ENGINEERING
MATHEMATICS

A Foundation for Electronic, Electrical,
Communications and Systems Engineers

FIFTH EDITION

Anthony Croft - Robert Davison
Martin Hargreaves - James Flint




Engineering Mathematics





http://www.pearson.com/uk

Fifth Edition

Engineering Mathematics

A Foundation for Electronic, Electrical,
Communications and Systems Engineers

Anthony Croft

Loughborough University
Robert Davison

Martin Hargreaves
Chartered Physicist

James Flint
Loughborough University

@ Pearson

Harlow, England ¢ London * New York « Boston * San Francisco  Toronto * Sydney
Dubai ¢ Singapore * Hong Kong ¢« Tokyo * Seoul * Taipei * New Delhi
Cape Town * Sdo Paulo » Mexico City * Madrid « Amsterdam * Munich « Paris * Milan




PEARSON EDUCATION LIMITED
Edinburgh Gate

Harlow CM20 2JE

United Kingdom

Tel: +44 (0)1279 623623

Web: www.pearson.com/uk

First edition published under the Addison-Wesley imprint 1992 (print)
Second edition published under the Addison-Wesley imprint 1996 (print)
Third edition published under the Prentice Hall imprint 2001 (print)
Fourth edition published 2013 (print and electronic)

Fifth edition published 2017 (print and electronic)

© Addison-Wesley Publishers Limited 1992, 1996 (print)
© Pearson Education Limited 2001 (print)
© Pearson Education Limited 2013, 2017 (print and electronic)

The rights of Anthony Croft, Robert Davison, Martin Hargreaves and James Flint
to be identified as authors of this work have been asserted by them in
accordance with the Copyright, Designs and Patents Act 1988.

The print publication is protected by copyright. Prior to any prohibited reproduction,
storage in a retrieval system, distribution or transmission in any form or by any means,
electronic, mechanical, recording or otherwise, permission should be obtained from
the publisher or, where applicable, a licence permitting restricted copying in the
United Kingdom should be obtained from the Copyright Licensing Agency Ltd,
Barnard's Inn, 86 Fetter Lane, London EC4A 1EN.

The ePublication is protected by copyright and must not be copied, reproduced, transferred,
distributed, leased, licensed or publicly performed or used in any way except as specifically
permitted in writing by the publishers, as allowed under the terms and conditions under which
it was purchased, or as strictly permitted by applicable copyright law. Any unauthorised
distribution or use of this text may be a direct infringement of the authors’ and the publisher’s
rights and those responsible may be liable in law accordingly.

Pearson Education is not responsible for the content of third-party internet sites.

ISBN: 978-1-292-14665-2 (print)
978-1-292-14667-6 (PDF)
978-1-292-14666-9 (ePub)

British Library Cataloguing-in-Publication Data
A catalogue record for the print edition is available from the British Library

Library of Congress Cataloging-in-Publication Data

Names: Croft, Tony, 1957- author.

Title: Engineering mathematics : a foundation for electronic, electrical,
communications and systems engineers / Anthony Croft, Loughborough
University, Robert Davison, De Montfort University, Martin Hargreaves,

De Montfort University, James Flint, Loughborough University.

Description: Fifth edition. | Harlow, England ; New York : Pearson, 2017. ||
Revised edition of: Engineering mathematics : a foundation for electronic,
electrical, communications, and systems engineers / Anthony Croft, Robert
Davison, Martin Hargreaves. 3rd editon. 2001. | Includes index.

Identifiers: LCCN 2017011081| ISBN 9781292146652 (Print) | ISBN 9781292146676
(PDF) | ISBN 9781292146669 (ePub)

Subjects: LCSH: Engineering mathematics. | Electrical
engineering—Mathematics. | Electronics—Mathematics.

Classification: LCC TA330.C76 2017 | DDC 510-dc23

LC record available at https://lccn.loc.gov/2017011081

A catalog record for the print edition is available from the Library of Congress

10987654321
21 20 19 18 17

Print edition typeset in 10/12 Times Roman by iEnerziger Aptara’, Ltd.
Printed in Slovakia by Neografia

NOTE THAT ANY PAGE CROSS REFERENCES REFER TO THE PRINT EDITION


http://www.pearson.com/uk
https://lccn.loc.gov/2017011081

To Kate, Tom and Harvey — A.C.
To Kathy - R.D.
To my father and mother - M.H.

To Suzanne, Alexandra and Dominic - J.F.



Contents

Preface xvii
Acknowledgements Xix

Chapter 1 Review of algebraic techniques 1
1.1  Introduction 1

1.2 Laws of indices 2

1.3 Number bases 1

1.4 Polynomial equations 20

1.5 Algebraic fractions 26

1.6  Solution of inequalities 33

1.7  Partial fractions 39

1.8 Summation notation 46

Review exercises 1 50

Chapter 2 Engineering functions 54
2.1 Introduction 54

2.2 Numbers and intervals 55

2.3 Basic concepts of functions 56

2.4 Review of some common engineering functions and techniques 70

Review exercises 2 113

Chapter 3 The trigonometric functions 115
3.1 Introduction 115

3.2 Degrees and radians 116

3.3 The trigonometric ratios 116

3.4 The sine, cosine and tangent functions 120

3.5 The sinc x function 123

3.6 Trigonometric identities 125

3.7 Modelling waves using sin ¢ and cos ¢ 131

3.8 Trigonometric equations 144

Review exercises 3 150



viii

Contents

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Coordinate systems

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Introduction

Cartesian coordinate system — two dimensions
Cartesian coordinate system — three dimensions
Polar coordinates

Some simple polar curves

Cylindrical polar coordinates

Spherical polar coordinates

Review exercises 4

Discrete mathematics

5.1
5.2
5.3
5.4

Introduction

Set theory

Logic

Boolean algebra
Review exercises 5

Sequences and series

6.1 Introduction

6.2 Sequences

6.3  Series

6.4 The binomial theorem

6.5 Power series

6.6 Sequences arising from the iterative solution
of non-linear equations
Review exercises 6

Vectors

7.1 Introduction

7.2 Vectors and scalars: basic concepts

7.3 Cartesian components

7.4  Scalar fields and vector fields

7.5 The scalar product

7.6 The vector product

7.7 Vectors of n dimensions

Review exercises 7

Matrix algebra

8.1
8.2

Introduction
Basic definitions

154

154
154
157
159
163
166
170
173

175

175
175
183
185
197

200

200
201
209
214
218

219
222

224

224
224
232
240
241
246
253
255

257

257
258



8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.1
8.12
8.13
8.14

Addition, subtraction and multiplication

Using matrices in the translation and rotation of vectors

Some special matrices

The inverse of a 2 x 2 matrix
Determinants

The inverse of a 3 x 3 matrix

Application to the solution of simultaneous equations

Gaussian elimination
Eigenvalues and eigenvectors
Analysis of electrical networks

Contents

Iterative techniques for the solution of simultaneous equations

Computer solutions of matrix problems
Review exercises 8

Chapter 9 Complex numbers

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10

Introduction

Complex numbers

Operations with complex numbers
Graphical representation of complex numbers
Polar form of a complex number

Vectors and complex numbers

The exponential form of a complex number
Phasors

De Moivre’s theorem

Loci and regions of the complex plane
Review exercises 9

Chapter 10 Differentiation

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8

Introduction

Graphical approach to differentiation
Limits and continuity

Rate of change at a specific point
Rate of change at a general point
Existence of derivatives

Common derivatives

Differentiation as a linear operator
Review exercises 10

Chapter 11 Techniques of differentiation

11.1

Introduction

ix

259
267
271
274
278
281
283
286
294
307
312
319
321

324

324
325
328
332
333
336
337
340
344
351
354

356

356
357
358
362
364
370
372
375
385

386
386



X

Contents

Chapter 12

Chapter 13

Chapter 14

Chapter 15

Chapter 16

11.2
11.3
11.4

Rules of differentiation

Parametric, implicit and logarithmic differentiation
Higher derivatives

Review exercises 11

Applications of differentiation

12.1
12.2
12.3
12.4
12.5

Introduction

Maximum points and minimum points

Points of inflexion

The Newton—-Raphson method for solving equations
Differentiation of vectors

Review exercises 12

Integration

13.1
13.2
13.3

Introduction

Elementary integration

Definite and indefinite integrals
Review exercises 13

Techniques of integration

14.1
14.2
14.3
14.4

Introduction

Integration by parts

Integration by substitution
Integration using partial fractions
Review exercises 14

Applications of integration

15.1
15.2
15.3

Introduction

Average value of a function

Root mean square value of a function
Review exercises 15

Further topics in integration

16.1
16.2
16.3
16.4
16.5
16.6

Introduction

Orthogonal functions

Improper integrals

Integral properties of the delta function
Integration of piecewise continuous functions
Integration of vectors

Review exercises 16

386
393
400
404

406

406
406
415
418
423
427

428

428
429
442
453

457

457
457
463
466
468

471

471
471
475
479

480

480
480
483
489
491
493
494



Chapter 17 Numerical integration

17.1
17.2
17.3

Introduction
Trapezium rule
Simpson’s rule
Review exercises 17

Contents

Chapter 18 Taylor polynomials, Taylor series and Maclaurin series

18.1
18.2
18.3
18.4
18.5
18.6

Introduction

Linearization using first-order Taylor polynomials
Second-order Taylor polynomials

Taylor polynomials of the nth order

Taylor’'s formula and the remainder term

Taylor and Maclaurin series

Review exercises 18

Chapter 19 Ordinary differential equations |

19.1
19.2
19.3

19.4
19.5
19.6
19.7
19.8

Introduction
Basic definitions

First-order equations: simple equations and separation
of variables

First-order linear equations: use of an integrating factor
Second-order linear equations

Constant coefficient equations

Series solution of differential equations

Bessel's equation and Bessel functions

Review exercises 19

Chapter 20 Ordinary differential equations Il

20.1
20.2
20.3
20.4
20.5
20.6
20.7
20.8

Introduction

Analogue simulation

Higher order equations
State-space models

Numerical methods

Euler's method

Improved Euler method
Runge-Kutta method of order 4
Review exercises 20

Chapter 21 The Laplace transform

21.1
21.2

Introduction
Definition of the Laplace transform

Xi

496

496
496
500
505

507

507
508
513
517
521
524
532

534

534
535

540
547
558
560
584
587
601

603

603
603
606
609
615
616
620
623
626

627

627
628



xii

Contents

Chapter 22

Chapter 23

21.3
21.4
21.5
21.6
21.7
21.8
21.9

Laplace transforms of some common functions

Properties of the Laplace transform

Laplace transform of derivatives and integrals

Inverse Laplace transforms

Using partial fractions to find the inverse Laplace transform
Finding the inverse Laplace transform using complex numbers
The convolution theorem

21.10 Solving linear constant coefficient differential

equations using the Laplace transform

21.11 Transfer functions

21.12 Poles, zeros and the s plane

21.13 Laplace transforms of some special functions

Review exercises 21

Difference equations and the z transform

221
22.2
22.3
22.4
22.5
22.6
22.7
22.8
22.9

Introduction

Basic definitions

Rewriting difference equations

Block diagram representation of difference equations
Design of a discrete-time controller

Numerical solution of difference equations

Definition of the z transform

Sampling a continuous signal

The relationship between the z transform and the
Laplace transform

22.10 Properties of the z transform

22.11 Inversion of z transforms

22.12 The z transform and difference equations

Review exercises 22

Fourier series

23.1
23.2
23.3
23.4
23.5
23.6
23.7
23.8
23.9

Introduction

Periodic waveforms

0dd and even functions

Orthogonality relations and other useful identities
Fourier series

Half-range series

Parseval's theorem

Complex notation

Frequency response of a linear system

Review exercises 23

629
631
635
638
641
643
647

649
659
668
675
678

681

681
682
686
688
693
695
698
702

704
709
715
718
720

722

722
723
726
732
733
745
748
749
751
755



Contents

Chapter 24 The Fourier transform

24.1
24.2
24.3
24.4
24.5
24.6
24.7

24.8
24.9

Introduction

The Fourier transform — definitions

Some properties of the Fourier transform
Spectra

The t—w duality principle

Fourier transforms of some special functions

The relationship between the Fourier transform
and the Laplace transform

Convolution and correlation
The discrete Fourier transform

24.10 Derivation of the d.f.t.
24.11 Using the d.f.t. to estimate a Fourier transform

24.12 Matrix representation of the d.f.t.

24.13 Some properties of the d.f.t.

24.14 The discrete cosine transform

24.15 Discrete convolution and correlation

Review exercises 24

Chapter 25 Functions of several variables

25.1
25.2
25.3
25.4
25.5
25.6
25.7

Introduction

Functions of more than one variable

Partial derivatives

Higher order derivatives

Partial differential equations

Taylor polynomials and Taylor series in two variables
Maximum and minimum points of a function of two variables
Review exercises 25

Chapter 26 Vector calculus

26.1
26.2
26.3
26.4
26.5
26.6
26.7

Introduction

Partial differentiation of vectors

The gradient of a scalar field

The divergence of a vector field

The curl of a vector field

Combining the operators grad, div and curl
Vector calculus and electromagnetism
Review exercises 26

xiii

757

757
758
761
766
768
770

772
774
783
787
790
792
793
795
801
821

823

823
823
825
829
832
835
841
846

849

849
849
851
856
859
861
864
865



xiv

Contents

Chapter 27 Line integrals and multiple integrals

27.1 Introduction
27.2 Lineintegrals
27.3 Evaluation of line integrals in two dimensions
27.4 Evaluation of line integrals in three dimensions
27.5 Conservative fields and potential functions
27.6 Double and triple integrals
27.7 Some simple volume and surface integrals
27.8 The divergence theorem and Stokes’ theorem
27.9 Maxwell's equations in integral form

Review exercises 27

Chapter 28 Probability

28.1 Introduction
28.2 Introducing probability
28.3 Mutually exclusive events: the addition law of probability
28.4 Complementary events
28.5 Concepts from communication theory
28.6 Conditional probability: the multiplication law
28.7 Independent events
Review exercises 28

Chapter 29 Statistics and probability distributions

29.1 Introduction
29.2 Random variables
29.3 Probability distributions — discrete variable
29.4 Probability density functions — continuous variable
29.5 Mean value
29.6 Standard deviation
29.7 Expected value of a random variable
29.8 Standard deviation of a random variable
29.9 Permutations and combinations
29.10 The binomial distribution
29.11 The Poisson distribution
29.12 The uniform distribution
29.13 The exponential distribution
29.14 The normal distribution
29.15 Reliability engineering
Review exercises 29

867

867
867
871
873
875
880
889
895
899
901

903

903
904
909
9213
915
919
925
930

933

933
934
935
936
938
941
943
946
948
953
957
961
962
963
970
977



Contents  xv

Appendix| Representing a continuous function and a sequence

as a sum of weighted impulses 979
Appendix Il The Greek alphabet 981
Appendix Ill Sl units and prefixes 982
Appendix IV The binomial expansion of (";N>n 982
Index 983

ON THE
WEBSITE




This page intentionally left blank



Preface

Audience

This book has been written to serve the mathematical needs of students engaged in a
first course in engineering at degree level. It is primarily aimed at students of electronic,
electrical, communications and systems engineering. Systems engineering typically en-
compasses areas such as manufacturing, control and production engineering. The text-
book will also be useful for engineers who wish to engage in self-study and continuing
education.

Motivation

Engineers are called upon to analyse a variety of engineering systems, which can be
anything from a few electronic components connected together through to a complete
factory. The analysis of these systems benefits from the intelligent application of mathe-
matics. Indeed, many cannot be analysed without the use of mathematics. Mathematics
is the language of engineering. It is essential to understand how mathematics works in
order to master the complex relationships present in modern engineering systems and
products.

Aims

There are two main aims of the book. Firstly, we wish to provide an accessible, readable
introduction to engineering mathematics at degree level. The second aim is to encourage
the integration of engineering and mathematics.

Content

The first three chapters include a review of some important functions and techniques
that the reader may have met in previous courses. This material ensures that the book is
self-contained and provides a convenient reference.

Traditional topics in algebra, trigonometry and calculus have been covered. Also in-
cluded are chapters on set theory, sequences and series, Boolean algebra, logic, differ-
ence equations and the z transform. The importance of signal processing techniques is
reflected by a thorough treatment of integral transform methods. Thus the Laplace, z and
Fourier transforms have been given extensive coverage.

In the light of feedback from readers, new topics and new examples have been added
in the fifth edition. Recognizing that motivation comes from seeing the applicability
of mathematics we have focused mainly on the enhancement of the range of applied
examples. These include topics on the discrete cosine transform, image processing, ap-
plications in music technology, communications engineering and frequency modulation.



xviii

Preface

Style

The style of the book is to develop and illustrate mathematical concepts through ex-
amples. We have tried throughout to adopt an informal approach and to describe math-
ematical processes using everyday language. Mathematical ideas are often developed
by examples rather than by using abstract proof, which has been kept to a minimum.
This reflects the authors’ experience that engineering students learn better from prac-
tical examples, rather than from formal abstract development. We have included many
engineering examples and have tried to make them as free-standing as possible to keep
the necessary engineering prerequisites to a minimum. The engineering examples, which
have been carefully selected to be relevant, informative and modern, range from short il-
lustrative examples through to complete sections which can be regarded as case studies.
A further benefit is the development of the link between mathematics and the physical
world. An appreciation of this link is essential if engineers are to take full advantage of
engineering mathematics. The engineering examples make the book more colourful and,
more importantly, they help develop the ability to see an engineering problem and trans-
late it into a mathematical form so that a solution can be obtained. This is one of the most
difficult skills that an engineer needs to acquire. The ability to manipulate mathemati-
cal equations is by itself insufficient. It is sometimes necessary to derive the equations
corresponding to an engineering problem. Interpretation of mathematical solutions in
terms of the physical variables is also essential. Engineers cannot afford to get lost in
mathematical symbolism.

Format

Important results are highlighted for easy reference. Exercises and solutions are provided
at the end of most sections; it is essential to attempt these as the only way to develop
competence and understanding is through practice. A further set of review exercises is
provided at the end of each chapter. In addition some sections include exercises that are
intended to be carried out on a computer using a technical computing language such as
MATLAB®, GNU Octave, Mathematica or Python®. The MATLAB® command syntax
is supported in several software packages as well as MATLAB® itself and will be used
throughout the book.

Supplements

A comprehensive Solutions Manual is obtainable free of charge to lecturers using this
textbook. It is also available for download via the web at www.pearsoned.co.uk/croft.

Finally we hope you will come to share our enthusiasm for engineering mathematics
and enjoy the book.

Anthony Croft
Robert Davison
Martin Hargreaves

James Flint
March 2017
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INTRODUCTION

This chapter introduces some algebraic techniques which are commonly used in engi-
neering mathematics. For some readers this may be revision. Section 1.2 examines the
laws of indices. These laws are used throughout engineering mathematics. Section 1.3
looks at number bases. Section 1.4 looks at methods of solving polynomial equations.
Section 1.5 examines algebraic fractions, while Section 1.6 examines the solution of
inequalities. Section 1.7 looks at partial fractions. The chapter closes with a study of
summation notation.

Computers are used extensively in all engineering disciplines to perform calcula-
tions. Some of the examples provided in this book make use of the technical comput-
ing language MATLAB®, which is commonly used in both an academic and industrial
setting.

Because MATLAB® and many other similar languages are designed to compute not
just with single numbers but with entire sequences of numbers at the same time, data
is entered in the form of arrays. These are multi-dimensional objects. Two particular
types of array are vectors and matrices which are studied in detail in Chapters 7 and 8.
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Apart from being able to perform basic mathematical operations with vectors and
matrices, MATLAB® has, in addition, a vast range of built-in computational functions
which are straightforward to use but nevertheless are very powerful. Many of these high-
level functions are accessible by passing data to them in the form of vectors and matrices.
A small number of these special functions are used and explained in this text. How-
ever, to get the most out of a technical computing language it is necessary to develop
a good understanding of what the software can do and to make regular reference to the
manual.

LAWS OF INDICES

Consider the product 6 x 6 x 6 x 6 x 6. This may be written more compactly as 6°. We
call 5 the index or power. The base is 6. Similarly, y x y x y X y may be written as y*.
Here the base is y and the index is 4.

Example 1.1

Solution

Write the following using index notation:

(@) (=2)(=2)(=2)  (b) 44455 () 22 aa(=a)(~a)

XXXX @ bb(—b)

(@) (—2)(—2)(—2) may be written as (—2)*.
(b) 4.4.4.5.5 may be written as 435

3
(c) RAMS may be written as y_'
XXXX x4

(d) Note that (—a)(—a) = aa since the product of two negative quantities is positive.

So aa(—a)(—a) = aaaa = a*. Also bb(—b) = —bbb = —b’. Hence
aa(—a)(—a) a*  a

bb(—b)  —bB b

Example 1.2

Solution

Evaluate

@7 b3 (© 2P

(@) 7° =7.7.7 =343
(b) (=3)3 = (=3)(=3)(=3) = =27
(©) 23(=3)* = 8(81) = 648

1.2.1

Most scientific calculators have an x¥ button to enable easy calculation of expressions
of a similar form to those in Example 1.2.

Multiplying expressions involving indices
Consider the product (62)(6%). We may write this as

(6%)(6%) = (6.6)(6.6.6) =6
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So
6263 — 65

This illustrates the first law of indices which is

When expressions with the same base are multiplied, the indices are added.

Example 1.3

Solution

Simplify each of the following expressions:

(a) 39310 (b) 434446 (C) x3x6 (d) y4y2y3

(a) 39310 — 39+10 — 319
(b) 434446 — 43+4+6 — 413
3+6 _ x9
44243

(c) X*x®=x

@ yhyy =y =)

Engineering application 1.1

Power dissipation in a resistor

The resistor is one of the three fundamental electronic components. The other two
are the capacitor and the inductor, which we will meet later. The role of the resistor
is to reduce the current flow within the branch of a circuit for a given voltage. As
current flows through the resistor, electrical energy is converted into heat. Because
the energy is lost from the circuit and is effectively wasted, it is termed dissipated
energy. The rate of energy dissipation is known as the power, P, and is given by

P=1IR (1.1)

where [ is the current flowing through the resistor and R is the resistance value. Note
that the current is raised to the power 2. Note that power, P, is measured in watts;
current, /, is measured in amps; and resistance, R, is measured in ohms.

There is an alternative formula for power dissipation in a resistor that uses the volt-
age, V, across the resistor. To obtain this alternative formula we need to use Ohm’s
law, which states that the voltage across a resistor, V, and the current passing through
it, are related by the formula

V =IR (1.2)
From Equation (1.2) we see that
Vv
I=— 1.3
= (1.3)
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Note that in this formula for P, the voltage is raised to the power 2. Note an im-
portant consequence of this formula is that doubling the voltage, while keeping the
resistance fixed, results in the power dissipation increasing by a factor of 4, that is
22. Also trebling the voltage, for a fixed value of resistance, results in the power dis-
sipation increasing by a factor of 9, that is 32.

Similar considerations can be applied to Equation 1.1. For a fixed value of resis-
tance, doubling the current results in the power dissipation increasing by a factor of
4, and trebling the current results in the power dissipation increasing by a factor of 9.

Consider the product 3(3%). Now
3(3°) =3(3.3.3) = 3*

Also, using the first law of indices we see that 3'3% = 3%, This suggests that 3 is the
same as 3'. This illustrates the general rule:

a=a

Raising a number to the power 1 leaves the number unchanged.

Example 1.4

Solution

Simplify (a) 5°5 (b) x3xx?

(a) 565 — 56+1 — 57 (b) X3XX2 — X3+1+2 — x6

1.2.2

Dividing expressions involving indices
45

Consider the expression —:
43

4 44444
43 444
=44 by cancelling 4s

= 42

This serves to illustrate the second law of indices which is

When expressions with the same base are divided, the indices are subtracted.

Example 1.5

Solution

Simplify
59 (_2)]6 9 6

X y
(a) = (b) [ (© = (d) N

59
57
(_2)16
=

(a) — 5977 — 52

(b) = (-2)!"P = (-2)}
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9
X

(C) T x975 — x4

XS

6
y _

@ —=y"'=y
y

3
Consider the expression % Using the second law of indices we may write

23

E 23—3 — 20

3
But, clearly, % =1, and so 2° = 1. This illustrates the general rule:

=1

Any expression raised to the power 0 is 1.

1.2.3 Negative indices
43
Consider the expression yER We can write this as
43_ 444 1 1
45 T 44444 44 42
Alternatively, using the second law of indices we have
4 3-5 -2
5= 435 =4
So we see that
1
-2
e
Thus we are able to interpret negative indices. The sign of an index changes when the
expression is inverted. In general we can state
—m 1 m 1
a"=— a"=—
am a "
Example 1.6 Evaluate the following:
2 673
@37 05 ©3 @) @
1 1
Solution 372=—>=—
(a) 70
2
(b) 1= = 2(4%) =2(64) = 128
© 3" =5 =1
S 33
d (=3)7= S
=329
63 1 1

=6 D = — ==
© &= 6
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Example 1.7 Write the following expressions using only positive indices:
2

@ x* () 33Xt (0 ’y% (d) 3x7%y~?

1
Solution (a) x* = ;3
(b) 3x;4 =3 2
(©) ’y% ==L
@ 3x2y3 = xZiy3

Engineering application 1.2

Power density of a signal transmitted by a radio antenna

A radio antenna is a device that is used to convert electrical energy into electromag-
netic radiation, which is then transmitted to distant points.

An ideal theoretical point source radio antenna which radiates the same power in
all directions is termed an isotropic antenna. When it transmits a radio wave, the wave
spreads out equally in all directions, providing there are no obstacles to block the
expansion of the wave. The power generated by the antenna is uniformly distributed
on the surface of an expanding sphere of area, A, given by

A = 4mr?

where r is the distance from the generating antenna to the wave front.

The power density, S, provides an indication of how much of the signal can po-
tentially be received by another antenna placed at a distance r. The actual power
received depends on the effective area or aperture of the antenna, which is usually
expressed in units of m?.

Electromagnetic field exposure limits for humans are sometimes specified in terms
of a power density. The closer a person is to the transmitter, the higher the power
density will be. So a safe distance needs to be determined.

The power density is the ratio of the power transmitted, P,, to the area over which
it is spread

g _ power transmitted _ P, _ P 2 W2
area 4mr2 4Am

Note that r in this equation has a negative index. This type of relationship is
known as an inverse square law and is found commonly in science and engineering.

Note that if the distance, r, is doubled, then the area, A, increases by a factor of
4 (i.e. 2%). If the distance is trebled, the area increases by a factor of 9 (i.e. 3%) and
so on. This means that as the distance from the antenna doubles, the power density,
S, decreases to a quarter of its previous value; if the distance trebles then the power
density is only a ninth of its previous value.
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1.2.4 Multiple indices
Consider the expression (4%)2. This may be written as
(43)2 — 43.43 — 43+3 — 46
This illustrates the third law of indices which is
m)n

(a — g™

Note that the indices m and n have been multiplied.

Example 1.8 Write the following expressions using a single index:

@G ®TH © )7 @)

Solution (a) (3%)* =324 =138
(b) (7—2)3 — 7—2><3 — 7—6
(C) (x2)73 — y2x(=3) — x76

(d) (x72)73 — x72><73 — X6

Consider the expression (2*5%)3. We see that
(2452)3 — (2452)(2452)(2452)
= 2%2%2%5%5%57
— 21256

This illustrates a generalization of the third law of indices which is

(ambn)k — amkbnk

Example 1.9 Remove the brackets from
@ 2 (b (=3H* () « 7y’
Solution (a) (2x?)* = (2'x?)% = 2345 = 8¢
(b) (=3y")* = (=3)* =9
© (y) =x"%"

Engineering application 1.3

Radar scattering

It has already been shown in Engineering application 1.2 that the power density of
an isotropic transmitter of radio waves is

P
S=-r?Wm?
47t
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It is possible to use radio waves to detect distant objects. The technique involves
transmitting a radio signal, which is then reflected back when it strikes a target. This
weak reflected signal is then picked up by a receiving antenna, thus allowing a number
of properties of the target to be deduced, such as its angular position and distance from
the transmitter. This system is known as radar, which was originally an acronym
standing for RAdio Detection And Ranging.

When the wave hits the target it produces a quantity of reflected power. The
power depends upon the object’s radar cross-section (RCS), normally denoted by
the Greek lower case letter sigma, o, and having units of m?. The power reflected at
the object, P, is given by

bo _,
P=So=—r-*"Ww

g 4
Some military aircraft use special techniques to minimize the RCS in order to reduce
the amount of power they reflect and hence minimize the chance of being detected.

If the reflected power at the target is assumed to spread spherically, when it
returns to the transmitter position it will have the power density, S,, given by
power reflected at target P

L2 Wm?

S
r area 47t

Substituting for the reflected power, P, gives

bPo _,
—r
S = power reflected at target _ 47t r_z_ Pt_a

T

&

area 47t T 47 x 47

bo -2

= @

Note that the product of the two =2 terms has been calculated using the third law of
indices.

This example illustrates one of the main challenges with radar design which is that
the power density returned by a distant object is very much smaller than the transmit-
ted power, even for targets with a large RCS. For theoretical isotropic antennas, the
received power density depends upon the factor »~*. This factor diminishes rapidly
for large values of r, that is, as the object being detected gets further away.

In practice, the transmit antennas used are not isotropic but directive and often
scan the area of interest. They also make use of receive antennas with a large effective
area which can produce a viable signal from the small reflected power densities.

1.2.5 Fractional indices

The third law of indices states that (a”)" = a™. If we takea = 2, m = % andn =2 we
obtain

(21/2)2 — 21 =2

So when 2!/? is squared, the result is 2. Thus, 2!/? is a square root of 2. Each positive
number has two square roots and so

22— 2= +1.4142...



Similarly
(21/3)3 — 21 =2
so that 2!/ is a cube root of 2:

213 = /2 =1.259...

In general 2!/" is an nth root of 2. The general law states

x'™ is an nth root of x

1.2 Laws of indices 9

Example 1.10

Solution

Write the following using a single positive index:
@ G ® PP @y @ VR
(@) 3V =324 =312 = 372
(b) x23x5/3 = 23453 — 113

(©) yy2P =ylyP =yl =y

(d) f (k3 1/2 _k3>< — k32

1-2/5

Example 1.11

Solution

Evaluate

(a) 81/3 (b) 82/3 (C) 871/3 (d) 872/3 (e) 84/3

We note that 8 may be written as 23.

(a) 81/3 (23)1/3 _ 21 =2

(b) 82/3 (81/3)2 —4
1 1
1/3 _ — _
© 87 = gm =3
1 1
2/3 _ _ _
@ 87 = o5 = ¢

(e) 84/3 (81/3)4 — 24 16

Engineering application 1.4

Skin depth in a radial conductor

When an alternating current signal travels along a conductor, such as a copper wire,
most of the current is found near the surface of the conductor. Nearer to the centre
of the conductor, the current diminishes. The depth of penetration of the signal,
termed the skin depth, into the conductor depends on the frequency of the signal.
Skin depth, illustrated in Figure 1.1, is defined as the depth at which the current
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density has decayed to approximately 37% of that at the edge. Skin depth is important
because it affects the resistance of wires and other conductors: the smaller the skin
depth, the higher the effective resistance and the greater the loss due to heating.

At low frequencies, such as those found in the domestic mains supply, the skin
depth is so large that often it can be neglected; however, in very large-diameter con-
ductors and smaller conductors at microwave frequencies it becomes important and
has to be taken into account.

The skin depth, §, is given by

7\ 12
= ()
wuo

where 1 is a material constant known as the permeability of the conductor, w is the
angular frequency of the signal and o is the conductivity of the conductor.

Figure 1.1
Cross-section of a radial conductor
illustrating a skin depth §.

EXERCISES 1.2

1 Evaluate 3 Express each of the following expressions using a
13 single positive index:
(@ 23 (b) 32 © (@) x*y (b) (=)
19-11 X X2
@ o © QD@ 7 © — @ —
(g) 4-1/2 (h) (91/3)3/2 0 @ﬁ (e) (X_2)4 () (x—2.5x—3.5)2
G) +0.01 (k) 813/4 4 Simplify as much as possible
1/2
@ S5 (b) (16x+)0%5
2 Use a scientific calculator to evaluate X 13
2 2
(a) 101,2 (b) 6_0‘7 (©) 62.5 () ()j) (d (2xy)2
@ (3714908 @ Vo (D) (643)¥3
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Solutions
1 @8 (1Y ©) 5 (d) 361 3 (a) x'! (b) —x° () x
1 1 1 1 1
(e) 4 () T (2) 3 (h) 3 (@) o (e) = () F)
@ 8 () 0l (k27 3
4 (a x'/°  (b) 2x (c) =
y
2 (a) 15.8489  (b) 0.2853 1 2 s )
(c) 88.1816  (d) 3.8159 @5 @ O 16

1.3.1

1.3.2

The decimal system of numbers in common use is based on the 10 digits 0, 1, 2, 3, 4,
5, 6,7, 8 and 9. However, other number systems have important applications in com-
puter science and electronic engineering. In this section we remind the reader of what is
meant by a number in the decimal system, and show how we can use powers or indices
with bases of 2 and 16 to represent numbers in the binary and hexadecimal systems
respectively. We follow this by an explanation of an alternative binary representation of
a number known as binary coded decimal.

The decimal system

The numbers that we commonly use in everyday life are based on 10. For example, 253
can be written as

253 =200+450+43
=2(100) + 5(10) + 3(1)
=2(10%) + 5(10") + 3(10%
In this form it is clear why we refer to this as a ‘base 10’ number. When we use 10 as a
base we say we are writing in the decimal system. Note that in the decimal system there
are 10 digits: 0, 1,2, 3,4, 5, 6,7, 8, and 9. You may recall the phrase ‘hundreds, tens and
units’ and as we have seen these are simply powers of 10. To avoid possible confusion
with numbers using other bases, we denote numbers in base 10 with a small subscript,
for example, 5192 :
5192,, = 5000 + 100 4- 90 4- 2
= 5(1000) + 1(100) + 9(10) + 2(1)
=5(10°) + 1(10*) + 9(10") + 2(10")

Note that, in the previous line, as we move from right to left, the powers of 10 increase.

The binary system

A binary system uses the number 2 for its base. A binary system has only two digits, 0
and 1, and these are called binary digits or simply bits. Binary numbers are based on
powers of 2. In a computer, binary numbers are usually stored in groups of 8 bits which
we call a byte.
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Converting from binary to decimal
Consider the binary number 110101,. As the base is 2 this means that as we move from
right to left the position of each digit represents an increasing power of 2 as follows:
110101, = 1(2°) + 1(2*) +0(2%) + 1(2%) + 0(2") + 1(2")
= 1(32) + 1(16) + 0(8) + 1(4) + 0(2) + I(1)
=324+16+4+1
=339

Hence 110101, and 53, are equivalent.

Example 1.12

Solution

Convert the following to decimal: (a) 1111, (b) 101010,

(@ 1111, =12H +12H +12H +1(2%)
=1@)+14) + 1)+ 1(1)
=8+4+4+4+2+1
=15,,

(b) 101010, = 1(2°) +02*) + 1(2*) +0(2*) + 1(2") +0(2°)
=1(32)+0+18)+0+1(2)+0
=32+8+2
=42

Converting decimal to binary

We now look at some examples of converting numbers in base 10 to numbers in base 2,
that is from decimal to binary. We make use of Table 1.1, which shows various powers
of 2, when converting from decimal to binary. Table 1.1 may be extended as necessary.

Table 1.1
Powers of 2.

20 1 24 16 28 256
2! 2 25 32 29 512
22 4 26 64 210 1024
23 8 27 128 o1l 2048

Example 1.13

Solution

Convert 83, to a binary number.

We need to express 83, as the sum of a set of numbers, each of which is a power of 2.
From Table 1.1 we see that 64 is the highest number in the table that does not exceed
the given number of 83. We write

83 =64+19

We now focus on the 19. From Table 1.1, 16 is the highest number that does not exceed
19. So we write

19=164+3
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giving
83 =64+16+3
We now focus on the 3 and again using Table 1.1 we may write
83=64+16+2+1
— 26424 42l 420
= 12°) +0(2°) +12Y) +02%) +02*) + 12" + 12"
= 1010011,

Example 1.14

Solution

Express 200, as a binary number.

From Table 1.1 we note that 128 is the highest number that does not exceed 200 so we
write

200 = 128 + 72
Using Table 1.1 repeatedly we may write
200 = 128 + 72
=128+64+438
— 27 + 26 + 23
=12") +12% +0(2°) + 02" + 1(2%) + 0(2*) + 0(2") +0(2°)
= 11001000,

Another way to convert decimal numbers to binary numbers is to divide by 2 repeatedly
and note the remainder. We rework the previous two examples using this method.

Example 1.15

Solution

Convert the following decimal numbers to binary: (a) 83 (b) 200

(a) We divide by 2 repeatedly and note the remainder.

Remainder
83 +2=41rl 1
41 -2=20r1 1
20+-2=10r0 0
10=-2= 5r0 0
5-2= 2rl 1
2+-2= 110 0
1+2= 0rl 1

To obtain the binary number we write out the remainder, working from the bottom
one to the top one. This gives

83,, = 1010011,

as before.
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(b) We repeat the process by repeatedly dividing 200 by 2 and noting the remainder.

Remainder
200 -2 =100r0 0
100=-2= 50r0 0
50=2= 25r0 0
25+2= 12r1 1
12+-2= 6r0 0
6-2= 310 0
3+-2= 1rl 1
l1=2= 0rl 1

Reading the remainder column from the bottom to the top gives the required binary
number:

200,, = 11001000,

1.3.3 Hexadecimal system

We now consider the number system which uses 16 as a base. This system is termed
hexadecimal (or simply hex). There are 16 digits in the hexadecimal system: 0, 1, 2,
3,4,5,6,7,8,9, A, B, C, D, E, and F. Notice that conventional decimal digits are
insufficient to represent hexadecimal numbers and so additional ‘digits’, A, B, C, D, E,
and F, are included. Table 1.2 shows the equivalence between decimal and hexadecimal
digits. Hexadecimal numbers are based on powers of 16.

Table 1.2

Hexadecimal numbers.

Decimal Hexadecimal Decimal Hexadecimal
0 0 8 8
1 1 9 9
2 2 10 A
3 3 11 B
4 4 12 C
5 5 13 D
6 6 14 E
7 7 15 F

Converting from hexadecimal to decimal

The following example illustrates how to convert from hexadecimal to decimal. We
use the fact that as we move from right to left, the position of each digit represents an
increasing power of 16.



1.3 Number bases 15

Example 1.16 Convert the following hexadecimal numbers to decimal numbers: (a) 93A (b) F9B3

Solution

(a) Noting that hexadecimal numbers use base 16 we have

93A,, = 9(16%) +3(16") + A(16°)
= 9(256) + 3(16) + 10(1)
= 2362,

(b) F9B3,, = F(16°) +9(16%) + B(16") + 3(16")

— 15(4096) + 9(256) + 11(16) + 3(1)
= 63923,

Converting from decimal to hexadecimal

Table 1.3 provides powers of 16 which help in the conversion from decimal to hexa-
decimal.

Table 1.3

16° 1
16! 16
162 256
163 4096

16* 65536

The following example illustrates how to convert from decimal to hexadecimal.

Example 1.17

Solution

Convert 14 397 to a hexadecimal number.

We need to express 14397 as the sum of multiples of powers of 16. From Table 1.3 we
see that the highest number that does not exceed 14397 is 4096. We express 14397 as
a multiple of 4096 with an appropriate remainder. Dividing 14397 by 4096 we obtain 3
with a remainder of 2109. So we may write

14397 = 3(4096) + 2109

‘We now focus on 2109 and apply the same process as above. From Table 1.3 the highest
number that does not exceed 2109 is 256:

2109 = 8(256) + 61
Finally, 61 = 3(16) + 13. So we have

14397 = 3(4096) + 8(256) + 3(16) + 13
= 3(16%) + 8(16%) + 3(16") + 13(16%)

From Table 1.2 we see that 13, is D in hexadecimal, so we have

14397,, = 383D,

As with base 2 we can convert decimal numbers by repeated division and noting the
remainder. The previous example is reworked to illustrate this.
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Example 1.18

Solution

Convert 14 397 to hexadecimal.

We divide repeatedly by 16, noting the remainder.

Remainder
14397 =16 =899 r 13 13
899 16 = 56r3 3
56 +-16= 3r8 8
3+-16= O0r3 3

Recall that 13 in hexadecimal is D. Reading up the Remainder column we have
14397,, = 383D,

as before.

Electronic engineers need to be familiar with the decimal, binary and hexadecimal sys-
tems and be able to convert between them. The equivalent representations of the decimal
numbers 0-15 are provided in Table 1.4.

Table 1.4

Decimal Binary Hex Decimal Binary Hex
0 0000 0 8 1000 8
1 0001 1 9 1001 9
2 0010 2 10 1010 A
3 0011 3 11 1011 B
4 0100 4 12 1100 C
5 0101 5 13 1101 D
6 0110 6 14 1110 E
7 0111 7 15 1111 F

Converting from binary to hexadecimal

There is a straightforward way of converting a binary number into a hexadecimal num-
ber. The digits of the binary number are grouped into fours, or quartets, (from the right-
hand side) and each quartet is converted to its hex equivalent using Table 1.4.

Example 1.19

Solution

Convert 1101011100111, into hexadecimal.

Working from the right, the binary number is grouped into fours, with additional zeros
being added as necessary to the final grouping.

0001 1010 11100111
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Table 1.4 is used to express each group of four as its hex equivalent. For example, 0111 =
7,6 and continuing in this way we obtain

1AE7

Thus 110101110 0111, = 1AE7,,.

1.3.4

Binary coded decimal

We have seen in Section 1.3.2 that decimal numbers can be expressed in an equivalent
binary form where the position of each binary digit, moving from the right to the left,
represents an increasing power of 2. There is an alternative way of expressing numbers
using the binary digits 1 and O that is often used in electronic engineering because for
some applications it is more straightforward to build the necessary hardware. This sys-
tem is called binary coded decimal (b.c.d.).

First of all, recall how the decimal digits 0, 1,2, ..., 9 are expressed in their usual
binary form. Note that the largest decimal digit 9 is 1001 in binary, and so we need
at most four digits to store the binary representations of 0, 1, ..., 9. Expressing each
decimal digit as a four-digit binary number we obtain Table 1.5.

Table 1.5
Decimal digits and their four-digit
binary representations.

0 0000 5 0101
1 0001 6 0110
2 0010 7 0111
3 0011 8 1000
4 0100 9 1001

A four-digit binary number is referred to as a nibble. To express a multi-digit decimal
number, such as 347, in b.c.d. each decimal digit in turn is converted into its binary
representation as shown. Note that a nibble is used for each decimal digit.

3 4 7

¥ ¥ ¥
0011 0100 0111

Recall from Section 1.3.2 that a byte is a group of 8 bits (binary digits). Computers
usually store numbers in 8-bit bytes so there are two common ways of encoding b.c.d.
The first is to use a whole byte for each nibble, with the first 4 bits always set to 0. So,
for example, 347, can be stored as

00000011 00000100 00000111

Alternatively, each byte can be used to store two nibbles, in which case 347,, would be
stored as

00000011 01000111

Rules have been developed for performing calculations in b.c.d. but these are beyond the
scope of this book.
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Engineering application 1.5

Seven-segment displays

The number displays found on music systems, video and other electronic equip-
ment commonly employ one or more seven-segment indicators. A single seven-
segment indicator is shown in Figure 1.2(a). The individual segments are typically
illuminated with a light-emitting diode (LED) or similar optical device and are either
on or off. The segments are illuminated according to the table shown in Figure 1.2(b),
where 1 indicates that the segment is turned on and O indicates that it is turned off.

b.c.d.
number a b @© d € f g
0000 1 1 1 1 1 1 0
0001 0 1 1 0 0 0 0
0010 1 1 0 1 1 0 1
0011 1 1 1 1 0 0 1
a
—1 0100 0 1 1 0 0 1 1
£ B 0101 1 0 1 1 0 1 1
| | & L 0110 1 0 1 1 1 1 1
L
0111 1 1 1 0 0 0 0
¢ ¢ 1000 1 1 1 1 1 1 1
[l d L]
[ ] 1001 1 1 1 1 0 1 1
(a) (b)
Figure 1.2

(a) Seven-segment LED display. (b) Seven-segment coding.

The numbers in the microprocessor system driving the display are typically
stored in binary format, known as, binary coded decimal (b.c.d.). As an example
we consider displaying binary number 11101010, as a decimal number on seven-
segment displays. This represents the decimal number 234, which requires three
seven-segment displays.

The microprocessor first divides the input number by 100 and in this case obtains
the result 2 with a remainder of 34. This can be done directly on the binary number
itself via a series of operations within the assembly language of the microprocessor
without first converting to a decimal number. The result 2 = 0010, is then decoded
using Figure 1.2(b), giving the bit pattern 1101101 which is passed to the ‘hundreds’
display.

The remainder of 34 is then divided by 10 giving 3 with a final remainder of 4. The
number 3 = 0011, and so this can be outputted to the ‘tens’ display as the pattern
1111001. Finally, 4 = 0100,, which is passed to the display as the pattern 0110011.
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| I
f b f
g |
| I
€ © €
d

a
 E—
b f b
g
—
C € C
d
—1

display.

Notice that prior to decoding for display, by successive division by 100 and 10
the number has been converted into separate b.c.d. digits. Integrated circuits are
available which convert b.c.d. directly into the bit patterns for display. Hence the
output bit pattern of the microprocessor may be chosen to be b.c.d. In this case it
has the advantage that fewer pins are required on the microprocessor to operate the

EXERCISES 1.3

Convert the following decimal numbers to binary
numbers: (a) 19 (b) 36 (c) 100 (d) 796
(e) 5000

Convert the following binary numbers to decimal
numbers: (a) 111 (b) 10101 (c) 111001
(d) 1110001  (e) 11111111

What is the highest decimal number that can be
written in binary form using a maximum of (a) 2
binary digits (b) 3 binary digits (c) 4 binary digits
(d) 5 binary digits? Can you spot a pattern? (e) Write
a formula for the highest decimal number that can be
written using N binary digits.

4 Write the decimal number 0.5 in binary.

Solutions

(a) 19,5=10011, (b) 100100 (c) 1100100
(d) 1100011100 (e) 1001110001000

@11, =7 (21 ()57 (MII3 (e)255
@3 7 ©I15 @31 @2V -1

The binary system is based on powers of 2. The

examples in the text can be extended to the case of
negative powers of 2 just as in the decimal system
numbers after the decimal place represent negative

Convert the following hexadecimal numbers to
decimal numbers: (a) 91 (b) 6C (c) A1B (d) FOD4
(e) ABCD

Convert the following decimal numbers to
hexadecimal numbers: (a) 160 (b) 396 (c) 5010
(d) 25000  (e) 1000000

Calculate the highest decimal number that can be
represented by a hexadecimal number with (a) 1 digit
(b) 2 digits  (c) 3 digits (d) 4 digits (e) N digits

Express the decimal number 375 as both a pure binary
number and a number in b.c.d.

Convert (a) 1111111, (b) 101010111, into
hexadecimal.

powers of 10. So, for example, the binary number
11.101, is converted to decimal as follows:

11101, = 1x 2! + 1x2% + 1 x 27!

+0x272 4+ 1x273

—2+1+1+1
- 2 8

5
=3-
8
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In the same way the binary equivalent of the decimal 7 ()15 (b)255 (c)4095 (d)65535 (e) 16V — 1

number 0.5 is 0.1.

5 (a)914=145,; (b)6C=108 (c)2587 (d) 63956

(e) 43981

8 (a) 101110111, (b)001101110101,4

9 (a)7F (b) 157

6 (a)160,, =A0 (b)18C (c) 1392 (d)61A8

(e) F4240

1.4.1

POLYNOMIAL EQUATIONS
A polynomial equation has the form
Px)=ax" +a, X '+a, X+ - +ax+ax+a,=0 (1.4)
where n is a positive whole number, a,, a,_,, ..., a, are constants and x is a
variable. The constants a,, a,_,, ..., a,, a;, a, are called the coefficients of the

polynomial.

The roots of an equation are those values of x which satisfy P(x) = 0. Soif x = x, isa
root then P(x,) = 0.
Examples of polynomial equations are

T2 4+4x—1=0 (1.5)
2x—3=0 (1.6)
X=20=0 (1.7

The degree of an equation is the value of the highest power. Equation (1.5) has degree 2,
Equation (1.6) has degree 1 and Equation (1.7) has degree 3. A polynomial equation of
degree n has n roots.

There are some special names for polynomial equations of low degree (see Table 1.6).

Table 1.6

Equation Degree Name
ax+b=0 1 Linear
ax* +bx+c¢=0 2 Quadratic
axd + b2 +ex+d=0 3 Cubic
at b+ e +dit+e=0 4 Quartic

Quadratic equations

We now focus attention on quadratic equations. The standard form of a quadratic equa-
tion is ax? + bx + ¢ = 0. We look at three methods of solving quadratic equations:

(1) factorization,
(2) use of a formula,

(3) completing the square.

Example 1.20 illustrates solution by factorization.
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Example 1.20

Solution

Solve

6x>+11x—10=0

The left-hand side (1.h.s.) is factorized:
Bx—=2)2x+5)=0

So either
3x—2=0 or 2x+5=0

Hence

|

2
xX=-,—
3

When roots cannot be found by factorization we can make use of a formula.

The formula for finding the roots of ax> 4+ bx + ¢ = 0 is

—b £ Vb — 4ac
=
2a

Example 1.21

Solution

Use the quadratic formula to solve

33 —x—6=0

Comparing 3x*> — x — 6 with ax> + bx + ¢ we see thata = 3, b = —1 and ¢ = —6. So

L —EDEVED2—40)(-6)
N 2(3)

1£73

6
= —1.2573, 1.5907

Engineering application 1.6

Current used by an electric vehicle

Personal transport systems that make use of electrical power are becoming increas-
ingly common. One of the factors behind this change is that their use can reduce road-
side pollution in an urban environment. Electrical vehicles have also become the base
for self-driving cars when combined with electrical control and navigation systems.

The motor in an operational electric vehicle has to do work to overcome wind,
inertia, friction, road resistance and in order to climb inclines. The energy supply
in the form of electrical power comes from the on-board battery pack. Due to its
internal construction the battery pack has a total internal resistance, R, which serves
to reduce the power available to the motor.
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A simplified circuit diagram of a vehicle is shown in Figure 1.3.

Internal
resistance

Terminals

% E Motor and gearbox
I Drive
-[ wheels
________ EdLswoect
Figure 1.3

Electric vehicle wiring diagram.

The total power delivered by the battery pack is
power = voltage x current = V/

This is shared between loss due to the internal resistance and the power, P, to the
motor. The power loss due to the internal resistance is />R (see Engineering appli-
cation 1.1). So the equation for the power in the circuit is

VI=IPR+P
This can be rewritten into the form of a quadratic equation
RPP—VI+P=0

which can be solved to calculate the current in the wire for a particular power deliv-
ered to the motor. It is important to know the current in order to specify the size of
the fuses, the motor controller and the wire diameters used in the vehicle.

Consider the case where the power output is 2 kW. If the circuit parameters are
V =150 volts, R = 1.6 2, we have

1.61* — 1501 4+ 2000 = 0
The solutions to the quadratic equation are
b+ VP —4dac  —(—150) £ /(—150)> — (4 x 1.6 x 2000)
2a 2x1.6
=T71.7A, 16.1 A

1

The relevant solution depends on the electrical characteristics of the motor used in the
circuit. In practice, the larger of the two currents would correspond to a substantial
loss in the internal resistance and would be avoided by the correct choice of motor.

The technical computing language MATLAB® has the function roots which
finds the solutions of a polynomial equation. In this example we would type
roots ([1.6 -150 2000]) at the command line to obtain the results calculated
above.
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We now introduce the method of completing the square. The idea behind completing
the square is to absorb both the x> and the x term into a single squared term. Note that
this is possible since

X4 2kx+ k= (x4 k)?
and so
42k = x+k>—k
and finally
X 2%kx+A=@x+k)>+A-K

The x? and the x terms are both contained in the (x + k)? term. The coefficient of x on
the Lh.s. is 2k. The squared term on the right-hand side (r.h.s.) has the form (x + k)2,

coefficient of x\ >
that is (x + —x> . The following example illustrates the idea.

Example 1.22

Solution

Solve the following quadratic equations by completing the square:
@ x>+8+2=0
(b) 2> —4x+1=0
(a) By comparing x> 4 8x + 2 with x? 4+ 2kx 4+ A we see k = 4. Thus the squared term
must be (x + 4)%. Now
(x+4)?=x>+8x+16
and so
48 = (x+4)—16
Therefore

P+8x+2=x+4)>-16+2

=(x+4)?>-14
At this stage we have completed the square. Finally, solving x*> + 8x +2 = 0 we
have
¥ +8x+2=0
x+4)?—-14=0
x+4)?*=14
x+4==+v14

x=—-4++14=-7.7417, —0.2583

(b) 2x* —4x+ 1 = 0 may be expressed as x*> — 2x + 0.5 = 0. Comparing x> — 2x + 0.5
with x> + 2kx + A we see that k = —1. Thus the required squared term must be
(x — 1)%. Now

x—12=x"—-2x+1
and so

P-2x=kx-01*—1
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and

X=2x4+05=x—-1*=1+05

=@x—-12-05

Finally, solving x*> — 2x + 0.5 = 0 we have

(x—1)*-05=0

x—1*=05
x—1==2+405
x=1+£+0.5=0.2929, 1.7071

1.4.2 Polynomial equations of higher degree

Example 1.23 Verify that x = 1 and x = 2 are roots of

Px)=x*—-2%—x+2=0

Solution Px)=x*—-2x—x+2
Ply=1-2-142=0
PQ2)=2*-2(23)-242=16—-16—-2+2=0

Since P(1) = 0 and P(2) = 0O, then x = 1 and x = 2 are roots of the given polynomial
equation and are sometimes referred to as real roots. Further knowledge is required to
find the two remaining roots, which are known as complex roots. This topic is covered
in Chapter 9.

Example 1.24 Solve the equation
Px)=xX+2x* =37x+52=0
Solution  Asseen in Example 1.21 a formula can be used to solve quadratic equations. For higher
degree polynomial equations such simple formulae do not always exist. However, if
one of the roots can be found by inspection we can proceed as follows. By inspection

P(4) = 4% +2(4)?> —37(4) + 52 = 0 so that x = 4 is a root. Hence x — 4 is a factor of
P(x). Therefore P(x) can be written as

PX)=x" 4282 —37x+52=(x—4) (> +ax+ p)
where o and 8 must now be found. Expanding the r.h.s. gives

P(x) =X + ax’ + fx — 4x* — dax — 4P
Hence

X423 =3+ =X+ (@ -+ (B —4a)x— 4B
By comparing constant terms on the 1.h.s. and r.h.s. we see that

52 = —48



so that
B=-—13
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By comparing coefficients of x> we see that

2=0—-4
Therefore,

a=06

Hence, P(x) = (x — 4) (x> + 6x — 13). The quadratic equation x> + 6x — 13 = 0 can be

solved using the formula

L —6£/36-4(-13)

2

—6+ V88
2
= 1.690, —7.690

We conclude that P(x) = 0 has roots at x = 4, x = 1.690 and x = —7.690.

1

EXERCISES 1.4

Calculate the roots of the following linear equations:

(@) 4x—12=0
() 51+20=0
© 1410=2
Y _
@ 2-1=3
© 05—6=0
() 2x43=5c—6
3x
@ 3 -17=0
M >+2=1
273
) 2x—1=§+2
0 204+ 1D=6

k) 3Q2y—=1=20r+2)
3 2
O SE+3) =36 -1

Solve the following quadratic equations by
factorization:

(@ 2—=5t4+6=0
b *>+x—12=0
(¢) 2=10r—25
(d 2 +4x—-21=0

() X2 —9x+18=0
® =1

(@ y*—10y+9=0
(h) 222—-z—-1=0

i) 2% +3x—2=0
G) 32+4r+1=0

k) 42 +12y+5=0
N 42—9r+2=0
(m) 64> —d—2=0

(M) 6x2—13x4+2=0

Complete the square for the following quadratic
equations and hence find their roots:

(@) X*+2x—8=0
(b) > —6x—5=0
(€) X*+4x—-6=0
(d) x> —14x—10=0
() ¥ +5x—49=0

Solve the following quadratic equations using the
quadratic formula:

(@ 24x—1=0
b) 2=3—-2=0
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©) W +5r+1=0 (b) t3—2t2—51—|—6:0givent:3isaroot
(d) 058> 4+3x—2=0 (¢) v —v? —30v+72=0given v = 4 is a root
(e) 2k>—k—-3=0 (d) 2y3+3y*> — 11y +3 =0 given y = 1.5 is a root

) —>+3y+1=0

5
(e) 203 43x%2 —7x—5=0givenx = —= is a root.
(@ 3 =Tr+2 2

(h) x¥*=70=0 6 Check that the given values are roots of the following
(i) 4> —2=s polynomial equations:
G) 22 +50+2=0 (@ ¥®4+x—2=0 x=-2,1
k) 3x* =50 (b) 2683 =3t+2=0 t=-1,05
5 Calculate the roots of the following polynomial © Y+y+y+1=0 y=-I
equations: d v*+43+6024+30=0 v=-1,0

(@) x> —6x*+11x—6=0givenx = 1 is aroot

Solutions
5\2 221
T @3 ®-4 @©10 @3 @ (x+5) — 5 = 0.x = —9.9330,4.9330
34 6
(12 (3 ©® 5 W3 4 (a) —1.6180,0.6180
. ‘ 7 a1 (b) —0.5616,3.5616
2 oz ®©; O (©) —4.7913, —0.2087
2 @ 2.3 (b) —4.3 © 5 (d) —6.6056,0.6056
@ -7.3 (o) 3.6 0 —1,1 © -L15
(@ 1,9 (h) —0.5,1 (i) —2,0.5 (f) —0.3028,3.3028
1 (g) —0.2573,2.5907
(i -1, —= (& —25-05 () 0.25,2
3 (h) —8.3666, 8.3666
(m) _%% @) éz (i) —0.5931,0.8431
() —2,-05
3 @ (+1)?-9=0x=-42 (k) —4.0825,4.0825
(© (x+2)2—10=0,x=—5.1623, 1.1623 (©) —6,3,4  (d) —3.3028,0.3028, 1.5
@ (x—7)2—59=0,x=—0.6811, 14.6811 () —2.5,—0.6180, 1.6180
IR ALGEBRAIC FRACTIONS
An algebraic fraction has the form
numerator polynomial expression

algebraic fraction =

denominator  polynomial expression

For example,

3t+1 x? and Y+ 1
2+t +4 2 +1 ¥ +2y+3

are all algebraic fractions.



1.5.1

1.5 Algebraic fractions 27

Proper and improper fractions

When presented with a fraction, we can note the degree of the numerator, say n, and the
degree of the denominator, say d.

A fraction is proper if d > n, that is the degree of the denominator is greater than
the degree of the numerator. If d < n then the fraction is improper.

Example 1.25

Solution

Classify the following fractions as either proper or improper. In each case, state the
degree of both numerator and denominator.
X +9x—6
3x3 + x2+ 100
P+174+9—-6
+9
v+ 1D(@w—-06)
v2+3v+6
(z+2)°
522410z + 16

()
(b)
(©)

(d)

(a) The degree of the numerator, n, is 2. The degree of the denominator, d, is 3. Since
d > n the fraction is proper.

(b) Here n = 3 and d = 5. The fraction is proper since d > n.
(¢) Heren =2 and d = 2, so d = n and the fraction is improper.

(d) Heren =3 and d = 2, so d < n and the fraction is improper.

1.5.2

Equivalent fractions

1 2
Consider the numerical fractions 7 and e These fractions have the same value. Sim-

2 6 20 2 t
ilarly, —, 5 and 30 all have the same value. The algebraic fractions )—C, 2_x and fd all

3 y 2y o
have the same value. Fractions with the same value are called equivalent fractions.

The value of a fraction remains unchanged if both numerator and denominator are
multiplied or divided by the same quantity. This fact can be used to write a fraction in
many equivalent forms. Consider for example the fractions

2(x+1) © 2xt
x(x+1) ¢ x2t

These are all equivalent fractions. Fraction (b) can be obtained by multiplying both nu-
merator and denominator of fraction (a) by (x + 1), so they are equivalent. Fraction (a)
can be obtained by dividing numerator and denominator of fraction (c) by x and so they
are also equivalent.

2
(@ - (b
X

Example 1.26

Show that

x+1 X +4x+3
nd _—
x+7 X2 4+ 10x + 21

are equivalent.
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Solution  We factorize the numerator and denominator of the second fraction:
X H+dx+3 (+1)(x+3)
X4+10x+21 x+7)(x+3)
L . ox+1 .
Dividing both numerator and denominator by (x + 3) results in 7 So the two given
X
fractions are equivalent.
Dividing both numerator and denominator by x + 3 is often referred to as ‘cancelling
x+3.
1.5.3 Expressing a fraction in its simplest form

Consider the numerical fraction —. To simplify this we factorize both numerator and
denominator and then cancel any common factors. Thus

6 2x3 3

10 2x5 5

6 3 3 6
The fractions 0 and 3 have identical values but 3 is in a simpler form than 1o Itis im-

portant to stress that only factors which are common to both numerator and denominator
can be cancelled.

Example 1.27

Solution

Simplify
6x
18x2
12x%y?
4x2yz

(a)

(b)

(a) Note that 18 can be factorized to 6 x 3 and so 6 is a factor common to both numerator
and denominator. Also x? is x x x and so x is also a common factor. Cancelling the
common factors, 6 and x, produces

6x 6x 1

182 (6)3) ) x)  3x

(b) The common factors are 4, x> and y. Cancelling these factors gives

12x3y2 _ 3xy

4X2yz o i
Example 1.28 Simplify (a) 4 ) 613 + 31> + 61
p. P e 32 4 3t

Solution

(a) Factorizing both numerator and denominator and cancelling common factors yields

4 Q@ 2
6x+4 23x+2) 3x+2
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(b) Factorizing and cancelling common factors yields

6r +3° + 61 3120 +1+2) 274142
3243t 3+ 41

Note that the common factor, 3¢, has been cancelled.

. . 4r + 8 2y2 —y—1
Example 1.29 Simplif - b) ———
p implify (a) oY ()yz_2ij1
Solution The numerator and denominator are factorized and common factors are cancelled.
@) 4t + 8 4t +2) 4
a = =
P+3+2  ¢+2)¢+1) r+1
The common factor, ¢ + 2, has been cancelled.
) 2 —y—1 _ Qy+DO—1D  2y+1
y=2y+1 o —1? y—1
The common factor, y — 1, has been cancelled.
1.5.4 Multiplication and division of algebraic fractions

To multiply two algebraic fractions together, we multiply their numerators together, and
multiply their denominators together, that is

a c axc ac

X — g
b d bxd bd

Division is performed by inverting the second fraction and then multiplying, that is

a ¢ a d ad

St =X - =—
b d b ¢ b
Before multiplying or dividing fractions it is advisable to express each fraction in its
simplest form.

Example 1.30

Solution

Simplify

XX+5x+6 o X2 —x
2x—2 X2 +3x+2

Factorizing numerators and denominators produces

x2+5x+6x X2 —x _(x—l—2)(x—{—3)X x(x—1)
2x—2 X2 +3x+2 2(x—1) x+1DHx+2)
B x+2)x+3)x(x—1)
20— D+ D (x+2)
Common factors (x4 2) and (x — 1) can be cancelled from numerator and denominator
to give
(x+2)(x+3)x(x—1)  (x+3)x
20-DE+DE+2) 20+ 1)
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Hence
X +5x+6 X —x x(x+3)
X =
2x —2 X2 4+3x+2 2(x+1)
Example 1.31 Simplify

Solution

¥ +8x+7  x+7
xX2—6x = x34x2

The second fraction is inverted to give

XH8x+7 X+
X
x2 — 6x x+7

Factorizing numerators and denominators yields
E+DE+T y 41D @+ D4+ 1)
x(x — 6) G+7  xx—6)(x+7)
Common factors of x and (x + 7) are cancelled leaving

x4+ Dx(x+1)
x—06

which may be written as

x(x 4+ 1)?
x—6

1.5.5

Addition and subtraction of algebraic fractions

The method of adding and subtracting algebraic fractions is identical to that for numer-
ical fractions.

Each fraction is written in its simplest form. The denominators of the fractions are
then examined and the lowest common denominator (1.c.d.) is found. This is the sim-
plest expression that has the given denominators as factors. All fractions are then writ-
ten in an equivalent form with the l.c.d. as denominator. Finally the numerators are
added/subtracted and placed over the l.c.d. Consider the following examples.

Example 1.32

Solution

Express as a single fraction

2 n 4
x+1 x+2

Both fractions are already in their simplest form. The l.c.d. of the denominators, (x+ 1)
and (x + 2), is found. This is (x + 1)(x + 2). Note that this is the simplest expression
that has both x 4 1 and x + 2 as factors.

Each fraction is written in an equivalent form with the l.c.d. as denominator. So

L 2(x+2)
1S written a8 —————
x+1 x+1Dx+2)




and

. . 4(x+1)
is written as —————
x+2 x+1D(x+2)

Finally the numerators are added. Hence we have

2 4 2(x+2) 4(x+1)

1l it T G De+Y) T GrDa+2)
2 +2)+4(x+ 1)
D@ +2)

. 6x + 8

T G+ D +2)
6x+ 8

- X2 4+3x+2

1.5 Algebraic fractions
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Example 1.33 Express as a single fraction

XX+3x+2 2
x2—1 2x+6

Solution Each fraction is written in its simplest form:

X4+3x+2 @+DE+2) x+2
2—1  G-Da+D) x—1
2 2 1
216 26+3) x+3

The l.c.d. is (x — 1) (x + 3). Each fraction is written in an equivalent form with l.c.d. as

denominator:
x+2  (x+2)(x+3) I x—1
x—1  x=Dx+3)’ x+3  (x—=Dx+3)
So

X2 4+3x+2 2 x+42 1
2 —1 2x+6 x—1 x+3

_ e+ +3) x—1)

T =D& +3) x=DE+3)

G+ +3)— =1
B (x—D(x+3)
_x2+5x+6—x+1
(=D +3)

_ X2 4+4x+7
(=D +3)
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Engineering application 1.7

Resistors in parallel

When carrying out circuit analysis it is often helpful to reduce the complexity of a
circuit by calculating an equivalent single resistance for several resistors connected
together in parallel. This simplified version of the original circuit then becomes much
easier to understand. Figure 1.4 shows the simplest case of two resistors connected
together in parallel.

|

w[] [

‘[ Figure 1.4
Two resistors in parallel.

The equivalent resistance, Ry, of this simple network is found from the formula

1 1 1
Re R R
By combining the fractions on the r.h.s. we see
1 R, + R,
R_E - R\R,
and hence
R, = RR,
R, +R,

Consider the case when R, and R, are equal and have value R. The equivalent resis-
tance then becomes

RR R* R
RE:—:—I—
R+R 2R 2

So

R
R, == =05R
2

Therefore the effect of putting two equal resistors in parallel is to produce an overall
equivalent resistance which is half that of a single resistor.

EXERCISES 1.5

1 Classify each fraction as either proper or improper. 2 Classity each of the following algebraic fractions as
5 5 ) proper or improper.
@ 22 ) © =% 3+ 1 100? +4v — 6 6—dr +13
212 x+2 2 @ > b —— © —5——
- —1 3ve+v—1 6t- + 1
2 2 2 2
x°+2 x°+2 x“+1 9 +1 100/ +1 x4+ Dx+2)
d d
D @en Oen @ © s O T
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© 0G+DO+2)0+3) X2 4+3x P +4x+4
(y+4)3 © x3 4 2x2 * 4x
@+ D" L g+ DY Axt+ 4 42 —4
() = 10 O 76 (d) x
(2z+1) (¢ +1 a2 —12 " 8x+8
2
G 3+ 2%-1 K 4+2x—15 X2 +3x—4
k3 +k* — 4k + 1 © 25 2 —dx+3
3 Express each fraction in its simplest form. Bl Express as a single fraction
@ ¥ +2y ®) 52 45
a 0 T
2y —y2 10x — 10 3 2
(@ x+6 + x+1
()t2+7t+12 @ -1
) — -~ _r
1245t +4 X =22 4 x (b) 4 2
© 2+ 2 +1 x+2  (x+2)?
e) T
X2 —2x+1 © 2x+ 1 n 4
N . 24+x+1 x—1
4 Simplity the following:
x+1 x43 X 43x—18 274 Tx—4
(a) x @ — )
x+3 x+2 x>+Tx+6  x*+9x420
(b) 24 xx+] © 3x+1) 2(x—1)
x =1 6 X +4x+4 x2—4
Solutions
1 (a) proper (b) proper (c) improper 4 () x+1 (b) #
(d) improper (e) improper (f) improper x+2 3-D
2 (a) proper (b) improper (c) improper (c) @+2)x+3) (d) 2+ 1) (e) xt4
. 4x2 t x—1
(d) improper (e) proper (f) proper
(g) improper (h) improper (i) proper 5 () S5x+15 (b) 4x+6
(i) proper x+1)(x+6) (x+2)?
6x% +3x+3
y¥+2 41 1+3 (© 5
3 (a) (b) (c) — =D& +x+1)
2—y 2x —2 r+1 ) 5
2 —x"+x—14 5x—x—10
(d) X+ 1 (e) x° 4+ 2x -+ 1 (d) 1 (e) 5
x(x—1) 2 —2x+1 x+DE+35) (x+2)*(x—=2)

IEY] SsOLUTION OF INEQUALITIES

An inequality is any expression involving one of the symbols >, >, <, <.

a > b means a is greater than b

a < bmeans a is less than b

a > b means a is greater than or equal to b
a < bmeans a is less than or equal to b

Just as with an equation, when we add or subtract the same quantity to both sides of an
inequality the inequality still remains. Mathematically we have
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If a > b then
a+k>b+k adding k to both sides
a—k>b—k subtracting k from both sides

We can make similar statements fora > b, a < band a < b.

When multiplying or dividing both sides of an inequality extra care must be taken.
Suppose we wish to multiply or divide an inequality by a quantity k. If k is positive the
inequality remains the same; if k is negative then the inequality is reversed.

If a > b then

ka > kb ka < kb
a b if k is positive a b if k is negative
Kk kK k

Note that when £ is negative the inequality changes from > to <. Similar statements can
be made fora > b, a < band a < b. When asked to solve an inequality we need to state
all the values of the variable for which the inequality is true.

Example 1.34

Solution

Solve the following inequalities:

@ 3+1>1t+7 (b)) 2-37<6+7

(@) 3t+1>t+7

2t+1>7 subtracting ¢ from both sides
2t>6 subtracting 1 from both sides
t>3 dividing both sides by 2

Hence all values of ¢ greater than 3 satisfy the inequality.

(b) 2—-3z2 < 6+z
-3z < 4+¢ subtracting 2 from both sides
—4z < 4 subtracting z from both sides
z > —1 dividing both sides by —4, remembering to reverse

the inequality

Hence all values of z greater than or equal to —1 satisfy the inequality.

We often have inequalities of the form % > 0, % < 0,aB > 0and o < 0to solve. It

is useful to note that if

> (O then eithera > 0and 8 > 0ora <0and 8 <0

< O theneithera > 0and B <Oora <Oand 8 > 0

™R ™R

off > Otheneithera >0and 8 > 0ora <0Oand 8 <0

aff < Otheneithera >0and 8 <Oora <Oand B >0

The following examples illustrate this.
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Example 1.35

Solution

Case (i)

Case (ii)

Case (i)

Case (ii)

Solve the following inequalities:

(a)

(a) Consider the fraction a

(b)

1 %43
oo om0
2x—6 t+2

1
. For the fraction to be positive requires either of the
following: x—6

(i) x+1>0and2x—6 > 0.

(i) x+1 <0and2x —6 < 0.

We consider both cases.

x+1>0andsox > —1.

2x — 6 > 0and sox > 3.

Both of these inequalities are true only when x > 3. Hence the fraction is positive
when x > 3.

x+1<0andsox < —1.

2x — 6 < 0andsox < 3.

Both of these inequalities are true only when x < —1. Hence the fraction is positive
when x < —1.

1
In summary, 2x G > 0whenx >3orx < —1.

2t + 3
T2
2t+3
r+2
1
t+2

<1

1 <0

t+1
‘We now consider the fraction +
either of the following:

. For the fraction to be negative or zero requires

() t+1 < 0andt+2>0.

@) r+1>0andt+2 <0.

We consider each case in turn.

t+1<0andsor < —1.

t+2>0andsot > —2.

Hence the inequality is true when ¢ is greater than —2 and less than or equal to —1.

We write thisas —2 < < —1.

t+1>0andsor > —I1.
t+2<0andsor < —2.



36 Chapter 1 Review of algebraic techniques

It is impossible to satisfy both # > —I and # < —2 and so this case yields no values
of t.

2t +
In summary, P < 1when -2 <t < —1.

Example 1.36 Solve the following inequalities:
(a) x> > 4 (b) x> <4

Solution (a) >4
X>—4>0
x=2)x+2)>0

For the product (x — 2)(x + 2) to be positive requires either

i) x—2>0andx+2>0

or

(i) x—2<0andx+2 < 0.

We examine each case in turn.

Case (i) x—2>0andsox > 2.

x+2>0andsox > —2.

Both of these are true only when x > 2.
Case (ii) x—2<0andsox < 2.
x+2<0andsox < —2.

Both of these are true only when x < —2.
In summary, x> > 4 when x > 2 or x < —2.

(b) xXr <4

¥ —4<0

x=2)x+2)<0
For the product (x — 2) (x + 2) to be negative requires either

i) x—2>0andx+2<0

or

(i) x—2<0andx+2 > 0.

We examine each case in turn.

Case (i) x—2>0andsox > 2.
x+2<0andsox < —2.

No values of x are possible.
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x—2<0andsox < 2.

x+2>0andsox > —2.

Here we have x < 2 and x > —2. This is usually written as —2 < x < 2. Thus all
values of x between —2 and 2 will ensure that x*> < 4.
In summary, x> < 4 when —2 < x < 2.

The previous example illustrates a general rule.

If x2 > k then x > vk or x < —+/k.
If X2 < k then —vk < x < k.

Example 1.37

Solution

Case (i)

Case (ii)

Solve the following inequalities:

@ x¥>*+x—6>0 b) x> +8+1<0

()

(b)

X+x—6>0
(x—2)(x+3)>0

For the product (x — 2)(x + 3) to be positive requires either

(i) x—2>0andx+3>0

or

(i) x—2<0andx+3 < 0.

x—2>0andsox > 2.

x+3>0andsox > —3.
Both of these inequalities are satisfied only when x > 2.

x—2<0andsox < 2.

x+3<0andsox < —3.

Both of these inequalities are satisfied only when x < —3.
In summary, x> + x — 6 > 0 when either x > 2 or x < —3.

The quadratic expression x> + 8x + 1 does not factorize and so the technique of
completing the square is used.

XH8x+1=x+4)>*-15
Hence

x+4)?*-15<0
x+4)?2<15
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Using the result after Example 1.36 we may write

V15 <x+4 <15
—VI5-4<x<+15-4
—7.873 < x < —0.127

1

1

EXERCISES 1.6

Solve the following inequalities:

(a) 2x > 6
(c) 3t <12

(e) 3v—2<4

© 6—2v
& 73

i %<9

& x> +10<6

(m) 10 — 222
(0) (v—2)?

Solve the following inequalities:
(@ x>2—6x+8>0
() X2 +6x+8<0
(¢) 22431 —

Solutions

x>3
723

(@)
(d)
(g
()
)
(k)
@O k
(m) v
(n)
(0)

(P

b=
2

>
>

(a)
(b)

(©

<1

<
<25

—3<x<3
-3 <v<3
no solution
ﬁork
J2orv
k>2ork < -2
-3<v<?

5
t>lort < ——
3
x>4orx<?2
—4 <x<

1
-2 <t< =

(b) % > 0.6

d z+1>4
) 6—k> —1

(h) m? =2

G) V2 +1<10
M 2k2—-3>1
6 (n) 5+ 4k* > 21
® Gt+1)2>16

2<0

(b) y>24
e) vg2

c)t<4
) k<7

(h)y m>~2o0rm< —+2

V3
V3

<
<

-2

2

d y*—2y—24>0
(e) RP4+6h+9<1
6 rP+6r+7=0
(@ 2+4x-6<0
(h) 42 +4r+9<12
x+4 2t —3
i 1 i <6
(@) =5 ()] 116
3v 412 x>
Kk >0 D — >0
(k) 6 —2v M x+1>
X 3y+1
——— <0 <2
(m) = < m S5
(0) ¥>0 (p) x*>8
@ 2+6t+9
YT

) x+DHx—-2)x+3)>0

(@)
(e

y=z6bory< —4
—4<h<g 2

(€3] r>2—=30orr<—+2-3

(@ —vV10—2<x<+/10-2
3 1

) —s <<

i x>5

G) t<—?ort>—6

k) -4<v<3

1 x> —1withx#0

(m) x <0 n) -5<y<?2

(0) k>0 p) x>2

(@ <=5

(r) x>2o0or—-3<x<-—1
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PARTIAL FRACTIONS

Given a set of fractions, we can add them together to form a single fraction. For example,
in Example 1.32 we saw

2 4 2424+ 1)
x+1 +x+2 T G+ DE+2)
6x+8
:x2+3x+2

Alternatively, if we are given a single fraction, we can break it down into the sum of easier
fractions. These simple fractions, which when added together form the given fraction,
6x + 8 2 4

are and .
X2 +3x+2 x+1 x+2
When expressing a given fraction as a sum of partial fractions it is important to clas-
sify the fraction as proper or improper. The denominator is then factorized into a product
of factors which can be linear and/or quadratic. Linear factors are those of the form

are called partial fractions. The partial fractions of

ax + b, for example 2x — 1, g + 6. Repeated linear factors are those of the form

(ax 4 b)?, (ax + b)? and so on, for example (3x — 2)? and (2x + 1)? are repeated linear
factors. Quadratic factors are those of the form ax® + bx + ¢, for example 222 —6x+ 1.

Linear factors

We can calculate the partial fractions of proper fractions whose denominator can be
factorized into linear factors. The following steps are used:

(1) Factorize the denominator.
(2) Each factor of the denominator produces a partial fraction. A factor ax -+ b produces

. . A .
a partial fraction of the form e where A is an unknown constant.
ax

(3) Evaluate the unknown constants of the partial fractions. This is done by evaluation
using a specific value of x or by equating coefficients.

A gnear factor ax + b in the denominator produces a partial fraction of the form

ax+b’

Example 1.38 Express

Solution

6x + 8
X2 +3x+2

as its partial fractions.

The denominator is factorized as

PH3x+2=Gx+DKx+2)
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The linear factor, x 4 1, produces a partial fraction of the form

. The linear factor,
x+1

B
X + 2, produces a partial fraction of the form Y A and B are unknown constants
X

whose values have to be found. So we have
6x + 8 6x + 8 A B

= = 1.8

X2 +3x+2 x+1DE+2) x+1+x+2 (1.8)
Multiplying both sides of Equation (1.8) by (x + 1) and (x 4 2) we obtain

6x+8=Ax+2)+Bx+1) (1.9)

We now evaluate A and B. There are two techniques which enable us to do this: evalu-
ation using a specific value of x and equating coefficients. Each is illustrated in turn.

Evaluation using a specific value of x

We examine Equation (1.9). We will substitute a specific value of x into this equation.
Although any value can be substituted for x we will choose a value which simplifies
the equation as much as possible. We note that substituting x = —2 will simplify the
r.h.s. of the equation since the term A (x + 2) will then be zero. Similarly, substituting in
x = —1 will simplify the r.h.s. because the term B(x + 1) will then be zero. Sox = —1
and x = —2 are two convenient values to substitute into Equation (1.9). We substitute
each in turn.
Evaluating Equation (1.9) with x = —1 gives

—-6+8=A(-1+2)
2=A
Evaluating Equation (1.9) with x = —2 gives
—4 =B(-1)
B=4
Substituting A = 2, B = 4 into Equation (1.8) yields

6x + 8 _ 2 n 4
X4+3x+2 x+1 x+2

2 4
Thus the required partial fractions are —— and ——.
x+1 x+2
The constants A and B could have been found by equating coefficients.

Equating coefficients

Equation (1.9) may be written as
6x+8=(A+B)x+2A+B

Equating the coefficients of x on both sides gives
6=A+B

Equating the constant terms on both sides gives

8=2A+B
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Thus we have two simultaneous equations in A and B, which may be solved to give
A =2 and B = 4 as before.

1.7.2

Repeated linear factor

We now examine proper fractions whose denominators factorize into linear factors,
where one or more of the linear factors is repeated.
A repeated linear factor, (ax + b)?, produces two partial fractions of the form
A B
+ 2
ax+b  (ax—+b)

A repeated linear factor, (ax + b)?, leads to partial fractions
A B
+
ax+b  (ax+ b)?

Example 1.39

Solution

Express
2x+5
X4+2x+1
as partial fractions.

The denominator is factorized to give (x + 1). Here we have a case of a repeated factor.
. Thus

This repeated factor generates partial fractions + —
P g P Y1 g1

2x+5 2+5 A B

= = +
x2+2x+1 x+1D2 x+1  (x+1)?
Multiplying by (x + 1)? gives

2x+5=Ax+1)+B=Ax+A+B

Equating coefficients of x gives A = 2. Evaluation with x = —1 gives B = 3. So
2x+5 2 n 3
24+2x4+1 x+1 (x+1)2

Example 1.40

Solution

Express

14x* + 13x
4> +4x+1)(x—1)

as partial fractions.

The denominator is factorized to (2x4-1)?(x—1). The repeated factor, (2x+1)?, produces
partial fractions of the form

A n B
2x+1  (2x+1)?




42 Chapter 1 Review of algebraic techniques

The factor, (x — 1), produces a partial fraction of the form

C
.So
x—1

14x> + 13x 14413 A N B N C
@2 +4x+Dx—1) x+D2x—=1) 2x+1 @x+1)? x—1
Multiplying both sides by (2x + 1)?(x — 1) gives

147 + 1B3x=ARx+ D(x— 1) +Bx—1)+CQx+ 1)? (1.10)

The unknown constants A, B and C can now be found.
Evaluating Equation (1.10) with x = 1 gives

27=C@3)’
from which
C=3
Evaluating Equation (1.10) with x = —0.5 gives
14(—0.5)* + 13(=0.5) = B(—0.5— 1)
from which
B=2
Finally, comparing the coefficients of x*> on both sides of Equation (1.10) we have
14 =2A44C
Since we already have C = 3 then
A=1

Hence we see that
14x% + 13x 1 n 2 n 3
(4 +4x+D(x—1)  2x+1  x+1) x-—1

1.7.3 Quadratic factors

We now look at proper fractions whose denominator contains a quadratic factor, that is
a factor of the form ax? + bx + c.

A quadratic factor, ax? + bx + ¢, produces a partial fraction of the form
Ax+B
ax* +bx+c¢

Example 1.41 Noting that x* + 2x*> — 11x — 52 = (x — 4) (x> + 6x + 13), express

324+ 11x+ 14
x4+ 2x2 —11x—52

as partial fractions.
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The denominator has already been factorized. The linear factor, x — 4, produces a partial

fraction of the form

x—
The quadratic factor, X2 + 6x + 13, will not factorize further into two linear factors.
Bx+C

——  Hence
x24+6x+13

Thus this factor generates a partial fraction of the form

3¢+ 1x+14 A L Bx+C
(x—dE2+6x+13) x—4 R2+6x+13

Multiplying by (x — 4) and (x> + 6x + 13) produces
3+ 1lx+ 14 =A? +6x+13) + Bx+C)(x — 4) (1.11)

The constants A, B and C can now be found.
Putting x = 4 into Equation (1.11) gives

106 = A(53)
A=2

Equating the coefficients of x> gives

3=A+B
B=1
Equating the constant term on both sides gives
14 =A(13) —4C
c=3
Hence

324+ 11x+ 14 2 N x+3
B2 —11x—=52 x—4 2+6x+13

1.7.4

Improper fractions

The techniques of calculating partial fractions in Sections 1.7.1 to 1.7.3 have all been
applied to proper fractions. We now look at the calculation of partial fractions of im-
proper fractions. The techniques described in Sections 1.7.1 to 1.7.3 are all applicable
to improper fractions. However, when calculating the partial fractions of an improper
fraction, an extra term needs to be included. The extra term is a polynomial of degree
n — d, where n is the degree of the numerator and d is the degree of the denomina-
tor. A polynomial of degree O is a constant, a polynomial of degree 1 has the form
Ax + B, a polynomial of degree 2 has the form Ax> + Bx + C, and so on. For exam-
ple, if the numerator has degree 3 and the denominator has degree 2, the partial fractions
will include a polynomial of degree n —d = 3 — 2 = 1, that is a term of the form
Ax + B. If the numerator and denominator are of the same degree, the fraction is im-
proper. The partial fractions will include a polynomial of degree n — d = 0, that is a
constant term.
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Let the degree of the numerator be n and the degree of the denominatorbe d. If n > d
then the fraction is improper. Improper fractions have partial fractions in addition to
those generated by the factors of the denominator. These additional partial fractions
take the form of a polynomial of degree n — d.

Example 1.42 Express as partial fractions

4> +10x + 4
2x% +x

Solution The degree of the numerator is 3, that is n = 3. The degree of the denominator is 2, that
is d = 2. Thus, the fraction is improper.
Now n — d = 1 and this is a measure of the extent to which the fraction is improper.
The partial fractions will include a polynomial of degree 1, that is Ax 4 B, in addition to
the partial fractions generated by the factors of the denominator.
The denominator factorizes to x(2x + 1). These factors generate partial fractions of

the form g + w1 Hence
46+ 10x + 4 _ 46 4+ 10x + 4 P C N D
2x2 4+ x x2x+1) x  2x+1
Multiplying by x and 2x + 1 yields
4 + 10x + 4 = (Ax+ B)x(2x + 1) + C(2x + 1) + Dx (1.12)

The constants A, B, C and D can now be evaluated.
Putting x = 0 into Equation (1.12) gives

4=C

Putting x = —0.5 into Equation (1.12) gives

D
—15=—-=
2

D=3
Equating coefficients of x* gives
4=2A
A=2
Equating coefficients of x gives

10=B+2C+D
B=—1

Hence

453 +10x 4+ 4
2x2 4+ x

4
=2x—14+ -+
o x  2x+1
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EXERCISES 1.7

Calculate the partial fractions of the following
fractions:

6x + 14 7 —2x
_— b
@ X2 +4x+3 ®) xX2—x=2
3x+6 8—x
T H ——— =
© 2x2 4+ 3x @ 6x2 —x—1
13x% + 11x +2
(e)

G+ D2x+1DHGx+1)

Calculate the partial fractions of the following
fractions:
2x+ 7 4x—5

_ ot b —— -
@) X2 +6x+9 ®) x2—2x+1
© 3324+ 8x+6
c

(2 +2x+ 1) (x+2)
@ 3x% —3x—2 32+ 7x+6

@ -1Dkx-=1 x3 4 2x2
Express the following as partial fractions:
@) X 4x+2

P+ Dx+1)

Solutions

@) 2 4 ®) 1 3
) — 4 _

x+3 x+1 x—2 x+1
© 2 1 @ 3 5
o) 2 - .

x  2x+3 2x—1 3x+1
© 2 n 1 1
e _

x+1 2x+1 3x+1
@ 2 4 1 ) 4 1
a - -

x+3  (x+3)? x—1 (x—
(©) ! + ! + 2

x+1 x+D2  x+2

2 1 1
d _
()x—l (x—1)2+x+1
© 2 3 1
e) 4 4
X2 x42

@ ——
a _

x+1 x2+1

1)2

1.7 Partial fractions

®) 502+ 11x+5
(2x+3)(x? +5x+5)
4x? +5
©

(2 + 12 +2)
18x% + 7x + 44
(2x —3)(2x2 +5x+7)
2x
(2 —x+1DE2+x+1)

(d)

©)]

Express the following fractions as partial fractions:

12x — 4
2x—1

2

x“+Tx+ 13

_ b
(a) T4 (b)

X2+ 8x+2
2 4+6x+1
¥ =232 4+3x-3
2 —2x+1
203 4+ 2x2 —2x—1
X2 4+ x

©
(d)

(e)

2x 1
2 4+5x+5 +2x+3
1 3
2r1 e
5 4x —3
2x —3 +2x2—|—5x+7
1 1
2—x+1 _x2+x+1

(b)

©

(d)

(e)

1 2
34+ —— b) 6+ ——
@ x+ +x—|—4 ®) +2x—1
2x+1

X2 4+6x+1

1
x—1 (x—=1)2
1 1

Ip— — —
(€) 2x x  x+1

(c) 1+

(d x+

45
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Technical Computing Exercises 1.7

1 Use a technical computing language such as The result is:

MATLAB® to verify the solutions to the problems in r =
Exercises 1.7. In MATLAB®, the function residue

calculates the partial fraction expansion. For example, 4.0000
exercise 1(a) would be solved by typing the following: 2.0000
b = [6 14]; p=
a=[143];

[r,p,k] = residue(b, a) -1
Notice how the coefficients of the numerator are input -3

in the formb = [6 14]; this is known as a row k =

vector. The concept of a vector will be discussed in 1

later chapters. For now it is adequate to treat this as a

horizontal list of numbers which are passed to Examining the solution we note that the output for

MATLAB® in a specific order. both r and p is arranged as a vertical list. This way of
representing the output is known as a column vector.

Similarly, the coefficients of the denominator are We note that the numbers returned in column vector p

inputbya = [1 4 3]. have a negative sign. This is because the result

Each vector is arranged with the coefficient of the calculated contains the poles of the partial fraction

highest power of x first. expansion. These are values of the variable which

make the denominator of the fraction zero. The
significance of this will become clear later in the text
but for now it is adequate to note the difference in
sign from what might have been expected.

IEE] suMMATION NOTATION

In engineering we often want to measure the value of a variable, such as current, voltage
or pressure.

Suppose we make three measurements of a variable x. We can label these measure-
ments x,, x, and x;. In this context, the numbers 1, 2, 3 are called subscripts.

In mathematics, the Greek letter sigma, written Y _ , stands for a ‘sum’. For example,
the sum x,; + x, + x; is written

Note that the subscript k ranges from 1 to 3. As k ranges from 1 to 3, x, becomes x, then
x, and then x; and the sigma sign tells us to add up these quantities.
In general,

N
Don=x 54ty
k=1

This notation is often used to express some of the fundamental equations of electrical
circuit analysis. Sometimes ‘Summation Notation’ is known as ‘Sigma Notation’.
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Engineering application 1.8

Kirchhoff’s current law

Kirchhoff’s current law, often abbreviated to KCL, provides one of the fundamental
equations for analysing electrical circuits. The law states that the sum of the currents
flowing out of any junction, or node, in a circuit must equal the sum of the currents
flowing into it.

This principle is intuitive as it has a direct analogy with fluid flow in connected
water pipes. Currents flowing into a junction are considered positive; those flowing
out of a junction are negative. It is then valid to say that the sum of the currents
at a junction is zero. If there are N currents at the junction, denoted /,, I, ..., I,
then

L+hL+L+- 41y +1y=0

This can be expressed using the summation notation as

N
Y p=0
k=1

Here I, means ‘the current, /, in branch k’. The first equation can be produced from
the summation notation by first substituting k = 1, then k = 2, right up to k = N.
The expression below the summation symbol tells you where to start and the variable
to be substituted, and the number above the summation symbol indicates where to
stop counting. Summation notation is a very compact and precise way of expressing
KCL for any number of currents at a node.

Consider the node shown in Figure 1.5.

Branch 1 Branch 3
1A 2 A
3A 2A Figure 1.5
A circuit node with four separate branches. The currents are
Branch 2 Branch4  given in amperes (or amps, A).

It can be seen that the total current flowing into the node is 1 + 3 = 4 amps. The
current flowing out of the node is 2 4+ 2 = 4 amps. Clearly,

Total current flowing into node = total current flowing out of node

Alternatively, using the summation form of KCL we have

4
Y h=L+L+L+],=0=1+3-2-2
k=1
Note that for currents flowing out of the node a negative sign is used and for currents
flowing into the node a positive sign is used. This is equivalent to considering the
currents separately as inward and outward flowing currents and equating the two.
Suppose for a moment that we did not know the current in branch 4 and,
furthermore, it was not labelled with an arrow to show the direction of current flow.
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This situation is likely to occur in a circuit problem in electronics. There are
two options for labelling the current flow direction, and these are summarized in
Figure 1.6.

1A 5 A 1A 5 A
3A I 3A I Figure 1.6
Two different ways of defining the
Branch 4 Branch 4 current direction in Branch 4.
14+3—2—1,=0 1+3-2+1,=0
L,=2 Iy ==2
Note that the two solutions are both correct but /, = —2 has a negative sign, which

simply indicates that the current flows in the opposite direction to the arrow drawn
on the right-hand diagram. It does not matter which way round the arrow is marked,
as long as we observe the sign.

Engineering application 1.9

Kirchhoff’s voltage law

Kirchhoff’s voltage law, often abbreviated to KVL, provides another of the funda-
mental equations for analysing electrical circuits. The law states that the sum of the
voltages around a closed loop equals zero. It is often written down in the form of a
summation, as follows:

N
> V=0
k=1

For the circuit shown in Figure 1.7 there are three possible loops to which we
could apply KVL.

Figure 1.7
A simple circuit to illustrate Kirchhoft’s voltage law.

In this example an ideal voltage source and resistors are used, although any compo-
nents could be substituted as KVL applies universally. Note that we ‘walk around’
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the circuit when writing down the equations. If the arrow is in the direction of travel
then it is given a positive sign; if it opposes the direction of travel it is given a
negative sign.

The equations are

10

V,—V, -V, =0 V-V, -V, =V, =0 V.-V, -V, =0

If the equations are solved and the voltage has a negative sign it indicates that the
polarity is opposite to the direction of the voltage arrow drawn on the diagram. KVL
and KCL are the fundamental circuit laws that allow networks of electronic compo-
nents to be mathematically analysed. Although they are simple in concept they are
very powerful techniques.

EXERCISES 1.8

Write out fully what is meant by each of the following 4 Determine the current, /, at each of the following
expressions: circuit nodes:

@ Yior % ®) Yiix (a) (b)

© Yher % @ Fisi 4 L a 2 IA
© Yia;-2°7  ® Yip@n+1)? / )

Write out fully ©) (d)

@ Y (=K (0) Yoo (—DFH1R2 32 LA

Write the following sums more concisely by using I

sigma notation:

(@ P+22+3+...4+10°
®) [N N 1
1 273 4 12

© 142+ %+
S
35 7
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5 Find V, in each of the following circuits:

(a)

e

(b)

ZVK)

Solutions

1T (@ x;+x+x3+x, (b) xy +xy +x3 + x4
(©) x; +x +x3 + x4 + x5+ X6 + x5
(d) x%—}—x%—}—x%
© O =27+ =2+ (5 =27 + (5, = 2)°
) 1432452 +7°

2 (a —1+2-3+4
(b) 1—44+9—-16+25

3 @ Y208

kL
b) 32, S

3 1 4 1
(C) Zn:O 2n+1 or Zn:l 2n—1

6 Find V, and V; using KVL.

by

MO g 1

4 All solved using KCL

(@ 3—1-1=0"1=2

®) 3+1—-1=0..1=4

) 3+1+1=0.1=—-4

) L+hL+L—1=0 " I=I+1+]1
0r1=213¢:11k

5 Both solved using KVL

@ 2—1-V,=0.V, =1
) 24 (=) +V, =0V, =—I

6 3-1-V,=0.V,=2

3-1-1-V, =0,V =1
orV,— 1=V, =0 .. by substitution for V,,
Vpy=1

REVIEW EXERCISES 1

1 Simplify each of the following as far as possible:
63
6-2

Vo) 2/341/316 1073
(d) v3%6 (e) (37°4777) () 104

(a) 767* (b) () 3972

2 Simplify as far as possible:

(a) x'x3

—1
® A (0 (%)

@ o™7! (e) y!/3yy?



3 Remove the brackets and simplify:

) -1
@ 2%)73 () 625V () (y2)

-2
—1,.-2
@ @@y (o) (3 - )
y

4 Express the following as their partial fractions:

3x+ 11 —3—x
(a) m (b) 2 _x
6x* —2 22 —x—17
© o e Y LY
4x — 11
© 2x2 + 15x +7
5 Convert the following into a single fraction:
1 3 6
@ it e
1 2 3544
(b) ;+s72+8s7—|—6
6 10 s+1 s—1
© St TG 61 T 6 He+)

6 Express the following as partial fractions:

@ 5x ®) 3x+2
a) — % _xXTe
x+1D2x—3) 2 4+5x+6
+3 1
© 5 @ 57—
vy 4+3y+2 t“+3t+2
© 2722 + 157430
(z+2)(z+3)(z+6)
® 24x2 4+ 33x + 11
2x+ DGx+2)(4x +3)
s+3 2k +k+1
- hy ———  °
® (s+1)2 ® K —k
X L t+5
@) 211 ()] 132
2
s 8x— 15
k ) —— =
(& 241 M 432 — 12x+9
) 6d* +15d + 8 2% +x+3
m) 4T 4TS AT rxTSO
(d+1)2(d+2) 24 2x+1
©) —y—1 ®) 2 —8s—5
0) — Y~ o S mesmy
C+ho-1 P @tsthie-4
@ 2+r—2 253 +3s2 —s—4
q ST TS —s—4

=22 +1) s24s5—1
B AP+ T +5

®) X2 4+3x+2

10

11

12

13

Review exercises 1

Solve the following quadratic equations using the
quadratic formula:

(@ x>+10x+2=0

(b) y*—6y—3=0

(© 22 +2t—9=0

(d) 322-9z—1=0

(e 5v2+v—6=0

Solve the quadratic equations in Question 7 by
completing the square.

