Q.1 [14 marks]

Fill in the blanks using appropriate choice from the given options

Q1.1 [1 mark]

 $\begin{vmatrix} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{vmatrix} = \underline{\qquad}$

Answer: c. 1

Solution: $\begin{vmatrix} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{vmatrix} = \sin \theta \cdot \sin \theta - (-\cos \theta) \cdot \cos \theta$ $= \sin^2 \theta + \cos^2 \theta = 1$

Q1.2 [1 mark]

If
$$f(x)=x^3-1$$
 then $f(-1)=$ _____

Answer: d. -2

Solution: $f(x) = x^3 - 1$ $f(-1) = (-1)^3 - 1 = -1 - 1 = -2$

Q1.3 [1 mark]

 $\log 1 \times \log 2 \times \log 3 \times \log 4 =$ _____

Answer: a. 0

Solution: Since $\log 1 = 0$, we have: $\log 1 \times \log 2 \times \log 3 \times \log 4 = 0 \times \log 2 \times \log 3 \times \log 4 = 0$

Q1.4 [1 mark]

 $\log x - \log y =$ _____

Answer: b. $\log \frac{x}{y}$

Solution: Using logarithm property: $\log x - \log y = \log \frac{x}{y}$

Q1.5 [1 mark]

Principal Period of $\sin(2x+7) =$ _____

Answer: c. π

For $\sin(ax+b)$, the period is $rac{2\pi}{|a|}$ Here, a=2, so period = $rac{2\pi}{2}=\pi$

Q1.6 [1 mark]

 $450^{\circ} = _radian$

Answer: c. $\frac{5\pi}{2}$

Solution: $450^{\circ} = 450 \times \frac{\pi}{180} = \frac{450\pi}{180} = \frac{5\pi}{2}$ radians

Q1.7 [1 mark]

 $\tan^{-1}x + \cot^{-1}x = ___$

Answer: d. $\frac{\pi}{2}$

Solution: This is a standard identity: $an^{-1}x + \cot^{-1}x = rac{\pi}{2}$ for all x > 0

Q1.8 [1 mark]

 $|2i - 3j + 4k| = _$

Answer: a. $\sqrt{29}$

Solution: $|2i-3j+4k|=\sqrt{2^2+(-3)^2+4^2}=\sqrt{4+9+16}=\sqrt{29}$

Q1.9 [1 mark]

For vector $ec{a} imesec{a}=$ _____

Answer: d. 0

Solution: The cross product of any vector with itself is always zero: $ec{a} imesec{a}=0$

Q1.10 [1 mark]

If two lines having slopes m_1 and m_2 are perpendicular to each other then _____

Answer: c. $m_1 \cdot m_2 = -1$

Solution:

For perpendicular lines, the product of their slopes equals -1.

Q1.11 [1 mark]

If $x^2+y^2=25$ then its radius _

Answer: c. 5

Comparing with standard form $x^2 + y^2 = r^2$: $r^2 = 25$, so r = 5

Q1.12 [1 mark]

 $\lim_{\theta \to 0} \frac{\sin 5\theta}{\tan 7\theta} =$ _____

Answer: b. $\frac{5}{7}$

Solution:

$$\begin{split} \lim_{\theta \to 0} \frac{\sin 5\theta}{\tan 7\theta} &= \lim_{\theta \to 0} \frac{\sin 5\theta}{\frac{\sin 7\theta}{\cos 7\theta}} = \lim_{\theta \to 0} \frac{\sin 5\theta \cos 7\theta}{\sin 7\theta} \\ &= \lim_{\theta \to 0} \frac{\sin 5\theta}{5\theta} \cdot \frac{7\theta}{\sin 7\theta} \cdot \frac{5\theta}{7\theta} \cdot \cos 7\theta \\ &= 1 \times 1 \times \frac{5}{7} \times 1 = \frac{5}{7} \end{split}$$

Q1.13 [1 mark]

 $\lim_{x \to 0} \frac{e^x - 1}{x} =$ _____

Answer: c. 1

Solution: This is a standard limit: $\lim_{x o 0} rac{e^x - 1}{x} = 1$

Q1.14 [1 mark]

 $\lim_{x\to 1} \frac{x^2-1}{x-1} = \underline{\qquad}$

Answer: d. 2

Solution: $\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{x - 1} = \lim_{x \to 1} (x + 1) = 1 + 1 = 2$

Q.2(A) [6 marks]

Attempt any two

Q2.1 [3 marks]

