 - \sin^2 x}$
$= \lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{(1 - \sin x)(1 + \sin x)}$
$= \lim_{x \to \frac{\pi}{2}} \frac{1}{1 + \sin x}$
Substituting $x = \frac{\pi}{2}$: $= \frac{1}{1 + 1} = \frac{1}{2}$
Q5.3 [3 marks]#
Evaluate: $\lim_{x \to \infty} (1 + \frac{5}{x})^{2x}$
Answer:
Solution: Let $y = (1 + \frac{5}{x})^{2x}$
Taking natural logarithm: $\ln y = 2x \ln(1 + \frac{5}{x})$
$\lim_{x \to \infty} \ln y = \lim_{x \to \infty} 2x \ln(1 + \frac{5}{x})$
Let $t = \frac{5}{x}$, then as $x \to \infty$, $t \to 0$ and $x = \frac{5}{t}$
$= \lim_{t \to 0} 2 \cdot \frac{5}{t} \ln(1 + t) = \lim_{t \to 0} 10 \cdot \frac{\ln(1 + t)}{t}$
Using the standard limit $\lim_{t \to 0} \frac{\ln(1 + t)}{t} = 1$:
$= 10 \times 1 = 10$
Therefore: $\lim_{x \to \infty} y = e^{10}$
Q.5(B) [8 marks]#
Attempt any two
Q5.1 [4 marks]#
Find the equation of the line passing through point $(2, 4)$ and perpendicular to line $5x - 7y + 11 = 0$
Answer:
Solution: Step 1: Find slope of given line $5x - 7y + 11 = 0$ $7y = 5x + 11$ $y = \frac{5}{7}x + \frac{11}{7}$ Slope of given line = $\frac{5}{7}$
Step 2: Find slope of perpendicular line For perpendicular lines: $m_1 \times m_2 = -1$ $\frac{5}{7} \times m_2 = -1$ $m_2 = -\frac{7}{5}$
Step 3: Use point-slope form $y - y_1 = m(x - x_1)$ $y - 4 = -\frac{7}{5}(x - 2)$ $y - 4 = -\frac{7}{5}x + \frac{14}{5}$ $y = -\frac{7}{5}x + \frac{14}{5} + 4$ $y = -\frac{7}{5}x + \frac{14 + 20}{5}$ $y = -\frac{7}{5}x + \frac{34}{5}$
Multiplying by 5: $5y = -7x + 34$ $7x + 5y - 34 = 0$
Q5.2 [4 marks]#
If the equation of circle is $2x^2 + 2y^2 + 4x - 8y - 6 = 0$ then find its center and radius
Answer:
Solution: Step 1: Simplify by dividing by 2 $x^2 + y^2 + 2x - 4y - 3 = 0$
Step 2: Complete the square $(x^2 + 2x) + (y^2 - 4y) = 3$ $(x^2 + 2x + 1) + (y^2 - 4y + 4) = 3 + 1 + 4$ $(x + 1)^2 + (y - 2)^2 = 8$
Table: Circle Properties
Property | Value |
---|---|
Center | $(-1, 2)$ |
Radius | $\sqrt{8} = 2\sqrt{2}$ |
Q5.3 [4 marks]#
Find the equation of tangent and normal of circle $x^2 + y^2 - 2x + 4y - 20 = 0$ at point $(-2, 2)$
Answer:
Solution: Step 1: Find center of circle $x^2 + y^2 - 2x + 4y - 20 = 0$ Completing the square: $(x^2 - 2x + 1) + (y^2 + 4y + 4) = 20 + 1 + 4$ $(x - 1)^2 + (y + 2)^2 = 25$
Center: $(1, -2)$, Radius: $5$
Step 2: Find slope of radius to point $(-2, 2)$ $m_{radius} = \frac{2 - (-2)}{-2 - 1} = \frac{4}{-3} = -\frac{4}{3}$
Step 3: Find slope of tangent Tangent is perpendicular to radius: $m_{tangent} = -\frac{1}{m_{radius}} = -\frac{1}{-\frac{4}{3}} = \frac{3}{4}$
Step 4: Equation of tangent Using point-slope form at $(-2, 2)$: $y - 2 = \frac{3}{4}(x - (-2))$ $y - 2 = \frac{3}{4}(x + 2)$ $4(y - 2) = 3(x + 2)$ $4y - 8 = 3x + 6$ $3x - 4y + 14 = 0$
Step 5: Equation of normal Normal has slope $m_{radius} = -\frac{4}{3}$: $y - 2 = -\frac{4}{3}(x + 2)$ $3(y - 2) = -4(x + 2)$ $3y - 6 = -4x - 8$ $4x + 3y + 2 = 0$
Table: Line Equations
Line | Equation |
---|---|
Tangent | $3x - 4y + 14 = 0$ |
Normal | $4x + 3y + 2 = 0$ |
Mathematics Formula Cheat Sheet for Winter Exams#
Determinants#
- 2×2 Matrix: $\begin{vmatrix} a & b \ c & d \end{vmatrix} = ad - bc$
- 3×3 Matrix: Expand along row/column with most zeros
- Properties: $|A| = 0$ if any row/column is zero
Functions#
- Composition: $(f \circ g)(x) = f(g(x))$
- Even function: $f(-x) = f(x)$
- Odd function: $f(-x) = -f(x)$
Logarithms#
- Basic properties:
- $\log_a a = 1$
- $\log 1 = 0$
- $\log x - \log y = \log \frac{x}{y}$
- $\log x + \log y = \log(xy)$
- Change of base: $\frac{1}{\log_a b} = \log_b a$
Trigonometry#
Periods#