Solve
X —4x® —25x+28=0
given x = 7 is a root.

Solve the following inequalities:
(@) 6t —1<4 (b) —6<3r<6
x—=2

c) 1-2v<v+4 d 2<

(e) (x—2)2>36 ) x2—2x-3<0
-3

(2) : >0 (h) X2 —8x+5<0
x+1

@ X<3 0 2 —=2x-3 0

i) — < — = TS
2 X x—5

Express each fraction in its simplest form.

ot +6
12 — 3¢

6x2y%z

(b)

(©)

3xy3z
xyz — 2x2y21
Express each fraction in its simplest form.
X2 42— 15 244y —12
223 Y2+ 13y +42
2% +7x— 4 3x°t + 3xt — 3t
B -2 +x-2
Express as a single fraction in its simplest form.
x+1 x+4+6
xX+6 * x+2
3x—6  xy+3y
Xy + 2y x 4x — 8
-1 Cx—1
4 76

x% — 9x x=9

x+1 B4
¥ —5x—6 ) ¥ -1
Cx—42  246x—7

(@ (b)

() (d)

©)]

(a)

(b)

©

(d)

(e)

51
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14 Express as a single fraction:

@) ——
a
x+6 x+1
3x 4
®) 57—~ —=
2x—1 x+5
Solutions
1 (a) 7'° (b) 6 (c) 378
) 3% (e) 3%42 ) 10
2 (a x* (b) x® (¢) vx
@ »? (e) y'93
3 (a) 8x%° (b) 36a*boc (c) 22
9 4
@ 00 @
¥
L (a) 2 + !
a
x—3 x+7
3 4
by -—
x x—1
(© 3+ 2 !
c s
X 2x—1
@ — L
x+1 x—1 x+2
3 2
(e) -
x+7 2x+1
19x2 +22x + 4
5 (a) O+ 22x+4
2x(x+2)2x+ 1)
®) 353 + 1252 + 225 + 12
252 (4s + 3)
© 2(3s + 3057 + 12052 + 202s + 120)
s2(s+2)(s+3)(s+4)
1 3
6
@ St
7 4
(b) -
x+3 x+2
© 2 1
o 2 _ 1
y+1 y+2
@ 1 1
t+1 42
© —2 L1t
e _
z+2 z4+3 z+4+6
1 3 2
®

2x + 1

Tt ot

(©)
(d)

(e)

(2)

(h)

®

@

(9]

M

(m)

() 2

(0)

(p)

@

@

(s)

(@)
(b)
(c)
(d)
(e)

(a)
(b)

©

x+1 n S5x
xX2—-5x—6 x+3

T
X _c
x—73

W—3 4 —— =
o +x+1 2 +1

1 n 2
s+1  (s+1)2
1 2 1

k+1 k-1 k
X

T2t

1 2
(3 ata2

1
241

4 3
2x—3  (2x—3)2

4 1 2
d+1 (d+1)2+d+2

3 4
x+1 + x4+ 1)2

y 1
V41 y—1

25+ 1 1
24s5+1 s—4
11 4 2

X

1 —

9(t — 2) +3(z—2)2 9+ 1)
3
24+s5—1

1 1
1+ — 4+
x+ +x+1+x+2

25+ 1 —

—9.7958, —0.2042
—0.4641, 6.4641
—2.6794, 1.6794
—0.1073, 3.1073
—-12,1

x+52-23=0
y—32-12=0

(es) -2
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10

11

(d)

(e)

X =

(a) 1 <

©
©)
()
(®
(h)
(®
)
(@)

(d)

3 3\? 31 o
£T2 2|

sl (v ) 2121 _o
T) 100 |~

Solutions same as for Question 7

—4,1,7

(b)) —2<r<?2
(d x>8
x< —4orx>8

N

v>—1

—1<x<3
x<—lorx>3
4-VII<x <4+ /11
0<x<v/6,x< —6
x>50r—1<x<3

b 2x
Z (b) ; (©
x+1

2x —1

3t+2
4—1

© —
xy

12

13

14

(a)

(d)

(a)

()

(a)

(b)

©

(d)

(e

Review exercises 1

x+5 y—2 x+4
1 95 @O
3t x—2
IZ (e) 1
x+1 ) 3(x+3)
x+2 4(x+2)
3+ D @ © 1
2
8x 423
(x+1Dx+06)
3x2 4+ Tx 44
2x—=1)x+95)
5x% —29x 43
(x—6)(x+3)
X —2x—1
x—3

2t — -2 —2x =2
x+DE2+1)
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INTRODUCTION

The study of functions is central to engineering mathematics. Functions can be used to
describe the way quantities change: for example, the variation in the voltage across an
electronic component with time, the variation in position of an electric motor with time
and the variation in the strength of a signal with both position and time.

In this chapter we introduce several concepts associated with functions before going
on to catalogue a number of engineering functions in Section 2.4. Much of the material
of Section 2.4 will already be familiar to the reader and so this section should be treated
as a reference section to be dipped into whenever necessary. A number of mathematical
methods are also included in Section 2.4, most of which will be familiar but they have
been collected together in order to make the book complete.

When trying to understand a mathematical function it is always useful to sketch a
graph in order to obtain an idea of its behaviour. The reader is encouraged to sketch such
graphs whenever a new function is met. Graphics calculators are now readily available
and they make this task relatively easy. If you possess such a calculator then it would be
useful to make use of it whenever a new function is introduced. Software packages are
also available to allow such plots to be carried out on a computer. These can be useful for
plotting more complicated functions and ones that depend on more than one variable.
We examine functions of more than one variable in Chapter 25.

Throughout the book we make use of the term mathematical model. When doing so
we mean an idealization of an engineering system or a physical situation so that it can be
described by mathematical equations. To reflect an engineering system very accurately,
a sophisticated model, consisting of many interrelated equations, may be needed. Al-
though accurate, such a model may be cumbersome to use. Accuracy can be sacrificed
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in order to achieve a simple, easy-to-use model. A judgement is made as to when the
right blend of accuracy and conciseness is achieved. For example, the most common
mathematical model for a resistor uses Ohm’s law which states that the voltage across a
resistor equals the current through the resistor multiplied by the resistance value of the
resistor, that is V = IR. However, this model is based on a number of simplifications. It
ignores any variation in current density across the cross-section of the resistor and as-
sumes a single current value is acceptable. It also ignores the fact that if a large enough
voltage is placed across the resistor then the resistor will break down. In most cases it is
worth accepting these simplifications in order to obtain a concise model.

Having obtained a mathematical model, it is then used to predict the effect of chang-
ing elements or conditions within the actual system. Using the model to examine these
effects is often cheaper, safer and more convenient than using the actual system.

NUMBERS AND INTERVALS

Numbers can be grouped into various classes, or sets. The integers are the set of numbers
{....,—3,-2,-1,0,1,2,3,...}

denoted by Z. The natural numbers are {0, 1, 2, 3, ...} and this set is denoted by N. The
positive integers, denoted by N, are given by {1, 2, 3, ...}. Note that some numbers
occur in more than one set, that is the sets overlap.

A rational number has the form p/g, where p and ¢ are integers with ¢ # 0. For
example, 5/2,7/118, —1/9 and 3/1 are all rational numbers. The set of rational numbers
is denoted by Q. When rational numbers are expressed as a decimal fraction they either
terminate or recur infinitely.

o= I

can be expressed as 2.5 } These decimal fractions terminate,

can be expressed as 0.125 that is they are of finite length.

|— o=

can be expressed as 0.111 111 ... ] These are infinitely

can be expressed as 0.090909. .. recurring decimal fractions.

1

A number which cannot be expressed in the form p/q is called irrational. When
written as a decimal fraction, an irrational number is infinite in length and non-recurring.
The numbers 7t and +/2 are both irrational.

It is useful to introduce the factorial notation. We write 3! to represent the product
3 x 2 x 1. The expression 3! is read as ‘factorial 3’. Similarly 4! is a shorthand way of
writing 4 x 3 x 2 x 1. In general, for any positive integer, n, we can write

nl=nn—1n—2)n-3)...3)2)1)

It is useful to represent numbers by points on the real line. Figure 2.1 illustrates some
rational and irrational numbers marked on the real line. Numbers which can be repre-
sented by points on the real line are known as real numbers. The set of real numbers
is denoted by R. This set comprises all the rational and all the irrational numbers. In
Chapter 9 we shall meet complex numbers which cannot be represented as points on the

1 1
B, N A 0 122%%4

Figure 2.1
Both rational and irrational numbers are represented on the real line.
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-6 -4 -1 0 2 3 4

Figure 2.2
The intervals (—6, —4), [—1, 2], (3, 4] depicted on the real line.

real line. The real line extends indefinitely to the left and to the right so that any real
number can be represented.

Sometimes we are interested in only a small section, or interval, of the real line. We
write [1, 3] to denote all the real numbers between 1 and 3 inclusive, that is 1 and 3 are
included in the interval. Thus the interval [1, 3] consists of all real numbers x, such that
1 < x < 3. The square brackets, [ ], are used to denote that the end-points are included
in the interval and such an interval is said to be closed. The interval (1, 3) consists of
all real numbers x, such that 1 < x < 3. In this case the end-points are not included
and the interval is said to be open. Brackets, (), denote open intervals. An interval may
be open at one end and closed at the other. For example, (1, 3] is open at the left and
closed at the right. It consists of all real numbers x, such that 1 < x < 3, and is known
as a semi-open interval. Open and closed intervals can be represented on the real line.
A closed end-point is denoted by e; an open end-point is denoted by o. The intervals
(=6, —4), [—1, 2] and (3, 4] are illustrated in Figure 2.2.

An upper bound of a set of numbers is any number which is greater than or equal
to every number in the given set. So, for example, 7 is an upper bound for the set [3, 6].
Clearly, 7 is greater than every number in the interval [3, 6].

A lower bound of a set of numbers is any number which is less than or equal to every
number in the given set. For example, 3 is a lower bound for the set (3.7, 5).

Note that upper and lower bounds are not unique. Both 3 and 10 are upper bounds
for (1, 2). Both —1 and —3 are lower bounds for [0, 6].

Technical computing languages such as MATLAB® usually have functions that auto-
matically generate a set of numbers within a particular interval. In MATLAB® we could
generate a set of time values, 7, by typing:

t= 0:0.1:1

This generates a set of real numbers from the interval [0, 1] stored in a row vector ¢, each
individual number being separated by an increment of 0. 1. The values of ¢ generated
are:

0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000
0.8000 0.9000 1.0000

BASIC CONCEPTS OF FUNCTIONS

Loosely speaking, we can think of a function as a rule which, when given an input,
produces a single output. If more than one output is produced, the rule is not a function.
Consider the function given by the rule: ‘double the input’. If 3 is the input then 6 is the
output. If x is the input then 2x is the output, as shown in Figure 2.3.

If the doubling function has the symbol f we write

fix—2x
or more compactly,

f(x) =2x
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f f
3 d01.1ble 6 x d01.1ble 2y
the input the input

Figure 2.3
The function: ‘double the input’.

The last form is often written simply as f = 2x. If f(x) is a function of x, then the value
of the function when x = 3, for example, is written as f(x = 3) or simply as f(3).

Example 2.1

Solution

Given f(x) = 2x+ 1 find

(@ f(3) () f(0)
(© f(=D (d) f(e)
© fQa) ® f@)
(@ f+1D

(@ f3)=23)+1=7

() f(O)=20)+1=1

© f(=H=2(-DH+1=-1

(d) f(@) is the value of f(x) when x has a value of «, hence f (o) = 20 + 1
@ fRa)=2Qu)+1=4a+1

() f(t) =21 +1

(g) fG+1)=2t+1)+1=2t+3

2.3.1

Observe from Example 2.1 that it is the rule that is important and not the letter being
used. Both f(#) = 2t + 1 and f(x) = 2x + 1 instruct us to double the input and then
add 1.

Argument of a function

The input to a function is often called the argument. In Example 2.1(d) the argument is
o, while in Example 2.1(e) the argument is 2c.

Example 2.2

Solution

Given f(x) = )S—C, write down
(@) f(5x) (®) f(=x)

© fx+2) @) f(?)
5
@ f(x) = gx =x (b) f(—x) = _;__C

2 2
© fGx+2)= “g @ fe) =%

Example 2.3

Given y(t) = t> + ¢, write down

@ yt+2) (b y<§>
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Solution

@ yt+2)=(@+22+@t+2)=1>+5t+6

b (1) AN
w(3)=(3) +(5)=%5+3

2.3.2

UICON'Y

-2

=Y

Figure 2.4
The function: f(x) = 2x.

Graph of a function

A function may be represented in graphical form. The function f(x) = 2x is shown in
Figure 2.4. Note that the function values are plotted vertically and the x values horizon-
tally. The horizontal axis is then called the x axis. The vertical axis is commonly referred
to as the y axis, so that we often write

y=/ () =2

Since x and y can have a number of possible values, they are called variables: x is the
independent variable and y is the dependent variable. Knowing a value of the in-
dependent variable, x, allows us to calculate the corresponding value of the dependent
variable, y. To show this dependence we often write y(x). The set of values that x is al-
lowed to take is called the domain of the function. A domain is often an interval on the
x axis. For example, if

fx)=3x+1 —-5<x<10 2.1)

the domain of the function, f, is the closed interval [—5, 10]. If the domain of a function
is not explicitly given it is taken to be the largest set possible. For example,

gx)=x>—4 (2.2)

has a domain of (—o0, 00) since g is defined for every value of x and the domain has not
been given otherwise. The set of values that the function takes on is called the range.
The range of f(x) in Equation (2.1) is [—14, 31]; the range of g(x) in Equation (2.2) is
[—4, c0).

We now consider plotting the function f(t) = #*> for 0 < ¢ < 100 in a technical com-
puting language. First we generate a number set as shown in Section 2.2.

t= 0:1:100

Then we produce a graph of the function by using the MATLAB® plot command to
give the following

plot(t, t."2)

Example 2.4

Consider the function, f, given by the rule: ‘square the input’. This can be written as

fx) =x°

The rule and the graph of f are shown in Figure 2.5. The domain of f is (—o0, 00) and
the range is [0, 00).
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VN
f 9 Lo -_
X ——» Square  — x2 :
the input !
_____ 4 !
-2 0 3 x

Figure 2.5
The function: ‘square the input’.

Many variables of interest to engineers, for example voltage, resistance and current, can
be related by means of functions. We try to choose an appropriate letter for a particular
variable; so, for example, ¢ is used for time and P for power.

Engineering application 2.1

Function to model the power dissipation in a resistor

Recall from Engineering application 1.1 that the power, P, dissipated by a resis-
tor depends on the current, /, flowing through the resistance, R. The relationship is
given by
P=IR

The power dissipated in the resistor depends on the square of the current passing
through it. In this case I is the independent variable and P is the dependent variable,
assuming R remains constant. The function is given by the rule: ‘square the input and
multiply by the constant R’, and the input to the function is /. The output from the
function is P. This is illustrated in Figure 2.6, for the cases R = 4 and R = 2.

square the
I - input and
multiply
by R
Figure 2.6

The function: P = I’R.

This model for a resistor only approximates the behaviour of the device. In prac-
tice, changes in the temperature of the resistor lead to slight changes in the resistance
value. If the current through the resistor is excessively high then the resistor over-
heats and is permanently damaged. It no longer has the correct resistance value. The
amount of power that a resistor can handle depends on the materials that have been
used in its construction. A good circuit designer would calculate the amount of power
to be dissipated and then allow a suitable safety margin to ensure that the resistor can-
not be overloaded.
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2.3.3

2.3.4

One-to-many

Some rules relating input to output are not functions. Consider the rule: ‘take plus or
minus the square root of the input’, that is

x — £

Now, for example, if 4 is the input, the output is ++/4 which can be 2 or —2. Thus a
single input has produced more than one output. The rule is said to be one-to-many,
meaning that one input has produced many outputs. Rules with this property are not
functions. For a rule to be a function there must be a single output for any given input.

By defining a rule more specifically, it may become a function. For example, consider
the rule: ‘take the positive square root of the input’. This rule is a function because there
is a single output for a given input. Note that the domain of this function is [0, o) and
the range is also [0, 00).

Many-to-one and one-to-one functions

Consider again the function f(x) = x* given in Example 2.4. The inputs 2 and —2 both
produce the same output, 4, and the function is said to be many-to-one. This means that
many inputs produce the same output. A many-to-one function can be recognized from
its graph. If a horizontal line intersects the graph in more than one place, the function is
many-to-one. Figure 2.7 illustrates a many-to-one function, g(x). The inputs x,, x,, x5
and x, all produce the same output.

A function is one-to-one if different inputs always produce different outputs. A hori-
zontal line will intersect the graph of a one-to-one function in only one place. Figure 2.8
illustrates a one-to-one function, s (x).

Both one-to-one functions and many-to-one functions are supported in technical com-
puting languages. For example, in MATLAB® the function f(x) = x* can be defined by
using the command:

f = 0(x) x°2;
It is now possible to type:
£(3)

or

£(-3)

h(x) &

N

4 X1 Xy X3 X4 \ ; \ *
Figure 2.7 Figure 2.8
The inputs x;, x,, x5 and x, all produce the same Each input produces a different output and so

output, therefore g(x) is a many-to-one function. h(x) is a one-to-one function.
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both of which have the same result:
ans = 9
affirming that f(x) = x? is a many-to-one function.

Notice that the variable used by the function is defined in brackets after the @ sign. This
indicates that the input to the function is x and the command creates a function handle,
f. Giving the function a handle enables it to be used elsewhere in the program.

More complicated functions are usually created in a separate file and saved on the
computer’s internal storage devices. They can be easily reused to create sophisticated
programs. In MATLAB® these files are saved with the file name extension .m and are
often termed m-files.

Parametric definition of a function

Functions are often expressed in the form y(x). For every value of x the corresponding
value of y can be found and the point with coordinates (x, y) can then be plotted. Some-
times it is useful to express x and y coordinates in terms of a third variable known as a
parameter. Commonly we use ¢ or 6 to denote a parameter. Thus the coordinates (x, y)
of the points on a curve can be expressed in the form

x=f@) y=g0
For example, given the parametric equations
2 y = 2t 0<r<5

x=t

we can calculate x and y for various values of the parameter ¢. Plotting the points (x, y)
produces part of a curve known as a parabola.

Composition of functions

Consider the function y(x) = 2x>. We can think of y(x) as being composed of two func-
tions. One function is described by the rule: ‘square the input’, while the other function
is described by the rule: ‘double the input’. This is shown in Figure 2.9.

y(x)
ffffff 8
g h
N square x2 double 22 | 21 ‘
the input the input 1 ‘
-2 1 X

Figure 2.9
The function: y(x) = h(g(x)).
Mathematically, if 4(x) = 2x and g(x) = x* then
y(x) = 2" =2(g(x)) = h(g(x))

The form A(g(x)) is known as a compeosition of the functions /2 and g. Note that the
composition /(g(x)) is different from g(h(x)) as Example 2.5 illustrates.



62 Chapter 2 Engineering functions

t+1
Example 2.5 If f(r) =2t +3and g(t) = % write expressions for the compositions

(@) f(g®)
(b) g(f (1))

+1
Solution (@ f(g®)) = f(tT)

The rule describing the function f is: ‘double the input and then add 3. Hence,
r+1 r+1

So
flg@®) =t+4

() g(f(1) =g2r+3)
The rule for g is: ‘add 1 to the input and then divide everything by 2°. So,

2t+3+1
g(2t+3)=%=t+2

Hence
gf@®) =t+2

Clearly f(g(t)) # g(f(1)).

2.3.7 Inverse of a function

Consider a function f(x). It can be thought of as accepting an input x, and producing an
output f(x). Suppose now that this output becomes the input to the function g(x), and
the output from g(x) is x, that is

g(f(x) =x

We can think of g(x) as undoing the work of f(x). Figure 2.10 illustrates this situation.
Then g(x) is the inverse of f, and is written as f~'(x). Since f~!(x) undoes the work
of f(x) we have

FU @) = (f) =x

* f ) 8(f (x)=x

—_— —_— —— -  Figure 2.10
The function g is the inverse of f.
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Example 2.6 If f(x) = 5x verify that the inverse of f is given by f~!(x) = ;—C

Solution The function f receives an input of x, and produces an output of 5x. Hence when the
inverse function, f~!, receives an input of Sx, it produces an output of x, that is

'Gx)=x

We introduce a new variable, z, given by

z=>5x
SO
R
5
Then
iy 2
[ @)=x s

Writing f~! with x as the argument gives

flo =3
5

Example 2.7 If f(x) =2x+ 1, find f~'(x).

Solution The function f receives an input of x and produces an output of 2x + 1. So when the
inverse function, f~', receives an input of 2x + 1 it produces an output of x, that is

flex+1)=x
We introduce a new variable, z, defined by
z=2x+1

Rearranging gives

So

1

Fl@=x="0n

Writing f~! with x as the argument gives

x—1

) = 5
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Example 2.8 Given g(x) =

Solution

x—1

find the inverse of g.

X —

1 —1
We know g(x) = ,and so g~ (xT> =xLety= al so that

g =x
But,
x=2y+1
and so
gm=2y+1
Using the same independent variable as for the function g, we obtain

g ) =2x+1

2.3.8

We note that the inverses of the functions in Examples 2.7 and 2.8 are themselves func-
tions. They are called inverse functions. The inverse of f(x) = 2x + 11is f~'(x) =

;, and the inverse of g(x) = al is g7'(x) = 2x + 1. This illustrates the impor-

tant point that if f(x) and g(x) are two functions and f(x) is the inverse of g(x), then
g(x) is the inverse of f(x). It is important to point out that not all functions possess an
inverse function. Consider f(x) = x?, for —o00 < x < 0.

The function, f, is given by the rule: ‘square the input’. Since both a positive and
negative value of x will yield the output x?, the inverse rule is given by: ‘take plus or
minus the square root of the input’. As discussed earlier, this is a one-to-many rule and
so is not a function. Clearly not all functions have an inverse function. In fact, only one-
to-one functions have an inverse function. Suppose we restrict the domain of f(x) = x>
such that x > 0. Then f is a one-to-one function and so there is an inverse function. The
inverse function is £~'(x) given by

) = +x
Clearly,
) ="' =x

where x is the positive square root of x*. Restricting the domain of a many-to-one func-
tion so that a one-to-one function results is a common technique of ensuring an inverse
function can be found.

Continuous and piecewise continuous functions

We now introduce in an informal way the concept of continuous and piecewise continu-
ous functions. A more rigorous treatment follows in Chapter 10 after we have discussed

1
limits. Figure 2.11 shows a graph of f(x) = —. Note that there is a break, or discontinu-

1
ity, in the graph at x = 0. The function f(x) = — is said to be discontinuous at x = 0.
X
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AN
x
t
Figure 2.11 Figure 2.12
The function f(x) = T has a discontinuity at The function f(¢) is a piecewise continuous
x=0. function with a discontinuity atr = 1.

8 A

I I N
1 3 ¢
Figure 2.13

The function g(z) is a
continuous function
on (0, 3).

2.3.9

If the graph of a function, f(x), contains a break, then f(x) is discontinuous.

A function whose graph has no breaks is a continuous function.

Sometimes a function is defined by different rules on different intervals of the domain.
For example, consider

2 0<r<1

1) =
Fo t 1<r<3

The domain is [0, 3] but the rule on [0, 1) is different to that on [1, 3]. The graph of f(¢)
is shown in Figure 2.12. Recall the convention of using e to denote that the end-point
is included and o to denote the end-point is excluded. Note that f(¢) has a discontinuity
at r = 1. Each component, or piece, of the graph is continuous and f(¢) is said to be
piecewise continuous.

A piecewise continuous function has a finite number of discontinuities in any given
interval.

Not all functions defined differently on different intervals are discontinuous. For example,

o 2 0O<t<l1
=V 1< <3

is a continuous function on the interval (0, 3), as shown in Figure 2.13.

Periodic functions

A periodic function is a function which has a definite pattern which is repeated at regular
intervals. More formally we say a function, f (), is periodic if

f@)=fe+T)

for all values of . The constant, T, is known as the period of the function.
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Example 2.9 Figure 2.14 illustrates a periodic waveform. It is often referred to as a triangular wave-

form because of its shape. The form of the function is repeated every two seconds, that
is

J@&)=f+2)

and so the function is periodic. The period is 2 seconds, that is T = 2. Note that this
function is continuous.

JON

VARV VRV,

Figure 2.14
The triangular waveform is a periodic function.

~Y

Engineering application 2.2

Saw-tooth waveform

Figure 2.15 illustrates a saw-tooth voltage waveform. It is called a saw-tooth wave-
form because its shape is similar to that of the teeth on a saw. It has many uses in
electronic engineering. One use would be to provide a signal to sweep a beam of elec-
trons across a cathode ray tube in a uniform way and then quickly move the beam
back to the start again. This technique is used in an analogue oscilloscope and forms
a signal for the time base.

The form of the function is repeated every three seconds, that is

v(t) =v(t+3)

v(®) A
( 14

-3 0 3 6 9 t

Figure 2.15
The saw-tooth waveform is a periodic function.
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Technical computing languages often have a range of built-in functions for pro-
ducing waveforms. Sometimes specialist functions are provided in a separate soft-
ware package. In MATLAB®, these software packages are known as toolboxes. The
signal processing toolbox has a function for generating saw-tooth waves. This can be
accessed by typing, for example:

t=(-2%pi:0.1:2%pi);
plot(t, sawtooth(t));

This will plot two periods of a saw-tooth wave. The first line generates a set of time
values —27t < ¢ < 27tin a vector form with a spacing of 0. 1 between each point. The
second line plots 7 against the result of passing the vector 7 to the sawtooth function.
The sawtooth function always produces a wave with a period of 27t. It highlights
the need to read the manual pages carefully before using a function to understand
how it will behave.

Engineering application 2.3

Square waveform

Periodic functions may be piecewise continuous. Consider the function g(#) defined
by

period = 2

~ o~
A
(V)

n={ 7S
9710 1<

The function g(¢) is periodic with period 2. A graph of g(¢) is shown in Figure 2.16.
This function is commonly referred to as a square waveform by engineers. In Fig-
ure 2.16 the open and closed end-points have been shown for mathematical correct-
ness. Note, however, that engineers tend to omit these when sketching functions with
discontinuities and usually they use a vertical line to show the discontinuity. This
reflects the fact that no practical waveform can ever change its level instantaneously:
even very fast rising waveforms still have a finite rise time. The function has discon-
tinuities atr = ..., —3,—-2,—1,0,1,2,3,4,5,....

g

1

l

[ O
)I‘ 1
4 5 t

— @---0
D O---@
w ¢---0

O
"
-1

o
Figure 2.16
The function g(¢) is both piecewise continuous and periodic.

The square waveform is often used in electronic engineering, particularly in digital
electronic systems. One example is the clock signal that is generated to ensure that
all of the digital electronic circuits switch around the same time and so remain in
synchronisation.
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EXERCISES 2.3
Represent the following intervals on the real line:
(@) [1,3] () [2,4)
(c) (0,3.5) (d) [-2,0)
(e) (—1,1] ) 2<x<4
(g 0<x<2 (hy -3<x< —1

i) 0<x<3

Describe the rule associated with the following
functions, sketch their graphs and state their domains
and ranges:

(@) f(x) =26
() f(x) =x*—1
(c)gt) =3t—4
dy@) =

(e) f(z)=05t+2 =2

(f) z(x) =3x -2 3<x<8
If f(x) = 5x+ 4, find

(@ f3)

(b) f(=3)

(© fla)

) fx+1)

(e) f(Ba)

® 6

If g(t) = 5t — 4, find

(a) g(0)

(d) g(2)

() g(=3)
(d) gx)

(e) g2t —1)

The reactance, X, offered by a capacitor is given by

1
Xc = m where f is the frequency of the applied

alternating current, and C is the capacitance of the
capacitor. If C = 10~° F, find X~ when f = 50 Hz.

Classify the functions in Question 2 as one-to-one or
many-to-one.

Find the inverse of the following functions:
@ fx)=x+4

(b) g(t)=3t+1

© y@) =x

-8
@ h="5"

10

11

12

13

; _t—]
(e) f()—T

® hx)=x>—1
(@ k(v)=7-v
(h) m(n) = £(1 —2n)

Given f(tr) =2t,g(t) =t — land h(r) = 2 write
expressions for

(@) f(g@)
() g(h(1))
(e) h(g(®)
& f(f@)
@ h(h()) () f(gh(®)))
&) g(f(h@®)) @) hg(f(®)))

1
Given f(r) = 1>+ 1, g(r) = 3t + 2 and h(t) = T
write expressions for

(@) f(g())
(c) g(h(n))
(&) f(gh()))
Given f(t) = 2t,g(t) =2t + 1, h(t) = 1 — 3¢, write
expressions for the following:

@f'e) gy (©nlo

Given a(x) =3x — 2, b(x) = %, cx)y =1+ l write
expressions for * *

@a ') ObL'®  (©c'w

Given f(t) =2t + 3, g(t) = 3t and h(t) = f(g(t))
write expressions for

(@) h(@)

® '@

© ¢

@ r'a@)

@© ¢ ')

What do you notice about (d) and (e)?

(®) f(h(t))
(d) g(f(®)
® h(f@®)
(h) g(g(®)

(®) f(h(t))
(d) h(f ()

Sketch the following functions:

0<r<3

(@ f@) =

t
3 3<i<4
®) ¢ 2—x 0<x<1

S P 1<x<3

11—t 0<rgl1

1<1r<?2

©) a(t) =

t—1
2 0<x<1
d bx)y=141

3—x

1l<x<?2

2<x<3



14 Sketch

t<?2

o) t 0<
1) =
5—-2t 2<t<3

Is the function piecewise continuous or continuous?

State, if they exist, the position of any discontinuities.

15 The function A(t) is defined by

2

2
3

2—t 0<t <
h(t) =
2t —4 2<t<

Solutions

(a) Square the input and then multiply by 2; domain
(—00, 00), range [0, c0)

(b) Square the input, then subtract 1; domain [0, c0),

range [—1, 00)

(c) Multiply input by 3 and subtract 4; domain
[0, 00), range [—4, c0)

(d) Cube the input; domain (—o0, 00), range
(=00, 00)

(e) Multiply input by 0.5 and then add 2; domain
[—2, 10], range [1, 7]

(f) Multiply input by 3 and then subtract 2; domain
[3, 8], range [7, 22]

(a) 19 (b) —11 (©) Sa+4
(d 5x+9 () 15a+4 (f) 5x*+4
(a) —4 (b) 16 (c) 41
(d) 582 —4 (e) 202 —20r + 1

3183 ohms

(a) many-to-one (b) one-to-one

(c) one-to-one (d) one-to-one

(e) one-to-one (f) one-to-one

@ fl)=x—4

gyl
b) g )= 3

© y ') =7
@ ') =3r+8
) flr)y=3+1

® h ') =@+ D3
@ k'w)y=7-v
(h) () = L=

2

16

8 (a)20—1) (b) 2¢2 () -1
(d) 2t —1 (e) (t—1)2 (f) 412
(g) 4t (h) t—2 @
G) 2¢2—1) x) 22 -1 M 2r—1)?
9 (a) %2+ 12 +5 (b)tlz+1
( 3 5 q 1
Ot @
© 2+24s
€ 2 t
t t—1 1—1t¢
10 (a) 5 (b) T (c) T
x+2 2 1
11 (a) 3 (b) ; (@) j
t—3 t
12 (a) 6t +3 (b) - (© 3
6 6
13 See Figure S.1.
f
3
2 ———=o
1
0' 1 2 3 4 t x

(a)
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and A(t) has period 3. Sketch /(¢) on the interval
[0, 6].

The function g(¢) is defined by

0<r<l

gt) =

2—t l<t<?2

and g(7) has period 2. Sketch g(¢) on the interval
[—1, 4]. State any points of discontinuity.

a
1

i .
0 1 2

@

Figure S.1
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14 Piecewise continuous; discontinuity at = 2. See
Figure S.2.

Figure S.2

15 See Figure S.3.

t

0l 1 234556
Figure S.3

16 Discontinuities at7 = 0, 2. See Figure S.4.

-1 0 1
Figure S.4

2 3 4

REVIEW OF SOME COMMON ENGINEERING FUNCTIONS

AND TECHNIQUES

This section provides a catalogue of the more common engineering functions. The im-
portant properties and definitions are included together with some techniques. It is in-
tended that readers will refer to this section for revision purposes and as the need arises

throughout the rest of the book.

2.4.1 Polynomial functions

A polynomial expression has the form

ax"+a, X' ta, X+ +ax+ax+a,

where 7 is a non-negative integer, a,, a

n—1°

able. A polynomial function, P(x), has the form

Px)=ax" +a, ¥ '+a, X"+ - +ax+ax+a,

Examples of polynomial functions include

P(x) =3x" —x+2
P(z) =7 +7 — 1
Py(t) =3t+9
P(t)y=6

.., a,, a, are constants and x is a vari-

2.3)

(2.4)
(2.5)
(2.6)
(2.7)
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where x, z and ¢ are independent variables. It is common practice to contract the term
polynomial expression to polynomial. By convention, a polynomial is usually written
with the powers either increasing or decreasing. For example,

x4+ 92— +2
would be written as either
X4+ +3x+2 or 243x+9* X

The degree of a polynomial or polynomial function is the value of the highest power.
Equation (2.4) has degree 2, Equation (2.5) has degree 4, Equation (2.6) has degree 1 and
Equation (2.7) has degree 0. Equation (2.3) has degree n. Polynomials with low degrees
have special names (see Table 2.1).

Table 2.1

Polynomial Degree Name
ax* + b3 +ext +dx+e 4 Quartic
a + bt +cex+d 3 Cubic
ax® +bx+c 2 Quadratic
ax+b 1 Linear

a 0 Constant

Typical graphs of some polynomial functions are shown in Figure 2.17.

Degree 2

AP®

\/ / Degree 3

N .
NN *

Degree 1

Degree 0

Figure 2.17
Some typical polynomials.

Engineering application 2.4

Ohm’s law

Recall from Engineering application 1.1 that the current flowing through a resistor is
related to the voltage applied across it by Ohm’s law. The equation is

V =1IR
where V = voltage across the resistor;
I = current through the resistor;

R = resistance value of the resistor, which is a constant
for a given temperature.
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Note that the voltage is a linear polynomial function with 7 as the independent
variable.

This equation is only valid for a finite range of currents. If too much voltage is
applied to the resistor, then the current flowing through the resistor becomes sufficient
for the resistor to overheat and breakdown.

Engineering application 2.5

A non-ideal voltage source

An ideal voltage source has zero internal resistance and its output voltage, V, is in-
dependent of the load applied to it; that is, V remains constant, independent of the
current it supplies. It is called an ideal voltage source because it is difficult to create
such a source in practice; it is in effect an abstraction that is useful when develop-
ing engineering models of real electronic systems. A non-ideal voltage source has
an internal resistance. Due to this internal resistance, the output voltage from such a
source is reduced when current is drawn from the source. The voltage reduction in-
creases as more current is drawn. Figure 2.18 shows a non-ideal voltage source. It is
modelled as an ideal voltage source in series with an internal resistor with resistance
R,. The output voltage of the non-ideal voltage source is v, while vy is the voltage
drop across the internal resistor and i is the load current. Using Kirchhoff’s voltage

law,
V= + v,

and hence by Ohm’s law,
V =IiR + v,
v, =V — IR

Note that V and R are constants and so the output voltage is a linear polynomial
function with independent variable i. The equation gives the output voltage across
the load as a function of the current through the load. The output characteristic for the
non-ideal voltage source is obtained by varying the load resistor R, and is plotted in
Figure 2.19. Notice that the output voltage of the non-ideal voltage source decreases
as the load current increases and is equal in value to the ideal voltage source only
when there is no load current.

i v() “

Yo ’B/RL

_________<_________
Y
I\ +
=

@
Leccccocococc-soc====o I L=
non-ideal voltage source i
Figure 2.18 Figure 2.19
A non-ideal voltage source connected to a load Output characteristic of a non-ideal

resistor, R; . voltage source.
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This is why it is called a non-ideal voltage source. Engineers would prefer to have
a source that maintained a constant voltage no matter how much current was drawn
but it is not possible to build such a source.

Engineering application 2.6

Wind power turbines

Wind turbines are an important source of electrical power. The most common type,
and the ones which are usually found in offshore installations, resemble a desktop fan
and are called horizontal axis turbines. The wind driving a turbine blade consists
of many molecules of air, each having a tiny amount of mass. This mass passing the
blade area each second carries kinetic energy, which is the source of the wind power.
The wind power, P, can be calculated using the formula

1
P = —Mv?
2

where M is the total mass of air per second passing the blade in kg s~! and v is the
velocity of the air in m s~
The mass per second can be calculated by considering the area swept out by the

blade, A, the density of the air, p, and the velocity:
M = pAv

This equation can be substituted in the power equation
1 5 3
P= 2 (pAv) V™ = EpAv (2.8)

The available wind power therefore increases with the cube of the velocity. Note that
the power is a cubic polynomial function of the independent variable, v.

At 20°C the air density is approximately 1.204 kg m~>. Consider the case of an
offshore turbine that has a swept area of 6362 m? and a rated wind speed of 15 ms~'.

The maximum theoretical power at the rated speed is therefore

1 1
P= EpAv3 =55 1.204 x 6362 x 15° = 12.93 MW

The actual rated power of the device is approximately 3 MW because other physical
processes and losses have to be accounted for, yet Equation (2.8) remains one of the
most fundamental in the study of wind power.

Many excellent computer software packages exist for plotting graphs and these, as well
as graphics calculators, may be used to solve polynomial equations. The real roots of
the equation P(x) = 0 are given by the values of the intercepts of the function y = P(x)
and the x axis, because on the x axis y is zero.

Figure 2.20 shows a graph of y = P(x). The graph intersects the x axis at x = x,,
X = x, and x = Xx;, and so the equation P(x) = 0 has real roots x,, x, and x5, that is
P(x;) = P(x,) = P(x;) =0.
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1

1

P(x) &

/xl

EXERCISES 2.4.1

State the degree of the following polynomial
expressions:

(@ 22 +22-8+13z

(b) 1 —50+2—8°

Solutions

@3 ®S5S ©©4 @2 (@2

Technical Computing Exercises 2.4.1

Use a technical computing language such as MATLAB® to
do the following exercises.

1

2

(a) Ploty =x3 and y = 4 — 2x in the interval
[-3, 3]. Be aware that in MATLAB®, to carry out
operations on individual elements of a vector,
special notation is used. For example to multiply
each element in vector a by the corresponding
element in vector b (having the same dimension
as vector a) you would type a. *b. Other
functions such as raising to a power also require a
dot prefix if they are to be carried out on each
individual element, rather than the whole matrix.
Note the x coordinate of the point of intersection.

(b) Draw y = X3 + 2x — 4. Note the coordinate of
the point where the curve cuts the x axis.
Compare your answer with that from (a). Explain
your findings.

Plot the following functions:

(a) y=3x3—x2+2x—|—1

3 2

X Sx
b =x+= - = —1
(b) y x+3 ) +x
(c) y=x5—x2—|—2

—2<x<2
—3<x<2

—2<x<?2

® 3

X2

- Figure 2.20
*3 % A polynomial function which cuts
the x axis at points x;, x, and x5.

(©) 3w —5w?+ 12w
(d) 7x —x?

(e 322 =9 +1)
) 2zQz+1DHQz—1)

Hence estimate the real roots of

0=3"-x>+2x+1 —-2<x<2
3 2
X S5x
0=x*+=— - 4+x-1
Chy oty
—3<x<2
0=x—x*+2 —2<x<2

Use the roots function in MATLAB® or equivalent
to calculate a more accurate value for the real roots
estimated in question 2 and confirm your answers are
correct.

(a) Drawy=2x>andy = x> + 6 using the same
axes. Use your graphs to find approximate
solutions to x> — 2x% 4+ 6 = 0.

(b) Add the line y = —3x + 5 to your graph. State
approximate solutions to
i P +3x+1=0
(i) 2x> +3x - 5=0
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2.4.2 Rational functions

A rational function, R(x), has the form

P
RG) = ()
O(x)
where P and Q are polynomial functions; P is the numerator and Q is the
denominator.
The functions
x+6 £ —1 222 4z—1
W=t RO=3n BO=aE 5

are all rational. When sketching the graph of a rational function, y = f(x), it is usual to
draw up a table of x and y values. Indeed this has been common practice when sketching
any graph although the use of graphics calculators is now replacing this custom. It is still
useful to answer questions such as:

‘How does the function behave as x becomes large positively?’
‘How does the function behave as x becomes large negatively?’
‘What is the value of the function when x = 07’
‘At what values of x is the denominator zero?’

1+ 2x 1

Figure 2.21 shows a graph of the function y = = — 4 2. As x increases, the
X X

value of y approaches 2. We write this as
y—2 as X — o0

and say ‘y tends to 2 as x tends to infinity’. Also from Figure 2.21, we see that
y — o0 as x—>0

As x — oo, the graph gets nearer and nearer to the straight line y = 2. We say thaty = 2
is an asymptote of the graph. Similarly, x = 0, that is the y axis, is an asymptote since
the graph approaches the line x = 0 as x — 0.

If the graph of any function gets closer and closer to a straight line then that line is
called an asymptote. Figure 2.22 illustrates some rational functions with their asymptotes
indicated by dashed lines. In Figure 2.22(a) the asymptotes are the horizontal line y = 3

Y A

Figure 2.21

The function: y =

l4+2¢ 1
=l
X
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Y LAY
3 E 1
X -2 E X
(@) (b)
Figure 2.22
Some examples of functions with their asymptotes:2
3x+1 1 x—1 X +4x+2 1
= =3+—(b)y= ; = = 3 — .
(a)y + by o ©y P R

and the y axis, that is x = 0. In Figure 2.22(b) the asymptotes are the horizontal line
y = 1 and the vertical line x = —2; in Figure 2.22(c) they are y = x + 3 and the vertical
line x = —1. The asymptote y = x 4+ 3, being neither horizontal nor vertical, is called an
oblique asymptote. Oblique asymptotes occur only when the degree of the numerator
exceeds the degree of the denominator by one.

We see that the vertical asymptotes occur at values of x which make the denominator
zero. These values are particularly important to engineers and are known as the poles
of the function. The function shown in Figure 2.22(a) has a pole at x = 0; the function
shown in Figure 2.22(b) has a pole at x = —2; and the function shown in Figure 2.22(c)
has a pole at x = —1.

If the graph of a function approaches a straight line, the line is known as an asymp-
tote. Asymptotes may be horizontal, vertical or oblique.

Values of the independent variable where the denominator is zero are called poles
of the function.

Example 2.10

Solution

X

Sketch the rational function y = ————.
x> +x—2

For large values of x, the x? term in the denominator has a much greater value than the
x in the numerator. Hence,
y—0 as X — 00

y—0 as X —> —00

Therefore the x axis, that is y = 0, is an asymptote. Writing y as
X

YT - DG +2)
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we see the function has poles at x = 1 and x = —2; that is, there are vertical asymptotes
atx = 1 and x = —2. Substitution into the function of a number of values of x allows a
table to be drawn up:

x =3 -25 =21 -19 -15 -1 0 05 09 1.1 15 2 3
y —0.75 —-143 —-6.77 6,55 120 050 0 —0.40 —3.10 3.55 0.86 0.50 0.30

The graph of the function can then be sketched as shown in Figure 2.23.

YA

|

Figure 2.23
The function: y =

2 4x-=2

Engineering application 2.7

Equivalent resistance

Recall from Engineering application 1.2 that the formula for the equivalent resistance
of two resistors in parallel is given by:

1 1 1

R, R 'R
Consider a circuit consisting of two resistors in parallel as shown in Figure 2.24.
One has a known resistance of 1 Q2 and the other has a variable resistance, R 2. The
equivalent resistance, Ry, €2, satisfies

L P N b

R, R 1 R
Hence,

R R

E714+R

Thus the equivalent resistance is a rational function of R, with domain R > 0.
The graph of this function is shown in Figure 2.25. When R = 0 we note
that R, = 0, corresponding to a short circuit. As the value of R increases, that
iSs R — oo, the equivalent resistance Ry, approaches 1 so that R; = 1 is an asymptote.
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Figure 2.24

Two resistors in parallel.

Figure 2.25
The equivalent resistance, Ry,
increases as R increases.

EXERCISES 2.4.2

State the poles of the following rational functions:

@ yw="12 o)y = TLI

© v = ’2;%31 @ X =5
© HE) = 5

® G = szig%

(2) (t)—L
& =57

M) p@)= 520
P = 0+ 25

Describe the horizontal asymptote of each of the
following functions:

1 2
(@ yx)=6+- (b h(t)=- -1
X t

2 6+
@y =3-2  @vn="

r t
© r) =222
c riv) = 3v

242t +1

® a(t):%
@ ()_10—25—332
& mis) = 252

Describe the vertical asymptotes of each of the

following functions:
3x+1
(@ yx) = ——
x—2

9

+2)(s—1)

6t —
(b) y@) = 4

(¢) h(s) =

@ G() = © H@) = 5—

2 -1 1

2x
" yx) = xzi_]

o f+2
® v =5
4+
PO = o
3
M) T =3
. 6+r
Q)] Q(V)—m

Describe the oblique asymptote of each of the
following functions:

(@) y(x)=X+3+L
x—1

3
(b) y(x)=2x—1+x_'_2
x 3 1
@0 =373 55
5
(d) y(x)=3)c—1-i-2x+2
© y(x)=2x—1+xz+2
xs—1
4
(6] y(x)=3x—2+ﬁ

3
=4t
(&) yx) X+ w3
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5 Show that

. x 7. 2B
X)=—F——+——
39 9B3x+2)

can be expressed in the equivalent form

22 —x+1
3x+2

Sketch the rational function /(x) and state any

asymptotes.
6 Show that

O=24ib
P = T T 0x +3)
Solutions
3

1 (a 2 (b) =7 (c) -3

(d) —2,2 (e) —5,—1 f) —6,3

(g —1,0,1 (h) =5
2 (ay=6 (b) h=—1

(c) y=3 d v=1

(e) r= % ) a=1

B _3

(g) m= 3
3 (@x=2 (b) r=—1

() s=-2,1 dt=-1,1

e) s=—1,1 ) x=-1,1

(® f=-32 (h) t=-3

i) x=0.5 G) r=-3,4

Technical Computing Exercises 2.4.2

1 Use a technical computing language to plot the
following rational functions. State any asymptotes.

_xt D
@ [0 =5 —A<x<d
S
® g6) =y —3<s<3
© h@)=——- -3<z<3

@+1)

can be written in the equivalent form
424+ 7x4+6
2x+3

Sketch the rational function p(x) and state any
asymptotes.

Show that the function

7T—x
y(x) =x+ 213
can be expressed in the equivalent form
X 42 +7
243
Sketch the rational function y(x) and state any
asymptotes.

@ y=x+3 b)) y=2x—1
©y=2-2  @y=3-1
(& y—2 4 y— X
) y=2x—1 ) y=3x—-2
(@ y=4—-2x
2 2x 7
X=——=,1=—— =
3 39
3]
X = —— = X —
2P 2
y=x
|
@ yo =D 3 ic3
X
© r() el 3cx<3
€ r = o, A< 9 X S
VT e hx-2) *

Plot the functions given in Question 4 in
Exercises 2.4.2 for —10 < x < 10.
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2.4.3 Exponential functions

An exponent is another name for a power or index. Expressions involving exponents are
called exponential expressions, for example 3%, a’, and m”. In the exponential expres-
sion a*, a is called the base; x is the exponent. Exponential expressions can be simplified
and manipulated using the laws of indices. These laws are summarized here.

i 1
atat = am+n a_ — g aO -1 a™=_—_ (am)n — g™
ar am
Example 2.11 Simplify
a3xa2x (ay)Z a—6z
@ —; ®) (1-d)+a" @ S5 @
(2a3r)2a2r ae 3a(x/}’)a)f
e —F—=— ® —; (& ——
3a a a
. a3xa2x an
Solution (a) e a*

(b) a2t(] _ar) +a31 — aZl _ a3t +a3! — a2t

(@) 2 a® &

© S Tw T2
) Z:zz g s
(2a3r)2a2r 4a6ra2r 4a8r 4a13r
© s T e T3y 3
(f) ax+;ay — R
a

Exponential functions

An exponential function, f(x), has the form

f)y=da

where a is a positive constant called the base.

Some typical exponential functions are tabulated in Table 2.2 and are shown in Fig-
ure 2.26. Note from the graphs that these are one-to-one functions.

An exponential function is not a polynomial function. The powers of a polynomial
function are constants; the power of an exponential function, that is the exponent, is the
variable x.
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Table 2.2
Values of a* for a = 0.5, 2 and 3.

x 0.5" 2 3
-3 8 0.125 0.037
-2 4 0.25 0.111
—1 2 0.5 0.333
0 1 1 1
1 0.5 2 3
2 0.25 4 9

Some typical exponential functions.

The most widely used exponential function, commonly called the exponential func-
tion, is

f=¢

where e is an irrational constant (e = 2.718281828...) commonly called the
exponential constant.

Most scientific calculators have values of e* available. The function is tabulated
in Table 2.3. The graph is shown in Figure 2.27. This particular exponential function
so dominates engineering applications that whenever an engineer refers to the expo-
nential function it almost invariably means this one. We will see later why it is so
important.

As x increases positively, e* increases very rapidly; that is, as x — oo, e — 00. This
situation is known as exponential growth. As x increases negatively, e* approaches zero;
that is, as x — —o0, ¢* — 0. Thus y = 0 is an asymptote. Note that the exponential
function is never negative.

Figure 2.28 shows a graph of e™*. As x increases positively, e~ decreases to zero; that
is, as x — 00, e — 0. This is known as exponential decay. The function is tabulated
in Table 2.4.

Table 2.3

The values of the exponential
function f(x) = e* for
various values of x.

X e* et

-3 0.050

-2 0.135 1

—1 0.368
0 1 .
1 2718 x
2 7.389 ]
3 20.086 Figure 2.27

Graph of y = e showing exponential growth.
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Table 2.4
The values of the exponential
function f(x) = e * for

various values of x.

e i

X

-3 20.086

!
-2 7.389 :
-1 2.718 \
0 1 >
X

1 0.368
2 0.135
3

0.050 Figure 2.28

Graph of y = e™ showing exponential decay.

Engineering application 2.8

Discharge of a capacitor

The capacitor is another of the three fundamental electronic components. It is a
device that is used to store electrical charge. It consists of two parallel conducting
plates separated by an insulating material, known as a dielectric. A build up of a net
positive charge on one plate and a net negative charge on the other plate creates an
electric field across the dielectric, allowing electrical energy to be stored that has the
potential to do useful work. The symbol for a capacitor is two parallel lines that are
perpendicular to the conductors in the circuit.

Consider the circuit of Figure 2.29. Before the switch is closed, the capacitor has
a voltage V across it. Suppose the switch is closed at time # = 0. A current then flows
in the circuit and the voltage, v, across the capacitor decays with time. The voltage
across the capacitor is given by

\%4 t<0
v Ve /RO ¢t > ()

The quantity RC is known as the time constant of the circuit and is usually denoted
by 7. So

\% t<0
U=
Ve "t >0

T larger
v g
C R —
t
Figure 2.30
Figure 2.29 The capacitor takes longer to discharge for a
Circuit to discharge a capacitor. larger circuit time constant, .

If t is small, then the capacitor voltage decays more quickly than if 7 is large.
This is illustrated in Figure 2.30.
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Engineering application 2.9

The diode equation

A diode is an electronic device that allows current to flow with ease in one direction
and with difficulty in the other. In plumbing terms it is the equivalent of a non-return
valve. It is constructed by sandwiching two different types of semiconductor material
together, known as p-type and n-type semiconductors. The resultant construction is
referred to as a p-n junction. These different types of semiconductors are created
by a procedure known as doping. The technical details are complex but it is one
of the most fundamental processes underpinning the electronics revolution that has
transformed society in recent decades.
A semiconductor diode can be modelled by the equation

1=18(e%—1)

where V = applied voltage (V);
I = diode current (A);
I, =reverse saturation current (A);
k=138 x 1072 JK;
g=1.60 x 107" C;
T = temperature (K);

n = ideality factor.

This equation relates the current through the diode to the voltage across it. The ide-
ality factor, n, typically ranges between 1 and 2 depending on how the diode is man-
ufactured and the type of semiconductor material used. We will consider the case
n = 1, which corresponds to that of an ideal diode. At room temperature ¢/ (kT) =~ 40
and so the equation can be written as

I=I1" —1)

Figure 2.31 shows a graph of / against V. Notice that for negative values of V, the
equation may be approximated by

since e*®V ~ 0. The diode is said to be reverse saturated in this case. In reality,

I is usually quite small for a practical device, although its size has been exagger-
ated in Figure 2.31. This model does not cater for the breakdown of the diode.
According to the model it would be possible to apply a very large reverse voltage
to a diode and yet only a small saturation current would flow. This illustrates an
important point that no mathematical model covers every facet of the physical device
or system it is modelling. A different model would be needed to deal with breakdown
characteristics.
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1 Simplify (@ R=1Q,C=1uF
’ e (b) R=10Q,C=1pF
(a) @ (b) 2 (c) R=33Q,C=1uF
5 (e + 2% ; e3e—T (d R=569,C=0.1puF
© e2x @ ebe—2 Calculate the time constant, 7, in each case.
© (e¥)3(e¥)* . Sketch the following functions, using the same axes:
10t
e y=e¥ yme? yoe
. Consider the RC circuit of Figure 2.29. Given an
o . I for -3 <x<3
initial capacitor voltage of 10 V plot the variation in
capacitor voltage with time, using the same axes, for . Sketch a graph of the functiony = 1 — e™ for
the following pairs of component values: x> 0.

1@ ; ) 25 (¢) 1+e 2 @10°  ® 105 (©33x10°°
@ e (o) o (d) 5.6x 1076

1 Ploty = ek fork = —3, ~2, ~1,0,1,2,3, for '3 Ploty=5—x2andy = e* for -3 < x < 3. For which
-3 <x<3. values of x is e¥ < 5 — x2?
‘2 Ploty=ke' fork=—3,-2,~1,0,1,2,3, for 4 Ploty =" andy = ¢* for —1 < x < 9. For which

-3<x<3. values of x is (a) ¥ < x%, (b) e > x*?
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Logarithm functions

Logarithms

The equation 16 = 2* may be expressed in an alternative form using logarithms. In
logarithmic form we write

log, 16 =4
and say ‘log to the base 2 of 16 equals 4’. Hence logarithms are nothing other than
powers. The logarithmic form is illustrated by more examples:
125 =5 so logs 125 =3
64 = 8% so0 logg 64 =2
16 = 4% so log, 16 =2
1000 = 10’ so log,, 1000 = 3
In general,
if c = a”, then b =log, c

In practice, most logarithms use base 10 or base e. Logarithms using base e are called
natural logarithms. Log,,x and log_ x are usually abbreviated to logx and In x, respec-
tively. Most scientific calculators have both logs to base 10 and logs to base e as pre-
programmed functions, usually denoted as log and In, respectively. Some calculations
in communications engineering use base 2. Your calculator will probably not calculate
base 2 logarithms directly. We shall see how to overcome this shortly.

Focusing on base 10 we see that

if y = 10" then x =logy
Equivalently,

ifx =1logy then y=10"
Using base e we see that

ify=¢e" then x=Iny
Equivalently,

X

if x =1Iny then y=¢e

Example 2.12

Solution

Solve the equations
(a) 16 = 10" (b) 30 =¢" (c) logx=1.5 (d) Inx=0.75

(a) 16 = 10° (by 30=¢
logl6 =x In30 =x
x=1.204 x = 3.401
(c) logx=1.5 (d) Inx=0.75
X = 101.5 X = e0.75
= 31.623 =2.117

Example 2.13

Solve the equations
(@) 50 =9(10%) (b) 3e~*+Dh =10
(c) log(x* —1)=2 (d) 3In(4x+7) =12
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Solution

(@ 50 =9(10%)

o=
? 50
2x = log 5
X = llog@ =0.372
2 9

(c) log(x* = 1) =2
X —1=10>=100
x* =101
x = £10.050

(b) 3e~@+h = 10
et _ 10
3
10
—@x+ ) =In
10
2x = —ln? —1
2x = —2.204
x=—1.102
(d) 3In(4x+7) =12
4x+7=c¢*
4x =e* =7
4
-7
x= 1 = 11.900

Logarithmic expressions can be manipulated using the laws of logarithms. These laws
are identical for any base, but it is essential when applying the laws that bases are not

mixed.
log, A +log, B = log,(AB)

A
log, A —log, B = log, (E)
nlog, A = log, (A")
log,a=1

We sometimes need to change from one base to another. This can be achieved using the

following rule.

log, X
logaX — &
log, a

In particular,
log;, X log,y X
log,,2 ~ 0.3010

log, X =

Example 2.14

Solution

Simplify
(a) logx + logx®

(b) 3logx + logx?
1
(¢) Slnx + ln(—)
X
(d) log(xy) +logx —2logy

4 1
(e) In(2x*) — ln<—2> + =In27
X 3

(a) Using the laws of logarithms we find
logx + logx* = log x*
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(b) 3logx +logx* =logx® + logx* = logx®

1 5 1 X 4
(¢) SInx+Inl - )=Inx’+In{- ) =In[ — | =Ilnx
X b X

(d) logxy +logx —2logy =logxy + logx — log y*

2
() )
¥ y

4\ 127 2,6
() In(2x) —1n<—2> + 22y ( >+111271/3
X

3

Example 2.15 Find log, 14.

Solution Using the formula for change of base we have

log,, 14  1.14
og 14 _ L1640
log,,2  0.301

log, 14 =

Engineering application 2.10

Signal ratios and decibels

The ratio between two signal levels is often of interest to engineers. For example, the
output and input signals of an electronic system can be compared to see if the system
has increased the level of a signal. A common case is an amplifier, where the output
signal is usually much larger than the input signal. This signal ratio, known as the
power gain, is often expressed in decibels (dB) given by

P
power gain (dB) = IOIOg(F")

where P is the power of the output signal and P, is the power of the input signal. The
term gain is used because if P, > P, then the logarithm function is positive, corre-
sponding to an increase in power. If P, < P, then the gain is negative, corresponding
to a decrease in power. In this situation the signal is said to be attenuated.

The advantage of using decibels as a measure of gain is that if several electronic
systems are connected together then it is possible to obtain the overall system gain
in decibels by adding together the individual system gains. We will show this for
three systems connected together, but the development is easily generalized to more
systems. Let the power input to the first system be P, and the power output from
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the third system be P_;. Suppose the three are connected so that the power output
from system 1, P, is used as input to system 2, that is P,, = P,,. The power output
from system 2, P,,, is then used as input to system 3, that is P; = P_,. We wish to
find the overall power gain, 101log(P,;/P,;). Now

P _ FaPo Boy
By P3Py By

because P, = P, and P, = P,,. Therefore,

P P.P,P
10 log(ﬁ) =10 log(PL3 PLZ PLI)
i s Po P

that is

P P P P
101og(ﬁ) = 101og(ﬁ) - 101og<ﬁ) + 101og<i1>
B By By B

using the laws of logarithms.

It follows that the overall power gain is equal to the sum of the individual power
gains. Often engineers are more interested in voltage gain rather than power gain.
The power of a signal is proportional to the square of its voltage. We define voltage
gain (dB) by

. V02 Vo
voltage gain (dB) = 10log 2= 20log v

1 1

Engineering application 2.11

The use of dBm in radio frequency engineering

In the previous engineering application it was shown how the decibel can be used to
express a ratio of the power of two signal levels P, and P,. It is possible to specify
a fixed value for the input signal P,. This is termed a reference level. When this is
done the decibel becomes an absolute quantity. The notation is normally changed
slightly to indicate the assumed reference level. For example, dBm is used as an
absolute measure of power in the field of radio frequency (RF) engineering. A mobile
telephone handset, a microwave oven and a radar transmitter on an airfield are all
devices that might have their output power quoted in dBm. The definition of power
gain measured in dBm is as follows:

P
ower gain (dBm) = 1010 =
p gain (dBm) g <1 03)
Here the reference level chosen is 1 mW or 1073 W.
If a device is quoted as having an output power of 15 dBm we can convert this
into a power value in watts as follows:

P
15 (dBm) = 101log <10‘i3)

Dividing both sides by 10

P
1.5 =log (10"_3)
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And so

P
101.5 — o
()

Therefore the actual power is

P,=10" x 107 =10""° = 0.0316 = 32 mW

This is the typical amount of RF power that might be transmitted by a laptop computer
with WiFi capability.

Engineering application 2.12

Attenuation in a step-index optical fibre

Fibre optical cables are used to guide high-bandwidth light signals generated by
lasers. One design is the step-index optical fibre. This consists of a glass core of
silicon dioxide with a high refractive index, obtained by doping the glass with the el-
ement germanium. A surrounding sheath of lower refractive index glass ensures that
nearly all of the light remains within the core. Transmission occurs by total internal
reflection at the interface between the two types of glass.

The losses that do occur in the optical fibre can be described by the following
equation:

I(z) =I,e™

where the intensity of the light /(z) is a function of the distance along the fibre, z,
from the light source. The intensity of the light source at the insertion point is /; and
« is an attenuation factor.

Note that o varies with the wavelength of the light and so the rate of attenuation
depends on the colour of the light. It is possible to obtain plots for the variation of the
attenuation factor with wavelength from the manufacturers. The attenuation factor is
often expressed in units of dB km~'. A typical value for a cable operating at a light
wavelength of 1550 nm is 0.3 dB km~!.

An alternative measure for gain/attenuation is that of the neper (Np). Like the
decibel this is also a dimensionless ratio that has a logarithmic form. Whereas the
decibel is defined in terms of base 10 logarithms, the neper is defined in terms of
natural logarithms, that is base e logarithms. The gain measured in Np is defined by
the following expression:

1

voltage gain (Np) = ln% =InV, —InV,
where V, is the signal value in volts after gain/attenuation and V; is the reference
signal value in volts.
It is possible to derive a conversion factor between Np and dB by considering
the case when V is a factor of 10 greater than V;. Using the neper measurement this
corresponds to

10V.
voltage gain (Np) = In 7‘ =1n10

i
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Using the dB measurement for voltage gain (see Engineering application 2.10)

[

v

this corresponds to voltage gain (dB)=20log v which equals 201log 10. So,
In 10 (Np) = 201og 10 (dB). Thus,

201log 10
INp= 08"

In 10

Using the value quoted earlier of an attenuation factor of 0.3 dB km™', this corre-
sponds to

0.3 = 8.685 89 Np km ™" = 0.034 539 Np km™"

1

dB ~ 8.685 89 dB

1

It is more usual to quote values of Np m~" and so this value becomes 3.4539 x

10> Npm™'.

Engineering application 2.13

Reference levels

We saw in Engineering application 2.11 that the suffix ‘m’ is used in dBm to indi-
cate the provision of a specific reference level. Alternative suffixes are used to denote
other reference levels and quantities, which do not necessarily have to be related to
electrical power. For example, when measuring sound pressure, P, in air the conven-
tional reference level for sound pressure is 20 ptPa r.m.s. This is chosen to correspond
to the approximate threshold of human hearing for a 1 kHz sinusoidal signal. The unit
for sound pressure is therefore quoted with reference to an input pressure of 20 pPa.
This is commonly written as dB re 20 pPa r.m.s. or using the shorthand dB SPL (dB,
sound pressure level). In other words we have

P

sound pressure level (dB SPL) = 201og <20 < 10- 6)

As a consequence of the choice of the human hearing threshold as the reference level,
a negative value of dB SPL corresponds to a sound that is too quiet to be heard by the
average person; 0 dB SPL is a sound that can just be heard and anything above this is
fully audible. An office might have an ambient (background) level of 30 dB SPL and
a person talking to you at the next desk might produce 60 dB SPL, both quantities
being measured at your hearing position.

Logarithm functions

The logarithm functions are defined by
f(x) =log, x x>0
where a is a positive constant called the base.
In particular the logarithm functions f(x) = logx and f(x) = Inx are shown in Fig-

ure 2.32 and some values are given in Table 2.5. The domain of both of these functions is
(0, 00) and their ranges are (—o00, c0). We observe from the graphs that these functions
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Table 2.5 ——Inx
Some values for logarithm v A _ -
functions log x and In x. -~ -
7 log x
X log x Inx i
7
0.1 -1 —2.303 >
0.5 ~0.301 ~0.693 *
1 0 0
2 0.301 0.693
5 0.699 1.609
10 1 2.303
50 1.699 3.912 Figure 2.32
Graphs of Inx and log x.

are one-to-one. It is important to stress that the logarithm functions, log,x, are only
defined for positive values of x. The following properties should be noted:

logx — oo logx — —o0

as x — 00 asx — 0
Inx - oo Inx > —o0
logl=In1=0 logl0=1 Ine=1

Connection between exponential and logarithm functions

The exponential function, f(x) = a¥, is a one-to-one function and so an inverse function,
f~1(x), exists. Recall

W) =x
So
@) =x
Now
log, (a") = xlog,a using laws of logarithms
=X since log,a =1

Hence the inverse of f(x) = a*is f~'(x) = log, x. By similar analysis the inverse of
f(x) =log,x1is ) =a'.

The inverse of the exponential function, f(x) = a¥, is the logarithm function, that
is f7'(x) = log, x.

The inverse of the logarithm function, f(x) = log, x, is the exponential function,
thatis £~ (x) = a*.

In particular:

If f(x) = e*, then f~'(x) = Inx.
If f(x) = Inx, then f~'(x) = e*.
If £(x) = 10%, then f~'(x) = log x.
If f(x) = logx, then f~!(x) = 10*.
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logy A

X y
6 kL

1 1
2 64 ST
3 729 4
4 4096 3L
5 15625 ) L
6 46 656
7 117 649 LF
8 262 144 0 1 1 1 1 1 1 1 1 1 -
9 531441 1 2 3 4 5 6 7 8 9 10 «x
10 1000000 Figure 2.33

The function y = x° plotted on a log—linear graph.

Use of log-log and log-linear scales
Suppose we wish to plot

y(x):x6 1<x<10

This may appear a straightforward exercise but consider the variation in the x and y
values. As x varies from 1 to 10, then y varies from 1 to 1000 000, as tabulated above.
Several of these points would not be discernible on a graph and so information would be
lost. This can be overcome by using a log scale which accommodates the large variation
in y. Thus log y is plotted against x, rather than y against x. Note that in this example

logy = logx® = 6logx

so as x varies from 1 to 10, logy varies from 0 to 6. A plot in which one scale is loga-
rithmic and the other is linear is known as a log-linear graph. Figure 2.33 shows logy
plotted against x. In effect, use of the log scale has compressed a large variation into one
which is much smaller and easier to observe.

Example 2.16

Solution

Consider y = 7* for =3 < x < 3. Plot a log-linear graph of this function.

We have
y=T
and so
logy = log(7") = xlog7 = 0.8451x

Putting Y = logy we have Y = 0.8451x which is the equation of a straight line passing
through the origin with gradient log 7. Hence when logy is plotted against x a straight
line graph is produced. This is shown in Figure 2.34. Note that by taking logs, the range
on the vertical axis has been greatly reduced.

A plot in which both scales are logarithmic is known as a log-log plot. Here log y is
plotted against log x.
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x y Y =logy
-3 0.003 —2.54
-2 0.020 —1.69
-1 0.143 —0.85

0 1 0

1 7 0.85

2 49 1.69

3 343 2.54

Yy
4 25
1 1 1 1 1 1 .-
-3 2 -1 1 2 3 X
4 -25
Figure 2.34
A log-linear plot of y = 7* produces a
straight line graph.

Example 2.17 Consider y = x” for 1 < x < 10. Plot a log—log graph of this function.

Solution We have

y=x

and so

logy = log(x") = 7logx

We plot logy against logx in Figure 2.35 for a log-log plot. Putting ¥ = logy and
X =logx we have Y = 7X which is a straight line through the origin with gradient 7.

Y
Tp-mmmme-- ,
X y X =logx Y =logy '
1 10 0 E
2 128 0.301 2.107 !
3 2187 0.477 3.340 !
4 16384 0.602 4214 :
5 78125 0.699 4.893 :
6 279936 0.778 5.447 5
7 823543 0.845 5.916 .
8 2097152 0.903 6.322 1 X
9 4782969 0.954 6.680 .
10 10000 000 1 7 Figure 2.35

A log-log plot of y = x’

produces a straight line graph.

Examples 2.16 and 2.17 illustrate the following general points:

A log-linear plot of y = a* produces a straight line with a gradient of loga.
A log-log plot of y = x" produces a straight line with a gradient of n.
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[ e e =R

Second cycle

Logarithmic scale

A N 0 O~

First cycle

Linear

A

Y

Figure 2.36
Two-cycle log-linear graph paper.

Use of log-linear and log-log graph paper

The requirement to take logarithms is a tedious process which can be avoided by using
special graph papers called log—linear graph paper and log—log graph paper. An example
of log—linear graph paper is shown in Figure 2.36.

Note that on one axis the scale is uniform; this is the linear scale. On the other, the
scale is not uniform and is marked in cycles from 1 to 9. This is the logarithmic scale. On
this scale values of y are plotted directly, without first taking logarithms. On the graph
paper shown in Figure 2.36 there are two cycles but papers are also available with three



2.4 Review of some common engineering functions and techniques 95

or more cycles. To decide which sort of graph paper is appropriate it is necessary to
examine the variation in size of the variable to be plotted measured in powers of 10. If,
for example, y varies from 1 to 10, then paper with one cycle is appropriate. If y varies
from 1 to 10%, two-cycle paper is necessary. If y varies from 107! to 10, then paper
with 4 — (—1) = 5 cycles would be appropriate. To see how log—linear paper is used in
practice, consider the following example.

Example 2.18

Solution

During an experiment the following pairs of data values were recorded:

A B C D
X 0 1 5 12
y 4.00 5.20 14.85 93.19

It is believed that y and x are related by the equation y = ab*. By plotting a log-linear
graph verify the relationship is of this form and determine @ and b.

If the relationship is given by y = ab®, then taking logarithms yields
logy = loga + xlogb

So, plotting log y against x should produce a straight line graph with gradient log b and
vertical intercept log a. The need to find log y is eliminated by plotting the y values di-
rectly on a logarithmic scale. Examining the table of data we see that y varies from
approximately 10° to 10? so that two-cycle paper is appropriate. Values of y between 1
and 10 are plotted on the first cycle, and those between 10 and 100 are plotted on the
second. The points are plotted in Figure 2.37. Note in particular that in this example the
‘1’ at the start of the second cycle represents the value 10, the 2’ represents the value 20
and so on. From the graph, the straight line relationship between logy and x is evident.
It is therefore reasonable to assume that the relationship between y and x is of the form
y = ab".

To find the gradient of the graph we can choose any two points on the line, for example
C and B. The gradient is then

log 14.85 —10g5.20  log(14.85/5.20)

=0.1139
5-1 4

Recall that log b is the gradient of the line and so

logh = 0.1139, that is b = 10°!"% = 1.2999

The vertical intercept is log a. From the graph the vertical intercept is log 4 so that

loga = log4, thatisa =4

We conclude that the relationship between y and x is given by y = 4(1.3)".



96 Chapter 2 Engineering functions

£ 1
logy 2D | 9
/ 1(12,93.19) <
// !
6
4

/ 5
/ o—"4

Q

/ g

/ 2
§—3

wn
2

/- C (5, 14.85)

/ Y
V4 5
/ i
7 7
A 6
/B (1,520 s
/ o1y

/| A (0, 4) S
£—3
2
": 1

o 1 2 3 4 5 6 7 8 9 10 11 12 x

Figure 2.37
The log-linear graph is a straight line.

Engineering application 2.14

Bode plot of a linear circuit

It is possible to find out a great deal about an electronic circuit by measuring how
it responds to a sinusoidal input signal. We will examine the sinusoidal functions in



1

EXERCISES 2.4.4
Evaluate () In(x+y)—Iny
(a) log,8 (b) log, 15 (2) log(2x?) + log(4x)
(¢) logy50 (d) log;q 123 @ 3110gy ;L 2logx
(e) logg23 () logg 47 (i) 5logx™ —2logx
implify each of the followi ingle 1 () 3lnx+2Iny+4Ing
Simplify each of the following to a single log term: (0 logz— 2logx + 3logy
(a) log7 + logx O log?’ — log(21) + 2log?
(b) logx+logy+logz
(¢) Iny—1In3 Simplify each of the following to a single log term:
(d) 2logy+logx (a) 3Int —Int
(€ In(xy) +In(?) (b) 6log? + 4log+
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Section 3.4. The usual procedure is to apply a range of fixed-amplitude sinusoidal
signals with different frequencies in order to obtain information about the circuit or
system. In Section 23.9 we will see that if the circuit is linear then, after it has settled
down, the output signal is also a sinusoidal signal of the same frequency but with a
different amplitude and phase (see Section 3.7 for details of these terms).

A Bode plot consists of two components:

(1) The ratio of the amplitudes of the output signal and the input signal is plotted
against frequency.

(2) The phase shift between the input and output signals is plotted against frequency.

A log scale is used for the frequency in order to compress its length; for example,
a typical frequency range is 0.1 to 10° Hz which corresponds to a range of —1 to 6
on a log scale. A log scale is also used for the ratio of the signal powers as this is
calculated in decibels. Phase shift is plotted on a linear scale. So the signal amplitude
ratio versus frequency is a log—log graph and the phase shift versus frequency is a
linear— log graph.

An operational amplifier is an example of a linear circuit. In a technical computing
language such as MATLAB® it is usually easy to produce a Bode plot.

An example function which describes the behaviour of such a device is:

100000
A(f) = 7

1+ j=
+18

which gives the input-output voltage function. Do not worry about the meaning of
the ‘j° in the equation for now. This will be covered in Chapter 9 when we discuss
complex numbers.

We could produce a Bode plot by typing:

£=1:1:10000;
semilogx(f, 20*1ogl0(abs(100000./(1+j*£/8))));

The function semilogx plots a graph with a logarithmic scale on the x-axis. Chapter
21 examines Bode plots in more detail.
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(¢) In(3y%) —2In3+1Iny
(d) In(6x +4) — In(3x + 2)

log(9 2
© Og; 0 log<§)

Sketch graphs of the following functions, using the

same axes:
y = In(2x), y=Ihx 0<x<10

Measure the vertical distance between the graphs for
x =1,x =2 and x = 8. Can you explain your
findings using the laws of logarithms?

Solve the following equations:

(a) e* =70
c) e¥=1
(e) e* =150

(g) el =075

@ 0.6

e’ + 1 -
&) ()3 =200

(m) Ve +4=6
(0) e* =7e*

@ (€ +3)*=25

(s) eX¥—3e"+2=0

) e'5—e) =6

1
(b) e =3
(d) 3¢* =50
(f) >3 =300
(h) 2ee* = 50
G) ex% =06
(1) Ve =2
® exe—):— 2
(p) 267 =9
) Be™*—6)>=38
(t) 2% —7e*+3=0

12
V) ef—T+—==0
eX

0.7

Solve the following equations:

(@) 10 =30

(¢) 4(10%) =20

(e) 1032 =20

(g) 1073% =0.02

i) 102=20
k) 4 6

( 108

(m) V10% =3

(0) V10® 4+6=5

(@ (107 +2)2=6

(b) 10 =0.25

(d) 10% =90

) 31003 =36
(h) 7(107%) = 1.4
() 103+ =75

O (10792 =40
107 1

™ 2 F0+ "2

(p) 10% =30(10%)

) 6(1073%) =10

(s) 10% —7(105)+10=0
() 10% —8(10%)+16=0
(W 10°=5+6(107) =0
(v) 4(10%) —8(10+3=0

10

11

12

13

14

15

16

Solve

(a) logx=1.6

(c) log(2+x)=1.6
(e) log(2x —3) =0.7

(b) log2x =1.6
(d) 2log(x?) =24

Solve
(a) Inx=24

(© 2In@x—1)=5

(e) In (%) =0.9

(b) In3x =14
(d) In(2x%) =45

Solve
(@) e¥* =21 b) 107% =6.7

_ 2 _
© = = 03  (d) 2% —1=0

(e) 3(10C-4+0)y = 17
) (@) +e =500

(2) V10% + 100 = 3(10%)

Calculate the voltage gain in decibels of the following
amplifiers:

(a) input signal = 0.1 V, output signal = 1 V;

(b) input signal = 1 mV, output signal = 10 V;

(c) input signal = 5 mV, output signal = 8 V;

(d) input signal = 60 mV, output signal =2 V.

An audio amplifier consists of two stages: a
preamplifier and a main amplifier. Given the
following data, calculate the voltage gain in decibels
of the individual stages and the overall gain in
decibels of the audio amplifier:

preamplifier: input signal = 10 mV,

output signal = 200 mV

main amplifier: input signal = 400 mV,

output signal =3V

A Bluetooth radio system operating in Class 3 has a
maximum output power of 0 dBm at 2.45 GHz. Find
the maximum output power in watts (W).

A microwave oven has an output power of 1 kW.
Express this figure in dBm.

Express 0 dB SPL as a sound pressure in
micropascals (pPa).

A car audio speaker has an output sound pressure
level of 55 dB SPL when measured at a distance of
1 m. Calculate the sound pressure at that point in
pascal r.m.s.

An active sonar system fitted to a boat produces a
source level of 220 dB re 1 puPa at 1 m. Calculate the
sound pressure in kPa.
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17 By using log-linear paper find the relationship

1

between x and y given the following table of values:

x 15 1.7 32 39 43 49

y 85 97 27.6 448 59.1 89.6
Solutions

(@ 3 (b) 3.9069

(¢c) 1.4110 (d) 1.7356

(e) 1.5079 (f) 1.8515

(a) log7x (b) logxyz

(c) ln<;}) (d) logxy2

(e) In(xy)

® ln(”y )
y

(h) logx2y3

() Inxy*zt

4
1) log )

(2) log8x’
(i) logl=0

3
(k) log (yxzz>

(a) 2Int or Ins? (b) 16logt
(%)

() In (d) In2

3

9x3/2
©)] log< 5 )
(a) 4.2485 (b) —1.0986
(©) 0 (d) 2.8134
(e) 1.3040 ) 1.3519
(g) 1.2877 (h) 1.1094
i) 1.3863 (G) 0.6094
k) 1.7661 (I) 0.6931
(m) 1.7329 (n) 1.5404
(0) 1.9459 (p) —1.5041
(@ 0.6931 (r) —0.9808
(s) 0,0.6931 (t) —0.6931,1.0986

(u) 0.6931,1.0986 (v) 1.0986, 1.3863

18

10

11

12
13
14
15
16
17
18

By using log-log paper find the relationship between
x and y given the following table of values:

x 20 25 30 35 40 45
y 13.0 19.0 259 33.6 42.2 51.6

(@) 14771 (b) —0.6021
(¢) 0.6990 (d) 0.9771
(e) 1.1003 (f) —1.9208
(2) 0.5663 (h) 0.3495
(i) 3.3010 () 0.2917
(k) —0.1761 1 —0.8010
(m) 0.2386 (n) —0.3010
(0) 0.6395 (p) 0.4924
(@ 03473 r) —0.0739
(s) 0.3010,0.6990 (1) 0.3010

(w) 0.3010,0.4771 (v) —0.3010,0.1761

(a) 39.81 () 1991  (c) 37.81
(d) £3.98  (e) 4.01

(a) 11.02 (b) 1820  (c) 6.59

d) £6.71  (e) 6.38

(@) 1.0148  (b) —0.4130 (c) —0.2877
(d) —1.3863 () 1.3117 () 2.0553
(2) 0.5485

(@ 20dB (b) 80dB  (c) 64.1dB
(d) 30.46 dB

Preamplifier gain = 26.02 dB, main amplifier gain
= 17.50 dB, total gain = 43.52 dB

1073 W or 1 mW
60 dBm

20 uPa

0.011 Paor 11 mPa
10° or 100 kPa
y=3(2

y = 4x1.7
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Technical Computing Exercises 2.4.4

1 Use a technical computing language to draw
y = log(kx) for 0.5 < x < 50 for k = 1, 2, 3 and 4.

1
2 Drawy=Inxandy = ln<7> for
X

0.5 < x < 20. What do you observe? Can you explain
your observation using the laws of logarithms?

3 Drawy:lnxandy:]—;ﬁfor

0.5 < x < 4. From your graphs state an approximate
solution to

Inx=1-2
3

2.4.5 The hyperbolic functions

The hyperbolic functions are y(x) = coshx, y(x) = sinhx, y(x) = tanhx, y(x) =
sechx, y(x) = cosechx and y(x) = cothx. Cosh is a contracted form of ‘hyperbolic
cosine’, sinh of ‘hyperbolic sine’ and so on. We define cosh x and sinh x by

e +e™* e-—e™*

y(x) = coshx = > y(x) = sinhx = 5

Note:
X

= coshx

e
cosh(—x) =

—X X

sinh(—x) = % = —sinhx

so, for example, cosh 1.7 = cosh(—1.7) and sinh(—1.7) = — sinh 1.7. Clearly, hyper-
bolic functions are nothing other than combinations of the exponential functions e* and
e~ . However, these particular combinations occur so frequently in engineering that it is
worth introducing the coshx and sinhx functions. The remaining hyperbolic functions
are defined in terms of coshx and sinh x.

sinh x
coshx e*+e™

1 2
= h = =
y(x) = sechx coshx e*+e™*

y(x) = tanhx = =€

1 2
= cosechx = =
) * sinhx e*—e™*
cosh x . 1 . e +e*

x) = cothx = = =
y®) sinhx tanhx e*—e™~*

Values of the hyperbolic functions for various x values can be found from a scientific
calculator. Usually a Hyp button followed by a Sin, Cos or Tan button is used.

Example 2.19

Evaluate

(a) cosh3 (b) sinh(—2)
(c) tanh 1.6 (d) sech(—2.5)
(e) cothl (f) cosech(—1)
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(a) cosh3 =10.07

(b) sinh(—2) = —3.627

(c) tanh(1.6) = 0.9217

(d) sech(—2.5) = 1/cosh(—2.5) =0.1631
(e) cothl =1/tanh 1 =1.313

(f) cosech(—1) = 1/sinh(—1) = —0.8509

Graphs of the functions sinhx, coshx and tanhx can be obtained using a graphics
calculator.

Hyperbolic identities
Several identities involving hyperbolic functions exist. They can be verified algebraically
using the definitions given, and are listed for reference.

cosh? x — sinh® x = 1
1 — tanh® x = sech’x
coth® x — 1 = cosech’x
sinh(x & y) = sinhxcoshy =+ coshxsinhy
cosh(x £ y) = coshxcoshy = sinhxsinhy
sinh 2x = 2 sinh x cosh x

cosh2x = cosh® x + sinh® x

cosh2x + 1

hlx = —"—
cosh” x >

cosh2x — 1

. h2 _ -
sinh” x = >

Note also that
€' = coshx + sinh x e = coshx — sinh x

Hence any combination of exponential terms may be expressed as a combination of
cosh x and sinh x, and vice versa.

Example 2.20

Solution

Express

(a) 3e* — 2e™* in terms of coshx and sinh x,

X

(b) 2sinhx + coshx in terms of e* and e ™.

(a) 3e* —2e™™ = 3(coshx + sinhx) — 2(coshx — sinh x) = coshx + 5 sinh x.
e +e* _ 3¢t —e™*

(b) 2sinhx + coshx =e* —e™* + = .
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Inverse hyperbolic functions

The inverse hyperbolic functions use the familiar notation. Both y = sinhx and y =
tanh x are one-to-one functions and no domain restriction is needed for an inverse to be
defined. However, on (—o0, 00), y = cosh x is a many-to-one function. If the domain is
restricted to [0, 0co) the resulting function is one-to-one and an inverse function can be
defined.

The inverse of the function sinhx is denoted by sinh™' x. Here the —1 must not be
interpreted as a power but rather the notation we use for the inverse function. Similarly
the inverses of coshx and tanh x are denoted by cosh™' x and tanh™! x respectively.

Values of sinh™'x, cosh™' x and tanh™'x can be obtained using a scientific
calculator.

Example 2.21

Solution

Evaluate
(a) cosh™'(3.7) (b) sinh~!(=2) (c) tanh™'(0.5)

Using a calculator we get
(a) 1.9827 (b) —1.4436 (c) 0.5493

Engineering application 2.15

Capacitance between two parallel wires

Although it may not seem obvious, a small capacitance exists between two wires that
run close to each other and at certain frequencies this can be a significant factor for
some electrical systems.

The mutual capacitance per metre, C, between two long parallel wires in air each
having a radius r metres and with the wire centres separated by d metres is calculated
using

C=— "0
cosh™ (d/2r)

This expression includes an inverse hyperbolic function. In the equation d > 2r, oth-
erwise the wires would be overlapping. The constant g, is a fundamental physi-
cal constant called the permittivity of free space. It has an approximate value of
8.85 x 1072 Fm™!.

Recall the general expression for the hyperbolic function cosh x:

e +e*
2

To derive the inverse of this hyperbolic function, we need to restrict the domain to
[0, 00), thatis x > 0. We let y = cosh x and then solve for x in terms of y:

coshx =

e e

2
2y=¢e"+e "
0=e"—2y+e™*
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In order to solve this equation we first multiply both sides by e, to give
0=c'e" —e2y+e'e™

Using the laws of indices,
0=e”—2e'y+1

We can now write this as a quadratic equation in e* and solve it using the standard
formula. This gives

)2 =2y +1=0

bV —dac  —(—2y) £ /(22 —4(D(D)
- 2a B 2(1)

2y+ . /4yr — 4
_DEVIIoE L T

ex

As x > 0, the function e* > 1 so we reject the negative root and it follows that

e =y+y*—1

from which we get
x=1n<y+\/y2— 1)
Recall that y = cosh x and so x = cosh™'y. Therefore

cosh™'y =1In (y—i—\/yz — 1)

Hence the equation for the pair of wires can also be written in terms of logarithms as
TE,

T hn [(d/2r) +J/ @2 =1 ]

C

A word of warning about the inverse of coshx is needed. The calculator returns a

value of 1.9827 for cosh™'(3.7). Note, however, that cosh(—1.9827) = 3.7. The value
—1.9827 is not returned by the calculator; only values on [0, co) will be returned. This
is because the domain of y = coshx is restricted to ensure it has an inverse function.

EXERCISES 2.4.5
Evaluate the following:
(a) sinh3 (b) cosh 1.6
(c) tanh0.95 (d) sech1
(e) cosech?2 (f) coth 1.5
(g) cosh(—3) (h) cosech(—1.6)
(i) sinh(—2) (j) coth(—-2.7)
(k) tanh(—1.4) 1) sech(—0.5)
Evaluate
(a) sinh™'3
(b) cosh™!2

(c) tanh~!(—0.25)

3 Express

(a) 6€* + 5e™* in terms of sinh x and cosh x,
(b) 4e* — 3e~2 in terms of sinh 2x and cosh 2x,

(c) 2e~3 — 5¢3 in terms of sinh 3x and cosh 3x.

Express

(a) 4sinhx + 3 coshx in terms of ¢* and e™,

(b) 3sinh2x — cosh 2x in terms of €2* and e~2*,

(¢) 3cosh3x — 0.5 sinh 3x in terms of ¢>* and e~3*.

Express ae* + be ™, where a and b are constants, in
terms of cosh x and sinh x.
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6 Express acoshx 4 bsinhx, where a and b are
constants, in terms of e* and e ™.

7 Show that the point x = coshu, y = sinh « lies on the
curve

Solutions

1 (a) 10.0179  (b) 2.5775 (c) 0.7398
(d) 0.6481 (e) 0.2757 (f) 1.1048
(g) 10.0677  (h) —0.4210 (i) —3.6269
(G) —1.0091 (k) —0.8854 (1) 0.8868

2 (a) 1.8184 (b) 1.3170  (c) —0.2554

3 (a) 11coshx+ sinhx

1

(b) cosh2x + 7sinh2x
(c) —3cosh3x — 7sinh3x

Technical Computing Exercises 2.4.5

Use a technical computing language to draw
(a) y = sinhx (b) y = coshx
(c) y = tanhx for =5 < x < 5.

X
Draw graphs of y = sinhx, y = coshxand y = % for
0 < x < 5. What happens to the three graphs as x
increases? Can you explain this algebraically?

X —y2:1

Prove the hyperbolic identities listed in the box earlier
in this section.

(@) 3.5¢" —0.5e7*
(b) e —2e
(c) 1.25¢3* +1.75¢73%

(a + b) coshx + (a — b) sinh x

b —-b
—a; ex-l-az e

Draw

(@ y=sinh™'x —5<x<5
(b) y:coshflx 1<x<5
(c) y:tanhflx —1l<x<l1

2.4.6 The modulus function

The modulus of a positive number is simply the number itself. The modulus of a negative
number is a positive number of the same magnitude. For example, the modulus of 3 is
3; the modulus of —3 is also 3. We enclose the number in vertical lines to show we are

finding its modulus, thus

3=3 |-3=3

Mathematically we define the modulus function as follows:

The modulus function is defined by

f(X)=IXI={

x x>0
—x x<0

Figure 2.38 illustrates a graph of f(x) = |x|. The modulus of a quantity is never negative.
Consider two points on the x axis, a and b, as shown in Figure 2.39. Then

|la — b| = |b — a| = distance from a to b
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feo 4
= I o
a 0 b
> B »
X la — bl
Figure 2.38 Figure 2.39
The function: f(x) = |x|. Distance froma to b = |a — b|.

Example 2.22 Find the distance from
(@A) x=2tox=9 (b) x=—-2tox=9 (c) x=-2tox=-9

Solution (a) Distance=|2—-9|=|—-7|=7
(b) Distance=|—-2—-9|=|—11] =11
(c) Distance=|—2—(=9)| =171=7

From the definition of the modulus function it follows:

If |x| = a, then either x = a or x = —a.
If x| < a, then —a < x < a.
If |x| > a, then either x > a orx < —a.

For example, if |x| = 4 then either x = 4 or x = —4. If |x| < 4 then —4 < x < 4; that
is, x lies between —4 and 4. If |x| > 4, then either x > 4 or x < —4; that is, x is either
greater than 4 or less than —4.

Example 2.23 Describe the interval on the x axis defined by
(@) |x[ <2
(d) [x] =3
) x—1]1<3
d x+2|>1

Solution (a) |x| < 2 is the same statement as —2 < x < 2; that is, x is numerically less than 2.
Figure 2.40 illustrates this region. Note that the region is an open interval. Since the
points x = —2 and x = 2 are not included, they are shown on the graph as o.

(b) If |x] > 3 then either x > 3 or x < — 3. This is shown in Figure 2.41. The required
region of the x axis has two distinct parts. Since the points x = 3 and x = —3 are
included in the interval of interest, they are shown on the graph as e.

(¢) |[x—1] < 3isequivalentto —3 <x — 1 < 3, thatis —2 < x < 4.

(d) |x+2| > lisequivalenttox+2 > lorx+2 < —1, thatisx > —1l orx < —3.
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1 P 1 Ps
-2 0 2 -3 0 3
"""" W<2 i >3 >3
Figure 2.40 Figure 2.41
The quantity |x| < 2 is equivalent to —2 < x < 2. The quantity |x| 2> 3 is equivalenttox > 3orx < —3.

The modulus function can be used to describe regions in the x—y plane.

Example 2.24  Sketch the region defined by

(@) x| <2andJy] < 1
(b) ¥4y <9

Solution (a) The region is a rectangle as shown in Figure 2.42. The boundary is not part of the
region as strict inequalities were used to define it. The region |x| < 2, [y| < 1is the
same as that in Figure 2.42 with the boundary included.

(b) |x*+y* < 9isequivalent to —9 < x> +y* < 9. Note, however, that x> +y? is never
negative and so the region is given by 0 < x> + y* < 9.

Let P(x,y) be a general point as shown in Figure 2.43. Then from Pythagoras’s
theorem, the distance from P to the origin is /x> + y%. So,

(distance from origin)* = x> +y* < 9
Then,
(distance from origin) < 3

This describes a disc, centre the origin, of radius 3 (see Figure 2.44).

y A
1
Y P(xy)
-2 2 x .
-1
(0] X
Figure 2.42 Figure 2.43 Figure 2.44
The region: |x| < 2 and |y| < 1. Point P(x, y) is a general point. The region: X2 + y2| <O

Engineering application 2.16

Full-wave rectifier

A rectifier is an electronic circuit that is used to convert an alternating voltage to
a direct voltage, that is, one that does not change in polarity with time. Usually
the alternating voltage has the shape of a sinusoidal function. We will examine the
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sinusoidal functions in Section 3.4. A full-wave rectifier is one that makes use of the
negative part of the input sinusoidal signal as well as the positive part, by reversing its
polarity. It contrasts with a half-wave rectifier that merely discards the negative part
of the input sinusoidal signal. This means that the half-wave circuit is not driven by
the alternating voltage supply at all during half of the cycle. In both types of circuit
a capacitor is usually connected across the output to store energy when the signal
approaches a peak. The capacitor then discharges into the circuit when the rectifier
output voltage falls. By this means, a relatively constant voltage is produced at the
power supply output.

A fully rectified sine wave is the modulus of the sine wave. The circuit for a full-
wave rectifier is shown in Figure 2.45 together with the input and output waveforms.
The input signal is v;, and the output signal is v,. Ignoring the voltage drops across
the diodes gives

Vo = |Uin|

Figure 2.45
A full-wave rectifier.

EXERCISES 2.4.6

Sketch the interval defined by
®) ly—11<3 (© K4+y>—11<4

(©) [t+6]>3 d 12=21 <7

(@ x| >21y <3

Solutions

(a) x>4orx < —4
(c)t> —3ort< —9 d -3<t<3 © y—2|<1 (d [t+3]<3

(e) no value of ¢ satisfies this

®) x+2[<4,y+1] <3

@ |x=1D2++2)2 =1

Also, state the intervals without using the modulus 3 Express the following intervals using modulus
notation:
Sketch the regions defined by (a) —2<x<2 (b)) 4<t<4

©)1<y<3 d —-6<r<0

(b) —2<y<4 3 (8 <2 (b) lt] <4
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Technical Computing Exercises 2.4.6

1 Use a technical computing language such as (@ a full wave rectifier circuit

MATLAB® to produce a plot of the output of: (b) a half wave rectifier circuit

2.4.7 The ramp function

VAU
The ramp function is defined by
£ c t>0 ¢ constant
lope = =
slope=¢ 0 1<0
S (R graph is shown in Figure 2.46.
Figure 2.46

The ramp function.

Engineering application 2.17

Telescope drive signal

In order to track the motion of the stars large telescopes are usually driven by an elec-
tric motor. The speed of this motor is controlled in order that the angular position of
the telescope follows a specified trajectory with time. The whole assembly, including
telescope, gears, motor, controller and sensors, forms a position control system or
servo-system. This servo-system must be fed a signal corresponding to the desired
trajectory of the system. Often this trajectory is a ramp function as illustrated in Fig-
ure 2.47. The drive motor is started at time ¢ = ¢, and the desired angular position of
the telescope is 6.

0
Drive motor started

1
1
1
Desired telescope !
position .
1
1
1
1
1

»  Figure 2.47
fo b Tracking signal for a telescope.

2.4.8 The unit step function, u(r)

The unit step function is defined by

1 120
”(t)=[0 t<0
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u(t)I u(t—d

1 [ 1 .

~

1 I | d
Figure 2.48 Figure 2.49
The unit step function. Graph of u(t — d).

~

Its graph is shown in Figure 2.48. Note that «(f) has a discontinuity at = 0. The point
(0, 1) is part of the function defined on ¢ > 0. This is depicted by e. The point (0, 0) is
not part of the function defined on r < 0. We use o to illustrate this.

The position of the discontinuity may be shifted.

1 t>d

The graph of u(t — d) is shown in Figure 2.49.

Engineering application 2.18

RLC circuit

The inductor is another of the three fundamental electronic components. It is a device
that is used to store electrical energy in the form of a concentrated magnetic field. It
consists of a tightly wound coil, often around a ferromagnetic material, which helps
to strengthen the magnetic field. It is usually depicted on a circuit diagram as a set
of loops. Figure 2.50 shows a resistor, inductor and a capacitor connected in parallel.
This is usually known as an RLC circuit. The circuit also contains a switch, which
here is depicted as an arrow connecting two terminals with the switch in the open
position. When the switch is open the voltage v across terminals A and B is zero. If
the switch is closed at # = O the voltage across A and B is Vg, where Vj is the supply
voltage. Thus v can be modelled by the function

v(t)—{o t<0
Ve 130

This can be written, using the unit step function, as

v(t) = Vsu(t)

® ® Figure 2.50
RLC circuit.




110 Chapter 2 Engineering functions

Example 2.25 Sketch the following functions:
(@ f=ul—-3)
© f=ut—1)—ul—3)
(e) f=¢u)

(b) f=ut-1)
(d) f=ut—=3)—ut—1)

Solution (a) See Figure 2.51. (b) See Figure 2.52.
(c) See Figure 2.53. (d) See Figure 2.54.
(e) See Figure 2.55.
f f
1 ]~ *— 1  —
! 3 L f
Figure 2.51 Figure 2.52
The function: f = u(t — 3). The function: f = u(t — 1).
f } } ;
1 &——0 - N
| O ® > L ! 3 ! 1
1 3 t -1 &——-0 T
Figure 2.53 Figure 2.54
The function: The function: Figure 2.55

f=ult—1)—ul—-3).

f=ul—=3)—ul—1).

The function: f = e’u(t).