If
$$f(x)=rac{1-x}{1+x}$$
 then prove that (1) $f(x)\cdot f(-x)=1$ (2) $f(x)+f(rac{1}{x})=0$

Answer:

Solution:

Part (1): Prove $f(x)\cdot f(-x)=1$ $f(x)=rac{1-x}{1+x}$ $f(-x)=rac{1-(-x)}{1+(-x)}=rac{1+x}{1-x}$

$$f(x) \cdot f(-x) = rac{1-x}{1+x} \cdot rac{1+x}{1-x} = rac{(1-x)(1+x)}{(1+x)(1-x)} = 1$$

Part (2): Prove $f(x) + f(rac{1}{x}) = 0$

$$egin{aligned} f(rac{1}{x}) &= rac{1-rac{1}{x}}{1+rac{1}{x}} = rac{x-1}{x} \ rac{x+1}{x+1} &= rac{x-1}{x+1} \ f(x) + f(rac{1}{x}) &= rac{1-x}{1+x} + rac{x-1}{x+1} = rac{1-x}{1+x} - rac{1-x}{1+x} = 0 \end{aligned}$$

Q2.2 [3 marks]

If $\begin{vmatrix} x & 2 & 3 \\ 5 & 0 & 7 \\ 3 & 1 & 2 \end{vmatrix} = 30$ then find the value of x

Answer:

Solution:

Expanding along the second row (which has a zero):

 $\begin{vmatrix} x & 2 & 3 \\ 5 & 0 & 7 \\ 3 & 1 & 2 \end{vmatrix} = -5 \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} + 0 - 7 \begin{vmatrix} x & 2 \\ 3 & 1 \end{vmatrix}$ $= -5(2 \times 2 - 3 \times 1) - 7(x \times 1 - 2 \times 3)$ = -5(4 - 3) - 7(x - 6)= -5(1) - 7x + 42= -5 - 7x + 42= 37 - 7xGiven: 37 - 7x = 307x = 37 - 30 = 7x = 1

Q2.3 [3 marks]

Prove that $\tan 55^\circ = \frac{\cos 10^\circ + \sin 10^\circ}{\cos 10^\circ - \sin 10^\circ}$

Answer:

Solution:

We know that $55\degree = 45\degree + 10\degree$

Using the tangent addition formula: $\tan(45^{\circ} + 10^{\circ}) = \frac{\tan 45^{\circ} + \tan 10^{\circ}}{1 - \tan 45^{\circ} \tan 10^{\circ}}$ Since $\tan 45^{\circ} = 1$: $\tan 55^{\circ} = \frac{1 + \tan 10^{\circ}}{1 - \tan 10^{\circ}}$ Now, $\tan 10^{\circ} = \frac{\sin 10^{\circ}}{\cos 10^{\circ}}$ $\tan 55^{\circ} = \frac{1 + \frac{\sin 10^{\circ}}{\cos 10^{\circ}}}{1 - \frac{\sin 10^{\circ}}{\cos 10^{\circ}}} = \frac{\cos 10^{\circ} + \sin 10^{\circ}}{\cos 10^{\circ} - \sin 10^{\circ}}$

Q.2(B) [8 marks]

Attempt any two

Q2.1 [4 marks]

Prove that $rac{1}{\log_{xy} xyz} + rac{1}{\log_{yz} xyz} + rac{1}{\log_{zx} xyz} = 2$

Answer:

Solution:

Using the change of base formula: $rac{1}{\log_a b} = \log_b a$

$$\frac{1}{\log_{xy} xyz} = \log_{xyz}(xy)$$

$$\frac{1}{\log_{yz} xyz} = \log_{xyz}(yz)$$

$$\frac{1}{\log_{yz} xyz} = \log_{xyz}(zx)$$
LHS = $\log_{xyz}(xy) + \log_{xyz}(yz) + \log_{xyz}(zx)$

$$= \log_{xyz}[(xy)(yz)(zx)]$$

$$= \log_{xyz}(x^2y^2z^2)$$

$$= \log_{xyz}(xyz)^2$$

$$= 2 \log_{xyz}(xyz)$$

$$= 2 \times 1 = 2 = \text{RHS}$$

Q2.2 [4 marks]

If $\log(rac{a+b}{3}) = rac{1}{2}(\log a + \log b)$ then prove that $a^2 + b^2 = 7ab$

Answer:

Solution: Given: $\log(\frac{a+b}{3}) = \frac{1}{2}(\log a + \log b)$ RHS: $\frac{1}{2}(\log a + \log b) = \frac{1}{2}\log(ab) = \log(ab)^{1/2} = \log\sqrt{ab}$ So: $\log(\frac{a+b}{3}) = \log\sqrt{ab}$ Taking antilog: $\frac{a+b}{3} = \sqrt{ab}$ Squaring both sides: $(\frac{a+b}{3})^2 = ab$ $\frac{(a+b)^2}{9} = ab$ $(a+b)^2 = 9ab$ $a^2 + 2ab + b^2 = 9ab$ $a^2 + b^2 = 9ab - 2ab = 7ab$

Q2.3 [4 marks]

If $\log x imes rac{\log 16}{\log 32} = \log 256$ then find the value of x

Answer:

Solution:

First, let's simplify the logarithmic terms: $\log 16 = \log 2^4 = 4 \log 2$ $\log 32 = \log 2^5 = 5 \log 2$ $\log 256 = \log 2^8 = 8 \log 2$ $\frac{\log 16}{\log 32} = \frac{4 \log 2}{5 \log 2} = \frac{4}{5}$ Given equation becomes: $\log x \times \frac{4}{5} = 8 \log 2$ $\log x = \frac{5 \times 8 \log 2}{4} = 10 \log 2$ $\log x = \log 2^{10} = \log 1024$ Therefore: x = 1024

Q.3(A) [6 marks]

Attempt any two

Q3.1 [3 marks]

Prove that $\frac{\sin(\frac{\pi}{2}+\theta)}{\cos(\pi-\theta)} + \frac{\cot(\frac{3\pi}{2}-\theta)}{\tan(\pi-\theta)} + \frac{\setminus \csc(\frac{\pi}{2}-\theta)}{\sec(\pi+\theta)} = -3$

Answer:

Solution:

Using trigonometric identities:

First term:

 $\frac{\sin(\frac{\pi}{2} + \theta) = \cos \theta}{\cos(\pi - \theta) = -\cos \theta}$ $\frac{\sin(\frac{\pi}{2} + \theta)}{\cos(\pi - \theta)} = \frac{\cos \theta}{-\cos \theta} = -1$

Second term:

 $\cot(\frac{3\pi}{2} - \theta) = \cot(2\pi - \frac{\pi}{2} - \theta) = \cot(-(\frac{\pi}{2} + \theta)) = -\cot(\frac{\pi}{2} + \theta) = -(-\tan\theta) = \tan\theta$ $\tan(\pi - \theta) = -\tan\theta$ $\frac{\cot(\frac{3\pi}{2} - \theta)}{\tan(\pi - \theta)} = \frac{\tan\theta}{-\tan\theta} = -1$

Third term:

 $\frac{\left(\operatorname{cosec}\left(\frac{\pi}{2} - \theta\right) = \frac{1}{\sin\left(\frac{\pi}{2} - \theta\right)} = \frac{1}{\cos\theta}}{\sec\left(\pi + \theta\right) = \frac{1}{\cos\left(\pi + \theta\right)} = \frac{1}{-\cos\theta}}$ $\frac{\left(\operatorname{cosec}\left(\frac{\pi}{2} - \theta\right)\right)}{\sec\left(\pi + \theta\right)} = \frac{\frac{1}{\cos\theta}}{\frac{1}{-\cos\theta}} = \frac{-\cos\theta}{\cos\theta} = -1$

Therefore: LHS = (-1) + (-1) + (-1) = -3 = RHS

Q3.2 [3 marks]

Prove that $an^{-1}rac{1}{2}+ an^{-1}rac{1}{3}=rac{\pi}{4}$

Answer:

Solution:

Using the formula: $an^{-1}a + an^{-1}b = an^{-1}(rac{a+b}{1-ab})$ when ab < 1

Let
$$a = \frac{1}{2}$$
 and $b = \frac{1}{3}$
 $ab = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6} < 1 \checkmark$
 $\tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{3} = \tan^{-1}(\frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{2} \times \frac{1}{3}})$
 $= \tan^{-1}(\frac{\frac{3+2}{6}}{1 - \frac{1}{6}}) = \tan^{-1}(\frac{\frac{5}{6}}{\frac{5}{6}}) = \tan^{-1}(1) = \frac{\pi}{4}$

Q3.3 [3 marks]

Find the equation of the line passing through points (1,6) and (-2,5). Also find the slope of the line.