- $\sin(ax + b)$ has period $\frac{2\pi}{|a|}$
- $\cos(ax + b)$ has period $\frac{2\pi}{|a|}$
- $\tan(ax + b)$ has period $\frac{\pi}{|a|}$
Angle Conversions#
- Degrees to radians: $\text{radians} = \text{degrees} \times \frac{\pi}{180}$
Inverse Trigonometric Identities#
- $\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$
- $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$
- $\tan^{-1} a + \tan^{-1} b = \tan^{-1}(\frac{a+b}{1-ab})$ when $ab < 1$
Allied Angles#
- $\sin(\frac{\pi}{2} + \theta) = \cos \theta$
- $\cos(\pi - \theta) = -\cos \theta$
- $\tan(\pi - \theta) = -\tan \theta$
- $\cot(\frac{3\pi}{2} - \theta) = \tan \theta$
Sum-to-Product Formulas#
- $\sin A + \sin B = 2\sin(\frac{A+B}{2})\cos(\frac{A-B}{2})$
- $\cos A + \cos B = 2\cos(\frac{A+B}{2})\cos(\frac{A-B}{2})$
Vectors#
- Magnitude: $|\vec{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$
- Dot Product: $\vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + a_3b_3$
- Cross Product: $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \ a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 \end{vmatrix}$
- Properties:
- $\vec{a} \times \vec{a} = 0$
- $\vec{a} \perp \vec{b}$ iff $\vec{a} \cdot \vec{b} = 0$
- Work done: $W = \vec{F} \cdot \vec{d}$
Coordinate Geometry#
Lines#
- Slope: $m = \frac{y_2 - y_1}{x_2 - x_1}$
- Two-point form: $\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$
- Perpendicular lines: $m_1 \times m_2 = -1$
- Point-slope form: $y - y_1 = m(x - x_1)$
Circles#
- Standard form: $(x - h)^2 + (y - k)^2 = r^2$
- General form: $x^2 + y^2 + 2gx + 2fy + c = 0$
- Center: $(-g, -f)$, Radius: $\sqrt{g^2 + f^2 - c}$
- Tangent at point $(x_1, y_1)$: $xx_1 + yy_1 + g(x + x_1) + f(y + y_1) + c = 0$
Limits#
Standard limits:
- $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$
- $\lim_{x \to 0} \frac{e^x - 1}{x} = 1$
- $\lim_{x \to a} \frac{x^n - a^n}{x - a} = na^{n-1}$
- $\lim_{x \to \infty} (1 + \frac{a}{x})^x = e^a$
Rationalization: For expressions like $\sqrt{A} - \sqrt{B}$, multiply by $\frac{\sqrt{A} + \sqrt{B}}{\sqrt{A} + \sqrt{B}}$
Problem-Solving Strategies#
For Function Problems#
- Check domain restrictions
- Use algebraic manipulation for compositions
- Verify results by substitution
For Logarithmic Proofs#
- Use change of base formula strategically
- Convert complex expressions to simpler forms
- Apply logarithm properties systematically
For Trigonometric Identities#
- Look for sum-to-product opportunities
- Use allied angle formulas
- Factor expressions when possible
For Vector Problems#
- Write vectors in component form
- Use properties of dot and cross products
- Check perpendicularity using dot product
For Limit Problems#
- Try direct substitution first
- Factor and cancel for $\frac{0}{0}$ forms
- Use rationalization for radical expressions
- Apply standard limit formulas
For Circle Problems#
- Complete the square to find center and radius
- Use slope relationships for tangent and normal
- Remember tangent is perpendicular to radius
Common Mistakes to Avoid#
- Sign errors in determinant calculations
- Forgetting domain restrictions in logarithmic functions
- Angle measure confusion (degrees vs radians)
- Not simplifying trigonometric expressions fully
- Calculation errors in vector operations
- Incomplete factorization in limit problems
Exam Success Tips#
- Show all working steps clearly
- Verify answers when possible
- Use proper mathematical notation
- Draw diagrams for geometry problems
- Manage time effectively across all questions
Best of luck with your Winter 2023 Mathematics exam! 🎯