EXERCISES 2.4.8

1 Sketch the following functions:

@ f@)=u@—1)
b) f@) =u@+1)
(© f@)=u(t—2)—u—-06)
) f@)=3u@~1)
@ fO)=u@+1)—u@—1)

O fO=ut—-1)—u+1)

(@ f@)=u@+1)—2u-1)
) f@)=2u(t+1)—u@—1)
A f@) =3ut—1)—2u(t—2)

Solutions

2 See Figure S.5.

2 A ramp function, f(¢), is defined by

2 =
ro-{2 2

Sketch the following for —1 <¢ < 3:

@ f@)

®) u(®)f ()

(©) u(t = 1)f@)

d) u@t =D f@) —u® —2)f)
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(a) (b) -1 0 1 2

Figure S.5

2.4.9
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u(t— 1)f u(t — Df — u(t 2)f
6 6
4 / 4
2 2 /3

3 t © -10 1 2 3 t () -1 01 2 3 t

The delta function or unit impulse function, §(7)

Consider the rectangle function, R(¢), shown in Figure 2.56. The base of the rectangle
is h, the height is 1/h and so the areais 1. For# > h/2 and t < —h/2, the function is 0.
As h decreases, the base diminishes and the height increases; the area remains constant
at 1.

As h approaches 0, the base becomes infinitesimally small and the height infinitely
large. The area remains at unity. The rectangle function is then called a delta function
or unit impulse function. It has a value of 0 everywhere except at the origin.

8(t) = rectangle function as i approaches 0
We write this concisely as
8(t) = R(1t) as h—0

The position of the delta function may be changed from the origin to t = d. Consider a
rectangle function, R(t — d), shown in Figure 2.57. R(t — d) is obtained by translating
R(t) an amount d to the right. Again, letting & approach O produces a delta function, this
time centred on ¢ = d.

§(t—d)=R(t—d) as h— 0

We have seen that the delta function can be regarded as bounding an area 1 between
itself and the horizontal axis. More generally the area bounded by the function

(1) =ké (1)

is k. We say that k6 (¢) represents an impulse of strength k at the origin, and k6 (t — d) is
an impulse of strength k at r = d. It is often useful to depict such an impulse by an arrow
where the height of the arrow gives the strength of the impulse. A series of impulses is
often termed an impulse train.

R @) |

Figure 2.56

|

~Y

Figure 2.57

The rectangle function, R(z). The delayed rectangle function, R(t — d).
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Example 2.26 A train of impulses is given by
ft) =8(t) +38(0—1)+28(t—2)

Depict the train graphically.

Solution Figure 2.58 shows the representation. In Section 22.8 we shall call such a function a
series of weighted impulses where the weights are 1, 3 and 2, respectively.

AONY
3
2
't Figure 2.58
. . » A train of impulses given by
0 ! 2 T = 8(t) +38( — 1) +28(t — 2).

Engineering application 2.19

Impulse response of a system

An impulse signal is sometimes used to test an electronic system. It can be thought
of as giving the system a very harsh jolt for a very short period of time.

It is not possible to produce an impulse function electronically as no practical
signal can have an infinite height. However, an approximation to an impulse function
is often used, consisting of a pulse with a large voltage, V, and short duration, 7. The
strength of such an impulse is V7. When this pulse signal is injected into a system
the output obtained is known as the impulse response of the system.

The approximation is valid provided the width of the pulse is an order of magni-
tude less than the fastest time constant in the system. If the value of 7 required is small
in order to satisfy this constraint, then the value of V may need to be large to achieve
the correct impulse strength, VT'. Often this can rule out its use for many systems as
the value of V would then be large enough to distort the system characteristics.

EXERCISES 2.4.9

1 Sketch the impulse train given by (b) f(r) =38()+45@t —2)+8(t—3)
(@) F()=58(—1)+28(t—2)
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REVIEW EXERCISES 2

1

State the rule and sketch the graph of each of the
following functions:

@ fx)=Tx—=2
®) f)=>—-2 0<r<5
() gx) =3e"+4 0<x<2
@ y@) = (¥ —1)/2
e fx)=x>+2x+5

t>0

—2<x<2
State the domain and range of the functions in
Question 1.

Determine the inverse of each of the following
functions:

(@) y(x) =2x
2x
(©) hix) = 3 +1

(b) f@t) =8 -3
(d) m(ry=1-3r

3
(e) H(S)=;+2 ) f(w)=1Inv

(@ f)=¢e
() glv) =In(w+1)
If f(¢) = €' find

(@) f(21) (®) f(x)
(©) f) @ f@—2)

If g(t) = In(t> + 1) find (a) g(1), (b) g(t — ).

(h) gv) =Inv+1
() y(t) =32

Sketch the following functions:

0 t<0
@ fm:{o.s: 10

4 t<0
b) ft)=3t 0<t<3

2% 3<t<4
(© fy=le'| -3<r<3

The function f(x) is periodic with a period of 2, and
fx) = |x], =1 < x < 1. Sketch f for —3 < x < 3.

Given a(t) = 3t, b(t) =t + 3 and c(r) = 2 — 3 write
expressions

(a) b(c))
(c) a(b(t))
(e) a(b(c(1)))

(b) c(b(t))
(d) a(c@))
) cba®))

Sketch the following functions, stating any
asymptotes:

3+ 2
@ y@) == (b) yo) = 5——
X xr =1
B e“+1
©y0=3-c"  @rw="—

10 Simplify each expression as far as possible.

(a) ere3x (b) eer)ce—Sx
() e*ele (d) eT
e X
N 2
(e) (:) ® 1n3x+ln(2>
€ X
(g) 3Int+21Ins? (h) e
(i) In(e") G) e’
(k) e03mn? M In(e>)
(m) e2lnx (n) In(e?) + In(e®)

11 Solve the following:

(a) e* =200 (b) X6 =150
() 9e™* =54 (d) e®) =60
1
=0.1
© 6+e

12 Solve the following:

(a) 0.5Inr=1.2

(b) In(3r+2)=1.4
(¢) 3lnt—1)=6

(d) log, (> —1) =15
(e) log;p(nzt) =0.5
(f) In(log;qt) =0.5

13 Express each of the following in terms of sinh x and

cosh x:
(a) 7e* 4+ 3e™* (b) 6e* — 5¢e—*
3e* —2e™* d
© =5 — @
ex
© e

14 Express each of the following in terms of e* and e™:

(a) 2sinhx 4+ 5coshx
(b) tanhx + sechx

3
(¢) 2coshx — 1 sinh x
1
& —s—
sinh x — 2 coshx
(e) (sinhx)?
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15 Describe the interval on the x axis defined by

(a) x| < 1.5 (b) |x| >2
(©) x+3] <7 (d) 12x| =6
(© [2x—1/<5
Solutions
1 (a) Multiply input by 7, then subtract 2
(b) Square the input, then subtract 2
(c) Calculate e, where x is the input, multiply by 3
and then add 4
(d) Multiply by 2, calculate exponential, subtract 1
and then divide by 2
(e) Cube input, add to twice the input and add 5
2 (a) Domain (—o0, 00) range (—o0, 00)
(b) Domain [0, 5] range [—2, 23]
(c) Domain [0, 2] range [7, 3¢2 + 4]
(d) Domain [0, co) range [0, co)
(e) Domain [—2, 2] range [—7, 17]
X
3 @y'w=3
t+3
®) [ = .
3
© M@ =36c-1
@ miy = =
m=(r) =
3
© H ()= —
)
® f)y=e
@ /'@ =3
(h) g7'(v) =e""!
M gl =e" -1
1
G y'o = 111(3) +2
L @ e b e (¢ e @ et
5 (a) n(A>+1) (b) In((t — 2>+ 1)
8 (a1’
(b) t+3)2>—3o0rt> +6t+6
(c) 3(t+3)
) 3(2 = 3)
(e) 32
) Br+3)2—-30r9%2+ 1846

16

10

11

12

13

14

15

Sketch
@ f=|-21 -3<1<3
(b) f=—21 —-3<1<3
() 26(t) —8(t—1)+35(¢+1)
(a) e (b) 1 (© ¢®
(d) e (e) e* () In6
(2) Ini’ (h) x (i) x
G) (k) x (1 2x
(m) x? (n) 34 2x
(a) 1.3246 (b) 3.6702
(¢) —1.7918 (d) £2.0234
(e) —1.3863
(a) 11.0232 (b) 0.6851
(c) 8.3891 (d) £5.7116
(e) 23.6243 (f) 44.5370
(a) 10coshx + 4 sinhx
(b) coshx + 11 sinhx
coshx + 5sinh x
© ——
2
d :
2 coshx
cosh x + sinh x
e ———————
1 4 coshx + sinh x
7 3
(a) Ee" + Ee_"
et —e " +2
b — =
eX +e
S5e¥ 4+ 11le™*
©) —
@) ——
e + 3e
2
eX — =X
© ( e )
(@) —15<x<1.5
(b) x>2andx < -2
(c) -10<x<4
(d x>3andx < -3

(e)

—2<x<3
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INTRODUCTION

Many common engineering functions were studied in Section 2.4. However, the trigono-
metric functions are so important that they deserve separate treatment. Often alternating
currents and voltages can be described using trigonometric functions, and they occur
frequently in the solution of various kinds of equations.

Section 3.3 introduces the three trigonometric ratios: sin 6, cos 6 and tan 6. These are
defined as ratios of the sides of a right-angled triangle. The definitions are then extended
so that angles of any magnitude may be considered. Section 3.5 introduces an impor-
tant function, sinc x. This is really a combination of the familiar functions x and sin x,
but because this combination occurs frequently in some engineering applications it de-
serves special mention. Trigonometric identities are introduced in Section 3.6, the most
common ones being tabulated. These identities are useful in simplifying trigonomet-
ric expressions. Graphs of the trigonometric functions are illustrated. The application
of these functions to the modelling of waveforms is an important section. The chapter
closes with the solution of trigonometric equations.
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m DEGREES AND RADIANS

Angles can be measured in units of either degrees or radians. The symbol for degree
is °. Usually no symbol is used to denote radians and this is the convention adopted in
this book.

A complete revolution is defined as 360° or 27t radians. It is easy to use this fact to
convert between the two measures. We have

360° = 27 radians

_ 27 . m di
= 360 180 A

o

180
1 radian = - degrees ~ 57.3°
Note that
Tt .
— radians = 90°
2
7t radians = 180°
Rlus .
— radians = 270°

Your calculator should be able to work with angles measured in both radians and degrees.
Usually the Mode button allows you to select the appropriate measure.

m THE TRIGONOMETRIC RATIOS

Consider the angle 6 in the right-angled triangle ABC, as shown in Figure 3.1. We define
the trigonometric ratios sine, cosine and tangent as follows:

side opposite to angle  BC

ing —
- hypotenuse AC
side adjacent to angle ~ AB
cosf = ==
hypotenuse AC
anf — side opposite to angle  BC
~ side adjacent to angle ~ AB

C
o
[ Figure 3.1

A B Aright-angled triangle, ABC.
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Note that

BC BC AC sin 6
tanh = — = — X — =
AB AC AB cos b

Note that when 6 reduces to 0° the length of the side BC reduces to zero and so

sin0° = 0, tan0° =0
Also when 6 reduces to 0° the lengths of AB and AC become equal and so
cos0° =1

Similarly when 6 approaches 90°, the lengths of BC and AC become equal and the length
of AB shrinks to zero. Hence

sin90° = 1, c0s90° =0

Note also that the length of AB shrinks to zero as 6 approaches 90°, and so tané ap-
proaches infinity. We write this as

tanf — oo as 0 — 90°

The trigonometric ratios of 30°, 45° and 60° occur frequently in calculations. They can
be calculated exactly by considering the right-angled triangles shown in Figure 3.2.

1 1
sin45° = —, cos45° = —, tan45° =1
A2 A2
1
sin30° = —, cos30° = é, tan 30° = L
2 2 V3
1
sin 60° = \/73, cos 60° = 2 tan 60° = /3

Most scientific calculators have pre-programmed values of sin 8, cos 6 and tan 6. An-
gles can be measured in degrees or radians. We will use radians unless stated otherwise.
If we let ~ ACB = « (see Figure 3.1), then

sine = — = cos0

AC

and

B .
cosay = — = sind
AC
Figure 3.2

o A P
1
The trigonometric ratios for 30°,

A [ ] 30° 45° and 60° can be found exactly
1 S from these triangles.
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But
+o="1
o = —
2

Hence,

. T
sinf = cos| — — 6
2
(T
cosf =sin[ — — 6
2

Since 6 is an angle in a right-angled triangle it cannot exceed 7t/2. In order to define
the sine, cosine and tangent ratios for angles larger than 7t/2 we introduce an extended
definition which is applicable to angles of any size.

Consider an arm, OP, fixed at O, which can rotate (see Figure 3.3). The angle, 6, in
radians, between the arm and the positive x axis is measured anticlockwise. The arm can
be projected onto both the x and y axes. These projections are OA and OB, respectively.
Whether the arm projects onto the positive or negative x and y axes depends upon which
quadrant the arm is situated in. The length of the arm OP is always positive. Then,

projection of OP onto y axis OB

sinf = = —
OP OP
projection of OP onto x axis OA
cosf = = ==
oP oP
projection of OP onto y axis OB

tanf = =

projection of OP onto x axis OA

In the first quadrant, that is 0 < 6 < 7t/2, both the x and y projections are positive,
so sinf, cos and tan @ are positive. In the second quadrant, that is 7t/2 < 6 < T, the
x projection, OA, is negative and the y projection, OB, positive. Hence sin 6 is positive,
and cos @ and tan 6 are negative. Both the x and y projections are negative for the third
quadrant and so sin 6 and cos 6 are negative while tan 6 is positive. Finally, in the fourth
quadrant, the x projection is positive and the y projection is negative. Hence, sin6 and
tan 6 are negative, and cos 6 is positive (see Figure 3.4). The sign of the trigonometric
ratios can be summarized by Figure 3.5.

For angles greater than 27, the arm OP simply rotates more than one revolution be-
fore coming to rest. Each complete revolution brings OP back to its original position.

Second quadrant First quadrant
v A
P
S GREREEE, B
A o X
Third quadrant Fourth quadrant
Figure 3.3
An arm, OP, fixed at O, which can rotate.
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B YA
N P PI _____ 3
: | 0
0 | - X
o A X A o X
First quadrant Second quadrant
B YA
0 0
A TN (o[ 4
: 0 X NN
] X ! : x
A B B|----- f
Third quadrant Fourth quadrant

Figure 3.4
Evaluating the trigonometric ratios in each of the four quadrants.

So, for example,

sin(8.76) = sin(8.76 — 27) = sin(2.477) = 0.617
cos(14.5) = cos(14.5 — 4mt) = cos(1.934) = —0.355

Negative angles are interpreted as a clockwise movement of the arm. Figure 3.6 illus-
trates an angle of —2. Note that

sin(—2) = sin(2t — 2) = sin(4.283) = —0.909

since an anticlockwise movement of OP of 4.283 radians would result in the arm being
in the same position as a clockwise movement of 2 radians.

Y A
. . y
sin 0 >0 sin >0
cosf<0 cos >0
tan 0 <0 tan >0
sinf <0 sin@ <0 * _
cosf<0 cos >0 ;
tan 6 >0 tan 6 <0
P
Figure 3.5
Sign of the trigonometric ratios in Figure 3.6

each of the four quadrants. Illustration of the angle 6 = —2.
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The cosecant, secant and cotangent ratios are defined as the reciprocals of the sine,
cosine and tangent ratios.

1
cosec ) = ——
sin 6
secH =
cos 6
cotd = ——
tan 6

Example 3.1 Anangle 0 is such that sinf > 0 and cos @ < 0. In which quadrant does 0 lie?

Solution From Figure 3.5 we see that sin6 > 0 when 6 is in the first and second quadrants. Also,
cos 6 < 0 when 6 is in the second and third quadrants. For both sin6 > 0 and cos 6 < 0
thus requires 6 to be in the second quadrant. Hence sin6 > 0 and cosf < O when 6 is
in the second quadrant.

EXERCISES 3.3

1 Verify using a scientific calculator that (b) cos 1.4 = cos(1.4 + 8m) = cos(1.4 — 6m)

(a) sin30° = sin 390° = sin 750° (¢) tanl = tan(1l 4+ 71) = tan(l + 271) = tan(l + 37)
(b) cos 100° = cos 460° = cos 820° (d) sin2.3 = sin(2.3 — 2m) = sin(2.3 — 4m)

(c) tan40° = tan 220° = tan 400°

(d)sin 70° = sin(—290°) = sin(—650°)
(e) cos 200° = cos(—160°) = cos(—520°)

(e) cos2 = cos(2 —27m) = cos(2 — 4m)
(f) tan4 = tan(4 — 1) = tan(4 — 27r) = tan(4 — 3m)

(f) tan 150° = tan(—30°) = tan(—210°) 3 Anangle 6 is such that cos > O and tan6 < 0. In
2 Verify the following using a scientific calculator. All which quadrant does 6 lie?
angles are in radians. 4 Anangle « is such that tana > 0 and sine < 0. In
(a) sin0.7 = sin(0.7 + 27) = sin(0.7 + 4m) which quadrant does o lie?
Solutions
3 4th quadrant | 4 3rd quadrant

m THE SINE, COSINE AND TANGENT FUNCTIONS

The sine, cosine and tangent functions follow directly from the trigonometric ratios.
These are defined to be f(x) = sinx, f(x) = cosx and f(x) = tanx. Graphs can be
constructed from a table of values found using a scientific calculator. They are shown in
Figures 3.7 to 3.9. Note that these functions are many-to-one.
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f&) A fx) A

<=1
1

£S
>

<

Figure 3.7 Figure 3.8
Graph of f(x) = sinx. Graph of f(x) = cosx.
| WAEY)
E 0 E ™ E 2 E Vx
| | | \ Figure 3.9
| : : : Graph of f(x) = tanx.

By shifting the cosine function to the right by an amount 7t/2 the sine function is
obtained. Similarly, shifting the sine function to the left by 7t/2 results in the cosine
function. This interchangeability between the sine and cosine functions is reflected in
their being commonly referred to as sinusoidal functions. Notice also from the graphs
two important properties of sinx and cos x:

sinx = — sin(—x)

coS x = cos(—x)

For example,

. T . Tt Tt s
SIn — = —SsI{ —— and COS — = COS{ ——
= on(3) =(3)

Note that f(x) = sinx is 0 when x = 0, &7, +27, £37, ..., *+nm, .... Also f(x) =

. nm 3m 5w 7T
cosxisOwhenx=4+—,&+—,+—, ..., £2n+1)—,....
2 2 2 2

Inverse trigonometric functions

All six trigonometric functions have an inverse but we will only examine those of sin x,
cos x and tan x. The inverse functions of sin x, cos x and tan x are denoted sin~! x, cos™! x
and tan~! x. This notation can and does cause confusion. The ‘—1” in sin~' x is some-
times mistakenly interpreted as a power. We write (sinx) ! to denote 1/ sinx. Values of
sin"!' x, cos™! x and tan~! x can be found using a scientific calculator. If y = sinx, then

x=sin"'y, asin

sinx = 0.7654 x = sin~'(0.7654) = 0.8717
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A
sinx A :
1 ! 1 -
1 |---= -1 1 1 X
E sin~l x A |
_m ! !
2 , ol X
! T ¥ ’ ' !
: > 7 -1 : '
Z_ - —1 ' !
_______ _m '
2 1
Figure 3.10 . .
The function sin x is one-to-one if the Flgu.re n . Flg.ure 3f1 2
T The inverse sine A single input produces many
domain is restricted to 37| function, sin~! x. output values. This is not a function.

Note that y = sinx is a many-to-one function. If the domain is restricted to [—7t/2, 71/2]
then the resulting function is one-to-one. This is shown in Figure 3.10.

Recall from Section 2.3 that a one-to-one function has a corresponding inverse. So
if the domain of y = sinx is restricted to [—7t/2, 7t/2], then an inverse function ex-
ists. A graph of y = sin~! x is shown in Figure 3.11. Without the domain restriction, a
one-to-many graph would result as shown in Figure 3.12. To denote the inverse sine
function clearly, we write

y=sin"'x —

ST
N
<
N

A

Example 3.2

Solution

Use a scientific calculator to evaluate

(a) sin"'(0.3169)
(b) sin~'(—0.8061)

(a) sin'(0.3169) = 0.3225
(b) sin~'(—0.8061) = —0.9375

A word of warning about inverse trigonometric functions is needed. The calculator re-
turns a value of 0.3225 for sin~'(0.3169). Note, however, that sin(0.3225 + 2nm) =
0.3169, n = 0,1, 2,3, ..., so there are an infinite number of values of x such that
sinx = 0.3169. Only one of these values is returned by the calculator. This is because
the domain of y = sinux is restricted to ensure it has an inverse function. To ensure the
inverse functions y = cos™' x and y = tan~' x can be obtained, restrictions are placed
on the domains of y = cosx and y = tanx. By convention, y = cosx has its domain
restricted to [0, 7t] whereas with y = tan x the restriction is (—7t/2, 71/2).
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EXERCISES 3.4
1 Evaluate the following: 3 Sketch y = sinx and y = cosx for x in the interval
(@) sin~1(0.75) (b) cos™1(0.625) (c) tan~!3 [—27t, 27t]. Mark on the graphs the points where
(d) sin1(=0.9) (e) cos™'(—0.75) () tan~'(=3) x=1x=15x=-3andx=223.
2 Show that
sin ' x+cos lx= T
2
Solutions
1 (a) 0.8481 (b) 0.8957 (c) 1.2490 (d) —1.1198 (e) 2.4189 (f) —1.2490

Technical Computing Exercises 3.4

1 Using a technical computing language draw y = sinx 2 Draw the graphs of y = cos™ ' xand y = tan~! x.
and y = cosx for 0 < x < 47t on the same axes. Use
your graphs to find approximate solutions to the
equation sinx = cos x.

THE SINC x FUNCTION

The sine function is used to define another important function used in engineering. The
cardinal sine function, sinc x, occurs frequently in engineering mathematics in applica-
tions ranging from communications, power electronics, digital signal processing (d.s.p.)
and optical engineering. The standard sinc x function without normalization is plotted
in Figure 3.13 and is defined by
. =S x#0
sincx = X

1 x=0
It is necessary to separately define the value of the function at x = 0 because the
.. . s x C . . .
definition of the function, ——, would cause a division by zero at this point. Fortunately
X .

sin
it can be shown that as x approaches 0, then il approaches 1, and so specifying the

value sinc x = 1 at x = 0 is adequate to resolve the problem. Note that the sinc function
without normalization is O when x = ..., —3m, —2m, —m, 7, 271, 37, . . ., so that apart
from x = 0 where sinc x = 1 by definition, it has the same zero crossing points as that
of sin x.

Some engineers use a different definition of the sinc x function:

sin 7t x

) x#0
sincx = X
1 x=0
This is commonly termed the normalized sinc function.
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Sinc x
015+
025
”>V{\z\/ \/x\f :

Figure 3.13
The standard sinc function without normalization.

Engineering application 3.1

Zero crossing points of the normalized sinc(x) function

The sinc function often appears in communications engineering and signal process-

ing. In general, a signal can be regarded as being made of a large number of individual

frequency components. In the case of a square pulse, the graph showing the amplitude

of these components against their frequencies takes the form of a sinc function.
Find the zero crossing points of the normalized sinc function,

sin(7Tx) 0
sinc(x) = X x 7
1 x=0

Solution

It is evident from Figure 3.13 that the sinc function which has not been normalized
has the same zero crossing points as sin x, with the exception of the crossing atx = 0,
that is at x = 7, £27, £3m, ..., £nm, .. ..

The normalized sinc function is O when sin(7tx) is 0. Now, from page 121 we see
that

sinx = 0 whenx = ...—3m, —2m, —m, 0, 7, 271, 371, . ..
and so

sin7tx = 0 when mx = ... —3m, —2m, —m, 0, 7, 271, 37, . ..
and hence

sin(tx) = 0 whenx = -3, -2, —1,0,1,2,3...
Noting that sinc(0) is defined to have a value of 1, then we see that

sinc(x) =0whenx=...—3,-2,—1,1,2,3,...




or

0.75

0.2p

3.6 Trigonometric identities

sinc(x) = 0whenx = d+nforn=1,2,3,...

The plot of the normalized sinc function is shown in Figure 3.14.

-15 -10 \—/5

Figure 3.14

-0.25

The sinc function with normalization.
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m TRIGONOMETRIC IDENTITIES

sin
We have seen that tanf =

0
for all values of 6. We call this an identity. In an

. . Cos - .

identity, the 1.h.s. and the r.h.s. are always equal, unlike in an equation where the Lh.s.
and the r.h.s. are equal only for particular values of the variable concerned. Table 3.1
lists some common trigonometric identities.

Example 3.3

Solution

Simplify
COtA
COsA
We know that
sin A
tai =
COSA
and so
1 COsA
COtA = = —
tan A sin A
Hence
CotA 1
= CcOotA X
COsA COsA
_ COsA 1
" sinA ~ cosA
B 1
" sinA

This may also be written as cosec A.
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Table 3.1
Common trigonometric identities.

sinA
tanA =

cosA
sin(A £ B) = sinA cos B & sin Bcos A
cos(A £ B) =cosAcosB FsinAsinB
tanA £ tan B
1 FtanAtanB
2sinAcos B = sin(A + B) + sin(A — B)
2cosAcosB = cos(A + B) + cos(A — B)
2sinAsin B = cos(A — B) — cos(A + B)
sin?A + cos?A = 1
1 4 cot?> A = cosec?A
tan®A + 1 = secZA
cos2A =1 —2sin*A =2cos2A — 1 = cos? A —sin’A
sin2A = 2sinA cosA

tan(A = B) =

1-— 2A

Gin2A = 0844
2

1 4 cos2A

cos2A = %

Note: sin’ A is the notation used for (sinA)z. Similarly cos? A means (cosA)z.

Example 3.4

Show that
tanA + cotA

may be written as

2
sin 2A
Solution We have
sin A CosA
tanA = , OtA = —
COsA sin A
and so
sin A COsA
tanA + cotA = -
CcosA sin A

sinA cos A

sin’ A + cos? A

sinA cos A
1

2

2sinAcosA

2
sin 2A

using the identity sin’A 4 cos’A = 1

using the identity sin2A = 2sinA cos A
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Example 3.5 Use the identities in Table 3.1 to simplify the following expressions:
T 3
in| —+6 b — =0
(a) sm(2 + ) (b) cos( > )

(c) tan(2T — 0) (d) sin(rt — 0)

Solution (a) The expression sin (5 + 0) is of the form sin(A + B) and so we use the identity
sin(A + B) = sinA cos B + sin B cos A

s
Putting A = 5 and B = 6 we obtain
‘(7T+9)—'7T 6 + sin6 cos ~
sin > _sm2c0s sin cos2
LT s
‘We note that s1n5= l,COSEZOaHd SO

. (T .
sin (5 +9) = lcos6 +sinfH(0)

= cosf
3m
(b) The expression cos <7 - 0) has the form cos(A — B); hence we use the identity
cos(A — B) = cosAcosB + sinAsinB

. 3m .
Putting A = > B = 0 we obtain
37 37 . 31,
cos| — — 60 ) =cos — cos6 + sin — sin
2 2 2
37 .3
Now cos — = 0, sin — = —1 and so
2 2
37 .
cos ?—9 =0cosf + (—1)sin6
= —sinf
(c) We use the identity

tan(A — B) tanA — tan B
anA—B) = ————
1 +tanAtan B

Substituting A = 271, B = 6 we obtain

fan(2 6) tan 27t — tan 0
anRmr—0) = ————
1 + tan 27t tan 0

Since tan 27t = 0 this simplifies to

—tan@

tan(2m — 0) = I

= —tanf

(d) We use the identity

sin(A — B) = sinA cos B — sin Bcos A
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Substituting A = 7, B = 6, this then becomes
sin(7t — 0) = sin7tcos § — sin 6 cos 7T
Now sin7t = 0, cos T = —1 and so we obtain

sin(t —0) = 0cosf —sinf(—1) = sinb

Example 3.6 Simplify
(a) cos(rt+0)
(b) tan(rt —0)
(c) sin® B+ sinBcos? B
(d) tanA(1 4 cos2A)

Solution (a) Using the identity for cos(A + B) with A = 71, B = 0 we obtain

cos(t+0) = cos cosf — sin7r sin6
(—=1)cosf — (0) sin O
= —cosf

(b) Using the identity for tan(A — B) with A = 71, B = 6 we obtain

tan 7t — tan 6

tan(rr — 0) = —n T WENY
1 4+ tan7ttan 6
_ 0 —tan@
" 14 (0)tand
= —tand
(c) sin® B + sin B cos® B = sin B(sin® B + cos? B)
=sinB since sin”> B+ cos?B = 1

inA
(d) Firstly we note that tanA = s1n_A Also we have from Table 3.1
cos

1+ cos2A

cos’ A =
2

from which

1+ cos2A =2cos’A

Hence
sin A )
tanA(1 4+ cos2A) = 2cos”A
COsA
= 2sinAcosA

=sin2A
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Example 3.7

Solution

Show that

. . . (A+B A—B
SinA + sin B = 2 sin > cos

2

Consider the identities

sin(C + D) = sinCcos D + sin D cos C
sin(C — D) = sinCcosD — sinD cosC

By adding these identities we obtain
sin(C 4+ D) + sin(C — D) = 2sinCcos D

We now make the substitutions C + D = A, C — D = B from which

A+B A-B
c=A4tt  p_4-°
2 2

Hence

. . . (A+B A—B
sinA + sin B = 2sin 5 cos 5

The result of Example 3.7 is one of many similar results. These are listed in Table 3.2.

Table 3.2
Further trigonometric identities

. . . (A+B A—B
sinA + sinB = 2sin 5 cos

. . . (A—B A+ B
SinA —sinB =2sin > cos

A+ B A—B
cosA + cos B=2cos — cos —

A+ B A—B
coSA — cos B = —2sin (%) sin (T)

N+

Example 3.8

Solution

Simplify
sin 70° — sin 30°
cos 50°

We note that the numerator, sin 70° — sin 30°, has the form sinA — sin B. Using the

identity for sinA — sin B with A = 70° and B = 30° we see

. . . (70° —30° 70° + 30°
sin 70° — sin 30° = 2sin — cos —

= 25sin 20° cos 50°
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Hence

sin 70° — sin 30° . 2 sin 20° cos 50°

cos 50°

cos 50°

= 25sin20°

EXERCISES 3.6
Use the identities for sin(A + B), cos(A + B) and
tan(A =+ B) to simplify the following:
(a) sin| 6 T (b) cos| 6 T
i _ = _ =
2 2
(c) tan(6 + ) (d) sin(@ — )
(e) cos(0 —m) (f) tan(6@ — 3m)
. 3n
(g) sin(6 + m) (h) cos <9 + 2)
W sin(20+27) G cosf0— 2
i) sin — cos| 0 — —
2 2
T
(k) cos( + 9)
2
Write down the trigonometric identity for tan(A + 6).
By letting A — g show that ta\n<72T + 9) can be
simplified to — cot 6.
(a) By dividing the identity
sin® A + cos2 A = 1 by cos® A show that
tan? A 4+ 1 = sec? A.
(b) By dividing the identity
sin? A + cos2 A = 1 by sin® A show that
1+ cot?A = cosec 2A.
Simplify the following expressions:
(a) cosAtanA (b) sin6 cotb
Solutions
(a) —cosf (b) sin6 (c) tanf
(d) —sinf (e) —cos6 (f) tan@
(g) —sin6 (h) sin@ (i) —cos20
() —sin6 (k) —sinf
(a) sinA (b) cos6 (c) secB
(d) cosec 2x e) —1 (f) 2sint

(c) tan B cosec B

(e) tan6 tan g—k@

(g) sin?A + 2cos? A
(i) (14 cot?X)tan®X
1
(k) 5 sin2A tan A
sin 24

(m) cos 2A
(0) (tan?6 + 1) cot? 0

5 Simplify
(a) sin110° — sin70°
(b) cos20° — cos 80°
(c) sin40° 4+ sin20°
c0s 50° 4 cos 40°

d
V2
6 Show that
sin 60° 4 sin 30°
sin 50° — sin 40°
is equivalent to

[Hint: see Question 2.]

(d) cot2xsec2x

sin 2t

® cost
(h) 2cos?B—1
() (sin®A + cos? A)?
() (sect — 1) cos?r
) sin A
n
sin 2A
(p) cos2A+2 sin2 A

cos 15°
sin 5°
(g 1+ cos? A (h) cos2B (i) sec?X
G 1 (k) sin?A ) sin?r
(m) tan2A (n) %secA (0) cosec 29
P 1
5 (a0 (b) sin50° (¢) cos10° (d) cos5°
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m MODELLING WAVES USING SIN ¢ AND COS

Examining the graphs of sinx and cos x reveals that they have a similar shape to waves.
In fact, sine and cosine functions are often used to model waves and we will see in
Chapter 23 that almost any wave can be broken down into a combination of sine and
cosine functions. The main waves found in engineering are ones that vary with time and
so t is often the independent variable.

The amplitude of a wave is the maximum displacement of the wave from its mean
position. So, for example, sint and cos ¢ have an amplitude of 1, the amplitude of 2 sin¢
is 2, and the amplitude of Asinz is A (see Figure 3.15).

The amplitude of A sint is A. The amplitude of A cosz is A.

A more general wave is defined by A cos wt or A sin wt. The symbol w represents the
angular frequency of the wave. It is measured in radians per second. For example, sin 3¢
has an angular frequency of 3 rad s~!. As ¢ increases by 1 second the angle, 3, increases
by 3 radians. Note that sin¢ has an angular frequency of 1 rad s~!.

The angular frequency of y = A sin wt and y = A cos wt is w radians per second.

The sine and cosine functions repeat themselves at regular intervals and so are pe-
riodic functions. Looking at Figure 3.7 we see that one complete cycle of sint is com-
pleted every 27t seconds. The time taken to complete one full cycle is called the period
and is denoted by 7. Hence the period of y = sint is 27t seconds. Similarly the period of
y = cost is 27t seconds. Mathematically this means that adding or subtracting multiples
of 27t to t does not change the sine or cosine of that angle.

sint = sin(z & 2n7)
cost = cos(t =+ 2n7)

n=0,1,2,3,
n=20,1,2,3

o o =g 2

In particular we note that

sint = sin(t + 27)

cost = cos(t + 2m)

We now consider y = Asinwt and y = A cos wt. When ¢ = 0 seconds, wt = 0 radians.

27 27 . .
When ¢t = — seconds, wt = w— = 27 radians. We can see that as ¢ increases from O
w w

AON
A -2 Asint

2 - 2sint

~Y

Figure 3.15
The amplitude of f(r) = Asint is A.
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27
to — seconds, the angle wt increases from 0 to 27t radians. We know that as the angle
1)

ot increases by 27t radians then A sin wt completes a full cycle. Hence a full cycle is

27 27
completed in — seconds, that is the period of y = A sin wt is — seconds.
1) 1)
. . . 2m
If y=Asinwt or y = Acos wt, then the period 7 is —.
1)

In particular we note that the period of y = Asint and y = A cost is 27.

Closely related to the period is the frequency of a wave. The frequency is the number
of cycles completed in 1 second. Frequency is measured in units called hertz (Hz). One
hertz is one cycle per second. We have seen that y = A sin wt takes

27
— seconds to complete one cycle
1)

and so it will take

1 second to complete ﬁcycles
27

We use f as the symbol for frequency and so

)
frequency, f = —
DT =
. 3
For example, sin 3¢ has a frequency of - Hz.
U

Note that by rearrangement we may write
w =27nf

and so the wave y = A sin wf may also be written as y = A sin 27t ft.

From the definitions of period and frequency we can see that
1

period = ———

frequency

that is

T = —
f

We see that the period is the reciprocal of the frequency. Identical results apply for the
wave y = A cos wt.

A final generalization is to introduce a phase angle or phase, ¢. This allows the
wave to be shifted along the time axis. It also means that either a sine function or a
cosine function can be used to represent the same wave. So the general forms are

Acos(wt + ¢), Asin(wt + ¢)

Figure 3.16 depicts A sin(wt + ¢). Note from Figure 3.16 that the actual movement of
the wave along the time axis is ¢/w. It is easy to show this mathematically:

Asin(wt 4+ ¢) = Asinw(t + g)

The quantity ? is called the time displacement.
w
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F(o

§\>

Figure 3.16
The generalized wave A sin(wt + ¢).

The waves met in engineering are often termed signals or waveforms. There are
no rigid rules concerning the use of the words wave, signal and waveform, and often
engineers use them interchangeably. We will follow this convention.

Example 3.9

Solution

State the amplitude, angular frequency and period of each of the following waves:

(a) 2sin3t

b) ~cos(2e 4"
()200s< +6)

. . 2n 21
(a) Amplitude, A = 2, angular frequency, v = 3, period, T = — = 3
w
. . 2n 2m
(b) Amplitude, A = 0.5, angular frequency, w = 2, period, T = — = > =TI
w

Example 3.10

Solution

State the amplitude, period, phase angle and time displacement of

(a) 2sin(4r+ 1)
) 2cos(t3— 0.7)

(c) 4cos(2t;— 1)

d 3 . (4
(d) Zsm(§)

27 T
(a) Amplitude = 2, period = — = Px phase angle = 1 relative to 2 sin4¢, time

displacement = 0.25.

2 2
(b) Amplitude = —, period = 27, phase angle = —0.7 relative to 3 cost, time displace-
ment = —0.7.

2 1 2t
(c) Amplitude = 4, period = 2/—72 = 3, phase angle = 3 relative to 4cos(?>, time
displacement = 0.5.
. 3 . 2t 37 . 3. (4t .
(d) Amplitude = -, period = — = —, phase angle = 0 relative to — sin{ — |, time
4 4/3 2 4 3
displacement = 0.
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3.7.1

Engineering application 3.2

Alternating current waveforms and the electricity supply

Alternating current waveforms are often found in engineering. The electricity supply
to homes and businesses most often takes the form of an alternating current. This is
because it is far easier to supply alternating current electricity than direct current elec-
tricity when distributing across long distances. Energy losses along the supply cables
can be reduced by transforming the electricity to high voltages prior to distribution
but electricity transformers only work with alternating currents.

Sine and cosine functions are often used to model alternating current (a.c.) wave-
forms. The equations for an a.c. waveform are

I =1_sin(wt + ¢) or I =1_cos(wt + ¢)

where /., = maximum current, » = angular frequency and ¢ = phase angle. In prac-
tice the functions can be shifted along the time axis by giving ¢ a non-zero value and
so both the sine and the cosine function can be used to model any a.c. waveform;
which one is used is usually a matter of convenience.

The angular frequency, w, can be written as w = 27t f, where f is the frequency
of the waveform in Hertz (Hz). The frequency of the electricity supply in Europe
and across large parts of the world is 50 Hz, while in the Americas and in areas of
Asiaitis 60 Hz. Alternating current supplies are also found on ships, submarines and
aircraft but these often use 400 Hz as the operating frequency.

Combining waves

There are many situations in which engineers need to combine two or more waves
together to form a single wave. It is possible to make use of trigonometric identities
to calculate the resulting waveform when several waves are combined. Consider the
following example.

Engineering application 3.3

Combining two sinusoidal voltage signals
Two voltage signals, v, (¢) and v, (¢), have the following mathematical expressions:
v, () = 3sint
v,(t) = 2cost
(a) State the amplitude and angular frequency of the two signals.
(b) Obtain an expression for the signal, v, (¢), given by
V(1) = v, (1) + 20, (1)

(c) Reduce the expression obtained in part (b) to a single sinusoid and hence state
its amplitude and phase.




Solution

(a)

(b)

(©)
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v, (¢) has an amplitude of 3 volts and an angular frequency @ = 1 rad s™". v, (¢)
has an amplitude of 2 volts and an angular frequency @ = 1 rad s™'. Note that
both of these signals have the same angular frequency.
v5(2) = v, (1) + 20, (1)

=3sint 4+ 2(2cost)

=3sint 4 4cost

We wish to write v4(7) in the form R sin(z 4 ¢). The choice of sine is arbitrary.
We could have chosen cosine instead. R is the amplitude of the single sinusoid
and ¢ is its phase angle.

Using the trigonometric identity sin(z + ¢) = sinz cos ¢ + sin ¢ cost found
in Table 3.1 we can write

Rsin(t + ¢) = R(sinf cos ¢ + sin ¢ cost)
= (Rcos¢)sint + (Rsing) cost

Comparing this expression with that for v;(¢) we note that, in order to make the
expressions identical,

Rcos¢p =3 3.1)

Rsing = 4 3.2)
We need to solve (3.1) and (3.2) to obtain R and ¢. Squaring each equation gives

R*cos’¢p =9

R*sin’* ¢ = 16

Adding these equations together we obtain
R*cos’ ¢ + R*sin¢p =9+ 16
R*(cos® ¢ + sin’ ¢) = 25
Using the identity cos? ¢ + sin® ¢ = 1 this simplifies to

R* =25
R=5
Next we determine ¢. Dividing (3.2) by (3.1) we find
Rsing 4
Rcos ¢ - 3
tang = ‘—L
3

¢ = tan™! (g)

From (3.1) and (3.2) we can see that both sin¢ and cos ¢ are positive, and so
4

¢ must lie in the first quadrant. Calculating tan’l(g) using a calculator gives
¢ = 0.927 radians. So we can express v; () as
v5(t) = 3sint +4cost = 5sin(r + 0.927)

Finally v, (#) has amplitude 5 volts and phase 0.927 radians.
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Engineering application 3.3 illustrates an important property when combining to-
gether two sinusoidal waves of the same angular frequency.

If two waves of equal angular frequency, o, are added the result is a wave of the
same angular frequency, .

In fact this result holds true when combining any number of waves of the same angular
frequency.

Engineering application 3.4

Combining two sinusoidal current signals
Two current signals, i, () and i, (7), have the following mathematical expressions:
i;(t) = 10sin4¢
i,(t) = Scos4t
(a) State the amplitude and angular frequency of the two signals.
(b) Obtain an expression for the signal, i; (), given by i;(¢) = 0.3i,(¢) — 0.4i,(2).
(c) Reduce the expression obtained in part (b) to a single sinusoid in the form

R cos(4t + ¢) and hence state its amplitude and phase.

Solution

(a) i,(z) has an amplitude of 10 amps and an angular frequency w = 4 rad s ir (1)
has an amplitude of 5 amps and an angular frequency @ = 4 rad s~!. Note that
both signals have the same angular frequency.

(b) i5(¢) =0.3i,(t) — 0.4i,(t)
=0.3 x 10sin4r — 0.4 x 5cos 4t
=3sin4t — 2 cos 4t
(c) Let
3sin4t — 2 cos4t = Rcos(4t + ¢)
Then using the trigonometric identity given in Table 3.1
coS(A + B) = cosAcos B — sinAsinB
with A = 4¢ and B = ¢ we find
3sindt — 2cos4t = Rcos(4t + ¢)
= R(cos 4t cos ¢ — sin4t sin ¢p)
= (Rcos ¢) cosdt — (Rsin¢) sin 4t

Hence
3 = —Rsin¢ 3.3)
—2 = Rcos¢ 3.4)

By squaring each equation and adding we obtain
9 +4 = R*(sin” ¢ + cos’ ¢) = R’
so that R = +/13.
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From (3.3) and (3.4), both sin ¢ and cos ¢ are negative and so ¢ lies in the
third quadrant. Division of (3.3) by (3.4) gives
3 —Rsi
- = ﬂ — — tan¢
-2 Rcos ¢
tang = 1.5

Using a calculator and noting that ¢ lies in the third quadrant we find ¢ = 4.124.
Finally

3sin4r — 2cos4t = +/13 cos(4t + 4.124)

So i, (t) = v/ 13 cos(4t + 4.124). Therefore i;(¢) has an amplitude of +/13 amps
and a phase of 4.124 radians.

Example 3.11

Solution

Express 0.5 cos 3t + sin 3¢ as a single cosine wave.

0.5cos 3¢ + sin3t = Rcos(3t + ¢)
= R(cos 3t cos ¢ — sin 3t sin¢)
= (Rcos¢)cos 3t — (Rsin¢) sin 3t

Hence
0.5 = Rcos¢ 3.5)
1 = —Rsin¢ 3.6)

By squaring and adding we obtain

1.25 =R
R=+125=1.1180 (4 d.p.)

Division of (3.6) by (3.5) yields

2=—tan¢

From (3.5), cos ¢ is positive; from (3.6), sin ¢ is negative; and so ¢ lies in the fourth
quadrant. Hence, using a calculator, ¢ = 5.1760. So

0.5cos 3t + sin 3t = 1.1180cos(3¢ + 5.1760)

Example 3.12

Solution

If acos wt + bsinwt is expressed in the form R cos(wt — ) show that R = +/a? + b?

andtanf = —.

a

acoswt + bsinwt = Rcos(wt — 6)

Then, using the trigonometric identity for cos(A — B), we can write

acoswt + bsinwt = Rcos(wt — 6)
= R(cos wt cos O + sinwt sinf)
= (Rcos ) coswt + (Rsin ) sin wt
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Equating coefficients of cos wt and then sin wt gives

a = Rcos# 3.7
b = Rsinf (3.8)

Squaring these equations and adding gives

a* + b = R?
that is
R=+vVa*+ b

Division of (3.8) by (3.7) gives

— =tan6
a

as required.

Note that this example demonstrates that adding two waves of angular frequency w
forms another wave having the same angular frequency but with a modified amplitude
and phase.

3.7.2

Wavelength, wave number and horizontal shift

The sine and cosine waves described earlier in this section had ¢ as their independent
variable because the waves commonly met in engineering vary with time. There are
occasions where the independent variable is distance, x say, and in this case some of the
terminology changes. Consider the wave

y = Asin(kx + ¢)

As before, A is the amplitude of the wave. The quantity k is called the wave number. It

plays the same role as did the angular frequency, w, when ¢ was the independent variable.

The length of one cycle of the wave, that is the wavelength, commonly denoted A, is
27

related to k by the formula . = —. The phase angle is ¢ and its introduction has the

effect of shifting the graph horizontally.

Example 3.13

Solution

Figure 3.17 shows a graph of y = sin 2x.

(a) State the wave number for this wave.
(b) Find the wavelength of the wave.
(c) State the phase angle.

(a) Comparing y = sin 2x with y = sin kx we see that the wave number, k, is 2.

s
(b) The wavelength, . = — = 7. Note by observing the graph that this result is
consistent in that the distance required for one cycle of the wave is 7t units.

(c) Comparing y = sin 2x with sin(kx + ¢) we see that the phase angle, ¢, is 0.
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=

Figure 3.17
A graph of the wave y = sin 2x.

AAVAY

Example 3.14

Solution

s
Figure 3.18 shows a graph of sin (2x + §>

(a) State the phase angle.

(b) By comparing Figures 3.17 and 3.18 we see that the introduction of the phase angle
has caused a horizontal shift of the graph (to the left). Calculate this shift.

ﬂﬂ

YA

Y

™ 2w x
Figure 3.18
A graph of the wave
. u

=sin|{2x+ — |.
y X 3

O\I:I o

(a) By comparing sin <2x + 73—t) with sin(kx + ¢) we see that the phase angle is g

U U
(b) By writing y = sin (2x + g) as sin2<x + E> we note that this is y = sin2x

shifted to the left by a horizontal distance g units.

The results of this example can be generalized. The wave y = Asin(kx + ¢) can be
written y = A sink(x + ¢/k) so that a phase angle of ¢ introduces a horizontal shift of
length ¢ /k. (Compare this with the expression for time displacement in Section 3.7.)

T 27
Noting that A = —, then k = — and we may write A sin(kx + ¢) equivalently

. [ 2mx , . 27 . o O o
as Asin - + ¢ ). Again, using k = B the horizontal shift, % may similarly be
written as

horizontal shift = q_S = L = @
k 2m/h 271
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from which
27t x horizontal shift
A

This result is important in the engineering application that follows because, more gen-
erally, when any two waves arrive at a receiver it enables the difference in their phases,
¢, to be calculated from knowledge of the horizontal shift between them.

phase angle = ¢ =

A
The presence of ¢ in y = A sin(kx + ¢) causes a horizontal (left) shift of % = Q;—
Tt

Note that adding any multiple of 27t onto the phase angle ¢ will result in the same
graph because of the periodicity of the sine function. Consequently, a phase angle could

s

be quoted as ¢ + 2n7. For example, the wave sin <2x+ E) is the same wave as
7 T

sin (2x + 3 + 27{), sin (Zx + 3 + 471) and so on. Normally, we would quote a value

of the phase that was less than 27t by subtracting multiples of 27t as necessary.

Engineering application 3.5

Two-ray propagation model

It is very useful to be able to model how an electromagnetic wave emitted by a trans-
mitter propagates through space, in order to predict what signal is collected by the
receiver. This can be quite a complicated modelling exercise. One of the simplest
models is the two-ray propagation model. This model assumes that the signal re-
ceived consists of two main components. There is the signal that is sent direct from
the transmitter to the receiver and there is the signal that is received after being re-
flected off the ground.

Figure 3.19 shows a transmitter with height above the ground A, together with a
receiver with height above the ground £,. The distance between the transmitter and
the receiver along the ground is d.

T
SeP°"cm0cas, . dd
GO e Uit -
Iy d
Transmitter o o Receiver T
0 LA T P

AN

22" Figure 3.19

2% A transmitter and receiver at
e different heights above the
ground.

\

Note that the quantities A, h_and d are all known.

2 "
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Waves can be considered to propagate between the transmitter and the receiver
in two ways. There is the direct route between transmitter and receiver. The direct
distance between transmitter and receiver is d;. We obtain an expression for d; in
terms of the known quantities £, i, and d by considering the triangle ARST. In this
triangle, RS = d and ST = TO — SO = h, — h,. Hence by Pythagoras’s theorem in
ARST we have

TR® = RS® + ST*
di =d*+ (h,— h,)*

and so

d, = /d>+ (h,— h,)?

Note that d is expressed in terms of the known quantities 4, h, and d.

There is also a route whereby a wave is reflected off the ground at point A before
arriving at the receiver. The point A on the ground is such that ~ TAO equals ~RAP.
The distance travelled in this case is d. = TA 4 AR. We wish to find an expression
for d, in terms of the known quantities &, i, and d. In order to simplify the calculation
of this distance we construct an isosceles triangle, ATAQ, in which TA = QA and
L TAO = £QAO. Note that in this triangle, TO = QO = A,.

Then the distance travelled by this reflected wave, d,, is
distance travelled = d. = TA + AR
= QA + AR
= QR

Consider now AQSR. QR is the hypotenuse of this triangle. So by Pythagoras’s
theorem we have

d? = QR* = SR* + SQ*
We have SR = d and SQ = QO + SO = h, + h,. So
d> =d* + (h + h)*

from which

d = /d+ (h +h)?

Now if the wavelength of the transmitted wave is A then we can calculate the phase
difference between the direct wave and the reflected wave, ¢, by noting the difference
in the distance travelled, d, — d;. Using the result for phase difference from Section
3.7.2 we have

27 . . 27
¢ = — x horizontal shift = T(d

T

—d)

x
27
b= <\/d2 (4 b =\ + (h hr)2>

2 ho+h )\’ h —h\?
= laf1+(2+——) —d /1 —
?=3 \/+<d) \/+<d>

A
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Now the binomial expansion for /(1 + x) is (see Section 6.4)
2 3
it =(0+40=142 4% ~14% it <1
I4+x)=00+x A + 3 ifld <

Using this expansion in the expression for ¢ and noting that the moduli of both (%, +
h.)/d and (h, — h,)/d are less than 1, we have

2 h, + h.)? h, — h,)?
%ﬂ<1+<t+ D J)

¢ A 2d? 2d?

Expanding the bracketed terms gives

2rid (R + 2hh, + b2 — b + 2hh, — h?)
¢~ —
A 24>
So
_ dhhm
T d

This is a simplified approximation for the phase difference between the direct wave
and the reflected wave. Note that it depends on the height of the transmitter, the height
of the receiver and the distance between the transmitter and the receiver.

This calculation is important because under some conditions the phase difference
between the two paths means that the directed and reflected waves destructively
interfere. In severe cases this causes the signal to decrease at the receiver enough so
that the communications link is lost. The effect is often termed multipath-induced

¢

fading.

EXERCISES 3.7

State the amplitude, angular frequency, frequency,
phase angle and time displacement of the following
waves:

(a) 3sin2t

(b) % sin 4¢ (c) sin(t + 1)

(d) 4cos3t (e) 2sin(r — 3) (f) 5cos(0.4r)

(g) sin(1007tt)
(j) 4cos(mt —20)

(h) 6¢cos(5t+2) (i) %sin(O.St)

State the period of

(a) 2sin7t (b) 7sin(2t + 3)
(©) tan% (d) sec3t

2t
(e) cosec(2t — 1) ) cot(3 + 2)
A voltage source produces a time-varying voltage,
v(t), given by
v(t) = 15sin(207t + 4) t>0

(a) State the amplitude of v (z).

(b) State the angular frequency of v(z).
(c) State the period of v(z).
(d) State the phase of v(z).
(e) State the time displacement of v ().

(f) State the minimum value of v(z).

4 A sinusoidal function has an amplitude of % and a
period of 2. State a possible form of the function.

5 State the phase angle and time displacement of

(a) 2sin(t + 3) relative to 2 sin¢
(b) sin(2¢ — 3) relative to sin 2¢

12 1
(c) cos| — + 0.2 ) relative to cos —

2 2
(d) cos(2 — 1) relative to cost

C[3t+4 . .3t
(e) sin 5 relative to sin 3

(f) sin(4 — 3¢) relative to sin 3¢




(g) sin(27t + 1) relative to sin 271t

(h) 3cos(57tt — 3) relative to 3 cos 57t
WL [T . . T
(i) sin| — 4+ 2 ] relative to sin —
3 3
() cos(37 — t) relative to cost

6 Write each of the following in the form
Asin(3t+6),0 > 0:
(a) 2sin3f + 3 cos 3t
(b) cos 3t — 2sin 3¢
(c) sin3t — 4 cos 3t
(d) —cos3t —4sin3¢t

Solutions
1 1 2
1 (@ 3,2,-,0,0 (b) =,4,—,0,0
i 2 T
()11]11 (d)43300
C -— .Y,
gL 3o

1 1
@© 2,1, —,-3,-3 (f) 504, —-,0,0
27t 57t

5
(2) 1.100m,50,0.0 () 6.5. ~.2,04

y 2 0.5 : 0,0 ) 4 ! 20 20
() §7 .’E’ s () 37-(357_ 7_;
21
2 (a) - (b) (c) 2m
@ m (e) ( n
3 o D3
3 (a 15 (b) 207t (¢) 0.1
1
@ 4 (e) = () —15
T
2 . 2
4 gsm(m—l—k) orgcos(m—kk)
3
5 (a) 3,3 (b) _3’_5 (c) 0.2,0.4
4 4
(d) —2,-2 (e) 33 (f) —0.858, —0.286
1 3 . 6
(2) 5 (h) —3,—571 (1) 2,;

G) —3m, —-37m
6 (a) V13sin(3t +0.9828)
(b) V/5sin(3r +2.6779)

(c) /17sin(3t + 4.9574)
(d) +17sin(3t + 3.3866)
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Write each of the following in the form
Acos(t—6),0 >0:

(a) 2sint — 3cost
(b) 9sint + 6cost
(c) 4cost —sint
(d) 3sint

Write each of the following expressions in the form
(i) Asin(wt + 0), (ii) A sin(wt — 0),
(iii) A cos(wt + 0), (iv) A cos(wt — 0) where 6 > 0:

(a) Ssint + 4cost (b) —2sin 3t + 2 cos 3t
(c) 4sin2t — 6cos2t (d) —sin5t — 3 cos 5¢

(a) /13 cos(r — 2.5536)

(b) V117 cos(t — 0.9828)
(c) /17 cos(r — 6.0382)

s
(d) 3cos<t — 2)

(@) (i) V41 sin(r + 0.675)
(ii) ~/41 sin(r — 5.608)
(iii) v/41 cos(r + 5.387)
(iv) ~/41 cos(t — 0.896)

() (i) +/8sin <3r + 3;)
.. . 51t
(i1) /8 sin (31‘ — 4)
(iii) v/8 cos <3t + Z)
(iv) /8 cos <3t — 7:)

(¢) (1) ~/32sin(2r + 5.300)
(ii) ~/52sin(2t — 0.983)
(iii) /52 cos (2t + 3.730)
(iv) /52 cos (2t — 2.554)

(d) (1) ~/10sin(5¢ + 4.391)
(i) +/10sin(5t — 1.893)
(iii) /10 cos (5t + 2.820)
(iv) ~/10 cos(5¢ — 3.463)
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Technical Computing Exercises 3.7

1 Ploty =sin2ffor0 <t <27 5 Ploty =sint 4 3 cost for 0 < ¢ < 37. By reading

from your graph, state the maximum value of

2 Ploty=cos3tfor0 <t <3m. sinf + 3cos?.

t

3 Ploty = sin<2> for 0 <t < 4m.

6 (a) Ploty=2sin3¢t — cos 3t for 0 < < 2m.
Use your graph to find the amplitude of
2sin 3t — cos 3t.

4 Ploty = cos<23t) for0 <t < 6m. (b) On the same axes plot y = sin 3¢. Estimate the

time displacement of 2 sin 3t — cos 3¢.

TRIGONOMETRIC EQUATIONS

We examine trigonometric equations which can be written in one of the forms sinz = &,
cosz = k or tanz = k, where z is the independent variable and k is a constant. These

equations all have an infinite number of solutions. This is a consequence of the trigono-
. . . - . . —Imn
metric functions being periodic. For example, sinz = 1 has solutions z = ..., —,

2
=3t 7 57 . i
BRI uEEE . These solutions could be expressedasz = —+2nmt,n =0, 1,2, ....

Sometimes it is useful, indeed necessary, to state all the solutions. At other times we are
interested only in solutions in some specified interval, for example solving sinz = 1 for
0 < z < 27. The following examples illustrate the method of solution.

Example 3.15

Solution

Solve
(a) sint =0.6105for 0 <t <27 (b) sint = —0.6105 for 0 < < 27

Figure 3.20 shows a graph of y = sint, with horizontal lines drawn at y = 0.6105 and
y = —0.6105.

(a) From Figure 3.20 we see that there are two solutions in the interval 0 < ¢ < 27
These are given by points A and B. We have

sint = 0.6105
and so, using a scientific calculator, we have
t = sin™'(0.6105) = 0.6567
This is the solution at point A. From the symmetry of the graph, the second solu-
tion is
t =m—0.6567 = 2.4849
This is the solution at point B. The required solutions are t = 0.6567, 2.4849.

(b) Again from Figure 3.20 we see that the equation has two solutions in the interval
0 <t < 27 These are given by the points C and D. One solution lies in the interval

3n L . 3n
T to 7; the other solution lies in the interval > to 27t. We have

sint = —0.6105
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sin ¢ A

14
0.6105 /\

=)
> oS
wia

Uj .
3

1 1
iC 3 Df2m ¢
| 2 |
~0.6105 | \ ' Figure 3.20
A and B are solution points for
| sint = 0.6105. C and D are
B solution points for sint = —0.6105.
and so, using a calculator, we see
t = sin ' (—0.6105) = —0.6567
Although this value of ¢ is a solution of sint = —0.6105 it is outside the range of

values of interest. Recall that
sint = sin(t 4 271)

that is, adding 27t to an angle does not change the sine of the angle. Hence
t = —0.6567 + 27 = 5.6265

is a required solution. This is the solution given by point D. From the symmetry of
Figure 3.20 the other solution is

t =1+ 0.6567 = 3.7983

This is the solution at point C. The required solutions are r = 3.7983, 5.6265.

Example 3.16 Solve

Solution

Tt

(a) cost = 0.3685 for 0 < 2
0 <27

<
(b) cost = —0.3685 for t

t
<
Figure 3.21 shows a graph of y = cost between r = 0 and t = 27 together with

horizontal lines at y = 0.3685 and y = —0.3685.

(a) From Figure 3.21 we see that there is a solution of cos¢ = 0.3685 between 0 and g
and a solution between 377{ and 27t. These are given by points A and D. Now
cost = 0.3685
and so, using a scientific calculator, we see

t = cos~'(0.3685) = 1.1934
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cost 'y
1 -

0.3685

Figure 3.21

A and D are solution points for
cost = 0.3685. B and C are
solution points for cost = —0.3685.

U
This is the solution between O and 3 that is at point A. Using the symmetry of

Figure 3.21 the other solution at point D is
t =2m—1.1934 = 5.0898

The required solutions are t = 1.1934 and 5.0898.

(b) The graph in Figure 3.21 shows there are two solutions of cost = —0.3685. These

solutions are at points B and C. Given
cost = —0.3685

then using a scientific calculator we have
t =cos~!(—0.3685) = 1.9482

This is the solution given by point B. By symmetry the other solution at point C is
t =2m— 1.9482 = 4.3350

The required solutions are t = 1.9482 and 4.3350.

Example 3.17 Solve

Solution

Tt

(a) tant = 1.3100 for 0 < 2
0 <27

<
(b) tantr = —1.3100 for t

t
<
Figure 3.22 shows a graph of y = tant for t = 0 to t = 27t together with horizontal lines
y =1.3100 and y = —1.3100.

i
(a) There is a solution of tan# = 1.3100 between 0 and 5 and a solution between 7t and

3
g. These are given by points A and C.

tant = 1.3100
t =tan"'(1.3100) = 0.9188
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tan ¢

Py

1.3100

I\J\L:f -

Figure 3.22
A and C are solution points for tanz = 1.3100. B and D are
solution points for tant = —1.3100.

This is the solution between 0 and g given by point A. Using Figure 3.22 we can
see that the second solution is given by

t =1+ 0.9188 = 4.0604
This is given by point C.

T
(b) Figure 3.22 shows that there are two solutions of tanz = —1.3100, one between 5

3m
and 71, the other between > and 27t. Points B and D represent these solutions. Using

a scientific calculator we have
t =tan"'(—=1.3100) = —0.9188

This solution is outside the range of interest. Noting that the period of tan¢ is 7t we
see that

t =—009188 + m=2.2228
is a solution between g and 7t. This is given by point B. The second solution is
t =—0.9188 + 2 = 5.3644

This is the solution given by point D. The required solutions are t = 2.2228 and
5.3644.
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Example 3.18 Solve

(a)
(b)

Solution (a)

(b)

sin2t = 0.6105 for0 <t <27
cos(3t +2) = —0.3685 for 0 <t < 21

Let z = 2¢. As ¢ varies from 0 to 27t then z varies from O to 47t. Thus the problem is
equivalent to solving

sinz = 0.6105 0<z<4m

From Example 3.15 the solutions between 0 and 27t are 0.6567 and 2.4849. Since
sin z has period 27, then the solutions in the next cycle, that is between 27t and 47,
are 7 = 0.6567 + 27t = 6.9399 and z = 2.4849 + 27t = 8.7681. Hence

z =2t =0.6567, 2.4849, 6.9399, 8.7681
and so, to four decimal places,
t = 0.3284, 1.2425, 3.4700, 4.3840

Let z = 3¢ 4+ 2. As ¢ varies from O to 27t then z varies from 2 to 67t + 2. Hence the
problem is equivalent to solving

cosz = —0.3685 2<z<6mm+2

Solutions between 0 and 27t are given in Example 3.16 as z = 1.9482, 4.3350.
Noting that cos z has period 27, then solutions between 27t and 47t are z = 1.9482 +
27t = 8.2314 and z = 4.3350 + 27t = 10.6182, solutions between 47t and 67t are
7 =1.948244m = 14.5146 and 7 = 4.3350+47 = 16.9014 and solutions between
67t and 87t are z = 1.9482 + 67t = 20.7978 and z = 4.3350 + 67t = 23.1846. The
solutions between z = 0 and z = 87t are thus

z=1.9482,4.3350, 8.2314, 10.6182, 14.5146, 16.9014, 20.7978, 23.1846

Noting that 67t + 2 = 20.8496 we require values of z between 2 and 20.8496,
that is

7 =4.3350, 8.2314, 10.6182, 14.5146, 16.9014, 20.7978
Finally

z—2
=

=0.7783,2.0771, 2.8727,4.1715, 4.9671, 6.2659

Example 3.19 A voltage, v(z), is given by

v(t) =3sin(t + 1) t>20

Find the first time that the voltage has a value of 1.5 volts.

Solution We need to solve 3sin(t + 1) = 1.5, that is

Letz=1+ 1. Sincet

sin(t +1) =0.5 t>20
0 then z > 1. The problem is thus equivalent to

=
sinz = 0.5 z>1
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Using a scientific calculator we have
z=sin"'(0.5) = 0.5236
This solution is outside the range of interest. By reference to Figure 3.7 the next solu-
tion is
z=m—0.5236 = 2.6180
This is the first value of z greater than 1 such that sinz = 0.5. Finally
t=z—1=1.6180

The voltage first has a value of 1.5 volts when t = 1.618 seconds.

EXERCISES 3.8
1 Solve the following equations for 0 < ¢ < 27t 5 Solve the following equations for 0 < ¢t < 27t
(a) s¥nt = 0.8426 (b) sTnt =0.2146 (a) cos2t = 0.4234
(c) sint = 0.5681 (d) sint = —0.4316
(e) sint = —0.9042 (f) sint = —0.2491 (b) cos(t) — —0.5618
3
2 Solve the following equations for 0 < t < 27
(a) cost = 0.4243  (b) cost = 0.8040 © cos| ) = 0.6214
(c) cost = 0.3500 (d) cost = —0.5618 3
(e) cost = —0.7423 (f) cost = —0.3658 (d) cos(2t +0.5) = —0.8300
3 Solve the following equations for 0 < 7 < 27t (e) cos(r —2) = 0.7431
(a) tant = 0.8493 (b) tanr = 1.5326 (f) cos(mt —1) = —0.5325
(c) tant = 1.2500 (d) tant = —0.8437

6 Solve the following equations for 0 < 7 < 27

(a) tan2r = 1.5234

(e) tant = —2.0612 (f) tant = —1.5731

4 Solve the following equations for 0 < ¢ < 27t (z )
(b) tan| = | = —0.8439
(a)sin2t = 0.6347 (©) tan(3t — 2) = 1.0641
(b)sin3r = —0.2516 (d) tan(1.5¢ — 1) = —1.7300
[t (e) tan(2t+1> = 1.0000
(©) 8111(2) = 0.4250 3

(f) tan(5t — 6) = —1.2323
(d)sin(2r + 1) = —0.6230

(e) sin(2t — 3) = 0.1684

7 A time-varying voltage, v(t), has the form

v(t) = 20sin(507tt + 20) t>0

2
) sin(t J; ) = —0.4681 Calculate the first time that the voltage has a value of
(a) 2 volts (b) 10 volts (c) 15 volts
Solutions
1 (a) 1.0021, 2.1395 (b) 0.2163,2.9253 2 (a) 1.1326,5.1506 (b) 0.6368, 5.6464
(c) 0.6042,2.5374 (d) 3.5879, 5.8369 (c) 1.2132,5.0700 (d) 2.1674,4.1158

(e) 4.2711, 5.1537 (f) 3.3933,6.0314 (e) 2.4073,3.8759 (f) 1.9453,4.3379
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3 (a) 0.7041, 3.8457
(c) 0.8961, 4.0376
(e) 2.0225,5.1641

(b) 0.9927, 4.1343
(d) 2.4408, 5.5824
(f) 2.1370, 5.2786

4 (a) 0.3438,1.2270, 3.4854, 4.3686
(b) 1.1320, 2.0096, 3.2264, 4.1040, 5.3208, 6.1984
(c) 0.8779, 5.4053
(d) 1.4071, 2.3053, 4.5487, 5.4469
(e) 1.5846,2.9862,4.7262, 6.1278
(f) no solutions

5 (a) 0.5668,2.5748,3.7084, 5.7164
(b) no solutions
(c) 1.3504
(d) 1.0250, 1.6166, 4.1665, 4.7582

Technical Computing Exercises 3.8

1 Ploty =sint for 0 < ¢ < 27t and y = 0.3500 using
the same axes. Use your graphs to find approximate
solutions to

sint = 0.3500 0<tr<2m

2 Ploty = cost for0 <t < 2mand y = —0.5500 using
the same axes. Use your graphs to find approximate
solutions to

cost +0.5500 =0 0<t<2m

(e) 1.2669, 2.7331

() 0.9971, 1.6396, 2.9971, 3.6396, 4.9971, 5.6396
(a) 0.4950, 2.0658, 3.6366, 5.2073

(b) no solutions

(c) 0.9388, 1.9860, 3.0332, 4.0804, 5.1276, 6.1748
(d) 2.0633, 4.1577, 6.2521

(e) 0.6781, 5.3905

() 0.3939, 1.0222, 1.6505, 2.2788, 2.9071, 3.5355,
4.1638, 4.7921, 5.4204, 6.0487

(a) 1.2038 x 1072
(b) 9.3427 x 1073
(¢) 7.2771 x 1073

Ploty =sin(2f 4+ 1) and y = 2sint for 0 < ¢ < 27
Use your graphs to state approximate solutions to

sin(2t + 1) = 2sint 0<r<2n

Plot y = 2sin3f and y = 3 cos 2t for 0 < ¢ < 271,
Hence state approximate solutions of

2sin3t = 3 cos 2t 0<r<2m

REVIEW EXERCISES 3

1 Express the following angles in radians:
(a) 45° (b) 72° (c) 100° (d) 300°
(e) 440°

2 The following angles are in radians. Express them in
degrees.

(a)% ®) 31 () %Tﬂ @2 () 3.62

3 State the quadrant in which the angle « lies given
(a) sina > 0andtana > 0
(b) cosa > 0 and sina < 0
(c) tana > Oandcosa < 0
(d) sina < 0andcosa <0
(e) tana < Oandcosa <0

4 Simplify the following expressions:

(a) sint cosect

sin x
b)) —

tan x
cotA

CosA
secA

(©

d
@ cosec A
(e) cotxtanx

Simplify the following expressions:

(a) cos?A+1+sin?A
2sinAcosA

cos2A —sin® A

(©) seczx—1

(d) sinfcost +

1
cosec 24 — 1

(b)

sect cosec t

(e)



6

10

Simplify the following expressions:

(@) (sinx+cosx)?—1

(b) tanAsin2A + 1 + cos2A
sin 46 + sin 26
c0s 260 — cos46

(d) 4sinAcosAcos?2A
sint
(e

-{)

State the amplitude, angular frequency, period,
frequency, phase and time displacement of the
following waves:

(a) 2sin3t

(b) 4cos 6t

(¢) 0.7sin(2f + 3)

(d) 0.1cos7ut

(e) sin(507r + 20)

(f) 6cos(1007r — 30)

(& »sin(~
g 5sin| 5

(h) 0.25cos(2mt + 1)

Express the following in the form
Asin(ot + ¢), ¢ > 0:

(a) 6sin 5¢ + 5 cos 5¢

(b)0.1sint — 0.2cost

(c) 7sin 3t + 6. cos 3¢

13 t
(d)9cos<) — 4sin(>

2 2
(e) 3sin2f + 15cos 2t

Express the following in the form
Asin(wt — ¢), ¢ > 0:
(a) 3sindt + 7cos4t
(b) 3cos2t — 5sin2t
(c) 4sin6t — 7 cos 6t
(d) ! t+ 24 t
> cos 3 sin
(e) 0.75sin(0.5¢) — 1.25 cos(0.5¢)

Express the following in the form A cos(wt + ¢),
¢ =>0:

(a) 10sin 3t + 16 cos 3¢

(b) —65sin2t — 3 cos 2t

(c) sint — 2cost

(d) 0.6cos4r + 1.3sin4t

(e) cos7t —5sin7t

11

12

13

14

15

Review exercises 3

Express each of the following in the form
Acos(wt — ¢), ¢ >0:

(a) 2.3sin3t 4 6.4 cos 3t

(b) —sin2t — 2cos 2t

(¢) 2cos9r + 9sin9¢

(d) 4sindt + 5cos4t

t ot
(e) —6cos<2> —2s1n(2>

Express each of the following in the form
Asin(wt + ¢), ¢ > 0:

(a) sin(t 4+ 1) 4+ cos(t+ 1)

(b) 2sin(2t +3) —3cos(2t + 1)

(¢) cos(3t—1) —2sin(3t +4)

(d) sin(t 4+ 1) 4+ sin(z + 3)

(e) cos(2t — 1)+ 3cos(2t+3)

151

Reduce each of the following expressions to a single
wave and in each case state the amplitude and phase

angle of the resultant wave:

(a) 2coswt + 3sinwt

T
(b) cos| wt + 1 + sin wt

(c) 2sin wt—l—E + 4 cos a)t—|-E
2 4
() 0.5sin (w - 2) 15 sin(a)t n Z)

(e) 3sinwt + 4sin(wt + 1) — 2 cos (a)t — 7;)

Solve the following equations, stating all solutions

between 0 and 27t:
(a) sint = 0.5216
(b) sint = —0.3724
(c) cost =0.9231

(d) cost=—1
(e) tant = 0.1437
(f) tant = —1

Solve the following equations, stating all solutions

between 0 and 27t

(a) sin2t = 0.5421
(b) cos2t = —0.4687

(©) tan(é) = —1.6235

(d) 2sin4dt = 1.5
(e) S5cos2t =2
(f) 4tan2r =5
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16 A voltage, v(t), varies with time, ¢, according to

v(t) = 240sin(1007t 4 30) t>0

Find the first time that v(¢) has a value of

(a)
(©

240 ) 0
—240 (d) 100

Solutions

1 (a)
(@)
2 (a)
(d)
3 (a)
(d)

(@)

(@)

()

(b)
(©
(d)
(e)
®
()

(h)

(b)
(©

T ) T (o) 17453
— —_— C .

4 5

52360 (¢) 7.6794
60°  (b) 540°
114.6° () 207.4°

(c) 135°

1st (b) 4th
3rd (e) 2nd

(c) 3rd

1 (b) cosx (c) cosecA
tanA (e) 1

2 (b) tan2A
sin 2¢ (e) tan®A

(c) tanx

sin 2x (b) 2

t
sin4A (e) 2sin (2>

3
2

(c) cotl

¥

2,3, ,0,0
U
4,6, 0,0

WA g

3
gy
3

1
07,2, T —,3, =
I 2

1
0.1,m,2,-,0,0
2

2
1,507, 0.04, 25,20, —
STt

3
6, 1007, 0.02, 50, —30, — ——
107t
11 1

—, =, 4m, —,0,
3 24 g 00

0.25,2m, 1,1, 1, %

V61 sin(5t + 0.6947)
V/0.05 sin(r + 5.1760)
V/85sin(3t 4 0.7086)

17 Simplify as far as possible

10

11

12

13

(a)
(b)

(©
(d)

(d)

©
(@
(b)
©
(d)
©
(@
(b)
©
(@)
(e)
(@)
(b)
(©)
(d)

(e)

(@)
(b)
©
(d)
(e)
(a)

(b)

(©

cos 100° + cos 80°

cos 100° — cos 80°
sin 50° + sin 40°
cos 5°
sin 80° — sin 60°
2sin 10°

t
V97 sin(2 + 1.9890)

/234 sin(2t + 1.3734)
/38sin(4r — 5.1173)

/34 sin(2t — 3.6820)
V65 sin(6t — 1.0517)

% sin(t — 5.6397)
1.4577 sin(0.5¢ — 1.0304)
/356 cos(3t + 5.7246)
V45 cos (21 + 2.0344)
V5 cos(t 4 3.6052)
V/2.05 cos (41 + 5.1448)
26 cos(7t + 1.3734)
6.8007 cos (3t — 0.3450)
V5 cos(2t — 3.6052)
/85 cos (9t — 1.3521)
VAT cos (4t — 0.6747)

V40 cos(; - 3.4633)

V2sin(r + 1.7854)

1.4451 sin(2f 4 5.0987)

2.9725 sin(3r + 0.7628)

1.0806 sin(z + 2)

2.4654 sin(21 + 4.8828)

/13 sin(wt + 0.5880), amplitude = /13, phase
angle = 0.5880

0.765 sin(wt + 1.1781), amplitude = 0.765,
phase angle = 1.1781

5.596 sin(wt 4 2.10), amplitude = 5.596, phase
angle = 2.10



(d) 1.581sin(wt + 0.4636), amplitude = 1.581,
phase angle = 0.4636

(e) —3sinwt, amplitude = 3, phase angle = 7

14 (a) 0.5487,2.5929  (b) 3.5232,5.9016

15

(c) 0.3947,5.8885 (d) 3.1416, ie.
3t In
4 4
(a) 0.2865,1.2843, 3.4281, 4.4259

(e) 0.1427,3.2843 63)

(b) 1.0293,2.1123, 4.1709, 5.2539

16

17
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(c) 4.2457

(d) 0.2120, 0.5734, 1.7828, 2.1442, 3.3536, 3.7150,
4.9244, 5.2858

(e) 0.5796,2.5620,3.7212, 5.7035

() 0.4480, 2.0188, 3.5896, 5.1604

(@) 9.5070 x 1073 (b) 4.5070 x 1073
(c) 1.9507 x 1072 (d) 5.8751 x 1073
(@ 0 (b) —2sin 10°

(©) V2 (d) cos70°
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INTRODUCTION

The coordinates of a point describe its position. The most common coordinate system
is the x—y system: the first number, x, gives the distance along the x axis, the second
number, y, gives the distance along the y axis. However, this is not the only way to
describe the position of a point. This chapter outlines several ways in which the position
of a point can be described.

CARTESIAN COORDINATE SYSTEM - TWO DIMENSIONS

The Cartesian coordinate system is named after the French mathematician Descartes.
The system comprises two axes — the x axis and the y axis — which intersect at right
angles at the point O. The point O is called the origin. Figure 4.1 shows the Cartesian
coordinate system. By convention the x axis is drawn horizontally. The positive x axis
lies to the right of the origin, the negative x axis lies to the left of the origin, the positive
y axis lies above the origin and the negative y axis lies below the origin.

Note that this coordinate system can be used only for locating points in a plane, that
is it has two dimensions.

Consider any point, P, in the plane. The horizontal distance of P from the y axis
is called the x coordinate. The vertical distance of P from the x axis is called the y
coordinate. Either coordinate can be positive or negative.



/

4.2 Cartesian coordinate system — two dimensions

x coordinate

P

y coordinate

155

-3

LY

Figure 4.1
Cartesian coordinate system in
two dimensions.

When stating the coordinates of a point, by convention we always state the x coor-
dinate first. Thus (3, 1) means that the x coordinate is 3 and the y coordinate is 1. We
also write, for example, A(3, 1) to mean that the point whose coordinates are (3, 1) is

labelled A. In Figure 4.1 P has coordinates (2, 3).

Example 4.1 Plot the points whose Cartesian coordinates are
(@ 2 (b (-1,=3) () (=2,
Solution As plotted in Figure 4.2
(a) R has coordinates (4, 2).
(b) S has coordinates (—1, —3).
(¢) T has coordinates (—2, 1).
Example 4.2 State the coordinates of the points A and B as shown in Figure 4.3.
Solution A has coordinates (—3, —1); B has coordinates (3, —2).

Y A Y A
2 f oR 2 |
oT 1 F 1
1 1 1 1 1 1 1 1 . 1 1 1 1 1 1 .
4 3 2 -1 0 1 2 3 4 x -3 2 -1 0 1 2 3 X
-1 F .A -1 F
2 r 2+ Be
S
® -3 -3 r
Figure 4.2 Figure 4.3
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Engineering application 4.1

Electrode coordinates

Often in science and engineering it is useful to place metallic conductors, known as
electrodes, inside a glass container from which air has been evacuated. For exam-
ple, electrical valves, which are also known as vacuum tubes, are constructed in this
manner. Audio amplifiers that make use of valve technology have made a comeback
in recent years. Many musicians prefer the sound they generate.

Figure 4.4 shows two electrodes inside an evacuated glass envelope. State the
coordinates of the four points A, B, C and D.

o<
—

—_ =
o —
T T

— D W A L Oy 9 00 O
T

Figure 4.4
Electrode coordinates.

0 1 2 3 4 5 6 7 8 9 10 11 12

X

Solution
A has coordinates (4, 9).

B has coordinates (9, 6).
C has coordinates (8, 10).
D has coordinates (8, 6).

To simulate the electric field between these electrodes, and to produce a proper design
for manufacture, a computer model may be used. Such a model would involve the use
of mathematical techniques to solve the fields in the space between the electrodes.
However, the user would have to input the shape of the device. Coordinates would
be used to specify exactly where each part of the device is located. The coordinates
could easily be changed in the computer model to test the effects of changing the
size and position of the electrodes. Computer models speed up the design process by
avoiding the need for early-stage prototypes.
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EXERCISES 4.2
1 Plot the following points: A(2, —2), B(-2, 1), 3 A point P lies on the x axis. State the y coordinate
C(—1,0), D0, —2). of P.
2 State the coordinates of the points U, V and W as 4 A point Q lies on the y axis. State the x coordinate
shown in Figure 4.5. of Q.
y A y A
L 5 |
Ir oV o 1t
1 1 1 1 1 C
L 1 e 1 1 .
2 1 0 2 3 4 x 2 -1 0 1 2 0x
-1 F [ -1 F
w
oU -2 F 2 ¢P oA
Figure 4.5 Figure S.6
Solutions
1 Figure S.6 shows the points A, B, C and D. 3 0
2 U(-2,-2),V(4,1),W(@3,—-1) 4 0
%l CARTESIAN COORDINATE SYSTEM - THREE DIMENSIONS
Many engineering problems require the use of three dimensions. Figure 4.6 illustrates a
three-dimensional coordinate system. It comprises three axes, x, y and z. The axes are
all at right angles to one another and intersect at the origin, O.

The position of any point in three-dimensional space is given by specifying its x, y
and z coordinates. By convention the x coordinate is stated first, then the y coordinate and
finally the z coordinate. For example, P(2, 3, 4) has an x coordinate of 2, a y coordinate
of 3 and a z coordinate of 4. It is illustrated in Figure 4.6. From the origin, P is located
by travelling 2 units in the x direction, followed by 3 units in the y direction, followed
by 4 units in the z direction.

Note that, as with a two-dimensional system, coordinates can be negative.

Example 4.3 Plot the following points: A(1, —1, 2), B(0, 1, 2), C(0, 0, 1).
Solution Figure 4.7 illustrates the points A, B and C.

We now consider the equation of a plane. Any point on the x—y plane has a z coordinate
of 0. Hence the equation of the x—y plane is z = 0. Similarly z = 1 represents a plane
parallel to the x—y plane but 1 unit above it. Point C in Figure 4.7 lies in the plane
z = 1. All points in this plane have a z coordinate of 1.
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Z A
P(2,3,4

T ¢

2r

1t 54

o .

1 2.3y
2 & . .

Y 3
Figure 4.6 Figure 4.7
Cartesian coordinate system in three The points A, B and C are
dimensions. plotted in three dimensions.

A and B in Figure 4.7 lie in the plane z = 2. All points in this plane have a z coordinate

of 2.
EXERCISES 4.3
1 Plot the points A(2, 0, —1), B(1, —1, 1) and 3 State the equation of the plane passing through
C(—1,1,2). 3,1,7),(—1,1,0) and (6, 1, —3).

2 State the equation of the plane passing through
“4,7,-1),(3,0,—1)and (1,2, —1).

Solutions
1 Figure S.7 illustrates the points A, B and C. 3 y=1
2 z=-1

C(-1,1,2)

y

[

® A (2,021 0

Figure S.7 Figure 4.8
P has polar coordinates r and 6.
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POLAR COORDINATES

We have seen how the x and y coordinates of a point describe its location in the x—y
plane. There is an alternative way to describe the location of a point. Figure 4.8 illustrates
a point P in the x—y plane.

P has Cartesian coordinates (x, y). Hence

OAZX, AP:y

Consider the arm OP. The length of OP is the distance of P from the origin. We denote
this by r, that is

length of OP = r

Clearly, r is never negative, that is r > 0.

We note that the angle between the positive x axis and OP is 6. The value of 0 lies
between 0 and 27t radians or 0° to 360° if degrees are used.

The values of r and 6 are known as the polar coordinates of P. Conventionally, the
value of r is stated first, then the value of 8. We commonly write these polar coordinates
asr.0.

The values of r and 0 specify the position of a point. Conventionally, positive values
of 6 are measured anticlockwise from the positive x axis.

The polar coordinates of a point, P, are /6. The value of r is the distance of P from
the origin; the value of 6 is the angle between the positive x axis and the arm OP.

r=0 0<60 <2m(0° <0 <360°)

Engineering application 4.2

Pick and place robot

Robots are now widely used in factories in order to reduce labour costs. They vary in
complexity depending on their function. Almost all printed circuit boards found in
electronic devices such as computers and mobiles are assembled by robots. Figure 4.9
shows a simple robot that can pick up a surface-mount electronic component in one
position and place it in another position.

It consists of a rotating arm the length of which can be extended and contracted.
On the end of the arm is a hand which can be closed to pick up a component and
opened to release it.

zero datum

[ & | (e

Figure 4.9
A pick and place robot.
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Itis necessary for a computer to carry out calculations in order to find where a com-
ponent is located and where to place a component. Decide upon a suitable coordinate
system to use when carrying out these calculations.

Solution

If we examine the geometry of the robot then we see that a polar coordinate system
would be the most suitable. The centre of the coordinate system should be on the axis
of rotation. The length of the arm is then given by r and the orientation of the arm is
given by 6 relative to an agreed zero datum mark.

Example 4.4 Plot the points P, Q and R whose polar coordinates are
(a) 2,70°
(b) 4, 160°
©) 3,300°

Solution Figure 4.10 shows the three points plotted.

y A
y
P Q y A

Waoe - X @ - 300°\ ~

(6] | X 6~ X (0] X
3
R

(a) (b) ()

Figure 4.10

A point can be located by the values of its polar coordinates.

Consider the arm from the origin to the point. The value of r gives the length of this
arm. The value of 6 gives the angle between the positive x axis and the arm, measuring
anticlockwise from the positive x axis.

By studying AOPA, shown in Figure 4.11, we can see that

cosfh = and so x = rcos 6 “.1)

sinf = and soy = rsin6 “4.2)

NI SIx

Hence if we know the values of r and 6, that is the polar coordinates of a point, we
can use Equations (4.1) and (4.2) to calculate x and y, the Cartesian coordinates of the
point.
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y Iy
A P y
.9
r 34641 (210°
R ’ Yy X X
Y : \ : 4
L 0 ' _ I _2

O b——x A x
Figure 4.11 Figure 4.12
The polar coordinates are r, 6; the The Cartesian coordinates can be
Cartesian coordinates are x, y. calculated from the polar coordinates.

Example 4.5 A point has polar coordinates r = 4, 6 = 210°. Calculate the Cartesian coordinates of

Solution

the point. Plot the point.

The Cartesian coordinates are given by
x =rcosf =4cos210° = —3.4641
y=rsinf =4sin210° = -2

Figure 4.12 illustrates the point.

We now look at the problem of calculating the polar coordinates given the Cartesian
coordinates. Equations (4.1) and (4.2) can be arranged so that » and 6 can be found from
the values of x and y. Consider a typical point P as shown in Figure 4.11.

The Cartesian coordinates are (x, y). Suppose that the values of x and y are known.
The polar coordinates are r, 6; these values are unknown. By applying Pythagoras’s
theorem to AOPA we see that

2= 4P
and so

r=+/ x2 + y2
Note that since r is the distance from O to P it is always positive and so the positive
square root is taken.

We now express 6 in terms of the Cartesian coordinates x and y. From Figure 4.11
we see that

tan0 = 4
X

and hence
0 = tan~! <X)
X

In summary we have

r=yx2+y* 6=tan"' ();;)

However, we need to exercise a little extra care before calculating tan™! <X) and
. . . X
reading the result from a calculator. As an illustration note that

tan40° = 0.8391 and tan 220° = 0.8391
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and so tan'(0.8391) could be 40° or 220°. Similarly tan105° = —3.7321 and
tan 285° = —3.7321 and so tan~'(—3.7321) could be 105° or 285°. The value given

on your calculator when calculating tan™" <X) may not be the actual value of 6 we
X

require. In order to clarify the situation it is always useful to sketch the Cartesian coor-
dinates and the angle 6 before embarking on the calculation.

Example 4.6

Solution

The Cartesian coordinates of P are (4, 7); those of Q are (—5, 6). Calculate the polar
coordinates of P and Q.

Figure 4.13 illustrates the situation for P.
Then

r=+/42 £ 72 = /65 = 8.0623

Note from Figure 4.13 that P is in the first quadrant, that is 6 lies between 0° and 90°.
Now

7
tan~! (X> = tan™! (—)
X 4

7
From a calculator, tan~'{ = ) = 60.26°. Since we know that @ lies between 0° and 90°

then clearly 60.26° is the required value.
The polar coordinates of P are r = 8.0623, 6 = 60.26°.
Figure 4.14 illustrates the situation for Q.

We have

r = (_5)2 + 62 = A/ 61 = 78102

From Figure 4.14 we see that 0 lies between 90° and 180°. Now

6
tan~! (X) = tan™! (—5) =tan'(—1.2)
X _

A calculator returns the value of —50.19° which is clearly not the required value. Recall
that tan 6 is periodic with period 180°. Hence the required angle is

180° + (—50.19°) = 129.81°
The polar coordinates of Q are r = 7.8102, 6 = 129.81°.

p
YA

0

Ob—4——

|
]

X

Figure 4.13 Figure 4.14
P is in the first quadrant. Q lies in the second quadrant.
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EXERCISES 4.4
1 Given the polar coordinates, calculate the Cartesian Given the Cartesian coordinates, calculate the polar
coordinates of each point. coordinates of each point.
@ r=7,6=36° @ (7,11 ®) (=6,-12) () (0,15)
(®) r=10,6 =101 @ (-4,6) (&) 4,0 ) (~4,0)
(¢) r=15.7,0 = 3.7 radians
d r=1,0 = g radians
Solutions
1 (a) 5.6631,4.1145 (b) —1.9081,9.8163 (c) 15,90°
d) 7.2111, 123.69°
(c) —13.3152, -8.3184 (@ 0,1 @ ’
(e) 4,0°
2 (a) r=13.0384,0 =57.53 ) 4,180°

(b) 13.4164,243.43°

SOME SIMPLE POLAR CURVES

Using Cartesian coordinates the equation y = mx describes the equation of a line passing
through the origin. The equation of a line through the origin can also be stated using
polar coordinates. In addition, it is easy to state the equation of a circle using polar co-
ordinates.

Equation of a line

Consider all points whose polar coordinates are of the form r/ 45°. Note that the angle
0 is fixed at 45° but that r, the distance from the origin, can vary. As r increases, a line
at 45° to the positive x axis is traced out. Figure 4.15 illustrates this.

Thus, & = 45° is the equation of a line starting at the origin, at 45° to the positive
X axis.

In general, 6 = 6., where 6. is a fixed value, is the equation of a line inclined at 6, to
the positive x axis, starting at the origin.

Equation of a circle, centre on the origin

Consider all points with polar coordinates 3/.6. Here r, the distance from the origin, is
fixed at 3 and 6 can vary. As 6 varies from 0° to 360° a circle, radius 3, centre on the
origin, is swept out. Figure 4.16 illustrates this.

In general r = r, where r, is a fixed value, 0° < 6 < 360° describes a circle of radius
r.., centred on the origin.

Example 4.7

Solution

Draw the curve traced out by » = 3, 0° < 6 < 180°.

Here r is fixed at 3 and 6 varies from 0° to 180°. As 6 varies a semicircle is traced out.
Figure 4.17 illustrates this.
AtP, 60 = 0°, while at Q, 6 = 180°.
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@
~Y

e A
NI

45° -

ol X
Figure 4.15 Figure 4.16
When 6 is fixed and r varies, a straight When r is fixed and 0 varies, a circle is
line from the origin is traced out. swept out.

y y

3
S
Q 0 P x
P

Figure 4.17 0 Q
As 6 varies from 0° to 180° a Figure 4.18
semicircle is traced out. Surface for Example 4.8.

Example 4.8

Solution

Describe the surface defined by 1 <7 < 2,0° < 0 < 90°.

Here r varies from 1 to 2 and 6 varies from 0° to 90°. Figure 4.18 illustrates the surface

so formed.
AtPr=1,0=0%atQ,r=2,6=0%atR, r=1,0=90%at S, r=2,0 =90°.

We have seen some simple polar curves in Figures 4.16 and 4.17. In general a polar
curve is given by the equation r = f(0), where the radius r varies with the angle 6.

Engineering application 4.3

Two-dimensional antenna radiation pattern

Polar curves are often used to depict radiation patterns from antennas. It is often the
case that the electric field strength at a fixed distance from an antenna such as shown

in Figure 4.19 depends upon the angle 6.
A typical expression for field strength at a particular angle 6 could be

cos(5 cosf)
sin O
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"1 Describe the curve defined by r = 2,0° < 6 < 90°. | 12 Describe the surface defined by 0 < r < 2,
30° < 0 < 45°.
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Solutions
This is a quarter circle of radius 2 as shown in 2 Figure S.9 illustrates the surface. OP is set at 30° to
Figure S.8. the x axis; OQ is at 45° to the x axis. OP = OQ = 2.
y y Q
P
(0] X o X
Figure S.8 Figure S.9

4.6

CYLINDRICAL POLAR COORDINATES

Consider the problem of studying the flow of water around a cylinder. A problem like
this would be studied by engineers when investigating the forces exerted by the sea on
the cylindrical supports of oil-rigs. It is often mathematically convenient to choose a
coordinate system that fits the shape of the object being described. It makes sense here
to select a cylindrical coordinate system.

Cylindrical polar coordinates comprise polar coordinates with the addition of a
vertical, or z, axis. Figure 4.21 illustrates a typical point, P, and its cylindrical polar
coordinates.

The point Q is in the x—y plane and lies directly below P. Q is the projection of P
onto the x—y plane.

Consider a point P in three-dimensional space, with Cartesian coordinates (x, y, 7).
We can also describe the position of P using cylindrical polar coordinates. To do this,
the x and y coordinates are expressed as their equivalent polar coordinates, while the
z coordinate remains unaltered. Hence the cylindrical polar coordinates of a point have
the form (7, 0, z).

Recall that r is the length of the arm OQ (see Figure 4.21); that is, it is the distance
of a point in the x—y plane from the origin, and so r > 0. The angle 6 is measured from
the positive x axis to the arm OQ and so 8 has values between 0° and 360° or 27t radians.
Finally, z is positive for points above the x—y plane and negative for points below the
x—y plane. In summary

r=0, 0 <6 < 2m, -0 < 7 < 0

A

N

=
.

7

Figure 4.21
Q The cylindrical polar coordinates of P are (r, 0, z).
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We can relate the Cartesian coordinates, (x, y, z), to the cylindrical polar coordinates,
(r, 8, 7). The following key point does this.

Xx=r cos 6 r=>0
y=rsin 6 0<6 <2m
7=7

Engineering application 4.4

Fluid flow along a pipe

Cylindrical polar coordinates provide a convenient framework for analysing liquid
flow down a pipe. The radial symmetry of a pipe makes it the natural choice. The
distance along the pipe is defined using z. In order to utilize the radial symmetry of
the pipe it is necessary to align the z axis with the centre axis of the pipe. Figure 4.22
illustrates the arrangement. Distance from the centre of the pipe is defined by r. The
angle 6 is used in conjunction with z and r to fix the position within the pipe. A typical
problem that may be analysed is the variation in fluid velocity with distance from the
centre of the pipe. For smooth flow, liquid tends to travel faster at the centre of a pipe
than it does near the edge.

4

I —

Figure 4.22
Fluid flow along a pipe.

Pipes with metal walls are often used to guide electromagnetic waves, rather
than fluids, in high-powered microwave communications systems. They are termed
waveguides. Mathematically analysing the waveguide’s propagation modes is made
much simpler by using cylindrical polar coordinates.

Example 4.9 The Cartesian coordinates of P are (4,7, —6). State the cylindrical polar coordinates

Solution

of P.

‘We have
x =4, y=17, z=—6
Using x = 4 and y = 7 the values of r and 6 are found to be r = 8.0623, 6 = 60.26°

(see Example 4.6). The z coordinate remains unchanged. Hence the cylindrical polar
coordinates are (8.0623, 60.26°, —6).
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Example 4.10 Describe the figure defined by

Solution

(@ 1<r<2,0=00,-1<z<1
(b)) r=10<60<90°,0<z<2

A

Q P y
Y X \j
CiQ
P | |
2 C, :
, |
%A _ \
ol Tx D
Figure 4.23 Figure 4.24
AtPr=1;atQ,r=2. On the line AB, z = 1; on the line CD, z = —1.

(a) Consider the r and 6 coordinates first. The r coordinate varies from 1 to 2 while 6
is fixed at 60°. This represents the line PQ as shown in Figure 4.23. At P the value
of ris 1; at Q the value of r is 2. The length of PQ is 1 and it is inclined at 60° to

the x axis.
Now, we note that z varies from —1 to 1. We imagine the line PQ moving in the
z direction from z = —1 to z = 1. This movement sweeps out a plane. Figure 4.24

illustrates this.

(b) The r coordinate is fixed at » = 1. The 6 coordinate varies from 0° to 90°. This
produces the quarter circle, AB, as shown in Figure 4.25. At A, r = 1,60 = 0°; at
B,r=1,60 =90°.

B
O A x
Figure 4.25 Figure 4.26
As 6 varies from 0° to 90°, a quarter As z varies from 0 to 2, the curve AB

circle is swept out. sweeps out the curved surface.
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Examining the z coordinate, we see that z varies from O to 2. As z varies from
0 to 2, we imagine the curve AB sweeping out the curved surface as shown in Fig-
ure 4.26. AtC,r=1,0 =0°,z=2;atD,r =1, 8 = 90°, z = 2. This surface is
part of a cylinder.

If the range of values of a coordinate is not given it is understood that that variable
varies across all its possible values. For example, a curve may be described by r = 1,
z = —2. Here there is no mention of the values that 6 can have. It is assumed that 6
can have its full range of values, that is 0° to 360°.

Engineering application 4.5

Helical antennas

The helix is a shape commonly found in engineering. For example, the springs used
in a car’s suspension often have a helical shape. Helical antennas were invented by
John Kraus in the 1940s and since then have been used extensively in a variety of
applications including space exploration, satellite communications and mobile tele-
phony. Developing a mathematical definition of a helix is essential to analysing its
electromagnetic properties.