Answer:

Solution:

Step 1: Find the slope $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - 6}{-2 - 1} = \frac{-1}{-3} = \frac{1}{3}$

Step 2: Find the equation using point-slope form

Using point (1, 6): $y - 6 = \frac{1}{3}(x - 1)$ 3(y - 6) = x - 1 3y - 18 = x - 1x - 3y + 17 = 0

Table: Line Properties

Property	Value
Slope	$\frac{1}{3}$
Equation	x-3y+17=0

Q.3(B) [8 marks]

Attempt any two

Q3.1 [4 marks]

Draw the graph of $y=\sin x$; $0\leq x\leq \pi$

Answer:

Table of Key Points:

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
$y = \sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0

Properties:

- Domain: $[0, \pi]$
- Range: [0, 1]
- Maximum: 1 at $x = \frac{\pi}{2}$
- Zeros: x = 0 and $x = \pi$

Q3.2 [4 marks]

Prove that $\frac{\sin\theta + \sin 2\theta + \sin 4\theta + \sin 5\theta}{\cos\theta + \cos 2\theta + \cos 4\theta + \cos 5\theta} = \tan 3\theta$

Answer:

Solution:

We can group the terms strategically:

Numerator: $(\sin \theta + \sin 5\theta) + (\sin 2\theta + \sin 4\theta)$

Using sum-to-product formula: $\sin A + \sin B = 2\sin(\frac{A+B}{2})\cos(\frac{A-B}{2})$ $\sin \theta + \sin 5\theta = 2\sin(\frac{\theta+5\theta}{2})\cos(\frac{5\theta-\theta}{2}) = 2\sin(3\theta)\cos(2\theta)$ $\sin 2\theta + \sin 4\theta = 2\sin(\frac{2\theta+4\theta}{2})\cos(\frac{4\theta-2\theta}{2}) = 2\sin(3\theta)\cos(\theta)$

Numerator = $2\sin(3\theta)\cos(2\theta) + 2\sin(3\theta)\cos(\theta) = 2\sin(3\theta)[\cos(2\theta) + \cos(\theta)]$

Denominator: $(\cos \theta + \cos 5\theta) + (\cos 2\theta + \cos 4\theta)$

 $\cos \theta + \cos 5\theta = 2\cos(\frac{\theta+5\theta}{2})\cos(\frac{5\theta-\theta}{2}) = 2\cos(3\theta)\cos(2\theta)$ $\cos 2\theta + \cos 4\theta = 2\cos(\frac{2\theta+4\theta}{2})\cos(\frac{4\theta-2\theta}{2}) = 2\cos(3\theta)\cos(\theta)$

Denominator = $2\cos(3\theta)\cos(2\theta) + 2\cos(3\theta)\cos(\theta) = 2\cos(3\theta)[\cos(2\theta) + \cos(\theta)]$

Therefore: $\frac{\text{Numerator}}{\text{Denominator}} = \frac{2\sin(3\theta)[\cos(2\theta) + \cos(\theta)]}{2\cos(3\theta)[\cos(2\theta) + \cos(\theta)]} = \frac{\sin(3\theta)}{\cos(3\theta)} = \tan(3\theta)$

Q3.3 [4 marks]

The constant forces i - j + k, i + j - 3k and 4i + 5j - 6k act on a particle. Under the action of these forces, particle moves from point 3i - 2j + k to point i + 3j - 4k. Find the total work done by the forces.

Answer:

Solution:

Step 1: Find resultant force

 $ec{F_{total}} = (i-j+k) + (i+j-3k) + (4i+5j-6k) \ = (1+1+4)i + (-1+1+5)j + (1-3-6)k \ = 6i+5j-8k$

Step 2: Find displacement

Initial position: 3i-2j+kFinal position: i+3j-4k $\vec{d}=(i+3j-4k)-(3i-2j+k)=-2i+5j-5k$

Step 3: Calculate work done

 $W = \vec{F_{total}} \cdot \vec{d} = (6i + 5j - 8k) \cdot (-2i + 5j - 5k)$ W = 6(-2) + 5(5) + (-8)(-5) = -12 + 25 + 40 = 53 units

Table: Work Calculation

Component	Force	Displacement	Work
х	6	-2	-12
У	5	5	25
Z	-8	-5	40
Total			53

Q.4(A) [6 marks]

Attempt any two

Q4.1 [3 marks]

If $ec{a}=3i-j-4k$, $ec{b}=4j-2i-3k$ and $ec{c}=2j-k-i$ then find $|3ec{a}-2ec{b}+4ec{c}|$

Answer:

First, let's rewrite the vectors in standard form: $\vec{a} = 3i - j - 4k$ $\vec{b} = -2i + 4j - 3k$ $\vec{c} = -i + 2j - k$ $3\vec{a} = 3(3i - j - 4k) = 9i - 3j - 12k$ $2\vec{b} = 2(-2i + 4j - 3k) = -4i + 8j - 6k$ $4\vec{c} = 4(-i + 2j - k) = -4i + 8j - 6k$ $4\vec{c} = 4(-i + 2j - k) = -4i + 8j - 4k$ $3\vec{a} - 2\vec{b} + 4\vec{c} = (9i - 3j - 12k) - (-4i + 8j - 6k) + (-4i + 8j - 4k)$ = 9i - 3j - 12k + 4i - 8j + 6k - 4i + 8j - 4k = (9 + 4 - 4)i + (-3 - 8 + 8)j + (-12 + 6 - 4)k = 9i - 3j - 10k $|3\vec{a} - 2\vec{b} + 4\vec{c}| = \sqrt{9^2 + (-3)^2 + (-10)^2} = \sqrt{81 + 9 + 100} = \sqrt{190}$

Q4.2 [3 marks]

For what value of m, the vectors 2i-3j+5k and mi-6j-8k are perpendicular to each other?

Answer:

Solution:

For two vectors to be perpendicular, their dot product must be zero.

$$egin{aligned} ec{A} &= 2i - 3j + 5k \ ec{B} &= mi - 6j - 8k \ ec{A} \cdot ec{B} &= 0 \ (2)(m) + (-3)(-6) + (5)(-8) = 0 \ 2m + 18 - 40 = 0 \ 2m - 22 &= 0 \ m &= 11 \end{aligned}$$

Q4.3 [3 marks]

Find the equation of the circle having center (4,3) and passing through point (7,-2)

Answer:

Solution: Step 1: Find radius $r = \sqrt{(7-4)^2 + (-2-3)^2} = \sqrt{3^2 + (-5)^2} = \sqrt{9+25} = \sqrt{34}$

Step 2: Write equation

Using standard form: $(x-h)^2+(y-k)^2=r^2$ $(x-4)^2+(y-3)^2=34$

Step 3: Expand

 $egin{aligned} x^2 - 8x + 16 + y^2 - 6y + 9 &= 34 \ x^2 + y^2 - 8x - 6y + 25 - 34 &= 0 \ x^2 + y^2 - 8x - 6y - 9 &= 0 \end{aligned}$

Table: Circle Properties

Property	Value
Center	(4,3)
Radius	$\sqrt{34}$
Standard Form	$(x-4)^2 + (y-3)^2 = 34$
General Form	$x^2 + y^2 - 8x - 6y - 9 = 0$

Q.4(B) [8 marks]

Attempt any two

Q4.1 [4 marks]

Prove that the angle between vectors i+2j and i+j+3k is $\sin^{-1}\sqrt{rac{46}{55}}$

Answer:

Solution: Let $ec{A}=i+2j$ and $ec{B}=i+j+3k$

Step 1: Calculate dot product $ec{A}\cdotec{B}=(1)(1)+(2)(1)+(0)(3)=1+2+0=3$

Step 2: Calculate magnitudes

 $ert ec{A} ert = \sqrt{1^2 + 2^2 + 0^2} = \sqrt{5}$ $ec{B} ec{B} ec{B} = \sqrt{1^2 + 1^2 + 3^2} = \sqrt{11}$

Step 3: Find cosine of angle $\cos \theta = \frac{\vec{A} \cdot \vec{B}}{|\vec{A}||\vec{B}|} = \frac{3}{\sqrt{5} \times \sqrt{11}} = \frac{3}{\sqrt{55}}$

Step 4: Find sine of angle

$$\sin^2 \theta = 1 - \cos^2 \theta = 1 - \frac{9}{55} = \frac{55-9}{55} = \frac{46}{55}$$
$$\sin \theta = \sqrt{\frac{46}{55}}$$
Therefore: $\theta = \sin^{-1} \sqrt{\frac{46}{55}}$

Q4.2 [4 marks]

If $ec{x}=-2k+3i$ and $ec{y}=5i+2j-4k$ then find the value of $|(ec{x}+ec{y}) imes(ec{x}-ec{y})|$

Answer:

Solution:

First, let's rewrite in standard form: $\vec{x} = 3i + 0j - 2k$ $\vec{y} = 5i + 2j - 4k$ $\vec{x} + \vec{y} = (3+5)i + (0+2)j + (-2-4)k = 8i + 2j - 6k$ $ec{x} - ec{y} = (3-5)i + (0-2)j + (-2+4)k = -2i - 2j + 2k$ $(ec{x}+ec{y}) imes(ec{x}-ec{y}) = egin{bmatrix} ec{i} & ec{j} & ec{k}\ 8 & 2 & -6\ -2 & -2 & 2 \end{bmatrix}$ $\hat{i}(2 imes 2-(-6) imes (-2))-\hat{j}(8 imes 2-(-6) imes (-2))+\hat{k}(8 imes (-2)-2 imes (-2))$ $=\hat{i}(4-12)-\hat{j}(16-12)+\hat{k}(-16+4)$ $\hat{k}=-8\hat{i}-4\hat{j}-12\hat{k}$ $\begin{aligned} |(\vec{x} + \vec{y}) \times (\vec{x} - \vec{y})| &= \sqrt{(-8)^2 + (-4)^2 + (-12)^2} \\ &= \sqrt{64 + 16 + 144} = \sqrt{224} = 4\sqrt{14} \end{aligned}$

Q4.3 [4 marks]

Evaluate: $\lim_{n o \infty} (\sqrt{n^2 + n + 1} - n)$

Answer:

Solution:

We have the indeterminate form $\infty - \infty$. Let's rationalize:

 $\lim_{n\to\infty}(\sqrt{n^2+n+1}-n)$

Multiply and divide by the conjugate: = $\lim_{n\to\infty} \frac{(\sqrt{n^2+n+1}-n)(\sqrt{n^2+n+1}+n)}{\sqrt{n^2+n+1}+n}$ $= \lim_{n o \infty} rac{(n^2+n+1)-n^2}{\sqrt{n^2+n+1}+n}$ $= \lim_{n o \infty} rac{n+1}{\sqrt{n^2+n+1}+n}$

Divide numerator and denominator by *n*:

$$= \lim_{n \to \infty} \frac{1 + \frac{1}{n}}{\sqrt{1 + \frac{1}{n} + \frac{1}{n^2} + 1}}$$
$$= \frac{1 + 0}{\sqrt{1 + 0 + 0} + 1} = \frac{1}{1 + 1} = \frac{1}{2}$$

Q.5(A) [6 marks]

Attempt any two

Q5.1 [3 marks]

Evaluate: $\lim_{x \to -2} \frac{x^3 + 2x^2 + x + 2}{x^2 + x - 2}$

Answer:

Solution:

Direct substitution at x = -2: Numerator: $(-2)^3 + 2(-2)^2 + (-2) + 2 = -8 + 8 - 2 + 2 = 0$ Denominator: $(-2)^2 + (-2) - 2 = 4 - 2 - 2 = 0$

We get $\frac{0}{0}$ form, so we need to factor.

Factoring numerator: $x^3 + 2x^2 + x + 2$ = $x^2(x+2) + 1(x+2) = (x+2)(x^2+1)$

Factoring denominator: $x^2 + x - 2$ = (x + 2)(x - 1) $\lim_{x \to -2} \frac{x^3 + 2x^2 + x + 2}{x^2 + x - 2} = \lim_{x \to -2} \frac{(x + 2)(x^2 + 1)}{(x + 2)(x - 1)}$ = $\lim_{x \to -2} \frac{x^2 + 1}{x - 1} = \frac{(-2)^2 + 1}{-2 - 1} = \frac{4 + 1}{-3} = \frac{5}{-3} = -\frac{5}{3}$

Q5.2 [3 marks]

Evaluate: $\lim_{x\to\frac{\pi}{2}} \frac{1-\sin x}{\cos^2 x}$

Answer:

Solution:

Direct substitution at $x=rac{\pi}{2}$: Numerator: $1-\sinrac{\pi}{2}=1-1=0$ Denominator: $\cos^2rac{\pi}{2}=0^2=0$

We get $\frac{0}{0}$ form.

Using the identity: $\cos^2 x = 1 - \sin^2 x$ $\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\cos^2 x} = \lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{1 - \sin^2 x}$ $= \lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{(1 - \sin x)(1 + \sin x)}$ $= \lim_{x \to \frac{\pi}{2}} \frac{1}{1 + \sin x}$ Substituting $x = \frac{\pi}{2}$: $= \frac{1}{1+1} = \frac{1}{2}$

Q5.3 [3 marks]

Evaluate: $\lim_{x o \infty} (1 + rac{5}{x})^{2x}$

Answer:

Let $y = (1 + \frac{5}{x})^{2x}$ Taking natural logarithm: $\ln y = 2x \ln(1 + \frac{5}{x})$ $\lim_{x \to \infty} \ln y = \lim_{x \to \infty} 2x \ln(1 + \frac{5}{x})$ Let $t = \frac{5}{x}$, then as $x \to \infty$, $t \to 0$ and $x = \frac{5}{t}$ $= \lim_{t \to 0} 2 \cdot \frac{5}{t} \ln(1 + t) = \lim_{t \to 0} 10 \cdot \frac{\ln(1+t)}{t}$ Using the standard limit $\lim_{t \to 0} \frac{\ln(1+t)}{t} = 1$: $= 10 \times 1 = 10$ Therefore: $\lim_{x \to \infty} y = e^{10}$

Q.5(B) [8 marks]

Attempt any two

Q5.1 [4 marks]

Find the equation of the line passing through point (2,4) and perpendicular to line 5x-7y+11=0

Answer:

Solution:

Step 1: Find slope of given line 5x - 7y + 11 = 0 7y = 5x + 11 $y = \frac{5}{7}x + \frac{11}{7}$ Slope of given line = $\frac{5}{7}$

Step 2: Find slope of perpendicular line

For perpendicular lines: $m_1 imes m_2=-1$ $rac{5}{7} imes m_2=-1$ $m_2=-rac{7}{5}$

Step 3: Use point-slope form

 $egin{aligned} y-y_1&=m(x-x_1)\ y-4&=-rac{7}{5}(x-2)\ y-4&=-rac{7}{5}x+rac{14}{5}\ y&=-rac{7}{5}x+rac{14}{5}+4\ y&=-rac{7}{5}x+rac{14+20}{5}\ y&=-rac{7}{5}x+rac{34}{5} \end{aligned}$

Multiplying by 5: 5y = -7x + 347x + 5y - 34 = 0

Q5.2 [4 marks]

If the equation of circle is $2x^2 + 2y^2 + 4x - 8y - 6 = 0$ then find its center and radius

Answer:

Solution:

Step 1: Simplify by dividing by 2 $x^2 + y^2 + 2x - 4y - 3 = 0$

Step 2: Complete the square $(x^2 + 2x) + (y^2 - 4y) = 3$ $(x^2 + 2x + 1) + (y^2 - 4y + 4) = 3 + 1 + 4$ $(x + 1)^2 + (y - 2)^2 = 8$

Table: Circle Properties

Property	Value
Center	(-1,2)
Radius	$\sqrt{8}=2\sqrt{2}$

Q5.3 [4 marks]

Find the equation of tangent and normal of circle $x^2+y^2-2x+4y-20=0$ at point (-2,2)

Answer:

Solution:

Step 1: Find center of circle $x^2 + y^2 - 2x + 4y - 20 = 0$ Completing the square: $(x^2 - 2x + 1) + (y^2 + 4y + 4) = 20 + 1 + 4$ $(x - 1)^2 + (y + 2)^2 = 25$

Center: (1, -2), Radius: 5

Step 2: Find slope of radius to point (-2,2) $m_{radius} = rac{2-(-2)}{-2-1} = rac{4}{-3} = -rac{4}{3}$

Step 3: Find slope of tangent

Tangent is perpendicular to radius: $m_{tangent} = -rac{1}{m_{radius}} = -rac{1}{-rac{4}{3}} = rac{3}{4}$

Step 4: Equation of tangent

Using point-slope form at (-2, 2): $y - 2 = \frac{3}{4}(x - (-2))$ $y - 2 = \frac{3}{4}(x + 2)$ 4(y - 2) = 3(x + 2) 4y - 8 = 3x + 63x - 4y + 14 = 0

Step 5: Equation of normal

Normal has slope $m_{radius} = -\frac{4}{3}$: $y-2 = -\frac{4}{3}(x+2)$ 3(y-2) = -4(x+2) 3y-6 = -4x-84x+3y+2 = 0

Table: Line Equations

Line	Equation
Tangent	3x - 4y + 14 = 0
Normal	4x + 3y + 2 = 0

Mathematics Formula Cheat Sheet for Winter Exams

Determinants

- 2×2 Matrix: $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad bc$
- 3×3 Matrix: Expand along row/column with most zeros
- **Properties**: |A| = 0 if any row/column is zero

Functions

- Composition: $(f \circ g)(x) = f(g(x))$
- Even function: f(-x) = f(x)
- Odd function: f(-x) = -f(x)

Logarithms

- Basic properties:
 - $\circ \log_a a = 1$
 - $\circ \log 1 = 0$
 - $\circ \log x \log y = \log \frac{x}{y}$
 - $\circ \ \log x + \log y = \log(xy)$