We can set up a cylindrical polar coordinate system with the z axis aligned with the
axis of the helix as shown in Figure 4.27. If we were to look at the helix along the
direction of the z axis, all we would see would be a circle. We say that the projection of
the helix onto the x—y plane is a circle.

Zh

011

e |

Figure 4.27
X Helix along the z axis.

Suppose a particular helix can be defined parametrically by the Cartesian equa-
tions
x(t) =3cos2t, y(t)=3sin2t, z(t)=t
where 7 is varied over a particular range in order to generate the finite length helix

required. By specifying a particular value of 7 these equations enable us to calculate
particular values of x, y and z corresponding to a point on the helix.
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We now develop the equation of the helix in cylindrical polar coordinates. By
comparing

x=3cos2t, y=3sin2t with x=rcosf, y=rsinf

(see Equations (4.1) and (4.2)), we have r = 3 and 6 = 2¢. Note that » = 3 is the
equation of a circle, radius 3, centre the origin.

So, the projection of the helix onto the x—y plane is a circle of radius 3. Because
z(t) = t, the value of z increases as the parameter ¢ increases and the helix is traced
out.

We can now state an alternative definition of the helix in terms of cylindrical polar
coordinates:

r)y=3, 0@ =2 z(t)=t

As in the Cartesian case, specifying a value of the parameter ¢ enables us to calculate
particular values of r, € and z corresponding to a point on the helix. This provides a
more elegant definition of the helix than that available using Cartesian coordinates.
Many problems require the use of these alternative coordinate systems in order to

simplify analysis.

EXERCISES 4.6
1 Express the following Cartesian coordinates as 3 Describe the surface defined by
cylindrical polar coordinates. @ z=0
@ (=2,-L,4 (b 0,3,-1) () (-4,5,0) b) z=—1
2 Express the following cylindrical polar coordinates as © r=2z=1
Cartesian coordinates. d 6=90°z7z=3
(a) (3,70°,7) (b) (1,200°,6) (c) (5,180°,0) () r=20<z<4
Solutions
1 () (V5,206.57°,4) 3 (a) the x—y plane
) (3,90°, —1) (b) aplane parallel to the x—y plane and 1 unit
below it
(c) (Vv41,128.66°,0) . .
(c) acircle, radius 2, parallel to the x—y plane and
2 (a) (1.0261,2.8191,7) with centre at (0, 0, 1)
(b) (—0.9397, —0.3420, 6) (d) aline3 uni.ts above the positive y axis and
parallel to it
© (=5.0.0) (e) the curved surface of a cylinder, radius 2, height 4

B sPHERICAL POLAR COORDINATES

When problems involve spheres, for example modelling the flow of oil around a ball
bearing, it may be useful to use spherical polar coordinates. The position of a point is
given by three coordinates, (R, 8, ¢). These are illustrated in Figure 4.28.
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Z A

y Figure 4.28
Q
x)/ Y Spherical polar coordinates are (R, 0, ¢).

Consider a typical point, P. We look at each of the three coordinates in turn.

The value of R is the distance of the point from the origin; that is, R is the length of
OP. Note that R > 0.

Let Q be the projection of P onto the x—y plane. Then 6 is the angle between the
positive x axis and OQ. Thus, 6 has the same definition as for polar and cylindrical
polar coordinates. Note that 6 can have any value from 0° to 360°.

Consider the line OP. Then ¢ is the angle between the positive z axis and OP. The
angle ¢ can have values between (0° and 180°. When P is above the x—y plane, then ¢
lies between 0° and 90°; when P lies below the x—y plane, then ¢ is between 90° and
180°. When ¢ = 0°, then P is on the positive z axis; when ¢ = 90°, P lies in the x—y
plane; when ¢ = 180°, P lies on the negative z axis.

We can determine equations which relate the Cartesian coordinates, (x, y, z), and the
spherical polar coordinates, (R, 6, ¢).

Note that some books describe spherical polar coordinates as (R, ¢, 6), that is the
definitions of # and ¢ are interchanged. Be aware of this when reading other texts.

Consider AOPQ. Note that ~ OQP is a right angle and so

OQ = OPsin¢g = Rsin¢
0Q lies in the x—y plane and so

x = 0Q cosf = Rsin¢ cosb

y=0Q sinf = Rsin¢g sinf
We also note that

z=0P cos¢ = Rcos¢

In summary we have

X = Rsin¢ cosf
y = Rsin¢ sin6
z=Rcos¢

and

R>0, 0<¢<m(180°) 0<6 < 2m(360°)
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Example 4.11 Show that

R=/x*+y*+ 2

Solution From Figure 4.28
24y = 0Q?
From AOPQ
OP? = 0Q* + PQ’
But OP = R and PQ =z, so
R=xX+y+2
and so

R=/x*+y*+ 72

Example 4.12 Describe the surface R = 4.

Solution We have R = 4 and 6 and ¢ can vary across their full range of values. Such points
generate a sphere of radius 4, centred on the origin.

Engineering application 4.6

Three-dimensional radiation pattern of a half-wave dipole

One of the simplest types of practical antenna is the half-wave dipole. This consists
of two conductor elements stretched out along a straight line having a combined
length of approximately half the wavelength at the frequency of the a.c. signal that is
to be transmitted. The signal is applied to the antenna at the centre of the arrangement
by a feed cable. The electric field strength produced by the antenna at a fixed distance
is usually expressed using a spherical coordinate system. The coordinates for the
antenna and the origin of the radiation itself are assumed to be located at the antenna
feed point and the electric field strength is represented by the radius, R. Plots produced
like this are in general termed radiation patterns and are a useful way of visualizing
the amount of radiated field in a given direction, (0, ¢), for a particular antenna.
The half-wave dipole pattern is described by the equation

cos <g cos ¢)

sin ¢

R=K

where R represents the electric field strength and K is a constant for a given distance
from the antenna centre point. The equation for this simple antenna does not involve
0, which indicates that R does not depend on it, hence there is radial symmetry to the
pattern. This function is plotted in Figure 4.29.
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Feeding lines
attached to
an a.c source

Antenna
elements 3D radiation

pattern

Figure 4.29
The half-wave dipole antenna and its radiation pattern in spherical polar coordinates.

EXERCISES 4.7

1 A point has spherical polar coordinates (3, 40°, 70°). 3
Determine the Cartesian coordinates.

Describe the surface R = 1, 0° < 6 < 360°,
0° < ¢ <90°.

2 A point has Cartesian coordinates (1, 2, 3). Determine
the spherical polar coordinates.

Solutions

1 (2.1595, 1.8121, 1.0261) 3 A hemisphere of radius 1. The flat side is on the x—y

plane.
2 R=3.7417,6 = 63.43°, ¢ = 36.70°

Technical Computing Exercises 4.7

a set of numbers 0 < 7 < 27t and then use a built in
function such as polar or polarplot to generate a
graph of the equation.

MATLAB® to produce a plot similar to Engineering
application 4.3. You may find it helpful to first generate

REVIEW EXERCISES 4

1 P has Cartesian coordinates (6, —3, —2). Calculate 4

Use a technical computing language such as ‘

Describe the surface defined by

the distance of P from the origin.

1 <r<4,0°<0<90°.

P has Cartesian coordinates (—4, —3). Calculate the 5 Calculate the cylindrical polar coordinates of a point
polar coordinates of P. with Cartesian coordinates (—1, 4, 1).
P has polar coordinates (5, 240°). Calculate the 6 Describe the surface x = 0 in three dimensions.

Cartesian coordinates of P.
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A point has Cartesian coordinates (—1, —1, 2).
Calculate the spherical polar coordinates of the point.

Describe the surface R = 2,0° < 6 < 180°,
0° < ¢ < 180°.

Solutions

7
5,216.87°
—2.5, —4.3301

Figure S.10 illustrates the surface.

O
Figure S.10

)

10

10

Describe the three-dimensional surface defined
by x = y.

The sphere defined by R = 2 intersects the plane
defined by z = 1. Describe the curve of intersection.

(4.1231, 104.04°, 1)
y-z plane
R=4/6,0 =225°, ¢ =35.26°

A hemisphere of radius 2. The flat surface is on the
x—z plane.

The surface is a plane generated by moving the line
y = x up and down the z axis.

A circle of radius \/§, centre (0, 0, 1), in the plane
z=1.
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INTRODUCTION

The term discrete is used to describe a growing number of modern branches of mathe-
matics involving topics such as set theory, logic, Boolean algebra, difference equations
and z transforms. These topics are particularly relevant to the needs of electrical and
electronic engineers. Set theory provides us with a language for precisely specifying a
great deal of mathematical work. In recent years this language has become particularly
important as more and more emphasis has been placed upon verification of software.
Boolean algebra finds its main use in the design of digital electronic circuits. Given
that a very large proportion of electronic circuits are digital rather than analogue, this is
an important area of study. Digital electronic circuits confine themselves to two effective
voltage levels rather than the range of voltage levels used by analogue electronic circuits.
These make them easier to design and manufacture as tolerances are not so critical. Dig-
ital circuits are becoming more complex each year and one of the few ways of dealing
with this complexity is to use mathematics. One of the likely trends for the future is that
more and more circuit designs will be proved to be correct using mathematics before they
are implemented. Difference equations and z transforms are of increasing importance
in fields such as digital control and digital signal processing. We shall deal with these
in Chapter 22.

SET THEORY

A set is any collection of objects, things or states.
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The objects may be numbers, letters, days of the week, or, in fact, anything under discus-

sion. One way of describing a set is to list the whole collection of members or elements
and enclose them in braces { }. Consider the following examples.

A= {1,0} the set of binary digits, one and zero

B = {off, on} the set of possible states of a two-state system
C = {high, low} the set of effective voltage levels in a digital electronic
circuit

D=1{0,1,2,3,4,5,6,7,8,9} the set of digits used in the decimal system

Notice that we usually use a capital letter to represent a set. To state that a particular
object belongs to a particular set we use the symbol € which means ‘is a member of’.
So, for example, we can write

off € B 3eD
Likewise, ¢ means ‘is not a member of” so that
low ¢ B 5¢A

are sensible statements.

Listing members of a set is fine when there are relatively few but is useless if we are
dealing with very large sets. Clearly, we could not possibly write down all the members
of the set of whole numbers because there are an infinite number. To assist us special
symbols have been introduced to stand for some commonly used sets. These are

N the set of non-negative whole numbers, 0, 1,2, 3, ...

N the set of positive whole numbers, 1,2, 3, ...

7Z the set of whole numbers, positive, negative and zero,
...—3,-2,-1,0,1,2,3...

R the set of all real numbers

R the set of positive real numbers

R~ the set of negative real numbers

@ the set of rational numbers

Note that a real number is any number in the interval (—oo, 00).
Another way of defining a set is to give a rule by which all members can be found.
Consider the following notation:

A={x:xeRandx <2}

This reads ‘A is the set of values of x such that x is a member of the set of real numbers
and x is less than 2°. Thus A corresponds to the interval (—oo, 2). Using this notation
other sets can be defined.

Note that

Rt ={x:xeRandx > 0}
R™ ={x:xeRandx < 0}
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Example 5.1

Solution

Use set notation to describe the intervals on the x axis given by
(@ [0,2]  (b) [0,2)  (c) [-9,9]

(@ {x:xeRand0 < < 2}
b)) x:xeRand0 < < 2}
() x:xeRand -9 < x < 9}

X
X

5.2.1

5.2.2

Sometimes we shall be content to use an English description of a set of objects, such as

M is the set of capacitors made by machine M
N is the set of capacitors made by machine N

Q is the set of faulty capacitors

Equal sets

Two sets are said to be equal if they contain exactly the same members. For example, the
sets {9, 5, 2} and {5, 9, 2} are identical. The order in which we write down the members
is immaterial. The sets {2, 2, 5, 9} and {2, 5, 9} are equal since repetition of elements is
ignored.

Venn diagrams

Venn diagrams provide a graphical way of picturing sets which often aids understanding.
The sets are drawn as regions, usually circles, from which various properties can be
observed.

Example 5.2

Suppose we are interested in discussing the set of positive whole numbers between 1
and 10.LetA = {2, 3,4, 5}and B = {1, 3, 5, 7, 9}. The Venn diagram representing these
sets is shown in Figure 5.1. The set containing all the numbers of interest is called the
universal set, E. E is represented by the rectangular region. Sets A and B are represented
by the interiors of the circles and it is evident that 2, 3, 4 and 5 are members of A while 1,
3,5,7 and 9 are members of B. It is also clear that 6 ¢ A, 6 ¢ B, 8 ¢ A, 8 ¢ B. The
elements 3 and 5 are common to both sets.

E

Figure 5.1
Venn diagram for Example 5.2.

The set containing all the members of interest is called the universal set E.

It is useful to ask whether two or more sets have elements in common. This leads to the
following definition.
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5.2.3 Intersection
Given sets A and B, a new set which contains the elements common to both A and B is
called the intersection of A and B, written as

ANB={x:xeAandx € B}
In Example 5.2, we see that AN B = {3, 5}, thatis3 €e AN Band 5 € AN B. If the set
A N B has no elements we say the sets A and B are disjoint and write A N B = @, where
@ denotes the empty set.
A set with no elements is called an empty set and is denoted by @.
If AN B = @, then A and B are disjoint sets.

5.2.4 Union
Given two sets A and B, the set which contains all the elements of A and those of B is
called the union of A and B, written as

AUB = {x:x € Aorx € B or both}

In Example 5.2, AUB = {1, 2, 3,4, 5,7, 9}. We note that although the elements 3 and 5
are common to both sets they are listed only once.

5.2.5 Subsets
If all the members of a set A are also members of a set B we say A is a subset of B and
write A C B. We have already met a number of subsets. Convince yourself that

NCZandZ CR

Example 5.3 If M represents the set of all capacitors manufactured by machine M, and M, represents

the faulty capacitors made by machine M, then clearly M; C M.

5.2.6 Complement
If we are given a well-defined universal set [E and a set A with A C E, then _the set of
members of E that are not in A is called the complement of A and is written as A. Clearly
A UA = E. There are no members in the set A N A, thatisANA = ¢.

Example 5.4 A company has a number of machines which manufacture thyristors. We consider only
two machines, M and N. A small proportion made by each is faulty. Denoting the sets
of faulty thyristors made by M and N by M, and N,, respectively, depict this situation on
a Venn diagram. Describe the sets M; U N; and M U N.

Solution Let E be the universal set of all thyristors manufactured by the company. The Venn

diagram is shown in Figure 5.2. Note in particular that M N N = @. There can be no
thyristors in the intersection since if a thyristor is made by machine M it cannot be made
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M N

Figure 5.2
Venn diagram for Example 5.4.

by machine N and vice versa. Thus M and N are disjoint sets. Also note M; C M,
N; C N.The set M;UN; is the set of faulty thyristors manufactured by either machine M
or N. The set M U N is the set of thyristors made by machines other than M or N.

5.2.7

5.2.8

We have seen how the operations N, U can be used to define new sets. It is not difficult
to show that a number of laws hold, most of which are obvious from the inspection of
an appropriate Venn diagram.

Laws of set algebra

For any sets A, B, C and a universal set [E, we have the laws in Table 5.1. From these it
is possible to prove the laws given in Table 5.2.

Table 5.1

The laws of set algebra.

AUB=BUA C ative 1
ANB=BNA ommutative laws

AUBUC)=(AUB)UC
AN(BNC)=ANB)NC
AN(BUC)=ANBYUMANC)
AUBNC)=(AUBNAUC)

} Associative laws

} Distributive laws

AUP=A .

ANE — A } Identity laws
AUA=E

ANA= ) Complement laws
A=A

Table 5.2

Laws derivable from Table 5.1.

AUMANB)=A
AN(AUB)=A

(ANB)U(ANB)=A
(AUB)N(AUB)=A

AUB

ANB

} Absorption laws

} Minimization laws

AN
AU

| =l

} De Morgan’s laws

Sets and functions

If we are given two sets, A and B, a useful exercise is to examine relationships, given by
rules, between the elements of A and the elements of B. For example, if A = {0, 1, 4, 9}
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‘take plus or minus the square root of”

r:A—-B

Figure 5.3

Figure 5.4
A relation between sets A and B. The relation s maps elements of D to E.

and B = {—3, -2, —1,0, 1, 2, 3} then each element of B is plus or minus the square root
of some element of A. We can depict this as in Figure 5.3.

The rule, which, when given an element of A, produces an element of B, is called a
relation. If the rule of the relation is given the symbol r we write

r:A— B

and say ‘the relation r maps elements of the set A to elements of the set B’. For the
example above, we can write r : 1 — +1, 7 : 4 — £2, and generally r : x — +./x.
The set from which we choose our input is called the domain; the set to which we map
is called the co-domain; the subset of the co-domain actually used is called the range.
As we shall see this need not be the whole of the co-domain.

A relation r maps elements of a set D, called the domain, to one or more elements
of a set C, called the co-domain. We write

r:D—C

Example 5.5

Solution

IftD={0,1,2,3,4,5}and E = {1, 4,7, 10, 13, 16, 19, 22} and the relation with sym-
bol s is defined by s : D — E, s : m — 3m + 1, identify the domain and co-domain of
s. Draw a mapping diagram to illustrate the relation. What is the range of s?

The domain of s is the set of values from which we choose our input, thatis D = {0, 1, 2,
3,4, 5}. The co-domain of s is the set to which we map, thatis £ = {1, 4, 7, 10, 13, 16,
19,22}. Therule s : m — 3m+ 1 enables us to draw the mapping diagram. For example,
s : 3 — 10 and so on. The diagram is shown in Figure 5.4. The range of s is the subset
of E actually used, in this case {1, 4,7, 10, 13, 16}. We note that not all the elements of
the co-domain are actually used.

The notation introduced is very similar to that for functions described in Section 2.3.
This is no accident. In fact, a function is a very special form of a relation. Let us recall
the definition of a function:

‘A function is a rule which when given an input produces a single output’.

If we study the two relations r and s, we note that when relation r received input, it
could produce two outputs. On the mapping diagram this shows up as two arrows leaving
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some elements in A. When relation s received an input, it produced a single output. This
shows up as a single arrow leaving each element in D. Hence the relation r is not a
function, whereas the relation s is. This leads to the following more rigorous definition
of a function.

A function f is a relation which maps each element of a set D, called the
domain, to a single element of a set C, called the co-domain. We write

f:D—C

Example 5.6

If M = {off, on}, N = {0, 1} and we define a relation r by
r:M— N

r:off - 0 r:on— 1

then the relation r is a function since each element in M is mapped to a single element
inN.

Example 5.7

If P = {0, 1} and Q = {high} and we define a relation r by
r:P—Q
r: 1 — high

then r is not a function since each element in P is not mapped to an element in Q.

All of the functions described in Chapter 2 have domains which are subsets of the real
numbers R. The input to each function is the particular value of the independent variable
chosen from the domain and the output is the value of the dependent variable. When
dealing with continuous domains the graphs we have already considered replace the
mapping diagrams.

Example 5.8 Find the domain, D, of the rational function f : D — R given by
3x
X =
! x—2
Solution  Since no domain is given, we choose it to be the largest set possible. This is the set
of all real numbers except the value x = 2 at which point f is not defined. We have
D={x:xeR x#2}.
EXERCISES 5.2
1 Use set notation to describe the intervals on the x axis 2 Sketch the following sets. [Hint: see Section 2.2 on
given by open and closed intervals.]
@ (-3,2) (b) 10,2] © [-2,-1) (@) {x:xeRand2 < x <4}

(d @3,6] e Ixl <1 (b) {x:xeRand -1 <x<0}
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(c) x:xeRand0 < x <2}
(d {x:xeRand1 <x < 3}

Using the definitions given in Section 5.2, state
whether each of the following is true or false:

(@) 7€ b R NQ=¢

() 0.7¢Q (d NFuQ =R+

e RRNN=¢ ¢ RNZ=7

(g 5€Q (h)y NcQ

IfA={1,3,5,7,9 11} and B = {3, 4,5, 6} find
(@)ANB (b) AUB

Given A = {1,2,3,4,5,6}, B={2,4,6,8, 10} and

C = {3, 6, 9} state the elements of each of the
following:

(@ ANB
(c) AnC
(e) AN(BUC)

() BNC
d ANBNC
) BUMANC)

Write out all the members of the following sets:

(a) A={x:xeNandx < 10}

(b) B={x:xeRand0 < x < 10 and x is divisible
by 3}

The sets A, B and C are givenby A = {1,3,5,7, 9},

B =1{0,2,4,6}and C = {1, 5, 9} and the universal
set, E=1{0,1,2,...,9}.

Solutions

(a)

(©)

(@) {x:xeRand -3 <x <2}
(b) {x:xeRand0 < x <2}
() x:xeRand -2 <x < —1}
(d) {x:xeRand3 < x <6}
() {x:xeRand -1 <x < 1}

See Figure S.11.

4 >
01 23 45 x (p

-—0—>»
-1 0 1 «x

——O—-O—>
01 2 3 x (d)01234x

Figure S.11

(@ T
e T

(b) F
) T

(© F
@ T

() {1,3,4,5,6,7,9, 11}

d F
(h) T

(a) {3,5}

10

11

(a) Represent the sets on a Venn diagram.

(b) State AUB.

(c) State BNC.

(d) StateENC.

(e) State A.

(f) State BNC.

(g) State BUC.

Use Venn diagrams to illustrate the following for
general sets C and D:

(a CND (by CUD
(d CubD (e) CND.

() CND

By drawing Venn diagrams verify De Morgan’s laws
ANB=AUB and AUB=ANB

For sets A = {0, 1, 2} and B = {3, 4}, draw a mapping
diagram to illustrate the following relations.
Determine which relations are functions. For those
that are not functions, give reasons for your decision.

@ r:A—=>Br:0—->3r:1—-4r:2—->4

b) s:A—>B,s:0—>3,5s:0—>4,5:1—>3,
§s:2—3

(c)t:A—>B,t:0—>3,tr:1—->4

IfA=1{1,3,5,7}and B = {1, 2, 3,4}, draw a

mapping diagram to illustrate the relation r : A — B,

where r is the relation ‘is bigger than’. Is r a function?

(@ {2.4.6}) () {6} (o {3.6} (d) {6}
(e) {2,3,4,6} (f) {2,3,4,6,8, 10}

(a) {0,1,2,3,4,5,6,7,8,9}

(b) {0,3,6,9}

(a) See Figure S.12.

AC
e

Figure S.12

(b) {0,1,2,3,4,5,6,7,9}
d {1,5,9}
® {3,7,8}

© @
(e) {0,2,4,6,8)
(2) {3.7.8}



8 See Figure S.13.

10 (a) Function
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.

(d) \\\\\\\\\\\\\\\\\\

(@)

(©

A

Figure S.13
@ &\ RO

11 risnot a function because 1 is not mapped to
anything.

(b) Not a function since 0 is mapped to two elements

(c) Not a function since 2 is not mapped to anything

5.3.1

LOGIC

In Section 5.4 we will examine Boolean algebra. This concerns itself with the manip-
ulation of logic statements and so is suitable for analysing digital logic circuits. In this
section we introduce the basic concepts of logic by means of logic gates as these form
the usual starting point for engineers studying this topic.

The OR gate

The OR gate is an electronic device which receives two inputs each in the form of a
binary digit, that is O or 1, and produces a binary digit as output, depending upon the
values of the two inputs. It is represented by the symbol shown in Figure 5.5.

A and B are the two inputs, and F is the single output. As high (1) or low (0) voltages
are applied to A and B various possible outputs are achieved, these being defined by
means of a truth table as shown in Table 5.3. So, for example, if a low (0) voltage is
applied to A and a high (1) voltage is applied to B, the output is a high (1) voltage at
F. We note that a ‘1’ appears in the right-hand column of the truth table whenever A
or B takes the value 1, hence the name OR gate. We use the symbol + to represent OR.
Because it connects the variables A and B, OR is known as a logical connective. We shall
meet other logical connectives shortly. This connective is also known as a disjunction,
so that A + B is said to be the disjunction of A and B.

Table 5.3
The truth table for an OR gate
with inputs A and B.

A B F=A+B
A
F=A+B 1 1 1
B 1 0 1
0 1 1
Figure5.5 0 0 0

Symbol for an OR gate.
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5.3.2

5.3.3

5.3.4

Table 5.4
The truth table for an AND gate
with inputs A and B.

A B F=A-B

A—]
F=A-B 1 1 1
B— 1 0 0
0 1 0
Figure 5.6 0 0 0
Symbol for an AND gate.
Table 5.5
The truth table for
a NOT gate.
A 4[>k F=A A F=A

1

=]

Figure 5.7
Symbol for an inverter.

—_

The AND gate

It is possible to construct another electronic device called an AND gate which works
in a similar way except that the output only takes the value 1 when both inputs are 1.
The symbol for this gate is shown in Figure 5.6 and the complete truth table is shown in
Table 5.4. The logical connective AND is given the symbol - and is known as a con-
junction so that A-B is said to be the conjunction of A and B.

The inverter or NOT gate

The inverter is a device with one input and one output and has the symbol shown in
Figure 5.7. It has a truth table defined by Table 5.5. If the input is A, then the output is
represented by the symbol A, known as the complement of A.

The NOR gate

This gate is logically equivalent to a NOT gate in series with an OR gate as shown in
Figure 5.8. It is represented by the symbol shown in Figure 5.9 and has its truth table
defined in Table 5.6.

A A+B
B F=A+B
Table 5.6

Figure5.8 The truth table for a NOR gate.
A NOT gate in series with an OR gate.

A B F=A+B
A®—F=A+B 1 1 0
B 1 0 0
. 0 1 0
Figure5.9 0 0 1

Symbol for a NOR gate.




5.3.5

5.4.1

5.4 Boolean algebra 185

A —] A-B
B F=A-B
Table 5.7

Figure5.10 The truth table for a NAND gate.
A NOT gate in series with an AND gate.

A B F=AB
A —Do_ F-AB 1 I 0
B— 1 0 1
. 0 1 1
Figure5.11 0 0 1
Symbol for a NAND gate.

The NAND gate

This gate is logically equivalent to a NOT gate in series with an AND gate as shown in
Figure 5.10. It is represented by the symbol shown in Figure 5.11 and has the truth table
defined by Table 5.7.

Although we have only examined gates with two inputs it is possible for a gate to have
more than two. For example, the Boolean expression for a four-input NAND gate would
be F = A.B-C-D while that of a four-input OR gate wouldbe F = A+ B+ C+ D,
where A, B, C and D are the inputs, and F is the output. Logic gates form the building
blocks for more complicated digital electronic circuits.

BOOLEAN ALGEBRA

Suppose A and B are binary digits, thatis 1 or 0. These, together with the logical connec-
tives + and - and also the complement NOT, form what is known as a Boolean algebra.
The quantities A and B are known as Boolean variables. Expressions such as A + B,
A - B and A are known as Boolean expressions. More complex Boolean expressions can
be built up using more Boolean variables together with combinations of +, - and NOT;
for example, we can draw up a truth table for expressions such as (A-B) + (C - 5).

We shall restrict our attention to the logic gates described in the last section although
the techniques of Boolean algebra are more widely applicable. A Boolean variable can
only take the values O or 1. For our purposes a Boolean algebra is a set of Boolean
variables with the two operations - and 4, together with the operation of taking the
complement, for which certain laws hold.

Laws of Boolean algebra

For any Boolean variables A, B, C, we have the laws in Table 5.8. From these it is possible
to prove the laws given in Table 5.9. You will notice that these laws are analogous to those
of set algebra if we interpret + as U, - as N, 1 as the universal set [E, and 0 as the empty
set @. In ordinary algebra, multiplication takes precedence over addition. In Boolean
algebra - takes precedence over +. So, for example, we can write the first absorption
law without brackets, that is

A+A-B=A
Similarly, the first minimization law becomes
A-B+A-B=A

We shall follow this rule of precedence from now on.
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Table 5.8

Laws of Boolean algebra.
A+B=B+A )
A-B=B-A } Commutative laws

A+(B+C)=A+B) +C

A-(B-C)=(A-B)-C

A-B+C)=(A-B)+(A-C)
A+B-C)=A+B)-(A+0)

} Associative laws

} Distributive laws

A+0=A .

Al A } Identity laws
A-A= Complement laws
A=A

Table 5.9

Laws derived from the laws of Table 5.8.

A+ (A-B)=A
A-(A+B)=A

(A-B)+ (A-B)=A

(A+B)-(A+B)=A

A+B=A-B

} Absorption laws

} Minimization laws

—_— = } De Morgan’s laws

Example 5.9

Solution

Find the truth table for the Boolean expression A 4+ B+ C.

We construct the table by noting that A, B and C are Boolean variables; that is, they can
take the values O or 1. The first stage in the process is to form all possible combinations of
A, B and C, as shown in Table 5.10. Then we complete the table by forming C, then B - C
and finally A + B - C, using the truth tables defined earlier. So, for example, whenever
C =1, C = 0. The complete process is shown in Table 5.11. Work through the table to
ensure you understand how it was constructed.

Table 5.10

The possible
combinations for three
variables, A, B and C.

A B C
1 1 1
1 1 0
1 0 1
1 0 0
0 1 1
0 1 0
0 0 1
0 0 0

Table 5.11

The truth table for A + B-C.

A B C C B-C A+B.-C
1 1 1 0 0 1
1 1 0 1 1 1
1 0 1 0 0 1
1 0 0 1 0 1
0 1 1 0 0 0
0 1 0 1 1 1
0 0 1 0 0 0
0 0 0 1 0 0
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Table 5.12 _
Truth table for (A + B) - (A + C).

A B C A+B A+C (A+B)-(A+0C)

OO R, =~ OO =
O = O = O = O -
— o= 0O ~0o =0 | O
OO, O R, = =

1
1
1
1
0
1
0
1

OO OO = ==
O O = = = = =

5.4.2 Logical equivalence

We know from the distributive laws of Boolean algebra that
A+B-CO)=A+B)-(A+0)

Let us construct the truth table for the r.h.s. of this expression (Table 5.12). If we now
observe the final column of Table 5.12 we see it is the same as that of Table 5.11. We say
that A+ (B-C) is logically equivalent to (A+B) - (A+ 0). Figures 5.12 and 5.13 show
the two ways in which these logically equivalent circuits could be constructed using OR
gates, AND gates and inverters. Clearly different electronic circuits can be constructed
to perform the same logical task. We shall shortly explore a way of simplifying circuits
to reduce the number of components required.

4 A+(B-0)
+(B-

B — B-C

c Dcc

Figure 5.12 B
Circuit to implement A + (B - C).

A ) A+B
B
‘ D—(A+B)-(A+5)
A — )
c Dc ¢ A+C
Figure 5.13

Circuit to implement (A + B) - (A + C).

Engineering application 5.1

Boolean expression and truth table for an electronic circuit

Find the Boolean expression and truth table for the electronic circuit shown in Fig-
ure 5.14.
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Solution

By labelling intermediate points in the circuit we see that X = A - B+ C. In order to
obtain the truth table we form all possible combinations of A, B and C, followed by
A B, C and finally X = A - B + C. The complete calculation is shown in Table 5.13.

Table 5.13

The truth table for Figure 5.14.

A B C A-B C X=A-B+C
n 1 1 1 1 0 1
e 1 1 0 1 1 1

1 0 1 0 0 0

X1 0 0 o0 1 1

C 0o 1 1 0 0 0

0O 1 0 0 1 1

0 0 1 0 0 0
Figure5.14 0O 0 0 0 1 1

Circuit for Engineering application 5.1.

What we would now like to be able to do is carry out the reverse process: that is, start with
a truth table and find an appropriate Boolean expression so that the required electronic
device can be constructed.

Example 5.10

Solution
Table 5.14
The truth table for a
system with inputs A, B
and C and an output X.

A B C X

[ N e R e
SO == OO ==
S = O = O = O =
—_ o, O~ O = -

Given inputs A, B and C, find a Boolean expression for X as given by the truth table in
Table 5.14.

To find an equivalent Boolean expression the procedure is as follows. Look down the
rows of the truth table and select those with an r.h.s. equal to 1. In this example, there
are five such rows: 1, 2, 4, 6 and 8. Each of these rows gives rise to a term in the required
Boolean expression. Each term is constructed so that it has a value 1 for the input values
of that row. For example, for the input values of row 1, thatis 1, 1, 1, we find A-B-C
has the value 1, whereas for the input values of row 2, thatis 1, 1, 0, we find A- B - C
has the value 1. Carrying out this process for the other rows we find that the required
expression is

X=A-B-C+A-B-C+A-B-C+A-B-C+A-B-C (5.1)

that is, a disjunction of terms, each term corresponding to one of the selected rows. This
important expression is known as a disjunctive normal form (d.n.f.). We note that the
truth table is the same as that of Engineering application 5.1 which had Boolean expres-
sion (A - B) +C. The d.n.f. we have just calculated, while correct, is not the simplest.

More generally, to find the required d.n.f. from a truth table we write down an expression
of the form

( )+ ( )+ 4 ( )

where each term has the value 1 for the input values of that row. We could now construct
an electronic circuit corresponding to Equation (5.1) using a number of AND and OR
gates together with inverters, and it would do the required job in the sense that the desired
truth table would be achieved.
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However, we know from Engineering application 5.1 that the much simpler expres-
sion (A « B) + C has the same truth table and if a circuit were to be built corresponding
to this it would require fewer components. Clearly what we need is a technique for find-
ing the simplest expression which does the desired job since the d.n.f. is not in general
the simplest. It is not obvious what is meant by ‘simplest expression’. In what follows
we shall be concerned with finding the simplest d.n.f. It is nevertheless possible that a
logically equivalent statement exists which would give a simpler circuit. Simplification
can be achieved using the laws of Boolean algebra as we shall see in Example 5.11 and
Engineering application 5.3.

Engineering application 5.2

The exclusive OR gate

We have already looked at the OR gate in Section 5.3. The full name for this type of
OR gate is the inclusive OR gate. It is so called because it gives an output of 1 when
either or both inputs are 1. The exclusive OR gate only gives an output of 1 when
either but not both inputs are 1. The truth table for this gate is given in Table 5.15 and
its symbol is shown in Figure 5.15. Using the truth table, the d.n.f. for the gate is

F=A-B+A-B
The exclusive OR often arises in the design of digital logic circuits. In fact, it is
possible to buy integrated circuits that contain exclusive OR gates as basic units.

Table 5.15
The truth table for an
exclusive OR gate.

A - -
A : & s :)Z>— F=A-B+A-B
1 1 0
1 0 1 Figure5.15
0 1 1 Symbol for an exclusive OR gate.
0 0 0

Example 5.11

Solution

Use the laws of Boolean algebra given in Table 5.8 to simplify the following expressions.
() A-B+A-B

(b) A+A-B

(c) A+A-B-C

(d A-B-C+A-B-C+A-B-C+A-B-C+A-B-C

(a) Using the distributive law we can write
A-B+A-B=A-(B+B)
Using the complement law, B + B = 1 and hence

A-B+A-B=A-1
=A using the identity law
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Hence A - B+ A - B simplifies to A. Note that this is the first minimization law given

in Table 5.9.
(b) A+A-B=(A+A)-(A+B) by the distributive law
=1-(A+B) by the complement law
=A+B using the identity law
(c) Note that A+ A - B-C can be written as A + (A - B) - C using the associative laws.
Then
A+ (A-B)-C=(A+A-B)-(A+C) by the distributive law
=A+B)-(A+0) using part (b)
=A+B-C by the distributive law

(d A-B-C+A-B-C+A-B-C+A-B-C+A-B-C
can be rearranged using the commutative law to give

A-B-C+A-B-C+A-B-C+A-B-C+A-B-C

This equals
A-B-(C+C)+A-B-(C+C)+A-B-C by the distributive law
=A-B-1+A-B-1+A-B-C using the complement law
=A-B+A-B+A-B-C using the identity law
=A-(B+B)+A:-B-C using the distributive law
=A+A.B-C using the complement and

identity laws

Using the result of part (c) this can be further simplified to A 4+ B - C.

Engineering application 5.3

Design of a binary full-adder circuit

The binary adder circuit is a common type of digital logic circuit. For example, the
accumulator of a microprocessor is essentially a binary adder. The term full-adder
is used to describe a circuit which can add together two binary digits and also add
the carry-out digit from a previous stage. The outputs from the full-adder consist of
the sum value and the carry-out value. By connecting together a series of full-adders
it is possible to add together two binary words. (A binary word is a group of binary
digits, such as 0111 1010.) For example, adding together two 4-bit binary words
would require four full-adder circuits. This is shown in Figure 5.16.

The inputs AO-A3 and BO-B3 hold the two binary words that are to be added.
The outputs SO—S3 hold the result of carrying out the addition. The lines CO-C3 hold
the carry-out values from each of the stages. Sometimes there will be a carry-in to
stage O as a result of a previous calculation. Let us consider the design of stage 2 in
more detail. The design of the other stages will be identical. First of all a truth table
for the circuit is derived. This is shown in Table 5.16.
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50 St 52 53 Table 5.16
| | | | Truth table for a full-adder.
Stage Stage Stage Stage c3 cl A2 B2 52 (2
0 0 0 0 0 0
piEp A EE
0 1 0 1 0
A0 BO Al Bl A2 B2 A3 B3 0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
Figure5.16 1 1 0 0 1
Four full-adders connected to allow two 4-bit binary words to 1 1 1 1 1
be added.

Notice that there are three inputs to the circuit, C1, A2 and B2. There are also
two outputs from the circuit, S2 and C2. Writing expressions for the outputs in d.n.f.
yields

§2=C1-A2-B2+C1-A2-B2+C1-A2-B2+C1-A2-B2
C2=Cl1-A2-B2+C1-A2-B2+C1-A2-B2+C1-A2-B2

It is important to reduce these expressions to as simple a form as possible in order to
minimize the number of electronic gates needed to implement the expressions. So,
starting with S2,

§2=C1-A2-B2+C1-A2-B2+C1-A2.B2+C1-A2-B2
=Cl-(A2-B2+A2-B2)+Cl-(A2-B2 +A2-B2)
by the distributive law  (5.2)
Let
X=A2-B2+A2-B2 (5.3)

Notice this is an equation for an exclusive OR gate with inputs A2 and B2.
Using Equation (5.3) we have

X =A2-B2+A2-B2

= (A2-B2)-(A2-B2) by De Morgan’s law

= (A2 + E) . (E + B2) by De Morgan’s law

= (A2 + B2)- (A2 + B2) by the complement law
=A2-A2+A2-B2+B2-A2+B2-B2 by the distributive law
=04+A2-B2+B2-A2+40 by the complement law
=A2-B2+B2-A2 by the identity law
=A2-B2+A2-B2 by the commutative law

It is now possible to write Equation (5.2) as

$2=Cl-X+Cl-X
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This is the expression for an exclusive OR gate with inputs C1 and X. It is there-
fore possible to obtain S2 with two exclusive OR gates which are usually available
as a basic building block on an integrated circuit. The circuit for S2 is shown in Fig-
ure 5.17. Turning to C2, we have

C2=C1-A2-B2+C1-A2-B2+C1-A2-B2+C1-A2.B2
=A2.B2-(C1 +C1)+C1-(A2-B2+A2-B2) by the distributive law
=A2-B2+Cl-X by the complement law

since C1 + C1 = 1, where X is given by Equation (5.3). The output, X, has already
been generated to produce S2 but can be used again provided the exclusive OR gate
can stand feeding two inputs. Assuming this is so then the final circuit for the full-
adder is shown in Figure 5.18.

A2 —) X Figure 5.17 -
B2 ﬁ 52 Circuit to implement $2 = C1-X + C1 - X,
‘ where X = A2-B2 + A2 - B2.

C1

A2 \l N X\
B2 52
/A D—
] — Cl-X
2
A2-B2
Figure 5.18

Circuit to implement the stage 2 full-adder.

Engineering application 5.4

Realization of logic gates

Logic gates are usually constructed from one or more transistors. The most com-
mon technology used is CMOS (complementary metal-oxide semiconductor) logic,
which was invented by Frank Wanlass and was perfected whilst he was working
at Fairchild Semiconductor in the 1960s. CMOS logic makes use of two different
types of transistor known as PMOS (p-type metal-oxide semiconductor) and NMOS
(n-type metal-oxide semiconductor) transistors. Both types can be readily manufac-
tured in vast numbers on a single silicon wafer along with their associated wiring.
This principle is the constructional basis of modern microprocessors which may con-
tain billions of individual transistors. The term very-large-scale integration (VLSI)
was coined to refer to the practice of assembling such a large number of transistor
devices on a single silicon wafer.

Figure 5.19 shows the construction of a single NAND gate made from its individ-
ual transistors.
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Vbp
PMOS PMOS
Ql Q2
D D
G ‘ G
A
SIS
Y
D
G NMOS
Q3
S
D
G NMOS
B —¢ Q4 Figure 5.19
slov Internal construction of a single
CMOS NAND gate.

The diagram shows two PMOS transistors, labelled Q1 and Q2, connected in par-
allel. These are connected in series with two NMOS transistors, Q3 and Q4. There
are four source terminals all labelled S, together with four drain terminals labelled D.
The voltage Vjp, is the positive voltage supply which is connected to the drain on the
field effect transistors. The labelling V},, is a convention often adopted in this type of
circuit. Logic levels in a circuit like this are represented by taking a low voltage, close
to 0V, to be a logic 0 and a high voltage, close to Vj,, to be a logic 1. The PMOS
transistors Q1 and Q2 each carry current between their source and drain terminals
only when a low voltage (logic 0) is connected at their gate terminal (labelled G).
The NMOS transistors Q3 and Q4 are a complementary type where current flows,
which only occurs when a high voltage, corresponding to logic 1, is presented at their
gates. Thus when both A and B are at logic 0, Q1 and Q2 are switched on and Q3 and
Q4 are switched off, hence the output is V},;,, which represents logic 1. This output
is still the same if either A or B, but not both, are at logic 1 because although Q3 or
Q4 will be turned on they are connected in series and individually have no effect. If
both A and B are at logic 1, then Q1 and Q2 are switched off, and Q3 and Q4 are
switched on, hence the output will be approximately 0V, which represents logic 0.
This behaviour is consistent with the truth table given in Table 5.7.

All modern VLSI chips are designed using high-level design languages such as
VHDL (a specialized computer language for hardware) and the transistor design and
layout is fully automated. It is now rarely necessary for the microprocessor designer
to consider individual transistors or even individual gates.

EXERCISES 5.4
Write Boolean expressions for the output, F', from the 3 Design electronic devices which produce the
electronic devices shown in Figure 5.20. following outputs:
Write Boolean expressions for the output from the (@ A+B (bB)A-(B-C) () (C+D)-(A+B)

devices shown in Figure 5.21. d A+B () A-B+A-B+B-C
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@ A
B e =D Py

@ A

B

Figure 5.20

P
o
w0 1o
>

= Dl

Figure 5.21
4 Draw up the truth tables for the expressions given in (c) A-A-A
Question 3. d A+4)-(A+A)
5 Use truth tables to verify that the following pairs of (e) A+0
expressions are logically equivalent: ® A+D-A+1)
@ p+p-q-r+p-gandp+g (@ A+T

() A+B)-(A+C)andA+B-C

© p-qer+p-qF+p-Ge-randp-(r+q) 7 Simplify the following Boolean expressions using the

) . . laws of Boolean algebra:
6 Simplify the following Boolean expressions using the

laws of Boolean algebra: (@ (A+A)-(B+B)
(a) A-A-A (b) A«(A+B+A-B)
(b) A-A-A © (A+4)-4+0)




(d A-B-(A+B)

() A-(A+B)-B
() A-B-C+A-B-C
(99 A-B-C+A+B+C

8 Construct a truth table showing A - B and A + B in
order to verify the logical equivalence expressed in
De Morgan’s law Ai: A7—|— B. Carry out a similar
exercise to verify A+B =A-B.

9 Let B =1 and then B = 0 in the absorption laws, and
use the identity laws to obtain (a) A + A = A and
(b) A-A = A. Verify your results using truth tables.

10 Derive Boolean expressions and truth tables for the
circuits shown in Figure 5.22.

11 Simplity the following Boolean expressions using
Boolean algebra:
(a) Ar-B+A-B+B-C+A-B-C
(b) A-(C+A)+C-B+D+C+B-C+C-A
() A-B-C-D+A-B-C+A-B-C-D+

A-B-C-D+A-B-C-D

12 The truth values of the Boolean expression, X, are
given in the following tables. Write X in disjunctive

2:)—\|:}X

(b)
Figure 5.22
Solutions
1 (@ (A+B)-C (b) (A-B)-B
() A-B)+B+C d A+B
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normal form. Use the laws of Boolean algebra to
simplify your expressions.

@ ——— ©
A B X A B X
0 0 1 0 0 1
0 1 0 0 1 |
1 0 | | 0 0
1 1 1 1 1 0
© 4 B o X
0 0 0 1
0 0 1 1
0 1 0 0
0 1 | 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1
(d)
A B c X
0 0 0 0
0 0 1 0
0 I 0 0
0 ] 1 1
1 0 0 0
1 0 1 I
1 | 0 1
1 1 1 0

13 Express A - B+ A - B using only conjunction (AND
gate) and negation (NOT gate).

2 (a) Z-E—I—X-EwhichisthesameasZ-B—l—A-E
() (A-B+A-B)-(B+C)+ (A-B+A-B)-(B+C)
3 See Figure S.14.
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A A
B
(a) (c)
C
(e)

> W on

A

35' Yo—» A

¢ B
(b) ()

Figure S.14

4 (@ @ —
A B A+B A B A+B

1 1 1
1 1
| 0 (0) 1 0 0
0 ] ] 0 1 0
0 0 0 0 0 0
(®) @ S
A B C A-(B-O) A B C A-B+A-B+B-C
1 1 1 0 111 1
1 1 0 1 1 1 0 1
1 0 1 1 1 0 1 0
1 0 0 1 1 0 0 0
0 1 1 1 0o 1 1 0
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 1 0 0 0 1
(©)
A B C D (C+D)-(A+B) 6 (@ A ®O0 (©0 (@A
A 1 0

1 : © M) ®
1 1 1 0 1 7 () A-B (b) A ) A
boroo ! @ 0 ©0 (B A-B
1 1 0 0 0
1 0 1 1 1 (&) A-B-C
1 0 1 0 1
1 0 0 1 1 10 (a X=(A-B)-(C+D+E)
1 0 0 0 0 (b) X=A-B+A-B+C-D+E+F
0 1 1 1 0
o 1L 1 0 0 11 (@ A+B-C
0 1 0 1 0 (b) A+B+C+D
0O 1 0 0 0 () (A-B)+ (A-B-D) which can be further
o 0 1 1 1 simplified to A - (B + D)
0 0 1 0 1
0 0 0 1 1
0 0 0 0 0
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.C+A-B-C+A-B-C

(c) A-B-C+A-
A .C+A-B-C

Sl ol

13 (A-B)-(A-B)

REVIEW EXERCISES 5

1

Classify the following as true or false:

(@ RTcCR (b) 0.667 € R~
(c) 0.667<cQ (d NUZ=R
() —6€Q H9¢R

(® NNQ=N m R NQ=¢

Use set notation to describe the following intervals on
the x axis.

(a) [-6,9]
(d) (0,2]

() (=1,1)
(e) x| >1

©) |x] <17
) [x[>2

The sets A, B and C are given by
A=1{1,2,6,7,10,11,12,13},B=1{3,4,7,8, 11},
C=1{4,5,6,7,9, 13} and the universal set
E={x:xe Nt 1<x< 13}. List the elements of
the following sets:

(a) AUB (b) BUC () ANB
(d AN(BUC) () ANBNC
) AUBNC) (2 CUBNA)

Represent the sets A, B and C described in Question 3
on a Venn diagram.

>4‘

c [

5

/

List all the elements of the following sets:
(@ S={n:neZ5<n*<50}
(®) S={m:meN,5<m?<50}
(©) S={m:meN,m?+2m—15=0}
IfA={n:neZ, —10 <n <20},

B ={m:m e N, m > 15} list the members of A N B
and write down an expression for A U B.

Write Boolean expressions for the output, F', from the
electronic devices shown in Figure 5.23.

Simplify the following Boolean expressions using the
laws of Boolean algebra:

(a) A-B-1 (b)y A+A-B+B

() 1+0 (d D-(C+B)+C-D

(e) A+C)-(C+A)

(f) A\B+A+B (g) A-B

(h) A+B (i) A-B+0)-C

G) (C+A+D)-(C-D+A)

Draw up truth tables to verify that A - B + B and

A - B + A are logically equivalent.

F

Dc
|>_F

(@)
A
(b)
A
B
C
© P

Figure 5.23
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10 Express A + B + C + D using the Boolean
connectives AND (- ) and negation.

11 Simplify the following expressions using the laws of
Boolean algebra:

(@ (A+A)-(B+B) (b) A-B-A
() (A+B)-(A+B) d A-A
(e) A:B-C-D-1-0 (f) A-B-C-B

(@ B-C-1

12 Reduce the following expressions using Boolean
algebra:

(@ A+C+A-B-(B+C)
() A+B)-B-C+A+C)-(B+A-0)
© A+B)-A+0C)

13 The truth tables of the Boolean expression, X, are
given in the following tables. Write the disjunctive
normal form of X in each case.

@ A B X

0 0 0

0 1 1

1 0 0

1 1 0
Solutions

1 T (b) F © T (d) F
(e T () F @ T (h) F
2 (@ {x:xeR,—6<x<9}
b)) x:xeR, -1 <x<1}
) (x:xeR,—-1.7<x< 1.7}
d {(x:xeR,0<x<2}
() (x:xeR,x>1lorx< —1}
) {x:xeR,x>2o0rx< -2}
3 (a) {1,2,3,4,6,7,8,10, 11,12, 13}
(b) {3.4,5,6,7,8,9,11, 13}
(c) {7, 11}
(d) {6,7,11, 13}
© {7}
®) {1,2,4,6,7,10, 11, 12, 13}
(g) 14,5,6,7,9,11,13}

(b)
A B X
0 0 0
0 1 0
1 0 1
1 1 0

© 4 B c X
0 0 0 |
0 0 I 0
0 1 0 0
0 1 1 |
I 0 0 0
1 0 1 |
1 | 0 0
I 1 I 1

(d)
A B c X
0 0 0 0
0 0 1 1
0 | 0 0
0 1 1 |
1 0 0 |
1 0 1 1
1 1 0 0
1 1 1 0

4 See Figure S.15.

AN

C

Figure S.15

5 (a S={-7,-6,-5,-4,-3,3,4,5,6,7}

(b) §=1{3,4,5,6,7}

() §=13}

6 ANB=1{16,17,18, 19,20}
AUB={m:meZ,m> —10}



7 (@ (A-B)-C+(A-B)-C

(b) A+B)-B
(©) (A-B)+ (C+D)

8 (a A-B b) A+B (o) 1
(d D-(C+B) (e) C (f) A-B
(g A+B (h) A-B (i) A-C
G) A

10 A-B-C-D

11

12

13

Review exercises 5

(a) 1 () 0 (c) A+B ) A
(e) O () 0 (g) B-C

(a) A+B-C

(b) A\ B+A.C+B-C

(c) A-(B+0)

(a) A-B

(b) A-B

(c) A-B-C+A-B-C+A-B-C+A-B-C
(d A-B-C+A-B-C+A-B-C+A-B-C

199
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INTRODUCTION

Much of the material in this chapter is of a fundamental nature and is applicable to many
different areas of engineering. For example, if continuous signals or waveforms, such as
those described in Chapter 2, are sampled at periodic intervals we obtain a sequence of
measured values. Sequences also arise when we attempt to obtain approximate solutions
of equations which model physical phenomena. Such approximations are necessary if
a solution is to be obtained using a digital computer. For many problems of practical
interest to engineers a computer solution is the only possibility. The z transform is an
example of an infinite series which is particularly important in the field of digital signal
processing. Signal processing is concerned with modifying signals in order to improve
them in some way. For example, the signals received from space satellites have to un-
dergo extensive processing in order to counteract the effects of noise, and to filter out
unwanted frequencies, before they can provide, say, acceptable visual images. Digital
signal processing is signal processing carried out using a computer. So, skill in manip-
ulating sequences and series is crucial. Later chapters will develop these concepts and
show examples of their use in solving real engineering problems.
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SEQUENCES

A sequence is a set of numbers or terms, not necessarily distinct, written down in a
definite order.

For example,
1 11 1

1,3,5,7,9 and L= - = =

2 4 8 16
are both sequences. Sometimes we use the notation ‘..." to indicate that the sequence
continues. For example, the sequence 1,2, 3, ..., 20 is the sequence of integers from 1

to 20 inclusive. These sequences have a finite number of terms but we shall frequently
deal with ones involving an infinite number of terms. To indicate that a sequence might
go on for ever we can use the . .. notation. Thus

2,4,6,8, ...
and
1,—-1,1, -1, ...

can be assumed to continue indefinitely.
In general situations we shall write a sequence as

x[11, x[2], x[3], ...
or more compactly,

x[k] k=1,2,3,...
An alternative notation is

X5 Xy, Xy, .
The former notation is usually used in signal processing where the terms in the sequence
represent the values of the signal. The latter notation arises in the numerical solution of
equations. Hence both forms will be required. Often x[1] will be the first term of the
sequence although this is not always the case. The sequence

-os X[=3], x[=2], x[—1], x[O], x[1], x[2], x[3], . ..

is usually written as

x[k] k=...,-3,-2,-1,0,1,2,3, ...

A complete sequence, as opposed to a specific term of a sequence, is often written using
braces, for example

{x[k]} = x[11, x[2], ...

although it is common to write x[k] for both the complete sequence and a general term
in the sequence when there is no confusion, and this is the convention we shall adopt in
this book.

A sequence can also be regarded as a function whose domain is a subset of the set of
integers. For example, the function defined by

xN—-R x k— —



202

Chapter 6 Sequences and series

is the sequence

3 9
0]=0 1= 2]1=3 == ...
x[0] x[1] 2 x[2] x[3] >
The values in the range of the function are the terms of the sequence. The independent
variable is k. Functions of this sort differ from those described in Chapter 2 because the
independent variable is not selected from a continuous interval but rather is discrete. It
is, nevertheless, possible to represent x[k] graphically as illustrated in Examples 6.1-6.3,

but instead of a piecewise continuous curve, we now have a collection of isolated points.

Example 6.1

Solution

Graph the sequences given by

0 k<O

@ x[k]={1 Lo k=

,—3,-2,—-1,0,1,2,...,thatisk € Z

1 keven

(b) x[k]={_1 P kez

(a) From the definition of this sequence, the term x[k] is zeroif k < Oand 1 if k > 0. The
graph is obtained by plotting the terms of the sequence against k (see Figure 6.1).
This sequence is known as the unit step sequence. We shall denote this by u[k].

(b) The sequence x[k] is shown in Figure 6.2.

Example 6.2

Solution

Graph the sequence defined by

1 k=0

x[k]:{o k0 k=...,-3,-2,-1,0,1,2,3, ...

From the definition, if k = 0 then x[k] = 1. If & is not equal to zero the corresponding
term in the sequence equals zero. Figure 6.3 shows the graph of this sequence which is
commonly called the Kronecker delta sequence.

Example 6.3

4

-3 2 -1
Figure 6.1
The unit step sequence.

The sequence x[k] is obtained by measuring or sampling the continuous function f(t) =
sint, t € R, att = —2m, —3m/2, —m, —1t/2, 0, 7t/2, 7, 371/2 and 27t. Write down the
terms of this sequence and show them on a graph.

x[k]
° ° 1 ° °
| | | | | | | | L
-4 -3 -2 -1 1 2 3 4 5 k
° ® _| ° ° °
Figure 6.2 1 k even
Th k] =
e sequence x[k] { | & odd.



4 3 2

Figure 6.3

6.2 Sequences 203

(o8]

-2 — 5“ -

Figure 6.4
The function f(¢) = sint with sampled points

The Kronecker delta sequence. shown.

Solution

Figure 6.5
Sequence formed from sampling

f(t) = sint.

The function f(¢) = sint, for —27t < t < 27, is shown in Figure 6.4. We sample the
continuous function at the required points. The sample values are shown as e. From the
graph we see that

x[k]=0,1,0,-1,0,1,0,—1,0 k=-4,-3,...,3,4

The graph of x[k] is shown in Figure 6.5.

Sometimes it is possible to describe a sequence by a rule giving the kth term. For ex-
ample, the sequence for which x[k] = 2 k=0,1,2,...,is givenby 1,2,4,8....0n
occasions, a rule gives x[k] in terms of earlier members of the sequence. For example, the
previous sequence could have been defined by x[k] = 2x[k — 1], x[0] = 1. The sequence
is then said to be defined recursively and the defining formula is called a recurrence re-
lation or difference equation. Difference equations are particularly important in digital
signal processing and are dealt with in Chapter 22.

Example 6.4

Solution

Write down the terms x[k] for k = 0, ..., 7 of the sequence defined recursively as
x[k] = x[k — 2] + x[k — 1]
where x[0] = 1 and x[1] = 1.

The values of x[0] and x[1] are given. Using the given recurrence relation we find

x[2] = x[0] +x[1] =2
x[3] = x[1] +x[2] =3

Continuing in this fashion we find the first eight terms of the sequence are
1,1,2,3,5,8,13,21

This sequence is known as the Fibonacci sequence.
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6.2.1

Arithmetic progressions

An arithmetic progression is a sequence where each term is found by adding a fixed
quantity, called the common difference, to the previous term.

Example 6.5

Solution

Write down the first five terms of the arithmetic progression where the first termis 1 and
the common difference is 3.

The second term is found by adding the common difference, 3, to the first term, 1, and
so the second term is 4. Continuing in this way we can construct the sequence

1,4,7,10,13, ...

A more general arithmetic progression has first term ¢ and common difference d,
that is

a,a+d,a+2d,a+3d, ...
It is easy to see that the kth term is
a+ (k—1)d

All arithmetic progressions can be written recursively as x[k] = x[k — 1] 4 d.

Arithmetic progression: a,a +d, a + 2d, . ..

a = first term, d = common difference, kth term = a + (k — 1)d

Example 6.6

Solution

Find the 10th and 20th terms of the arithmetic progression with a first term 5 and common
difference —4.

Here a = 5 and d = —4. The kth term is 5 — 4(k — 1). Therefore the 10th term is
5 —4(9) = —31 and the 20th term is 5 — 4(19) = —71.

6.2.2

Geometric progressions

A geometric progression is a sequence where each term is found by multiplying the
previous term by a fixed quantity called the common ratio.

Example 6.7

Solution

Write down the geometric progression whose first term is 1 and whose common ratio
1

is —.

2

1 1
The second term is found by multiplying the first by the common ratio, o that is 3 x1 =

1 L .
> Continuing in this way we obtain the sequence

1

9 oo e

0| —

11
AV
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A general geometric progression has first term @ and common ratio r and can therefore
be written as

a,ar,ar®, ar’, ...
and it is easy to see that the kth term is ar*~!. All geometric progressions can be written
recursively as x[k] = rx[k — 1].

Geometric progression: a, ar, ar?, ...

a = first term, r = common ratio, kth term = ar*~!

More general sequences
We have already met a number of infinite sequences. For example,
(1) x[k] =2,4,6,8, ...
11
2) xkl=1, =, —, ...
(2) x[k] 27
In case (1) the terms of the sequence go on increasing without bound. We say the se-
quence is unbounded. On the other hand, in case (2) it is clear that successive terms get
smaller and smaller and as k — oo, x[k] — 0. The notion of getting closer and closer to

a fixed value is very important in mathematics and gives rise to the concept of a limit. In
case (2) we say ‘the limit of x[k] as k tends to infinity is O’ and we write this concisely as

klim x[k] =0

We say that the sequence converges to 0, and because its terms do not increase without
bound we say it is bounded.

More formally, we say that a sequence x[k] converges to a limit [ if, by proceeding
far enough along the sequence, all subsequent terms can be made to lie as close to [ as
we wish. Whenever a sequence is not convergent it is said to be divergent.

It is possible to have sequences which are bounded but nevertheless do not converge
to a limit. The sequence

xlkl=—-1,1,—-1,1,—-1,1, ...

clearly fails to have a limit as k — oo although it is bounded, that is its values all lie
within a given range. This particular sequence is said to oscillate.

It is possible to evaluate the limit of a sequence, when such a limit exists, from knowl-
edge of its general term. To be able to do this we can make use of certain rules, the proofs
of which are beyond the scope of this book, but which we now state:

If x[k] and y[k] are two sequences such that lim,_,  x[k] = [, and lim,_, _ y[k] = ,,
where /, and [, are finite, then:

(1) The sequence given by x[k] & y[k] has limit /, &= /,.
(2) The sequence given by cx[k], where ¢ is a constant, has limit c/,.

(3) The sequence x[k]y[k] has limit /,/,.

k [
(4) The sequence )ﬂ has limit - provided I, #0.
ylk] 3
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Furthermore, we can always assume that

1
— =0 for any constant m > 0
k—o0 k™

Example 6.8 Find, if possible, the limit of each of the following sequences, x[k].

1

(@) Ak = k=1,2,34,...

(b) x[k] =5 k=1,2,3,4,...
1

© Ak =3+ k=1,2,3,4,...

1

d) xfk] = —— k=1,2,3,4,...
(d) x[k] 1

(e) x[k] = Kk k=1,2,3,4,...

Solution (a) The sequence x[k] is given by
111
9 2 b 3 9 4 90
Successive terms get smaller and smaller, and as k — oo, x[k] — 0. By proceeding
far enough along the sequence we can get as close to the limit O as we wish. Hence

1

1
lim x[k] = lim — =0
k— 00 k— 00 k

(b) The sequence x[k] is given by 5, 5,5, 5, .. .. This sequence has limit 5.
11
(c) Thesequence 3, 3, 3, 3, ... has limit 3. The sequence 1, 273 has limit O. There-

fore, using rule (1) we have
1
lim3+-=3+0=3
k—o00 k

The terms of the sequence x[k] = 3 + % are given by 4, 3%, 3%, ..., and by
proceeding far enough along we can make all subsequent terms lie as close to the
limit 3 as we wish.
(d) The sequence x[k] = k—i—%’ k=1,2,3,4,...,1s given by
1
3
and has limit 0.

(e) The sequence x[k] = Pk = 1,2,3,4,...,is given by 1,4,9,16, ..., and
increases without bound. This sequence has no limit — it is divergent.

| =
W | —

—1
, find lim,_, _ x[k].

Example 6.9 Given a sequence with general term x[k] = Tl

. . . . . - -1 .
Solution It is meaningless simply to write k = 0o to obtain lim,_,  x[k] = T since such

a quantity is undefined. What we should do is try to rewrite x[k] in a form in which we
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can sensibly let k — oco. Dividing both numerator and denominator by k, we write
k—1 1—->1/k)
k+1 1+ /k

Then, as k — oo, 1/k — 0 so that
i <1 - (1/k)> _ lim, (1 = (1/K))
koo \ 1 + (1/k) lim_, (1 + (1/k))

by rule (4)

1
1
1

Example 6.10 Given a sequence with general term

3k* — 5k + 6
x[k] = ———
k? 42k + 1
find lim,_,  x[k].

Solution Dividing the numerator and denominator by k? introduces terms which tend to zero as
k — o0, that is
3k —5k+6  3—(5/k)+ (6/k?)
R2k+1 1+ Q)+ (1/k)
Then as k — oo, we find

3
lim xfk] = 7 =3

k— 00

k2
Example 6.11 Examine the behaviour of —— as k — oo.

3k+1
Ko k
3k+1 34 (1/k)

As k — o0, 1/k — 0 so that the denominator approaches 3. On the other hand, as
k — oo the numerator tends to infinity so that this sequence diverges to infinity.

Solution

EXERCISES 6.2

1 Graph the sequences given by 3 A sequence, x[k], is defined by
(@x[kl=k k=0,1,2,3,... 12
— xlkl=—+kk=0,1,2,3,...
(b)x{k] = {3 k=2 2

0 otherwise k=0,1,2,3,...
©xkl=e X k=0,1,2,3,...

State the first five terms of the sequence.

4 Write down the first five terms, and plot graphs, of the

2 The sequence x[k] is obtained by sampling sequences given recursively by

f(@) =cos(t +2),t € R. The sampling begins at
t = 0 and thereafter atr = 1,2, 3, .... Write down _

x[k —1]
the first six terms of the sequence. (a) x[k] = 7 x[0] =1
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(b) x[k] = 3x[k — 1] — 2x[k — 2],
x[0] =2, x[1] =1

5 A recurrence relation is defined by
x[n + 1] = x[n] + 10, x[0] =1,
n=0,1,2,3,...

Find x[1], x[2], x[3] and x[4].

6 A sequence is defined by means of the recurrence

relation
x[n + 1] = x[n] + n?, x[0] =1,
n=0,1,2,3,...

Write down the first five terms.

7 Consider the difference equation
x[n + 2] — x[n + 1] = 3x[n],
n=0,1,2,3,...
If x[0] = 1 and x[1] = 2, find the terms
x[2], x[3], ..., x[6].

8 Write down the 10th and 19th terms of the arithmetic
progressions

(@ 8,11,14,...
() 8,5,2,...

9 An arithmetic progression is given by

2b b
b, —,=.0,...
3°3

(a) State the sixth term.

(b) State the kth term.
(c) If the 20th term has a value of 15, find b.

10 Write down the 5th and 10th terms of the geometric
progression 8,4, 2, . ...

11 Find the 10th and 20th terms of the geometric
progression with first term 3 and common ratio 2.

12 A geometric progression is given by

a, ar, arz,arS,...

Solutions

2 cos2,cos3,cos4,cos5, cos6,cos7

(b)2,1,-1,-5,-13
5 11,21,31,41
6 1,1,2,6,15

7 5,11,26,59,137

13

14

15

16

17

18

10

11
12

If |(k+ 1)th term | > |kth term | and (k + 1)th term x
kth term < 0, which of the following, if any, must be
true?
(@) r>1 b) a>1
() r<-—1 (d) ais negative
) —1<r<l1
A geometric progression has first term a = 1. The
ninth term exceeds the fifth term by 240. Find
possible values for the eighth term.

3k+2
If x[k] = T+ find lim,_, __ x[K].

R 3k+2

Find hmk_)oo m.
Find the limits as k tends to infinity, if they exist, of
the following sequences:

(@) x[k] =K
2k +3
(b) x[k] = m
K4k
© A = T

4
6k +7
Find limk%o<3k+2> :

Find lim,_, _ x[k], if it exists, when

(@) xlk] = (=DF

k
(b) xlk) =2 - -
k
(c) x[k] = !
“\3
(d) x[k] = M
BT Sy S

N\
(&) xlk] = (5)

(a) 10th term = 35, 19th term = 62
(b) 10th term = —19, 19th term = —46

2b b4 —k) 45
(a) —? (b) 3 (©) _E
1 1
2’ 64

1536, 1572 864

Only (c) must be true
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17 16

18 (a) Limit does not exist
(b) Limit does not exist

3
(© 0 @ 3 (e) 0

1
16 (a) Limit does not exist (b) 3 ) 1

6.3.1

SERIES

Whenever the terms of a sequence are added together we obtain what is known as a
series. For example, if we add the terms of the sequence 1, AL we obtain the series
S, where

S—1+1+1+1
- 2 48

This series ends after the fourth term and is said to be a finite series. Other series we
shall meet continue indefinitely and are said to be infinite series.
Given an arbitrary sequence x[k], we use the sigma notation

S, = Zn:x[k]
k=1

to mean the sum x[1] 4+ x[2] 4 - -- 4 x[n], the first and last values of k being shown
below and above the Greek letter X, which is pronounced ‘sigma’. If the first term of
the sequence is x[0] rather than x[1] we would write ZZ:O x[k].

Sum of a finite arithmetic series
An arithmetic series is the sum of an arithmetic progression. Consider the sum
S=14+2+3+4+5

Clearly this sums to 15. When there are many more terms it is necessary to find a more
efficient way of adding them up. The equation for S can be written in two ways:

S=1+2+3+4+5

and
S=5+4+3+2+1

If we add these two equations together we get
2S=6+64+6+6+6

There are five terms so that

28§ =5x6=30
that is
S=15

Now a general arithmetic series with k terms can be written as
Ss,=a+(@+d)+@+2d)+---+ (a+ (k—1)d)
but rewriting this back to front, we have

S,=(a+k=Dd)+(@a+k—=2)d)+- -+ (a+d) +a
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Adding together the first term in each series produces 2a + (k — 1)d. Adding the second
terms together produces 2a + (k — 1)d. Indeed adding together the ith terms yields
2a + (k — 1)d. Hence,

28, =QRa+ (k—1d)+ 2a+ (k—1)d) +---+ 2a+ (k— 1)d)

k times

that is

28, =kQa+ (k—1)d)
so that

S, = §(2a+ (k—1)d)

This formula tells us the sum to k terms of the arithmetic series with first term a and
common difference d.

k
Sum of an arithmetic series: S, = 2 a+ (k—1)d)

Example 6.12

Solution

Find the sum of the arithmetic series containing 30 terms, with first term 1 and common
difference 4.

We wish to find S;:
S =14+5+9+---
—

30 terms

k 30
Using S, = E(Za—i— (k —1)d) we find S5, = ?(24-29 x 4) = 1770.

Example 6.13

Solution

Find the sum of the arithmetic series with first term 1, common difference 3 and with
last term 100.

We already know that the kth term of an arithmetic progression is given by a+ (k— 1)d.
In this case the last term is 100. We can use this fact to find the number of terms. Thus,

100=1+3k—1)

that is
3tk—1) =99
k—1=233
k=34

So there are 34 terms in this series. Therefore the sum, S, is given by

34
Sy = 7{2(1) + (33)(3)}

= 17(101)
— 1717
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Sum of a finite geometric series

A geometric series is the sum of the terms of a geometric progression. If we sum the

tri ion1, =, -, —, — we find

gCOIIlC I1C pI'OgI'CSSlOIl ,2,4, 8, 16 Wwe In
S=14ipbyply ] (6.1)
~ 274787 16 '

If there had been a large number of terms it would have been impracticallto add them all

directly. However, let us multiply Equation (6.1) by the common ratio, —:

lS—1+1+1+1+1 (6.2)
2°7 2 4 8 16 32 '

so that, subtracting Equation (6.2) from Equation (6.1), we find

1 1

S—=S=1——

2 32
) 1 31 31 15
since most terms cancel out. Therefore —S = — andsoS= — =1—.
2 32 16 16

We can apply this approach more generally: when we have a geometric progression
with first term ¢ and common ratio r, the sum to k terms is

Sy =a+tar+ar® +ar’ - +ar*!
Multiplying by r gives

rS, =ar+ar*+ar’ + - +ar"' +ar*
Subtraction gives S, — rS, = a — ar*, so that

a(l —rk)

Si = 1—r

provided r # 1
This formula gives the sum to k terms of the geometric series with first term a and
common ratio r.

a(l —rk)

Sum of a geometric series: S, = 1
—r

r#1

Sum of an infinite series

When dealing with infinite series the situation is more complicated. Nevertheless, it is
frequently the case that the answer to many problems can be expressed as an infinite
series. In certain circumstances, the sum of a series tends to a finite answer as more and

more terms are included and we say the series has converged. To illustrate this idea,

11
consider the graphical interpretation of the series 1 + - 4+ — 4+ — 4 .-+, as given in

2 4 8
Figure 6.6.
Start at 0 and move a length 1: total distance moved = 1

1 1
Move further, a length E: total distance moved = 15

1 3
Move further, a length Z: total distance moved = 14_1
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6.3.4

L L '1 '3 '7 L Figure 6.6
0 1 15 13152 Graphical interpretation of the series
1 1 1
I = = =,
ot Tt
At each stage the extra distance moved is half the distance remaining up to the point
x = 2. It is obvious that the total distance we move cannot exceed 2 although we

can get as close to 2 as we like by adding on more and more terms. We say that the

series 1 + 3 + — + - - converges to 2. The sequence of total distances moved, given

. 4
previously,
1 3 7
L=, 1=,1—,...
24 8

is called the sequence of partial sums of the series.
For any given infinite series ) _,- | x[k], we can form the sequence of partial sums,

1
Sy =Y [kl = af1]
k=1

2
S, =Y xlkl = x[1]+x(2]

k=1

3
Sy = Zx[k] = x[1] + x[2] 4 x[3]

k=1

If the sequence {S,} converges to a limit S, we say that the infinite series has a sum S
or that it has converged to S. Clearly not all infinite series will converge. For example,
consider the series

1+2+3+4+5+---

The sequence of partial sums is 1, 3, 6, 10, 15, .. .. This sequence diverges to infinity
and so the series 1 +2 +3 +4 45+ - - - is divergent.

It is possible to establish tests or convergence criteria to help us to decide whether
or not a given series converges or diverges, but for these you must refer to a more
advanced text.

Sum of an infinite geometric series

In the case of an infinite geometric series, it is possible to derive a simple formula for

its sum when convergence takes place. We have already seen that the sum to k terms is
given by

a(l —rk)

k —_——

r=#1

1—r

What we must do is allow k to become large so that more and more terms are included
a

in the sum. Provided that —1 < r < 1, then ¥ — 0 as k — oco. Then S, — 7
—r
When this happens we write
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where S is known as the ‘sum to infinity’. If » > 1 or » < —1, r¥ fails to approach a
finite limit as k — oo and the geometric series diverges.

Sum of an infinite geometric series: S, = 1

4 —1l<r<l1

—r

Example 6.14

111
@ 1+s+-+=+

Find the sum to k terms of the following series and deduce their sums to infinity:

1
(b) 124 6+3 412+

39 27
Solution (a) This is a geometric series with first term 1 and common ratio 1/3. Therefore,
g _al— 1 - (1/3)%) _ §(1 B <1>")
k 1—r 2/3 2 3
As k — o0, (1/3)F — 0so that S, = 3/2.
(b) This is a geometric series with first term 12 and common ratio % Therefore,
S, =241 — (1/2))
Ask — oo, (1/2)" — 0O sothat S, = 24. This could, of course, have been obtained
directly from the formula for the sum to infinity.
EXERCISES 6.3

An arithmetic series has a first term of 4 and its 30th
term is 1000. Find the sum to 30 terms.

Find the sum to 20 terms of the arithmetic series with
first term @, and common difference d, given by
(@ a=4,d=3 (b) a=4,d=-3

If the sum to 10 terms of an arithmetic series is 100

and its common difference, d, is —3, find its first term.

The sum to 20 terms of an arithmetic series is
identical to the sum to 22 terms. If the common
difference is —2, find the first term.

Find the sum to five terms of the geometric series
with first term 1 and common ratio 1/3. Find the sum
to infinity.

Find the sum of the first 20 terms of the geometric
series with first term 3 and common ratio 1.5.

Solutions

15060

(a) 650 (b) —490

10

11

12

Find the sum of the arithmetic series with first term 2,
common difference 2, and last term 50.

The sum to infinity of a geometric series is four times
the first term. Find the common ratio.

The sum to infinity of a geometric series is twice the
sum of the first two terms. Find possible values of the
common ratio.
Express the alternating harmonic series

1 1

1
11— 3 + 371 + - - - in sigma notation.
k

Write down the first six terms of the series Y oz .

Explain why Y 22, x[k] is the same as ) . | x[n].
Further, explain why both can be written as
oo alk + 11.

23.5
41
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3 1
5 1494,5,.=3 9 +—
V2
6 19946 o (_1yrH]
7 650 10 ZI: n
1 1 1 1
8 3 M 144 oot + =
g +-t+5+z+5+
z 22 2 P
Technical Computing Exercises 6.3
Most technical computing languages have built-in 1.000000 0.500000 0.250000
functions for generating geometric series. MATLAB® 0.125000 0.062500

has the function cumprod which calculates the
cumulative product of the numbers passed to its
input. It takes the first term and then successively

1 Calculate the sum of all of the elements in the finite
series given above.

multiplies the succeeding arguments in turn by the 2 Increase the number of elements in the series to 10
result. and note the difference in your answer.

For example, in MATLAB® we could type: 3 Compare the answers to the previous two exercises to
S=cumprod([1 0.5 0.5 0.5 0.5]) the exact equation given at the end of Section 6.3.2
to produce the geometric series and store it in a row with a = 1 and r = 0.5. What would you expect to
vector S. happen if there were 100 elements in the series?

m THE BINOMIAL THEOREM

It is straightforward to show that the expression (a + b)?> can be written as a®> +
2ab + b?. 1t is slightly more complicated to expand the expression (a + b)? to a® +
3a’b + 3ab® + b*. However, it is often necessary to expand quantities such as (a + b)°
or (a + b)', say, and then the algebra becomes extremely lengthy. A simple technique
for expanding expressions of the form (a + b)", where n is a positive integer, is given by
Pascal’s triangle.

Pascal’s triangle is the triangle of numbers shown in Figure 6.7, where it is observed
that every entry is obtained by adding the two entries on either side in the preceding
row, always starting and finishing a row with a ‘1’. You will note that the third row
down, 1 2 1, gives the coefficients in the expansion of (a + b)?> = 1a* + 2ab + 157,
while the fourthrow, 1 3 3 1, gives the coefficients in the expansion of (a + b)* =
1a® + 3a®b + 3ab? + 1b*. Furthermore, the terms in these expansions are composed of
decreasing powers of a and increasing powers of b. When we come to expand the quan-
tity (a + b)* the row beginning ‘1 4’ in the triangle will provide us with the necessary
coefficients in the expansion and we must simply take care to put in place the appropriate
powers of @ and b. Thus (a + b)* = la* + 4a*b + 6a*b> + 4ab’® + 1b*.

1 1
1 2 1
1 3 3 1
1 (4) = (6) 4 1
1 5 @ 10 5 1 Figure 6.7

1 6 15 20 15 6 1 Pascal’s triangle.



6.4 The binomial theorem 215

Example 6.15

Solution

Use Pascal’s triangle to expand (a + b)°.

We look to the row commencing ‘1 6°, thatis1 6 15 20 15 6 1, because
a—+ b is raised to the power 6. This row provides the necessary coefficients. Thus,

(a+b)° = a® + 6a°b + 15a*0* + 20a°b* + 154°b* + 6ab® + b°

Example 6.16

Solution

Expand (1 + x)7 using Pascal’s triangle.

Forming the row commencing ‘1 7’ we select the coefficients
1 7 21 35 35 21 7 1
In this example, a = 1 and b = x so that

(14x)7 =14+ Tx+21x% 4+ 358 + 35x* +21x° + 72® + &7

When it is necessary to expand the quantity (a + b)" for large n, it is clearly in-
appropriate to use Pascal’s triangle since an extremely large triangle would have to be
constructed. However, it is frequently the case that in such situations only the first few
terms in the expansion are required. This is where the binomial theorem is useful.

The binomial theorem states that when # is a positive integer
—1 —Dnr-2
(a+b)" =d" +na""'b+ s )a"_2b2 4 re=Dn=2)

n—313
21 31 a b
L ool [

It is also frequently quoted for the case when @ = 1 and b = x, so that

nn—1)(n— 2)x3 .

(1+x)”=l+nx+n(n271)x2+ - oty 6.3)

Example 6.17

Solution

Expand (1 4 x)'° up to the term in x>.

We could use Pascal’s triangle to answer this question and look to the row commencing
‘1 10’ but to find this row considerable calculations would be needed. We shall use the
binomial theorem in the form of Equation (6.3). Taking n = 10, we find

10(9 1
( )xz ( 0)(9)(8)x3+--~
2! 3!

=14 10x +45x> + 120x° + - - -

(14+0""=1+10x+

so that, up to and including x°, the expansion is

1 + 10x + 45x% + 120x3
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We have assumed in the foregoing discussion that 7 is a positive integer in which case
the expansion given by Equation (6.3) will eventually terminate. In Example 6.17 this
would occur when we reached the term in x'°. It can be shown, however, that when 7 is
not a positive integer the function (1 + x)" and the expansion given by

n(n — 1)x2+ nn — 1)(n—2)x3 .

IT+x)"=14+nx+ 2 3

(6.4)
have the same value provided —1 < x < 1. However, when 7 is not a positive integer the
series does not terminate and we must deal with an infinite series. This series converges
when —1 < x < 1 and the expansion is then said to be valid. When x lies outside this
interval the infinite series diverges and so bears no relation to the value of (1 4 x)". The
expansion is then said to be invalid.

The binomial theorem:
n—-1 , nh—-1)n-2) ,
T 3! r

(1+x)”=1+nx+n —l<x<l

Example 6.18

Solution

Use the binomial theorem to expand 1 in ascending powers of x up to and including
X

the term in x>.

can be written as (1 4+ x)~'. Using the binomial theorem given by Equation (6.4)
X
with n = —1, we find
—1)(—-2 —1)(—=2)(-3
(=1)( )x2+ (=D (=2)( )x3

2! 3!
=1—x4+x-x+--

(I4+x)"'"=1+(—Dx+

provided —1 < x < 1. Consequently, if in future applications we come across the series
1 —x+x*— x>+ ..., we shall be able to write it in the form (1 + x)~!. This closed
form avoids the use of an infinite series and so it is easier to handle. We shall make use
of this technique in Chapter 22 when we meet the z transform.

Example 6.19

Solution

Obtain a quadratic approximation to (1 — 2x)'/? using the binomial theorem.

1
Using Equation (6.4) with x replaced by —2x and n = 3 we have

1/2)(=1/2)

1
(1-20"2 =1+ (§>(—2x)+ 5 (=2x)* + -
1
:1—x—5x2+...

1
provided that —1 < —2x < 1, that is —3 <x < R A quadratic approximation is

1,
therefore 1 — x — Ex .
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EXERCISES 6.4

Use the binomial theorem to expand

4
@ (1403 ® +0* (0 <1+§>

5 5 4
X X X
() (1 - 2) (e) <2+ 2) () (3 - 4)

Use Pascal’s triangle to expand (a + b)3.
Use Pascal’s triangle to expand (2x + 3y)*.
Expand (a — 2b)3.

Use the binomial theorem to find the expansion of

(3 — 2x)% up to and including the term in x°.

Obtain the first four terms in the expansion of

1 10

Obtain the first five terms in the expansion of

(1 4 2x)1/2. State the range of values of x for which
the expansion is valid. Choose a value of x within the
range of validity and compute values of your
expansion for comparison with the true function
values.

—4
1
Expand (1 + 5x> in ascending powers of x up to
the term in x*, stating the range of values of x for
which the expansion is valid.
-1/2
Expand (1 + 7> in descending powers up to the
X

fourth term.

Solutions

(@ 143x+32+x°

(b) 1+ 4x + 6x2 +4x3 +x*

© 148,20 40 2
3 3 27 81
5 5x% 5%

d 1-—
@ 2+2 4

n 564 X0
16 32
2 3 564 X
(e) 32+ 40x+ 20x~ 4+ 5x° + = + 3
27x2 33 X
81 —27x 4+ —— — T 4
® T T 16 T %6
a® + 8a’b + 28a°b? + 56a°b° + 70a*b* + 5643b5 +
28a%b° + 8ab” + b®

10

11

12
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(a) Expand (1 + )4
(b) Expand (1 + 1/x%)%.
A function, f(x), is given by

. 1/2
feo= (1 + )
X

(a) Obtain the first four terms in the expansion of
f(x) in descending powers of x. State the range
of values of x for which the expansion is valid.

(b) By writing f(x) in the form

fo =x"21+20)!2

obtain the first four terms in the expansion of
f(x) in ascending powers of x. State the range of
values of x for which the expansion is valid.

The function, g(x), is defined by

1
X) = ———>—
S0 = Ty
(a) Obtain the first four terms in the expansion of
g(x) in ascending powers of x. State the range of
values of x for which the expansion is valid.
(b) By rewriting g(x) in an appropriate form, obtain
the first four terms in the expansion of g(x) in
descending powers of x. State the range of values

of x for which the expansion is valid.

16x* +96x3y + 216x%y? 4 216xy> + 81y*
@ — 10a*b + 40a3b? — 80a2b® + 80ab* — 32b°
729 — 2916x 4 4860x% — 4320x3

4552
1+5x+Tx+15x3

2 3 4

35 1 1
1+x—%+%—%validfer—5<x<5
522 5% 35
1—2x+%—%+%validfor—2<x<2
13 5

2r 82 1623
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2 4 6 .8 2 3
@ 1+ard o4t b +12(142 -2 4 ) valid for |x| < 1
4 6 4 1 2 8 16
(b) 1+72+7+76+78
X X4 X X > 4 6 i
12 (a) 1 —4x"+ 10x" —20x° valid for |x] < 1
1 1
1 14 — — — + — valid f 1 -8 4 1020 .
(a) +2x 8x2+16x3 valid for |x| > (b) x (1_x2+x4_x6”' valid for |x| > 1

POWER SERIES

A particularly important class of series are known as power series and these are infinite
series involving integer powers of the variable x. For example,

I+x+x24+x +---

and

2 3
I+x+—+—=+--
2 6
are both power series. Note that a power series can be regarded as an infinite polynomial.
Many common functions can be expressed in terms of a power series, for example

B
sinx=x— —+— —--- x in radians
3t 5!
which converges for any value of x. For example,
. 0.5° (0.5
0.5) =0.5— .
sin(0:3) 6 120

Taking just the first three terms, we find
sin(0.5) ~ 0.5 — 0.020 8333 + 0.0002604 = 0.479427 1

as compared with the true value, sin 0.5 = 0.4794255.

More generally, a power series is only meaningful if the series converges for the
particular value of x chosen. We define an important quantity known as the radius of
convergence, R, as the largest value for which an x chosen in the interval —R < x < R
causes the series to converge.

The open interval (—R, R) is known as the interval of convergence. Tests for conver-
gence of a power series are the subject of more advanced texts. Further consideration will
be given to power series in Chapter 18, but for future reference we give some common
expansions now:

) 2 X . .
smx=x——+— —--- x in radians
31 5!
x> X . .
cosx=1——+——-.. x in radians
21 4!

2 x3 x4-

X
e =1+x+5+§+a+"‘

all of which converge for any value of x.
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Each of these series converges rapidly when x is small, and so can be used to obtain
useful approximations. In particular, we note that

If x is small and measured in radians
. x?
sinx ~ x and cosx~ 1 — 21

These formulae are known as the small-angle approximations.

EXERCISES 6.5

By considering the power series expansion for

1 The power series expansion of e* is given by
cos(—x) show that cos x = cos(—x).

2 3
x° X
e =1+x+ 2 + 31 + e 3 By considering the power series expansion of e* find
. . ’ ) . 020 1/k!.
and is valid for any x. Take four terms of the series Xizo 1/
when x =0, 0.1, 0.5 and 1, to compare the sum to four 4 Obtain a cubic approximation to e* sin x.

terms with the value of e* obtained from your
calculator. Comment upon the result.

2 Using the power series expansion for cos x: (b) By using your solution to (a) and the expansion
for e*, deduce the power series expansions of

cosh x and sinh x.

5 (a) State the power series expansion for e .

(a) Write down the power series expansion for

cos 2x.
(b) Write down the power series expansion for
cos(x/2).
Solutions
1 3 e
X e* Sum to 4 terms 2
L x4+x*4+ =
1 1 3
0.1 1.1052 1.1052 5 . P
05 16487 16458 @ I=xtor—5F
1 2.7183 2.6667
2 oxt
Values are in close agreement when x is small. (b) coshx =1+ 20 + 41 T
5 2 x? x* roox
2 (a) 1—2x +T— (b)l—g—f—@— smhx=x+§+§+-~

I SEQUENCES ARISING FROM THE ITERATIVE SOLUTION
OF NON-LINEAR EQUATIONS

It is often necessary to solve equations of the form f(x) = 0. For example,
1
f)=x=3x>+7=0, f(x)=Inx—-=0
X

To solve means to find values of x which satisfy the given equation. These values are
known as roots. For example, the roots of x> —3x+2=0arex = 1 and x = 2 because
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when these values are substituted into the equation both sides are equal. Equations where
the unknown quantity, x, occurs only to the first power are called linear equations.
Otherwise an equation is non-linear. A simple way of finding the roots of an equation
f(x) = 0is to sketch a graph of y = f(x) as shown in Figure 6.8.

The roots are those values of x where the graph cuts or touches the x axis.
Generally, there is no analytical way of solving the equation f(x) = 0 and so it is often
necessary to resort to approximate or numerical techniques of solution. An iterative
technique is one which produces a sequence of approximate solutions which may con-
verge to a root. Iterative techniques can fail in that the sequence produced can diverge.
Whether or not this happens depends upon the equation to be solved and the availability
of a good estimate of the root. Such an estimate could be obtained by sketching a graph.
The technique we shall describe here is known as simple iteration. It requires that the
equation be rewritten in the form x = g(x). An estimate of the root is made, say x,, and
this value is substituted into the r.h.s. of x = g(x). This yields another estimate, x,. The
process is then repeated. Formally we express this as

xn-H = g(xn)

This is a recurrence relation which produces a sequence of estimates x;, X, x,, .. ..
Under certain circumstances the sequence will converge to a root of the equation. It
is particularly simple to program this technique on a computer. A check would be built
into the program to test whether or not successive estimates are converging.

Example 6.20

Solution

X

Solve the equation f(x) = e ™ — x = 0 by simple iteration.

The equation must first be arranged into the form x = g(x), and so we writee™ —x = 0
as

X=¢

In this example we see that g(x) = e™*. The recurrence relation which will produce
estimates of the root is

X

xn+1 =e
Table 6.1
Iterative solution of
et —x=0.
n X,
0 0
fC) A | |
2 0.368
\\ 3 0.692
4 0.501
/ o 5 0.606
N— x 6 0.546
Figure 6.8
A root of f(x) = 0 occurs where the 0.567

graph touches or crosses the x axis.
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Suppose we estimate x, = 0. Then

x,=e 1 =e ' =0.368

The process is continued. The calculation is shown in Table 6.1 from which we see that
the sequence eventually converges to 0.567 (3 d.p.). We conclude that x = 0.567 is a
rootofe™ —x = 0.

Note that if the equation to be solved involves trigonometric functions, angles will usu-
ally be measured in radians and not degrees.

Itis possible to devise a test to check whether any given rearrangement will converge.
For details of this you should refer to a textbook on numerical analysis. There are other
more sophisticated iterative methods for the solution of non-linear equations. One such
method, the Newton—Raphson method, is discussed in Chapter 12.

EXERCISES 6.6
1 Show that the quadratic equation x> — 5x — 7 = 0 can is
be written in the form x = /7 + 5x. Withx; = 6 3 — e
locate a root of this equation. Xng1 = 10

2 For the quadratic equation of Question 1 show that an
alternative rearrangement is

-7 . 5 (a) Show that the cubic equation X 4+3x—5=0
. With x; = 0.6 find the second .
can be written as

solution of this equation.

With x;, = 0 locate a root of the given equation.

X =

3

3 For the quadratic equation of Question 1 show that i x= —3x ,
another rearrangement is x = z + 5. Try to .5
solve the equation using varimfs initial estimates. = 2+3
Investigate further alternative arrangements of the (b) By sketching a graph for values of x between 0

original equation.

Show that one recurrence relation for the solution of
the equation

e+ 10x—-3=0

and 3 obtain a rough estimate of the root of the
equation given in part (a).

(c) Determine which, if either, of the arrangements
in part (a) converges more rapidly to the root.

Solutions
1 6.14 5 (b) 1.15
2 _114 (c) Arrangement (ii) converges more rapidly

4 0.18
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Technical Computing Exercises 6.6

Write a computer program to implement the simple
iteration method. By comparing successive estimates

the program should check whether convergence is
taking place.

REVIEW EXERCISES 6

1

Write down and graph the first five terms of the
sequences x[k] defined by

() x[k] = (=Dk, k=0,1,2,3,...
® =0 is0123
= =0L%3...

Find expressions for the kth terms of the sequences
whose first five terms are

(a) 1,9,17,25,33
() -1 1,-1,1,-1

For the Fibonacci sequence

1,1,2,3,5,8, ...
show that
xlk+11 1
=-(1 5)
koo xIK] 2( +V5

[Hint: write x[k + 1] = x[k] + x[k — 1], form
x[k + 1]/x[k] and take limits.]

Use the binomial theorem to expand (1 + x + %)% as

far as the term in x°.

Use the binomial theorem to expand ——
(G +x)3

in ascending powers of x as far as the term in x°.

The power series expansion for In(1 + x) is given by

2 3 X

X
In(1 — X — e — — — ...
n(l+x)=x 24—3 4+

and is valid for —1 <x < 1. Take a number of values
of x in this interval and obtain an approximate value
of In(1 4+ x) by means of this series. Compare your
answers with the values obtained from your calculator.

By multiplying both numerator and denominator of

N/E=
%[by«/k—l-l—i—«/l;ﬁnd
 NEFT =k
lim ——
k—o00 2

10

11

12

13

14

3
—1

Find lim L( .
k—oo\ 2k + 7

20 =3k
Find lim ————.
k—oo Tk + 2k

Write down the first eight terms of the series ) ;_; k.
By noting that this is an arithmetic series show that

Xn:kz nn+1)
2
k=1

Write down the first six terms of the sequence defined
by the recurrence relation

x[n+ 3] = x[n + 2] — 2x[n]
x[0] =0 x[1]1=2 x[2]1=3
Find the limit, if it exists, as k — oo of the geometric
progression

a, ar, arz,...,arkfl,...

when

@) —-1<r<l1

(b)) r>1

(c) r<-—1

d r=1

e) r=-—1

An arithmetic series has a first term of 4 and the 10th
term is 0.

(a) Find S,.

(b) If S, =0, find n.

A geometric series has

S — 37 . 3367
378 67 512
Find the first term and the common ratio.



15 (a) Write down the series given by Z,S.:] .

(b) The sum of the squares of the first n whole
numbers can be found from the formula

i’z a4+ 1)@2n+1)
- 6

Use this formula to find
@) Zle 2, (i) Zigl P2, (i) Zr 6 r
16 (a) Write down the series given by Z =1 .

(b) The sum of the cubes of the first n whole
numbers can be found from the formula

)

Use thls formula to find
M Y07, G Y20 i) 02,0

17 The third term of an arithmetic progression is 18. The
fifth term is 28. Find the sum of 20 terms.

18 (a) Find an expression for the general term in the

sequence
2,5,10,17, ...
Solutions
11 11
1 L,-1,1,-1,1 b) 1, ——, =
() (b) ~35 7%

2 () 8k—7 k>1 ®) (=DF k>1

4 14 5x+ 15x% + 3053

7
27

g8 =
8

9 0

11 0,2,3,3,—-1,-7

12 (a) 0 (b) no limit
d) a (e) no limit

(c) no limit

13 (a) —% (b) 19
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(b) Define the sequence in terms of a recurrence
relation.
19 (a) Show that the equation X +2x—14=0canbe

rearranged into the form x = /14 — 2x. With
X = 2 use simple iteration to find a root of the
equation.

(b) Rearrange the equation 0.8 sinx — 0.5x = 0 into
the form x = g(x). With x = 2 use simple
iteration to find a root of the equation.

(c) Rearrange the equation x> = 2e™ into the form
x = g(x). With x; = 0 use simple iteration to find
a root of the equation.

20 Write out explicitly the first four terms of the series
i (-1 )m x2m
2i Y
m=0 27" (m!)
21 Write out explicitly the first four terms of the series
0 (-1 )m x2m+1

Z 22m+L ) (m + 1)1

m=0

14 2,%
15 () 1+4+9+16+25

(b) () 55 (i) 385 (i) 330
16 (2) 148+27+64+125+216

(b) () 441 (i) 6084 (i) 5643
17 1110

18 (a) x[k]=k*+1,k=1,2,3,...
(b) x[k+ 11 = x[k] + 2k + 1

19 (a) 2.13
(b) x=1.6sinx, 1.6
(c) x=/2e"*,0.93
1 1 1
20 1— - 0
4x Tt Tt T
1 1 1 1
21 fx——x3+—x5— X!

2 16 384 18432
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INTRODUCTION

Certain physical quantities are fully described by a single number: for example, the mass
of a stone, the speed of a car. Such quantities are called scalars. On the other hand,
some quantities are not fully described until a direction is specified in addition to the
number. For example, a velocity of 30 metres per second due east is different from a
velocity of 30 metres per second due north. These quantities are called vectors and it is
important to distinguish them from scalars. There are many engineering applications in
which vector and scalar quantities play important roles. For example, speed, potential,
work and energy are scalar quantities, while velocity, electric and magnetic forces, the
position of a robot and the state-space representation of a system can all be described
by vectors. A variety of mathematical techniques have been developed to enable useful
calculations to be carried out using vectors and in this chapter these will be discussed.

VECTORS AND SCALARS: BASIC CONCEPTS

Scalars are the simplest quantities with which to deal; the specification of a single num-
ber is all that is required. Vectors also have a direction and it is useful to consider a graph-
ical representation. Thus the line segment AB of length 4 in Figure 7.1 can represent
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/ B
/ B AB
N A ,,,,ff:”,,D
CD

A C
Figure 7.1 Figure 7.2

—
A vector, AB, of length 4. Two equal vectors.

a vector 1n the dlrectlon shown by the arrow on AB. This vector 1s denoted by AB

Note that AB # BA The vector AB is directed from A to B, but BA is directed from
B to A.

=

An alternative notation is frequently used: we denote AB by a. This bold notation
is commonly used in textbooks but the notation g is preferable for handwritten work.
We now need to refer to the diagram to appreciate the intended direction. The length of
the line seg_)ment represents the magnitude, or modulus, of the vector and we use the

notation |[AB|, |a| or simply a to denote this. Note that whereas a is a vector, |a| is a
scalar.

Negative vectors

The vector —a is a vector in the opposite direction to, but with the same magnitude as,
— —
a. Geometrically it will be BA. Thus —a is the same as BA.

Equal vectors

Two Vectors are equal if they have the same magnitude and direction. In Figure 7.2 vec-

tors CD and AB are equal even though their locations differ. This is a useful property of
vectors: a vector can be translated, maintaining its length and direction without changing
the vector itself. There are exceptions to this property. For example, we shall soon meet
position vectors which are used to locate specific fixed points in space. They clearly
cannot be moved around freely. Nevertheless most of the vectors we shall meet can be
translated freely, and as such are often called free vectors.

Vector addition

It is frequently useful to add two or more vectors together and the addition of vectors is

defined by the triangle law. Referring to Figure 7.3, if we wish to add AB to CD, CD is
translated until C and B coincide. As mentioned earlier, this translation does not change

the vector CD. Then the sum, AB 4 CD, is defined by the vector represented by the third
side of the completed triangle, that is AD (Figure 7.4). Thus,

AB+CD =AD
Similarly, if AB is denoted by a, CD is denoted by b, AD is denoted by ¢, then we have
c=a+b

We note that to add a and b a triangle is formed using a and b as two of the sides in such
a way that the head of one vector touches the tail of the other as shown in Figure 7.4.
The sum a + b is then represented by the third side.
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B C
C AB
B —
CD
A
a
b
A AD
D
D
Figure 7.4
Figure 7.3 N N Addition of the two vectors of Figure 7.3 using
Two vectors, AB and CD. the triangle law.
It is possible to prove the following rules:
a+b=b+a vector addition is commutative

a+ (b+c)=(a+b)+c vector addition is associative

To see why it is appropriate to add vectors using the triangle law consider Examples 7.1
and 7.2.

Engineering application 7.1

Routing of an automated vehicle

Automated vehicles are a common feature of the modern warehouse. Sometimes they
are guided by tracks set into the factory floor. Consider the case of an automated
vehicle carrying electrical components from stores at A to workers at C as illustrated
in Figure 7.5.

The vehicle may arrive at C eithe_r) directly, or via point B. The movement from A

to B can be represented by a vector AB known as a displacement vector, whose mag-
nitude is the distance between points A and B. Similarly, movement from B to C is
represented by BC, and movement directly from A to C is represented by AC. Clearly,
since A, B and C are fixed points, these displacement vectors are fixed too. Since the

head of the vector AB touches the tail of the vector BC we are ready to use the triangle
law of vector addition to find the combined effect of the two displacements:

— —

AB+BC=A
This means that the combined effect of displacements AB and BC is the displacement
AC. We say that AC is the resultant of AB and BC.
C

Figure 7.5
Routing of an automated vehicle from stores at
= AB A to workers at C.




7.2 Vectors and scalars: basic concepts 227

In considering motion from point A to point B, the vector AB is called a displace-
ment vector.

Engineering application 7.2

Resultant of two forces acting on a body

Sometimes it is useful to be able to calculate the resultant force when several different
forces act on a body. Consider the simplest case when there are two forces.

Aforce F, of 2 N acts vertically downwards, and a force F, of 3 N acts horizontally
to the right, upon the body shown in Figure 7.6. Translating F, until its tail touches
the head of F, we can apply the triangle law to find the combined effect of the two
forces. This is a single force R known as the resultant of F, and F,. We write

R=F,+F,

and say that R is the vector sum of F, and F,. The resultant force, R, acts at an angle
of 6 to the vertical, where tan® = 3/2, and has a magnitude given by Pythagoras’s

theorem as +/22 + 32 = /13 N.

Figure 7.6
Resultant force, R, produced by a vertical force, F |, and a
horizontal force, F,.

Engineering application 7.3

Resolving a force into two perpendicular directions

In the previous example we saw that two forces acting upon a body can be replaced by
a single force which has the same effect. Equivalently we can consider a single force
as two forces acting at right angles to each other. Consider the force F in Figure 7.7.
It can be replaced by two forces, one of magnitude |F|cosé and one of magnitude
|F| sin 6 as shown. We say that the force F has been resolved into two perpendicular
components.

For example, Figure 7.8 shows a force of 5 N acting at an angle of 30° to the x
axis. It can be resolved into two components. The first component is directed along
the x axis and has magnitude 5 cos 30° N. The second component is perpendicular
to the first and has magnitude 5 sin 30° N. These two components combine to have
the same effect as the original 5 N force.
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A A
F A :
. 1 5 1
e ! 5 sin 30° !
AN 5 . v 30° L
| o [ Vx
F cos 6 5 cos 30°
Figure 7.7 Figure 7.8
A force F can be resolved into two The 5 N force can be resolved into two
perpendicular components. perpendicular components.

Example 7.1

Solution

Vectors p, q, r and s form the sides of the square shown in Figure 7.9. Express
(a) pintermsof r
(b) sinterms of q

(c) diagonal BD in terms of q and r

(a) The vector p has the same length as r but has the opposite direction. Therefore
p=-r
(b) Vector s has the same length as q but has the opposite direction. Therefore s = —q.
(c) The head of BC coincides with the tail of CD. Therefore, by the triangle law of
addition, the third side of triangle BCD represents the sum of BC and CD, that is
BD = BC+ CD
=q-+r

7.2.4

Vector subtraction

Subtraction of one vector from another is performed by adding the corresponding neg-
ative vector; that is, if we seek a — b, we form a + (—b).

Example 7.2

Consider the rectangle illustrated in Figure 7.10 with a and b as shown. Express in terms
of A, B, C or D the vectorsa — b and b — a.

B J C

B C
p yr

a A
A s D .

A T) D
Figure 7.9
The vectors p, q, r and s form the sides Figure 7.10

of a square. The rectangle ABCD.
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Bre.. Br-..
AiB “\\ BA \\\
A — A — T p
DA AD
Figure 7.11 Figure 7. 12
The vectors AB and DA The vectors BA and AD
Solution We have
b =AD
hence
“b=DA
Then
a—b=a + (= b)
= AB + DA
= DA + AB by commutativity
D_I)A and A_}i are shown in Figure 7.11. Their sum is given by the triangle law, that is
a—b=DA+AB = DB
Similarly,
a= A_l}
hence
—a=BA
Then
b—a=b+ (—a)
—AD + BA
= BA +AD

BA and AD are shown in Figure 7.12. Again their sum is given by the triangle law, that is
b—a=BA+AD =BD

Example 7.3

Solution

Referring to Figure 7.13, if r, and r, are as shown, find the vector b = QP represented
by the third side of the triangle OPQ.

From Figure 7.13 we note from the triangle law that
OP = Q0 + OP = OP + QO by commutativity.
But Q0 = —r, and QP = b, and so

b=r —-r,
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Figure 7.13
The two vectors ry and r,.

Q 70 Q
P P
R
0 r 0
Figure 7.14 Figure 7.15
The tetrahedron OPQR. The triangle OPQ.

Vectors do not necessarily lie in a two-dimensional plane. Three-dimensional vectors
are commonly used as is illustrated in the following example.

Example 7.4 OPQR is the tetrahedron shown in Figure 7.14. Let OP =p, OQ = q and 0
Express PQ QR and RP in terms of p, q and r.

Solution Consider the triangle OPQ shown in Figure 7.15. We note that OQ represents the third
side of the triangle formed when p and PQ are placed head to tail. Using the triangle law
we find

OP + PQ =00
Therefore,
PQ =00 - opP
=q-p
Similarly, OR =r —qand RP =p —rr.
7.2.5 Multiplication of a vector by a scalar

If k is any positive scalar and a is a vector then ka is a vector in the same direction as a
but k times as long. If k is any negative scalar, ka is a vector in the opposite direction to
a, and k times as long. By way of example, study the vectors in Figure 7.16. Clearly 2a

1
is twice as long as a but has the same direction. The vector Eb is half as long as b but

has the same direction as b. It is possible to prove the following rules.

For any scalars k and /, and any vectors a and b:
k(a+b) = ka+ kb
(k+1Da=ka+ la
k(la) = (kl)a

The vector ka is said to be a scalar multiple of a.
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A

C

\/a/ x b M
b a
2a b
B

Figure 7.17
Figure 7.16 The triangle ABC, with midpoint M
Scalar multiplication of a vector. of side AB.

Example 7.5 1In a triangle ABC, M is the midpoint of AB. Let AB be denoted by a, and BC by b.
Express AC, CA and CM in terms of a and b.
Solution The situation is sketched in Figure 7.17. Using the triangle rule for addition we find
AB + BC = AC
Therefore,
AC=a+b
It follows that CA = —AC = —(a + b).
Again by the triangle rule applied to triangle CMB we find
CM = CB + BM
— 1~ 1
Now BM = -BA = ——~aand so
2 2
CH =—-b+ ! a
B 2
b+ :
=— —a
2
7.2.6 Unit vectors

Vectors which have length 1 are called unit vectors. If a has length 3, for example,
then a unit vector in the direction of a is clearly ga. More generally we denote the unit

vector in the direction a by a. Recall that the length or modulus of a is |a| and so we can
write

1
Note that |a| and hence ﬂ are scalars.
a
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7.2.7 Orthogonal vectors

If the angle between two vectors a and b is 90°, that is a and b are perpendicular, then a

and b are said to be orthogonal.

EXERCISES 7.2

For the arbitrary points A, B, C, D and E, find a single
vector which is equivalent to
— — —

—
(a) DC+CB (b) CE +DC
Figure 7.18 shows a cube. Let p = AB, q = AD and

— - =
r = AE. Express the vectors representing BD, AC and
—

AG in terms of p, q and r.

PA

A q D
Figure 7.18

Solutions

(a) lﬁi (b) l;li
q—Pp.q+Pp.q+r+p
9 —P.4q—PpP.—P—(q
See Figure S.16.

13.9 N at an angle of 59.7° to the negative x axis

6.34 N, 13.59N

In a triangle ABC, M is the midpoint of BC, and N is
— —
the midpoint of AC. Show that NM = %AB.

Consider a rectangle with vertices at E, F, G and H.
— —
Suppose EF = p and FG = q. Express each of the
— — — —
vectors EH, GH, FH and GE in terms of p and q.

If a is an arbitrary vector, represent on a diagram the

1 R
vectors a, —a, 3a, —3aand a.

a
2 4’
A particle is positioned at the origin. Two forces act
on the particle. The first force has magnitude 7 N

and acts in the negative x direction. The second force
has magnitude 12 N and acts in the y direction.
Calculate the magnitude and direction of the resultant
force.

A force of 15 N acts at an angle of 65° to the x axis.
Resolve this force into two forces, one directed along
the x axis and the other directed along the

y axis.

_._
a
1
>
—
_a
4
3a
—3a
Figure S.16

m CARTESIAN COMPONENTS

Consider the x—y plane in Figure 7.19. The general point P has coordinates (x, y). We

can join the origin to P by a vector OP, which is called the position vector of P, which

we often denote by r. The modulus of r is |r| = r, and is the length of OP. It is possible



P(x, y)

Figure

7.19

The x—y plane with
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to express r in terms of the numbers of x and y. If we denote a unit vector along the x
axis by i, and a unit vector along the y axis by j (we usually omit the " here), then it is

clear from the definition of scalar multiplication that OM = xi, and MP = yj. It follows
from the triangle law of addition that

r=OP=0M+MP=.xi+yJ

Clearly the vectors i and j are orthogonal. The numbers x and y are the i and j compo-

point P, nents of r. Furthermore, using Pythagoras’s theorem we can deduce that
r = +/x2 e y2
Alternative notations which are sometimes useful are
= X
r=0P = ( )
y
and
Y
r=0P=(xy)
. . X\ . .
When written in these forms ( ) is called a column vector and (x, y) is called a row
y
vector. To avoid confusion with the coordinates (x, y) we shall not use row vectors here
but they will be needed in Chapter 26. We will also use the column vector notation for
more general vectors, thus,
a
ai+bj= ()
1=
We said earlier that a vector can be translated, maintaining its length and direction with-
out changing the vector itself. While this is true generally, position vectors form an im-
portant exception. Position vectors are constrained to their specific position and must
always remain tied to the origin.
Example 7.6 If A is the point with coordinates (5, 4) and B is the point with coordinates (—3, 2) find

Solution

the position vectors of A and B, and the vector AB. Further, find |[AB].

5
The position vector of A is 5i + 4j = < ), which we shall denote by a. The position

vector of B is —3i + 2j = < 2), which we shall denote by b. Application of the

triangle law to triangle OAB (Figure 7.20) gives

OA + AB = Ol
that is

a+A}:b
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EE— Figure 7.20
-6-5-4-3-2-101 2 3 4 5 6 x Points A and B in the x—y plane.

Therefore,

A_;?:b—a
= (=3i+2j) — (5i + 4j)
= —8i—2j

Alternatively, in terms of column vectors
b -3 5
—a = —
2 4
(-8
S \=2
We note that subtraction (and likewise addition) of column vectors is carried out compo-

nent by component. To find |AB| we must obtain the length of the vector AB. Referring
to Figure 7.20, we note that this quantity is the length of the hypotenuse of a right-angled

triangle with perpendicular sides 8 and 2. That is, |[AB| = +/8% 4+ 22 = /68 = 8.25.

More generally we have the following result:

Given vectors a = 0_1)4 =ai+a,jandb = JB = b,i+ b,j (Figure 7.21), then
AB=b—a= (b —a)i+ b, —aj
and
|AB| = b —a| = |(by — api+ (b, — )]
= /b —a)? + (b, — a)?

Example 7.7 Ifa= <;> andb = <_§)

(a) finda+b,a—b,b+ aandb — a, commenting upon the results
(b) find 2a — 3b
(c) find |]a — b|.
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ZA

v A

ay |- f - - -~ A

(0] ap bl
Figure 7.21 o
The quantity Figure 7.22

b —al = /(b —ap? + (b, — ) The quantity x| = v/ + y2 + 22.

o (420
- ()-(2)-()
rern () ()
- (2)-(0)-()

‘We note that addition is commutative whereas subtraction is not.

o)) (3-(-(3)

() la—b| =19 —2j| =9+ (-2)2 = /85

235

The previous development readily generalizes to the three-dimensional case. Taking
Cartesian axes x, y and z, any point in three-dimensional space can be represented by
giving x, y and z coordinates (Figure 7.22). Denoting unit vectors along these axes by i,

j and Kk, respectively, we can write the vector from O to P(x, y, z) as
X

OP=r=xi+yj+zk=|y
Z

The vectors i, j and k are orthogonal.

Example 7.8

Solution

If r = xi + yj + zk show that the modulus of r is r = \/x* + y? + 2.

Recalling Figure 7.22 we first calculate the length of OB. Now OAB is a right-angled
triangle with perpendicular sides OA = x and AB = y. Therefore by Pythagoras’s
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theorem OB has length /x2 4 y2. Then, applying Pythagoras’s theorem to right-angled
triangle OBP which has perpendicular sides OB and BP = z, we find

[r| = OP = v OB? + BP?
=V +y) +2
=V +y +2

as required.

Ifr=xi+yj+zk  then [r| = /X2 +y* + 22

In three dimensions we have the following general result:

Given vectors a = d:l =aji+a,j+akandb = JB = b,i + b,j + b5k, then
AB=b—a= (b —a)i+ (b, —ayj+ (bs — apk
and
AB| = [b—a| = |(b, — a,)i+ (b, — a)j + (b, — ay)k]
= Sy — a2 + (b, — 4, + (b — ay)?

Example 7.9 1Ifa=3i-2j+kandb = —2i +j — 5k, find
(a) |a (b)a (c) [b] (db (e)b—a () [b — a|

Solution (a) |a| = m — J14

a 3 2 1
3 2j+k i j k
(b) 4 " Jal «/ (l i+l = \/14 «/14”«/14
© bl =/(=2)2+ 12+ (=5)2 = /30
—2 1 . 5

b 1

d) b= — = —(=2i+j—5k -
@ bl /30 N ! )= 30 «/30J V30
(e) b—a=—-5i+3j—06k

) |b—al = /(=52 +3>+ (=6)> = /70

7.3.1 The zero vector

A vector, all the components of which are zero, is called a zero vector and is denoted
by 0 to distinguish it from the scalar 0. Clearly the zero vector has a length of 0; it is
unusual in that it has arbitrary direction.
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Engineering application 7.4

Robot positions

Position vectors provide a useful means of determining the position of a robot. There
are many different types of robot but a common type uses a series of rigid links con-
nected together by flexible joints. Usually the mechanism is anchored at one point.
A typical example is illustrated in Figure 7.23.

Figure 7.23
A typical robot configuration with vectors representing
the robot links.

The anchor point is X and the tip of the robot is situated at point Y. The final link
is sometimes called the hand of the robot. The hand often has rotating and gripping
facilities and its size relative to the rest of the robot is usually quite small. Each of the
robot links can be represented by a vector (see Figure 7.23). The vector d corresponds
to the hand. A common requirement in robotics is to be able to calculate the position
of the tip of the hand to ensure it does not collide with other objects. This can be
achieved by defining a set of Cartesian coordinates with origin at the anchor point
of the robot, X. Each of the link vectors can then be represented in terms of these
coordinates. For example, in the case of the robot in Figure 7.23:

a=ai+a,j+ a;k c=cji+cj+ck
b="0b,i+b,j+ bk d=d|i+d,j+d;k

The position of the tip of the hand can be calculated by adding together these vectors.
So,

p=a+b+c+d
=(a,+b +c +d)i+ (a,+b,+c,+d,)j+ (a3 + by +c; +dy)k

7.3.2 Linear combinations, dependence and independence

Suppose we have two vectors a and b. If we form arbitrary scalar multiples of these, that
is kja and k,b, and add these together, we obtain a new vector ¢ where ¢ = k;a+k,b.
The vector c is said to be a linear combination of a and b. Note that scalar multipli-
cation and addition of vectors are the only operations allowed when forming a linear
combination. Vector ¢ is said to depend linearly on a and b. Of course we could also
write

k
a=-—c— k—Qb provided k, # 0



238 Chapter 7 Vectors

so that a depends linearly on ¢ and b. Provided k, # 0, then

1 k
b=—c— -a
ky ky
so that b depends linearly on ¢ and a. The set of vectors {a, b, ¢} is said to be linearly
dependent and any one of the set can be written as a linear combination of the other

two. In general, we have the following definition:

A set of n vectors {a,, a,, ..., a,} is linearly dependent if the expression

kia, +ka,+---+ka =0
can be satisfied by finding scalar constants &, k,, . . ., k,, not all of which are zero.
If the only way we can make the combination zero is by choosing all the k;s to be
zero, then the given set of vectors is said to be linearly independent.

Example 7.10 Show that the vectors i and j are linearly independent.

Solution  We form the expression k,i + k,j = 0 and try to choose k, and k, so that the equation is
satisfied. Using column vectors we have

o)+ (3)= ()

that is

k, + 0\ (kY _ (O
0 ky) “\k, ) \0O
The only way we can satisfy the equation is by choosing k;, = 0 and k&, = 0 and hence

we conclude that the vectors i and j are linearly independent. Geometrically, we note
that since they are perpendicular, no scalar multiple of i can give j and vice versa.

Example 7.11 The vectors

1 5 13
2 1 -1
3 9 21
are linearly dependent because, for example
5 1 13 0
311 —-212)—-11-1]1=10
9 3 21 0
EXERCISES 7.3
—> . . . .
1 Pand Q lie in the x—y plane. Find PQ, where P is the 2 Aand B lie in the x—y plane. If A is the point (3, 4)
point with coordinates (5, 1) and Q is the point with and B is the p01nt (1, =5) write down the vectors
—
coordinates (—1, 4). Find |PQ). OA OB and AB Find a unit vector in the direction

of AB



Ifa=4i—j+ 3kand b = —2i + 2j — Kk, find unit

vectors in the directions of a, b and b — a.

Ifa=5i—2jb=23i-

in terms of i and j,
a+b a+c c—b 3¢ —4b

Draw diagrams to illustrate your results. Repeat the

calculations using column vector notation.
Write down a unit vector which is parallel to the line

y="Tx—-3.

Find I?Q where P is the point in three-dimensional
space with coordinates (4, 1, 3) and Q is the point
with coordinates (1, 2, 4). Find the distance between
P and Q. Further, find the position vector of the point
dividing PQ in the ratio 1:3.

Solutions

— —
PQ=—-6i+3j |PQ| =671
3i+4j,i— 5§, —2i — 9j

-1
——(2i +9j
\/g( i+9j)

—j+3k),

unit vector:

ﬁ
f

1
(242 k),

(—6i + 3j — 4K)

Technical Computing Exercises 7.3

To plot a displacement vector between points (1,2) and
(3,4) in MATLAB® we could type:

X=[1 3];
Y=[2 4];
plot(X,Y)

which would result in a plot containing a single line
between the two points. Notice the order in which the
coordinates are passed to the plot function. The first
entry in X and the first entry in Y are for the first
location and so on. If we wanted to plot a second
displacement vector from (3, 4) to (5, 6) we would
type:

X=[1 3 5];
Y=[2 4 6];
plot(X,Y)

7j and ¢ = —3i + 4j, express,

10
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If P, Q and R have coordinates (3,2, 1), (2, 1,2) and
(1, 3, 3), respectively, use vectors to determine which
pair of points are closest to each other.

Consider the robot of Example 7.4. The link vectors
have the following values:

a=12i+18j+k
b = 6i — 3j + 8k
¢ =3i+2j—4k
d = 0.5i — 0.2j + 0.6k

Calculate the length of each of the links and the
position vector of the tip of the robot.

Show that the vectorsa =i+ jandb = —i + j are
linearly independent.

Show that the vectors i, j and k are linearly
independent.

8i — 9j, 2i + 2j, —6i + 11j ,—21i + 40j

1
{7
—m(w J)

—

PQ = —3i+ j+ Kk, distance from P to Q = 3.32,
1
Z(l3i + 5j + 13k)

Pand Q

21.66, 10.44,5.39,0.81, 21.5i 4+ 16.8j + 5.6k

Now consider the problem of routing an automated
vehicle between the following positions on a factory

floor:

Doorway: =(0,0)
Resistor bin: B=(1,1)
Capacitor bin:  C = (1,-0.5)
PCB rack: D=(2,0)
Assembly line: E = (2.5, 0)

For simplicity you may assume that the robot will
not collide with any objects if it travels directly
between any of those two points.

Plot the displacement vectors for the robot if it
enters through the doorway and visits the resistor
bin, the PCB rack and then the assembly line. How
would this action be written in vector notation?
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Calculate the distance travelled by the robot.
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enter through the doorway and finish at the
assembly line. By trial and error produce a solution

Now consider the problem of visiting all of the to the problem, using the computer to plot each
positions A, B, C, D and E one time only, with the trial. Express your final calculated solution in
robot travelling the least distance. The robot must vector notation.

B2 SCALAR FIELDS AND VECTOR FIELDS

Imagine a large room filled with air. At any point, P, we can measure the temperature, ¢,
say. The temperature will depend upon whereabouts in the room we take the measure-
ment. Perhaps, close to a radiator the temperature will be higher than near to an open
window. Clearly the temperature ¢ is a function of the position of the point. If we label
the point by its Cartesian coordinates (x, y, z), then ¢ will be a function of x, y and z,
that is

¢ =a¢(x,y2)

Additionally, ¢ may be a function of time but for now we will leave this additional
complication aside. Since temperature is a scalar what we have done is define a scalar
at each point P(x, y, z) in a region. This is an example of a scalar field.

Alternatively, suppose we consider the motion of a large body of fluid. At each point,
fluid will be moving with a certain speed in a certain direction; that is, each small fluid
element has a particular velocity, v, depending upon whereabouts in the fluid it is. Since
velocity is a vector, what we have done is define a vector at each point P(x,y, z). We
now have a vector function of x, y and z, known as a vector field. Let us write

v=(v,,v,,v,)
so that v, v, and v, are the i, j and k components respectively of v, that is
v=vityj+uk

We note that v, v, and v, will each be scalar functions of x, y and z.

Engineering application 7.5

Electric field strength E and electric displacement D

Electrostatics is the study of the forces which stationary positive and negative electric
charges exert upon one another. Consider Figure 7.24 which shows a single positive
charge placed at O. The presence of this charge gives rise to an electric force field
around it. Faraday introduced the idea of lines of force to help visualize the field.
At any point, P, there exists a vector which gives the direction and magnitude of
the electrostatic force at P. Because all the lines of force emerge radially from O,
the direction of the electrostatic force is radially outwards. It can be shown that the
magnitude of the force is inversely proportional to the square of the distance from O.




b
ﬁ:‘
a

Figure 7.25

Two vectors a and b
separated by
angle 6.
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A
/

Figure 7.24
Y A charge at O gives rise to an electric field E.

If a second charge is placed in this field it experiences a force. An important quan-
tity is the electric field strength, E. This is a vector field which describes the force
experienced by a unit charge.

A related quantity is the electric displacement, D, also called the electric flux
density, defined as D = ¢E, where ¢ is called the permittivity of the medium in
which the field is located. Note that D is a scalar multiple of E.

Engineering application 7.6

Electrostatic potential V

An important electrostatic field is the electrostatic potential V. This is an example
of a scalar field. The difference between the potential measured at any two points in
the field is equal to the work which needs to be done to move a unit charge from one
point to the other. Later, in Chapter 26, we will see that the scalar field V is closely
related to the vector field E.

THE SCALAR PRODUCT

Given any two vectors a and b, there are two ways in which we can define their product.
These are known as the scalar product and the vector product. As the names suggest, the
result of finding a scalar product is a scalar whereas the result of finding a vector product
is a vector. The scalar product of a and b is written as

a-b

This notation gives rise to the alternative name dot product. It is defined by the formula

a-b = |a|/b|cosf

where 6 is the angle between the two vectors as shown in Figure 7.25.
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From the definition of the scalar product, it is possible to show that the following
rules hold:

a-b=b>b-a the scalar product is commutative
k(a-b) = (ka-b) where k is a scalar
(@a+b)-c=(a-c)+ (b-c) the distributive rule

It is important at this stage to realize that notation is very important in vector work. You
should not use a x to denote the scalar product because this is the symbol we shall use
for the vector product.

Example 7.12

Solution

If a and b are parallel vectors, show that a-b = |a|/b|. If a and b are orthogonal show
that their scalar product is zero.

If a and b are parallel then the angle between them is zero. Therefore a-b =
|al|b| cos0° = Ja|lb]|. If a and b are orthogonal, then the angle between them is 90°
and a-b = |a||b| cos 90° = 0.

Similarly we can show that if a and b are two non-zero vectors for whicha-b = 0,
then a and b must be orthogonal.

If a and b are parallel vectors, a-b = |a||b].
If a and b are orthogonal vectors, a-b = 0.

An immediate consequence of the previous result is the following useful set of formulae:

Example 7.13

Solution

Ifa=aji+a,j+akandb = bji+ b,j+ bk show thata-b = a,b, + a,b, + a;b;.

We have

a-b=(ai+a,j+a;k)- (bi+ b,j+ bk)
=aji- (b)i+ b,j+ b;k) + a,j- (b,i+ b,j + b:k)
+ask - (byi+ b,j + bk)
=aybji-itabyi-j+absi-k+ab\j i+ abyj-j+absj-k
+asbk-i+asbk-j+ abk -k
=a,b, + a,b, + a;b,

as required. Thus, given two vectors in component form their scalar product is the sum
of the products of corresponding components.

The result developed in Example 7.13 is important and should be memorized:

Ifa=ai+a,j+akandb = bi+ b,j + bk,
thena-b = a,b, + a,b, + a;b;.
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Example 7.14

Solution

If a = 5i — 3j + 2k and b = —2i 4 4j + k find the scalar product a - b.

Using the previous result we find

a-b = (5i—3j+2k)- (—2i+4j+k)
G)(=2)+ (=3)4) + (2)(1)
—10—12+2

= —20

Example 7.15

Solution

Ifa = a,i+ a,j + a;k, find
(@ a-a  (b)la]?

(a) Using the previous result we find
a-a= (a,i+a,j+ak)-(ai+ a,j+ a;k)
=ai+a+a

(b) From Example 7.8 we know that the modulus of r = xi + yj + zk is \/x2 + y* + 72
and therefore

— 224
la| = /a; + a5 + a5

so that

|a|2 = a%—i—a% —I—a%

We note the general result that

a-a=|a’

Example 7.16

Solution

Ifa=3i+j—kandb = 2i+ j+ 2k find a - b and the angle between a and b.

We have
a-b=03)2)+ M)+ (-1)(?2)
=6+1-2
=5

Furthermore, from the definition of the scalar product a-b = |a|[b| cos 6. Now,
la| =v9+14+1=+11 and b|=+/44+14+4=3

Therefore,
g — a-b 5
~ alibl 311

from which we deduce that & = 59.8° or 1.04 radians.
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Engineering application 7.7

Work done by a force

If a force is applied to an object and the object moves, then work is done by the force.
It is possible to use vectors to calculate the work done. Suppose a constant force F
is applied and as a consequence the object moves from A to B, represented by the
displacement vector s, as shown in Figure 7.26.

‘We can resolve the force into two perpendicular components, one parallel to s and
one perpendicular to s. The work done by each component is equal to the product of
its magnitude and the distance moved in its direction. The component perpendicular
to s will not do any work because there is no movement in this direction. For the
component along s, that is |F| cos 6, we find

work done = |F|cos@|s|

From the definition of the scalar product we see that the r.h.s. of this expression is
the scalar product of F and s.

F sin 6

Figure 7.26
The component of F in the direction of s
is F cos 6.

The work done by a constant force F which moves an object along the vector s is
equal to the scalar product F - s.

Example 7.17 A force F = 3i + 2j — Kk is applied to an object which moves through a displacement
s = 2i + 2j + k. Find the work done by the force.

Solution The work done is equal to

F.s=@Gi+2j—k):-(2i+2j+k)
=6+4-1
= 9 joules

Engineering application 7.8

Movement of a charged particle in an electric field

Figure 7.27 shows two charged plates situated in a vacuum. Plate A has an excess of
positive charge, while plate B has an excess of negative charge. Such an arrangement
gives rise to an electric field. An electric field is an example of a vector field.
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X

Y=

88 -

Sl

+ o+ o+ o+ o+

- Figure 7.27
Two charged plates situated in a vacuum.

=Y

In Figure 7.27 the electric field vector E in the region of space between the charged
plates has a direction perpendicular to the plates pointing from A to B. The magnitude
of the electric field vector is constant in this region if end effects are ignored. If
a charged particle is required to move against an electric field, then work must be
done to achieve this. For example, to transport a positively charged particle from the
surface of plate B to the surface of plate A would require work to be done. This would
lead to an increase in potential of the charged particle.

If s represents the displacement and V' the potential it is conventional to write §s
to represent a very small change in displacement, and 8V to represent a very small
change in potential.

If a unit positive charge is moved a small displacement §s in an electric field (Fig-
ure 7.27) then the change in potential §V is given by

8V =—E. s (7.1)
This is an example of the use of a scalar product. Notice that although E and s are
vector quantities the change in potential, 6V, is a scalar.

Consider again the charged plates of Figure 7.27. If a unit charge is moved a small
displacement along the plane X, then ds is perpendicular to E. So,

8V = —E. s = —|E||5s| cos O
With 6 = 90°, we find 6V = 0. The surface X is known as an equipotential surface
because movement of a charged particle along this surface does not give rise to a

change in its potential. Movement of a charge in a direction parallel to the electric
field gives rise to the maximum change in potential, as for this case 6 = 0°.

EXERCISES 7.5
Ifa=3i—7jandb=2i+4jfinda-b,b-a,a-a 5 Find the angle between the vectors 7i + j and 4j — k.
and b - b.

Ifa=4i+2j—Kk,b=23i—3j+ 3k and
¢=2i—j—Kk,find
(a) a-a (b) a-b

6 Find the angle between the vectors 4i — 2j and 3i — 3j.

7 Ifa=7i+8jandb=>5ifinda-b.

3 5
() a-¢c () b-c 8 Ifry=|1]andr,=|1|findr -r,r - r,
Evaluate (—13i — 5j) - (=3i + 4j). 2 0
andr, - r,.

Find the angle between the vectors p = 7i + 3j + 2k
andq=2i—j+k.

9 Given that p = 2q simplify p-q, (p + 5q) - q and
(q—p)-p
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10 Find the modulus of a =i — j — Kk, the modulus of 13 Use the scalar product to find a two-dimensional
b = 2i + j + 2k and the scalar product a - b. Deduce vector a = a,i + a,j perpendicular to the vector
the angle between a and b. 4i — 2j.
11 Ifa=2i+2j—kandb = 3i— 6j+ 2k, find 14 Ifa=3i—2j,b=7i+5jand ¢ =9i — j, show that
|al, [b|, a-b and the angle between a and b. a-(b—c)=(a-b)—(a-c).
12 Use a vector method to show that the diagonals of the 15 Find the work done by the force F = 3i — j + k
rhombus shown in Figure 7.28 intersect at 90°. in moving an object through a displacement
B s = 3i+ 5j.

16 A force of magnitude 14 N acts in the direction

i+ j + k upon an object. It causes the object to move
A C from point A(2, 1, 0) to point B(3, 3, 3). Find the
work done by the force.

17 (a) Use the scalar product to show that the

D component of a in the direction of bisa- b,
Figure 7.28 where b is a unit vector in the direction of b.
The thombus ABCD. (b) Find the component of 2i + 3j in the direction of
i+ 5j.
Solutions

1 —22,-22,58,20 9 2lq 7lq —2lql?

2 (a) 21 (b) 3 () 7 @ 6 10 V3,3,—1,101.1°

3 19 11 3,7,-8,1124°

4 47.62° 13 c(i+ 2j), c constant

5 82.11° 15 4]

6 18.4° 16 48517

77 17 17//26

8 14,16,26

m THE VECTOR PRODUCT

The result of finding the vector product of a and b is a vector of length |a||b|sin6,
where 6 is the angle between a and b. The direction of this vector is such that it is
perpendicular to a and to b, and so it is perpendicular to the plane containing a and
b (Figure 7.29). There are, however, two possible directions for this vector, but it is
conventional to choose the one associated with the application of the right-handed screw
rule. Imagine turning a right-handed screw in the sense from a towards b as shown. A
right-handed screw is one which, when turned clockwise, enters the material into which
it is being screwed. The direction in which the screw advances is the direction of the
required vector product. The symbol we shall use to denote the vector product is x.
Formally, we write

a x b = |a|/b|sinfé
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b
Plane containing
Xb
a g aand b
a b
Figure 7.29 a
a x b is perpendicular to the plane containing Figure 7.30
a and b. The right-handed screw rule allows Right-handed screw rule allows the
the direction of a x b to be found. direction of b x a to be found.

where € is the unit vector required to define the appropriate direction, that is € is a unit
vector perpendicular to a and to b in a sense defined by the right-handed screw rule. To
evaluate b x a we must imagine turning the screw from the direction of b towards that
of a. The screw will advance as shown in Figure 7.30.

We notice immediately that a x b # b x a since their directions are different. From
the definition of the vector product, it is possible to show that the following rules hold:

axb=—(bxa) the vector product is not commutative
ax (b+c)=(axb)+ (axec) thedistributive rule
k(a xb) = (ka) x b=a x (kb) where k is a scalar

Example 7.18 If a and b are parallel show thata x b = 0.

Solution If a and b are parallel then the angle between a and b is zero. Therefore, a x b =
|a||b| sin 0 € = 0. Note that the answer is still a vector, and that we denote the zero vector
0i + 0j + Ok by 0, to distinguish it from the scalar 0. In particular, we note that

ixi=jxj=kxk=0

If a and b are parallel, then a x b = 0.

In particular:

ixi=jxj=kxk=0

Example 7.19 Show thati x j = k and find expressions for j x k and k x i.

Solution We note that i and j are perpendicular so that [i x j| = |i||j| sin90° = 1. Furthermore,
the unit vector perpendicular to i and to j in the sense defined by the right-handed screw
rule is k. Therefore, i x j = k as required. Similarly you should be able to show that

jxk=iandk xi=j.

ixj=k ixk=i kxi=j
jxi=—k kxj=—i ixk=—j
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Example 7.20

Solution

Simplify (a x b) — (b x a).

Use the result a x b = —(b x a) to obtain
(axb)—(bxa)=(axb)—(—(axbh))
=(axb)+ (axbh)
=2(axb)

Example 7.21

Solution

(a) Ifa=a,i+ a,j+a;kand b = bi+ b,j + bk, show that
ax b = (a,b; —ayby)i — (a,b; — a;b))j + (a,b, — a,b))k
(b) Ifa=2i+j+3kandb =3i+2j+kfinda xb.

(a) axb=(ai+a,j+ ask) x (b,i+ b,j+ b;k)
=a,ix (bji+ b,j + b;k) + a,j x (bji+ b,j + b;k)
+ask x (b)i + b,j + b;k)
=a,b,(ixi)+ab,(ix]j)+aby(ixk)+a,b (jxi)+ab,(jxj)
+a,by(j x k) + a;b,(k x 1) + a;b,(k x j) + a;b;(k x k)
Using the results of Examples 7.18 and 7.19, we find that the expression for a x b
simplifies to
ax b = (a,b; — asb,)i — (a,b; — a;b,)j + (a,b, — a,b))k

(b) Using the result of part (a) we have

axb=(1)1)-@)@Ni—((2)(1) - BB+ ((2)2) — (H(3)k
=-5i+7j+k

Verity for yourself thatb x a = 5i — 7j — k.

7.6.1

Using determinants to evaluate vector products

Evaluation of a vector product using the previous formula is very cumbersome. A more
convenient and easily remembered method is now described. The vectors a and b are
written in the following pattern:

i j Kk
a, a, d;
by, b, b,

This quantity is called a determinant. A more thorough treatment of determinants is
given in Section 8.7. To find the i component of the vector product, imagine crossing
out the row and column containing i and performing the following calculation on what
is left, that is

ayby — azb,
The resulting number is the i component of the vector product. The j component is found

by crossing out the row and column containing j, performing a similar calculation, but
now changing the sign of the result. Thus the j component equals

—(a;by — asby)
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The k component is found by crossing out the row and column containing k and per-
forming the calculation
a,b, — ayb,
We have
Ifa=a,i+a,j+a;kand b = b,i+ b,j + b;k, then

i j k
axb=l|a a a
by b, by

= (a,b; — a3by)i — (a,by — a;b))j + (a,b, — a,b))k

Example 7.22 Find the vector product of a = 2i + 3j + 7k and b = i + 2j + k.

Solution The two given vectors are represented in the following determinant:

k
7
1

—_— DD e
DO LD Camie

Evaluating this determinant we obtain
axb=0C-14)i-2-7j+ @ -3)k=—11i+5j+k

You will find that, with practice, this method of evaluating a vector product is simple to
apply.

7.6.2 Applications of the vector product

The following three examples illustrate applications of the vector product.

Engineering application 7.9

Magnetic flux density B and magnetic field strength H

It is possible to model the effect of magnetism by means of a vector field. A magnetic
field with magnetic flux density B is a vector field which is defined in relation to the
force it exerts on a moving charged particle placed in the field. Consider Figure 7.31.
If a charge ¢ moves with velocity v in a magnetic field B it experiences a force F
given by
F=¢gvxB

Note that this force is defined using a vector product. The unit of magnetic flux den-
sity is the weber per square metre (Wb m~2), or tesla (T). The direction of this force

is at right angles to both v and B, in a sense defined by the right-handed screw rule.
Its magnitude, or modulus, is

F = quBsin6
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q Figure 7.31
Force, F, exerted on a particle with charge, g, when moving with
v velocity, v, in a magnetic field, B.

where 6 is the angle between v and B, v is the modulus of v and B is the modulus
of B.

F
Note that if 6 = 90°, sinf = 1, then B = —.
qu

These formulae are useful because they can be used to calculate the forces exerted
on a conductor in an electric motor. They are also used to analyse electricity gener-
ators in which the motion of a conductor in a magnetic field leads to movement of
charges within the conductor, thus generating electricity.

A related quantity is the magnetic field strength, or the magnetic field intensity,
H, defined from

B = uH

w is called the permeability of a material and has units of webers per ampere per
metre (Wb A~'m~!). The units of H are amperes per metre (A m~!). Confirm for
yourself that the units match on both sides of the equation.

Engineering application 7.10

Magnetic field due to a moving charge

A charge ¢ moving with velocity v gives rise to a magnetic field with magnetic flux
density B in its vicinity. As a result of this, another moving charge placed in this field
will experience a magnetic force. The magnetic flux density is given by

qlg
472
where r is a vector from the charge to the point at which B is measured, and p, is a
constant called the permeability of free space.

This equation can be used to find the magnetic field due to a current in a wire. Sup-
pose a small portion of wire has length §s and contains a current /. By writing ds as a
vector of length §s in the direction of the wire, it can be shown that the corresponding
contribution to the magnetic flux density is given by

H’OI ~
8S X T
4mr? ( )
This is the Biot—Savart law. Techniques of integration are required in order to com-
plete the calculation, but using this it is possible to show, for example, that the mag-
Mol

netic flux density a distance r from a long straight wire has magnitude B = o
T

B= (v X T)

0B =
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Engineering application 7.11

The Hall effect in a semiconductor

A frequent requirement in the semiconductor industry is to be able to measure the
density of holes in a p-type semiconductor and the density of electrons in an n-type
semiconductor. This can be achieved by using the Hall effect. We will consider the
case of a p-type semiconductor but the derivation for an n-type semiconductor is
similar.

area, A -
Z ()
v - .
B / jhole Il (< ()_ 4
Ey
B p-type
'/ semiconductor

Figure 7.32
Hall effect in a p-type semiconductor.

Consider the piece of semiconductor shown in Figure 7.32. A d.c. voltage, V, is
applied to the ends of the semiconductor. This gives rise to a flow of current com-
posed mainly of holes as they are the majority carriers for a p-type semiconductor.
This current can be represented by a vector pointing in the x direction and denoted
by I. A magnetic field, B, is applied to the semiconductor in the y direction. The
moving holes experience a force, Fy, per unit volume, caused by the magnetic field
given by

F ! IxB
B= 40X

where A is the cross-sectional area of the semiconductor. This causes the holes to
drift in the z direction and so causes an excess of positive charge to appear on one
side of the semiconductor. This gives rise to a voltage known as the Hall voltage,
V4. As this excess charge builds up it creates an electric field, E, in the negative z
direction, which in turn exerts an opposing force on the holes. This force is given by
F. = qp,Ey where ¢ = elementary charge = 1.60 x 107!° C, and p, = density of
holes (holes per cubic metre). Equilibrium is reached when the two forces are equal
in magnitude, thatis [Fy| = [Fg|. Now,

IxB| IB
A A

|FE| :qpo|EH| |FB| =
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IB Va
A 4Py I
so that

BIL
VagA

Po =

In equilibrium the magnitude of the electric field, |E|, is constant and so we can

write |E,| = ZH, where L is the width of the semiconductor. Hence,

So, by measuring the value of the Hall voltage, it is possible to calculate the density
of the holes, p,, in the semiconductor.

EXERCISES 7.6

Evaluate
i j Kk i j k

(a) 31 2 (b) -1 2 =3
2 1 4 -4 0 1
i j Kk i j Kk

(© 01 0 (d) 3 5 2
1 0 4 -3 -1 4

Ifa=i—2j+3kandb =2i—j—Kk,find
(a) axb

(b) bxa
Ifa=i—2jandb =5i+ Sk finda x b.

Ifa=i+j—kb=i—jandc=2i+Kkfind

(a) (axb)xce

(b) ax (bxc)
Ifp=6i+7j—2kand q = 3i — j + 4k find |p|, |q|

and |p x q|. Deduce the sine of the angle between p
and q.

For arbitrary vectors p and q simplify
@ (p+q xp
® P+ xP-q

Ifc =i+ jand d = 2i + K, find a unit vector
perpendicular to both ¢ and d. Further, find the sine of
the angle between ¢ and d.

A, B, C are points with coordinates (1, 2, 3), (3,2, 1)
and (—1, 1, 0), respectively. Find a unit vector
perpendicular to the plane containing A, B and C.

Ifa=7i—2j— 5kand b = 5i + j + 3K, find a vector
perpendicular to a and b.

10

11

12

13

14

Ifa=7i—j+kb=3i—j—2kand
¢ = 9i + j — 3k, show that

ax(b+c)=(axb)+(axc)

(a) The area, A, of a parallelogram with base b
and perpendicular height 4 is given by A = bh.
Show that if the two non-parallel sides of the
parallelogram are represented by the vectors a
and b, then the area is also given by
A=laxb|.

(b) Find the area of the parallelogram with sides
represented by 2i + 3j + k and 3i + j — k.

The volume, V, of a parallelepiped with sides a, b and
cis given by V = |a- (b x ¢)|. Find the volume of the
parallelepiped with sides 3i + 2j + k, 2i + j + k and
i+2j+4k.

Suppose a force F acts through the point P with
position vector r. The moment about the origin, M,
of the force is a measure of the turning effect of the
force and is given by M = r x F. A force of 4 N acts
in the direction i + j + k, and through the point with
coordinates (7, 1, 3). Find the moment of the force
about the origin.

In the theory of electromagnetic waves an important
quantity associated with the flow of electromagnetic
energy is the Poynting vector S. This is defined as

S = E x H where E is the electric field strength and
H the magnetic field strength. Suppose that in a plane
electromagnetic wave

27z A
E = E;cos T—wt j



and

21k, 271z .
H=- cos| — —owr )i
AW A

Solutions

1 (@ 2i-8+k
(c) 4i—k

2 (a) 5i+7j+3k

(b) 2i+ 13j+ 8k
(d) 22i — 18j + 12k

(b) —5i—7j—3k

3 —10i—5j+ 10k

4 (a) —i—3j+2k (b) i—j
5 /89, /26,48.01,0.9980
6 (@ qxp (b) 29 xp

1

(i—j—2k),0.775
\/8 -]

Technical Computing Exercises 7.6

Vector and scalar products are readily calculated in most
technical computing languages. For example in
MATLAB® we could calculate the scalar product of
a=i—2j+3kandb=2i—j—kby typing:

a=[1 -2 3];
b=[2 -1 -1];
dot(a,b)

producing the answer:
ans = 1
and the vector product by then typing:

cross(a,b)

7.7 Vectors of n dimensions 253

where A, w, i, and E are constants. Find the
Poynting vector and confirm that the direction of
energy flow is the z direction.

1
—(@{-5j+k
m(l j + k)

9 —i—46j+ 17k

11 (b) +/90 =9.49

12 5

13 4( 2i — 4j + 6k)
—(=2i — 4j
NG
2nE?

14 0 cos? %—wt k,
AL A

which is a vector in the z direction.

producing the answer:

ans =

5 7 3

1 Confirm using MATLAB®, or a similar language, that
ixj=k
2 (a) Select two different vectors a and b and
calculate [a x b|? + (a.b)>.
(b) Calculate [a]?|b|?
(c) What are your observations about the results
from (a) and (b)? Verify your conclusions by

changing the vectors a and b and repeating
the calculations.

VECTORS OF 1 DIMENSIONS

The examples we have discussed have all concerned two- and three-dimensional vec-
tors. Our understanding has been helped by the fact that two-dimensional vectors can
be drawn in the plane of the paper and three-dimensional vectors can be visualized in
the three-dimensional space in which we live. However, there are some situations when
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the generalization to higher dimensions is appropriate, but no convenient geometrical
interpretation is available. Nevertheless, many of the concepts we have discussed are
still applicable. For example, we can introduce the four-dimensional vectors

and b=

o= W
—_— W O =

It is natural to define the magnitude, or norm, of a as /32 + 12 + 22 + 42 = /30 and
the scalar product of aandbasa-b = (3)(1) + (1)(0) + 2)(3) + (4)(1) = 13. An
n-dimensional vector will have n components. Operations such as addition, subtraction
and scalar multiplication are defined in an obvious way.

It is also possible to define a set of variables as a vector. This turns out to be a use-
ful way of modelling a physical system. The system is described by means of a vector
which consists of an ordered set of variables sufficient to describe the state of the sys-
tem. Such a vector is called a state vector. This concept is explored in more detail in
Chapter 20.

Engineering application 7.12

Mesh current vector

When analysing a complex circuit it can be convenient to assign a current to each
small independent loop within the circuit. Each of these currents is known as a mesh
current. It is possible to collect these individual currents together to form a vector
quantity. Consider the following example.

A circuit as shown in Figure 7.33 has a set of mesh currents {/, I,, I, 1,} from
which we can form a current vector

No geometrical interpretation is possible but nevertheless this vector provides a use-
ful mathematical way of handling the mesh currents. We shall see how vectors such
as these can be manipulated in Section 8.12.

Figure 7.33
A circuit with mesh currents
shown.




EXERCISES 7.7

1

1
a=1]0 and

1

1

=3
I
—_ O = N W

find the norm of a, the norm of b and a - b. Further,
find the norm of a — b.

2 Two non-zero vectors are mutually orthogonal if their
scalar product is zero. Determine which of the

Solutions

1 2,415,6,7

2

Review exercises 7 255

following are mutually orthogonal.

1 2 3
2 1 0
a—= 4 b = 0 c= )
-1 0 0
0 3
0 0
d=1- =1 -
2 -5

aande,band d

REVIEW EXERCISES 7

1 Finda-.-banda x b when
(a a=7i—j+kb=3i+2j+5k
(b) a=6i—6j—6k,b=1i—j—k.
2 For atriangle ABC, express as simply as possible the

— —

N
vector AB + BC + CA.

3 Ifa=7i—j+2kandb =8i+j+Kk,find |a|, |b| and
a - b. Deduce the cosine of the angle between a and b.

4 Ifa=06i—j+2kandb = 3i— j+ 3Kk, find
|al, |b[, |a x b|. Deduce the sine of the angle between
aandb.

5 Ifa=7i+9j—3kandb = 2i—4j, finda, b,axb.

6 By combining the scalar and vector products other
types of products can be defined. The triple scalar
product for three vectors is defined as (a x b) - ¢
which is a scalar. If a = 3i — j+ 2k, b = 2i — 2j — k,
¢ =3i+j,finda x b and (a x b) - c. Show that
(axb)-c=a-(bxc).

7 The triple vector product is defined by (a x b) x c.
Find the triple vector product of the vectors given in
Question 6. Also find a- ¢, b - ¢ and verify that

(a-c)b—(b-c)a=(axb) xc

Further, find a x (b x ¢) and confirm that
ax(bxc)#(axb)xe.

8

10

11

12

13

14

15

Show that the vectors p = 3i — 2j + Kk,
q=2i+j—4kandr =i — 3j + 5k form the three
sides of a right-angled triangle.

Find a unit vector parallel to the line y = 7x — 3. Find
a unit vector parallel to y = 2x + 7. Use the scalar
product to find the angle between these two lines.

An electric charge ¢ which moves with a velocity v
produces a magnetic field B given by

_ ugvxt
A rf?
Find Bifr =3i+j—2kandv=1i-—2j+ 3k.

where @ = constant

— — —
In a triangle ABC, denote AB by ¢, AC by b and CB
by a. Use the scalar product to prove the cosine rule:
a® = b + ¢* — 2bccos A.

Evaluate
i j k i j k
(a) -4 0 -3 M) |8 2 5
7 1 4 1 0 0

Find the area of the parallelogram with sides
represented by 3i + 5j — k and i + 3j — k.

Find the angle between the vectors 7i + 2j and i — 3j.

Find a unit vector in the direction of the line joining
the points (2, 3,4) and (7,17, 1).
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17

18

19
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Show that the vectors i — j and —3i — 3j are
perpendicular.

Find the norm of each of the vectors

7 2

2 1
1 and 0
—4

(a) Use the scalar product to find the value of the
scalar u so that i + j + wpk is perpendicular to the
vector i + j + k.

(b) Use the vector product and the results from part (a)
to find a mutually perpendicular set of unit vectors
V1, ¥, and V5, where ¥, is inclined equally to the
vectors i, j and k.

The points A, B and C have coordinates (2, —1, —2),
(4,—1,—-3)and (1, 3, —1).

— —
(a) Write down the vectors AB and AC.

(b) Using the vector product find a unit vector
which is perpendicular to the plane containing
A,Band C.

Solutions

10

12

(a) 24, -7i—32j+ 17k (b) 18,0

0
/54, /66,57,0.9548
V41, /19, 4/154, 0.4446

1 1 1

——a, ——b, —— (—12i — 6j — 46k)
V139 /20 «/2296( !
5i+7j — 4k, 22

(axb) xe=4i—12j— 16k

a-c=8,b-c=4

ax (bxc)=-2i—-22j—8k
1 1

V50 V5
Mg . .

—F—({+11j+7k)

56+/14m !

(a) 3i—5j—4k

(b) 5j—2k

(i+7j), —=(>1i+2j),18.4°

20

21

22

23

13
14

15

17
18

19

20

23

(c) If Dis the point with coordinates (3, 0, 1), use
the scalar product to find the perpendicular
distance from D to the plane ABC.

The condition for vectors a, b and ¢ to be coplanar
(i.e. they lie in the same plane)isa- (b x ¢) = 0.

(a) Show that the vectors a = 4i + 5j + 6Kk,
b=06i —3j —3kand ¢ = —i + 2j + 2k are
not coplanar.

(b) Givend = —i + 2j + Lk, find the value of A so
that a, b and d are coplanar.

Points A and B have position vectors a and b
respectively. Show that the position vector of an
arbitrary point on the line AB is given by

r = a+ X (b — a) for some scalar . This is the
vector equation of the line.

Use vector methods to show that the three medians of
any triangle intersect at a common point (called the
centroid).

Use the vector product to find the area of a triangle
with vertices at the points with coordinates (1, 2, 3),
(4,-3,2),and (8,1, 1).

V24 =4.90
87.5°
1
——(5i+ 14j — 3k
T30( j )
V58,721
@ p=-2
OR 1(111)A 1(112)
vV, = —=(, 1, , Vo = —=(1, 1, —2),
'3 P
1
V= —(—1,1,0)
)

(a) (2,0,-1),(-1,4,1) (b) 5(4,—1,8) (c) 3

(a) a- (b x ¢) =9 # 0 and hence the vectors are not
coplanar
(b) x=31/14

1
E«/1106
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INTRODUCTION

Matrices provide a means of storing large quantities of information in such a way that
each piece can be easily identified and manipulated. They permit the solution of large
systems of linear equations to be carried out in a logical and formal way so that computer
implementation follows naturally. Applications of matrices extend over many areas of
engineering including electrical network analysis and robotics.
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An example of an extremely large electrical network is the national grid in Britain.
The equations governing this network are expressed in matrix form for analysis by com-
puter because solutions are required at regular intervals throughout the day and night in
order to make decisions such as whether or not a power station should be connected to,
or removed from, the grid.

To obtain the trajectory of a robot it is necessary to perform matrix calculations to find
the speed at which various motors within the robot should operate. This is a complicated
problem as it is necessary to ensure that a robot reaches its required destination and does
not collide with another object during its movement.

BASIC DEFINITIONS
A matrix is a rectangular pattern or array of numbers.

For example,

123
12 =2
A= 456 B:( > C:(l —1 1)
1924 3405
are all matrices. Note that we usually use a capital letter to denote a matrix, and enclose
the array of numbers in brackets. To describe the size of a matrix we quote its number
of rows and columns in that order so, for example, an r x s matrix has r rows and s
columns. We say the matrix has order r x s.

An r x s matrix has r rows and s columns.

Example 8.1

Solution

Describe the sizes of the matrices A, B and C at the start of this section, and give examples
of matrices of order 3 x 1,3 x 2 and 4 x 2.

A has order 3 x 3, B has order 2 x 3 and C has order 1 x 3.

—1 12

—2 ] isa3 x 1 matrix 3 4] isa3 x 2 matrix
3 56

and

—1 —1

-1 is a4 x 2 matri
2 —05 X
1 0

More generally, if the matrix A has m rows and n columns we can write

ay, ap, ... ap,
Ay, Ayy .. Gy,

A= . . :
a, a a

ml m2 mn
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where g;; represents the number or element in the ith row and jth column. A matrix with
a single column can also be regarded as a column vector.

The operations of addition, subtraction and multiplication are defined upon matrices
and these are explained in Section 8.3.

ADDITION, SUBTRACTION AND MULTIPLICATION

8.3.1 Matrix addition and subtraction
Two matrices can be added (or subtracted) if they have the same shape and size, that is the
same order. Their sum (or difference) is found by adding (or subtracting) corresponding
elements as the following example shows.
Example 8.2 1If
1 5 =2 1 20
A=<3 1 1) and B:(_1 : 4>
find A+ Band A — B.
. 1 5 =2 1 2 0 2 7 =2
Solution A+B= <3 ) 1) + (_1 | 4> = <2 ) 5)
1 5 =2 1 2 0 0 3 =2
A_B=(3 1 1)‘(—1 1 4)=<4 0 —3)
. 12 3
On the other hand, the matrices (0 1) and <1> cannot be added or subtracted because
they have different orders.
ab e f
Example 8.3 IfC = e d and D = 2 h show that C+ D = D + C.
. _ fa b e f\ _ (a+e b+ f
Solution C+D = <C d>+<g h>_<c+g d+h>

o
IS}

_ f b _(eta f+b
b+C = <g h>+< d>_<g+c h+d)

Now a + e is exactly the same as e + a because addition of numbers is commutative.
The same observation can be made of b+ f,c+ gandd + h. Hence C+ D = D + C.
The addition of these matrices is therefore commutative. This may seem an obvious
statement but we shall shortly meet matrix multiplication which is not commutative, so
in general commutativity should not be simply assumed.

o
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The result obtained in Example 8.3 is true more generally:

Matrix addition is commutative, that is
A+B=B+A

It is also easy to show that

Matrix addition is associative, that is
A+ B+C)=A+B)+C

8.3.2 Scalar multiplication

Given any matrix A, we can multiply it by a number, that is a scalar, to form a new matrix
of the same order as A. This multiplication is performed by multiplying every element
of A by the number.

Example 8.4 If

b S

Il

|
SN =
— (D

1
find 2A, —3A and EA'

1 3 2 6
Solution 24=21-2 1]l=|-4 2
0 1 0 2

1 3 -3 -9

-3A=-3|1-2 1] = 6 -3

0 1 0 -3

and

1 3
11 b3 >
“A=-|-2 1|=|-1 =
22\ o1 %
0 —
2
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In general we have

@y G a, ka,, ka, ... ka,

ay Gy . G, kay — kay,, ... kay,
IfA = . . . . then kA =

Ay Gy oo Gy ka,, ka,, ... ka,,

Matrix multiplication

Matrix multiplication is defined in a special way which at first seems strange but is in
fact very useful. If A is a p x ¢ matrix and B is an r x s matrix we can form the product
AB only if g = r; that is, only if the number of columns in A is the same as the number
of rows in B. The product is then a p x s matrix C, that is

C=AB where Aisp X g
Bisg x s
Cispxs

Example 8.5

Solution

3 7

GivenA=(4 2)andB=(5 2

_?) can the product AB be formed?

Ahassize 1 x 2
Bhassize2 x 3

Because the number of columns in A is the same as the number of rows in B, we can
form the product AB. The resulting matrix will have size 1 x 3 because there is one row
in A and three columns in B.

7

size 2 x 1 and so we can form the product AB. The result will be a 1 x 1 matrix, that is
a single number. We perform the calculation as follows:

Suppose we wish to find AB when A = (4 2) and B = <3> . A has size 1 x 2 and B has

AB = (4 2)<3>=4x3+2x7:12+14=26

Note that we have multiplied elements in the row of A with corresponding elements in
the column of B, and added the results together.

Example 8.6

Solution

2
FindCDWhenC:(l 9 2) andD= |6

o]

2
CD=(192)|6]=1x2+9x6+2x8=2+54+16="72
8

Let us now extend this idea to general matrices A and B. Suppose we wish to find C
where C = AB. The element c,, is found by pairing each element in row 1 of A with the
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corresponding element in column 1 of B. The pairs are multiplied together and then the
results are added to give ¢,,. Similarly, to find the element c¢,,, each element in row 1 of
A is paired with the corresponding element in column 2 of B. Again, the paired elements
are multiplied together and the results are added to form c,. Other elements of C are
found in a similar way. In general the element c;; is found by pairing elements in the ith
row of A with those in the jth column of B. These are multiplied together and the results
are added to give ¢;;. Consider the following example.

Example 8.7

Solution

IfA = (41‘ g) and B = <_§) find, if possible, the matrix C where C = AB.

We can form the product

- (1))

0 1
2x2 2x1

because the number of columns in A, that is 2, is the same as the number of rows in B.
The size of the product is found by inspecting the number of rows in the first matrix,
which is 2, and the number of columns in the second, which is 1. These numbers give
the number of rows and columns respectively in C. Therefore C will be a 2 x 1 matrix.

To find the element ¢;; we pair the elements in the first row of A with those in the
first column of B, multiply and then add these together. Thus

e =1x5+2x-3=5-6=—1

Similarly, to find the element ¢,; we pair the elements in the second row of A with those
in the first column of B, multiply and then add these together. Thus

C =4x54+3x-3=20-9=11

The complete calculation is written as
(12 5  (1Ix542x-3
AB = <4 3) (—3) = <4x5+3>< —3)
_( 5-6
—\20-9
(-1
o1l

If Ais a p x g matrix and B is a ¢ x s matrix, then the product C = AB will be a
p x s matrix. To find ¢;; we take the ith row of A and pair its elements with the jth
column of B. The paired elements are multiplied together and added to form ¢;.
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1
Example 8.8 IfB = b23 and C = [ 2 | find BC.
456 4
Solution B has order 2 x 3 and C has order 3 x 1 so clearly the product BC exists and will have
order 2 x 1. BC is formed as follows:
BC— 123 é (I x14+2x24+3x4\ (17
“\456 4 T \U4x14+5x24+6x4) 7 \38
Note that the order of the product, 2 x 1, can be determined at the start by considering
the orders of B and C.
Example 8.9 Find AB where
12 -1
A= 3 4 and B = 2
—-10 -1
Solution A and B have orders 3 x 2 and 3 x 1, respectively, and consequently the product, AB,

cannot be formed.

Example 8.10

Solution

Given
1 11 0 31
A=12 10 and B=1|4 —-10
3 —-12 2 21

find, if possible, AB and BA, and comment upon the result.

A and B both have order 3 x 3 and the products AB and BA can both be formed. Both
will have order 3 x 3.

1 11 0 31 6 42
AB = |2 104 -10]=14 52
3-12/\2 21 0145
0 31 I 11 922
BA =14-10|(2 10]=(234
2 21 3 -12 934

Clearly AB and BA are not the same. Matrix multiplication is not usually commutative
and we must pay particular attention to this detail when we are working with matrices.

In general AB # BA and so matrix multiplication is not commutative.

In the product AB we say that B has been premultiplied by A, or alternatively A has
been postmultiplied by B.
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Example 8.11

Solution

Given
1 -1 2 -1 29 415
A= 3 02 B = 1 00 C=1231
-1 35 3 =21 015

-1 2 9 4 1 5 0 14 42
BC = 1 0 0 2 3 1|=1|4 1 5
3 =2 1 015 8 —2 18
1 -1 2\ /0 14 42 12 9 73
A(BC) = 0 2|14 1 5]=|16 38 162
—1 35 8 -2 18 52 =21 63
1 -1 2 -1 2 9 4 =2 11
AB = 2 1 0 0)=1 3 2 29
—1 35 3 =2 1 19 —12 -4
4 =2 11 4 1 5 12 9 73
AB)C=| 3 2 29 2 3 1]l=1]16 38 162
19 —12 -4/ \0 1 5 52 =21 63
We note that A(BC) = (AB)C so that in this case matrix multiplication is associative.

EXERCISES 8.3

1 Evaluate

The result obtained in Example 8.11 is also true in general:

Matrix multiplication is associative:
(AB)C = A(BC)

-7 1

0 4)
4 . .
. 1) find, if possible,
(@) A+D,C—Aand D — E
(b) AB, BA, CA, AC, DA, DB, BD, EB, BE and AE
(c) 7C, —3D and kE, where k is a scalar.




3 Plot the points A, B, C with position vectors given by

1

) -6 -0

respectively. Treating these vectors as matrices of
order 2 x 1 find the products Mv, Mv,, Mv; when

1 0
o=,
01
(b) M= ( 1 O)
0 —1
© M= (1 0)
In each case draw a diagram to illustrate the effect
upon the vectors of multiplication by the matrix.

Find AB and BA where
13 2
A=|-10 4
51 =1
521
B = {034
135
Given that A2 means the product of a matrix A with
itself, find AZ when A = G i) Find A3.
13 21
IfA = (_2 4>,B: (_4 5) find AB, BA, A + B
and (A + B)2. Show that
Solutions
(a 15 (b) =19
47 -7 18
() ( ) (d) (_14 10)
10
(e) ( ) (H 15
(2) (25 12) (h) (19 19 19)
17 1 09
() ( _1) ) ( )

(a) A + D does not exist, ( 2 8)

D — E does not exist

(b) (18), BA does not exist,

8.3 Addition, subtraction and multiplication

(A+B)>=A? 4+ AB+ BA + B’
Why is (A + B)2 not equal to A2 +2AB + B2?

Find, if possible,

10 00 1

00 —-10 1
@101 o0o0l]2
00 01 1
0010 2
0100 5

(b) -1 000 5
0001 1

1 2

Find (; _g g) 3 -5

6 17

1

Given the vector v = | 2 | calculate the vectors

3
obtained when v is premultiplied by the following
matrices:

62 9 ~103
@ | 13 2 w | 7109
12 -3 13 4
131
© (926 ) (2;i>
280
68 3
9 6 4
© [s539
252

—4 -3\ (-7 5
12 16)°\=21 19)°

DA does not exist, DB does not exist,

6 4 2
32 1)

EB does not exist, BE does not exist,

(23
@%?@Wé@@%%
@ (o) G)(3) @ ()-6)-C)
()-G)-(3)

()

265
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7 17 23 8 16 17
4 -1 10 19),117 4 8
24 10 4 23 8 9

18 14 86 78

7 11)°\39 47

—10 16 0 10
—-20 18)°\—-14 8)’

3 4 —15 48
6 9)°\-72 57

5

(
A
(

Technical Computing Exercises 8.3

Technical computing languages such as MATLAB® are
usually designed to perform operations on scalars,
vector and matrices. However, as has been demonstrated
in this chapter, different mathematical rules apply when
working with vectors and matrices. Consider the
following quantities:

a = —2 (ascalar quantity)

b (a scalar quantity)

C

7
13 .
(2 4>, (a 2 by 2 matrix)

1 5
5
7@ | o]
1 1
46 29
£ (29 78)
37 8 10
9 @ [ 13 ®) |36 © |31
—6 19 18
3]
1 33
@ (28) © |33
18

Load these as variables in a technical computing
language and then attempt to perform the following
calculations and answer the questions.

1. Find the product of the scalars a and b. Is this a
valid calculation?

2. Find the product of the scalar a and the matrix c. Is
this calculation valid? Similarly find the product of
the matrix ¢ and scalar a. Do these calculations
produce the same result?

3. Find the products of the matrices ¢ and d, that is cd
and dc. Are these calculations valid and do they
produce the same result?

d— (5 7) (a2 by 2 matrix) 4. Find the products of the matrices e and f, that is ef
6 8 and fe. Are these calculations valid and do they
14 produce the same result?
e=12 5], (a3by?2matrix) 5. Find the products of the matrices d and e, that is de
36 and ed. Are these calculations valid and do they
produce the same result?
(1 35 2 by 3 .
f=\, 4 ¢) (aZby3 matrix) 6. Find 2. Is this calculation valid?
7. Find e?. Is this calculation valid?
Solutions

1 Yes, the calculation is valid. It is a scalar multiplied
by a scalar. In MATLAB®:

axb
ans = -14

2 Yes, the calculations are valid and produce the same

result.

ax*c
ans =

-2 -6
-4 -8
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c*a
ans =

-2 -6
-4 -8

Multiplication of a scalar by a matrix is
commutative. It does not matter in which order the
calculation is performed. Each element in the matrix
is multiplied by the scalar value.

3 The calculations are valid but they do not produce the
same result because matrix multiplication is not

commutative.
cxd
ans =
23 31
34 46
>> dxc
ans =
19 43
22 50

This result emphasizes the need for care when
manipulating matrix equations.

4 Both calculations are valid but the results are not the

same.
exf
ans =
9 19 29
12 26 40
15 33 51
fxe
ans =
22 49
28 64

de is not valid as there are 2 columns in d and 3 rows
in e. It should generate an error in a technical
computing language. It is worth observing the error
message and understanding why this happens for
future reference.

ed is valid,

exd

ans =
29 39
40 54
51 69

It is valid. We take this to mean the matrix
multiplication of ¢ by itself:

c*C
ans =

7 15
10 22

Notice that this is different to taking the square of
each element within c. If we wanted to do that it
would be necessary to use the ‘dot’ notation:
c.”2
ans

1 9
16

The command c.”2 means ‘take each element of ¢ and
raise it to the power of 2. There is a set of operators
within MATLAB® which allow multiplication of
matrices on an element by element basis. Care has to
be taken as (for example) c * d and c. * d are both
valid operations which generate a 3 by 3 result but the
elements of the matrix are different. In other words, it
could give an incorrect result but MATLAB® would
not give any error messages.

It is not valid. It is only possible to multiply a matrix
by itself if there are the same number of columns as
TOws.

USING MATRICES IN THE TRANSLATION AND ROTATION

OF VECTORS

There are many applications in engineering that require vectors to be manipulated into
new configurations. One mechanism for achieving this is by the use of matrices. We will
introduce this topic through the example of robotics. However, it is important to note
that the ideas are more generally applicable in engineering.
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Engineering application 8.1

Robot coordinate frames

In Chapter 7 we saw that vectors provide a useful tool for the analysis of the position
of robots. By assigning a vector to each of the links the position vector corresponding
to the tip of the robot can be calculated (Figure 8.1). In practice the inverse problem
is more likely: calculate the link vectors to achieve a particular position vector. Usu-
ally a desired position for the tip of the robot is known and link positions to achieve
this are required. The problem is made more complicated because the position of a
link depends upon the movements of all the joints between it and the anchor point.
The solution of this problem can be quite complicated, especially when the robot has
several links. One way forward is to define the position of a link by its own local
set of coordinates. This is usually termed a coordinate frame because it provides a
frame of reference for the link. Matrix operations can then be used to relate the coor-
dinate frames, thus allowing a link position to be defined with respect to a convenient
coordinate frame. A common requirement is to be able to relate the link positions to
a world coordinate frame. If a robot is being used in conjunction with other ma-
chines then the world coordinate frame may have an origin some distance away from
the robot. The advantage of defining link coordinate frames is that the position of a
link is easily defined within its own coordinate frame and the movement of coordinate
frames relative to each other can be expressed by means of matrix equations.

p=a+b+c+d

Figure 8.1
A robot with links represented by vectors
a,b,cand d.

8.4.1 Translation and rotation of vectors

An introduction to the mathematics involved in analysing the movement of robots can
be obtained by examining the way in which vectors can be translated and rotated using
matrix operations.

Consider the point P with position vector given by

-
I
N =

In order to translate and rotate this vector it is useful to introduce an augmented vector
V given by

V= (8.1)

— e
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It is then possible to define several matrices:

1 0 0
0 cosf —sinf
0 sin6 cos 6
0 O 0

Rot(x, 0) = (8.2)

- o O O

cosf 0 sin6
0O 1 0
—sinf 0 cos6
0 0 O

Rot(y,§) = (8.3)

- o O O

cosf —sinf 0
sin & cosf 0

Rot(z,0) = 0 0 1

8.4)

— o O O

Trans(a, b, c) = (8.5)

Matrices (8.2) to (8.4) allow vectors to be rotated by an angle 6 around axes x, y and z,
respectively. For example, the product Rot(x, 8)V has the effect of rotating r through
an angle 0 about the x axis. Matrix (8.5) allows a vector to be translated a units in the x
direction, b units in the y direction and c units in the z direction.

It is possible to combine these matrices to calculate the effect of several operations
on a vector. In doing so, it is important to maintain the correct order of operations as
matrix multiplication is non-commutative.

For example, the position of a vector that has first been translated and then rotated
about the x axis can be defined by

View = Rot(x, 0) Trans(a, b, ¢) V

A few examples will help to clarify these ideas.

Example 8.12 Rotate the vector

2

through 90° about the x axis.

|
1
Solution g = |1 Voa = | 5

2

!

10 0 0 10 00

on 10 cos90° —sin90° O] JO O —10

Rot(x, 90%) = 14 Gnooc  cos90° 0] = |01 00

0 0 0 1 00 01
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10 00 1 1
00 -10 1 -2
Vao = o1 0o |27 1
00 01 1 1
So,
1
 p—— —2
1
Example 8.13 Translate the vector
1
r=|3
2
by
1
2
3
and then rotate by 90° about the y axis.
! ;
Solution g = 3 and: 2
2
1
To translate r,;, we form
1001
0102
Trans(1, 2, 3) = 0013
0001
Then
1001 1 2
0102}|3 5
Trans(1,2,3)V , = 0o13ll21=15
0001 1 1

To rotate by 90° about the y axis we require

cos90° 0 sin90° 0O 0

o o 1 0 o] | o
Rot(»907) = _ G100° 0 cos90° 0] = [ =1
0

0 0 0 1

The vector is premultiplied by this matrix to give

— LN
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8.5.1

8.5.2

8.5.3

V.ew = Rot(y,90°)Trans(1,2,3)V 4
0010\ /(2 5
[ oroo|fs] [ s
“|-1000 51 | -2
0001 1 1
Hence
5
rnew= 5
-2
BEX] soME SPECIAL MATRICES

Square matrices

A matrix which has the same number of rows as columns is called a square matrix. Thus

123
. . . -1 3 0\ .
—1 0 1] isasquare matrix, while 18 not
391 2 41

Diagonal matrices

Some square matrices have elements which are zero everywhere except on the leading
diagonal (top-left to bottom-right). Such matrices are said to be diagonal. Thus

3000
(1)38 10 0200
00 1 0b 0010
0000

are all diagonal matrices, whereas
124
010
301

is not.

Identity matrices

Diagonal matrices which have only ones on their leading diagonals, for example
100

<(1) (1)> and 010
001

are called identity matrices and are denoted by the letter /.

Example 8.14

Solution

01 3-10

10\ (2 44\ (2 44
’A=<0 1>(3 -1 0)2(3 -1 o)

Find /A where I = (1 O) and A = (2 4 4) and comment upon the result.
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The effect of premultiplying A by I has been to leave A unaltered. The product is identical
to the original matrix A, and this is why / is called an identity matrix.

8.5.4

In general, if A is an arbitrary matrix and / is an identity matrix of the appropriate
size, then

IA=A
If A is a square matrix then /A = Al = A.

The transpose of a matrix

If A is an arbitrary m x n matrix, a related matrix is the transpose of A, written AT, found
by interchanging the rows and columns of A. Thus the first row of A becomes the first
column of AT and so on. A7 is an n x m matrix.

Example 8.15

(1 =1 .
IfA = (2 4) find A”.

: r (12
Solution Al = (_1 4)
426 T T
Example 8.16 IfA = 187 find A" and evaluate AA”.
4 1 41
Solution ~ AT=[28 AAT = (‘1‘ : 3) 28| = (23 fj)
6 7 6 7
8.5.5 Symmetric matrices

If a square matrix A and its transpose A” are identical, then A is said to be a symmetric
matrix.

5 -4 2
Example 8.17 IfA=|-4 6 9| findA”.
2 9 13
5 -4 2
Solution Al=|-4 6 9
2 913
which is clearly equal to A. Hence A is a symmetric matrix. Note that a symmetric matrix
is symmetrical about its leading diagonal.
8.5.6 Skew symmetric matrices

If a square matrix A is such that A” = —A then A is said to be skew symmetric.
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Example 8.18 IfA = (_g (5)), find AT and deduce that A is skew symmetric.

0 —

Solution Wehave A” = (5

8) which is clearly equal to —A. Hence A is skew symmetric.

EXERCISES 8.5

31 -1 4
1 IfA:(2 6>andB:< 3 8)

(a) find AT,

(b) find BT,

(c) find AB,

(d)find (AB)T,

(e) deduce that (AB)T = BTAT.

X
Treating the column vectorx = | y ] asa3 x 1
b4

matrix, find /x where / is the 3 x 3 identity matrix.

IfA= (f Z) show that AAT is a symmetric
matrix.
213 1 =70
IfA = 42 1)landB=|0 25
-1 32 3 45

find AT, BT, AB and (AB)T.
Deduce that (AB)T = BTAT.

Determine the type of matrix obtained when two
diagonal matrices are multiplied together.

Solutions
32 -1 3
T ® <1 6) ®) < 4 8)

0 20 0 16
© <16 56> @ <2o 56>

24 —1 103
12 3|, 1-72 4]
31 2 055

IfA= (? s> is skew symmetric, show that

a = d = 0, that is the diagonal elements are zero.

1 13
()

(a) find AT,
(b) find (AT)T,
(c) deduce that (AT)T is equal to A.

9 4
wa= (2 9)

(a) find A + AT and show that this is a symmetric
matrix,

(b) find A — AT and show that this is a skew
symmetric matrix.

The sum of the elements on the leading diagonal
of a square matrix is known as its trace. Find the
trace of

(@ (_Z i) ) (_? (9))

100 7 2 1
© (010 da (8 2 3
001 9 -1 —4

11 0 20 11 75
7 =20 15),1 0 =20 21
5 2125 20 15 25

Diagonal matrix

o0 w4
(5 w1

@12  ®»O0 (©3 (@5
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THE INVERSE OF A 2 x 2 MATRIX

When we are dealing with ordinary numbers it is often necessary to carry out the opera-
tion of division. Thus, for example, if we know that 3x = 4, then clearly x = 4/3. If we
are given matrices A and C and know that

AB=C

how do we find B? It might be tempting to write
B=—
A

Unfortunately, this would be entirely wrong since division of matrices is not defined.
However, given expressions like AB = C it is often necessary to be able to find the
appropriate expression for B. This is where we need to introduce the concept of an inverse
matrix.

If A is a square matrix and we can find another matrix B with the property that

AB=BA =1
then B is said to be the inverse of A and is written A~!, that is
AAT ' =ATA=1

If B is the inverse of A, then A is also the inverse of B. Note that A~' does not mean a
reciprocal; there is no such thing as matrix division. A~! is the notation we use for the
inverse of A.

Multiplying a matrix by its inverse yields the identity matrix /, that is
AAT ' =ATA=1T

Since A is a square matrix, A~! is also square and of the same order, so that the products
AA~" and A7'A can be formed. The term ‘inverse’ cannot be applied to a matrix which
is not square.

Example 8.19

Solution

21
IfA:(3 )

) show that the matrix <_§ N é) is the inverse of A.

Forming the products
21 2 -1\ (10
32/\-3 2) " \01
2 -1\ (21y (10
-3 2J\32) " \01

we see that <_§ _;> is the inverse of A.
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8.6 Theinverse of a 2 x 2 matrix

Finding the inverse of a matrix

For 2 x 2 matrices a simple formula exists to find the inverse of

()

This formula states

_fa b a1 d —b
IfA—(c d)thenA _ad—bc(—c a)'

275

Example 8.20

Solution

(35 .
IfA_(1 2) find A~

Clearly ad — bc = 6 — 5 =1, so that

1 2 =5 2 -5
-1 _ _
weiG)=E0)

The solution should always be checked by forming AA™!.

Example 8.21

Solution

(' -1
IfA_<2 4) find A~

Here we have ad — bc = 4 — 10 = —6. Therefore

Example 8.22

Solution

— 24 -1
IfA_<1 2) find A~

This time, ad — bc = 4 — 4 = 0, so when we come to form

ad — be
is not defined. We cannot form the inverse of A in this case; it does not exist.

we find 1/0 which

Clearly not all square matrices have inverses. The quantity ad — bc is obviously the
important determining factor since only if ad — bc # 0 can we find A~!. This quan-
tity is therefore given a special name: the determinant of A, denoted by |A|, or detA.
Given any 2 x 2 matrix A, its determinant, |A|, is the scalar ad — bc. This is easily

remembered as

[product of \ diagonal] — [product of " diagonal]
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Note that the straight

cd ‘
lines || indicate that we are discussing the determinant, which is a scalar, rather than
the matrix itself. If the matrix A is such that [A] = 0, then it has no inverse and is said
to be singular. If |A| # 0 then A~! exists and A is said to be non-singular.

. . (a b . . ab
If A is the matrix (c d)’ we write its determinant as

A singular matrix A has |A| = 0.
A non-singular matrix A has |A| # 0.

Example 8.23

A= (1 2) and B = (:1 2) find |A[, |B| and |AB].

50 31
. 1
Solution Al = ‘5 ‘ =DO) -2 =—-
2
|B| = ‘ 1‘ = (=DM - @)(=3)=5
-7 4
o= Ga)G)-0 m)
|AB| = (=7)(10) — (4)(=5) =
We note that |A||B| = |AB|.
The result obtained in Example 8.23 is true more generally:
If A and B are square matrices of the same order, |A||B| = |AB].
8.6.2 Orthogonal matrices

A non-singular square matrix A such that AT = A~! is said to be orthogonal. Conse-
quently, if A is orthogonal AAT = ATA = I.

Example 8.24

Solution

0 —1

Find the inverse of A = <1 0

). Deduce that A is an orthogonal matrix.

From the formula for the inverse of a 2 x 2 matrix we find

1 01 01
-1 _ 2 _
w=1(a)-()

This is clearly equal to the transpose of A. Hence A is an orthogonal matrix.

To find the inverses of larger matrices we shall need to study determinants further. This
is done in Section 8.7.
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EXERCISES 8.6

_( 3¢ -1
IfA_<_4 8>ﬁndA :

Find the inverse, if it exists, of each of the following
matrices:
10 -1 0 23
@ (1) o () e
-1 0 6 2 -6 2
(d) (_1 7) ©) <9 3> ® ( 9 3>
11
2 2
® |
0 -
2
30 7 8
IfA = (_1 4> and B = <4 3>
find |AB|, |BA|.
_fa b (e f
IfA_(C d),B_<g h)
find AB, |A|, |B|, |AB|.
Verify that |[AB| = |A||B].
_ (12 -1
IfA_<3 4> findA=".
Solutions
1 /8 -6
64\4 5
1 3
10 -1 0 10 10
@ (o 1) ®) ( 0 —1) © 21
5 5
10 L
(d) ( 1 l ) (e) Noinverse (f) 1]2 1]8
7 17 - =
- 4 6
® (0 2)
—132, —132
ae+bg af + bh
ce+dg cf +dh)

ad — bc, eh — fg,
(ad — be)(eh — fg)

8.6 Theinverse of a 2 x 2 matrix

Find values of the constants a and b
such that A 4+ aA~! = bl.

11 21
() IfA=<0 3> amdB:(_1 3>

find AB, (AB) ', B~!, A"l and B~1A" 1.
Deduce that (AB)~! = B~1A~1,
7 Given that the matrix
coswt —sinwt 0
M = | sinwt coswt 0
0 0 1
is orthogonal, find M~ 1.

8 (a) IfA= (Z Z) and k is a scalar constant,

show that the inverse of the matrix kA
I
is —A" .

k

(b) Find the inverse of G (l)> and hence write

down the inverse of

W = W =
S W=

-2 1
5 § l a=-2,b=5
2 2
(14 1 (9 —4
é AB‘(—s 9)’(AB) _i<3 1)’
1 /3 —1 1/3 —1
-1 _ = -1 _ =
B _7<1 2>’A _3<0 1)
coswt sinwt 0

7 —sinwt coswt 0
0 0 1

8o (7 5)6 )

277
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m DETERMINANTS

@iy @i @iy
IfA = |a, a, ay|,the value of its determinant, |A[, is given by
a3 A3 Az
ay, a ay a a, a
— 22 923 21 923 21 92
AlI=au ™ = %2l anl %8 lay o
32 933 31 933 31 93

If we choose an element of A, g, ; say, and cross out its row and column and form the
determinant of the four remaining elements, this determinant is known as the minor of
the element ;.

A moment’s study will therefore reveal that the determinant of A is given by
|A| = (a,, x its minor) — (a,, X its minor) + (a,; X its minor)

This method of evaluating a determinant is known as expansion along the first row.

Example 8.25 Find the determinant of the matrix
121
A=|-1 34
512
Solution The determinant of A, written as
121
-1 3 4
512

is found by expanding along its first row:

=l g2 3 ]
= 1(2) — 2(=22) + 1(—16)
= 244416
= 30

Example 8.26 Find the minors of the elements 1 and 4 in the matrix

723
B=]|103
042
Solution To find the minor of 1 delete its row and column to form the determinant i ;‘ The
required minor is therefore 4 — 12 = —8.
73

Similarly, the minor of 4 is 13

‘:21—3:18.
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In addition to finding the minor of each element in a matrix, it is often useful to find a
related quantity — the cofactor of each element. The cofactor is found by imposing on
the minor a positive or negative sign depending upon its position, that is a place sign,
according to the following rule:

+ - +
_+_
+ -+
Example 8.27 If
3 27
A=19 10
3 —12

find the cofactors of 9 and 7.

Solution The minor of 9 is ‘_? ;’ = 4 — (=7) = 11, but since its place sign is negative, the
required cofactor is —11.
The minor of 7 is 3 _}' = —9 — 3 = —12. Its place sign is positive, so that the
required cofactor is simply —12.
8.7.1 Using determinants to find vector products

Determinants can also be used to evaluate the vector product of two vectors. If a =
a,i+ a,j + a;kand b = b|i + b,j + bk, we showed in Section 7.6 that a x b is the
vector defined by

ax b = (a,by —ayb,)i+ (a;b, — a,b;)j + (a,b, — a,b))k

If we consider the expansion of the determinant given by

i j Kk
a; a4, 4
by, b, by

we find the same result. This definition is therefore a convenient mechanism for evalu-
ating a vector product.

If a = a,i+ a,j + a;k and b = b,i + b,j + b5k, then
i j k
axb=|a a, a,
by b, b,
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Example 8.28 Ifa=3i+j—2kandb =4i+ 5k finda x b.

Solution

We have
ij k
axb=131 -2
40 5
= 5i —23j — 4k

8.7.2 Cramer’s rule

A useful application of determinants is to the solution of simultaneous equations. Con-
sider the case of three simultaneous equations in three unknowns:

apx+apy+apz = b

ay X + ayy +ayz = b,

a3 x + apy + ayz = by

Cramer’s rule states that x, y and z are given by the following ratios of determinants.

Cramer’s rule:

ag
ays
dsz
ags
a3
ds3

ay by ap ay ap b
ay b, ay ay Gy b,
a3 by as .= a3 az by
ay G 43 a; ap a3
Ay Gy Q3 ay Gy Gy3
a3 Q3 A3 a3 43 A3

Note that in all cases the determinant in the denominator is identical and its elements
are the coefficients on the L.h.s. of the simultaneous equations. When this determinant is
zero, Cramer’s method will clearly fail.

Example 8.29

Solution

Solve
3x+2y—z=4
2x—y+2z =10
x—=3y—4z=>5
We find
4 2 -1
10 -1 2
5 =3 —4 165
r—m-—r-—— =
3 02 —1 55
2 -1 2
1 -3 —4

=3

Verity for yourself thaty = —2 and z = 1.




EXERCISES 8.7
46 13 4 6 72
1 Find‘2 8" 21 Oland| 1 4 3|
35 —1 —-11 4
2 Find‘ C9swt smwt'
—sinwt cos wt
500 900
3 Evaluate (6 3 2|and |0 7 O
457 008
2 —17
4 IfA=|0 8 4],find|A|and |AT].
3 64

Comment upon your result.

5 Use Cramer’s rule to solve
(@ 2x—3y+z=0
Sx+4y+2z=10
2x—=2y—z=-1
(b) 3x+y=-1
2x —y+z=—1
Sx+5y—Tz=-16
(c) x+y+z=13
2x —y=4
x+y—z=-3

Solutions

1 20,33,39
2 1

55, 504

N W

—164, —164 Note |A| = |AT|
5 (@ x=y=z=1
(b) x=—-1,y=2,z=3

8.8 Theinverse of a 3 x 3 matrix 281

(d 3x+2y=1
x+y—z=1
2x+3z=-1

Given

37 6
A=|-21 0
42 -5

(a) find |A|

(b) find the cofactors of the elements of row 2, that is
-2,1,0

(c) calculate

—2 x (cofactor of —2)
+1 x (cofactor of 1)
40 x (cofactor of 0).

What do you deduce?
Ifa=7i+11j—2kandb =6i —3j+ k finda x b.
Find a x b when
(a a=3i—jb=i+j+k
(b) a=2i+j+k b=7k
(c) a=-T7j—k,b=-3i+]j

) x=2,y=0,z=5
dx=1ly=-1,z=-1

(@ —133  (b) 47,-39,22  (c) —133
5i— 19j — 87k
() —i—3j+4k

(b) 7i— 14j
© i+3j-2Ik

THE INVERSE OF A 3 x 3 MATRIX

Given a 3 x3 matrix, A, its inverse is found as follows:

(1) Find the transpose of A, by interchanging the rows and columns of A.

(2) Replace each element of AT by its cofactor; by its minor together with its associated
place sign. The resulting matrix is known as the adjoint of A, denoted adj(A).
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(3) Finally, the inverse of A is given by

L adia)
A]

Example 8.30 Find the inverse of

Solution

1 =20
A= 3 15
-1 23
13 -1
Al=-21 2
05 3

Replacing each element of A” by its cofactor, we find

-7 6 —10
adjA) = | -14 3 -5
70 7

The determinant of A is given by

15 35 31
w= 1y 3 ea] 3 3ol
= D)+ 2)(A4)
= 21
Therefore,
. 76 —10
PR (GO YIS
ar 2o

Note that this solution should be checked by forming AA™" to give I.

It is clear that should |A| = 0 then no inverse will exist since then the quantity 1/|A]| is
undefined. Recall that such a matrix is said to be singular.

For any square matrix A, the following statements are equivalent:
Al =0
A is singular
A has no inverse



EXERCISES 8.8

1 Find adj(A), |A| and, if it exists, A=, if

2 -3 1
@ A=|5 4 1
2 -2 —1
31 0
b A=[2 -1 1
5 5 -7

Solutions

1 () |Al=—43

adj(4)

A7l =

() 1Al =25

adj(4)

A7l =

-2 =5 -7
7 -4 31,
—-18 -2 23

2 7 1
19 —21 -3,
15 —10 —5
(2 T
~ |19 —21 =3
25 \15 —10 =5

8.9 Application to the solution of simultaneous equations

10
2 IfP=|-5

2 |P| =230

adj(P)

—4
Deduce P,
(©) 1Al=0

2 -1 4
© A=|5 -2 9
32 —1

-5 —4
10 =3 ], find adj(P) and |P|.
-3 8

—16 7 -1
adjA)=| 32 —14 2
16 -7 1

A~ does not exist.

71 52 55
= |52 64 50
55 50 75

1 71 52 55
230 52 64 50
55 50 75

APPLICATION TO THE SOLUTION OF SIMULTANEOUS

EQUATIONS

283

The matrix techniques we have developed allow the solution of simultaneous equations
to be found in a systematic way.

Example 8.31

Solution

Use a matrix method to solve the simultaneous equations

2x+4y =14

x—3y=-8

We first note that the system of equations can be written in matrix form as follows:

(30

14
-8

(8.6)

8.7
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To understand this expression it is necessary that matrix multiplication has been fully
mastered, for, by multiplying out the 1.h.s., we find

(i )0)-E5)

and the form (8.7) follows immediately.
We can write Equation (8.7) as

AX = B (8.8)
where A is the matrix (? _i) , X is the matrix (;) and B is the matrix (_1:>

In order to find X = ;) it is now necessary to make X the subject of the equation

AX = B. We can premultiply Equation (8.8) by A~!, the inverse of A, provided such an
inverse exists, to give

A'AX =A7'B

Then, noting that A~™'A = I, we find

IX=A"'B
that is
X=A"'B

using the properties of the identity matrix. We have now made X the subject of the equa-
tion as required and we see that to find X we must premultiply the r.h.s. of Equation (8.8)
by the inverse of A.

In this case

. 1 (-3 -4
A™ = __10<—1 2)
_ (3710 2/5
= \1/10 —1/5
L, (3/10 2/5)\ (14
A7B = (1/10 —1/5) (—8)
e
-3

that is, X = (i) = (;), so that x = 1 and y = 3 is the required solution.

and

If AX = Bthen X = A~'B provided A~! exists.

This technique can be applied to three equations in three unknowns in an analogous way.
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Example 8.32 Express the following equations in the form AX = B and hence solve them:

3x+2y—z=4
2x—y+2z=10
x—3y—4z =15

Solution  Using the rules of matrix multiplication, we find

302 -1\ [x 4
2 -1 2| |y]=1(10
1 -3 4] \z 5

which is in the form AX = B. The matrix A is called the coefficient matrix and is simply
the coefficients of x, y and z in the equations. As before,

AX = B
A7'AX = A7'B
IX =X=A"'B

We must therefore find the inverse of A in order to solve the equations.
To invert A we use the adjoint. If

3 2 —1
A=12 -1 2
1 -3 —4
then
3 2 1
AT = 2 -1 -3
-1 2 —4

and you should verify that adj(A) is given by

10 11 3
adj(4) = [ 10 —11 —8
-5 11 -7

The determinant of A is found by expanding along the first row:

=3l o
= (3)10) = 2)(=10) = (DH(=5)
=30+20+5
=55

Therefore,
PR R T

AL S5 \s 11 7
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Finally, the solution X is given by

X 1 10 11 3 4
X=\y =A—1B=E 10 —11 =8| 10
Z -5 11 -7 5
3
=|-2
1
that is, the solutionisx =3,y = —2andz = 1.
EXERCISES 8.9
1 By expressing the following equations in matrix form (b) (4 4) (x) — (20)
and finding an inverse matrix, solve 13)\y 11
2 -1\ (x —4
a) dx—2y=14 -
e @ (2)0-00)
2x+ y=5
(b) 2x — 2_)7 =0 4 3 X 20
3= —8 @ (2 -1 4)|y]=1]20
xSy =- o 15)\z 20
(c) 8x+3y=59
4 1 3\ [x 15
—2x+ y=-13 © [2 =1 4] [y] = 12)
2 Solve the following equations AX = B by finding 0 < 17
AL if it exists. 4 3 X 0
6 3\ (x 12 M |2 -Lafly)={0
@ (23)()-(5) 0 15)\:) \o

Solutions

1 (@ x=3,y=-1

(b) x=—2,y=-2

© x=7y=1

2 (@ x=1,y=2 b)) x=2,y=3
() x=—-1,y=2 d x=2,y=0,z=4
(e x=1,y=2,z=3 () x=y=2z=0

GAUSSIAN ELIMINATION

An alternative technique for the solution of simultaneous equations is that of Gaussian
elimination which we introduce by means of the following trivial example.

Example 8.33

Use Gaussian elimination to solve

2x+3y=1
x+y=3
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First consider the equations with a step pattern imposed as follows:

2x + 3y =1 (1)
x|+y =3 (2)

Our aim will be to perform various operations on these equations to remove or eliminate
all the values underneath the step. You will probably remember from your early work
on simultaneous equations that in order to eliminate a variable from an equation, that
equation can be multiplied by any suitable number and then added to or subtracted from
another equation. In this example we can eliminate the x term from below the step by
multiplying the second equation by 2 and subtracting the first equation. Since the first
equation is entirely above the step we shall leave it as it stands. This whole process will
be written as follows:

R, — 2R, — R, Ox|—y =5 (8.9)

where the symbol R, means that Equation (1) is unaltered, and R, — 2R, — R, means
that Equation (2) has been replaced by 2 x Equation (2) — Equation (1). All this may
seem to be overcomplicating a simple problem but a moment’s study of Equation (8.9)
will reveal why this ‘stepped’ form is useful. Because the value under the step is zero
we can read off y from the last line, that is —y = 5, so that

y=-5
Knowing y we can then move up to the first equation and substitute for y to find x.

2x43(=5) =1

x=2_8

This last stage is known as back substitution.

Before we consider another example, let us note some important points:
(1) Itis necessary to write down the operations used as indicated previously. This aids
checking and provides a record of the working used.

(2) The operations allowed to eliminate unwanted variables are:

(a) any equation can be multiplied by any non-zero constant;

(b) any equation can be added to or subtracted from any other equation;

(c) equations can be interchanged.
It is often convenient to use matrices to carry out this method, in which case the opera-
tions allowed are referred to as row operations. The advantage of using matrices is that

it is unnecessary to write down x, y (and later z) each time. To do this, we first form the
augmented matrix:

231
113

so called because the coefficient matrix (? ?) is augmented by the r.h.s. matrix (;)

Itis to be understood that this notation means 2x+3y = 1, and so on, so that we no longer
write down x and y. Each row of the augmented matrix corresponds to one equation.
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The aim, as before, is to carry out row operations on the stepped form

(is)

in order to obtain values of zero under the step. Clearly to achieve the required form, the
row operations we performed earlier are required, that is

R, 2 31
R, —> 2R, — R, 0]-15

The last line means Ox — 1y = 5, that is y = —5, and finally back substitution yields x,
as before.

This technique has other advantages in that it allows us to observe other forms of
behaviour. We shall see that some equations have a unique solution, some have no solu-
tions, while others have an infinite number.

Example 8.34

Solution

Use Gaussian elimination to solve

2x+3y=4
4x+6y="7

In augmented matrix form we have

(37

We proceed to eliminate entries under the step:

R, 23 4
R, > R, — 2R, 0]0 —1

Study of the last line seems to imply that Ox + Oy = —1, which is clearly nonsense.
When this happens the equations have no solutions and we say that the simultaneous
equations are inconsistent.

Example 8.35

Solution

Use Gaussian elimination to solve

x+y=0
2x+2y=0

In augmented matrix form we have

(320)

Eliminating entries under the step we find

R, 110
R, —> R, — 2R, 00 0

This last line implies that Ox + Oy = 0. This is not an inconsistency, but we are now
observing a third type of behaviour. Whenever this happens we need to introduce what
are called free variables. The first row starts off with a non-zero x. There is now no
row which starts off with a non-zero y. We therefore say y is free and choose it to be
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anything we please, that is
y=2x A is our free choice
Then back substitution occurs as before:

x+A1=0

xX=—A

The solution is therefore x = —A, y = A, where X is any number. There are thus an
infinite number of solutions, for example

or

and so on.