• Change of base: $rac{1}{\log_a b} = \log_b a$

Trigonometry

Periods

- $\sin(ax+b)$ has period $\frac{2\pi}{|a|}$
- $\cos(ax+b)$ has period $\frac{2\pi}{|a|}$
- $\tan(ax+b)$ has period $\frac{\pi}{|a|}$

Angle Conversions

• Degrees to radians: radians = degrees $\times \frac{\pi}{180}$

Inverse Trigonometric Identities

- $\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$
- $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$
- $an^{-1}a + an^{-1}b = an^{-1}(rac{a+b}{1-ab})$ when ab < 1

Allied Angles

- $\sin(\frac{\pi}{2} + \theta) = \cos\theta$
- $\cos(\pi \theta) = -\cos\theta$
- $\tan(\pi \theta) = -\tan\theta$
- $\cot(\frac{3\pi}{2} \theta) = \tan \theta$

Sum-to-Product Formulas

- $\sin A + \sin B = 2\sin(\frac{A+B}{2})\cos(\frac{A-B}{2})$
- $\cos A + \cos B = 2\cos(\frac{A+B}{2})\cos(\frac{A-B}{2})$

Vectors

- Magnitude: $ert ec{a} ert = \sqrt{a_1^2 + a_2^2 + a_3^2}$
- Dot Product: $ec{a}\cdotec{b}=a_1b_1+a_2b_2+a_3b_3$

• Cross Product:
$$ec{a} imesec{b}=egin{pmatrix} ec{i}&ec{j}&ec{k}\ a_1&a_2&a_3\ b_1&b_2&b_3 \end{pmatrix}$$

- Properties:
 - $\circ ~~\vec{a}\times\vec{a}=0$
 - $\circ ~~ec{a} \perp ec{b}$ iff $ec{a} \cdot ec{b} = 0$
- Work done: $W = ec{F} \cdot ec{d}$

Coordinate Geometry

Lines

- Slope: $m = \frac{y_2 y_1}{x_2 x_1}$
- Two-point form: $rac{y-y_1}{y_2-y_1}=rac{x-x_1}{x_2-x_1}$
- Perpendicular lines: $m_1 imes m_2 = -1$
- Point-slope form: $y y_1 = m(x x_1)$

Circles

- Standard form: $(x-h)^2+(y-k)^2=r^2$
- General form: $x^2 + y^2 + 2gx + 2fy + c = 0$
- Center: (-g,-f), Radius: $\sqrt{g^2+f^2-c}$
- Tangent at point (x_1, y_1) : $xx_1 + yy_1 + g(x + x_1) + f(y + y_1) + c = 0$

Limits

- Standard limits:
 - $\circ \lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$
 - $\circ \lim_{x o 0} rac{e^x 1}{x} = 1$ $\circ \lim_{x o a} rac{x^n - a^n}{x - a} = na^{n-1}$

$$\circ \ \lim_{x o \infty} (1 + rac{a}{x})^x = e^a$$

• **Rationalization**: For expressions like $\sqrt{A} - \sqrt{B}$, multiply by $\frac{\sqrt{A} + \sqrt{B}}{\sqrt{A} + \sqrt{B}}$

Problem-Solving Strategies

For Function Problems

- 1. Check domain restrictions
- 2. Use algebraic manipulation for compositions
- 3. Verify results by substitution

For Logarithmic Proofs

- 1. Use change of base formula strategically
- 2. Convert complex expressions to simpler forms
- 3. Apply logarithm properties systematically

For Trigonometric Identities

- 1. Look for sum-to-product opportunities
- 2. Use allied angle formulas

3. Factor expressions when possible

For Vector Problems

- 1. Write vectors in component form
- 2. Use properties of dot and cross products
- 3. Check perpendicularity using dot product

For Limit Problems

- 1. Try direct substitution first
- 2. Factor and cancel for $\frac{0}{0}$ forms
- 3. Use rationalization for radical expressions
- 4. Apply standard limit formulas

For Circle Problems

- 1. Complete the square to find center and radius
- 2. Use slope relationships for tangent and normal
- 3. Remember tangent is perpendicular to radius

Common Mistakes to Avoid

- 1. Sign errors in determinant calculations
- 2. Forgetting domain restrictions in logarithmic functions
- 3. Angle measure confusion (degrees vs radians)
- 4. Not simplifying trigonometric expressions fully
- 5. Calculation errors in vector operations
- 6. Incomplete factorization in limit problems

Exam Success Tips

- Show all working steps clearly
- Verify answers when possible
- Use proper mathematical notation
- Draw diagrams for geometry problems
- Manage time effectively across all questions

Best of luck with your Winter 2023 Mathematics exam! 🎯