Observation of the coefficient matrices in the last two examples shows that they have a
determinant of zero. Whenever this happens we shall find the equations either are incon-
sistent or have an infinite number of solutions. We shall next consider the generalization
of this method to three equations in three unknowns.

Example 8.36

Solution

Solve by Gaussian elimination
x—4y—2z =21
2x4+y+2z =3
3x+2y—z = -2

We first form the augmented matrix and add the stepped pattern as indicated:

The aim is to eliminate all numbers underneath the steps by carrying out appropriate
row operations. This should be carried out by eliminating unwanted numbers in the first
column first. We find

Rl
R, > R, — 2R,
R, > R, — 3R,

We have combined the elimination of unwanted numbers in the first column into one
stage. We now remove unwanted numbers in the second column:

R, 1 -4 -2 21
R, 0] 9 6 -39

14 13 13

Ry — Ry~ 'R, 0 0j-— ——

14
and the elimination is complete. Although R; — R; + TRI would eliminate the 14, it

would reintroduce a non-zero term into the first column. It is therefore essential to use
the second row and not the first to eliminate this element. We can now read off z since
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13 13
the last equation states Ox + Oy — ?z = -3 that is z = 1. Back substitution of z = 1
in the second equation gives y = —5 and, finally, substitution of z and y into the first

equation gives x = 3.

Example 8.37 Solve the following equations by Gaussian elimination:

x—y+z=3
x+5y—5z=2
2x+y—z=1

Solution Forming the augmented matrix, we find

Then, as before, we aim to eliminate all non-zero entries under the step. Starting with
those in the first column, we find

R,
R, - R, —R,
R, — R, —2R,
Then,
R,
R,
Ry — 2R; — R,

This last line implies that Ox+0y+0z = —9, which is clearly inconsistent. We conclude
that there are no solutions.

You will see from Examples 8.36 and 8.37 that not only have all entries under the step
been reduced to zero, but also each successive row contains more leading zeros than the
previous one. We say the system has been reduced to echelon form. More generally the
system has been reduced to echelon form if for i < j the number of leading zeros in row
Jj is larger than the number in row i. Consider Example 8.38.

Example 8.38 Solve the following equations by Gaussian elimination:

2x—y+z=2
“2x+y+z=4
6x —3y—2z = -9

Solution Forming the augmented matrix, we have
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Eliminating the unwanted values in the first column, we find

Rl
R, > R, +R,
R, — R, — 3R,

Entries under the step are now zero. To reduce the matrix to echelon form we must ensure
each successive row has more leading zeros than the row before. We continue:

R, 2 -112
R, 0] 026
R, — 2R, + 5R, 0 0]00

which is now in echelon form.

In this form there is a row which starts off with a non-zero x value, that is the first
row, there is a row which starts off with a non-zero z value, but no row which starts off
with a non-zero y value. Therefore, we choose y to be the free variable, y = A say. From
the second row we have z = 3 and from the first 2x — y +z = 2, so that 2x = A — 1, that
isx=x-—1)/2.

Engineering application 8.2

The Vandermonde Matrix

Many data storage devices, for example the Blu-ray discTM, and data transmission
standards, for example WiMAX®, have built-in techniques to reduce the effects of
errors which occur during normal use. These errors originate from noise and inter-
ference and they can result in the loss of data. One such technique is the use of an
error-correcting code to provide a measure of protection against data errors. Error-
correcting codes are used to encode the data when it is stored or transmitted. The
data is then decoded when it is read or received. In the case of a transmission line,
the error-correcting code makes it possible to detect errors in the received signal and
to make corrections, so that the errors are not subsequently retransmitted.

One important class of error-correcting codes are based on Reed-Solomon codes,
details of which are beyond the scope of this text. However an important mathemat-
ical concept used in Reed-Solomon codes is that of a Vandermonde matrix.

The Vandermonde matrix can be illustrated by considering the problem of rep-
resenting a signal by a polynomial. For example, to approximate a signal f(¢) by a
second-degree polynomial we write

f(t) ~ ay+at +at’

where a,, a, and a, are coefficients of the polynomial which must be found. These
are found by forcing the original signal f(¢) and its polynomial approximation to
agree at three different values of ¢, say 1, ¢, and t,. This gives rise to the following
system of equations:

2
L0\ dag) ()
Lo glla]=]r@)
11, 3] \® F)
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8.10.1

The coefficient matrix is known as a Vandermonde matrix. Suppose we wish to find
a second-degree polynomial approximation to the signal f(#) = cos — for values of
t between —1 and 1. We can do this by making the approximating polynomial and

the original signal equal at three points, say t = —1,7 = 0 and ¢ = 1. The equations
to be solved are then

1 —11 ag f(=1) 0

1 00)|a|=1{ fOO) |=1]1

I 11 a, f() 0
It is straightforward to solve this system of equations by Gaussian elimination and
obtain gy =1, a; =0 and a, = — 1. Therefore the second-degree polynomial which

. T . 2
approximates f () = cos > is 1 —1¢-.

Finding the inverse matrix using row operations

A similar technique can be used to find the inverse of a square matrix A where this exists.
Suppose we are given the matrix A and wish to find its inverse B. Then we know

AB =1

that is,
ay ap dpg by, by, by 100
Qay) Ayy Ay by by byy | =10 10
dz; dzp Az by by, by 001

We form the augmented matrix

ay, a;, az 1 00
dy Gy Gy 010
a3 Ay ayy 0 01

Now carry out row operations on this matrix in such a way that the Lh.s. is reduced to a
3 x 3 identity matrix. The matrix which then remains on the r.h.s. is the required inverse.

Example 8.39

Solution

Find the inverse of

-1 8 -2
A=|-6 49 —10
—4 34 -5

by row reduction to the identity.

We form the augmented matrix

-1 8 -2 100
—-649 —-10 010
—-434 -5 001

We now carry out row operations on the whole matrix to reduce the Lh.s. to an identity
matrix. This means we must eliminate all the elements off the diagonal. Work through
the following calculation yourself:



R, ~18-2 100
R,>R,—6R,| 01 2—-610
R,—>R,—4R, \ 02 3 —401
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This has removed all the off-diagonal entries in column 1. To remove those in column 2:

R, — R, —8R, [ —1 0 —18 49 —8 0
R, 01 2-6 10
R,—>R,—2R,\ 00 —1 8 —21

To remove those in column 3:

2

R,—>R —18R, (-1 0 0 —95 28 —18
R, > R, + 2R, 01 0 10 -3
R, 00—-1 8 -2

1

We must now adjust the ‘—1’ entries to obtain the identity matrix:

R,——R, (100 95 —28 18
R, 01010 -3 2
R,—>-R,\001 -8 2 —1

Finally, the required inverse is the matrix remaining on the r.h.s.:

95 —-28 18
10 -3 2
-8 2 -1

You should check this result by evaluating AA™".

1

EXERCISES 8.10

Solve the following equations by Gaussian 2 Use Gaussian elimination to solve

elimination:

(@) 2x—3y=132 x+y+z=7
3x+7y=-21 ¥—y+2=9

(b) 2x+y—3z=—5 Zty-z=1
X—y+2z=12 3 Find the inverses of the following matrices using the
Tx —2y+3z=737 technique of Example 8.39:

(© x+y—z=1
3x—y+52=3 @) <4 1)
Tx+2y+3z=7 32

d 2x+y—z=-9 4 21
3x—2y+4z=>5 (b) ( 03 4)
2 —y+77=33 -113

(e) 4x+7y+8z=2 103
5x+8y+13z=0 (c) ( 21 5)
3x45y+7z=1 =721
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Solutions

1 (@ x=7,y=-6

b)) x=3,y=-5,z=2 | 5 _s 5
© x=1—-pu,y=2u,z=n b)) —|—-4 13 —16

d x=-3,y=1,z=4

(e) Inconsistent

2 x=2,y=1,z=4

8.11.1

Bls 6 12

L[ 6 -3
© 5|37 2 1
1 -2 1

EIGENVALUES AND EIGENVECTORS

We are now in a position to examine the meaning and calculation of eigenvalues and
their corresponding eigenvectors.

Solution to systems of linear homogeneous equations

Recall that an equation is linear when the variables occur only to the first power. For
example,

2x+3y=1 (D)
is a linear equation but
2x* +3y=1 )

is a non-linear equation due to the term 2x.
Equation (1) is called inhomogeneous. When the r.h.s. of a linear equation is O then
the equation is homogeneous. For example,

2x+3y=0 and 7x—3y=0

are both homogeneous. This section looks at the solution of systems of linear homoge-
neous equations.
Consider the simultaneous linear homogeneous equations

ax+by =0

cx+dy =0
where a, b, ¢ and d are constants. Clearly x = 0, y = 0 is a solution. It is called the
trivial solution. Non-trivial solutions are solutions other than x = 0, y = 0. We now
study the system to find conditions on a, b, ¢ and d under which non-trivial solutions

exist.
For definiteness we consider two cases with values of a, b, ¢ and d given.

Case 1

3x—5y =0
6x—7y =0
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Solving Case 1, for example by Gaussian elimination, leads to x = 0, y = 0 as the only
possible solution. Thus, the only solution is the trivial solution.

Case 2

x+y=20
2x+2y =0

This system was solved in Example 8.35 using Gaussian elimination to yield

where A is any number and y is a free variable. Thus there are an infinite number of
solutions. Note that in this system the second equation, 2x 4 2y = 0, is a multiple of the
first equation, x + y = 0. The second equation is twice the first equation.

We now return to the system

ax+by =0

cx+dy =0
As seen, depending upon the values of a, b, ¢ and d the system has either only the trivial
solution or an infinite number of non-trivial solutions. For there to be non-trivial solu-

tions the second equation must be a multiple of the first. When this is the case, then c is
a multiple of a and d is the same multiple of b, that is

c=uaa, d=uab for some value of «
In this case, consider the quantity ad — bc:

ad — bc = a(ab) — b(aa)
aab — aab
=0

Hence the condition for non-trivial solutions to exist is that ad — bc = 0. Writing the
system in matrix form gives

(£0)6)-0)

AX =0

or

where

(Y () -0

We note that ad — bc is the determinant of A, so non-trivial solutions exist when the
determinant of A is zero; that is, when A is a singular matrix.
In summary:
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Consider the system
AX =0

If |A| = 0, the system has non-trivial solutions.
If |A| # 0, the system has only the trivial solution.

Example 8.40 Decide which of the following systems of equations has non-trivial solutions:
(@ 3x+7y=0
2x—y=0
(b) 2x+y=0
6x+3y=0
Solution (a) We write the system as

G-D0)-0)
=)

Then

Let

IA] = 3(=1) = 2(7) = —17

Since the determinant of A is non-zero, the system has only the trivial solution.
(b) We write the system as

£)6)-0
()

from which [A| = 2(3) — 1(6) = 0. Since the determinant of A is 0, the system has
non-trivial solutions.

Let

Example 8.41 Determine which of the following systems of equations has non-trivial solutions:

(a) 2x+y—3z=0
x—3y+2z=0
5x =8y +3z=0

b) 2x+y—-3z=0
x—3y+2z=0
Sx=Ty+3z=0
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1

2

AX =0
where
1 -3 X
5 -8 3 Z
Evaluation of |A| shows that |A| = 0 and so the system has non-trivial solutions.
(b) Here
2 1 -3
A=|1 -3 2
5 -7 3
from which |A| = —7. Since |A| # 0 the system has only the trivial solution.
EXERCISES 8.11.1

Explain what is meant by the trivial solution of a
system of linear equations and what is meant by a
non-trivial solution.

Determine which of the following systems has
non-trivial solutions:
(@A x—2y=0
3x—6y=0
(b) 3x+y=0
Ix+2y=0
() 4x—3y=0
—4x+3y=0
(d 6x—2y=0
2x — %y =0
3
(e) y=2x
x =3y
Solutions
(a), (c) and (d) have non-trivial solutions.

8.11.2 Eigenvalues

3 Determine which of the following systems have

3

non-trivial solutions:

@ x+2y— z=0
3x+ y+2z=0
x4+ y =0

(b) 2x—3y—2z=0
3x+ y—3z=0
x=Ty— z=0

() x+2y+3z=0
4x—3y— z=0
6x+ y+3z=0

d x+ 3z=0
xX— 'y =0

y+2z=0

(a) and (b) have non-trivial solutions.

We will explain the meaning of the term eigenvalue by means of an example. Consider

the system

2x+y = Ax
3x+4y= Ay
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where X is some unknown constant. Clearly these equations have the trivial solution
x =0,y = 0. The equations may be written in matrix form as

21 X X
(40)=+C)
or, using the usual notation,

AX = AX

We now seek values of A so that the system has non-trivial solutions. Although it is
tempting to write (A — A)X = 0 this would be incorrect since A — A is not defined: A
is a matrix and A is constant. Hence to progress we need to write the r.h.s. in a slightly

different way. To help us do this we use the 2 x 2 identity matrix, /. Now A ;C may be

expressed as

(61)C)

since multiplying G) by the identity matrix leaves it unaltered. So AX may be written
as AIX. Hence we have

AX = MX
which can be written as

AX —AIX = 0
A—-2DX =0

Note that the expression (A — Al) is defined since both A and A/ are square matrices
of the same size.

We have seen in Section 8.11.1 that for AX = 0 to have non-trivial solutions requires
|A| = 0. Hence for

(A—ADX =0

to have non-trivial solutions requires

[A—AIl =0
Now
21 10
A—M:(34 —k(o 1)

| Il
TN N
[\ W N
U)I FAE
~

| -

>
N~

So the condition |A — AI| = 0 gives

2—x 1
34—



It follows that
2Q-0n@E-x1-3
M—6A+5=0
A—DA-=5 =0

I
o

so that
A=1 or 5
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These are the values of A which cause the system AX = AX to have non-trivial solutions.

They are called eigenvalues.
The equation

IA— Il =0

which when written out explicitly is the quadratic equation in A, is called the charac-

teristic equation.

Example 8.42

Solution

Find values of A for which
x+4y = Ax
2x+3y = Ay

has non-trivial solutions.

We write the system as
AX =X

where

4=(23) *=()

To have non-trivial solutions we require
[A—X=0

Now

()0
3)-63)

3

(1= 4
B 2 33—
Hence

[A—X| = (1—-A)B—-1)—38
= A —4r-5
To have non-trivial solutions we require
M —4r-5=0
A+DR -5 =0
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which yields
A=—1 or 5

The given system has non-trivial solutions when A = —1 and A = 5. These are the
eigenvalues.

If A is a 2 x 2 matrix, the characteristic equation will be a polynomial of degree 2,
that is a quadratic equation in A, leading to two eigenvalues. If A is a 3 x 3 matrix, the
characteristic equation will be a polynomial of degree 3, that is a cubic, leading to three
eigenvalues. In general an n x n matrix gives rise to a characteristic equation of degree
n and hence to n eigenvalues.

The characteristic equation of a square matrix A is given by
[A—All =0

Solutions of this equation are the eigenvalues of A. These are the values of A for
which AX = AX has non-trivial solutions.

Example 8.43 Determine the characteristic equation and eigenvalues, A, in the system
31\ (x X
(15)0)=+()

Solution In this example the equations have been written in matrix form with A = (_? é) . The

characteristic equation is given by

JA—All =0
31 10

()26 =0
3—a 1

‘—1 S—A':O

B=MNGE=MN+1=0
AM—8r+16 =0

The characteristic equation is A> — 8A 4+ 16 = 0. Solving the characteristic equation
gives
AP—8L+16 =0
r=4Hr-4) =0
A = 4 (twice)

There is one repeated eigenvalue, A = 4.
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Example 8.44 Find the eigenvalues A in the system

Solution

G2)()=+C)

We form the characteristic equation, [A — Al| = 0. Now

4-x 1
A_“:< 3 2—)\>

Then
A—M|=@-2)Q2—-1)—-3=A>—61+5
Solving the characteristic equation, A2 — 61 4+ 5 = 0, gives
rA=1 or 5

There are two eigenvalues, A = 1, A = 5.

The process of finding the characteristic equation and eigenvalues of a matrix has
been illustrated using 2 x 2 matrices. This same process can be applied to a square
matrix of any size.

Example 8.45 Find (a) the characteristic equation (b) the eigenvalues of A where

Solution

1 2 0
A=1-1 -1 1
32 =2

(a) We need to calculate [A — AI|. Now

1—A 2 0
A— M= -1 —-1-=Ax 1

3 2 -2 —X

and
1—A 2 0
—1—-x 1 -1 1

-1 —-1-x 1 = (l—k)‘ 5 '—2‘ 5 '
3 ) DY 2 2—A 3 2—A

(I =M(=1=2)(=2-21)—2]
=2[-1(=2—2) — 3]
Upon simplification this reduces to —A* — 212 + A + 2. Hence
IA— Al =0
yields
=27 +1+2=0
which may be written as
M2 —1-2=0

The characteristic equation is A* + 2% — A — 2 = 0.
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(b) The characteristic equation is solved to yield the eigenvalues:

M+2222—1=-2=0

Factorizing yields

A+2)+DRr -1 =0

from which A = -2, —1, 1.

The eigenvalues are A = —2, —1, 1.
EXERCISES 8.11.2
1 Calculate (i) the characteristic equation (ii) the 10 -1
eigenvalues of the system AX = AX, ® (31 4
where A is given by 02 2
56 -3 4 21 2
b
@ (2 1) ® (-4 5) © |-11 -1
© 7 =2 ) 1 3 83 0
9\ 4 4 —1 2 62
. . L (d) 0 34
2 Calculate (i) the characteristic equation (ii) the 3 .35
eigenvalues of the following 3 x 3 matrices:
1 -1 2 3 -21
@ |-3 -23 (e) 2 -4 3
11 16 —4 1
Solutions
1 @ ) A2—61-7=0 () A=-2,-13

(i) r=-1,7

® O A2=224+41=0
@i1) A =1 (twice)

(©) () A2—11A+30=0
(i) A =5,6

(d G »2—-13=0
(i) »=—-v13,V13

2 () () A +7A+6=0

Technical Computing Exercises 8.11.2

The calculation of eigenvalues and eigenvectors is
usually performed by a built-in function. For example,
in MATLAB® the function eig can used to calculate
the eigenvalues.

® () AP —4a2-31+12=0
(i) A =—+3,+3.4
(© () A =322-10L+24=0

(i) 1 =—-3,2,4
(@ () A —6r2+51=0
() A =0,1,5
(e () P¥—13x4+12=0
(i) »=—-4,1,3

To produce a solution to question 1. (a) in the previous
exercise we would type:

A=1[56; 21];
eig(A)



which produces:

ans =
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which is a vector containing the eigenvalues.

Use MATLAB® or a similar language to confirm the
rest of the eigenvalues given in Exercises 8.11.2.

8.11.3

Eigenvectors
We have studied the system
AX =2X

and determined the values of A for which non-trivial solutions exist. These values of A are
called eigenvalues of the system, or, more simply, eigenvalues of A. For each eigenvalue
there is a non-trivial solution of the system. This solution is called an eigenvector.

Example 8.46

Solution

Find the eigenvectors of
AX =X

where

1= Y= ()

We seek solutions of AX = AX which may be written as
A-1DX=0

The eigenvalues were found in Example 8.44tobe A = 1, 5.
Firstly we consider A = 1. The system equation becomes

A—ADX = 0
A-DX =0

62610 = (o)
G-

Written as individual equations we have

3x+y =20

3x+y =0
Clearly there is only one equation which is repeated. As long as y = —3x the equation is
satisfied. Thus there are an infinite number of solutions suchasx =1,y = —3;x = —5,

y = 15; and so on. Generally we write
x=t, y=-3t

for any number ¢. Thus the eigenvector corresponding to A = 1 is

() (5)- )
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Note that the eigenvector has been determined to within an arbitrary scalar, 7. Thus there
is an infinity of solutions corresponding to 1 = 1.
We now consider A = 5 and seek solutions of the system equation:

E)-<60-0
-0

Written as individual equations we have

—x+y =0
3x—-3y =0

We note that the second equation is simply a multiple of the first so that in essence there
is only one equation. Solving —x+y = 0 gives y = x for any x. So we write x =,y = 1.

. . . 1 . .
Hence the eigenvector correspondingtoA = 5is X =+t 1) Again the eigenvector has
been determined to within an arbitrary scaling constant.

Sometimes the arbitrary scaling constants are not written down; it is understood that

they are there. In such a case we say the eigenvectors of the system are

() =)

Example 8.47

Solution

Determine the eigenvectors of

(9640

In Example 8.43 we found that there is only one eigenvalue, A = 4. We seek the solution
of (A —ANX = 0. With L = 4 we have

a-n=(15) -4 V)= ()
Hence (A — X)X = 0 is the same as
E)0)-6)
-1 1) \y 0
Thus there is only one equation, namely
—x+y=0

which has an infinity of solutions: x = ¢, y = t. Hence there is one eigenvector:

()




8.11 Eigenvalues and eigenvectors 305

The concept of eigenvectors is easily extended to matrices of higher order.

Example 8.48 Determine the eigenvectors of

Solution

1 2 0 X X
-1 -1 1 yl=xrly
3 2 =2 Z z

The eigenvalues were found in Example 8.45.

From Example 8.45 the eigenvalues are . = —2, —1, 1. We consider each eigenvalue in
turn.
A=-=2
I 2 0\ (x X
-1 -1 1 vyl =21y
3 2 -2 Z Z
1 0 100\] (x 0
-1 -1 1142|010 y|] =10
— 001/ ]\z 0
320\ [x 0
-1 11 yl =10
320/ \z 0

‘We note that the first and last rows are identical. So we have

3x +2y =0
—x+y+z=0

Solving these equations gives

=1, = ——1, = —f
ERYET TS
Hence the corresponding eigenvector is
1
3
X=t| 2
5
2
Ar=—1
We have
2 100\] [x 0
-1 -1 1]4+{010 vyl =10
3 2 - 001/ \z 0
22 0\ [x 0
—-10 1)y}l =10
32 —1 z 0
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Thus we have

2x+ 2y =0
—x 4+ z=0
3x+2y — z=0

We note that the third equation can be derived from the first two equations, by subtracting
the second equation from the first. If you cannot spot this the equations should be solved
by Gaussian elimination. In effect we have only two equations:

2x+2y =0
—x +z=0
Solving these gives x = ¢, y = —t, z = t. The eigenvector is
X=t]|-1
A=1
We have
2 100\] /x 0
-1 -1 1]—-1010 yl =10
3 2 =2 001/ |\z 0
2 0\ [x 0
-1 -2 1 vyl =10
2 -3 Z 0

Thus we have
2y =0
—x—2y+ z=0
3x +2y—3z=0

From the first equation, y = 0; putting y = 0 into the other equations yields

—x+z=0
3x—3z=0

Here the second equation can be derived from the first by multiplying the first by —3.
Solving, we have x = t, z = t. So the eigenvector is

1
X=t]0
1

EXERCISES 8.11.3

1 Calculate the eigenvectors of the matrices given in 2 Calculate the eigenvectors of the matrices given in
Question 1 of Exercises 8.11.2. Question 2 of Exercises 8.11.2.
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1 1 1 1
1 @ t<_1>,t<l) (b) r<1> 1 1 1
3 @t| 3|.e|-2].¢]-08
| | 7 1 1.4
(©) t<]>,t(l> 3
2 1
1 1 4 1 1
(d) t(_(1+m>/3),t(<\/ﬁ_l>/3) r] 9 ,z( 0.6 ,t( 1)
1 —03 0.5
1 1 1 3
2 (@r|5],¢12}),¢]0 1
1 5 1 19 1 1
1 1 1 @r| 6 |.t|4].7]2
byt | —5.0081 |, ¢ 0.0981),t -3 2 6 4
2.7321 —0.7321 -3 3

ANALYSIS OF ELECTRICAL NETWORKS

Matrix algebra is very useful for the analysis of certain types of electrical network. For
such networks it is possible to produce a mathematical model consisting of simultaneous
equations which can be solved using Gaussian elimination. We will consider the case
when the network consists of resistors and voltage sources. The technique is similar for
other types of network.

In order to develop this approach, it is necessary to develop a systematic method
for writing the circuit equations. The method adopted depends on what the unknown
variables are. A common problem is that the voltage sources and the resistor values are
known and it is desired to know the current values in each part of the network. This can
be formulated as a matrix equation. Given

V =RI'

where
V = voltage vector for the network
I' = current vector for the network
R = matrix of resistor values

the problem is to calculate I’ when V and R are known. I’ is used to avoid confusion with
the identity matrix.

Any size of electrical network can be analysed using this approach. We will limit the
discussion to the case where I’ has three components, for simplicity. The extension to
larger networks is straightforward. Consider the electrical network of Figure 8.2. Mesh
currents have been drawn for each of the loops in the circuit. A mesh is defined as a loop
that cannot contain a smaller closed current path. For convenience, each mesh current
is drawn in a clockwise direction even though it may turn out to be in the opposite
direction when the calculations have been performed. The net current in each branch of
the circuit can be obtained by combining the mesh currents. These are termed the branch
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]R7

Figure 8.2
An electrical network with mesh currents
shown.

currents. The concept of a mesh current may appear slightly abstract but it does provide
a convenient mechanism for analysing electrical networks. We will examine an approach
that avoids the use of mesh currents later in this section.

The next stage is to make use of Kirchhoff’s voltage law for each of the meshes in the
network. This states that the algebraic sum of the voltages around any closed loop in an
electrical network is zero. Therefore the sum of the voltage rises must equal the sum of
voltage drops. When applying Kirchhoff’s voltage law it is important to use the correct
sign for a voltage source depending on whether or not it is ‘aiding’ a mesh current.

For mesh 1

E, = LR, + 1R, + (], _13)R4 + (1 _12)R3
E, = L(Ry+R,+ R, +Ry) + L(—R;) + ,(—Ry)
For mesh 2
—E, —Ey; = LR+ (I, —I))Ry + (I, — I))R¢ + LRy
—E, - E; I, (=R;) + L,(Rs + Ry + Ry + Rg) + L(—R¢)

For mesh 3
Ey = (I, = L)Rs + (I; = ) )R, + LR,
E; = I,(=R,) + L(—Ry) + L(Rs + R, + Ry)
These equations can be written in matrix form as

E, R +Ry+R,+Rs —R, —R, I
—E,—E; | = —R, Rs+ Ry +Rg+ Ry —Ryg L

—R, —Rg Rg+R,+Ry) \I

Engineering application 8.3

Calculation of mesh and branch currents in a network

Consider the electrical network of Figure 8.3. It has the same structure as that of
Figure 8.2 but with actual values for the voltage sources and resistors. Branch currents
as well as mesh currents have been shown. Calculate the mesh currents and hence the
branch currents for the network.
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Figure 8.3

The electrical network of Figure 8.2
with values for the source voltages and
resistors added.

Solution

We have already obtained the equations for this network. Substituting actual values
for the resistors and voltage sources gives

3 10 =3 =1\ (1,
—2-4)=[=3 14 22|
4 -1 =2 6] \J

This is now in the form V = RI’. We shall solve these equations by Gaussian elimi-
nation. Forming the augmented matrix, we have

10 -3 —1 3
-3 14 -2 -6
-1 -2 6 4
Then
R, 10 -3 -1 3
R, — 10R, + 3R, 0 131 —23 —51
R; — 10R; + R, 0 —-23 59 43
and
R, 10 -3 -1 3
R, 0 131 —-23 -51
R, — 131R; 4 23R, 0 0 7200 4460
Hence,
Il = 4460 =0.619 A
3T7200 0
Similarly,
—51 + 23(0.619)
= — = —0281A
2 131
Finally,

| _ 340619 +3(-0.281)

=0.278 A
! 10
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The branch currents are then
I, = I, =278 mA

I, = I, — I, = =281 — 278 = =559 mA
I =1I,—1, =619 —278 =341 mA
I, = -1, =281 mA

I, =1,—1I,=—281 — 619 = —900 mA
I = I, =619mA

An alternative approach to analysing an electrical network is to use the node voltage
method which is often simply called nodal analysis. This technique is fundamental to
many computer programs which are used to simulate electrical circuits, such as SPICE.
We introduce this technique by means of an example.

Engineering application 8.4

Analysing an electrical network using the node voltage method

The node voltage method utilises the notion that ‘islands’ of equal potential lie be-
tween electrical components and sources. The procedure is as follows:

(1) Pick a reference node. In order to simplify the equations this is usually chosen
to be the node which is common to the largest number of voltage sources and/or
the largest number of branches.

(2) Assignanode voltage variable to all of the other nodes. If two nodes are separated
solely by a voltage source then only one of the nodes need be assigned a voltage
variable. The node voltages are all measured with respect to the reference node.

(3) At each node, write Kirchhoff’s current law in terms of the node voltages. Note
that once the node voltages have been calculated it is easy to obtain the branch
currents.

We will again examine the network of Figure 8.2, but this time use the node voltage
method. The network is shown in Figure 8.4 with node voltages assigned and branch
currents labelled. The reference node is indicated by using the earth symbol. Writing
Kirchhoff’s current law for each node, we obtain:

node a
L =1,
WHE -V, V.-V,

R, R,
VoR, + E\R, —V,R, = V,R| — VR,
Vo(R, +R,) —V,R, — VjR, = E\R,
node b

L+L+1,=0
WtE Ve %=V YtEB-V _

C

R, R, R;
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These equations can be written in the matrix form AV = B, where A is the matrix

R, +R, —R, 0 —R, 0
RyRs —R Ry — R,Rs — RyRs RyRs 0 RR,
0 RyR —R,R¢ — RyRy — R3R, RyR 0
RyR, 0 RyR, ~R,R; —RyR; —R,R, 0
0 Ry 0 0 —Rs — Ry
and
V, E\R,
Vi E\R;R; + E,R|R;
V=]V and B = —ER:R,
Vi 0
A —E,Rq

The equations would generally be solved by Gaussian elimination to obtain the node
voltages and hence the branch currents.

Using the component values from Engineering application 8.3, these equations
become

6 —4 0 —2 0\ [V, 12
1531 10 0 6|]|v 57
0 2 —11 6 of|lv]=]-12
3 0 12 -19 o]V, 0
0 4 0 0-9/\v, —

Use of a computer package avoids the tedious arithmetic associated with Gaussian
elimination and yields

V,=2969 V,=05250 V,=2200 V,=1858 V,=1.122

It is then straightforward to calculate the branch currents:

Va_Vd Vb_vc
[ =2—4=278mA I, =-2—¢=-558mA
R2 R3
Ve=Va Ve
I = =342 mA I, = -2 =281mA
R, Ry
V.—E 1
I, = —<—2 = -900 mA 1f=ITd=619mA
7

6
Compare these answers with those of Engineering application 8.3.

It is possible to analyse electrical networks containing more complex elements
such as capacitors, inductors, active devices, etc., using the same approach. The equa-
tions are more complicated but the technique is the same. Often it is necessary to use
iterative techniques in view of the size and complexity of the problem. These are
examined in the following section.

IEEE] 1TERATIVE TECHNIQUES FOR THE SOLUTION
OF SIMULTANEOUS EQUATIONS

The techniques met so far for the solution of simultaneous equations are known as di-
rect methods, which generally lead to the solution after a finite number of stages in
the calculation process have been carried out. An alternative collection of techniques is
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available and these are known as iterative methods. They generate a sequence of ap-
proximate solutions which may converge to the required solution, and are particularly
advantageous when large systems of equations are to be solved by computer. We shall
study two such techniques here: Jacobi’s method and Gauss—Seidel iteration.

Example 8.49

Solution

Solve the equations

2x+y =4
x—3y =-5

using Jacobi’s iterative method.

We first rewrite the equations as

2x =—y+4
—3y=—x-5
and then as
1
X = —§y+2
1 +5 (8.10)
Y=y

Jacobi’s method involves ‘guessing’ a solution and substituting the guess in the r.h.s. of
the equations in (8.10). Suppose we guess x = 0, y = 0. Substitution then gives

X =

W WL N

y:

‘We now use these values as estimates of the solution and resubstitute into the r.h.s. of
Equation (8.10). This time we find

1/5
X = 5 (5) +2 =1.1667 (to four decimal places)

1 5
y= 5(2) + 3= 2.3333 (to four decimal places)

The whole process is repeated in the hope that each successive application or iteration
will give an answer close to the required solution, that is successive iterates will con-
verge. In order to keep track of the calculations, we label the initial guess x@, y©, the
result of the first iteration x"’, y!) and so on. Generally, we find

1
(nth) — __ym 4 o
X 5V +

| 5
(n+1) __ (n)

= —xm 4 =

Y 30 T3
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Table 8.1
Iterates produced by Jacobi’s method.
Iteration no. (n) X yim
0 0 0
1 2.0000 1.6667
2 1.1667 2.3333
3 0.8333 2.0556
4 0.9722 1.9444
5 1.0278 1.9907
6 1.0047 2.0093
7 0.9954 2.0016
8 0.9992 1.9985
9 1.0008 1.9997
10 1.0002 2.0003

The results of successively applying these formulae are shown in Table 8.1. The sequence
of values of x™ seems to converge to 1 while that of y™ seems to converge to 2.

Clearly this sort of approach is simple to program and iterative techniques such as
Jacobi’s method are best implemented on a computer. When writing the program a test
should be incorporated so that after each iteration a check for convergence is made by
comparing successive iterates. In many cases, even when convergence does occur, it is
slow and so other techniques are used which converge more rapidly. The Gauss—Seidel
method is attractive for this reason. It uses the most recent approximation to x when
calculating y leading to improved rates of convergence as the following example shows.

Example 8.50

Solution

Use the Gauss—Seidel method to solve the equations of Example 8.49.

As before we write the equations in the form

1

= ——y+2
X 2y+
1 +5
= —X —
Y= 313

With x@ = 0, y© = 0 as our initial guess, we find
(1) !
=) +2=2
2
To find y!" we use the most recent approximation to x available, that is x:
y» = 1(2) + > _ 2.3333
3 3 '
Generally, we find

1
D) _ (n)
X = —= 2
Tt

Yo — lx(n+l) +§

3 3
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Table 8.2

Iterates produced by the Gauss—Seidel
method.

Iteration no. (n) X y®

0 0 0

1 2.0000 2.3333
2 0.8334 1.9445
3 1.0278 2.0093
4 0.9954 1.9985
5 1.0008 2.0003
6 0.9999 2.0000

and the results of successively applying these formulae are shown in Table 8.2. As before,
we see that the sequence x™ seems to converge to 1 and y™ seems to converge to 2,
although more rapidly than before.

Both of these techniques generalize to larger systems of equations.

Example 8.51

Solution

Perform three iterations of Jacobi’s method and three iterations of the Gauss—Seidel
method to find an approximate solution of

=&+ y+ z=1
x—=5+ z=16
x+ y—4d4z =17

with an initial guess of x =y =z = 0.

We rewrite the system to make x, y and z the subject of the first, second and third equation,
respectively:

1 1 1

X = §y+§z—§
1 1 16

y = §x+ gz—? (8.11)
1 1 7

Z = ZX+Zy—Z

To apply Jacobi’s method we substitute the initial guess x© = y@ = z® = 0 into
the r.h.s. of Equation (8.11) to obtain x"’, y" and z’, and then repeat the process. In
general,

| 1 1
S I N (W () W
* g tg T3
| 1 16
(n+1) _— Z,m) e () I
4 Sl S
| 1 7
) _ Lo Lom L
z 4x +4y 1
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We find
1
D = —— =—-0.1250
8
16
y = —— = —-3.2000
5
7
7V = —— = —1.7500
4
Then,

1 1 1

¥ = —(=3.2000) + - (—1.7500) — — = —0.7438
8 8 8
1 1 16

y? = 2(=0.1250) + - (—1.7500) — — = —3.5750
5 5 5

@ = 1(—0 1250) + l(—3 2000) — T - 25813

p—y 4 . 4 . 4 - *

Finally,

(3) 1 1 !
= —(=3.5750) + - (-2.5813) — — = —0.8945
8 8 8
3 1 ! 16
y? = —(—=0.7438) + - (—2.5813) — — = —3.8650
5 5 5
3 — 1(_0 7438) + 1(_3 5750) — T —2.8297
7 = 4 : 4 ’ 4 7

To apply the Gauss—Seidel iteration to Equation (8.11), the most recent approxima-
tion is used at each stage leading to

1 1 1

() _— 2 m _ ) _
* g0 T3t T3
1 1 16
(n+1) _ Z(n+1) e () I
Y 6 tsE TS
1 1 7
(n+1) _ —  (n+1) Z Lyt 0
Z 4x + 4y 1

Starting from x@ = y©@ = 7 =0, we find
(1) 1
x = —= =-0.1250
8
1 1 16
M = —(=0.1250 —-(0) — — = —3.2250
y 5( )+ 5( ) 5

D = 1(_0 1250) + l(_3 2250) — [ —2.5875
pr— 4 . 4 . 4 - .
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Table 8.3
Comparison of the Jacobi and Gauss—Seidel methods.
Iteration Jacobi’s method Gauss—-Seidel
no. (n) X Y Z(m X () Z(m
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1 —0.1250 —3.2000 —1.7500 —0.1250 —3.2250 —2.5875
2 —0.7438 —3.5750 —2.5813 —0.8516 —3.8878 —2.9348
3 —0.8945 —3.8650 —2.8297 —0.9778 —3.9825 —2.9901
4 —0.9618 —3.9448 —2.9399 —0.9966 —3.9973 —2.9985
5 —0.9856 —3.9803 —2.9767 —0.9995 —3.9996 —2.9998
6 —0.9946 —3.9924 —2.9915 —0.9999 —3.9999 —3.0000
7 —0.9980 —3.9972 —2.9968
8 —0.9992 —3.9990 —2.9988
9 —0.9997 —3.9996 —2.9996
Then,

@ 1 1 1

x = —(=3.2250) + - (—2.5875) — - = —-0.8516
8 8 8
@ 1 1 16
y o= g(—0.8516) + 3(_2'5875) — 3 = —3.8878

1 1 7
@ = —(—0.8516) + —(—3.8878) — — = —2.9348
4( )+4( ) 2 9

Ia\]
Il

3) 1 1 1
X g(—3.8878) + §(_2'9348) —3= —0.9778

1 1 16
g(—0.9778) + g(—2.9348) -5 = —3.9825

® = l(—0 9778) + l(—3 9825) — 7 = 2,991
77 = 2 : 4 ’ 4 7

For completeness, further iterations are shown in Table 8.3.
As expected the Gauss—Seidel method converges more rapidly than Jacobi’s. This is
generally the case because it uses the most recently calculated values at each stage.

Unfortunately, as with all iterative methods, convergence is not guaranteed. However,
it can be shown that if the matrix of coefficients is diagonally dominant, that is each
diagonal element is larger in modulus than the sum of the moduli of the other elements
in its row, then the Gauss—Seidel method will converge.

Engineering application 8.5

Finding approximate solutions for the node voltages of an
electrical network

When trying to analyse complicated electrical networks it is frequently necessary
to resort to computer-based methods in order to find the voltages and currents. For
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example, large networks for the distribution of electricity from power stations to
points of consumption can be very complicated to analyse due to the large number
of loops involved. This example illustrates the method by making use of the circuit
given in Engineering application 8.3. However, it should be borne in mind that this
approach is of most value when analysing much larger networks.

Use Jacobi’s method and the Gauss—Seidel method to obtain approximate so-
lutions for the node voltages of the electrical network examined in Engineering
application 8.3.

Solution
The node voltage equations are

6V, — 4V, — 2V, = 12 3V, + 12V, — 19V, =0
15V, — 31V, + 10V, + 6V, = 57 4V, — 9V, = -8
2, — 11V, + 6V, = —12

These can be rearranged to give

2V, +V,+6 3V, + 12V

Va= b 3d Vd= a19 ©
_ 15V, 4+ 10V, + 6V, — 57 V_4Vb+8
b 31 )
2V, + 6V, + 12

¢ 11

The results of applying Jacobi’s method with an initial guess of
V(O) — Vb(()) — V(O) — Vd(()) — V(O) -0

are shown in Table 8.4. Convergence was achieved to within 0.001 after 44 itera-
tions. The results of applying the Gauss—Seidel method are shown in Table 8.5. Con-
vergence was achieved to within 0.001 after 21 iterations. Clearly the Gauss—Seidel
method converges more rapidly than Jacobi’s method.

Table 8.4

Node voltages derived from Jacobi’s method.

Iteration no.(n) AL Vb(") vm Vd(") v
0 0.0000 0.0000 0.0000 0.0000 0.0000
1 2.0000 —1.8387 1.0909 0.0000 0.8889

20 2.8710 0.4802 2.1379 1.8265 1.0738

44 2.9679 0.5243 2.1990 1.8578 1.1215
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Table 8.5

Node voltages derived from the Gauss—Seidel method.

Iteration no.(n) A Vb(") A Vd(") AL
0 0.0000 0.0000 0.0000 0.0000 0.0000
1 2.0000 —0.8710 0.9326 0.9048 0.5018

20 2.9665 0.5226 2.1985 1.8569 1.1212

21 2.9674 0.5233 2.1989 1.8573 1.1215
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EXERCISES 8.13

1 Perform three iterations of the methods of Jacobi and
Gauss—Seidel to obtain approximate solutions of the
following. In each case, use an initial guess of

X0 =0 = 0 ¢

(@ x+y+z=-1

x+6y+2z=0
x+2y+4z=1
Solutions

1 (a) Jacobi
x; = —0.2500, y, =0, z; = 0.2500
x, = —0.3125,y, = —0.0417, z, = 0.3125
x3 = —0.3177, y; = —0.0521, z; = 0.3490
Gauss—Seidel
x; = —0.2500, y; = 0.0417, z; = 0.2917

xy = —0.3333,y, = —0.0417, z, = 0.3542

x3 = —0.3281, y; = —0.0634, z; = 0.3637
(b) Jacobi

x; = 0.8000, y; =1, z; = 1.5000

x, = 0.9000, y, = 1.5750, z, = 2.4000

x3 = 0.9650, y; = 1.8250, z3 = 2.7375

(b)

©

©

Sx+y—z=4
x—4y+z=—-4
2x+2y—4z=—-6

dx+y+z=17
x+3y—2z=9
2x—y+5z=1

Gauss—Seidel
x; = 0.8000, y; = 1.2000, z; = 2.5000

X, = 1.0600, y, = 1.8900, z, = 2.9750
x3 = 1.0170, y; = 1.9980, z3 = 3.0075
Jacobi

x; =4.2500, y; = 3, z; = 0.2000

x, = 3.4500, y, = 1.6500, z, = —0.9000
x3 = 4.0625, y; = 1.5500, z; = —0.8500
Gauss—Seidel

x; =4.2500,y, = 1.5833,z; = —1.1833
Xy = 4.1500, y, = 1.2222, z, = —1.2156
X3 =4.2484,y; = 1.1787, z3 = —1.2636

IEEDY COMPUTER SOLUTIONS OF MATRIX PROBLEMS

The use of technical computing languages has vastly improved the ability of engineers to
calculate the solutions to complex engineering problems. As has been demonstrated by
the examples given in previous chapters, high level mathematical functions are provided
such as the ability to calculate the roots of an equation and the eigenvalues of a matrix.
In electrical engineering problems it is frequently necessary to solve matrix equations.
Consider again Example 8.32. The equations are of the form

AX =B
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where
3 2 -1 4 X
A=12 -1 2 B=|10 X=1y
1 -3 —4 5 z

In order to solve these equations in a technical computing language the matrices need to
be loaded into memory. In MATLAB® we would type

A= [39 2a _17 21 _1a 2; 17 _37 _4]
B = [4; 10; 5]

We note that commas are used to separate entries on the same row and semicolons are
used to separate different rows.
The value of X can be obtained by the method of matrix inversion. The code for this is

X =inv(A) *B
Alternatively, X can be obtained by Gaussian elimination. The code for this is
X = A\B

Gaussian elimination is the usual method of solving systems of linear equations in
MATLAB® because it is computationally efficient. If we run this three-line program
using MATLAB® then we obtain

A =132 -1;2,—-1,2;1, -3, —4]

B = [4; 10; 5]

X = A\B

X = 3.0000
—2.0000
1.0000

and so x = 3.0000, y = —2.0000, z = 1.0000.

We see that MATLAB® is a powerful tool for carrying out matrix calculations. Part
of its power derives from the extremely high-level nature of its commands. A command
such as inv(A) would require typically 50 lines if written in a normal high-level language
such as C or FORTRAN.

Engineering application 8.6

Solution of an electrical network using MATLAB®

Consider again the electrical network of Engineering application 8.3. Write the
MATLAB® code to solve this network.

Solution

The equations are of the form V = RI’ where V is the voltage vector of the network,
R is the matrix of resistor values and 7’ is the current vector of the network. We know
V and R and we wish to obtain /'. Using the values of Engineering application 8.3
we can write




V = [3; —6; 4]
R = [10,
IPRIME = inv(R) *V
Running this program gives
IPRIME = 0.2778
—0.2806
0.6194

—8, =g =8 1AL —0p i
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REVIEW EXERCISES 8

1

Evaluate the following products:

(@ (-4 1) G)

© 4 1(; o)

13
(e (2 -10)[2 4
10

1/(7 32
(g)§(101>

(b) (—4 1) (2)
@5 0)
o)

~N O =

Simplif cosh® sinh6
PUY Tsinhe coshe|
0 23
GiventhatA= |2 0 0| find A~! and A2. Show

1 —10
that A2 4+ 64! — 71 = 0, where I denotes the 3 x 3
identity matrix.

2 —1 4

IfA= (1 0 0] find
1 =20

(@) |A]

(b) adj(A)

(c) A7!

Find the inverse of the matrix

1 =20
3 15
-1 23

Hence solve the equations

x—2y=3
3x+y+5z=12
—x+2y+3z=3

6

10

Use Gaussian elimination to solve
xX+2y—=3z4+2w=2
2x+ 5y —8z4+6w=>5
3x+4y—5z42w =4

Use Jacobi’s method to obtain a solution of AX = B
to three decimal places where

10 1 0 1
A= 1 10 1 and B= |2
0 1 10 1

Use a matrix method to solve
2x+y—2z=3
x—y+2z=1
3x+4y+3z=2

Consider the Vandermonde matrix

612

2

1
V=11
1 2

o S Q
S

C

(a) Find det V and show that it can be written as
(a—c)(a—b)(c—Db).

(b) Show that if a, b and c are all different, then the
Vandermonde matrix is non-singular.

(a) The signal f(¢) = sin ﬂ—t is to be approximated
by a third-degree polynomial for values of ¢
between —1 and 2. By forcing the original signal
and its approximating polynomial to agree at
t=—1,t=0,t=1andr = 2, find this
approximation. [Hint: see Engineering
application 8.2.]

(b) Use a graphics calculator or graph plotting
package to compare the graphs of f(¢) and its
approximating polynomial.



322

Chapter 8 Matrix algebra

1 -2
11 Suppose A = <] 4>.

(a) Find Av whenv = (_§>

. Deduce that Av = 3v.

(b) Find 3v whenv = <_2

\S]
N———"

(c) Find Av whenv = (_Z ) for any constant L.
Deduce that Av = 3v.

12 Use the Gauss—Seidel method to find an approximate

solution of
(@) Sx+3y=-34

2x — 7y =93
(b) 3x+y+z=6
2x+5y—z=5

x—=3y+8=14

13 Determine which of the following systems have

non-trivial solutions.

(@ 2x—y=0
3x—15y=0
(b) 6x+5y=0
S5x+6y=0
(c) —x—4y=0
2x+8y=0
(d 7x—3y=0
1.4x — 0.6y =0
(e) —4x+5y=0
3x—4y=0

14 Determine which of the following systems have

1

non-trivial solutions.

(@) 3x—2y+2z=0
x—=y+z=0
2x+2y—2z=0

b) x+3y—2z=0
dx—y+2z=0
6x+5y=0

Solutions

(b)y —6

o ()

10 5
o (15 %)

(@) —1

(© (=1 —6)

(e (0 2 2

1
(2

= =
o Nlw

15

16

17

) x+2y—2z=0
x—3z=0
S5x+6y—9z=0

The matrix A is defined by

4= (5 )

(a) Determine the characteristic equation of A.
(b) Determine the eigenvalues of A.
(c) Determine the eigenvectors of A.

(d) Form a new matrix M whose columns are the two
eigenvectors of A. M is called a modal matrix.

(e) Show that M~'AM is a diagonal matrix, D, with
the eigenvalues of A on its leading diagonal. D is
called the spectral matrix corresponding to the
modal matrix M.

(a) Show that the matrix

52
= (37
has only one eigenvalue and determine it.

(b) Calculate the eigenvector of A.

The matrix H is given by

4 -1 1
H=|-2 40
-4 31

(a) Find the eigenvalues of H.
(b) Determine the eigenvectors of H.

(c) Form a new matrix M whose columns are the
three eigenvectors of H. M is called a modal
matrix.

(d) Show that M~ 'HM is a diagonal matrix, D, with
the eigenvalues of H on its leading diagonal. D is
called the spectral matrix corresponding to the
modal matrix M.
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11

0 -8 0

@ -8 (b [ 0 —44

—2 31
(0 8 0
©glo 4 -4
2 -3 —1
L -7 610
Tl
70 7

x=1y=-1,z=2
Xx=2U0—A,y=14+2A-2pu,z2=2w=p
x=0.082,y =0.184, z = 0.082

x=1.462,y =—-0.308, z = —0.385

© (_;’j)

41,
(@ f@) = §’_ =t

@ (‘2) (b3) (‘2)

12

13
14

15

16

17

Review exercises 8

(@ x=1y=-13
®) x=1,y=1,z=2

(a), (c) and (d) have non-trivial solutions.
(b) and (c) have non-trivial solutions.

(@ A2+21—-6=0
(b) A=-3,2

1 1
o (1) (03)
@ =3 (_})

1 1 0
(a) A=2,3,4 (b) 1],121],11
-1 1 1
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INTRODUCTION

Complex numbers often seem strange when first encountered but it is worth persever-
ing with them because they provide a powerful mathematical tool for solving several
engineering problems. One of the main applications is to the analysis of alternating cur-
rent (a.c.) circuits. Engineers are very interested in these because the mains supply is
itself a.c., and electricity generation and transportation are dominated by a.c. voltages
and currents.

A great deal of signal analysis and processing uses mathematical models based on
complex numbers because they allow the manipulation of sinusoidal quantities to be
undertaken more easily. Furthermore, the design of filters to be used in communications
equipment relies heavily on their use.

One area of particular relevance is control engineering — so much so that control
engineers often prefer to think of a control system in terms of a ‘complex plane’ repre-
sentation rather than a ‘time domain’ representation. We will develop these concepts in
this and subsequent chapters.
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COMPLEX NUMBERS
We have already examined quadratic equations such as
P —x—6=0 ©.1)

and have met techniques for finding the roots of such equations. The formula for obtain-
ing the roots of a quadratic equation ax*> + bx + ¢ = 0 is

b+ /D2 —4ac
X=— 9.2)
2a
Applying this formula to Equation (9.1), we find
L HEVED - 4((6)
2
1+£425
)
_1£5
T2
so that x = 3 and x = —2 are the two roots. However, if we try to apply the formula to

the equation
2 +2x+5=0

we find

—2+4/-36
X=——
4

A problem now arises in that we need to find the square root of a negative number. We
know from experience that squaring both positive and negative numbers yields a positive
result; thus,

6*=36 and (—6)? =36

so that there is no real number whose square is —36. In the general case, if
ax* + bx +c = 0, we see by examining the square root in Equation (9.2) that this prob-
lem will always arise whenever b* —4ac < 0. Nevertheless, it turns out to be very useful
to invent a technique for dealing with such situations, leading to the theory of complex
numbers.

To make progress we introduce a number, denoted j, with the property that

f=-1

We have already seen that using the real number system we cannot obtain a negative
number by squaring a real number so the number j is not real — we say it is imaginary.
This imaginary number has a very useful role to play in engineering mathematics. Using
it we can now formally write down an expression for the square root of any negative
number. Thus,

V=36 = /36 x (—1)
= /36 x j?

= 6]
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Returning to the solution of the quadratic equation 2x* + 2x + 5 = 0, we find

 —2+4/-36
x=—F
-2 +£6j
T4
—1£3j
T2
We have found two roots, namely x = —% + 5 jand x = 5~ %j. These numbers are

called complex numbers and we see that they are made up of two parts — a real part and
1
an imaginary part. For the first complex number the real part is — 3 and the imaginary
3
part is > For the second complex number the real part is —3 and the imaginary part is

—5 In a more general case we usually use the letter z to denote a complex number with

real part a and imaginary part b, so z = a + bj. We write a = Re(z) and b = Im(z), and
denote the set of all complex numbers by C. Note that a, b € R whereas z € C.

7z = a + bj, z is a member of the set of complex numbers, thatis z € C
a = Re(z) b =1Im(z)

Complex numbers which have a zero imaginary part are purely real and hence all real
numbers are also complex numbers, that is R C C.

Example 9.1

Solution

Solve the quadratic equation 2s> — 3s +7 = 0.

Using the formula for solving a quadratic equation we find
—(=3) £ V(=3 -4

2(2)
3+ /-47

4
3+ V47j

4
=0.75 + 1.71]

Using the fact that j> = —1 we can develop other quantities.

Example 9.2 Simplify the expression j°.

Solution

We have
P=ixj
=(=1)xj
=i
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9.2.1 The complex conjugate
If z = a + bj, we define its complex conjugate to be the number 7 = a — bj; that is, we
change the sign of the imaginary part.
Example 9.3 Write down the complex conjugates of
(@ —-7+j ®6-5 (©6 (d]
Solution  To find the complex conjugates of the given numbers we change the sign of the imaginary
parts. A purely real number has an imaginary part 0. We find
(@ —7-] (b) 6+5j (c) 6, there is no imaginary part to alter d —j
We recall that the solution of the quadratic equation 2x> + 2x 4+ 5 = 0 yielded the two
1 3 1 3
complex numbers — 3 + 3 jand — 373 J, and note that these form a complex conjugate
pair. This illustrates a more general result:
When the polynomial equation P(x) = 0 has real coefficients, any complex roots
will always occur in complex conjugate pairs.
Consider the following example.
Example 9.4 Show that the equation x> — 7x> 4+ 19x — 13 = 0 has a root at x = 1 and find the other
roots.
Solution Ifwelet P(x) =x* — 7x*> +19x — 13, then P(1) =1 — 7+ 19 — 13 = 0 so that x = 1

is a root. This means that x — 1 must be a factor of P(x) and so we can express P(x) in
the form

P(x)=x—Tx* +19x — 13 = (x — 1) (ax* + Bx + y)
=ax’ +(B—a)’ +(y —Px—y
where «, 8 and y are coefficients to be determined. Comparing the coefficients of x* we

find « = 1. Comparing the constant coefficients we find y = 13. Finally, comparing
coefficients of x we find 8 = —6, and hence

Px)=x =77 +19x— 13 = (x — 1)(** — 6x + 13)

The other two roots of P(x) = 0 are found by solving the quadratic equation
x> —6x + 13 = 0, that is

6++36—-52 6+./—16
X = =
2 2

and again we note that the complex roots occur as a complex conjugate pair. This illus-
trates the general result given in Section 1.4 that an nth-degree polynomial has n roots.

=347
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1

1

EXERCISES 9.2

Solve the following equations:

@x2+1=0 ®) X2 +4=0

©)3x2+7=0 d 2+x+1=0
* 2=0

(e)?—x—k =

(f) —x* =3x—4=0
(@2 +3x+3=0
(x> +3x+4=0

Solve the cubic equation
3 — 1% +16x — 12 =0
given that one of the roots is x = 2.

Write down the complex conjugates of the following
complex numbers.

(@) =11 =8 (b) 54+3j (o) %j (d) —17

Solutions
(a) £j (b) £2j
() £4/7/3j (@) —1/24 (v/3/2)j
(e) 1£+/3 () —3/2+ (V7/2)j

(@ —3/4+ (15/4)j () =3/2+ (V7/2)

2,5/6 £ (V47/6)]
(@ —11+38j (b) 5-3j (©) —%j
d —17 (e) cos wt — jsin wt

(f) cos wr+jsin wr (g) 0.333j+ 1

(e) coswt + jsinwt (f) coswt — jsinwt

(2) —0.333j+ 1

Recall from Chapter 2 that the poles of a rational
function R(x) = P(x)/Q(x) are those values of x for
which Q(x) = 0. Find any poles of

X 3x 3

@ x—3 ®) 2+1 © X2 4x+1

Solve the equation 52 + 25 + 5 = 0.
Express as a complex number
@i ®F ©f°

State Re(z) and Im(z) where

@z=7+11j (b) z=—-6+]
L

(©)z=0 d z= %

Mz=j () z=j?

(@x=3 (b) x=4j

(©)x=—1/2+ (V3/2)j

s=—142j

(@ 1 (b) j (o —1

(@ 7,11 (b) —6,1 (©) 0,0

11
(d) 23 (e) 0,1 () —1,0

OPERATIONS WITH COMPLEX NUMBERS

Two complex numbers are equal if and only if their real parts are equal and their imagi-

nary parts are equal.

Example 9.5 Find x and y so that x 4+ 6] and 3 — yj represent the same complex number.

Solution

x+6j=3—-yj

If both quantities represent the same complex number we have

Since the real parts must be equal we can equate them, that is

x=3
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Similarly, we find, by equating imaginary parts
6=—y
so thaty = —6.

9.3.1

The operations of addition, subtraction, multiplication and division can all be performed
on complex numbers.

Addition and subtraction

To add two complex numbers we simply add the real parts and add the imaginary parts;
to subtract a complex number from another we subtract the corresponding real parts and
subtract the corresponding imaginary parts as shown in Example 9.6.

Example 9.6

Solution

Ifz; =3 —4jand z, = 4 + 2j find z; + z, and 7, — z,.

4 +=0-4)+ @ +12)
=@ 44+ (-4+2)
=7-2j

3 =5, =08-4) - (“+2)
=GB -4+ (—4-2)
=—1— 6]

9.3.2

Multiplication

We can multiply a complex number by a real number. Both the real and imaginary parts
of the complex number are multiplied by the real number. Thus 3(4 — 6j) = 12 — 18;.
To multiply two complex numbers we use the fact that j> = —1.

Example 9.7

Solution

Ifz;, =2 —2jand z, = 3 44, find z,z,.

212, = (2—=2j))(3+4j)
Removing brackets we find
212y :6_6J+8]_8J2
=6—-6j+8 +8  usingj’=-—1
=14 +2j

Example 9.8

Solution

If z = 3 — 2j find 2Z.

If z = 3 — 2j then its conjugate is 7 = 3 + 2j. Therefore,
Z=03-2))(3+2)

=9 — 6j + 6j — 4§
=9 —4j
=13

We see that the answer is a real number.
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Whenever we multiply a complex number by its conjugate the answer is a real number.
Thus if z = a + bj
2z = (a+bj)(a —bj)
= @’ + baj — abj — b*j*
— aZ + bz

If z = a + bj then 27 = a®> + b*

9.3.3 Division

To divide two complex numbers it is necessary to make use of the complex conjugate.
We multiply both the numerator and denominator by the conjugate of the denominator
and then simplify the result.

Example 9.9 Ifz, =2+ 9jandz, = 5 — 2j find L.
2

. 2 +9j . . . . .
Solution We seek 5 + 2J,. The complex conjugate of the denominator is 5 4 2j, so we multiply

both numerator and denominator by this quantity. The effect of this is to leave the value

of 4 unaltered since we have only multiplied by 1. Therefore,
2

249 2+9) G+2)
z, 5-2 (5-2)(G5+2)
104455 +4j+ 18> -84 49j

25+4 29
B 8+49.
29 " 29!

The multiplication of two conjugates in the denominator allows a useful simplification.
We see that the effect of multiplying by the conjugate of the denominator is to make the
denominator of the solution purely real.

If z, = x, +jy, and z, = x, + jy, then the quotient 4 is found by multiplying both
2
numerator and denominator by the conjugate of the denominator, that is

24 + v

L %ty

X+ % X — ¥,

NHE %=

X% + Yy, 100y — x,y,)
X5+
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2
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EXERCISES 9.3

If 7y =3+ 2jand z, = 4 — §j find

(a) 21 +Zz (b) 21— 2 (c) i — 7
Express the following in the form a + bj:
1 -2
a) —— b) —
(@) T4 (b) 3
© . + ! (d) I
) — 4+ — 4
b 2= 1+]
© et —
&) —/— 4+
342 5]
Express the following in the form a + bj:
2 -2+ 3j
(@) —— (b) ——
=] ]
Solutions
(@) 7 — 6] (b) —1410j (c) 1—-10j
@ 3-% 2 © -]
RTINS o 95T
@ 245 @
277! 26
(@ 14j (b) 3+2j (c) 6+ 12§
1
(d) 47+ 32j (e) 2— Ej

Technical Computing Exercises 9.3

Many technical computing languages allow the user
to input and manipulate complex numbers. Investigate
how the complex number a + bj is input to the
software to which you have access.

Use technical computing software to simplify the

following complex numbers:

@ (1+))° (b)
4

G+ 2-3)?

Solve the polynomial equations

(@ P©P+724+9%+63=0

(b) x*+ 1522 —16 =0

You may recall from Chapter 1 that in MATLAB® the

roots function can be used to solve polynomial

equations with real roots. This function can also
calculate complex roots.

_
(1-2)7
©
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(©) 3j(4 —2j)
54 3j
© 2

(b) (7—=2)(5+6))

Find a quadratic equation whose roots are 1 — 3j and
1+ 3j.

If (x +jy)? = 3+ 4j, find x and y, where x, y € R.
Find the real and imaginary parts of
3

2 _ 455
(a)4+j P (b) j* =]
(C)l+' (d) :

i P =3

2=2x4+10=0

x=2,y=Lx=-2,y=-1

W -2, -2
Y T8 T 8s
d) 1,-1
(c) 0,0

1

Use a package to find the real and imaginary parts of
15+
7-5j

A common requirement in control theory is to find the
poles of a rational function. Use a package to find the
poles of the function

0.5
53 + 252 +0.25 + 0.0556
To solve this problem automatically may require the
use of specialist toolboxes in MATLAB® or GNU
Octave which are not part of the core program. For
example, the Signal Processing toolbox in
MATLAB® has the function t£2zp which converts a
transfer function expressed as a ratio of polynomials
to pole/zero form.

G(s) =
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ZrA

s a+bj

z

g /2 N 9 (a,b)

5 :

5 :

a X
Real axis

Figure 9.1
Argand diagram.

= -3 +5J

Imaginary axis
N
1

-4 3 2 -1 1 2 3 4 5 6 7
-1 1 Real axis

3= —1-2j0_2 4
-3 1

4 9 z4=-4j

-5 1

Figure 9.2
Argand diagram for Example 9.10.

GRAPHICAL REPRESENTATION OF COMPLEX NUMBERS

Given a complex number z = a + bj we can obtain a useful graphical interpretation of
it by plotting the real part on the horizontal axis and the imaginary part on the vertical
axis and obtain a unique point in the x—y plane (Figure 9.1). We call the x axis the real
axis and the y axis the imaginary axis, and the whole picture an Argand diagram. In
this context, the x—y plane is often referred to as the complex plane.

Example 9.10 Plot the complex numbers z; = 7 +2j,z, = =3 +5j,z; = —1 — 2jand z, = —4j on an

Argand diagram.

Solution The Argand diagram is shown in Figure 9.2.

1

EXERCISES 9.4
Plot the following complex numbers on an Argand
diagram:
(a) 1= -3 - 3]
(b) zp=7+2j
(© z3=3
(d z4 =-0.5j

(€ z5=—2

2 (a) Plot the complex number z = 1 4 j on an Argand
diagram.
(b) Simplify the complex number j(1 + j) and plot
the result on your Argand diagram. Observe that
the effect of multiplying the complex number by j
is to rotate the complex number through an angle
of 71/2 radians anticlockwise about the origin.



Solutions

1 See Figure S.17.

Imaginary

Figure S.17
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2 (a) SeeFigure S.18.  (b) j(1+j)=—1+]
Imaginary
“ltig 1 o 17
-1 [ 1 Real
Figure S.18

POLAR FORM OF A COMPLEX NUMBER

It is often useful to exchange Cartesian coordinates (a, b) for polar coordinates r and
0 as depicted in Figure 9.3.
From Figure 9.3 we note that

a . b
cosf = — sinf = —
r r
and so,
a=rcosb b =rsin6
Furthermore,
b
tanf = —
a

Using Pythagoras’s theorem we obtain r = +/a* + b%. By finding r and 6 we can express
the complex number z = a + bj in polar form as

z=rcos6 + jrsinf = r(cosf + jsinf)

which we often abbreviate to z = r/ 6. Clearly, r is the ‘distance’ of the point (a, b) from
the origin and is called the modulus of the complex number z. The modulus is always
a non-negative number and is denoted |z|. The angle is conventionally measured from
the positive x axis. Angles measured in an anticlockwise sense are regarded as positive
while those measured in a clockwise sense are regarded as negative. The angle 6 is called
the argument of z, denoted arg(z). Since adding or subtracting multiples of 27t from 6
will result in the ‘arm’ in Figure 9.3 being in the same position, the argument can have
many values. Usually we shall choose 0 to satisfy —mt < 0 < 7.

Cartesian form: z = a + bj
Polar form: z = r(cos 6 + jsinf) = r/ 6

|zl = r = a2+ b?

b
a = rcosf b=rsinf tanf = —
a
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B |

X

1

0 . ¥
a x | (1,-1)
Figure 9.3 Figure 9.4
Polar and Cartesian forms of a complex Argand diagram depicting z =1 —j in
number. Example 9.11.
Note that
r/ (—0) = r(cos(—0) +jsin(—0))

r(cos@ —jsinf)

=z

Ifz=a+bjthenz=a—bjandz = rL(—0).

Example 9.11

Solution

Depict the complex number z = 1 — j on an Argand diagram and convert it into polar
form.

The real part of z is 1 and the imaginary part is —1. We therefore plot a point in the x—y
plane with x = 1 and y = —1 as shown in Figure 9.4.

From Figure 9.4 we see that r = /12 4+ (—1)2 = v/2and § = —45° or —7t/4 radians.
Thereforez=1—j = \/EL(—TI/4).

To express a complex number in polar form it is essential to draw an Argand diagram
and not simply quote formulae, as the following example will show.

Example 9.12

Solution

Express z = —1 — j in polar form.

If we use the formula |z| = r = +/a? + b?, we find that r = V2. Using tan6 = b/a, we
find thattan6 = —1/ — 1 = 1 so that you may be tempted to take & = 7t/4. Figure 9.5
shows the Argand diagram and it is clear that 6 = —37/4. Therefore,z = —1 —j =
2/ —3m/4, and we see the importance of drawing an Argand diagram.

yﬂ

N

N -

=Y

[y

Figure 9.5
Argand diagram depicting z = —1 — j in Example 9.12.
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Multiplication and division in polar form

The polar form may seem more complicated than the Cartesian form but it is often more
useful. For example, suppose we want to multiply the complex numbers

z, =r (cosB, +jsinb,) and Z, = 1,(cos B, 4+ jsinb,)
We find
2,2, = ry(cos @, +jsinb,)r,(cos b, 4 jsinb,)
= 1 r,{(cos 6, cos B, —sin b, sinb,) + j(sinb, cos b, 4 sin 6, cosH,)}
which can be written as
riry{cos(6, + 0,) +jsin(6, + 6,)}

using the trigonometric identities of Section 3.6. This is a new complex number which,
if we compare with the general form r(cos 6 4 jsin0), we see has a modulus of r,r, and
an argument of 6, 4 6,. To summarize: to multiply two complex numbers we multiply
their moduli and add their arguments, that is

212 =1 L0, +6,)

Example 9.13

Solution

If z; =3/ m/3 and z, = 4/ 7/6 find z,z,.

Multiplying the moduli we find r,r, = 12, and adding the arguments we find 6, + 6, =
7t/2. Therefore z,z, = 12/7/2.

A similar development shows that to divide two complex numbers we divide their moduli
and subtract their arguments, that is
3 _n
—=—/,(0, —6,)
L N

Example 9.14

Solution

Ile = 3L’7T/3 and = 4L7T/6 find ZI/ZZ‘

Dividing the respective moduli, we find r,/r, = 3/4 and subtracting the arguments,
m/3 — /6 = m/6. Hence z,/z, = 0.75/.m/6.

EXERCISES 9.5

Mark on an Argand diagram points representing
7y =3-2j,2p=—j, 23 =j% 2, = —2 —4j and
25 = 3. Find the modulus and argument of each

complex number.

Express the following complex numbers in polar
form:

(@ 3—j (B2 (0 —j @ -5+12

Find the modulus and argument of (a) z; = -3+ j
and (b) z, = 4 + 4j. Hence express z,z, and z, /z, in
polar form.

Express 2/ 1/4,2/ 7/6 and 2/ —7/6 in Cartesian
form a + bj.

21 n
Prove the result — = — /.6, —0,.
L N
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1 .
6 Expressz = Vel where w and C are real constants, 8 Simplify
13
in the form a + bj. Plot z on an Argand diagram. (V2L (5m/4)2 (2L (—7/3))?
7 1fz; = 4(cos40° + jsin40°) and z, = 3(cos 70°+ 2/ (—7t/6)

jsin70°), express z;z, and z; /2, in polar form.

Solutions
1 |z| =13, arg(z;) = —0.5880 212, = 832/ 137/12

=1 = —71/2 2
|2,| = 1, arg(zy) = —7t/ 2/7 = £4771/12
lz3l = 1, arg(z3) =7 4
|24 = v/20, arg(z,) = —2.0344 b 1+4§.V3+]) V3]

25| = 3, arg(z5) = 0 j

6 ——
2 (2)v10/ —0.3218  (b) 2/.0 oC
© 1L —n)2 () 13£.1.9656 B 22 = li(cos”o +]sin 110°)
3 (a) 2,57/6 21/2p = g(cos 30° — jsin30°)
(b) 42, /4 8 4

m VECTORS AND COMPLEX NUMBERS

It is often convenient to represent complex numbers by vectors in the x—y plane. Fig-
ure 9.6(a) shows the complex number z = a + jb. Figure 9.6(b) shows the equivalent
vector. Figure 9.7 shows the complex numbers z; =2 4 jand z, = 1 + 3;.

If we now evaluate z; = z; + z, we find z; = 3 + 4j which is also shown. If we
form a parallelogram, two sides of which are the representations of z;, and z,, we find
that z, is the diagonal of the parallelogram. If we regard z, and z, as vectors in the plane
we see that there is a direct analogy between the triangle law of vector addition (see
Section 7.2.3) and the addition of complex numbers.

y A v A
bl z=a+jb [ : ( Z)
a x a x
(a) b 4 x
Figure 9.6 Figure 9.7

The complex number z = a + jb and its equivalent vector. Vector addition in the complex plane.
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Figure 9.8 Figure 9.9
Vector addition and subtraction. Diagram for Example 9.15.

More generally, if z; and z, are any complex numbers represented on an Argand
diagram by the vectors OA and OB (Figure 9.8) then upon completing the parallel-
ogram OBCA, the sum z;, + z, is represented by the vector OC. We can also obtain
a representation of the difference of two complex numbers in the following way. If
we write

23 =21 — %
== Zl + (_Zz)

and note that if z, is represented by the vector OB, then —2z, is represented by the vector
—OB = BO = CA. The complex number z, is represented by OA = BC, so that
7+ (—3) = BC + CA = BA. Thus the difference 7, — Z, is represented by the
diagonal BA. To summarize, the sum and difference of z, and z, are represented by
the two diagonals of the parallelogram OBCA.

Example 9.15

Solution

Represent z; = 6 +j and z, = 3 + 4j, and their sum and difference, on an Argand
diagram.

We draw vectors OA and OB representing z; and z,, respectively (Figure 9.9). Then we
complete the parallelogram OACB as shown. The sum z, 4z, is then represented by OC

and the difference z; — z, by BA.ltis easy to see that the vector BA = _?; , that is it

represents the complex number 3 — 3j, while oC = (2) that is it represents 9 + 5j, so
thatz, +z, =9+ 5jandz; — 2, =3 — 3j.

THE EXPONENTIAL FORM OF A COMPLEX NUMBER

You will recall from Chapter 6 that many functions possess a power series expansion,
that is the function can be expressed as the sum of a sequence of terms involving integer
powers of x. For example,

2 3

. X
e _1+x+2—!+§+--~
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and this representation is valid for any real value of x. The expression on the r.h.s. is, of
course, an infinite sum but its terms get smaller and smaller, and as more are included,
the sum we obtain approaches e*. Other examples of power series include

2 X
sinx:x—§+§—~-~ (93)
and
2 X
COSX=1—5+47—"' (94)

which are also valid for any real value of x. It is useful to extend the range of applicability
of these power series by allowing x to be a complex number. That is, we define the
function e° to be

Z2 3

) e
e’ = Z 5 5 P

and theory beyond the scope of this book can be used to show that this representation is
valid for all complex numbers z.
We have already seen that we can express a complex number in polar form:

z=r(cosf +jsinf)

Using Equations (9.3) and (9.4) we can write

92 04 93 95
Z:r{(l—E-FZ—"')-I-](@—E‘I‘E—"‘)}

0> 0* 6+  6°
:r(1+Je—E—J§+I+J§--->

Furthermore, we note that e’ can be written as

'292 '393
J9_ . .] .]
e 1430 + 2 + 3 +
92 3
=1+j0 - o —ig +
so that

z=r(cosf +jsinf) = rel?
This is yet another form of the same complex number which we call the exponential
form. We see that

e’ = cos@ +jsind (9.5)

It is straightforward to show that

e’ =cosh —jsind
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Therefore, if 7 = r(cos 6 — jsinf) we can equivalently write 7 = re . The two expres-
sions for e/ and e are known as Euler’s relations. From these it is easy to obtain the
following useful results:

el? e , el —e 0
cosf = ——— sinf) = ———
2 2j

Example 9.16 We saw in Section 3.7 that a waveform can be written in the form f(t) = A cos(wt + ¢).
Consider the complex number &+ We can use Euler’s relations to write

& @) — cos(wt + ¢) + jsin(wt + ¢)
and hence,

f(t) = ARe(& )

EXERCISES 9.7

1 Find the modulus and argument of 5 Express z = e! /2 in the form a + bj.

jm/4 —jm/6 /3 .
(@) 3e (b) 2e (©) 7e 6 Express —1 — j in the form rei?.

2 Find the real and imaginary parts of
(@) SejT[/3 (b) ej27t/3
() 11e/™ () 2¢7I7

7 Express
(a) 7+ 5jand
1 1
.. . . (b) = — —j in exponential form.
3 Express z = 6(cos 30° + jsin 30°) in exponential 2 3
form. Plot z on an Argand diagram and find its real 8

. ) Express z; = 1 —jand
and imaginary parts.

1+j . :
4 Ifo,w, T €R, find the real and imaginary parts of L= N in the form re/”.
e(oHo)T | ]
Solutions
1 @ 3,7/4 (b2, -n/6 (¢ 7,73 5 e
2 (a) 2.5,43301 (b) —0.5,0.8660 (c) —11,0 6 23/
(d -2,0

7 () V74e%4  (b) 0.60 0%

3 6e(™/%i Re(z) = 5.1962, Im(z) = 3 .
8 2T/ __o(5m/12)
V2

4 Real part: e°T cos T, imaginary part: ¢’ T sin wT
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PHASORS

Electrical engineers are often interested in analysing circuits in which there is an a.c.
power supply. Almost invariably the supply waveform is sinusoidal and the resulting
currents and voltages within the circuit are also sinusoidal. For example, a typical voltage
is of the form

v(t) = Vcos(wt + ¢) =V cosQnft + ¢) 9.6)

where V is the maximum or peak value, w is the angular frequency, f is the frequency,
and ¢ is the phase relative to some reference waveform. This is known as the time
domain representation. Each of the voltages and currents in the circuit has the same
frequency as the supply but differs in magnitude and phase.

In order to analyse such circuits it is necessary to add, subtract, multiply and di-
vide these waveforms. If the time domain representation is used then the mathematics
becomes extremely tedious. An alternative approach is to introduce a waveform repre-
sentation known as a phasor. A phasor is an entity consisting of two distinct parts: a
magnitude and an angle. It is possible to represent a phasor by a complex number in
polar form. The fixed magnitude of this complex number corresponds to the magnitude
of the phasor and hence the amplitude of the waveform. The argument of this complex
number, ¢, corresponds to the angle of the phasor and hence the phase angle of the
waveform. Figure 9.10 shows a phasor for the sinusoidal waveform of Equation (9.6).

The time dependency of the waveform is catered for by rotating the phasor anti-
clockwise at an angular frequency, w. The projection of the phasor onto the real axis
gives the instantaneous value of the waveform. However, the main interest of an engi-
neer is in the phase relationships between the various sinusoids. Therefore the phasors
are ‘frozen’ at a certain point in time. This may be chosen so that # = 0 or it may be cho-
sen so that a convenient phasor, known as the reference phasor, aligns with the positive
real axis. This approach is valid because the phase and magnitude relationships between
the various phasors remain the same at all points in time once a circuit has recovered
from any initial transients caused by switching.

Some textbooks refer to phasors as vectors. This can lead to confusion as it is possible
to divide phasors whereas division of vectors by other vectors is not defined. In practice
this is not a problem as phasors, although thought of as vectors, are manipulated as
complex numbers, which can be divided. We will avoid these conceptual difficulties by
introducing a different notation. We will denote a phasor by V, which corresponds to

V / ¢ in complex number notation (see Figure 9.10). Thus, for example, a current i(f) =
I cos(wt+¢) would be written I in phasor notation and // ¢ in complex number notation.

Many engineers use the root mean square (r.m.s.) value of a sinusoid as the mag-
nitude of a phasor. The justification for this is that it represents the value of a d.c. sig-
nal that would dissipate the same amount of power in a resistor as the sinusoid. For

Yy A

<

Y

x  Figure 9.10 _
ustration of the phasor V =V /¢ where w = angular
frequency with which the phasor rotates.
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example, in the case of a current signal, 12, R is the average power dissipated by the
sinusoid 7 cos(wt + ¢) in a resistor R. For the case of a sinusoidal signal the r.m.s. value
of the signal is 1/+/2 times the peak value of the signal (see Section 15.3, Example 15.4,
for a proof of this). We will not adopt this approach but it is a common one.

We start by examining the phasor representation of individual circuit elements. In
order to do this we need a phasor form of Ohm’s law. This is

V=1Iz 9.7)

where V is the voltage phasor, [ is the current phasor and Z is the impedance of an
element or group of elements and may be a complex quantity. Note that phasors and
complex numbers are mixed together in the same equation. This is a common practice
because phasors are usually manipulated as complex numbers.

Resistor

Experimentally it can be shown that if an a.c. voltage is applied to a resistor then the
current is in phase with the voltage. The ratio of the magnitude of the two waveforms is
qqual to the resistance, R. So, given I = 1.0, Z = R/0, using Equation (9.7) we have
V = IR/0. This is illustrated in Figure 9.11.

Inductor

For an inductor we know from experiment that the voltage leads the current by a phase of
7t/2, and so the phase angle of the impedance is 7t/2. We also know that the magnitude
of the impedance is given by wL. So, given I = 1/.0,Z = wL/ 1t/2, using Equation (9.7)
we have V = [wL/ /2. An alternative way of representing Z for an inductor is to use
the Cartesian form, that is

4 s s
Z = wLe'™? = wL( cos = + jsin —
2 2
= joL

This is useful when phasors need to be added and subtracted. The phasor diagram for an
inductor is illustrated in Figure 9.12.

Capacitor

For a capacitor it is known that the voltage lags the current by a phase of 7t/2 and the

magnitude of the impedance is given by o So given 1= 1/0,Z = —CL —1/2, we
1) 1)

VA

[SE]

ha

<1y
=Y
~ )
=Y

Figure 9.11 Figure 9.12
Phasor diagram for a resistor. Phasor diagram for an inductor.
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y

~ 1
have, using Equation (9.7), V = —CL —7t/2. Alternatively,
w

e im/2 1 < T 7:)
Z = = —|cos - —jsin—

oC oC 2 2
_ i
wC
Engineers often prefer to rewrite this last expression as
1
joC

The phasor diagram for the capacitor is illustrated in Figure 9.13.

We have shown how phasors can be multiplied by a complex number; division is very
similar. Addition of phasors will now be illustrated; subtraction is similar. Consider the
circuit shown in Figure 9.14 in which a resistor, capacitor and inductor are connected
in series and fed by an a.c. source. As this is a series circuit, the current through each
element, /, is the same by Kirchhoff’s current law. By Kirchhoff’s voltage law the voltage
rise produced by the supply, V¢, must equal the sum of the voltage drops across the
elements. Therefore,

Vs =V +Vc+V,L
Note that this is an addition of phasors so that the voltage drops across the elements
do not necessarily have the same phase. The phasor diagram for the circuit is shown in
Figure 9.15, in this case with [V | > |V [; I is the reference phasor.

Note that the phasor addition of the element voltages gives the overall supply voltage
for a particular supply current. If the magnitude of these element voltage phasors is
known then it is possible to calculate the supply voltage graphically. In practice it is
easier to convert the polar form of the phasors into Cartesian form and use algebra to

analyse the circuit.
Now,

~

=
—_—
o 13

<

Figure 9.13

|

~

LY
e

Q@

&/
Il
a
A 1]

h
—_—
o 1§

Figure 9.14 Figure 9.15

Phasor diagram for a capacitor. RLC circuit. Phasor diagram for the circuit in

Figure 9.14.
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Therefore,
Ve=Ve+Ve+V,

. 1

= IR+ ljwuL + —

joC

~ 1
=I{R+joL+ —
( 1 JwC>

1
Therefore the impedance of the circuit is Z = R + joL + T We can calculate the
1)

frequency for which the impedance of the circuit has minimum magnitude:

1
Z=R+joL+ —
joC

. ]
=R+ jowL — —
o oC

1
=R+ijlwlL— —
“(‘” wC>

Now

1 2
- J (- L)
wC

and so, as w varies |Z| is a minimum when

1

oL — — =0
wC
1

® = —
LC

1
o=,
LC

This minimum value is |Z| = R. Examining Figure 9.15 it is clear that the minimum
impedance occurs when V, and V. have the same magnitude, in which case V{ has no
imaginary component. The frequency at which this occurs is known as the resonant
frequency of the circuit.

Engineering application 9.1

The Poynting vector

An electromagnetic wave freely travelling in space has electric and magnetic field
components which oscillate at right angles to each other and to the direction of prop-
agation. This type of wave is known as a transverse wave. Figure 9.16 illustrates
an electromagnetic wave travelling in free space. The Poynting vector is used to de-
scribe the energy flux associated with an electromagnetic wave. It has units of W m~2
and is a power per unit area, that is a power density. If the total power associated with
an electromagnetic wave front is required then the Poynting vector can be integrated
over an area of interest.
The Poynting vector, S, for electric field, E, and magnetic field, H, is defined as

S=ExH
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Electric field

N

Magnetic field

Figure 9.16
An electromagnetic wave travelling in free space.

where E and H are vector quantities. Note that S is also a vector quantity as this
expression is a vector product.

It is possible to specify magnitude and phase of the field quantities using com-
plex numbers; that is, in terms of phasors. Consider the case when E and H are the
following:

E = (2+j0.5)i + 0j 4 Ok

H = 0i + (3.5 +4j0.25)j + Ok
Here Cartesian coordinates have been used to define the two field quantities and i is a
unit vector in the x direction, j is a unit vector in the y direction and K is a unit vector
in the z direction. Examining these two terms we note that the electric field is aligned

in the x direction and the magnetic field is aligned in the y direction.
Calculating the Poynting vector we obtain

i i k
S=ExH=2+j0.5 0 0
0 354j0.25 0

= 0i — 0j + (2 +j0.5)(3.5 + j0.25)k = (6.875 + j2.25)k

We see that the only non-zero component is aligned in the z direction. This is consis-
tent with our understanding of a transverse wave in that the direction of propagation
is at right angles to the two field components. This implies that the energy flow of
the electromagnetic wave is in the z direction.

DE MOIVRE'S THEOREM

A very important result in complex number theory is De Moivre’s theorem which states
thatifn e N,

(cosB + jsin@)" = cosnf + jsinnd (9.8)

Example 9.17

Solution

Verify De Moivre’s theorem whenn = 1 and n = 2.

When n = 1, the theorem states:

(cos6 +jsinf)' = cos 16 4 jsin 16
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which is clearly true, and the theorem holds. When n = 2, we find

(cosf +jsinf)* = (cos@ + jsinf)(cosf + jsinh)
= cos> 0 + jsin@ cos O + jcos b sinh + j* sin® 6
= cos’ 6 — sin’ 6 +j(2sin6 cos )

Recalling the trigonometric identities cos 26 = cos®§ — sin? @ and sin 26 = 2sin @ cos 6,
we can write the previous expression as

cos 20 + jsin 26
Therefore,
(cos@ + jsinf)? = cos 20 + jsin 20

and De Moivre’s theorem has been verified when n = 2.

The theorem also holds when 7 is a rational number, that is n = p/q where p and ¢ are
integers. Thus we have

(cos@ +jsin@)P/4 = cos EG + jsin EG
q q

In this form it can be used to obtain roots of complex numbers. For example,

1 1
Jcos@ +jsinf = (cosd +jsinf)'/* = cos §9 + jsin 59

In such a case the expression obtained is only one of the possible roots. Additional roots
can be found as illustrated in Example 9.18.

De Moivre’s theorem is particularly important for the solution of certain types of
equation.

Example 9.18

Solution

Find all complex numbers z which satisfy
Z2=1 9.9
The solution of this equation is equivalent to finding the solutions of z = 1'/3; that is,

finding the cube roots of 1. Since we are allowing z to be complex, that is z € C, we can
write

z=r(cosf +jsinfh)
Then, using De Moivre’s theorem,
2 =r*(cosf +jsinh)?
= r’(cos 30 + jsin36)

‘We next convert the expression on the r.h.s. of Equation (9.9) into polar form. Figure 9.17
shows the number 1 = 1 + 0j on an Argand diagram.

From the Argand diagram we see that its modulus is 1 and its argument is 0, or pos-
sibly +27t, £4, .. ., that is 2n7 where n € Z. Consequently, we can write

1 = 1(cos 2n7 + j sin 2n7) new
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2

y A o
1 z; X
1
—>
1 X
23
Figure 9.17 Figure 9.18
The complex number z = 1 + 0j. Solutions of 73 = 1.

Using the polar form, Equation (9.9) becomes
3 (cos 30 + jsin30) = 1(cos 2n7 + j sin 2n71)
Comparing both sides of this equation we see that
rP=1 that is r=1sincer e R
and
30 = 2nm that is 0 = 2nm/3 nez

Apparently 6 can take infinitely many values, but, as we shall see, the corresponding
complex numbers are simply repetitions. When n = 0, we find 6 = 0, so that

z=2, =1(cosO0+jsin0) =1
is the first solution. When n = 1 we find 6 = 27t/3, so that
1=2 = 1(0052?7{+jsin2?ﬂ) = —%_}_j?
is the second solution. When n = 2 we find 8 = 47t/3, so that
1=z = 1<c0s4—7[+jsin4—ﬂ) = —1 —jﬁ
- 3 3 2 2

is the third solution. If we continue searching for solutions using larger values of n we
find that we only repeat solutions already obtained. It is often useful to plot solutions
on an Argand diagram and this is easily done directly from the polar form, as shown in
Figure 9.18. We note that the solutions are equally spaced at angles of 27t/3.

Example 9.19

Solution

Find the complex numbers z which satisfy 72 = 4j.

Since z € C we write z = r(cos € + jsin ). Therefore,

2 = r*(cos 6 + jsin6)?
= r?(cos 20 + jsin26)
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IS
FNE]

=Y

2 Figure 9.19
Solution of 72 = 4j.

by De Moivre’s theorem. Furthermore, 4j has modulus 4 and argument 7t/2 + 2n,
n € 7, that is
4j = 4{cos(7t/2 + 2nm) + jsin(7t/2 + 2nm)} nez
Therefore,
r*(cos 26 +jsin26) = 4{cos(7t/2 4 2nm) + j sin(1t/2 + 2nm)}
Comparing both sides of this equation, we see that
P =4 and so r=2
and
20 = mt/2 + 2nm and so 0 =m/4 4 nm

Whenn = 0 we find & = 7t/4, and when n = 1 we find & = 57t/4. Using larger values of
n simply repeats solutions already obtained. These solutions are shown in Figure 9.19.
We note that in this example the solutions are equally spaced at intervals of 27t/2 = 7.
In Cartesian form,

i~z = —V2(1+])

2
7 = =\/§(1+J) and Zzz_ﬁ_']

5

2+,2
NRRN

In general, the n roots of 7" = a + jb are equally spaced at angles 27t/n.

Once the technique for solving equations like those in Examples 9.18 and 9.19 has
been mastered, engineers find it simpler to work with the abbreviated form r/ 6. Exam-
ple 9.19 reworked in this fashion becomes

Letz =r/6, then 2 =1r"/26

Furthermore, 4j = 4/ 7/2 + 2nm, and hence if 7= 4j, we have
) 7T
r /20 =4/, 5 + 2nm

from which

) T
rr=4 and 29=§+2n7t

as before. Rework Example 9.18 for yourself using this approach.
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Engineering application 9.2

Characteristic impedance

In a later application we shall explain the concept of the characteristic impedance
of an electrical transmission line in more detail. For now, we can assume that it is an
important electrical parameter represented by the equation

7 R+ joL
"7V G+ joC

where R, L, G and C are transmission line parameters and o is the angular frequency,
all of which are real numbers. If R and G are zero, as they would be for an ideal
transmission line, then Z; is wholly real because:

joL \/Z
ZO = — = —_
joC €

Alternatively, if G or R is included then the equation involves taking the square root
of a complex number.
Given values of R, G, L, C and w we can write

R+ joL

G+ joC
in Cartesian form (see Example 9.9) and hence in polar form (see Section 9.5).
Application of De Moivre’s Theorem will then allow us to calculate the required
square roots to find Z; .

Another application of De Moivre’s theorem is the derivation of trigonometric
identities.

Example 9.20

Solution

Use De Moivre’s theorem to show that
cos30 =4cos’ 0 — 3cosh
and

sin30 = 3sinf — 4sin’ 6

We know that
(cos@ +jsin@)® = cos 30 + jsin 36
Expanding the L.h.s. we find
cos® 0 4 3jcos? 0 sin@ — 3 cos O sin’* O — jsin® @ = cos 30 + jsin 30
Equating the real parts gives
cos’ 6 — 3 cos @ sin’ = cos 30 (9.10)
and equating the imaginary parts gives

3cos’ 0 sinf — sin® @ = sin 36 (9.11)
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Now, writing sin”6 = 1 — cos? @ in Equation (9.10) and cos’6 = 1 — sin? @ in Equa-
tion (9.11), we find
c0s360 = cos’ 0 — 3cosO(1 — cos’ 0)
= cos’ 0 +3cos’ 6 — 3cosb
=4cos’0 —3cosb
sin30 = 3(1 — sin*#) sin 6 — sin® O
=3sinf — 4sin’ 0

as required.

This technique allows trigonometric functions of multiples of angles to be expressed
in terms of powers. Sometimes we want to carry out the reverse process and express a
power in terms of multiple angles. Consider Example 9.21.

Example 9.21 1If z = cos6 + jsin6 show that
1 1 ..
Z+ - =2cosb Z— — =12jsin6
Z Z

. . 1 1
and find similar expressions for z" + — and 2" — —.
Z Z

Solution Consider the complex number
z=cosf +jsinb

Using De Moivre’s theorem,

1
—=7"=(cosf +jsin@)"" = cos(—0) + jsin(—6)
<

But cos(—60) = cos 8 and sin(—60) = —sin6, so that if z = cos 6 + jsin O
— =cosf —jsinb
z
Consequently,
1 1 ..
z+ - =2cosf and z— — =2jsinf
z z
Moreover,
7" = cosnf + jsinnd and 7" = cosnf — jsinnd
so that

| 1
7"+ — =2cosnd and 7' — — =2jsinnd
ZV[ Zn

1 | ..
7'+ — =2cosnb and "— — =2jsinnd
Zn

I
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1
Example 9.22 Show that cos’6 = E(COS 260 +1).

Solution The formulae obtained in Example 9.21 allow us to obtain expressions for powers of

cos 6 and sin§. Since 2 cos § = z + —, squaring both sides we have
Z

1\’ 1
2cos?0=(z4-) =2+2+ =
z 22

, 1
=\+5)+2
<

1
But 22 + — =2c0s20, 50
b4
2% cos’H =2cos20 +2
and therefore,

cos’ 0 = 1cos26’—i— !
2 2

1
5(00529 +1)

as required.

EXERCISES 9.9

1 Express (cos6 + jsin#)? and (cos@ + jsin0)!/? in (b) 32sin®0 = 10 — 15cos 260 + 6 cos 40 — cos 60
the form cos n6 + jsinno. 6 Solve the equation z* 4+ 25 = 0.
2 Use De Moivre’s theorem to simplify

(a) (cos36 + jsin36)(cos46 + jsindo)

7 Find the fifth roots of j and depict your solutions on
an Argand diagram.

(b) W 8 Show that cos® 0 = l(cos 30 +3cosB)
co0s 26 — jsin 26 4 .
il Solve the equations 9 Show that sin* 6 = é(cos 40 — 4cos20 + 3).
@ Z+1=0
b) *=1+] 10 Express cos 56 in terms of powers of cos 6.
@ Find &2 F 7 and display your solutions on an 11 Express sin 56 in terms of powers of sin 6.
Argand diagram. 12 Given &/ = cos@ + jsin 6, prove De Moivre’s

5 Prove the following trigonometric identities:

(a) cosd0 = 8cos*0 — 8cos?O + 1

theorem in the form

()" = cosnod + jsinnd

Solutions
1 cos90 + jsin 96, cos(6/2) + jsin(6/2) 3 (a) 1/Lm/342nm/3 n=0,1,2
2 (a) cos 76 +jsin 76 (b) 21/8471/164"’”'5/2 n=0,1,23
(b) cos 100 + j sin 106 & 89/ /12 4 2nm/3 n=0,12



6 5Lm/4+nm)2

7 1,7/10 4 2nm/5
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n=0,1,2,3 10 16cos’ 0 —20cos> 6 + 5cos6

n=0,1,2,3,4 11 16sin’ — 20sin® 0 + 5sin @

LOCI AND REGIONS OF THE COMPLEX PLANE

Regions of the complex plane can often be conveniently described by means of complex
numbers. For example, the points that lie on a circle of radius 2 centred at the origin
(Figure 9.20) represent complex numbers all of which have a modulus of 2. The argu-
ments are any value of 8, —7t < 6 < 7t. We can describe all the points on this circle by
the simple expression

lz| =2

that is, all complex numbers with modulus 2. We say that the locus (or path) of the point
z is a circle, radius 2, centred at the origin. The interior of the circle is described by
|z] < 2 while its exterior is described by |z| > 2.

Similarly all points lying in the first quadrant (shaded in Figure 9.21) have arguments
between 0 and 7t/2. This quadrant is therefore described by the expression:

0 < arg(z) < m/2

v A
v A
2 .
/ Z y I'
K/ 2 x ! " awgz=]
o
N,
| x
Figure 9.20 Figure 9.21 Figure 9.22
A circle, radius 2, centred at the First quadrant of the x—y plane. Locus of points satisfying
origin. arg(z) = m/4.

Example 9.23

Solution

Sketch the locus of the point satisfying arg(z) = /4.

The set of points with arg(z) = 7t/4 comprises complex numbers whose argument is
/4. All these complex numbers lie on the line shown in Figure 9.22.

Example 9.24

Solution

Sketch the locus of the point satisfying |z — 2| = 3.

First mark the fixed point 2 on the Argand diagram labelling it ‘A’ (Figure 9.23). Con-
sider the complex number z represented by the point P. From the vector triangle law of
addition

OA + AP = OP

AP = OP - 0A
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v A
zsuch that Iz —21=3
vy A : ap

x

1 A -

0 1 2 X

Figure 9.23 Figure 9.24

Points z and 2 + 0j. Locus of points satisfying [z — 2| = 3.

Recall from Section 9.6 that the graphical representation of the sum and difference of
vectors in the plane, and the sum and difference of complex numbers, are equivalent.
Since vector OP represents the complex number z, and vector OA represents the complex
number 2, AP = OP — OA will represent z — 2. Therefore |z — 2| represents the distance
between A and P. We are given that |z —2| = 3, which therefore means that P can be any
point such that its distance from A is 3. This means that P can be any point on a circle
of radius 3 centred at A(2, 0). The locus is shown in Figure 9.24. |z — 2| < 3 represents
the interior of the circle while [z — 2| > 3 represents the exterior. Alternatively we can
obtain the same result algebraically: given |z — 2| = 3 and also that z = x + jy, we can
write

22| =] —=2)+jyl =3
that is

Ja=22+y2 =3
or

(r=2)" 4y =9

Generally, the equation (x —a)? + (y — b)?> = r? represents a circle of radius r centred at
(a, b), so we see that (x — 2)> 4+ y> = 9 represents a circle of radius 3 centred at (2, 0),
as before.

Example 9.25 Use the algebraic approach to find the locus of the point z which satisfies

1
o= 1= 3lz =]l

Solution If z = x + jy, then we have
. 1 .
[(x—1) +jyl = §|X+J(J’— D
Therefore,

=14y = j—‘{xz +O-D%
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Adx—1) 2 +4 ="+ (- 1)

that is

3% —8x+3y* +2y+3=0

By completing the square this may be written in the form

4\’ 1

that is

1

(‘%)2+<y+§

4 1
which represents a circle of radius NG /3 centred at (—, ——).

> 8
3

8
9

33

1 Sketch the loci defined by

(a) arg(z) =0

(b) arg(z) =m/2

(c) arg(z—4) =m/4

(A 22z] = |z — 1]

Sketch the regions defined by
(a) Re(z) >0

() Im(z) <3

(© |z >3

(d) 0< arg(z) <m/2
(e lz+2/<3
® lz+jl >3
(@ lz—1<lz—2]

. If s = 0 + jo sketch the regions defined by

(@ o <0
(b) 0 >0
© 2<w<?2

. See Figure S.19.

arg(z) =0 arg(z) = w/2

2
3
N
\\
‘ / .
3

arg(z—4) = /4
2zl =z -1l

W=

Yy

(a) ‘ (b) (c)
Figure S.19

‘ 4

(d)
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2 See Figure S.20.

y

3 Im(z) < 3 / é @ 0 < arg(x) < /2
Re()>0 //%;//////// .7 x

(b) (© ()

N %/ A , 9k lz—11 <1z -2l
/// ) ./// Iz+jl > 3 %%////
‘i A -
® (&) %

_

Figure S.20

3 See Figure S.21.

(a) (b) % (c ’

)

Figure S.21
REVIEW EXERCISES 9
1  Show that ; = cosf +jsin6. 5 Express in the form a + bj:
cosf —jsin6

1

0 +jsin6)° b)) —M —
(@) (cosf +jsinf) ®) (cos@ +jsinf)3

2 Express in Cartesian form

544 1 cos6 +jsinf
@ 274 ) — © ikl
5 — 4j 2 + 3 cos¢ +jsing
1 1 1
d 6 1If z € C, show that
© 3imtasy 9oy

(@ z+z=2Re(z) (b) z—z=2jIm(2)
3 Find the modulus and argument of —j, —3, 1 +j, © Z=lz?
cosf + jsinf. ) )
7 Show that e/’ + e 7! = 2 cos wt and find an

4 Mark on an Argand diagram vectors corresponding to . ; _
& g p & expression for e/’ — e J!,

the following complex numbers: —3 + 2j, —3 — 2j, .
COS 7T + j Sin 7t. 8 Express 1 4+ e¥* in the form a + bj.




9 Sketch the region in the complex plane described by
lz+2j| < 1.

10 Express e(!/2-%) in the form a + bj.

11 Solve the equation z* 4+ 1 = j/3.

Solutions
2()9+40' (b)2 3 ()4
EAVTRRAVTE 3 13 ‘13
@ - 2
2rye TR +y2J

3 |—-jl=1arg(—)) = —7/2;|-3| =3, arg(-3) = m;
11 +jl = /2, arg(1 +j) = /4, |cos® + jsin| = 1,
arg(cosf +jsinf) =6

5 (a) cos 66 + jsin 60 (b) cos 36 — jsin 36
(c) cos(d —¢) +jsin(0 — ¢)

Review exercises 9 355

12 Express s2 + 6s + 13 in the form (s — a) (s — b)
where a, b € C.

13 Express 252 + 85+ 11 in the form 2(s — a) (s — b)
where a, b € C.

7 & — eI = 2jsin wr
8 1+ cos2wt + jsin2wt
10 1.5831 4 0.4607j

1 214/ /6 +nm/2  n=0,1,2,3

12 [s — (=34 2)lls — (=3 = 2))]

w {- (- 4)]
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INTRODUCTION

Differentiation is a mathematical technique for analysing the way in which functions
change. In particular, it determines how rapidly a function is changing at any specific
point. As the function in question may represent the magnetic field of a motor, the voltage
across a capacitor, the temperature of a chemical mix, etc., it is often important to know
how quickly these quantities change. For example, if the voltage on an electrical supply
network is falling rapidly because of a short circuit, then it is necessary to detect this
in order to switch out that part of the network where the fault has occurred. However,
the system should not take action for normal voltage fluctuations and so it is important
to distinguish different types and rates of change. Another example would be detecting
a sudden rise in the pressure of a fermentation vessel and taking appropriate action to
stabilize the pressure.

Differentiation will be introduced in this chapter. We shall derive a formula which can
be used to find the rate of change of a function. To avoid always having to resort to the
formula engineers often use a table of derivatives; such a table is given in Section 10.7.
The chapter closes with a discussion of an important property of differentiation — that
of linearity.
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y(@® A

Figure 10.1
11— The function y(¢) has different rates of
10 11 12t change over different regions of z.
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GRAPHICAL APPROACH TO DIFFERENTIATION

Differentiation is concerned with the rate at which a function is changing, rather than
the actual change itself. We can explore the rate of change of a function by examining
Figure 10.1. There are several regions to this curve corresponding to different intervals
of ¢. In the interval [0, 5] the function does not change at all. The rate of change of y
is zero. From ¢ = 5 to ¢t = 7 the function increases slightly. Thus the rate of change of
y as t increases is small. Since y is increasing, the rate of change of y is positive. From
t = 7tot = 8§ there is a rapid rise in the value of the function. The rate of change of y
is large and positive. From ¢ = 8 to t = 9 the value of y decreases very rapidly. The rate
of change of y is large and negative. Finally from # = 9 to ¢ = 12 the function decreases
slightly. Thus the rate of change of y is small and negative.

The aim of differential calculus is to specify the rate of change of a function pre-
cisely. It is not sufficient to say ‘the rate of change of a function is large’. We require an
exact value or expression for the rate of change. Before being able to do this we need to
introduce two concepts concerning the rate of change of a function.

Average rate of change of a function across an interval

Consider Figure 10.2. When ¢ = ¢, the function has a value y(#,). This is denoted by A
on the curve. When t = t,, the function has a value of y(z,). This point is denoted by B
on the curve. The function changes by an amount y(z,) — y(t,) over the interval [z, 1,].
Thus the average rate of change of the function over the interval is

changeiny  y(t,) — y(1,)
change in ¢ L — 1

The straight line joining A and B is known as a chord. Graphically, y(z,) — y(z,) is the
vertical distance and t, — ¢, the horizontal distance between A and B, so that the gradient
of the chord AB is given by

% _ () — y()
AC t, —t

The gradient or slope of a line is a measure of its steepness and lines may have positive,
negative or zero gradients as shown in Figure 10.3.

Thus the gradient of the chord AB corresponds to the average rate of change of the
function between A and B. To summarize:

The average rate of change of a function between two points A and B is the gradient
of the chord AB.
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10.2.2

1
v 4 o Positive
Y(ty) |-mmm gradient
y () -y () Zero
/ gradient
1) bee e — L ____ |
y () ' c Negative
(1) — _ gradient
I b ‘ K
Figure 10.2 Figure 10.3
Average rate of change across an interval. Lines can have different gradients.
Chord AB,
Y |
y@ B,
Chord AB,
\ Tangent at A
Figure 10.4
= Point B is moved nearer to A to improve
t accuracy.

Rate of change of a function at a point

Consider again Figure 10.2. Suppose we require the rate of change of the function at
point A. We can use the gradient of the chord AB as an approximation to this value. If B
is close to A then the approximation is better than if B is not so close to A. Therefore by
moving B nearer to A it is possible to improve the accuracy of this approximation (see
Figure 10.4).

Suppose the chord AB is extended as a straight line on both sides of AB, and B is
moved closer and closer to A until both points eventually coincide. The straight line
becomes a tangent to the curve at A. This is the straight line that just touches the curve
at A. However, the rate of change of this tangent, that is its gradient, still corresponds to
the rate of change of the function, but now it is the rate of change of the function at the
point A. To summarize:

The rate of change of a function at a point A on the curve is the gradient of the
tangent to the curve at point A.

We have still to address the question of how the gradients of chords and tangents are
found. This requires a knowledge of limits which is the topic of the next section.

LIMITS AND CONTINUITY

The concept of a limit is crucial to the development of differentiation. We write
t — c to denote that t approaches, or tends to, the value of c¢. Note carefully that this is
distinct from stating r = c. As ¢ tends to ¢ we consider the value to which the function
approaches and call this value the limit of the function as r — c.
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AON

~ Y

[N Y P

3 /
Figure 10.6
Figure 10.5 As x — 0,y — 1, even though
The curve f (1) = 12 + 2t — 3. y(0) = 3.

Example 10.1

Solution

If t — 2, what value does
f@O)=*+2 -3
approach?
Figure 10.5 shows a graph of f(¢). Clearly, whether t = 2 is approached from the 1.h.s.
or the r.h.s. the function tends to 5. That is, if t — 2, then f () — 5. We note that this is

the value of f(2). Informally we are saying that as ¢ gets nearer and nearer to the value 2,
so f(t) gets nearer and nearer to 5. This is usually written as

mg(rz +2-3)=5
1—

where ‘lim’ is an abbreviation of limit. In this example, the limit of f(¢) ast — 2 is
simply f(2), but this is not true for all functions.

Example 10.2

Solution

Figure 10.6 illustrates y(x) defined by

l1—x x<0O
yx) =43 x=0
x+1 x>0

Evaluate:
(a) lim,_ 5y (b) lim_, _,y (¢) lim,_ ,y

We note that this function is piecewise continuous. It has a discontinuity at x = 0.

(a) We seek the limit of y as x approaches 3. As x approaches 3, we will be on that part
of the function defined by x > 0, thatis y(x) =x+ 1. Asx — 3,theny — 3 + 1,
thatis y — 4. So

limy =4
s”

(b) When x approaches —1, we will be on that part of the function defined by x < O,
thatis y(x) = 1 —x. Soasx — —1,theny — 1 — (—1), thatis y — 2. Hence

lim1 y=2

(c) Asx approaches 0 what value does y approach? Note that we are not evaluating y(0)
which actually has a value of 3. We simply ask the question “What value is y near
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when x is near, but distinct from, 0?” From Figure 10.6 we see y is near to 1, that is

limy = 1
g

Example 10.3 The function y(x) is defined by

0 x<0
yx)={x O0<x <2
x—2 x>2
(a) Sketch the function.
(b) State the limit of y as x approaches (i) 3, (ii) 2, (iii) O.

Solution (a) The function is shown in Figure 10.7. Note that the figure has three parts; each part
corresponds to a part in the algebraic definition.

(b) (i) Asx — 3, the relevant part of the function is y(x) = x — 2. Hence
li =1
a2

(i) Suppose x < 2 and gradually increases, approaching the value 2. Then, from
the graph, we see that y approaches 2. Now, suppose x > 2 and gradually
decreases, tending to 2. In this case y approaches 0. Hence, we cannot find the
limit of y as x tends to 2. The lim,_, , y does not exist.

(iii) As x tends to 0, y tends to 0. This is true whether x approaches 0 from below,
that is from the left, or from above, that is from the right. So,

limy=20
x—0
y y=x-2
y=x
y=0 |
\ ' Figure 10.7

: » The function y has different limits as x — 2
2

X from the left and the right.

Itis appropriate at this stage to introduce the concept of left-hand and right-hand limits.
Referring to Example 10.3, we see that as x approaches 2 from the left, that is from below,
then y approaches 2. We say that the left-hand limit of y as x tends to 2 is 2. This is
written as

li =2

s
Similarly, the right-hand limit of y is obtained by letting x tend to 2 from above. In this
case, y approaches 0. This is written as

Jimy =0
Consider a point at which the left-hand and right-hand limits are equal. At such a point
we say ‘the limit exists at that point’.
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The limit of a function, at a point x = a, exists only if the left-hand and right-hand
limits are equal there.

10.3.1 Continuous and discontinuous functions

A function f is continuous at the point where x = a, if
lim f = f(a)
X—a

that is, the limit value matches the function value at a point of continuity. A function
which is not continuous is discontinuous. In Example 10.3, the function is continuous
at x = 0 because

limy = 0= f(0)

but discontinuous at x = 2 because lim,_, , y does not exist. In Example 10.2, the function
is discontinuous at x = 0 because lim,_, ;y = 1 but y(0) = 3. The concept of continuity

corresponds to our natural understanding of a break in the graph of the function, as
discussed in Chapter 2.

A function f is continuous at a point x = a if and only if

lim,_ , f = f(a)

that is, the limit of f exists at x = a and is equal to f(a).

EXERCISES 10.3

1 The function, f(¢), is defined by 2 The function g(¢) is defined by
1 0<r<?2 0 t<0
fo)y=142 2<t<3 o = 1? 0<t<3
3 ¢>3 E0=V2r+3 3<r<4
Sketch a graph of f(¢) and state the following limits if 12 t>4
they exist: (a) Sketch g.
(@) lim,_ 5 f (b) State any points of discontinuity.
(b) lim, 5 f (c) Find, if they exist,
() lim,_ 5 f @) lim,_ 3¢
(d) lim,_, o+ f (i) lim,_ 4 ¢
(e) lim,_ 5 f (iii) lim,_, 4~ g
Solutions
1 (a1 (b) 2 (c) not defined 2 (b)r=4

@ 1 © 2 () ()9 (i) notdefined (i) 11
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RATE OF CHANGE AT A SPECIFIC POINT

We saw in Section 10.2 that the rate of change of a function at a point is the gradient of
the tangent to the curve at that point. Also, we can think of a tangent at A as the limit of
an extended chord AB as B — A. We now put these two ideas together to find the rate
of change of a function at a point.

Example 10.4 Giveny = f(x) = 3x> + 2, obtain estimates of the rate of change of y at x = 3 by
considering the intervals

(a) [3.4] (b) [3,3.1] (c) [3,3.01]

Solution (a) Consider Figure 10.8.

y(3) =33)*+2=29
y(4) =3(4)* +2=50

Let A be the point (3, 29) on the curve. Let B be the point (4, 50). Then

. changeiny
average rate of change over the interval [3,4] = ————
change in x

_ Y@ -0
4-3
50-2
= 9:21
4-3

This is the gradient of the chord AB and is an estimate of the gradient of the tangent
at A. That is, the rate of change at A is approximately 21.

(b) y(3.1) =30.83 and so,

) 30.83 — 29
average rate of change over the interval [3, 3.1] = =13 =183

This is a more accurate estimate of the rate of change at A.

(c) y(3.01) = 29.1803 and so,

29.1803 — 29
3.01-3
18.03

average rate of change over the interval [3, 3.01]

»  Figure 10.8
X The function: y = 3x2 + 2.

S
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This is an even better estimate of the rate of change at A. Hence at A, if x increases
by 1 unit then y increases by approximately 18 units. This corresponds to a steep
upward slope at A.

Example 10.4 illustrates the approach of estimating the rate of change at a point by using
the ‘shrinking interval’ method. By taking smaller and smaller intervals, better and better
estimates of the rate of change of the function at x = 3 can be obtained. However, we
eventually want the interval to ‘shrink’ to the point x = 3. We introduce a small change
or increment of x denoted by §x and consider the interval [3, 3 4 §x]. By letting §x tend
to zero, the interval [3, 3 + §x] effectively shrinks to the point x = 3.

Example 10.5 Find the rate of change of y = 3x> 4 2 at x = 3 by considering the interval [3, 3 + 5x]
and letting §x tend to 0.

Solution When x = 3, y(3) = 29. When x = 3 + 8x then

y(3+8x) =33 +68x)> +2
= 3(9 4 68x + (6x)*) +2
= 3(8x)* + 188x + 29

So,
_ changeiny

average rate of change of y across [3, 3 4+ 6x] = -
change in x

(3(8x)> + 188x +29) — 29
- ox
3(6x)% + 186x
8x
8x(36x + 18)
- 8x

=36x+ 18

We now let 8x tend to 0, so that the interval shrinks to a point:

rate of change of y when x is 3 = Slirr{)(S(Sx +18) =18

We have found the rate of change of y at a particular value of x, rather than across an
interval. We usually write

rate of change of y when xis 3 = 5limO
xX—>

(Y(3 +8x) — y(3)>
ox

) <3(8x)2+183x
lim [ ————M—

x ) - 51;210(38)6 +18)

Sx—0

18
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EXERCISES 10.4

1| Find the rate of change of y = 32 42 at same answer results regardless of which interval is

used.
(a) x = 4 by considering the interval [4, 4 + 6x] 4 Find the rate of change of y(x) = 2 — 2 at
(b) x=-2 by COHSidering the interval [—2, -2+ 6.x] (a) X = 3’ by COnSidering the interval [3’ 34+ CS.X:]
(¢) x =1 Dby considering the interval [1 — x, 1 + 6x] (b) x = —5, by considering the interval
—5,-5+34
2 Find the rate of change of y = 1/x atx = 2. [ + o]
(c) x =1, by considering the interval
3 To determine the rate of change of y = x> — x [T —6x, 1+ dx].
at x = 1 the interval [1, 1 4 8x] could be used. . X _
Equally the intervals [1 — 8x, 1] or 5 Find the rate of change of y(x) = 13 atx = 3 by
[1 —8x, 1 4 8x] could be used. Show that the considering the interval [3, 3 + 8x].
Solutions
1 (a) 24 (b) —12 () 6 4 (a) —6 (b) 10 () -2
2 -025 5 &
3 1

m RATE OF CHANGE AT A GENERAL POINT

Example 10.5 shows that the rate of change of a function at a particular point can be
found. We will now develop a general terminology for the method. Suppose we have a
function of x, y(x). We wish to find the rate of change of y at a general value of x. We
begin by finding the average rate of change of y(x) across an interval and then allow the
interval to shrink to a single point. Consider the interval [x, x + §x]. At the beginning of
the interval y has a value of y(x). At the end of the interval y has a value of y(x 4 §x) so
that the change in y is y(x + 6x) — y(x), which we denote by §y (see Figure 10.9). So,

change in y
average rate of change of y = chanee in x
change in x

oy —y) 8y

Sx Sx

Now let 6x tend to 0, so that the interval shrinks to a point. Then

5x) — )
rate of change of y = aﬁmo <M) = 5lim0(8—y)
xX—> X X—> X

To see how we proceed to evaluate this limit consider Example 10.6.
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v

y(x + 6x)
3y = y(x + 8x) — y(x)
y(x)

o J

X X+0x

ox

Figure 10.9
The rate of change of y at a point is found by letting §x — 0.

Example 10.6

Solution

Find the rate of change of y(x) = 2x? 4 3x. Calculate the rate of change of y when x = 2
and when x = —3.

Given y(x) = 2x* + 3x

then
y(x 4+ 8x) = 2(x + 8x)% + 3(x + 8x)
= 2x° + 4x8x + 2(8x)% 4 3x + 38x
Hence
y(x +6x) —y(x) = 2(8)c)2 + 4xéx + 36x
So,

rate of change of y = Slimo
xX—>

(y(x + 8x) — y(X))
5x

= lim

Sx—0

2(8x)? + 4xéx + 36x
ox

slimo(28x+4x+ 3) =4x+3

When x = 2, the rate of change of y is 4(2) +3 = 11. When x = —3, the rate of change
of yis 4(—3) + 3 = —9. A positive rate of change shows that the function is increasing
at that particular point. A negative rate of change shows that the function is decreasing
at that particular point.

1) d
The rate of change of y is called the derivative of y. We denote 51imo <8_y) by ay This
x—> X

is pronounced ‘dee y by dee x’.

d
rate of change of y(x) = ay = 5limo

(y(x +0x) — y(X))
ox

d )
Note that the notation & means lim _y'
dx 5x—0 Ox
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Using the previous example, if
y(x) = 2x* + 3x
then

d
d—z=4x+3

d
d—z is often abbreviated to y'

y' is pronounced ‘y dash’ or ‘y prime’. To stress that y is the dependent variable and x
the independent variable we often talk of ‘the rate of change of y with respect to x’, or,
more compactly, ‘the rate of change of y w.r.t. x’. The process of finding y" from y is
called differentiation. This shrinking interval method of finding the derivative is called

d
differentiation from first principles. We know that the derivative ay is the gradient

of the tangent to the function at a point. It is also the rate of change of the function. In
many examples, the independent variable is r and we need to find the rate of change of y

d
with respect to #; that is, find d_}t) This is also often written as y’ although y, pronounced

‘ydot’, is also common. The reader should be aware of both notations. Finally, y’ is used
dy d
to denote the derivative of y whatever the independent variable may be. So d—y, d_y and
d ¢
d_y could all be represented by y'.
w

Example 10.7

Solution

Find the gradient of the tangent to y = x> at A(1, 1), B(—1, 1) and C(2, 4).

We have y = x? and so

y(x +8x) = (x + 8x)°
= x% 4+ 2x8x + (8x)°

and hence

y(x 4+ 8x) —y(x) = X4 2x8x + (8x)% — X2
= 2x8x + (8x)2

Then

& gradient of a tangent to curve
dx

. y(x+8x) — y(x)
= lim|————
5x—0 5x
. (x + 8x)* — x? . 2x8x + (8x)?
=lim[{———— ) =lim| ———
Sx—0 o0x Sx—0 ox

8limo(2x + 6x) = 2x
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d d
At (1, 1), d—z = 2 = gradient of tangent at A. At (—1, 1), d—z = —2 = gradient of

tangent at B. At (2, 4), ay = 4 = gradient of tangent at C.

d
Suppose we wish to evaluate the derivative, d_i’ at a specific value of x, say x,. This is
denoted by

dy dy '
ot (x =xp) or more compactly by o (xy) ory' (x,)

An alternative notation is

dy dy
dx dx

X:XO XO

So, for Example 10.7 we could have written

dy dy dy ,
—1H=2 =Z@x=-H=-2 = =4 2) =4
1() ](x ) N y(2)

Example 10.8

Solution

Refer to Figure 10.10. By considering the gradient of the tangent at the points A, B, C,

D and E state whether ay is positive, negative or zero at these points.

d
At A and C the tangent is parallel to the x axis and so d_ic/ is zero. At B and E the tangent
d
has a positive gradient and so d_i is positive. At D the tangent has a negative gradient

d
and thus & is negative.
dx

Yy A

=Y

]i/.\
A
D

Figure 10.10
c Graph for Example 10.8.

As we saw in Chapter 3, functions are used to represent physically important quantities
such as voltage and current. When the current through certain devices changes, this can
give rise to voltages, the magnitudes of which are proportional to the rate of change of
the current. Consequently differentiation is needed to model these effects as illustrated
in Engineering applications 10.1 and 10.2
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Engineering application 10.1

Voltage across an inductor

The voltage, v, across an inductor with inductance, L, is related to the current, i,

through the inductor by
di
v=L—
dr

Figure 10.11 shows the relationship between magnetic flux lines passing through the
coils of an inductor and the current flowing through the inductor.

Figure 10.11

Schematic diagram of an
inductor showing the
relationship between magnetic
flux lines and current.

This relationship is a quantification of Faraday’s law which states that the voltage
induced in a coil is proportional to the rate of change of magnetic flux through it. If
the current in a coil is changing then this corresponds to a change in the magnetic

flux through the coil. Note that if & is large then v is large. This is why care has

to be taken when abruptly switching off the current to an inductor because it causes
high voltages to be generated.

Engineering application 10.2

Current through a capacitor

The current, i, through a capacitor with capacitance, C, is related to the voltage, v,
across the capacitor by

dv
ol
TR

Displacement current i,
—

—
Conduction current i i
Figure 10.12
— Schematic diagram of a capacitor
showing the conduction current and
— the displacement current.

It may appear confusing to talk of a current flow through a capacitor as no actual
charge flows through the capacitor apart from that caused by any leakage current.
Instead there is a build-up of charge on the plates of the capacitor. This in turn gives
rise to a voltage across the capacitor. If the current flow is large then the rate of change
of this voltage will be large. The current flow through the capacitor wires is termed a
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conduction current while that between the capacitor plates is called a displacement
current (see Figure 10.12).

The displacement current can be thought of as a virtual current that flows between
the plates due to the build-up of positive charge on one plate and negative charge
on the other plate. It doesn’t correspond to a real current flowing between the plates
as they are separated by an insulating material.

We can relate the small changes §x and §y to the derivative Q
If 8x is very small yet still finite we can state that
dy _éy
dv  ox
This result allows an important approximation to be made. From Equation (10.1) we see

that if a small change, dx, is made to the independent variable, the corresponding change
in the dependent variable is given by the following formula:

(10.1)

d
Sy &~ any

Example 10.9

Solution

If y = x? estimate the change in y caused by changing x from 3 to 3.1.
> dy . : .
If y = x” then Fil 2x. The approximate change in the dependent variable is given by

dy
Sy & —d6x = 2x8x
dx
Taking x = 3 and §x = 0.1 we have
8y~ (2)(3)(0.1) = 0.6

We conclude that at the point where x = 3 a change in x to 3.1 causes an approximate
change of 0.6 in the value of y.

1

EXERCISES 10.5

Calculate the gradient of the functions at the specified 5 Differentiate y = 2x2 + 9; that is, find Q

points.
(@ y=2xrat(1,2)

What is the rate of change of y when x = 3, -2, 1, 0?

(b) y=2x—x%at (0, 0) 6 Find the rate of change of y = 4¢ — r2. What is the

d
(€ y=1l4+x+x*at(2,7) value of di)t) when t = 2?

(d) y=2x2+1at(2,9)

A function, y, is such

dy 7 Ify=x3—3x>+ xthen
that — is constant.
dx dy

2
What can you say about the function, y? o 3x*—6x+1
For which graphs in Figure 10.13 is the derivative Estimate the change in y as x changes from
always (a) positive or (b) negative? (a) 21t02.05
Find the derivative of y(x) where y is (b) 0t00.025

(a) .X2 (b) _x2+2x (c) —1to—1.05
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v yT e yT /‘ y

N

® (i) (iii) (iv)

=Y
A

Figure 10.13
Solutions
1 (@ 4 (b) 2 (c) 5 (d) 8 4 (a) 2x (b) —2x+2
2 yislinearin x, thatisy = ax + b 5 4x,12,-8,4,0
3 (i) always negative (ii) always positive 6 4-210
(iii) always positive (iv) always negative 7 (a) 0.05 (b) 0.025 © —05

m EXISTENCE OF DERIVATIVES

d
So far we have seen that the derivative, ay, of a function, y(x), may be viewed either
algebraically or geometrically.

dy (y(x +6x) — y(x))

— = lim
dx 5x—0 ox

dy
— = rate of change of
dx & Y

= gradient of the graph of y

. . . d . o
We now discuss briefly the existence of _y For some functions the derivative does not

exist at certain points and we need to be able to recognize such points. Consider the
graphs shown in Figure 10.14. Figure 10.14(a) shows a function with a discontinuity at

v

(a) (b)

Figure 10.14
(a) The graph has a discontinuity at x = a. (b) The graph has a cusp at
X =a.
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x = a. The function shown in Figure 10.14(b) is continuous but has a cusp or corner

S . d
at x = a. In both cases it is impossible to draw a tangent at x = a, and so d—i does not

exist at x = a. It is impossible to draw a tangent to a curve at a point where the curve is
not smooth. Note from Figure 10.14(b) that continuity is not sufficient to guarantee the
existence of a derivative.

Example 10.10

Sketch the following functions. State the values of ¢ for which the derivative does not
exist.

(@ y=lt (b) y =tant © y=1/t

Solution (a) The graph of y = |¢| is shown in Figure 10.15(a). A corner exists at# = 0 and so the
derivative does not exist here.

(b) A graph of y = tant is shown in Figure 10.15(b). There is a discontinuity in tanz¢
when + = ...-3m/2, —m/2,7/2,37/2,.... No derivative exists at these
points.

(c) Figure 10.15(c) shows a graph of y = 1/¢. The function has one discontinuity at
t = 0, and so the derivative does not exist here.

A
Ly A | y=tant Y
v | i
y=li ! ! y= %
: ! N 13
| - ! E
(a) (b) ©
Figure 10.15

(a) There is a corner at ¢ = 0; (b) tan¢ has discontinuities; (c) y = 1/¢ has a discontinuity at # = 0.

EXERCISES 10.6

1 Sketch the functions and determine any points where @ y=11/1
a derivative does not exist. . . 1 t>0
1 (e) The unit step function u(z) =
(@ y=——+ 0 r<0
(b) y = |sin| (f) The ramp function f(¢) = {Ct 120
(C) y= et 0 t<0
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Solutions

1 See Figure S.22.

(a) No derivative exists for z = 1
N
N

(d) No derivative exists for t = 0

g

(b) No derivative exists for ¢t = n7t

Isin 1l

2m-1t 0 m 2737 1

(e) No derivative exists for t = 0

~

0
Figure S.22

u(t)
1
=l‘

IEIE] comMoN DERIVATIVES

It is time consuming to find the derivative of y(x) using the ‘shrinking interval’ method
(often referred to as differentiation from first principles). Consequently the deriva-
tives of commonly used functions are listed for reference in Table 10.1. It will be help-
ful to memorize the most common derivatives. Note that a, b and n are constants. In
the trigonometric functions, the quantity ax + b, being an angle, must be measured in

radians.

A shorter table of the more common derivatives is given on the inside back cover of

this book for easy reference.

(c) Derivative exists for all values of ¢

el

t

(f) No derivative exists for ¢ = 0, although
the function is continuous here

S0

~

Example 10.11

(a) y=¢e’

Use Table 10.1 to find y’ when

X

(b) y=x
(c) y=tan(3x — 2)
(d) y=sin(wx + ¢)

1
(e)yzﬁ
1
() y=5

(g) y = cosh™'5x
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Table 10.1

Derivatives of commonly used functions.
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Function, y(x)

Derivative, y'

Function, y(x)

Derivative, y'

constant 0
x" nx=1
e* e*
e —e
e™ ae™
Inx l
X
sinx cosx
cos X —sinx
sin(ax + b) acos(ax + b)
cos(ax + b) —asin(ax + b)
tan(ax + b) asec?(ax + b)
cosec(ax + b) —acosec(ax + b) cot(ax + b)
sec(ax + b) asec(ax + b) tan(ax + b)
cot(ax + b) —acosec?(ax + b)

a

V1 — (ax+ b)?

sin~!(ax + b)

cos Hax + b)

tan~! (ax + b)

sinh(ax + b)
cosh(ax + b)
tanh(ax + b)
cosech(ax + b)

sech(ax + b)

coth(ax + b)

sinh~! (ax + b)
cosh™Hax + b)

tanh~! (ax + b)

—a
V1= (ax+b)?

a
1+ (ax+b)?
acosh(ax + b)
asinh(ax + b)
asech? (ax+b)
—acosech(ax + b) x
coth(ax + b)
—asech(ax + b) x
tanh(ax + b)
—a cosech? (ax + b)

a

Viax+b)?+1

a

Viax+b)? —1

a
1 — (ax + b)?

(a) From Table 10.1, we find that if

y=¢e* then y =ae*
In this case, a = —7 and so if
y=e ™ then y=-T7e "
(b) From Table 10.1, we find that if
y=x" then y =nx""!

In this case, n = 5 and so if

5

y=x then y = 5x*

(c) Ify = tan(ax+b) theny’ = asec?(ax-+b). In this case, @ = 3 and b = —2. Hence if

y=tan(3x — 2) then

y = 3sec’(3x —2)

(d) If y =sin(ax + b) then y = acos(ax + b). Here a = w and b = ¢, and so if

y = sin(wx + ¢) then

Y = wcos(wx + ¢)

1
(e) Note that — = x~ /2. From Table 10.1 we find that if y = x" then y/ = nx"~'. In
x

this case, n = —1/2 and so if

1
then y = —3%

1
J’—%

—3/2
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1

(f) Note that — = x7>. Using Table 10.1, we find that if y = x> then y/ = —5x°.
x

(g) From Table 10.1,ify = cosh™!(ax + b) then

a

JVax+b)? -1

In this case, a = 5 and b = 0. Hence, if

/

5
= cosh™! 5x then = ———
J Y V2552 — 1

Example 10.12 Differentiate y(r) = ¢'.

Solution We note that the independent variable is r. However, Table 10.1 can still be used. From
Table 10.1, we find

9:elzy
dr

We note that the derivative of ¢’ is again e'. This is the only function which reproduces
itself upon differentiation.

EXERCISES 10.7

1 Use Table 10.1 to find y’ given: 2 Find dl when
@ y=r b) y=1° _ L _ 23
© y=t1*3 (d)y:tl @ y="7 (b) y=e
e y= n ) y= 2 (c) y=e*2 (d y=Inx
__ a3t _ a3t _
(& y—el (h) y=e (€) y = cosec 2x 1>
0 y== G) y=1'7
(k) y=sin(2 +3) () y=cos(4—1) () y=tan~!(mx +3)
t (g) y=tanh(2x+ 1)
(m) y =tan 3 +1 (n) y =-cosec(3r+7) () y = sinh~! (—3x)
(0) y=cot(l —1) (P) vy = sec(2t — ) i y= Cot(a)ic + ) w constant
(@ y=sin~'¢t+m) @ y=m G y= ) (k) y=cos3x
(s) y=tan (=2t —1) (t) y=cos~'(4r—3)
(W y = tanh(6) (v) y=cosh(2 +5) O y=om (m) y = tan(2x +7)
(w) y= sinh(t_{z—}) (x) y =sech(—t) (n) y= cosech(x;l>

) y=coth(23t - ;) (z) y=cosh™1(t +3) (0) y=tanh_1(2x;_3)
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Solutions

1 (a) 2t (b) 918 2 (a —0.5)673/2 (b) %GZX/?)
) -3~* @1 3
(e) —t72 ) —273 () —0.5¢/2 d) 1/x
(e 3e¥ (h) —3e™
(i) —5e G) 050712 (e) 2 cosec 2l cot 2ol
(k) 2cos(2t +3) (1) sin(4 —1) 3 3 3
(m) 0.5 SeC2(l/2 +1) () T[ (g) 2S€Ch2(2x+ 1))
() —3cosec(3t +7) cot(3r +7) 1+”?+3V
(0) cosec?(1 —1) (h) ——— (i) —wcosec?(wx + )
(p) 2sec(2t — m)tan(2t — ) Vor? +1
@ 1 ® 0 (G) —5cosec(5x + 3) cot(5x + 3)
1 V1—(t+m)? (k) —3sin3x
(s) _é ® - é (1) 3sec3xtan3x (m) 2sec?(2x + m)

14 (=2t —1)2 /1 — (4t — 3)2
(W) 6sech?6r (v) 2sinh(2f +5) ) —05 cosech(x;l> coth(x; 1)
(w) 0.5 cosh(t+3) (x) sech(—t) tanh(—t) )
2 (0)

2 2
(y) —3 cosech

2
32 Vie+3)2 -1 7

m DIFFERENTIATION AS A LINEAR OPERATOR

In mathematical language differentiation is a linear operator. This means that if we wish
to differentiate the sum of two functions we can differentiate each function separately
and then simply add the two derivatives, that is

derivative of (f + g) = derivative of f + derivative of g

This is expressed mathematically as

df

d dg
a(f"‘g)—a‘i'a

d
We can regard o as the operation of differentiation being applied to the expression

which follows it. The properties of a linear operator also make the handling of constant
factors easy. To differentiate k f, where k is a constant, we take k times the derivative of
f, that is

derivative of (kf) = k x derivative of f

Mathematically, we would state:

d in -
—(kf) = k-
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Table 10.1 together with these two linearity properties allow us to differentiate some
quite complicated functions.

Example 10.13 Differentiate
(a) 3x? (b) 9x (c) 7 (d) 3x* +9x+7

Solution (a) Lety = 3x?, then
dy
3y 2
e dx( )
3 d () using li "
= 3— (x”) using lineari
e g y
= 3(2x) from the table
= 6x
(b) Lety = 9x, then

dy__
ar = o

d
= 9— (x) using linearity
=9

(¢c) Lety =17, theny = 0.
(d) Lety=3x>+9x+7

d

d—z & (Bx® +9x+7)

dy )

e 3—( )+ 9—(x) + —(7) using linearity

=6x+9

Engineering application 10.3

Fluid flow into a tank

If fluid is being poured into a tank at a rate of ¢ m® s~!, then this will result in an
increase in volume, V, of fluid in the tank. The arrangement is illustrated in Fig-

dv
ure 10.16. The rate of increase in volume, ’n m® s, is given by
dv
dr —

This relationship follows from the principle of conservation of mass. If ¢ is large,

av . . . . . .
then — 1is large, which corresponds to the fluid volume in the tank increasing at a
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fast rate. Consequently, the height of the fluid, A, also increases at a fast rate. If the
cross-sectional area of the tank, A, is constant, then V = Ah. Therefore,

dv d dh

— = —(Ah) =A—

dr dr dr
because differentiation is a linear operator. So,

Adh .

a1
q —»ﬁ
hT \% Figure 10.16
A closed tank containing a volume of fluid V.

Example 10.14 Use Table 10.1 and the linearity properties of differentiation to find y’ where
(a) y=3e*
() y=1/x
(c) y=3sindx
(d) y =sin2x — cosSx
(e) y=3Inx
(f) y=1In2x
(g y=3x>+7x-5

Solution (a) Ify = 3e%, then

d d d

d—z = a(3ezx) = 3&(62") using linearity
=3(2e™) using Table 10.1
=6 er

(b) If y = x~', then

/

y =—1x?  from Table 10.1

1
T2
(c) If y = 3sin4ux, then
d d d
d—i =% (3sindx) = 33 (sin 4x) using linearity

= 3(4 cos4x) using Table 10.1

= 12cos4x
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(d) The linearity properties allow us to differentiate each term individually. If

d d d
y = sin2x — cos 5x then 9 — (sin2x) — — (cos 5x)
dx dx dx
= 2cos2x + 5sin Sx
(e) If y =31Inux, then

d d
d—z =—@lhx)=3 o (Inx) using linearity

using Table 10.1

-

(f) If y = In2x, then

y=1In2+Inx using laws of logarithms

and so
dy 1 1 . .
— =04+ -=- since In 2 is constant
dx X X

(g) Each term is differentiated:

V=6x+7—-0=6x+7

Engineering application 10.4

Dynamic resistance of a semiconductor diode

Recall from Engineering application 2.9 that a semiconductor diode can be modelled
by the equation

I =I(eir —1)

where V is the applied voltage, [ is the diode current, /g is the reverse saturation
current, k is the Boltzmann constant, g is the charge on the electron, and 7 is the
temperature of the diode junction in Kelvin. The parameter 7 is the ideality factor
which is usually considered to be a constant for a given type of semiconductor junc-
tion, dependent primarily on the design and manufacture of the diode.

Examining the diode electrical characteristics, shown in Figure 2.31, we note that
there are two main electrical regimes. The first occurs when the applied voltage, V,
is negative and the current, /, is limited to a negative saturation current, /;, apart from
a small region around the origin. The second occurs when the applied voltage, V, is
positive and the current, /, takes on the shape of an exponential curve, apart from a
small region around the origin.

We will concentrate on the second case and furthermore we will assume that e #r
is very much greater than 1. This is written concisely as esr > 1. Thisis a good
approximation apart from the small region close to the origin. The original expression
for I can then be written as

v
I ~ Igenr

where the symbol ~ means ‘is approximately equal to’.




10.8 Differentiation as a linear operator 379

For a fixed temperature the only variables in this equation are / and V. We can
differentiate this equation to give

ﬂ ) IS 4 e%
dv nkT
Back substituting the approximate expression / ~ Ise% into this equation yields
q 4 q

w s~ T
Inverting this equation gives
dv. _ nkT
gl
It is constructive at this stage to compare this result with the static equivalent, V = IR,
from which

Vv
Z —R
1

dv
The quantity T can be thought of as a dynamic value of the diode resistance, r,,

which varies depending on the value of the current in the diode. It is valid for a
positive voltage V that is sufficiently large to ensure the diode is in the exponential
portion of the electrical characteristic.

Engineering application 10.5

Operating point for an ideal semiconductor diode

In Engineering application 2.18 we examined the mathematical model of a semi-
conductor diode and then considered the specialised case of an ideal diode. At room
temperature the equation describing the behaviour of its electrical characteristics was

I=1EY" -1

where / is the diode current, V is the applied voltage and /, is the constant reverse
saturation current. Sometimes when a diode is used in a circuit it may be biased
to operate in a certain region of its /-V characteristic. This means that its use is
restricted to a certain voltage range. The point around which it operates is known as
its operating point. This is illustrated in Figure 10.17.

Deviations from this operating point may be small in certain cases. If so, they are
known as small-signal variations and are caused by small a.c. voltages being super-
imposed on the main d.c. bias voltage. In calculating how the diode will react to such
small-signal voltages, the slope of the diode characteristic around the operating point
is more relevant than the overall ratio of current to voltage. Provided the deviations
from the operating point are not large, the tangent to the /-V curve at the operating
point provides an adequate model for how the diode will behave. The slope of the
curve can be obtained by differentiating the diode equation. If

40 40
I=1e"—1)=1e" -1

then

d/
— =40[¢e*
dv
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14
Operating
point Tangent
51 approximation
Bias current | - - - - gf-
4 Figure 10.17
: - Diode characteristic showing
Bias V operating point and tangent
voltage approximation.

since I is constant.
It is usual to write small changes in current and voltage as 6/ and §V. Therefore,
since
81 dl
sV av
81 ~ 401 e*" sV

This expression allows the change in diode current, §7, to be estimated given a change
in diode voltage, 8V, provided the operating point is known and the changes are small.

Example 10.15 Find the derivative of y = e~ + 2, when
@ t=1
b)) t=0

Solution y=e +12

V=—e"'+2

(a) Whent =1,y = —e~! +2 =1.632, thatis y/(1) = 1.632.
(b) Whent =0,y = —1, thatis y'(0) = —1.

Engineering application 10.6

Obtaining a linear model for a simple fluid system

Consider the fluid system illustrated in Figure 10.18. The pump is driven by a d.c.
motor. The pump/motor can be modelled by a linear relationship in which the fluid
flow rate, g;, is proportional to the control voltage, v;,, that is

q; = kp Uin
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Vin

:&%‘lqi

Pump/motor

Figure 10.18
P ; A fluid system comprising pump, tank
o
Tank Valve and valve.

where k, = pump/motor constant, v, = control voltage (V), g; = flow rate into
the tank (m? s=!). The valve has a non-linear characteristic given by the quadratic
polynomial

p = 20000g7

where p = pressure at the base of the tank (N m~2), g, = flow out of the tank
(m3 s71). The fluid being used is water which has a density p = 998 kg m~>. Assume
¢=9.81 ms™* and that k, = 0.03 m’ s~'V~". Carry out the following:

(a) Calculate the flow rate out of the tank, g, and the control voltage, v;,, when the
system is in equilibrium and the height of the water in the tank, 4, is 0.25 m.

(b) Obtain a linear model for the system, valid for small changes about a water height
of 0.25 m. Use this model to calculate the new water height and flow rate out of
the tank when the control voltage is increased by 0.4 V.

Solution
(a) The pressure at the bottom of the tank is given by

p = pgh =998 x 9.81 x 0.25 = 2448
The flow rate through the valve is given by

@ =52
° = 20000

2448
g, = —— =,/ =0.350m* s~
20000 ~ V20000

Now if the system is in equilibrium, then the height of the water in the tank must
have stabilized to a constant value. Therefore,

q; = q, = 0.350
and so
q;, 0350
v, =—=—>—=11.7V
kp 0.03

(b) Before answering this part it is worth examining what is meant by a linear
model. Figure 10.19 shows the valve characteristic together with a linear ap-
proximation around an output flow rate of ¢, = 0.350 m® s~'. This corresponds
to a water height of 0.25 m.
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p(Nm=2) A

2448 |---=------

Figure 10.19
Relationship between pressure across
valve (p) and flow through valve (q,).

_—

0.35 go (m3s71)

A linear model for the valve is one in which the relationship between p and
q, is approximated by the straight line which forms a tangent to the curve at the
operating point. The operating point is the point around which the model is valid.
It is clear that if the straight line approximation is used for points that are a large
distance from the operating point, then the linear model will not be very accu-
rate. However, for small changes around the operating point the approximation
is reasonably accurate. Clearly a different operating point will require a different
linear approximation. In order to obtain the gradient of this line it is necessary to
differentiate the function relating valve pressure to valve flow. So,

p =20 OOOq(z,
d
=P _ 400004,
dq,

At the operating point g, = 0.350. Therefore,

dp

= 40000 x 0.350 = 14000
dg,

4,=0.350

This value is the gradient of the tangent to the curve at the operating point.
Small changes around an operating point are usually indicated by the notation §.
Therefore,

dp _ dp

~ = 14000
8q, dg,

4,=0.350

sp = 140008q, (10.2)

Note that equality has been assumed for the purposes of the linear model. It is
easy to relate a change in pump flow to a change in control voltage because the
relationship is linear and so a linear approximation is not required. So,

q; = kp Uin
Differentiating this equation w.r.t. v, yields

dg;

do, °

m
In this case

dq; . dg; _
sv.  dv, P

mn mn
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and has a constant value independent of the operating point:
8q; = k, dv,, (10.3)

The relationship between pressure at the bottom of the tank and the water height
is also linear.

d d
Since p = pgh we have d—Z = pg. Because d_z is a constant we can write

op . dp _
sh—dn P8
op = pgdh (10.4)

The change in control voltage, §v;,, is given as 0.4. We also know that k, = 0.03.

m?

Therefore, using Equation (10.3), we have
8g, =0.03 x 0.4 =0.012

Now if time is allowed for the system to reach equilibrium with this increased
input flow, then §¢g, = d¢;. In other words, the output flow increases by the same
amount as the input flow and the water height once again stabilizes to a fixed
value. Therefore,

8q, = 8q, = 0.012
Using Equation (10.2), we find
dp = 14000 8g, = 14000 x 0.012 = 168

Using Equation (10.4), we get
ép 168
pg 998 x 9.81

Therefore the new water height is 0.25 4 0.0172 = 0.267 m to three significant
figures. The new water flow rate is 0.35 + 0.012 = 0.362 m® s~!.

To recap, all the elements of the fluid system were linear apart from the valve.
By obtaining a linear model for the valve, valid for values close to the operating
point, it was possible to calculate the effect of changing the control voltage to
the motor. It is important to stress that the linear model for the valve is only good
for small changes around the operating point. In this case the increase in control
voltage was approximately 3%. The model would not have been very good for
predicting the effect of a 50% increase in control voltage. Linear models of non-
linear systems are particularly useful when several components are non-linear,
as they are much easier to analyse. We examine these concepts in more detail in

8h = =0.0172

Chapter 18.
EXERCISES 10.8
1 Differentiate the following functions: (d) y = tan(3z)
(2) y =42 —5¢ (€ y=2¢e¥+17 — 4sin(2r)

3 4
(b) y =3sin(5¢) +2¢ 1 cos5t
(c) y =sin(4t) + 3cos(2t) — ¢ ® y= ) * 2
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1

2w3 e4w
®ry="*5

(h) y=+x+ ln(ﬁ). [Hint: /x = x'/2, and use the
laws of logarithms.]

Evaluate the derivatives of the functions at the given
value:

(@) y=2r+9+¢7? r=1
2
t-—4t+6
0 y="10 r=2
(c) y=sint + cost t=1

t
d) y=3e% —25in<§) r=0

1
(e) y=>5tan(2x) + = x=0.5
e
() y=3Int+ sin(3r) t =0.25
dx
Find —, if
dr
(a) x =e! (b) x=e"

where o is a constant.

Find the derivative of

(a) y=3 sin~!1(2r) — 5cos™ 1 (31)

(b) y= %tan*l(z +2)44cos (2t —1)

t—3

(c) y=25inh(3t—1)—4cosh( 5 )

Solutions

(@) 12x% — 10x
(c) 4cosdt —6sin2t — 1

(b) 15cos 5t + 8e¥

(d) 3sec?3z
3
(e) 6e& —8cos2t ) 7 2.55sin 5t

1
(g) 2w? 42 (h) 0.5x7 12 4 7
X

(a) 2.8244 (b) 0 (c) —0.3012
d 5 (e) 33.5194 ) 14.195
(a) we! (b) —we™
6 15
+
@ Vi—42  J1-92
1 4
(b)

AL+ (1 +2)?2]  Ji(l—1)

cosech(4t) 4+ 3 sech(6¢)
d y= >

t+1 1—1
(e) y=2sinh™! (;) —3cosh™! <2)

() y=3tanh~' (2t +3) — 2tanh ! (3¢ +2)

A function, y(¢), is given by
352
y() = §—7+4t+1
dy
e
(b) For which values of ¢ is the derivative zero?

(a) Find

Find the equation of the tangent to the curve
y(x) = £ 4+72-9
at the point (2, 27).

Find values of ¢ in the interval [0, 7t] for which the
tangent to x(#) = sin 2¢ has zero gradient.

Find the rate of change of

2() =262 — 42

when
(@) t=0
b) t=3

(c) 6cosh(3t — 1) — 2sinh ! ; 3
(d) —2cosech4f coth4t — 9 sech 6¢ tanh 6¢
© 1 n 3
1 2 1 2
\/<2(t+1)> +1 2\/(2(1—0) -1
6 6
O @ -Gt
@@ >=5t+4 (b 1,4
y=40x — 53
/4, 3m/4

(@) 1 (b) —1.5183
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REVIEW EXERCISES 10

1

1

2

Find the rate of change of f(x) = 5+ 3x% atx = 2 by
considering each of the intervals [2 — éx, 2],

[2,2 4 8x], [2 — 8x, 2 + 8x]. Show that the same
result is obtained in each case.

Use a table of derivatives and the linearity rules to
differentiate the following:

(@ y=4x+6x—11

(b) y=—x>+2x—10

©) y=x!/3—xl/4

(d) y=5cos4x —3cos2x
(e) y=sin"!(4x+3)

5
) y=v2i - =

3x
(2) y:t3/2+cost
(h) y=1>—14r +8
(i) y=S5Int+sindt
1,

1
() y=5%¥— 3%

212
k) y= 3 +e¥

Find the equation of the tangent to y = x% + 7x — 4 at
the point on the graph where x = 2.

Find the rate of change of f(#) = 2cost + 3sint at
t=1.

Solutions

12

(a) 8x+6
(b) —2x+2
(©) %x72/3 _ %x73/4

(d) —20sin4x + 65sin2x
4

V1= (@dx+3)2

10
0 2vV2x+ —
3x

(e)

(2) %tl/z — sint
(h) 2r— 14

5
i) n + 4 cos 4t

5

10

10

At any time ¢, the voltage, v, across an inductor of
inductance L is rela(lltpd to the current, i, through the
i
dr’
(a) Find an expression for the voltage when
i = 5 cos wt where w is the constant angular
frequency.

inductor by v = L

(b) Find an expression for the voltage when the
current takes the form of a sine wave with
amplitude 10 and period 0.01 seconds.

Use the shrinking interval method to find the rate of
change of f(¢) = sint atr = 0 by considering the
interval [0, §t]. [Hint: use the trigonometric identities
in Section 3.6 and the small-angle approximation in
Section 6.5.] Use the shrinking interval method to find
the rate of change of f(r) = sint at a general point.

Given y(t) = 3 + sin 2, find the average rate of
change of y as ¢ varies from 0 to 2.

) d
Explain the essential difference between Sl and &y
X

Find y’ for the following functions:
(a) y=2e '+ 6co0s(t/2)
(b) y=(—1+2)

Using derivatives, estimate the change in y as x
changes from 1.5 to 1.55 where y = 2 e + x3.

0 3-3

4
k) —t+2e¥

3
y=11x—-8
—0.062
(a) —5SwL sin wt

(b) 20007t L cos 2007t ¢

—0.3784
t
(a) —2e' -3 sin<2> (b) 2t — 4

4.355
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INTRODUCTION

In this chapter we develop the techniques of differentiation introduced in Chapter 10 so
that rates of change of more complicated functions can be found. We introduce rules for
differentiating products and quotients of functions. The chain rule is used for differenti-
ating functions of functions. We explain what is meant by defining functions implicitly
and parametrically and show how these can be differentiated. The technique of logarith-
mic differentiation allows complicated products of functions to be simplified and then
differentiated. Finally derivatives of functions can themselves be differentiated. This in-
volves the use of higher derivatives which are explained towards the end of the chapter.

RULES OF DIFFERENTIATION

There are three rules which enable us to differentiate more complicated functions. They
are (a) the product rule, (b) the quotient rule, (c) the chain rule. Traditionally they are
written with x as the independent variable but apply in an analogous way for other in-
dependent variables.

The product rule

As the name suggests, this rule allows us to differentiate a product of functions, such as
xsinx, > cos 2t and e*Inz.
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The product rule states: if

y(x) = ux) v(x)
then
y  du dv , ,
i = av—i—ua =uv—+uv
To apply this rule one of the functions in the product must be chosen to be u, and the
other, v. Before we can apply the rule we need to calculate «’ and v'.

Example 11.1

Solution

Find y’ given
(a) y =xsinx

(b) y=1r%¢

(a) y = xsinx = uv. Choose u = x and v = sinx. Then ' = 1, v’ = cosx. Applying
the product rule to y yields

Yy = sinx + xcosx

(b) y =t%e’ = uv. Choose u = t*> and v = ¢'. Then &' = 2t and v' = ¢'. Applying the
product rule to y yields

y = 2te' + 1%

Engineering application 11.1

Damped sinusoidal signal

A common function found in engineering is the damped sinusoidal signal. This con-
sists of a negative exponential function multiplied by a sinusoid. A typical example
is

f@) =e " cost

The graph of this function is shown in Figure 11.1. This function approximates the
way a car body reacts when the car drives over a large bump in the road. Fortunately,
the car shock absorbers ensure that the oscillations reduce in amplitude quite quickly.

When sketching such a function it can be useful to think of the exponential term,
and its mirror image around the time axis, providing an envelope that contains the
signal. When values of the sinusoid are 1 then the signal touches the positive part
of the envelope and when values of the sinusoid are —1 then the signal touches the
negative part of the envelope.

The rate of change of this signal with respect to time can be found by differentiat-
ing () using the product rule. To do so we note that f(¢) is a product of u(t) = e=*!"
and v(¢) = cost. Recasting the formula for differentiating a product in terms of t we
have

f@®) =u@)v()
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11.2.2 The quotient rule

?—t+3
sinx t+2

. . . . . X
This rule allows us to differentiate a quotient of functions, such as —,

e—3z

d .
e
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The quotient rule states: when

u(x)
yx) = —
v(x)
then
du dv
all 22\ = ol &2
, o \dx "\ & v — uv’
s v? 2
Example 11.2 Find y given
@ sinx ) 2 © e
a = = C = —
Y X YTt YT
Solution (a) y = MY % Sou=sinx,v=xandu =cosx,v = 1. Using the quotient rule
x v
the derivative of y is found:
,  XCOosx —sinx
? u
b) y= il ;.Sou:tz,v=2t+1andu/=2t,v/=2.Hence,
;L 2t 4+ 12t — (1) (2) _ 2t(t + 1)
B (2t + 1)2 @24 1)2
2
©y= T Sou =¢e*,v=1r"+1and u = 2e¥ v = 2t. Application of the
quotient rule yields
;12 =2 2871+ 1)
y = (2 4 1)? - (2 4 1)?
11.2.3 The chain rule

This rule helps us to differentiate complicated functions, where a substitution can be used
to simplify the function. Suppose y = y(z) and z = z(x). Then y may be considered as
a function of x. For example, if y = z* — z and z = sin 3x, then y = (sin 3x)® — sin(3x).

Suppose we seek the derivative, ay Note that the derivative w.r.t. x is sought.

The chain rule states:
dy dy dz

== X
dx dz dx
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Example 11.3

Solution

d
Given y = z° where z = x*> + 1 find &

Ify =z0andz = x> + 1, then y = (x> + 1)°. We recognize this as the composition

d
y(z(x)) (see Section 2.3.6). Now y = z° and so d—y = 67°. Also z = x*> + 1 and so
z

d
az = 2x. Using the chain rule,

dy dy dz 5 ) 5
P — =672x = 12 1
o dzxdx Z x(x”+ 1)

Example 11.4

Solution

d
Ify = In(3x> + 5x + 7), find d—)yc.

We use a substitution to simplify the given function: let z = 3x*+5x+7 so thaty = Inz.
Since
y=Inz then d—y = l
dz  z
Also
dz

z=3x4+5x+7 and so =6x+5

Using the chain rule we find

dy dy dz
& &
= l X (6x +5)
Z
B 6x+5
T 324 5x+7

Note that in the previous answer the numerator is the derivative of the denominator.
This result is true more generally and can be applied when differentiating the natural
logarithm of any function:

When y = In f(x) then % — J; ((;))
Example 11.5 Find y’ when
(@) y = In(x> + 8) (b) y=1In(l —1) © y=8In2— 3
(d) y=In(1+x) () y =In(1 4 cosx)

Solution

In each case we apply the previous rule.

Sx

— 5 U
(a) Ify = ln(x —|—8),theny = xS——|-8
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(b) Ify = In(1 — 1), then y/ ! ! !
=In(1 —1), theny’ = = — = .

Y 4 1—1¢ 1—1 t—1
(¢) Ify = 81In(2 — 3t), then y/ = 8 -3 24 24
c =8In(2 —3¢), theny = = — = .

Y Y Ty T T3 T 3 -2
d) Ify = In(1 + x) then y/ = )
(d) Ify =1In(1 +x) then y T+ x
© If In(1 + ) th , —sinx sinx
e =1In cosx) then y’ = = — .

Y Y 1+ cosx 1+ cosx

Example 11.6 Differentiate
() y =3
(b) y=3t> +2t —9)1°
© y=+1+12

Solution

In these examples we must formulate the function z ourselves.

d d
(a) Let z(x) = sinx. Then y(z) = 3e*® so d—y = 3¢e%; z(x) = sinx and so az = COoSX.
Z

The chain rule is used to find _y

d d d :
DD B 3etcosx = 3t
dx dz

dx

COSx

d d
(b) Letz(t) =3t +2t —9. Then y(z) = z'°, d—y =102, & 62 Using the chain
Z

d
rule 4 is found:
dr

dr

dy dy dz 9 2 9
—=—=x—=107(6t +2) =203t + 1)(3t"+2r -9
o @ 7 (6 +2) Gr+ 1@+ )
2 1, dz . .
(c) Letz(r) =1+¢*.Theny = /z=z2 2 % = iz and T = 2¢. Using the chain
rule, we obtain .
d d d 1
dy _dy de 1o 0t
d dz  dr 2 N/ )
EXERCISES 11.2
1 Use the product rule to differentiate the following @) y=xe*

functions:

(a) y =sinxcosx
(b) y=Inttant
© y= @+ 1)

(e) y=e'sintcost

(f) y = 3sinh 2z cosh 3¢

(2) y= (1+sint)tant

(h) y =4sinh(z + 1) cosh(1 — 1)
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2 Use the quotient rule to find the derivatives of the

following:
COS X tant
(@) — b)) —
sinx Int
2t 2
e 3x“+2x—9
d -
© B +1 @ ¥+1
2 .
x“+x+1 sinh 2¢
© 1+e* ® cosh 3¢
1+¢
® T

3 Use the chain rule to differentiate the following:
@ &+ (b) sin®(37 +2)
(c) In(x* +1) @ @r+11?
() 3v/eos @ 1) O —
(g) (at +b)", a and b constants

4 Differentiate each of the following functions:

(a) y=>5sinx (b) y=>5e*sinx
) 54i
(© y=5en @ y="22%
e—X

© y=@E+4"5 (O y=7e¥

@ y= sin x

B y= 4cosx+ 1

Solutions
2 ) 1 2

1 (a) cos”x—sin“x (b) ;tant—!—lntsee t

2t (7,3 2 x e
(c) e (2° + 3t +2) @ e (ﬁ—’_Zﬁ

(e) e (2cos?t + sintcost — 1)

(f) 3[2cosh 2t cosh 3¢ + 3 sinh 2f sinh 3¢]
(g) (1+sint) sec?r + sint

(h

=

4[cosh(t + 1) cosh(l — 1)
—sinh(z + 1) sinh(1 —1)]

2 (a) —cosecx

Inzsec?s — (tant)/t

b
® (Int)?
© e (23 — 312 +2)
@+ 1)?
@ 3t — 43 427 x4+ 2

(3 +1)2

For which values of ¢ is the derivative of y(t) = e’ 12
zero?

Find the rate of change of y at the specified values of ¢.

1
(a) y=sin; t=1

b y=-D"7 =1
(¢) y=sinh(2) =2

14+1412
d = =2
(d y T—;
!
= t=1
© v tsint

Find the equation of the tangent to

y(x) =e*(1 —x) at the point (0, 1)

Differentiate
(a) y=1Inx
(b) y=1In2x

(c) y = Inkx, k constant
(d) y=In(1+1)

(e) y=In(3+4r)

) y=1In(5+4 7sinx)

e (—x2 +x)+2x+ 1

O] T
® 2 cosh 2t cosh 3¢t — 3 sinh 2¢ sinh 3¢
(cosh 3t)2
_e3t et +e
Q@ ———5—

(CZI + ])2
(a) 300:2( + 1)

(b) 9sin®(3t 4+ 2) cos(3r + 2)

2x
(©) m
(d) ¢+ 1)"172
© —3sin(2x — 1)
Veos(2x — 1)
O —@+172

(2) an(at + b)*!
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4 (a) S5cosx 5 0,2

(b) Se*(cosx + sinx) 6 (a) —0.5403 (b) O (c) 109.2

(c) 5e5™¥cosx d) 2 (e) —2.0742

(d) 5e*(cosx 4+ sinx) 7 y=2x+1

(e) 153 +4n"4 @32 +4) 1 1 1

(f) —42te3" 8 @ ® 2 © 5

© 4 + cosx ) R © 4 ® 7cos.x

g 7(4cosx+1)2 1+1¢ 344t 5+ 7sinx

11.3.1

PARAMETRIC, IMPLICIT AND LOGARITHMIC
DIFFERENTIATION

Parametric differentiation

In some circumstances both y and x depend upon a third variable, 7. This third variable
is often called a parameter. By eliminating 7, y can be found as a function of x. For
example, if y = (1 4 ¢)? and x = 2¢ then, eliminating 7, we can write y = (1 + x/2)>.

d
Hence, y may be considered as a function of x, and so the derivative ay can be found.

However, sometimes the elimination of ¢ is difficult or even impossible. Consider the
example y = sint + ¢, x = > + €. In this case, it is impossible to obtain y in terms of x.

The derivative d—z can still be found using the chain rule.

dy_dyxdt_dy dx
dx — dr T dx  dt/ dr

d
Finding ay by this method is known as parametric differentiation.

Example 11.7

Solution

d
Given y = (1 + 1), x = 21 find Ey'

By eliminating ¢, we see

2 2
X X
y=(1+—>=1+x+—

2 4
and so
dy by
14z
dx + 2

Parametric differentiation is an alternative method of finding & which does not require
the elimination of ¢. dx

dy dx
— =21+t —
dr (1+1) dr
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Using the chain rule, we obtain

dy dy /dx  2(1+1)
dx At/ &t T 2

=142
N - 2

Example 11.8

Solution

d
Giveny =¢' +t,x = 2+ 1, find d_i)c using parametric differentiation.

dy dx

dr ©t dr
Hence,

dy dy e+

dx At/ &t T 2

In this example, the derivative is expressed in terms of ¢. This will always be the case
when 7 has not been eliminated between x and y.

Example 11.9

d
If x =sint +costandy =¢> — ¢ + 1 find ay(t =0).

. d dx
Solution B Y — = cost — sint
dr dr
Hence,
dy  2t—1
dx ~ cost —sint
d —
Whenr =0, & = =1 _ .
dx 1
11.3.2 Implicit differentiation

Suppose we are told that
y’ +x° = Ssinx + 10cosy

Although y depends upon x, it is impossible to write the equation in the form y = f(x).
We say y is expressed implicitly in terms of x. The form y = f(x) is an explicit

expression for y in terms of x. However, given an implicit expression for y it is still

d d
possible to find d—i Usually d_i)c will be expressed in terms of both x and y. Essentially,

the chain rule is used when differentiating implicit expressions.

d
When calculating ay we need to differentiate a function of y, as opposed to a function

d
of x. For example, we may need to find o o).

Example 11.10

Findd .
&8 &3
(a) dx(y) (b) dx(y )
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Solution (a) We make a substitution and let z = y* so that the problem becomes that of finding

4 . .
o Now, using the chain rule,

dz dz dy

= — X
dr  dy | dx
d
If z = y* then & 4y* and so
dy

% 5 dy

=42
Y dx

We conclude that

d , dy
el =4y 2
Mw Y
(b) \(;Ve make a substitution and let z = y~3 so that the problem becomes that of finding
z
a .

d
Ifz =y~ then — = —3y~* and so
dy

d _; dz dz dy 4
—_— = — = — — =3 -
' T n Ty e Y @

Example 11.11 Find %(lny).

. . d d 1
Solution We let z = Iny so that the problem becomes that of finding d—j If z = Iny then d—z = -
y

and so using the chain rule
e _de & _1d
d dy dr ydr

we conclude that

1y

d (Iny)
—(In — —
dr Y y dt

Examples 11.10 and 11.11 illustrate the general formula:

df dy
X_

d
o= @ S

This is simply the chain rule expressed in a slightly different form.
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Example 11.12 Find %(y).

Solution We have

d dy d dy
—() == x ==
dx dy dx dx
Example 11.13 Given
x3 +y=1+y3
ﬁndﬂ.
dx

Solution Consider differentiation of the Lh.s. w.r.t. x.
d d dy , dy
el — - _3 =
dx(x +y) dx(x)+dx x+dx

Now consider differentiation of the r.h.s. w.r.t. x.

i(1-|-3)—i(1)-|-i 3)—1(3)
o T &) =0

d d
We note from the formula following Example 11.11 that P (%) = 3y? ay So finally,

dy dy
3% 4 = =3y =
X +dx y o
from which
dy 3¢
de 3y —1

d
Note that d—z is expressed in terms of x and y.

Example 11.14 Find j—i given

(@) Iny=y—x*

(b) ¥’y —e’ =e*

Solution (a) Differentiating the given equation w.r.t. x yields

1dy dy
- == -2
ydx dx
from which
dy  2xy

dx y-—-1
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. d 2.3 .
(b) Consider P (x“y”). Using the product rule we find

d d d d
S @) = @)+ 0) =20 +x23y2ay

o d dz ,
Consider —(¢”). Let z = ¢’ so — = ¢’. Hence,
dx dy
d_ddy by
dx  dydr  dx

So, upon differentiating, the equation becomes

d()‘ —
&)=

dy dy )

2 3 232 Ay zzh

Xy +x 3y — —e — €
So,

dy o5, 2 3

—@3 —e')=2e" -2

] (Bxy" —¢e') =2e Xy
from which

dy 2e* —2x°

dr ~ 3x2y? — e

11.3.3

Logarithmic differentiation

The technique of logarithmic differentiation is useful when we need to differentiate a
cumbersome product. The method involves taking the natural logarithm of the function
to be differentiated. This is illustrated in the following examples.

Example 11.15

Solution

d
Given that y = (1 — 1)® find d—f.
The product rule could be used but we will demonstrate an alternative technique. Taking
the natural logarithm of both sides of the given equation yields
Iny = In(t*(1 —1)®)
Using the laws of logarithms we can write this as

Iny = Ins* 4+ In(1 —1)®
=2Int+8In(1 —1)

Both sides of this equation are now differentiated w.r.t. ¢ to give
d d d
— = —QQInt) + —8In(1 —¢
dt(ny) dt( n)ert( n( )

d
The evaluation of I (Iny) has already been found in Example 11.11, and so

ldy 2
ydr ¢t

8
1 —t
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Hence

dy (2 8
a \7 1=

Finally, replacing y by #>(1 — )® we have

d 28
e R .
dr t 1—t

Example 11.16

Solution

Given
y =X3(1 +x)9e6x
dy
find —.
ey

The product rule could be used. However, we will use logarithmic differentiation. Taking
the natural logarithm of the equation and applying the laws of logarithms produces

Iny = In(x*(1 +x)°¢*) = Inx* + In(1 +x)° + Ine*
Iny =3Inx+9In(l +x) + 6x

This equation is now differentiated:

1d 3 9
Idy 3

= 6
ydx x 1+x+

and so
dy 3 9
2oy 16
dx y<x+l+x+>

= 3x2(1 +x)%e% 4+ 9% (1 4+ x)8e% + 6x° (1 + x)%e®

Example 11.17

Solution

If y = /1 +2sin’z find y'.

Taking logarithms we find

Iny = In(v/1 + 2 sin® 1)
=1In+/1+ 2+ In(sin’1)

1
= 51n(1 +1?) + 2In(sint)

Differentiation yields

1 1 2t cost

/o
yy 21+t2+ sint

t t
y =y<1 e +200tt> =41 +tzsin2t<1

+12

+2 cott)




EXERCISES 11.3

1 Find each of the following:

@ 26 Lo © Lom
Vo ax "
d , d d
(d) a(y) (e) &(5” () &(y)
d 5 3
(2) dx(y +y)
2 Find each of the following:
d b d .
(a) a(e) (b) a(smy)
4 4 -3
© dx(cos2y) (d dx(e )
d d
(e) a(\fy) () a()c+y)
()i( x+y) (h) i(1 )
g o cos(x+y o ny
y 3 In7
@ &(n y)

dy
3 Find = gi
1n dx given

(@ 22 =33 =x+y
b) W+ Va=x+)
() V2x+3y=1+4¢"
e“V1+x
d y=—>5—
X
(e) 2xy* =x° +3n?
(® sinx+y)=1+y
(2) In(x?+y*) =2x—3y
(h) ye¥ = x2e*/?
o dy
4  Find o given
(@ x=r2 y=1+1
(b) x =sint y=¢é
© x=10+1>  y=1+8
Solutions
dy
1 5xt b) 5y*—
(a) 5x (b) S5y i
d d
© 5% @ 2

dr dx

11.3 Parametric, implicit and logarithmic differentiation

10

(d) x=cos2t

3
(e) x:; y=¢e

) x=e —e’

399

Use logarithmic differentiation to find the derivatives

of the following functions:

(@) y=x'e"
© z=03(1+1)°

(e) y= X' sin*x

(d) y=ce"sinx

Use logarithmic differentiation to find the derivatives

of the following functions:
@ z=r'1-n°2+n?
_ (1 + x2)3e7x

®) Y=o

© x=0+03Q+0*3+1)5
_ (sin*n@ -
(e

@y

(e) y= Xe¥sinx

d
fx=r+~2+3andy= sin21,ﬁnday when 7 = 1.

Givenx =1 +%andy = 1 — 12, find:

(a) the rate of change of x w.r.t. t when t = 2
(b) the rate of change of y w.r.t. # whent = 1
(c) the rate of change of y w.r.t. x whent = 1

(d) the rate of change of x w.r.t. y whent = 2

Find the equations of the tangents to

V=2 46y

when x = 4.

Given the implicit function 3x% + y> = y find an

ion f dy
expression 1or —.
P dx

(e) 5%

N
(@ 2y+3y )dx

&l&
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d d
2 (a) eyd—z (b) cosy&y
dy

dy
—25sin2y— d) —3e= V=
(c) sin 2y (d) e

L _1pdy dy
- bl 14 =
2 @ O T+ 5

) dy
(g) —sin(x+y) (1 + )

() ——

(e)

4y — 1
(dxy/x —1)/fy
(1 —6y2/9)/x

(©) %(e&/zx +3y—1)

(d) L -2
2050 X
3x2 4 3y% — 2y*
2xy(4y* —3)

cos(x +y)
1 —cos(x+y)

(b)

(e)

()

2(x* 43> —x)

© 3x2 4+ 3y2 +2y

O 2= Wx(x + 4)

® 2(1 +2y)

e t ?
4 (a) 3t/2 (b) (c) 17—H

cost
—t

— (e) —2¥12/3 (f) e’—ie
2 sin 2f el +e!

()

HIGHER DERIVATIVES

5 (a) (4 +axH)e”

®) (-
- x2 X

3 of3, 9
(© (1+1) <t+l+t

(d) e*sinx(1 + cotx)

7
(e) x’sin* x( + 4 cot x)
X

8t 6e’
2—12  1+¢

© x[—— 42 40
NI T2 T3

3
(e) xe* sinx( + 1+ cotx)
X

7 —0.1387

)

8 (a) 192 (b)y -2 (c) —%

dx 4 dx
(d) — =-3t";whent =2, —
dy dy

—4x 46 4x + 24
9 y= Y=
5 5
6
10 =2
1—3y?

=48

The derivative, y', of a function y(x) is more correctly called the first derivative of y
w.r.t. x. Since ¥’ itself is a function of x, then it is often possible to differentiate this too.
The derivative of y’ is called the second derivative of y:

second derivative of y = —

d2

(@)

which is written as 5)2) or more compactly as y”.
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Example 11.18 Ify(x) =3x>+8x+ 9, find y and y".

. d
Solution y/ =6x+8 y” = d—x(6x =+ 8) =6

Example 11.19 If y(r) = 2sin3t, find y and y".

Solution Yy = 6¢cos 3t y" = —18sin 3t

The first and second derivatives w.r.t. time, ¢, are also denoted by y and y.

Example 11.20 Find y” given

1 +xy=x>+y

Solution The equation is differentiated implicitly to obtain d_§:

0 +y+xy=2x+2y

,_2x—y
Y= x—2y
The quotient rule is now used with u = 2x — y and v = x — 2y. The derivatives of u and
v are
du , , dv , ,
a:u:Z—y a:v:l—Zy
Then,
b =292 =y) = 2x—y)(1-2y)
b (x—2y)?
This is simplified to
,_ 3%y =3y
T -2y
. 2x—y e
Replacing y' by and simplifying yields

x—2y
Vo 6(}62 — Xy +y2)
(x—2y)°
Note that it is possible to simplify this further by observing that x> + y*> = 1 + xy as
given. Therefore,
//_6(1+xy_xy)_ 6
=2 =2y

Just as the first derivative may be differentiated to obtain the second derivative, so the
second derivative may be differentiated to find the third derivative and so on. A similar
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. . TR o
notation is used. The third derivative is written a); or y" or y®. The fourth derivative
oo dy Dy )
is written — or ¥V or y'*. The fifth derivative is written o5 or y¥ or y**).

dx*

Example 11.21

Solution

Find the first five derivatives of z(z) = 2¢> + sint.

7 = 6t* + cost 7V =sint
7' =12t — sint 7' =cost
7" =12 — cost

Example 11.22

Solution

Calculate the values of x for which y” = 0, given y = x* — x>

y=x'—x y =4x° —3x% y' = 12x* — 6x
Putting y” = 0 gives

123—6x=0 andso 6x(2x—1)=0
Hence

x=0, -
2

The first and second derivatives can be used to describe the nature of increasing and
decreasing functions. In Figure 11.2(a, b) the tangents to the curves have positive gra-
dients, that is y/ > 0. As can be seen, as x increases the value of the function increases.
Conversely, in Figure 11.2(c, d) the tangents have negative gradients (y < 0) and as
x increases the value of the function decreases. The sign of the first derivative tells us
whether y is increasing or decreasing. However, the curves in (a) and (b) both show y
increasing but, clearly, there is a difference in the way y changes.

Consider again Figure 11.2(a). The tangents at A, B and C are shown. As x increases
the gradient of the tangent increases, that is y’ increases as x increases. Since y’ increases
as x increases then the derivative of y’ is positive, that is y” > 0. (Compare with: y
increases when its derivative is positive.) So for the curve shown in Figure 11.2(a),y’ > 0
and y” > 0.

For that shown in Figure 11.2(b) the situation is different. The value of y’ decreases
as x increases, as can be seen by considering the gradients of the tangents at A, B and
C, that is the derivative of y’ must be negative. For this curve y' > 0 and y” < 0.

A function is concave down when y’ decreases and concave up when y’ increases.
Hence Figure 11.2(a) illustrates a concave up function; Figure 11.2(b) illustrates a con-
cave down function. The sign of the second derivative can be used to distinguish between
concave up and concave down functions.

Consider now the functions shown in Figure 11.2(c) and Figure 11.2(d). In both (c)
and (d), y is decreasing and so y' < 0. In (c) the gradient of the tangent becomes increas-
ingly negative; that is, it is decreasing. Hence, for the function in (c) y” < 0. Conversely,
for the function in (d) the gradient of the tangent is increasing as x increases, although
it is always negative, that is y” > 0. So for the function in (c) y* < 0 and y” < 0; that



11.4 Higher derivatives 403

y \y
/e A
N\
B

A B B . [
[ o o o [ o
(a) * (b) * \\C * (d) *

Figure 11.2

(a) y is concave up (¥ > 0,y” > 0); (b) y is concave down (y/ > 0,y” < 0); (¢) y is concave down (y/ < 0,y” < 0);(d) y

is concave up (y < 0,y” > 0).

is, the function is concave down. For the function in (d) y < 0 and y” > 0; that is, the
function is concave up. In summary, we can state:

When y’ > 0, y is increasing. When y’ < 0, y is decreasing.
When y' is increasing the function is concave up. In this case y” > 0.
When y’ is decreasing the function is concave down. In this case y” < 0.

An easy way of determining the concavity of a curve is to note that as the curve is
traced from left to right, an anticlockwise motion reveals that the curve is concave up.
A clockwise motion means that the curve is concave down.

As will be seen in the next chapter, higher derivatives are used to determine the loca-
tion and nature of important points called maximum points, minimum points and points

of inflexion.

EXERCISES 11.4

1 Calculate % and % given
@@ y=1>+t
b) y=203 -2 +1
(c) y=sin2t

(d) y=sinkt k constant
(e) y=26i’ —2+1

=
t
= 4 —
(8) y=4cos 3
(h) y=¢'t
(i) y =sinh4t
G) y=sin’t
2 If

y=2x3+3x2— 12x+ 1
find values of x for which y” = 0.
d
3 Ifd—); =32 +1, find
&y &y

(a) @ (b) @

Find values of 7 at which y” = 0, where
= e + 12t —1
T30

Determine whether the following functions are
concave up or concave down.

(@ y=¢ (b) y=1 © y=1+1—12

Determine the interval on which y = #3 is
(a) concave up,
(b) concave down.

Evaluate y” at the specified value of 7.

(a) y:2cost—t2 t=1

int 1
®) y:sm —12—c0s R
© y=0+ne"  1t=0

Ly 2 _ 2
Find 2 given xy + x° = y~.

dx
Find P when x° + )tﬁ =1 4+ 2%t
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1

Solutions

(@ 2t+1,2
(b) 612 — 21,12t —2
(c) 2cos2t, —4sin2t
(d) kcoskt, —k*sin kt
(e) 6e3 —2r,18e% —2

1 2
® t+1D2 (1+1)3
(g) —2sin(t/2), —cos(t/2)
(h) e'(t+1),e(t+2)
(i) 4cosh4t, 16sinh 4t

(j) 2sintcost, 2 cos 2t

3 (a) 6r+1 (b) 6

7

2
(a) concave up
(b) concave up
(c) concave down
(a) concave up on (0, co)
(b) concave down on (—o0, 0)
(a) —3.08 (b) —% (c) 3
10y2 — 10x%2 — 10yx

2y —x)3
x4 213 + x%?
3x2t2 +t — 2xt3

REVIEW EXERCISES 11

1

Differentiate each of the following functions:

(a) y=sin(5+ x)2
(b) y = e2siny

© y=(x+7)
d y= x* sin 3x

e4)(
© y_x3—|—11
(€3] y:xztanx
cos 3x
@ y=—3
X

(h) y=e"¥cos5x
(i) y=Incos4x
() y=sin2tcos2t

k) y= 55—
&) y 211

d
Find ay in each of the following cases:

X3 sin 2x
@ y=
oS X
(b) y=x’etanx
xeSx

© y=-
sSin x

10

@ 2+3xy+y2=5
(€) 9=3x+2xy> —y

54 3¢ 2—t dy d?y

If x = 1—1 andyzﬁﬁndaand@.
d
Ifx:4(1+cos6‘)andy:3(0—sin@)ﬁnday.
d d?
Ifx=300s20andy=2sin29ﬁnd—yand—y.
dx dx?

Show that y = e~*" sin 8x satisfies the equation
vy + 8y + 80y = 0.

Differentiate y = x*.
Given y = x’e® find
dy d?y
(@) i (b) F1) ©) —3
e o dx
Use logarithmic differentiation to find T given

(a) x =te!sint
(b) x = r2e~" cos 3t

(¢) x = r2e¥ sin4t cos 3t

Show that if y(r) = A sin wt + B cos wt, where w is a

constant, then

y// +a)2y -0



1

Solutions

(a)
(b)
©
(d)

(e
)

(@
(h)
@
()
(k)

(@)

(b)
©

2(5 +x) cos(5 + x)?
2 cos xe2sinx
20(4x 4+ 7)*
3x* cos 3x + 4.3 sin 3x
e (4x3 — 322 4 44)
(3 +11)2
2

x%sec? x + 2xtanx

—3xsin3x — 2cos 3x

3
—e (5 sin5x + cos 5x)
—4 tan 4x

2 cos 4t
—2x

(x2+1)2

cos x(2x3 cos 2x 4 3x2 sin 2x) 4 x> sin 2x sin x

cos? x
which simplifies to 2x cos x + 6x sinx

2

e (3 sec? x — x° tanx + 3x% tanx)

e (5xsinx + sinx — xcos x)

sin? x

Review exercises 11

2x + 3y
3x+ 2y

9x% 4 2)?
1 —4xy

(d -

(e)

1
§’0

3(1 —cosh)
Y

2

-3 0

x(nx+1)

(@) e (2% +3x?)

(b) 2xe?*(2x2 + 6x + 3)

(c) 2e¥(4x3 4 18x% + 18x + 3)
(a) e'(tcost+ (t + 1)sint)

(b) —e7((r2 = 2t) cos 3t + 3¢2 sin 31)

203 ¢ 2
(¢) t“e”’ sin4t cos 3t +3+ —
t sin 4¢

cos 3t

405

4cos4dt  3sin3t )
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INTRODUCTION

In this chapter the techniques of differentiation are used to solve a variety of problems.
It is possible to use differentiation to find the maximum or minimum values of a func-
tion. For example, it is possible to find the maximum power transferred from a voltage
source to a load resistor, as we shall show later in the chapter. Differentiation is also
used in the Newton—Raphson method of solving non-linear equations. Such an equation
needs to be solved to calculate the steady-state values of current and voltage in a series
diode-resistor circuit.

Finally we show how vectors can be differentiated. This forms an introduction to the
important topic of vector calculus which is discussed in Chapter 26.

MAXIMUM POINTS AND MINIMUM POINTS

Consider Figure 12.1. A and B are important points on the curve. At A the function
stops increasing and starts to decrease. At B it stops decreasing and starts to increase.
A is a local maximum, B is a local minimum. Note that A is not the highest point on
the curve, nor B the lowest point. However, for that part of the curve near to A, A is
the highest point. The word ‘local’ is used to stress that A is maximum in its locality.
Similarly, B is the lowest point in its locality.
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YA y
A A
/1 B
T 7 g
() (b)
Figure 12.1

The function y has a local maximum at A and a local minimum at B.

In Figure 12.1(a) tangents drawn at A and B would be parallel to the x axis and so
at these points (%c is zero. However, in Figure 12.1(b) there are corners at A and B. It is
d
impossible to draw tangents at these points and so d—z does not exist at these points.
Hence, when searching for maximum and minimum points we need only examine
d d
those points at which d—z 18 zero, or d—z does not exist.

. . dy . . . .
Points at which ay is zero are known as turning points or stationary values of the
function.

At maximum and minimum points either:

. dy .
1) — does not exist, or
(@) P

.. dy
=0
) dx

To distinguish between maximum and minimum points we can study the sign of d—z on

either side of the point. At maximum points such as A, y is increasing immediately to the
d
left of the point, and decreasing immediately to the right. That is, d—i is positive immedi-
d
ately to the left, and d—i is negative immediately to the right. At minimum points such as
B, y is decreasing immediately to the left of the point, and increasing immediately to the

d
right. That s, & is negative immediately to the left, and & is positive immediately to the
dx dx

right. This so-called first-derivative test enables us to distinguish maxima from minima.
This test can be used even when the derivative does not exist at the point in question.

The first-derivative test to distinguish maxima from minima:

d d
To the left of a maximum point, ay is positive; to the right, ay is negative.

d d
To the left of a minimum point, d_z is negative; to the right, d_i is positive.
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Example 12.1

Solution

Determine the position and nature of all maximum and minimum points of the following
functions:

(@ y=x
b)) y=—>+1t+1

3 X2

©y=+=-—-2x+1

3 2

(d) y=1

(a)

(b)

d
If y = x?, then by differentiation d—i = 2x.

Recall that at maximum and minimum points either

. dy .
(i) — does not exist, or
dx

d
(i) d_z = 0. We must check both of these conditions.

The function 2x exists for all values of x, and so we move to examine any points

here & — 0. So, we h
where — = U. DO, we nave
dx

dy_
=

2x=0

The equation 2x = 0 has one solution, x = 0. We conclude that a turning point exists
at x = 0. Furthermore, from the given function y = x?, we see that when x = 0 the
value of y is also 0, so a turning point exists at the point with coordinates (0, 0). To
determine whether this point is a maximum or minimum we use the first-derivative

test and examine the sign of d—z on either side of x = 0. To the left of x = 0, x is

clearly negative and so 2x is also negative. To the right of x = 0, x is positive and
so 2x is also positive. Hence y has a minimum at x = 0. A graph of y = x? showing
this minimum is given in Figure 12.2.

Ify=—t>+1t+1,theny = —2¢ + 1 and this function exists for all values of 7.
Solving y' = 0 we have

1
-2t+1=0 andsot:z

1 1\’
We conclude that there is a turning point att = 7 The y coordinate here is — (—) +

1 1 1
3 +1= IZ. We now inspect the sign of y’ to the left and to the right of t = 7 A

little to the left, say at + = 0, we see that y’ = —2(0) + 1 = 1 which is positive. A
little to the right, say att = 1, we see that y’ = —2(1) + 1 = —1 which is negative.

[\

Hence there is a maximum at the point > 14_1

A graph of the function is shown in Figure 12.3.
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Y y=—12+t+1
y=x2
/ 1 \ Y
2
x
Figure 12.2 Figure 12.3 |
The function y has a minimum at x = 0. The function y has a maximum at f = 5
B 2
() Ify= 3 + 5~ 2x 4 1, then y’ = x*> + x — 2 and this function exists for all values
of x. Solving y = 0 we find
2 —
xX+x—-2=0
x—Dx+2)=0
x=1,-2
There are therefore two turning points, one atx = 1 and one at x = —2. We consider

(d)

each in turn.

At x = 1, we examine the sign of y’ to the left and to the right of x = 1. A little way
to the left, say at x = 0, we see that y/ = —2 which is negative. A little to the right,
say at x = 2, we see that y/ = 22 +2 — 2 = 4 which is positive. So the point where
x = 1 is a minimum.

At x = —2, we examine the sign of y’ to the left and to the right of x = —2. A little
way to the left, say at x = —3, we see that y = (—3)? + (—3) — 2 = 4 which is
positive. A little to the right, say at x = —1, we see thaty = (—=1)>4(=1)—2 = -2
which is negative. So the point where x = —2 is a maximum.

A graph of the function is shown in Figure 12.4.

Recall that the modulus function y = |¢| is defined as follows:

—t t<0

y=lil= { t t>0
A graph of this function was given in Figure 10.13(a) and this should be looked at
before continuing. Note that % = —1 for ¢ negative, and % = +1 for ¢ positive.
The derivative is not defined att = 0 because of the corner there. There are no points
when % = 0. Because the derivative is not defined at ¢t = 0 this point requires

d d
further scrutiny. To the left of r = 0, bl < 0; to the right, & >0andsot=0isa
minimum point. dr dr

y
E y= % + %2 -2x+1
| Figure 12.4
! - > The function y has a maximum at x = —2

2

=

and a minimum at x = 1.
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Yy A

pd - @ -
X

7 N\ x

Figure 12.5 Figure 12.6
The derivative & decreases on The derivative & increases on passing
passing through a maximum point. through a minimum point.

Rather than examine the sign of ¥ on both sides of the point, a second-derivative
test may be used. On passing through a maximum point y’ changes from positive to 0
to negative, as shown in Figure 12.5. Hence, y’ is decreasing. If y” is negative then this
indicates y’ is decreasing and the point is therefore a maximum point. Conversely, on
passing through a minimum point, y’ increases, going from negative to 0 to positive (see
Figure 12.6). If y” is positive then y is increasing and this indicates a minimum point.

So, having located the points where y' = 0, we look at the second derivative, y”. Thus
y” > 0 implies a minimum point; y” < 0 implies a maximum point. If y” = 0, then we
must return to the earlier, more basic test of examining y" on both sides of the point. In
summary:

The second-derivative test to distinguish maxima from minima:
Ify = 0and y” < 0 at a point, then this indicates that the point is a maximum

turning point.
If y = 0 and y” > 0 at a point, then this indicates that the point is a minimum

turning point.
If y = 0 and y” = 0 at a point, the second-derivative test fails and you must

use the first-derivative test.

Example 12.2

Solution

Use the second-derivative test to find all maximum and minimum points of the functions
in Example 12.1.

(a) Giveny = x? then y = 2x and y’ = 2. We locate the position of maximum and
minimum points by solving y = 0 and so such a point exists at x = 0. Evaluating
y” at this point we see that y”(0) = 2 which is positive. Using the second-derivative
test we conclude that the point is a minimum.

(b) Giveny = —t> 4+t + 1 theny = —2t + 1 and y" = —2. Solving y = 0 we find

1
t = > Evaluating y” at this point we find y”<§> = —2 which is negative. Using

1
the second-derivative test we conclude that t = 5 is a maximum point.

3 2
(c) Giveny = %+%—2x+ I,theny = x> 4+x—2andy =2x+ 1.y =0
atx = land x = —2. At x = 1, y” = 3 which is positive and so the point
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is a minimum. At x = —2, y" = —3 which is negative and so the point is a
maximum.
—1 t<0
(d) y = 1 t>0

undefined att = 0

Since y'(0) is undefined, we use the first-derivative test. This was employed in
Example 12.1.

Engineering application 12.1

Risetime for a second-order electrical system

Consider the electrical system illustrated in Figure 12.7. The input voltage, v;, is
applied to terminals a—b. The output from the system is a voltage, v,, measured across
the terminals c—d. The easiest way to determine the time response of this system to
a particular input is to use the technique of Laplace transforms (see Chapter 21).

When a step input is applied to the system, the general form of the response de-
pends on whether a quantity called the damping ratio, ¢, is such that { > 1,¢ = 1 or
¢ < 1. The quantity ¢ itself depends upon the values of L, C and R. This is illustrated
in Figure 12.8. If the damping ratio, { < 1, then v, overshoots its final value and the
system is said to be underdamped. For this case it can be shown that

in(Bt
v =U— Ue“"’(cos(ﬁt) n O%W) for  t>0 (12.1)
where U is the height of a step input applied at = 0, and
R
= — 12.2
@=r (12.2)
1
0= — resonant frequency (12.3)

: LC
B =, w—a? natural frequency (12.4)

Engineers are often interested in knowing how quickly a system will respond to a
particular input. For many systems this is an important design criterion. One way of
characterizing the speed of response of the system is the time taken for the output to
reach a certain level in response to a step input. This is known as the rise time and
is often defined as the time taken for the output to rise from 10% to 90% of its final
value. However, by looking at the underdamped response illustrated in Figure 12.8 it
is clear that the time, 7, , required for the output to reach its maximum value would
also provide an indicator of system response time. As the derivative of a function is
zero at a maximum point it is possible to calculate this time.
Differentiating Equation (12.1) and using the product rule,

dy, d U — Ue— , o sin(pt) £ 0
o= (v -ven(mu + GE)) s

i (e“’”a sin(ﬂt))
dt B

d —at _
=O—Ua(e cos(Bt)) —U
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= —U(—ae “ cos(Bt) — e “Bsin(Bt))
_U<—ae‘°"oz sin(Bt) n e “ap cos(ﬂt))

B B
o . o’ sin(Bt)
= —Ue —a cos(fBt) — Bsin(Bt) — T ~+ a cos(Bt)
P
=Ue™ <,B + —) sin(Bt)
B
. . dy,
At a turning point e 0. Hence
2 2
+ o .
Ue“’(ﬂ—> sin(Bt) =0
B
vo(t) A
A\
& I

a R /L c " Z=1
Ui‘ C ‘UO 1 { >1

o 1- ) Im !

b d

. Figure 12.8
Pl s . Response of a second-order system to a step
A second-order electrical system. input

This occurs when sin(8¢) = 0, which corresponds to t = kmt/f, k = 0,1,2....
It is now straightforward to calculate 7,, once f has been calculated, using Equa-
tions (12.2), (12.3) and (12.4) for particular values of R, L and C. You may like to

show that the turning point corresponding to k = 1 is a maximum by calculating
d*v

N . o
— and carrying out the second-derivative test.

It is possible to check whether or not a system is underdamped using the following
formulae:

R
== damping ratio (12.5)
RC
/L - .
R, =2 C critical resistance (12.6)

Let us look at a specific case with typical values L = 40 mH, C = 1 uF, R = 200 2.
Using Equations (12.5) and (12.6), we find

L 4 x 1072
2 [T 400
C 1 x10-¢

R 200
C=Rr a0

=
Il
o
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and therefore the system is underdamped because ¢ < 1.
Also,
—1 = 5000
W, = =
" JIC
R 200 2500
0=—=——
2L 2x4x102
B =,/ w? —a? =+/5000% — 2500% = 4330
Finally,
= —— =7.26x 10~ = 726 ps
m= 4330 H
We conclude for this case that the risetime is 726 us.

Engineering application 12.2

Maximum power transfer

Consider the circuit of Figure 12.9 in which a non-ideal voltage source is connected
to a variable load resistor with resistance R, . The source voltage is V and its internal
resistance is Rg. Calculate the value of R; which results in the maximum power being
transferred from the voltage source to the load resistor. This is an essential piece of
information for engineers involved in the design of power systems. Often an impor-
tant design consideration is to transfer the maximum amount from the power source
to the point where the power is being consumed.

_______

source

Figure 12.9
Looooe ; Maximum power transfer occurs when Ry = Rg.

Non-ideal E E
voltage ! | Ry
A
Solution
Let i be the current flowing in the circuit. Using Kirchhoff’s voltage law and Ohm’s
law gives
V =i(Rg +R))
Let P be the power developed in the load resistor. Then,
V2R,

P=iPR = —L
L (Rg+R)?
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Clearly P depends on the value of R, . Differentiating w.r.t. R; and using the quotient
rule, we obtain

dP 1R+ R’ —R2(Rs+Ry)
dr, (Rg + R, )*
_ (Rg +R,) — 2R,
(Rg+R)?
2 Rs— R
(Rs+R)?

. dp . . L
Equating R to zero to obtain the turning point gives
L

2 RS — Ry —
(Rs + Ry)’
that is,
R, =Ry
So a turning point occurs when the load resistance equals the source resistance. We
need to check if this is a maximum turning point, so
P V2 Ry — R,

dR, — (Rg+R.)?
&P _ VZ—I(RS +R.)*— (Ry —R)3(Rg + R, )?
dR? (Rs + R)®
— V2 _(RS +RL) — 3(RS — RL)
(Rs +R)*
_ y2 2Ry — 4Ry
(Rs +R)*
_ o2 (RL—2R)
(Rs +R))*

When R, = Ry, this expression is negative and so the turning point is a maximum.
Therefore, maximum power transfer occurs when the load resistance equals the
source resistance.

EXERCISES 12.2

1 Locate the position of any turning points of the 2 Locate and identify all turning points of
following functions and determine whether they are 3
maxima or minima. (@ y= T 32 +8x+1
(a) y:xz—x+6 () y=2x2+3x+1 3_{
© y=x—1 @ y=1+x—2 (b) y=te

() y=x>—12x f) y=7+3x (©) y=x*—2x2



Solutions

1.3 .
1 (a (=,5- ), minimum
24
(b) (—0.75, —0.125), minimum
(c) none
(d) (0.25,1.125), maximum
(e) (2, —16) minimum, (—2, 16) maximum
(f) none

Technical Computing Exercises 12.2

Computer languages such as MATLAB® are matrix
orientated and do not always provide the ability to
differentiate functions. Others such as Wolfram
Mathematica and Maplesoft Maple have this capability by
default. If you are attempting the following exercises in
MATLAB® you may require the Symbolic Math Toolbox
which is an add-on for the main program.
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23 . 19 ..
2 (a) |2, 3 maximum, | 4, 3 minimum
(b) (1, 0.368), maximum

(c) (0,0) maximum, (1, —1) minimum, (—1, —1)
minimum

(a) Use a technical computing language to find y’ and
y" when y = e =0 cos 1.

(b) Solve y = 0 and hence locate any turning points
in the interval [0, 6] and determine their type.

(c) Plot a graph of y and check the position of
the turning points with the results obtained in
part (b).

POINTS OF INFLEXION

Recall from Section 11.4 that when the gradient of a curve, that is y/, is increasing,
the second derivative y” is positive and the curve is said to be concave up. When the
gradient is decreasing the second derivative y” is negative and the curve is said to be
concave down. A point at which the concavity of a curve changes from concave up to
concave down or vice versa is called a point of inflexion.

A point of inflexion is a point on a curve where the concavity changes from concave
up to concave down or vice versa. It follows that y” = 0 at such a point or, in
exceptional cases, y” does not exist.

Figure 12.10(a) shows a graph for which a point of inflexion occurs at the point
marked A. Note that at this point the gradient of the graph is zero. Figure 12.10(b) shows
a graph with points of inflexion occurring at A and B. Note that at these points the

gradient of the graph is not zero.

To locate a point of inflexion we must look for a point where y” = 0 or does not exist.
We must then examine the concavity of the curve on either side of such a point.
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Y A Yy A
A B
A
- B B
X X
(a) (b)
Figure 12.10

(a) There is a point of inflexion at A; (b) there are points of inflexion at A
and B.

v A y=xt
y A y=x3
y// > 0
y'=0 o v'<0,y">0 v>0,y">0
X
yrr <0 X
Figure 12.12
Figure 12.11 The derivative, ¥/, changes sign at x = 0, but

o p . .
The second derivative, y”, changes Y’ remains positive.

sign at x = 0.

Example 12.3

Solution

Locate any points of inflexion of the curve y = x*.

Given y = x°, then y = 3x? and y’ = 6x. Points of inflexion can only occur where
y" = 0 or does not exist. Clearly y” exists for all x and is zero when x = 0. It is possi-
ble that a point of inflexion occurs when x = 0 but we must examine the concavity of
the curve on either side. To the left of x = 0, x is negative and so y” is negative. Hence
to the left, the curve is concave down. To the right of x = 0, x is positive and so y”
is positive. Hence to the right, the curve is concave up. Thus the concavity changes at
x = 0. We conclude that x = 0 is a point of inflexion. A graph is shown in Figure 12.11.
Note that at this point of inflexion y’ = 0 too.

A common error is to state that if y = y” = 0 then there is a point of inflexion. This
is not always true; consider the next example.

Example 12.4 Locate all maximum points, minimum points and points of inflexion of y = x*.

Solution

4

y/ — 4x3 y// — 12x2
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Yy =0atx = 0. Also y” = 0 at x = 0 and so the second-derivative test is of no help
in determining the position of maximum and minimum points. We return to examine y’
on both sides of x = 0. To the left of x = 0, y < 0; to the right yY > 0 and so x = 0 is
a minimum point. Figure 12.12 illustrates this. Note that at the point x = 0, the second
derivative y” is zero. However, y” is positive both to the left and to the right of x = 0;
thus x = 0 is not a point of inflexion.

Example 12.5

Solution

Find any maximum points, minimum points and points of inflexion of y = x> + 2x2.

Giveny = x* 4+ 2x? then y' = 3x? + 4x and y’ = 6x + 4. Let us first find any maximum
and minimum points. The first derivative y’ is zero when 3x*> 4+ 4x = x(3x+4) = 0, that

4
is when x = 0 or x = ——. Using the second-derivative test we find y”(0) = 4 which

4
corresponds to a minimum point. Similarly, y”( - §> = —4 which corresponds to a

maximum point.
We seek points of inflexion by looking for points where y” = 0 and then examining

the concavity on either side. y” = 0 when x = ——.
Since y” is negative when x < —3 then y’ is decreasing there, that is the function is
concave down. Also, y” is positive when x > — 3 and so Y is then increasing, that is the

2
function is concave up. Hence there is a point of inflexion when x = — 3 The graph of

y = x* 4+ 2x? is shown in Figure 12.13.

vy A

! Figure 12.13
. . 4 ..
. . There is a maximum at x = ——, a minimum at
/ 4 2 x e
3 3 x = 0 and a point of inflexion at x = -3

From Examples 12.4 and 12.5 we note that:

(1) The condition y” = 0 is not sufficient to ensure a point is a point of inflexion.
The concavity of the function on either side of the point where y” = 0 must be
considered.

(2) At a point of inflexion it is not necessary to have y’ = 0.

(3) Ata point of inflexion y” = 0 or y” does not exist.
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EXERCISES 12.3

1 Locate the maximum points, minimum points and
points of inflexion of

(@ y=32+6r—1
b)) y=4—1—12

©y="-% 410
Y373
x3 x2
d y=" 4= —20x+7
d y 3 + > X +
Solutions

1 (a) (—1, —4) minimum

(b) (—0.5,4.25) maximum
59
(c) (0, 10) maximum, (1, €> minimum,

1 119
—, — ] point of inflexion
27 12

131
(d) <4, —T) minimum, (=5, 77.83) maximum,

1
(—5, 17.08) point of inflexion

(e) (0, 0) point of inflexion
) (0,0) minimum

Technical Computing Exercises 12.3

(a) Use a technical computing language such as
MATLAB® to produce a graph of y = 3¢!/3.

() y=1r

0 y=1°

(@ y=xt—22
1

(h) Z=l+;
5x3

. _ 5

i y=x 3

G y=1"

(g) (0,0) maximum, (1, —1) minimum,

(1. —1) minimum, | =~ ). (=L 3
’ B VR A WV

points of inflexion

(h) (1, 2) minimum, (—1, —2) maximum

2 2
(1) (1, —§> minimum, (—1, §> maximum,

1 7 1 7
0,0, |—=——=) |7 —F= ] are
V2© 122 V2 1242
also points of inflexion

(G) (0, 0) point of inflexion

(b) From your graph find the position of any maxima,
minima or points of inflexion.

m THE NEWTON—RAPHSON METHOD FOR SOLVING

EQUATIONS

We often need to solve equations such as

f)y=2 - +x2-10=0

ft) =273 —1? =
f(@)=t—sint =0

The Newton—-Raphson technique is a method of obtaining an approximate solution, or
root, of such equations. It involves the use of differentiation.
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Fo A =1
B
C AL
)AC /)C2 X1 TY
Figure 12.14
/ The tangent at B intersects the x axis at C.

Suppose we wish to find a root of f(x) = 0. Figure 12.14 illustrates the curve y =
f(x). Roots of the equation f(x) = 0O correspond to where the curve cuts the x axis.
One such root is illustrated and is labelled x = X. Suppose we know that x = x, is an
approximate solution. Let A be the point on the x axis where x = x, and let B be the
point on the curve where x = x,. The tangent at B is drawn and cuts the x axis at C where
X = x,. Clearly x = x, is a better approximation to x than x,. We now find x, in terms of
the known value, x;.

AB = distance of B above the x axis = f(x,)
CA=x —x
Hence,
AB
gradient of line CB = — = M
CA x —x

But CB is a tangent to the curve at x = x, and so has gradient f’(x,). Hence,

fy = L
1~ X

L fo)
2

and therefore,

Xy —

. J ()
Xy = X; o) (12.7)

Equation (12.7) is known as the Newton—-Raphson formula. Knowing an approximate
root of f(x) = O, that is x,, the Newton—Raphson formula enables us to calculate an
improved approximate root, x,.

Example 12.6

Solution

Given that x; = 7.5 is an approximate root of e* — 6x° = 0, use the Newton—Raphson
technique to find an improved value.

x, =175
fx)=¢e" — 6x° fx)=-723
f)y=e" —18x*  f'(x)) =796
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Using the Newton—Raphson technique the value of x, is found:
—723
x2=xl—m:7.5—( )
f(x)) 796
An improved estimate of the root of e* — 6x* = 0 is x = 8.41. To two decimal places
the true answer is x = 8.05.

=8.41

The Newton—Raphson technique can be used repeatedly as illustrated in
Example 12.7. This generates a sequence of approximate solutions which may converge
to the required root. Each application of the method is known as an iteration.

Example 12.7

Solution

A root of 3sinx = x is near to x = 2.5. Use two iterations of the Newton—Raphson
technique to find a more accurate approximation.

The equation must first be written in the form f(x) = 0, that is
f&x) =3sinx—x=0
Then
x, =25
f(x) =3sinx —x f(x,) =—0.705
f'(x) =3cosx—1 f(x;) =—3.403
Then
(—0.705)
=25— ——-=2293
2 (—3.403)

The process is repeated with x; = 2.293 as the initial approximation:
x, =2.293 f(x) =—0.042 f(x) =-2.983

Then

(—0.042)
—2293 - 2 5999
2 (—2.983)

Using two iterations of the Newton—Raphson technique, we obtain x = 2.28 as an im-
proved estimate of the root.

Example 12.8

Solution

An approximate root of
¥-2-5=0

is x = 3. By using the Newton—Raphson technique repeatedly, determine the value of
the root correct to two decimal places.

We have
x =3
fx)=x>=2x*-5 flx) =4
f(x) = 3x% — 4x fl(x) =15
Hence

4
x =3 2 =2733
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An improved estimate of the value of the root is 2.73 (2 d.p.). The method is used again,
taking x, = 2.73 as the initial approximation:

x, =273 f(x;) =0.441 f(x) =11.439
0.441

O 11.439
An improved estimate is x = 2.69 (2 d.p.). The method is used again:

X, =269  f(x)=-0007  f(x)=10948

x, =273 =2.691

So

(—0.007)
10.948

There is no change in the value of the approximate root and so to two decimal places the

root of f(x) = 0isx = 2.69.

X, =2.69 — =2.691

The calculation can be performed in MATLAB® using the roots function:
roots([1 -2 0 -5])

which will produce the real root of 2.69, agreeing with our numerical calculation using
the Newton—Raphson method. The two complex roots of the equation will also be re-
turned. Technical computing languages make use of a variety of numerical methods and
to some extent the user has to take it on trust that they are correctly implemented and
tested so that they always produce the correct result.

The previous examples illustrate the general Newton—Raphson formula.

If x = x, is an approximate root of f(x) = 0, then an improved estimate, x,, ,, is
given by

P ()
T @)

The Newton—Raphson formula is easy to program in a loop structure. Exit from the loop
is usually conditional upon [x,, ; — x,| being smaller than some prescribed very small
value. This condition shows that successive approximate roots are very close to each

other.

Engineering application 12.3

Series diode-resistor circuit

Consider the circuit of Figure 12.15(a). A diode is in series with a resistor with re-
sistance R. The voltage across the diode is denoted by V and the current through the
diode is denoted by /. The /-V relationship for the diode is non-linear and is given
by

I=1E" -1

where [ is the reverse saturation current of the diode. Given that the supply volt-
age,V,,is2V, L is 10~'* A and R is 22 k2, calculate the steady-state values of I and V..
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I I
\A

+ R R Point at which both
v, () the diode and the

4 resistor equations

14 are satisfied

(@) (b) i ¥V
Figure 12.15

A simple non-linear circuit: (a) series diode—resistor circuit; (b) resistor load line
superimposed on diode characteristic.

Solution

There are several ways to solve this problem. A difficulty exists because the diode
I-V relationship is non-linear. One possibility is to draw a load line for the resistor
superimposed on the diode /-V characteristic, as shown in Figure 12.15(b). The load
line is an equation for the resistor characteristic written in terms of the voltage across
the diode, V, and the current through the diode, /. It is given by

V.-V =IR
I= 1V+Vs
" R R

1 V.
This is a straight line with slope % and vertical intercept ES WhenV = 0,1 =
V.
ES. This corresponds to all of the supply voltage being dropped across the resistor.

When V =V, I = 0. This corresponds to all of the supply voltage being dropped
across the diode. Therefore, these two limits correspond to the points within which
the circuit must operate. The solution to the circuit can be obtained by determining
the intercept of the diode characteristic and the load line. This is possible because
both the resistor characteristic and diode characteristic are formulated in terms of V'
and /, and so any solution must have the same values of / and V for both components.
If an accurate graph is used, it is possible to obtain a reasonably good solution. An
alternative approach is to use the Newton—Raphson technique. Combining the two
component equations gives

~V +V, =RLE"™Y - 1)
Now R =22 x 10*, I, = 107'*,V, = 2 and so
—V4+2=22x 10" x 107"4*E*" — 1)
Now, define f(V) by
fV)=22x10"9@"Y —1)+V -2
We wish to solve f(V) = 0. We have
F(V)=22x10"1" x 40e*" +1=8.8 x 107%*" + 1
Choose an initial guess of V; = 0.5:

FOV) _ s 22X 107102 — 1) + 0.5 — 2

— 77, — —0. = 0.7644
0wy 8.8 x 107%20 + 1
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With an equation of this complexity, it is better to use a computer or a programmable
calculator. Doing so gives

V, = 0.6895, ..., V,, = 0.5770, ..., V,, = 0.5650

which is accurate to four decimal places.
It is useful to check the solution by independently calculating the current through
the diode using the two different expressions. So,

[ =10""4**0360 _ 1) =653 x 107> A
0.5650 2

I=— =6.53x 10 A
22 x10° T 22 %107 x

and therefore the solution is correct.

1 Use the Newton-Raphson technique to find the value ©e/?—5x=0 x =6

of a root of the following equations correct to two
decimal places. An approximate root, x|, is given in

1
(d)Inx = — x =16
X

2
cach case. (e) sinx + Fx =1 x=06
— 42 —
(@) 2c0sx = x x =08 2 Explain circumstances in which the Newton—Raphson
)33 —4x* +2x—9=0 x =2 technique may fail to converge to a root of f(x) = 0.
Solutions
1 (a2 1.02 (b) 1.85 (c) 7.15 @) 1.76 | (e) 0.64

DIFFERENTIATION OF VECTORS

Consider Figure 12.16. If r represents the position vector of an object and that object
moves along a curve C, then the position vector will be dependent upon the time, 7. We
write r = r(¢) to show the dependence upon time. Suppose that the object is at the point
P with position vector r at time ¢ and at the point Q with position vector r(¢ + §¢) at
the later time ¢ + 8¢ as shown in Figure 12.17. Then P_Q represents the displacement
vector of the object during the interval of time §¢. The length of the displacement vector
represents the distance travelled while its direction gives the direction of motion. The
average velocity during the time from ¢ to ¢ 4 ¢ is the displacement vector divided by
the time interval §¢, that is

. P_Q r(t + 8t) — r(t)
average velocity = T va—

The instantaneous velocity, v, is given by

. o r(+46t)—r() dr
v=Ilm—- = —
51—0 St dr
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v A
P
C
PQ
r r(7)
Q
x r(t + 81)
Figure 12.16 Figure 12.17
Position vector of a point P on a Vector PQ represents the displacement of
curve C. the object during the time interval ét.

Now, since the x and y coordinates of the object depend upon the time, we can write the
position vector r as

r(t) = x(O)i+y()j
Therefore,
r(t+6t) =x(t + 8t)i+ y + 8t)j

so that
x(t+8t)i+y+6t)j—x@)i—y()j

0 = i,

St
. fx@+8t) —x@), | y@+0t) —y(@),
= lim 1+ J
5t—0 St ot
dx, dy,
' T

often abbreviated to v =% = xi + yj. Recall the dot notation for derivatives w.r.t.
time which is commonly used when differentiating vectors. So the velocity vector is
the derivative of the position vector with respect to time. This result generalizes in an
obvious way to three dimensions. If

r(t) =x@)i+y@®)j+z(@)k
then
r(t) =x()i+y@)j+ 2k

The magnitude of the velocity vector gives the speed of the object. We can define the
acceleration in a similar way:

v dr o it 7k
a=—=— =F=xii Z
dr dr? Y
In more general situations, we will not be dealing with position vectors but other physical
quantities such as time-dependent electric or magnetic fields.

Example 12.9

If a = 3% + cos 2tj, find
d’a

da ©
dr dr?

da
(a) T (b)
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(a) If a = 3t%i + cos 2¢j, then differentiation with respect to ¢ yields

9 _ i 2sin2j
-_— = 1— 2SIn
dr J
da : -2
b) || = V(61)2 + (=2sin2t)% = /3612 + 4 sin® 2t
d’a . .
(c) — = 6i —4cos2fj

dr?

It is possible to differentiate more complicated expressions involving vectors pro-
vided certain rules are adhered to. If a and b are vectors and c is a scalar, all functions
of time ¢, then

(ca) da+dca d(a b) db+da b

— (@ =C— — — = _— —

d dr  dr dr de  dr

d da db d d da
d_(a-i‘b)_d—-i‘a a(aXb)=a d—+a b

Example 12.10 Ifa=3ti—r*jandb = 2t2i + 3j, verify

Solution

(a) d(a b)=a- db+ -b (b) (axb)y=a b+ b
a) —(a- — + — —(@x X — 4+ — X
dr dr dr dr dr dr

(@) a-b= (3ti — 1)~ (2% + 3j) = 663 — 3¢

d
—(a-b) =182 — 6¢
dr

Also
d
D _gicuj D —wi
dt
So,
db da . 0. . 2 | As . .
a-—+b = (3ti — 7)) - (411) + 271+ 3j) - (31 — 2tj)
dr dr
= 121> + 61> — 6t = 18> — 6t
db da
We have verified —(a b)=a-—+ —-b
dr dr
i j k
(b) axb=|3t —*> 0
262 3 0
= (9t + 2tYk

d (axb)=(9+8)k
J— X —
dt
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Also,
a |P I
ax — = |3t —?
o
= 4k
d i
A ob=|3 -
dr 212
= (9 +4r)H)k
and so
a x db n
dr dr

as required.

A b =4k + 9+ 4k =

d
9+ 8 )k = 5(a x b)

EXERCISES 12.5

1 Ifr=3ti+ 2% + 3k, find
dr d*r
—_ b)) —
@x ® 5

2 Given B = re~'i + costj find

( ) ( ) i
a b
dr dtz

d
3 Ifr = 4r%i 4 2tj — 7k evaluate r and d—: whenr = 1.

L Ifa=7r3i—7k andb = 2 +0)i+13j — 2Kk,

d db
(a) finda-b  (b) ﬁndd—a (© find
db  da
d) show th t— b)=a-— -b.
(d) show that (a-b) = adt+d
Solutions

1 (a) 3i+4j+3%k
(b) 4j+ 6k

2 (a) (—te'+e")i—sintj
(b) e~'(t — 2)i — costj

Given r = sinti + costj, find

@r  ®r  (© [r|

Show that the position vector and velocity vector are
perpendicular.

Show r = 3e~'i + (2 + )] satisfies
F+r=j

Given a = 1%i — (4 — 1)j, b = i + tj show

d db da
(a) —(axb): <a>< d>+<dt xb)

(b) (a b)=a. L ;p. 92
dt dr
4+ 2j — 7K, 8i +2j

(@ (3 +2124+14) (b)) 3% -7k

(c) i+2tj
(a) costi— sintj (b) —sinti—costj

© 1
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REVIEW EXERCISES 12

1

1

2

3

Determine the position of all maximum points,
minimum points and points of inflexion of

(@)y=2 =212+ 60t +9
(b)y=1(t*—1)

In Section 9.8 we showed that the impedance of an
LCR circuit can be written as

1
Z=R+j|oL— —

(a) Find |Z|.
(b) For a given circuit, R, L and C are constants, and
w can be varied. Find |—
dw

(c) For what value of w will |Z| have a maximum or
minimum value? Does this value give a
maximum or minimum value of |Z|?

Use two iterations of the Newton—Raphson technique
to find an improved estimate of the root of

W=

given ¢t = 1.8 is an approximate root.

Solutions

7 95
(a) (2,61) maximum, (5, 34) minimum, (5, 7)
point of inflexion

o (2 Y i, (L 2
ﬁ, 3J§ minimum, ﬁ, 3\/5

maximum, (0, 0) point of inflexion

2L 1
2 272 _
@ R+ = 2t
wl? —1/3C?

) VR2 + 0?2 —2L/C + 1/ (02C?)

(b

1
(¢) w = ——= produces a minimum value of Z

VLC
1.859, 1.857

4

Given

a= 2+ Di—j+rk

b=2j—-k

find

(n) 2 b P

2 2 db
dr dr

d b d d b
© L@b @ S@xh

Use two iterations of the Newton—Raphson method
to find an imtproved estimate of the root of

sint =1 — 5,0 <t < mgivent =0.71is an
approximate root.

Determine the position of all maximum points,
minimum points and points of inflexion of

(@ y=e™

(b) y=re

() y=x>=3x>+3x—1

) y=e'+e*

© y=li—r

(a) 2ti+k
(®) 2j

() -3

(d) —4ri 4 21j + (62 + 2)k
0.705, 0.705

(a) (0, 1) is a maximum

V2

Points of inflexion when x = :I:T
(b) (0, 0) point of inflexion, (3, 1.34) maximum.
Further points of inflexion when ¢ = 4.73, 1.27
(c) (1,0) point of inflexion
(d) (0,2) minimum

(e) (0.5,0.25) maximum, (—0.5, 0.25) maximum,
minimum at (0, 0) (y does not exist here)
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INTRODUCTION

When a function, f(x), is known we can differentiate it to obtain the derivative, Ef

The reverse process is to obtain the function f(x) from knowledge of its derivative. This
process is called integration. Thus, integration is the reverse of differentiation.

A problem related to integration is to find the area between a curve and the x axis.
At first sight it may not be clear that the calculation of area is connected to integration.
This chapter aims to explain the connection. An area can have various interpretations.
For example, the area under a graph of power used by a motor plotted against time
represents the total energy used by the motor in a particular time period. The area under
a graph of current flow into a capacitor against time represents the total charge stored
by the capacitor.

Circuits to carry out integration are used extensively in electronics. For example, a
circuit to display the total distance travelled by a car may have a speed signal as input and
may integrate this signal to give the distance travelled as output. Integrator circuits are
widely used in analogue computers. These computers can be used to model a physical
system and observe its response to a range of inputs. The advantage of this approach is
that the system parameters can be varied in order to see what effect they have on system
performance. This avoids the need to build the actual system and allows design ideas to
be explored relatively quickly and cheaply by an engineer.
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ELEMENTARY INTEGRATION

d
Consider the following problem: given ay = 2x, find y(x). Differentiation of the func-

d
tion y(x) = x> + ¢, where c is a constant, yields d_z = 2x for any c. Therefore y(x) =

x*+ c is a solution to the problem. As ¢ can be any constant, there are an infinite number
of different solutions. The constant c is known as a constant of integration. In this ex-
ample, the function y has been found from a knowledge of its derivative. We say 2x has
been integrated, yielding x*+c. To indicate the process of integration the symbols | and
dx are used. The [ sign denotes that integration is to be performed and the dx indicates
that x is the independent variable. Returning to the previous problem, we write

d
& 2x
dx
y= / xdx=x>+c
1 1 1
symbols for constant of integration
integration

In general, if
dy
F fx)
then

y=/f(X)dx

Consider a simple example.

Example 13.1

Solution

d
Given & cosx — x, find y.
dx
We need to find a function which, when differentiated, yields cos x — x. Differentiating

sin x yields cos x, while differentiating —x*/2 yields —x. Hence,

2
X
y= (cosx—x)dx:sinx—5+c

where c is the constant of integration. Usually brackets are not used and the integral is
written simply as [ cosx — x dx.

The function to be integrated is known as the integrand. In Example 13.1 the integrand
iscosx — x.
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d xn+1 xn+1
Example 13.2 Find — + ¢ ) and hence deduce that [ x" dx = +c.
dx\n+1 n+1
Solution From Table 10.1 we find
d [ x! d [ xmtt d using the linearity
— +c)=— + —(¢) . ..
dx\n+1 dx\n+1 dx of differentiation
| d again using the
Tn+l dx @)+ dx (©) linearity of differentiation
1
= {(n+1Dx"}+0 using Table 10.1
n+1
= xn

Consequently, reversing the process we find
Xt
/ X'dx = +c
n—+1

as required. Note that this result is invalid if n = —1 and so this result could not be
applied to the integral [ (1/x) dx.

Table 13.1 lists several common functions and their integrals. Although the variable
x is used throughout Table 13.1, we can use this table to integrate functions of other
variables, for example ¢ and z.

Example 13.3 Use Table 13.1 to integrate the following functions:
(a) x*
(b) coskx, where k is a constant
(c) sin(3x+2)
(d 5.9
(e) tan(6r —4)

() e
1
(2 =z
(h) cos 100n7t, where n is a constant

. X"+1
Solution  (a) From Table 13.1, we find [ x" dx = n
n

we obtain

5
4dX:x—
/x 5+c

1 +c,n# —1.Tofind [x*dxletn = 4;

sin(ax)

(b) From Table 13.1, we find [ cos(ax) dx =

in k.
/coskxdx: SH;(x—i—c

+ c. In this case a = k and so
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Table 13.1
The integrals of some common functions.

fx) Jf) dx S J fx) dx
i b
k, constant kx+ ¢ cos(ax + b) sin(ax + b) L
xn—H a
X" +c¢ n#-—1 tan x In|secx| + ¢
n+1
1 In | sec ax|
= In|x| +¢ tan ax —
X a
X X 1 b
€ € +C tan(ax+b) M_’.C
a
e —e " +c 1
cosec(ax +b)  —{In]|cosec(ax + b)
ax a
eax e_+c —cot(ax+b)|} + ¢
a
. 1
simnx —cosx+c¢ sec(ax + b) —{In| sec(ax + b)
a
. — COs ax +tan(ax + b)|} + ¢
sin ax +c
a 1
) —cos(ax + b) cot(ax + b) —{In|sin(ax + b)|} + ¢
sinfax+b) —+¢ a
a 1 X
cos X sinx + ¢ g sme e +c
; 1 1 X
sin ax “tan 'S 4+ c
cos ax p +c a4+ x2 a a

Note that a, b, n and ¢ are constants. When integrating trigonometric functions,
angles must be in radians.

(©)

(d)

(e)

- b
From Table 13.1, we find [ sin(ax+5) dx = —- 2 1 1n this case a = 3
a

and b = 2, and so

— 3x+2
cos(3x + )—l—c

/ sin(3x + 2) dx = 3

From Table 13.1, we find that if k is a constant then f k dx = kx + c. Hence,
/5.9dx=5.9x+c

In this example, the independent variable is 7 but nevertheless from Table 13.1 we
can deduce

1 t+b
/tan(az+b)d;= M—i—c
a
Hence with a = 6 and b = —4, we obtain

1 6r—4
n | sec( )|+c

tan(6t — 4) dt =
/ an( ) G
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az

(f) The independent variable is z but from Table 13.1 we can deduce f e“dz=—+c.
a

Hence, taking a = —3 we obtain
-3z -3z
-3z € €
e *dz = +c=— +c
/ ‘T3 3

1
(g) Since Z = x72, we find

/ dx = /_zdx —+C —l+c
x? N N

(h) When integrating cos 100n7t with respect to ¢, note that 100n7t is a constant. Hence,
using part (b) we find
sin 100n7tt

100n7t df =
/ cos 100n7t 00

13.2.1

Integration as a linear operator

Integration, like differentiation, is a linear operator. If f and g are two functions of x,

then
/f+gdx=/fdx+/gdx

This states that the integral of a sum of functions is the sum of the integrals of the indi-
vidual functions. If A is a constant and f a function of x, then

fAfdx:Affdx

Thus, constant factors can be taken through the integral sign.
If A and B are constants, and f and g are functions of x, then

/Af+Bgdx:A/fdx+B/gdx

These three properties are all consequences of the fact that integration is a linear op-
erator. Note that the first two are special cases of the third. The properties are used in
Example 13.4.

Example 13.4

Use Table 13.1 and the properties of a linear operator to integrate the following
expressions:

(a) x¥*+9 (d) (t+2)? (g) 3sinds
(b) 3t* — ./t (e) é +z (h) 4cos(9x +2)

(c) ! (f) 4e* (i) 3ex
X



Solution

sinx + cosx

2
(k) 2t —¢
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0 tan(zgl) (n) 3sec(dx — 1)

(Hl) et+eft (0) 2cot9x
(p) 7cosec(mt/3)

(a) /x2 +9dx= /x2 dx + / 9 dx using linearity

i +9%+c¢ using Table 13.1

Note that only a single constant of integration is required.

(b) f 3t —JVirdi=3 / dr — / 2 dr using linearity

32

= 3<§> - % +c using Table 13.1
3 2872

=53 c

1
(©) f —dx=In|x|+¢ using Table 13.1.
X

Sometimes it is convenient to use the laws of logarithms to rewrite answers involving
logarithms. For example, we can write In x| + ¢ as In |x| 4 In |A| where ¢ = In |A|.
This enables us to write the integral as

1
/—dx=1n|Ax|
X

t3
(d) f(t+2)2dt:/t2+4t+4dt:§+2t2+4t+c

1
©) /——l—zdz:lnlzl—i-z——i-c
z 2
/ 2 4e~
) [ 4e¥dz =
(2) f3sin(4t) dr = —

(h) /4005(9x+2)dx=

@) /3&:2Z dz = s

sinx + cosx

2

+c=2%+¢

3 cos 4t

+c

4sin(9x + 2)
— 9 ¢

2+c

—Ccosx + sinx

@

®

tan (

(k)/ —eldr=r*—¢+c¢

)dz—Zln

= +c

2

z—1 n
seC| —
2 C
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(m) /e’+e_’dt=e’—e_’+c
3
(n) /3SCC(4X— 1)dx = Zln|sec(4x— 1) +tan(4x — 1)| + ¢
2 .
(o) /2cot9xdx: §1n|sm9x|—|—c

(p) /7 cosec(7t/3) dx = {7 cosec(rt/3)}x + ¢ as cosec(7r/3) is a constant

Engineering application 13.1

Distance travelled by a particle

The speed, v, of a particle is the rate of change of distance, s, with respect to time 7,

thatisv = —s. The speed at time ¢ is given by 34-2¢. This is illustrated in Figure 13.1.

Note that the speed of the particle is increasing linearly with time. Find the distance
in terms of 7.

Solution
We are given that
ds
=—==34%
v ar +

and are required to find s. Therefore,
s=f3+2tdt=3t+t2+c

Note that the speed of the particle is modelled by a linear expression in ¢. This means
that the speed increases by the same amount in each subsequent second. On the other
hand, the distance, s, is modelled by a quadratic in 7. Therefore, the distance travelled
in each subsequent second increases. Figure 13.1 illustrates the speed-time graph and
Figure 13.2 illustrates the distance-time graph.

v S A

@

0 t 0 t
Figure 13.1 Figure 13.2
Graph of speed of the particle, v, against Graph of distance travelled by the

time, 7. particle, s, against time, 7.
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Engineering application 13.2

Voltage across a capacitor

Recall from Engineering application 10.2 that the current, i, through a capacitor
depends upon time, ¢, and is given by

o

' dr

where v is the voltage across the capacitor and C is the capacitance of the capacitor.
Derive an expression for v.

Solution
If

. dv dv i

i=C— then —_— ==

dr dr C
Therefore,
] 1
V= / é dr = ol / idt using linearity

Note that whereas the capacitance, C, is constant, the current, Z, is not and so it cannot
be taken through the integral sign. In order to perform the integration we need to know
i as a function of 7.

13.2.2 Electronic integrators

Often there is a requirement in engineering to integrate electronic signals. Various cir-
cuits are available to carry out this task. One of the simplest circuits is shown in
Figure 13.3. The input voltage is v;, the output voltage is v,, the voltage drop across
the resistor is vy and the current flowing in the circuit is i. Applying Kirchhoff’s voltage
law yields

v; = v + v, (13.1)

For the resistor with resistance, R,

vy = iR (13.2)
For the capacitor with capacitance, C,
i=c% (13.3)
dt
Combining Equations (13.1) to (13.3) yields
o = RCYe 1y (13.4)
i ar o

In general, v, will be a time-varying signal consisting of a range of frequencies. For
the case where v, is sinusoidal we can specify a property of the capacitor known as the
capacitive reactance, X, given by
1
X =—
2nfC
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C
v, R] il if
R . v, R i
! | X
v R3 13 A —
- 3
UR v,
Y T c Vo °
¢ ® ° Figure 13.4
Figure 13.3 Summing integrator using an operational
Simple integrator. amplifier (op amp).

where f = frequency of the signal (Hz). It can be seen that X decreases with increasing
frequency, f. For frequencies where X, is small compared with R, most of the voltage
drop takes place across the resistor. In other words, v, is small compared with vy. Exam-
ining Equation (13.1) for the case when X_ is very much less than R (written as X, < R),
and v, < vy, it can be seen that Equation (13.4) simplifies to
dv
. =RC-—=2 13.5

v = RC— (13.5)
This equation is only valid for the range of frequencies for which X, « R. Rearranging
Equation (13.5) yields

dv, v

d ~ RC
1

Vv, = —— [ v; dt
RC

The output voltage from the circuit is an integrated version of the input voltage with a

scaling factor —.
RC

An electronic integrator which performs better can be made from an operational am-
plifier. The circuit for an operational amplifier integrator is given in Figure 13.4. The
main advantage of this circuit is the low output impedance and high input impedance,
making it useful for electronic control applications and analogue signal processing. The
function of the operational amplifier is to amplify the potential difference between the
inverting and non-inverting inputs. These are labelled — and + respectively in the circuit
diagram. Usually the gain of the amplifier is extremely high, so even a small voltage dif-
ference between the two inputs will give a very large output voltage, which is limited by
the voltage supply attached to the device. Notice in this circuit that there is a capacitor
connected from the output back to the input. This capacitor provides negative feedback.
This means that a proportion of the output voltage is fed back to the input and this in
turn serves to reduce the output. As a consequence of this the overall gain of the circuit
is limited and the amplifier reaches an equilibrium state where the voltage at point X is
the same as at the non-inverting input, which is connected to earth. For this reason the
point X in the circuit is sometimes referred to as a virtual earth.

Assuming point X is at zero volts, and using Ohm’s law, gives

i=-t =2 =2 (13.6)
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4.00 -
3.00
2004,/ |\ 8 I

/
1.00 4 \ ;

ry L
0 T LI T T T T T I“I 1

/
~1.00 A \ / AN

/ v \
-2.00 4 \ !

/ Figure 13.5

Output from an operational
amplifier integrator circuit with
v; being a square wave input
and v, = v3 = 0.

-3.00 +—~ \

00 -
290 291 292 293 294 295 296 297 298 299 300
t (ms)

Assuming i, is negligible, then

=1, +i,+1 (13.7)
For the capacitor,
dv
o = —C—2 13.8
Ly ar (13.8)

The negative sign is a result of the direction chosen for i;. Combining Equations (13.6)-
(13.8) yields

v, n v, n vy Cdv°
R, R, R,  dt
U1 ) Y3
=— | —+-=+-—==d
Yo / RC T RCTRC

The circuit therefore acts as an integrator. The minus sign in the integration is a result
of the circuit design which is known as an inverting circuit. A typical output from this
circuit is given in Figure 13.5.

Integration of trigonometric functions

The trigonometric identities given in Table 3.1 together with Table 13.1 allow us to
integrate a number of trigonometric functions.

Example 13.5

Evaluate

(a) [cos’rdr
(b) [sin®tdr
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Solution Powers of trigonometric functions, for example sin” #, do not appear in the table of stan-

dard integrals. What we must attempt to do is rewrite the integrand to obtain a standard
form.

(a) From Table 3.1

1+ cos2t
2

COSZZ =

and so

1 2t
/ cos’r dt / +cos
/ 1 / cos 2t

dr

_ + sin 2¢
2Ty T
(b) / sin’r dr = / 1 —cos’rdr using the trigonometric identities
= / 1dr — / cos’t dt using linearity

t sin2t .
=1t— §+ 7 +c using part (a)

t sin2t
2 4

Example 13.6 Find
(a) [sin2tcostdr

(b) f sinmt sin nt dt, where m and n are constants with m £ n

Solution (a) Using the identities in Table 3.1 we find

2sinA cos B = sin(A 4+ B) + sin(A — B)

1
hence sin 2¢ cost can be written 3 (sin 3¢ + sint). Therefore,

1
/sin2t costdr = / E(sin 3t + sint) dr

_1 —cos 3t /) 4
=3 3 cos c

1
= _6C053t_ Ecost+c

(b) Using the identity 2 sin A sin B = cos(A — B) — cos(A + B), we find

1
sin mt sin nt = E{cos(m — n)t — cos(m + n)t}
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Therefore,
1
/ sinmt sinnt dt = / 5{cos(m — n)t — cos(m + n)t} dt
_ 1 fsin(m—n)t  sin(m+n)t
T2 m—n m-+n
EXERCISES 13.2
. . . 1 1
1 Integrate the following expressions using Table 13.1: (&) —— H ——
@ 2 ()9 (© x5 V0.25 -2 0.01+0?
1
1 P a— hy ——
A V7 © - ) —3.2 ©® 0512 ST
1 Z] - @ 1 G 1
_ h) — ; i
©® - W - O > éﬂz
G 2 k) 1173
5 Integrate the following expressions:
2 Integrate the following expressions using Table 13.1:
1
(a) e (b) e © e @3 +x+ -
1
(d) ; (e) ert () e1/3 (b) elx _ 372):
(c) 2sin3x + cos 3x
25
® e (h) em=* .
d 2t t| - —
3 Integrate the following expressions using Table 13.1: (@) sec(2r +7) +co (2 ﬂ)
(a) sindx (b) sin9¢ ‘
2 (e) tan 3 + cosec(3t — )
X
(c) sin| = (d) sin{ —
2 5 1
(e) cos7x (f) cos(—3x) (f) sinx + 3 + =3
o @ ——
(g) cos 3 (h) tan9x cos(3x)
(i) cosec2x (j) sec5t w1+ 1 2
(k) cot8y 1) cos(5t+1) t
(m) tan(3x +4) (n) sin(3t — ) 1
@ 3
X
(0) cosec(5z+2) (P SSC(Z + 1) (j) tan(4t — 3) + 2sin(—t — 1)
2 (k)1 + 2cot3x
(q) sinf — —1 (r) cot(5 —x)
3 (1) sin L) _ 3cos L
(s) cosec(mt — 2x) 2 2
4 Use Table 13.1 to integrate the following expressions: m)(t —2)*

@ —=

©

4 — 2

1
V1—2x2

1
9+ 22

(b)

(@)

(n)3e! — /2

(0)7 —Tx0 + e
) (k+1)?
(q) ksint — cos kt

k constant

k constant
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1 3 1
r) ——— c) ——— d) ———
® 5 © 2211 @ 92
) — © —— n ——
S S —

V2512 V4 — 22 /7 _ 3.2
1

6 1+ 2 (&) ———
t — (x2
Ot VI-2/2)

.. +x . 3
6 The acceleration, a, of a particle is the rate of change 11 By writing in the form T +1,
. . o dv 34X

of speed, v, with respect to time ¢, that is a = T The find dx.

speed of the particle is the rate of change of
12 (a) Express

' x4 2x+1
by 1+ 3 find expressions for speed and distance. x(2+ 1)

. . ds Lo
distance, s, thatis v = P If the acceleration is given

as its partial fractions.
242 +1
x(x2+1)

7 The speed, v, of a particle varies with time according
to (b) Hence find /
v(t)=2—-¢" . .

13 The velocity, v, of a particle is given by
(a) Obtain an expression for the distance travelled by

_ —t/2
the particle. v=2+e q
(b) Calculate the distance travelled by the particle (a) Given distance, s, and v are related by d—j =v
betweens = 0and ¢ = 3. find an expression for distance.
8 By writing sinh ax and cosh ax in terms of the (b) Acceleration is the rate of change of velocity
exponential function find with respect to t. Determine the acceleration.
(a) [ sinhax dx 14 (a) Use the product rule of differentiation to verify
(b) [ coshax dx i(x e2%) = o2 | 2xe?
(c) Use your results from (a) and (b) to find dx
f 3 sinh 2x + cosh 4x dx. (b) Hence show
. . 5 . xe2x er
9 A capacitor of capacitance 107~ F has a current i(¢) /xe2x =" -4
through it where 2 4
it)=10—e"" 15 Integrate
, , 212 4+ ¥
Find an expression for the voltage across the (@ —— b —35—
. t (S
capacitor.
cos 4x 1
10 Integrate the following: © sin 4o @ 2 sin 3x
1 1
@ 35— () 5 242
X244 2x2 + 4 (e) 2t (f) sin®t + cos?t
1+ x2
Solutions
Kl 1
1 @ +e (b) 9x+c ® —53+¢ (h) 21 +c
2 2 7 1
© =5 +c @ =M 0D = +c G —-+e
5 3 7 X
(e) In|z| +¢ f) =3.2x+¢

3
&) th +c



(a)

©

(2)
(a)
(b)

©

(d)

®

(2)

(h)
®
)
(9]
@
(m)
()
(0)

(P

(@
(r)
(s)

(a)
(b)

e (b) S +ec
5 ¢ 6 ¢

o3t
—?-FC (d) —e*+c
2e05 4 ¢ () 3¢ +c

o4 0e—2.5%
——+c (h) — +c

4
cos4dx
4
cos 9t
9
X
) ad
cos<2> +c

é cos g +

25 )TE
sin 7x

7

1.
—3 sin(—3x) + ¢

3 . (5t n
—sin| — c
5 3

In | sec 9x|
c
9

%(111 | cosec 2x — cot 2x|) + ¢
%(m | secSt + tan5¢]) + ¢
—In|sin8y| + ¢

sin(5t +1) + ¢

In|sec(3x+4)| + ¢

W = W] =00 —
—

-3 cos(3t —m) +c¢

1
3 In|cosec(5z+2) — cot(5z+2)| + ¢

sec f—1—1 + tan E—|—1
2 2
g(:os g 1)+
2 3 ¢

—In|sin(5 —x)| +¢

21n +c

1
-3 In | cosec(7t — 2x) — cot(mt — 2x)| + ¢

tan ™! xX+c

sin~'x+c

13.2 Elementary integration

) ;tan1<§> +ec

(e) sin~'(2x) +¢
(f) 10tan~'(10v) + ¢

X
(2) 1073 tan™! <103) +c

1 t
h) —tan | —
(h) mtan (m>+c
@) sin1<x)+c

V2
() 3tan ' (3x) + ¢
2

(a) 3x+?+ln|x|+c

er
bi
()2+

—2x
2

¢

+c

sin 3x

(©) —% cos(3x) + +c

(d) 0.5In|sec(2t + ) + tan(2t 4 )|
! <t )
sinf - — 7
2
1
+ = In| cosec(3t — )

t
sec| =
2 3

—cot(3t —m)| +¢
)C2
(f) —cosx+ 3 —e +c

+2In +c

(e) 2In

1
(2) 3 In | sec 3x + tan 3x| + ¢

(h) ’3+2z Ly
— - —+c
3 t

672):
6
1
Q) Zln |sec(4t —3)| +2cos(—t—1)+c

@ -

+c

2
k) x+ glnlsin3x| +c

t . t
) —2cos<2> — 6sm(2> +c

= )
(m)g—Zl +4t+ ¢

() =3¢~ +2e/% ¢
0 Tx—xT—e ¥ +¢

3

t
(p) k%t + ke + 3 te

in kt
(qQ) —kcost — % +c

441
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6
2

t t
6 Speed:t+ 7 + ¢, distance: Bl + —=+ct+d

7 () 2t+e"+c

cosh ax

8 (a)

sinh ax

(b) +ec

a

3 1
(c) 5 cosh2x + 1 sinh4x + ¢

Chapter 13 Integration

It
(1) gtan 3 +c
(s) sin~! (;) +c

) 6tan~'x+ = +

(d) sin_l(;) +e
(e) 2sin1<;) +c

x ) _—7sin71 ﬁx +c
TR V3 V2
2 3 .
7 (2) /2 sin~! % +c
(b) 5.0498
11 3Injx|+x+c¢
12 @ -+ (b) Tnfxl +2tan"x +
- n n
a st e X an”~ x+ ¢

1
13 (@ 2t —2e"2 +¢ (b) —Ee*’/2

15 —t72 —Injt| +
9 100(10r +e ") +¢ (a) , nlt|+c
1 x (b) —56‘3’ —e'+c
10 (a) tan_l()+c |
2 2 (c) Zln|sin4x| +c
1« X
® 22 tan V2 te (d glnlcosec 3x — cot3x| + ¢

(©) % tan ! («/Ex) +c

5

(e) x+tan lx+c
® t+c

DEFINITE AND INDEFINITE INTEGRALS

All the integration solutions so far encountered have contained a constant of integration.
Such integrals are known as indefinite integrals. Integration can be used to determine
the area under curves and this gives rise to definite integrals.

To estimate the area under y(x), it is divided into thin rectangles. The sum of the
rectangular areas is an approximation to the area under the curve. Several thin rectangles
will give a better approximation than a few wide ones.

Consider Figure 13.6 where the area is approximated by a large number of rectangles.
Suppose each rectangle has width éx. The area of rectangle 1 is y(x,)dx, the area of
rectangle 2 is y(x;)dx and so on. Let A(x,) denote the total area under the curve from x,
to x,,. Then,

A(x,) ~ sum of the rectangular areas = Z v(x,)8x
=2

Let the area be increased by extending the base from x, to x. Then A(x) is the total area
under the curve from x, to x (see Figure 13.7). Then,

increase in area = §A = A(x) — A(x,) ~ y(x)dx



13.3 Definite and indefinite integrals 443

y
>
n
o ox
X1 Xp X3 X4 X5 X X |
- Sx—— X1 X, X X
Figure 13.6 Figure 13.7
The area is approximated by (n — 1) rectangles. The area is extended by adding an extra rectangle.
So,

SA )
— X~ y(x
ox Y
In the limit as 6x — 0, we get

o (BAN _dA
s)clinog _a_y(x)

Since differentiation is the reverse of integration, we can write

A:/y(x)dx

To denote the limits of the area being considered we place values on the integral sign.

The area under the curve, y(x), between x = a and x = b is denoted as

x=b
[

or more compactly by
b
[ re

The constants a and b are known as the limits of the integral: lower and upper, respec-
tively. Since an area has a specific value, such an integral is called a definite integral. The
area under the curve up to the vertical line x = b is A(b) (see Figure 13.8). Similarly
A(a) is the area up to the vertical line x = a. So the area between x = a and x = b is
A(b) — A(a), as shown in Figure 13.9.

The area between x = a and x = b is given by

b
Area:/ ydx =A(b) —A(a)

The integral is evaluated at the upper limit, b, and at the lower limit, a, and the
difference between these gives the required area.
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y
y y
) A(b) N
A a X X
@ Figure 13.9
Figure 13.8 The area between x = aand x = b is
The area depends on the limits a and b. Ab) — A(a).

The expression A(b) — A(a) is often written as [A(x)]2. Similarly [x* 4 1]3 is the value
of x2 4+ 1 at x = 3 less the value of x> + 1 at x = 2. Thus

PH+H1E=3+D)-Q2*+1)=5
In general

[ = f(b) — f(a)

Note that since

b
/ ydx=A(b) — A(a)

then, interchanging upper and lower limits,

/ ydx =A(a) —A(D) = —{A(b) — A(a)}
b

that is,

b a
/ydx=—/ ydx
a b

Interchanging the limits changes the sign of the integral.

The evaluation of definite integrals is illustrated in the following examples.

Example 13.7 Evaluazte 1
(a)/x2+1dx (b)/x2+1dx (c)/ sinx dx
1 2 0

2
Solution (@ Let[ stand for/ X2+ 1dx.
1

2 P 2
I:/x2+ldx:|:—+xi|
I 3 I

The integral is now evaluated at the upper and lower limits. The difference gives the
value required.

[ = 23+2 13+1 —8+2 4_10
T \3 3 3 33
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(b) Because interchanging the limits of integration changes the sign of the integral, we

find
1 2 10
/ x2+1dx=—/ PHldi=——
2 1 3

s
(c) / sinx dx = [—cosx]l = (—cosm) — (—cos0) =1—(—1) =2
0
Figure 13.10 illustrates this area.

sin x

» Figure 13.10
0 ™ X The area is given by a definite integral.

Note that:
(1) The integrated function is evaluated at the upper and lower limits, and the difference
found.
(2) No constant of integration is needed.

(3) Any angles are measured in radians.

Example 13.8 Find the area under z(z) = e* from¢ = 1 tot = 3.

3 3 e 3
Solution Area:f zdt = / e dr = [7:|
1 1 1

5[5

If the evaluation of an area by integration yields a negative quantity this means that
some or all of the corresponding area is below the horizontal axis. This is illustrated in
Example 13.9.

Example 13.9 Find the area bounded by y = x> and the x axis from x = —3 to x = —2.

Solution  Figure 13.11 illustrates the required area.
-2

[ #ae=[5]
" 4],

_ [ =2 (=3)*] _ 65
)

The area is 65/4 square units; the negative sign indicates that it is below the x axis.
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yA
y=x3 y .
y=sinx
-3 2
- \ .
0 x — \ g
Figure 13.12
Figure 13.11 The positive and negative areas cancel
Areas below the x axis are classed as negative. each other out.
Example 13.10 (a) Sketch y = sinx forx = —7mto x = 7.
7T
(b) Calculate / sinx dx and comment on your findings.
-7t
(c) Calculate the area enclosed by y = sinx and the x axis between x = —mand x = 7.
Solution (a) A graph of y = sinx between x = —7t and x = 7t is shown in Figure 13.12.

(b) / sinx dx = [—cosx]™,, = —cos(7) + cos(—m) =0

Examining Figure 13.12 we see that the positive and negative contributions have
cancelled each other out; that is, the area above the x axis is equal in size to the area
below the x axis.

(c) From (b) the area above the x axis is equal in size to the area below the x axis. From
Example 13.7(c) the area above the x axis is 2. Hence the total area enclosed by
y = sinx and the x axis fromx = —mwtox = 7wis 4.

If an area contains parts both above and below the horizontal axis then calculating an
integral will give the net area. If the total area is required, then the relevant limits must
first be found. A sketch of the function often clarifies the situation.

Example 13.11

Solution

Find the area contained by y = sinx from x = 0 to x = 37t/2.

Figure 13.13 illustrates the required area. From this we see that there are parts both above
and below the x axis and the crossover point occurs when x = 7t.

7T
/ sinx dx = [—cosx]{
0
= —cosmm+cos0=2

37/2
/ sinx dx = [— cos x]27/?

7T
Rlus
= —cos > +cosmt=—1
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YA
=N
37“ / y=sinx
0 ™ "
Figure 13.13
The positive and negative areas are calculated
separately.

The total area is 3 square units. Note, however, that the single integral over 0 to 37t/2
evaluates to 1; that is, it gives the net value of 2 and —1.

2 - 3T
sinx dx = [~ cosx];""" = —cos > +cosO0=1
0

The need to evaluate the area under a curve is a common requirement in engineering.
Often the rate of change of an engineering variable with time is known and it is required
to calculate the value of the engineering variable. This corresponds to calculating the
area under a curve.

Engineering application 13.3

Energy used by an electric motor

Consider a small d.c. electric motor being used to drive an electric screwdriver. The
amount of power that is supplied to the motor by the battery depends on the load on
the screwdriver. Therefore the power supplied to the screwdriver is a function that
varies with time. Figure 13.14 shows a typical curve of power versus time. Now,

dE
P=—
dr

where P = power (W), E = energy (J). Therefore, to calculate the energy used by
the motor between times 7, and z,, we can write

L
E=/ P dr
2

1

This is equivalent to evaluating the area under the curve, P(t), between ¢, and t,,
which is shown as the shaded region in Figure 13.14.

-
I

Power (watts)

Figure 13.14

Shaded area represents the energy used to
drive the motor during the time interval

f <t<t,.

-

4 1y Time (s)
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Engineering application 13.4

Capacitance of a coaxial cable

A coaxial cable has an inner conductor with a diameter of 1.02 mm and an outer
conductor with an internal diameter of 3 mm, as shown in Figure 13.15. The insulator
separating the two conductors has a relative permittivity of 1.55. Let us calculate the
capacitance of the cable per metre length.

Outer conductor

Cable sheath

1.02 mm 3 mm

Figure 13.15
Cross-section of a coaxial
cable.

Insulator

Inner conductor

Before solving this problem it is instructive to derive the formula for the capac-
itance of a coaxial cable. Imagine that the inner conductor has a charge of +Q per
metre length and that the outer conductor has a charge of —Q per metre length. Fur-
ther assume the cable is long and a central section is being analysed in order that end
effects can be ignored.

Consider an imaginary cylindrical surface, radius r and length /, within the insula-
tor (or dielectric). Gauss’s theorem states that the electric flux out of any closed sur-
face is equal to the charge enclosed by the surface. In this case, because of symmetry,
the electric flux points radially outwards and so no flux is directed through the ends
of the imaginary cylinder; that is, end effects can be neglected. The curved surface
area of the cylinder is 27tr/. Therefore, using Gauss’s theorem

D x 2mrl = QI

where D = electric flux density.

‘When an insulator or dielectric is present then D = ¢.¢,E, where E is the electric
field strength, ¢, is the relative permittivity, &, is the permittivity of free space and
has a value of 8.85 x 10~'2 F m~'. Therefore,

&.eoE2mrl = Ol

that is,

5= o (13.9)
2me &1

This equation gives a value for the electric field within the dielectric. In order to
calculate the capacitance of the cable it is necessary to calculate the voltage difference
between the two conductors. Let V, represent the voltage of the inner conductor and
V, the voltage of the outer conductor.
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The electric field is a measure of the rate of change of the voltage with position.
In other words, if the voltage is changing rapidly with position then this corresponds
to a large magnitude of the electric field. This is illustrated in Figure 13.16. The
magnitude of the electric field at point A is larger than at point B. As a positive
electric field, £, corresponds to a decrease in voltage, V, with position the relationship
between E and V, in general, is

dv
E=—— (13.10)
dr

This expression can be used to calculate the voltage difference arising as a result of
an electric field. In practice, this is a simplified equation and is only valid provided
r is in the same direction as the electric field. If this is not the case, then a modified
vector form of Equation (13.10) is needed.

Vi

dv
! . The gradient of the curve, T is proportional to the
= r

Figure 13.16

A B ' magnitude of the electric field.

In the case of the coaxial cable, E is in the same direction as r and so
Equation (13.10) can be used to calculate the voltage difference between the two
conductors. From Equation (13.10)

av
dr
Therefore the voltage at an arbitrary point, 7, is given by

V:—/Edr

Consequently, the voltage difference between points » = b and r = a is given by

=/

b
V,-V, —/Em

o [’ . .
= — —dr using Equation (13.9)
2megy Jo T

[In 7]’

2me g,

()
27, a

This gives the voltage of the outer conductor relative to the inner one. Thus the voltage
of the inner conductor relative to the outer one is

%—wzzg m@)

TEEy \a
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More generally, capacitance is defined as C = Q/V, where V is the voltage differ-
ence. Therefore
Q0  2meg,

-V, b
v,-V, ln<—>
a
Note that this is the capacitance per unit length of cable. Using e, = 1.55, a =

51 x107*m, b= 1.5 x 1073 m, we get
_ 27 x 1.55x 8.85 x 107"

1.5 x 1073
In{ —
5.1 x 10~*

o=

=799 x 107" ~ 80 pF m™!

Engineering application 13.5

Characteristic impedance of a coaxial cable

A commonly quoted parameter of a coaxial cable is its characteristic impedance, Z,.
The characteristic impedance is the ratio of the voltage to the current for a propagat-
ing wave travelling on an electrical transmission line in the absence of reflections.
The value of Z, is easy to select at the design stage by carefully choosing the dimen-
sions a and b together with the type of insulating material within the cable. The two
most common characteristic impedances for flexible cables are approximately 50 2
and 75 2. The main reason for selecting 50 €2 is that it represents a good compro-
mise between the ability to handle high power and the minimization of losses that
occur in thermoplastic dielectrics. The value of 75 €2 is mainly considered optimal
for situations of low power transmission and where losses are the most important
consideration. Often these 75 2 cables are of the air-dielectric type where the inner
conductor is supported by a spacer rather than a solid plastic dielectric. An example
of an application for a 75 €2 cable is the connection from a rooftop TV antenna to a
TV set.

It can be shown from fundamental transmission line theory that the characteristic
impedance of a loss-free cable is

1L,

Z=\z

It can be shown that the expression for the inductance of a coaxial cable is given by

As shown in Engineering application 13.4, the expression for the capacitance is

_ 2mee,
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EXERCISES 13.3

Evaluate the following integrals: © / /3 sinz dr
0

3
(a) / 2dx (b)
1

1
© / 2 @)
0
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Substituting for L and C in the equation for Z;

In (b>
1 b
SV S T (_>
27I8r80/ (b) 2ny &g
In| —
a

a
For the cable defined in Engineering application 13.4, and substituting for the per-
meability of free space, 1, = 47t x 1077,

1 1.5 x 1073
%=“_J at In (> =520
27\ 155 x 8.85 x 102 "\ 051 x 103

Use of a dummy variable

Consider the following integrals, /, and I,:

1 1
11=/t2dt 12=/x2dx
0 0

Then,

211 1
t=[5],-(5) 0=

So clearly I, = I,. The value of I, does not depend upon ¢, and the value of I, does not
depend upon x. In general,

b b
1=/fmm=ffmm

Because the value of I is the same, regardless of what the integrating variable may be,
we say x and t are dummy variables. Indeed we could write

b b b
1=/ f(z)dz=/ f(r)dr=/ £ dy

Then z, r and y are dummy variables.

() /n sin(t + 3) dt
0

41 72 2
| X dx (2) / cos 3t dt (h) / cos it dt
0 1

1 1.2
/ e’ dx (1) / tan x dx
—1 1
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2 Evaluate the following integrals:

1
(a) / 2+ 1de
0
b) /l;dl‘
( 0 1+12
2
(c) / 3 — 2¢% dx
1
2
@ [cHnatna
1

2
(e) / 2sin4t dt
0

m t
) ,/0 4cos(2> dr

3 Evaluate the following integrals:
1
(a) / 2 +0.5t — 6dr
0
3
3 2x
b — + — dx
(b) /2 —+2
2
(© / e ¥ —3e ¥ dx
1
2
(d) f 3sin(4t — 1) 4+ Scos(3t + 7t/2) dt
0
1
(e) / 2tant dt
0
152 1
— — — dx
® /0 L+x2 a2
4 Calculate the area between f(¢) = cost and the ¢ axis
as t varies from
@ Oto = () 0to =~
At 4 2
(c) TtOﬂ (d) Otom
5 Calculate the total area between f(t) = cos 2 and the
t axis as ¢ varies from
Solutions
1 (a) 20 (b) 1.3863 (c) 2
(d) 2.3504 (e) 0.5 (f) —1.9800
1
(® -3 (h) O (i) 0.3995
2 @ 2 ® = () —184.75
a 3 ) c .
53
(d) 3 (e) 0.5728 (f) 8

10

11

12

13

@ 0to> () o>  (c) Oto=
a 04 4.02 C 02

Calculate the area enclosed by the curves y = x> and
y=x.

Calculate the area enclosed by the graphs of the
functions y = > + 5 and y = 6.

Evaluate the following definite integrals:

()/1'5]+]+ Lo
a T T
1t e sint
(b) /4 > dx

1 8+ 3x2

1

(©) / sinhx dx
-1
1

(d) / coshx dx
-1

Calculate the area between y = 2 tant and the ¢ axis
for —1 <r < 1.4.

Find the area between y = sint, y = cost and the y
axis, forr > 0.

The velocity, v, of a particle is given by
v=(1+1)>2

Find the distance travelled by the particle fromz = 1
to t = 4; that is, evaluate f14 v dt.

Evaluate the area under the function x = 1/¢ for
1 << 10.

Evaluate

2
@) / 4 gy
3

7T
(c)/ sinx cos x dx
0

1
(b) f (e dr
0

2
(d) / sinhZx dx
1

65

@ —3 (b) 2275 (c) —0.639
(d) —0.9255 () 1.2313 () 1.1175
(a) 0.7071 (b) 1
(c) 0.7071 @ 2
(@) ! (b) ! (c) 1

2 2



1

6

4

3

(a) 1.0839 (b) 0.6468
(© 0 (d) 2.3504
4.7756

10
11
12
13
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0.4142
39

2.3026

(a) —3.6202 (b) 3.1945
© 0 (d) 5.4158

REVIEW EXERCISES 13

1

Find the following integrals:

(a) /3x2+xdx (b) /%+2t+2dt

(© f(1+Z)(1—z)dz (d) /\/;—%dt
(e / X3 4+ 4x3 dx
Given

dy

2 .
— =x“ +sinx+ cos2x + 1
X X X

find an expression for y(x).

Find the following integrals:
3

(a) / 3¢ + — dx
eX

) [(sena—ea

() / 2¢% 4 1dr

(d) /e"(l +e%) dx

(e) /467t —e Xt

Find the integrals

(a) /sin2x+costdx

(b) /ZSint—coszdz

o [aum(;)a

(d /sin(ﬂ —2z) +cos(m—2z) dz

(e) /tan(t + 7) dt

t
®) /25in3t+2sin<3> dr

5

Find the following integrals:

(a) /cosec(3l+7‘t) dr
X

(b) /sec(2 + 1) dx
T+t

(©) /cot(z) dr

(d) /3cosec<)3) — 2) dy

(e) / % cot(mt — 2z) dz

) / % sec(2t — 1) dr

Find the following integrals:

4 1
()/7(i (b)/id
¢ V1—12 0 21 — 2 ’

| 1
& o [ —— a
© /49+t2 @ /50+212

2 1
—dt ——dx
© /\/1—41?2 ® /\/36—9x2

3
- dx
(2 / 213
The speed, v(z), of a particle is given by
v(t) =t +e’

(a) Find the distance travelled by the particle.

(b) Calculate the distance travelled between t = 1
andt = 3.

The capacitance of a capacitor is 0.1 F. The current,
i(t), through the capacitor is given by

i(t) = 50sin 7t

Derive an expression for the voltage across the
capacitor.
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. . . .. ... /4 ! !
9 By using suitable trigonometric identities find ) / sin <2> 1+ cos <2> dar
0

(@) / sin® 2¢ 4 cos? 2¢ dt o
(e) / tan 3¢ dr
0

(b) / sin 2t cos 2t dt

1 14 Evaluate the following definite integrals:
dt

© / sin 2t 2k

cos 2t (a) f sin kt dt
@ [ 0

sin 2t 27/k
© /‘ sin 2t (b) [ cos kt dt

cos 2t 0

where k is a constant.
10 By expressin
v exp & 15 Evaluate the following definite integrals:

2% +x+2 05
B 4+x (a) / cosec(2x + 1) dx
as its partial fractions, find o1
/2x2+x+2dx (b) / sec 3t dr
3
XX /4
11 Evaluate the following definite integrals: © [ _ tan(x + 1) dx
1
() / 262 4183 dr 16 Evaluate the following definite integrals:
(@ /
(b) / 2 - xz
— 2 b — dx
(c)/o7 t+T7t5 dt ()/7194_)62

2 1 1
(d)/(+1><+2)d © / b
p T Do B2

4
3
(e) / Vx dx / 1
1 (d) 1 10+412 dr

-1,
® f ¥
2

17 (a) Calculate the area enclosed by the curve y = x,

the x axis and x = 2.

12 Evaluatle the following definite i?tegrals: (b) Calculate the area enclosed by the curve y = x3,
(a) / o3+l g (b) / e o+ 1dt the y axis and y = 8.
02 _11 18 Find the total area between f(f) = 2 — 4 and the ¢
_ is on the following intervals:
(© / & —1)2dz  (d) / e 4 e¥dx axis on
1 0 (@ [—4,-3] (b) [-3, 1]

© /0 et dx (© [0,3] (d) [-3,3]
-1 19 Calculate the area enclosed by the curve

13 Evaluate the following integrals: y = x> — x — 6 and the x axis.

W 20 Calculate the total area between y = x> — 3x — 4 and
@ 2sin3t dt the x axis on the following intervals:

o (@ [-2,-1] (b) [-2,1]
(b) o sin 2t — cos 2t dt (C) [2’ 4] (d) [2, 5]

/4 21 Calculate the area enclosed by the curve y = x> and
© tant +1 df the line y = x.



22 Calculate the area enclosed by y = x* + 4 and

1

y=12—x2

Solutions

x2

(a) x3+?+c

(®) 2In|t|+24+2t+¢
3

(©) z—%—kc

2

(d) gz3/2—2r1/2+c
353, 4

(e) gx +x"+c

X 1
3 —cosx + Esin2x+x+c
(a) 3¢*—3e"+¢

(b) e*+e ™+
oM

— 4t
(c) 2-f—+c

eZX
d e+ —+c¢
2
o2
(e) —4e”—|—7—|—c
(a) ! 2—|—1 in2x +
a) —5cos2et Ssindx+c

(b) —2cost —sint +c¢

(c) 8In sec(é) +c

(d) cos(mt—2z) — % sin(7t — 2z) 4+ ¢

(e) In|sec(t +m)|+c
) 2 3tr—6 ! +
——cos3t —6c¢cos| = :
3 3)7°

1
(a) 3 In | cosec (3t + 1) — cot(3t + m)| + ¢

(b) 2In sec(é + 1) —|—tan<; + 1)

(¢c) 2In sin(ﬂ +c

)

(d) 9ln|cosec X—Z — cot X—2
3 3

1
(e) —Zln|sin(7t— 22)| 4+ ¢

+

)

C

+c

Review exercises 13

455

2x
23 Calculate the area enclosed by y = sinxandy = —.
U

10

11

12

13

14

1
) 3 In |sec(2t — 7t) + tan(2t — )| 4+ ¢

(@ 4sin'v+c

1
b ol
()2sm v+c

© san' (L) +
c7an 7 c

1 t
(d) To tan~! (5> +c

(e) sin™'(2r) + ¢

I . _fx
) gsm 2 +c

(g) v3tan~! (x) +c

NG
@ 5 et
a — — € C
2

500
———CosTt + ¢
T
(a) t+c

cos 4t

(b -

+c

(b) 43181

1
(©) 3 In | cosec 2t — cot2t| + ¢

1

(d) Eln|sin2[| +c
1

(e) Elnlsec2t| +c

2In|x| +tan L x + ¢

()E (b) 0.1972 ()g
a 12 . C 6
38 14
@ = © - (f) 2.3863
(a) 17.2933 (b) 3.2765 (c) 15.2630
(d) 3.6269 () 0.1321
(a) % (b) —1 (c) 0.6550
(d) 09176 e) 0.0152
@0 (O
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15 (a) 0.5238 (b) 0.1015 (c) 0
16 (a) 2.1892 (b) 0.4290

(c) 0.3702 (d) 0.0825
17 (a) 4 (b) 12

25 23 46
18 (a) 3 ® 4 (© 3 (@ 3

19

20

21

22

23

125
6

17 b 6!
@ = b = ©

22

3

61
(d) 3
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INTRODUCTION

The previous chapter showed us how to integrate functions which matched the list of
standard integrals given in Table 13.1. Clearly, it is impossible to list all possible func-
tions in the table and so some general techniques are required. Integration techniques
may be classified as analytical, that is exact, or numerical, that is approximate. We will

now study three analytical techniques:

(1) integration by parts;
(2) integration by substitution;

(3) integration using partial fractions.

INTEGRATION BY PARTS

This technique is used to integrate a product, and is derived from the product rule for
differentiation. Let u and v be functions of x. Then the product rule of differentiation

states:

d( ) du n dv
—(u = — J—
T R T

Rearranging we have

dv_d( ) du
udx_dxuv de
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Integrating this equation yields

d d d
u—vdxzf—(uv)dx—/v—udx
dx dx dx

Recognizing that integration and differentiation are inverse processes allows

/ d(uv) dx
dx

to be simplified to uv. Hence,

J)omm (2)

This is the formula for integration by parts.

Example 14.1 Find/xsinxdx.

Solution We recognize the integrand as a product of the functions x and sinx. Let u = x,

d
av =sinx. Then au =1, v=—cosx. Using the integration by parts formula we get

/xsinxdx = x(—cosx) — /(— cosx)1ldx

= —XxCcosx 4+ sinx + ¢

When dealing with definite integrals the corresponding formula for integration by parts

is
b b
/u(%)dxz[uv]z—f v(ﬂ)dx
a \dx « \dx

Example 14.2 Evaluate

2
/ xe* dx
0

Solution We let

d
u=x and & e’
dx
Then
d
& 1 and v=e"
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Using the integration by parts formula for definite integrals we have

2 2
/ xe' dx = [xe']3 — / e* - 1dx
0 0

=2¢" —[e'];
=22 —[e? —1]
=e?+1

Sometimes integration by parts needs to be used twice, as the next example illustrates.

Example 14.3 Evaluate

2
/ e dx
0

Solution We let

= d — ="
Uu=x an o e
Then
d
—u=2x and v=c¢e"
dx

Using the integration by parts formula we have

2 2
/ e dx = [xze"]ﬁ - / 2xe* dx
0 0

2
=4e? -2 / xe* dx
0
2
Now / xe* dx has been evaluated using integration by parts in Example 14.2. So
0

2
/ Xefdx=4e®> —2[e*+ 1] =2¢> —2 =12.78
0

The next example illustrates a case in which the integral to be found reappears after
repeated application of integration by parts.

Example 14.4 Find

/ e’ sint dr
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Solution

We let
, dv .
u==e and — =sint
dr
and so
du
— = and vV = —cost
dt

Applying integration by parts yields

/e’ sintdt = —e’cost—/(—cost)e’dt+c

= —e‘cost—i—/e’costdl—i—c (14.1)

We now apply integration by parts to [ ¢’ cosz dr. We let

v
= and — =cost

! dr
Then

d

& and v =sint

dr
So

/e’costdt:e’ sint—/e’ sint dt (14.2)

Substituting Equation (14.2) into Equation (14.1) yields
/e’ sinrdr = —e' cost + ¢’ sins — / e sinrdr + ¢
Rearranging the equation gives
Z/e’ sinrdt = —e' cost + €' sint + ¢

from which we see that

. —e'cost +¢'sint + ¢
e’ sintdr =

2

Example 14.5

Solution

Evaluate

2
/ x"e"dx
0

forn =3, 4, 5.

The integral may be evaluated by using integration by parts repeatedly. However, this
is slow and cumbersome. Instead it is useful to develop a reduction formula as is now

illustrated.

v du .
Letu = x" and — = ¢*. Then — = nx"" and v = ¢*.
dx dx
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Using integration by parts we have

2 2
/ X'e"dx = [x”ex](z) — / nx""'e* dx
0 0

2
=2"? — n/ X letdx
0

Writing
2
I = / x'e"dx
0
we see that
2
I, :/ ¥ letdx
0
Hence
I, =2"*—nl_, (14.3)

Equation (14.3) is called a reduction forn;ula.

We have already evaluated /,, that is / xe* dx in Example 14.2, and found
0

11=e2+1

Using the reduction formula with n = 2 gives

2
/ Fetdx =1, = 2%* - 2,
0
=4e’ —2(e*+1)
=2e -2

Note that this is in agreement with Example 14.3.
With n = 3 the reduction formula yields

2
/ etdr = I, = 2%* — 31,
0
=8¢ —3(2e2—-2)
=2 +6

With n = 4 we have
2
/ xletdr =1, = 2%* — 41,
0

= 16e> — 4(2¢* + 6)
=8¢’ —24

With n = 5 we have
2
/ Xe'dx = I = 2°%* — 5,
0

= 32¢? — 5(8¢? — 24)
= 120 — 8¢?
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EXERCISES 14.2

1 Use integration by parts to find the following: (b) /tZ cos 37 dt
(a) / xsin2x)dx  (b) / re¥ dr p
(©) ftz sin| = | dr
2
[V
© f xcosxdx () / 2usin (2) dv 5 Evaluate the following definite integrals:
X 2
© [ @ [ fea
er 0
1
2 Use integration by parts to find (b) / 2 sint dr
-1
a) [ tInrdr !
( )/ (c) / 2 cos 3t dt
0
(b) / Inzdr . .
6 Obtain a reduction formula for

" 1ntdr -1
(C)/ ! (7 -1 I = f e dr  n, k constants

(d) / tsin(at + b) dt a, b constants
Hence ﬁnd[t2e3’ dr, /t3e3’ dr and/t4e3’ dr.

(e) / re®th gy a, b constants
7 Use integration by parts twice to obtain a reduction

3 Evaluate the following definite integrals: formula for
1 72 o
(a) / xcos2xdx (b) / xsin2xdx I, :/(; 1" sint dt
0 0
1 3 /2 /2
(©) / e dr (d) / 2linrdr Hence find / sinrdr, / £ sint dt
0 0
—1 1 o
2 2x dx and/ t7sint dr.
(e) ./O eTx 0
4 Find 8 Use integration by parts to find
in
7T/2 )
2.2t e cosxdx
(a) / tce” dt /(;
Solutions
sin2x  xcos2x 2nt 12
1 (@ - c 2 _5
4 2 (a) > 7 te
t 1 (b) tlnt —t+c¢
0 | -5 +c
39 (Ing)f"+! s
©

2
(c) cosx+xsinx+c¢ n+1 (n+1)

sin(at +b)  tcos(at + b)
— + I

(d
@ SSiII(;) —4v cos(é) +c a? a
t

1
at+b| ° _
) —e*(x+1)+c © e (a a2> e
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3 (a) 0.1006 (b) 0.7854 (c) 1.9488 N _ ekt _n, e (9% — 61 +2)
= —1° B
d) 69986 () 0.4542 ok kT 27
22— 24 1) e (93 — 92 + 61 —2)
4 — +c 27 ’
e 27t — 3613 + 3612 — 241 + 8)
2 22 81
(b) 6100531—!— 3 > sin 3t 4 ¢ . n—1
7 I,=n 5 -m-DI,_,
© 8 Sin( % ) _2(—3) COS( % ) T 1.4022, 2.3963, 4.5084
8 42281
5 (a) 12.7781 ) 0 (c) —0.1834

m INTEGRATION BY SUBSTITUTION

This technique is the integral equivalent of the chain rule. It is best illustrated by
examples.

Example 14.6

Solution

Find f Bx 4+ 1)>7 dx.

d d
Let z = 3x + 1, so that az = 3, that is dx = ?Z Writing the integral in terms of z, it
becomes

1 1 1 /37 1 Gx+1)37
2.7_d —— 2.7d — > — _
/Z3Z 3/ZZ s\a37) =337 T

Example 14.7

Solution

3
Evaluate / ¢ sin(¢?) dr.
2

dv
Let v =% so i 2¢t, that is

1
dt = —dv
2t

When changing the integral from one in terms of ¢ to one in terms of v, the limits must
also be changed. When t = 2, v = 4; when t = 3, v = 9. Hence, the integral becomes

% sinv 1 o 1
——dv = ~[—cosv]; = =[—cos9 + cos4] = 0.129
s 2 2 2

Sometimes the substitution can involve a trigonometric function.
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2
Example 14.8 Evaluate / sint cosz dt.
1

. dz ) .
Solution Putz = cos? so that = sint, that is sint df = —dz. Whent = 1, z = cos 1; when

t =2,z =cos2. Hence

2 cos2 Z3 cos2
/ sint cosztdtz—/ zzdz=—[—}
1 cos 1 3 cos |

cos® 1 — cos’ 2

3
elanx
Example 14.9 Find/ —dx.
cos? x
. dz )
Solution Putz = tanx. Then — = sec”x, dz = . Hence,
dx cos? x
etanx
/ 5 dx:fezdzzez+0=etanx+c
cos? x

Integration by substitution allows functions of the form to be integrated.

2
Example 14.10 Find/jx——}_ldx
X 4+x+2

. d
Solution Putz = x4+ x+2, then az = 3x> 4 1, that is dz = (3x% + 1) dx. Hence,

32 +1 d
/3x—+dx=/—z=ln|z|+c=ln|x3+x+2|+c
X +x+2 Z

Example 14.11 Find %d}c.

. d d
Solution Putz = f. Then & —f, that is
dx dx

df
dz = — dx.
< dx

Hence,

dfjdx . [dz _ _
/de_/ - =In|zl+c=In|f|+c

and so
df/dx
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The result of Example 14.11 is particularly important.

/%dlenmﬂ

4 2
3t +2¢
Example 14.12  Evaluate / S e
» P42 +1

Solution The numerator is the derivative of the denominator and so

4 2
32 42t s
‘/2 mdt:[lnh +t +1|]2=ln81—ln13=183

Example 14.13 Find

(@) fS _7
e!/2
()/ A

Solution The integrands are rewritten so that the numerator is the derivative of the denominator.

5 4
= dx=-In|5x -7
(a)/s 7 /5x— sinPx=7l+ec
2t
dt = - dr
()/z‘2+1 /t2+1
1n|t—|—1|+c

16;/2
(c)/ I/2+1dt—2/ I/2+1dt_21n|ef/2+1|+c

1

EXERCISES 14.3

Use the given substitutions to find the following 2 Evaluate the following definite integrals:
integrals: 2 )

(a) / +3)7d (b / sin 2t cos* 2 dr
(a) /(4x—|—1)7dx, z=4dx+1 1 0

1 5 2
(b) /ﬂsin(z3+1)dt, =41 © /0 3 di ) /0 Va+3xdx
—? _2 2 sin( 4/x
(c) / 4re™" dt, 7=t © / ( ) e
1 X

d 1-2)3dz,  1=1-
@ _/ ( 2) ‘ ‘ 3 Find the area between y = x(3x% 4+ 2)* and the x axis

fromx=0tox = 1.

(e) /cost(sin5 t)drt, z = sint
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4 Find 5 Evaluate the following:
dx+1 2 sin2x 1 2 /2
dx A .
() /2x2+x+3 (b) fc052x+7 (a) ./0 (1+3x)2dx (b) /0 sint+/cost dt
© [ 525 @ [Fw [ [ o
_ ——dx — dt
9 2x 211 © | srertd @ | =
© / 2 2
tln t (e) xsin(7t — x°) dx
0
Solutions
8 3
1 (a) (4)6;;1) T (b) _COS(I3+ 1) Ny 4 (a) ln(2x2—|—x+3) +c
(b) —In(cos2x+7) + ¢
3
_2e—1* 21— )43 3
() -2 +¢ @ —; A= +c (© =50 =20 +c
1 .6 1
(e) gsm t+c (d) Eln(12+1)—}—c
2 (a) 3.3588 x 10° (b) 0.2 (c) 1.7183 (e) In(Int) +c¢
(d) 5.2495 (e) 0.7687 5 (a) 05 (b) 0.6667 (c) 0.3769
3 103.098 (d) 2.7899 (e) 0.8268

(I’%% INTEGRATION USING PARTIAL FRACTIONS

The technique of expressing a rational function as the sum of its partial fractions has
been covered in Section 1.7. Some expressions which at first sight look impossible to
integrate may in fact be integrated when expressed as their partial fractions.

Example 14.14 Find

1
dx
@ [ 5
13x—4
b ———dx
®) / 6x2 —x—2
Solution (a) First express the integrand in partial fractions:
1 1 A Bx+C

x3+x:x(x2+1)_x x2+1

Then,

1=AG*+ 1)+ x(Bx+C)
Equating the constant terms: 1 = A so that A = 1.
Equating the coefficients of x: 0 = C so that C = 0.
Equating the coefficients of x’: 0 = A 4+ B and hence B = —1.
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Then,

1 1 X
X3 +x x x24+1

1
=ln|x|—§1n|x2+1|+c=ln

467

x2+1
13x — 4 13x — 4
(b) T k=
6x2 —x—2 2x+1)Bx —2)
/ & + 2 dx i tial fracti
= ing partial fraction
i w2 using partial fractions
3 2 2 3
=3 [l
2) 2x+1 3) 3x—-2
3 2
=—In|2x+ 1|+ -In|3x—2|+¢
2 3
Y48 — 22 43— 1
Example 14.15  Evaluate / + dr.
0 2124+ 1

Solution  Using partial fractions we may write
4 =207 +3r—1
t
212 + 1 212 41

Hence,

/14t3—2t2+3t—1
0

¢ 1
di=[ 21— 14+ —dt=|P—t+-In]2+1
22+ 1 /0 211 [ gl ']0

1 1
= |:1—1+Zln3:| - |:O—0+ Zln1i| =0.275

1

1

EXERCISES 14.4

By writing the integrand as its partial fractions find 2 Evaluate the following integrals:
x+3 3 5x+6
@ / @) / 22 +4x
1 2x +4x
! 3x+5
(b) —
0o G+ Dx+2)
8x+ 10 2 3-3x
dx c
© /4x2+8x+3 © ) era®
()/2124—31—}-3 ()/‘ dx+ 1
2(t+1) ]2x2+x—
2% +x+ 1 42— 1
© / —_ ©
X+ x G2+ DE—1)
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1

4dx +7

——— and the x
4x2 +8x+3

Find the area between y =

axis fromx =0tox = 1.

Use partial fractions to find
3x —|— 2
(@ /

Solutions

(@ 3lnx—2In(x+1)+c¢
®) 2In(t+1)—In(t—1)+c
(©) %ln(2x+ 3) + %ln(Zx—{— 1) +c¢

@ 1n(t+1>+@+c

(e) 2In(x+1) — 1 +c
X

(a) 2.1587
(b) 1.7918

()/‘ t+3
t2+2t—|—1

© /2t2+3t+1
134t

6t +3
d dr
()/zﬂ S5t+2

(¢) —0.09971
(d) 0.1823
(e) 0.9769

1.2456
(a) 1.8767

2
b) 1 1) — ——
(b) In@z +1) H_]+c

1
Eln(z‘2 +1)+Int+c¢
(d) 5Int—2)—2InQ2Qt — 1) + ¢

(c) 3 tan~!7 +

REVIEW EXERCISES 14

1

Use the given substitution to find the following
integrals:

1
(a) /(9t+2)10dz 2=9+2
0
5
(b) / (—t+ D%dr z=—1r+1
3
3
(©) /(4x—1)27dx z=4x—1
6
(d) /«/3t+1dt 2=3t+1
© /<9y—2>”dy t=9y-2
23
—— d =27+5
() /o 22150 Z y=2z+
() / Psin@dydt  z=0

(h) /xzex3+1 dr  z=2+1

0.5
( / sin(2¢)e%s ) gy 7z = cos(2t)
0

=

s
G) / sinz cos® 7 dt z = cost
0

k) /cosz«/ sint dr z = sint

2

5

Use integration by parts to find
7t/2 7t/2
(a) / e cos x dx (b) / e sinxdx
0 0

Find

Int

using
(a) integration by parts
(b) the substitution z = Intz.

The integral /, is given by

7t/2
I, = / sin” 6 d@
0

(a) Statel,_,.
(b) Show
n—1
I = I,

n n n—

(c) Evaluate [, I}, I, and I.

Evaluate

12
dr
@ / £+l




1

2

3

7t/3
(b) / sint cost dt

(C)/
3x—17
(d)/ dx
(x 2)x=3)(x—4)

© / a1

Evaluate

1 3 ) )
(a) W + sint cos“ t dr
(b) / 42" 111+ 192 dr

(©) / sin? wt + cos® wt + w dr
0

 constant

@ /21+t+z2
1 t(1+12)

(e) / (t +e')sinrdr

3 1+4x

® 1 2x+ 4x2

Calculate the area under y(x) =

tox =3.

Solutions

(a) 2.8819 x 10°
(b) 2322
(c) —1.2 x 103
2
@ 5Gr+ DY 4
(9y —2)'8

© =g T

) 9.092 x 1073
1
() —5cos(r) +¢

3
vl
h +
® 3 ¢

(i) 0.5009
L2
@

2
&) g(sint)3/2 +c

3

(a) 4.2281

(In1)?
2

(b) 9.4563

+ e2x

2x
from x =
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8 Evaluate the following integrals:
() /(—21 +0.1)*dr
(b) /(1 + x) sinx dx

2
(©) / xsin(1l + x) dx
1

6
t
(d)/ 4
3 V241
1
—dr
© /t3+212+t

5
o [ e

9 Find

()/‘ cost

a 10+smt

© /t(l—i—lnt) d

© /l—i—lnx
xInx

10 Find/x%x dx.

2smtcost
(b)
1 + sin?¢

(d) /761(1 e dt

7t/2
4 (a) I, 2_/0 sin"~% 6 do

(c) =,1,0.7854, 0.6667

(SR

5 (@ -Inld+1+c

g
(b) 3
(c) O

(d) —%1n|x—2|
() Inle*+1|+c¢
6 (a) 1.5778 (b) 317.3
(d) 1.0149 (e) 1.2105
7 3.8805

—2t+0.1)°
8 () _%

(b) —(1+x)cosx+sinx+c¢
(¢) 0.7957

5
—21n|x—3|+§1n|x—4|+c

(©) m(l+w)
(f) 0.9730
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(d) 2.9205
1
1 -1 I+ —
(e) Injt| —1In|r+ |+t+1+c
(f) 0.3066
9 (a) In(sint 4+ 10) + ¢
(b) In(sin?7 4+ 1) + ¢

10

(¢) In(1 +1Int)+c
d —In(14+e ) +c
(e) In(xInx) + ¢
(- 1)
f +

C
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INTRODUCTION

Currents and voltages often vary with time. Engineers may wish to know the average
value of such a current or voltage over some particular time interval. The average value
of a time-varying function is defined in terms of an integral. An associated quantity is
the root mean square (r.m.s.) value of a function. The r.m.s. value of a current is used in
the calculation of the power dissipated by a resistor.

AVERAGE VALUE OF A FUNCTION

Suppose f(¢) is a function defined on a < ¢ < b. The area, A, under f is given by

A= bdt
[

A rectangle with base spanning the interval [a, b] and height & has an area of h(b — a).
Suppose the height, £, is chosen so that the area under f and the area of the rectangle are
equal. This means

b
h(b—a):/ fdt
[ rde
T b—ua

Then £ is called the average value of the function across the interval [a, b] and is illus-
trated in Figure 15.1:

h

Ji fde

average value = b

—a
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f@

ol N

7

Figure 15.1
» The area under the curve from ¢t = a tot = b and the
! area of the rectangle are equal.

Example 15.1

Solution

Find the average value of f(t) = t* across

(a) [1,3]
(b) [2,5]

1 == =
(a) average value A1

fieda 187 13
2

1

13

(b) average value = =

1

w|

| I |

[ 5] W
I

Example 15.1 shows that if the interval of integration changes then the average value of
a function can change.

Engineering application 15.1

Saw-tooth waveform

Recall from Engineering application 2.2 that engineers frequently make use of the
saw-tooth waveform. Consider the saw-tooth waveform shown in Figure 15.2.

v A

5

Figure 15.2
A saw-tooth waveform.

Calculate the average value of this waveform over a complete period.
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Solution

We first need to obtain an equation for the waveform. We choose the interval
0<r<?2.

The general equation for a straight line is

v=mt+c

When # = 0 then v = 0. So
0=0+c¢
c=0

When ¢ = 2 then v = 5. So
5=m(2)
m=2.5

Hence
v =25t

The average value is given by

1 [2 172527
vav = 5 5 25t dt = E 2
0

Engineering application 15.2

A thyristor firing circuit

Figure 15.3 shows a simple circuit to control the voltage across a load resistor, R; .
This circuit has many uses, one of which is to adjust the level of lighting in a room.
The circuit has an a.c. power supply with peak voltage, V. The main control element
is the thyristor. This device is similar in many ways to a diode. It has a very high
resistance when it is reverse biased and a low resistance when it is forward biased.
However, unlike a diode, this low resistance depends on the thyristor being ‘switched
on’ by the application of a gate current. The point at which the thyristor is switched
on can be varied by varying the resistor, R. Figure 15.4 shows a typical waveform
of the voltage, v, , across the load resistor.

The point at which the thyristor is turned on in each cycle is characterized by
the quantity o7, where 0 < o < 0.25 and T is the period of the waveform. This
restriction on « reflects the fact that if the thyristor has not turned on when the supply
voltage has peaked in the forward direction then it will never turn on.

Calculate the average value of the waveform over a period and comment on the
result.
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v A
Vs |-+
I’I I’I I’r\
1 7 7
o o AN}
’ ’ ’
VS @ i I ro
% '.‘ % I.‘ L
) [E— \ — \ A
Thyristor \/ i Rg  |aT \ !aT \ laT !
A} ’ \ ’
\ ’ AY ’
\\’I \"I
Figure 15.3 Figure 15.4

A thyristor firing circuit. Load voltage waveform.

Solution
The average value of load voltage is

17 1 (77 (2t
— v dt = — Vgsin( —— |dr
T Jy T Jor T

Vo T 2\ V.
— ?S%I:_ COS(T):IQT = ﬁ(l + cos 27 )

1

on of the thyristor reduces the average value of the load voltage.

If « = 0, then the average value is Vg /7, the maximum value for this circuit. If
a = 0.25, then the average value is Vs /27 which illustrates that delaying the turning

EXERCISES 15.2

Calculate the average value of the given functions
across the specified interval:

(@) f(@t)=1+1tacross[0,2]

(b) f(x) =2x—1across[—1, 1]
(¢) f(t) =1 across [0, 1]

(d) f(t) =1 across [0, 2]

(e) f(z) =2*>+zacross [1,3]

Calculate the average value of the given functions
over the specified interval:

(a) fx)= X3 across [1, 3]

(b) f(x) = 1 across [1, 2]
x

(c) f(t) =/t across [0, 2]
(d) f(z) =2 —1across [—1, 1]

e) f@t)= tiz across [—3, —2]

(a) f(t) = sint across |:0, 72[}

(b) f(t) = sint across [0, 7]

(c) f(t) = sinwt across [0, 7t]
(d) f(t) = cost across |:0, 7;:|

(e) f(t) = cost across [0, 7]
(f) f(t) = coswt across [0, 7]
(g) f(t) = sinwt 4 cos wt across [0, 1]

4 Calculate the average value of the following
functions:

(a) f(t) = +/t + 1 across [0, 3]
(b) f(t) = €' across [—1, 1]
(c) f@t)=1+¢" across [—1, 1]

3 Calculate the average value of the following:
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Solutions
1 4 19 1 2
1 (@2 (b -1 (©) 3 d 3 (e) 3 () —[1 —cos(mw)] @ -
Ttw 7T
2 (a) 10 (b) 0.6931 (c) 0.9428 © 0 ) sin(7tw)
o}
d -1 (e) é © 1+ sinw — cosw
2 2 ®
3 (a — (b) — 14
P T 4L (a) o (b) 1.1752 () 2.1752

IELE] rooT MEAN SQUARE VALUE OF A FUNCTION

If f(¢) is defined on [a, b], the root mean square (r.m.s.) value is

[P(f@)?dr
b—a

rm.s. =

Example 15.2 Find the r.m.s. value of f(¢t) = t? across [1, 3].

_ NG _\/fft“dt o ws/sn 24
Solution rms. = \/ 31 = = > =V10 = 4.92

Example 15.3 Calculate the r.m.s. value of f () = Asint across [0, 271].

B .
I " A2gin’t dr

Solution r.m.s. =
27

B \/A2 ST (1 —cos21)/2dr

27
_\/A2 |:t sm2ti|27T
4m 2 ]
—,/AZZT[— 4 07074
Vo4 2T

Thus the r.m.s. value is 0.707 x the amplitude.
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Example 15.4 Calculate the r.m.s. value of f(¢) = A sin(wt + ¢) across [0, 271/ w].

Solution

L2 A2 sin® (ot 4 ¢) dr
r.m.s. =
21t/ w

Alw 27/
= —/ 1 —cos2(wt + ¢) dt
4t J,

B Azwt sin2(wt + ¢) 17
\ 4n 2w 0

\/Aza) (2_71 _sin2Qn+9) sin2¢)

4 \ 2w 2w

Now sin2(27t 4+ ¢) = sin(47 + 2¢) and since sin(¢ + ¢) has period 27t we see that
sin(47t + 2¢) = sin2¢. Hence,

A’w2m A? A
rms. =,/ —— =,/ — =—==0.707A
4t w 2 2

Note that sin(wt + ¢) has period 27t/w. The result of Example 15.4 illustrates a general
result:

The r.m.s. value of any sinusoidal waveform taken across an interval of length one
period is

0.707 x amplitude of the waveform

Root mean square value is an effective measure of the energy transfer capability of a
time-varying electrical current. To see why this is so, consider the following Engineering
application.

Engineering application 15.3

Average power developed across a resistor by a time-varying
current

Consider a current i(¢) which develops a power p(¢) in a load resistor R. This current
flows from time ¢ = ¢, to time ¢t = t,. Let P,, be the average power dissipated by the
resistor during the time interval [tl, tz]. We require that total energy transfer, E, be
the same in both cases. So we have

E=P (t,—1,) = fzp(t)dt

1
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Now

p(t) = (i(t))’R

and so

l2
P (t,—1t)= / i*Rdt
Z]
If we now consider the average power dissipated by the resistor to be the result of an
effective current ;. then we have

%
LiR(t, — 1) = f R dt

gl

i
Pty — 1) = /ziz dr
t

1

We see that the equivalent direct current is the r.m.s. value of the time-varying
current.

Engineering application 15.4

Average value and r.m.s. value of a periodic waveform

Consider the periodic waveform shown in Figure 15.5.
The current i(t) is

i(t) =20e™"’ 0<rt < 10, period T = 10

(a) Calculate the average value of the current over a complete period.
(b) Calculate the r.m.s. value of the current over a complete period.

i(7)
20

Figure 15.5

Waveform for Engineering application
0 10 20 30 ¢t 154,
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Calculate the r.m.s. values of the functions in . Calculate the r.m.s. values of the functions in
Question 1 in Exercises 15.2. Question 3 in Exercises 15.2.

. Calculate the r.m.s. values of the functions in . Calculate the r.m.s. values of the functions in
Question 2 in Exercises 15.2. Question 4 in Exercises 15.2.

. (a) 2.0817 (b) 1.5275 (c) 0.4472 . (a) 0.7071
(d) 1.7889 (e) 6.9666 (b) 0.7071

2 @ 124957 (b) 07071 () 1 o [T s
@ 1.0690 () 0.1712 2 2w



(d) 0.7071
() 0.7071

® 1 n sin 7w cos Ttw
2 27w
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sin @

(&) 41+

w

(a) 1.5811 (b) 1.3466 (c) 2.2724

REVIEW EXERCISES 15

1

2

Find the average value of the following functions
across the specified interval:
(a) f(t) =3 —tacross [0, 4]
(b) f(t) =1* —2across [1, 3]
1
) ft)y=1t+ n across [1, 4]
(d) f(t) =/t + 1across [0, 4]
e) f(@t)= 23 across [0, 1]
Calculate the average value of the following:
. s
(a) f(¢) = 2sin2t across |:0, 2:|
. s
(b) f(t) = Asin4t across |:O, 2j|
(c) f(t) =sint + cost across [0, 7t]
1
@ f@) = cos(z) across |:0, ;i|
(e) f(t) = sintcost across [0, 7]
Solutions
7
(a) 1 (b) 3 (c) 2.9621
7 3
d — z
(d 3 (e) 5
4 2
(@ — (® 0 © =
T T
(d) 0.9003 (e) 0
ek—1
(a) A Z (b) 0.1663
(c) 2.8410 (d) 3.6269
(e) 4.1945
A2+ B2
(a) average =0, rm.s. =

2

3 Calculate the average value of the following

functions:
(@) f(1) =Ael across [0, 1]
b) f(t) = % across [0, 2]

e
(c) f(t)=3—e"across|l,3]
(d) f(@)=¢ +e " across [0, 2]
(e) f(t) =t+ ¢ across [0, 2]

Find the average and r.m.s. values of
Acost 4 Bsint across

(a) [0,2m]
(b) [0, 7]

Find the r.m.s. values of the functions
in Question 1.

Find the r.m.s. values of the functions in
Question 2.

Find the r.m.s. values of the functions
in Question 3.

(b) average = 2—B,r.m.s.= A*+ B
U 2

(a) 1.5275 (b) 3.2965 (c) 3.0414
(d) 2.3805 (e) 0.6547
(a) 1.4142 (b) % (c) 1
(d) 0.9046 (e) 0.3536

2%k _
@ Ay — (b) 0.2887
(c) 2.8423 (d) 3.9554
(e) 4.8085
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INTRODUCTION

This chapter examines some further topics in integration. Orthogonal functions are intro-
duced in Section 16.2. These functions are used extensively in Fourier analysis
(see Chapter 23). Some integrals have one or two infinite limits of integration, or have
an integrand which becomes infinite at particular points in the interval of integration.
Such integrals are termed ‘improper’ and require special treatment. They are used ex-
tensively in the theory of Laplace and Fourier transforms. The Dirac delta function, §(¢),
has been introduced in Chapter 2. The integral properties are examined in Section 16.4.
The chapter concludes with the integration of piecewise continuous functions and the

integration of vectors.
ORTHOGONAL FUNCTIONS

Two functions f(x) and g(x) are said to be orthogonal over the interval [a, b] if

b
/ FOg00 dx = 0

To show that two functions are orthogonal we must demonstrate that the integral of their

product over the interval of interest is zero.
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3
Example 16.1 Show that f(x) = x and g(x) = x — 1 are orthogonal on |:O, E]

3/2 3/2 @ e 3/2 9 9
Solution —Ddx= 2 _xdx=|=—-2| =2_Z=0
/0 Y= [o o [ 372 L 8 8

3
Hence f and g are orthogonal over the interval |:O, 5]

Clearly functions may be orthogonal over one interval but not orthogonal over others.
For example,

1
/ x(x—1)dx #0
0

and so x and x — 1 are not orthogonal over [0, 1].

Example 16.2 Show f(t) = 1, g(t) = sint and h(¢) = cost are mutually orthogonal over [—7t, 7t].

Solution We are required to show that any pair of functions is orthogonal over [—7t, 7t].

7T
/ Isinzdt = [—cost]™, = — cos 7+ cos(—7r)

-7
——(-D+ (=) =0

7T
/ lcostdt = [sint]”, = sin7t — sin(—m) = 0

s

Using the trigonometric identity sin 2A = 2sin A cos A, we can write

" 1 201"
/ sintcostdt = / —sin(2t)dr = — cos(21)
_ 2 4 .

7T 7T

_cos(27r) —cos(—2m)
2 =

Hence the functions 1, sint, cos¢ form an orthogonal set over [—7r, 7t].

0

The set of Example 16.2 may be extended to

{1, sint, cost, sin(2t), cos(2t), sin(3t), cos(3t), ..., sin(nt), cos(nt)} neN

Example 16.3  Verify that {1, sinz, cosz, sin(2t), cos(2t), ...} forms an orthogonal set over [—7, 7).

Solution  Suppose n, m € N. We must show that all combinations of 1, sinn¢, sinmt#, cos nt and
cos mt are orthogonal.

/" Isin(nt) dr = [Ls(m)]n _ — cos(n7) + cos(—nm) _0
- n o

7T n
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In a similar manner, it is easy to show
s
/ l1cos(nt)dr =0
-7
Also, using the trigonometric identities in Section 3.6
7T 1 7T
/ cos(nt) sin(mt) dt = 3 / sin(n + m)t — sin(n — m)t dt
—m -7t

We have seen that f_nﬂ sinnt dt = 0 for any n € N. Noting that (n + m) € N and
(n —m) € N, we see that

s
/ sin(n + m)t — sin(n —m)tdr =0
—7T

It is left as an exercise for the reader to show that

s
f sinnt sinmt dt =0 n=#m

s

7T
/ cosntcosmtdt =0 n=#m

s

The functions thus form an orthogonal set across [—7t, 7t].

The result of Example 16.3 can be extended:

{1, sinz, cost, sin 2t, cos 2¢, . . .} is an orthogonal set over any interval of length 27t

More generally:

. (27t 27t . (4t 47t
1,sinf — ), cos{ — |, sin{ — ), cos{ — |, ...
T T T T

is an orthogonal set over any interval of length 7'. In particular, the set is orthogonal

[0, T] and LTI
over and | ——, — |.
’ 272

These results are used extensively in Fourier analysis.

Example 16.4 Find

@)/ﬂgﬁmnm neZ n+0

@)/ cos?(nt) dt nez n#0
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(a) We use the trigonometric identity

1 — cos2nt

sin’ nt =
2

to get

o, T 1 — cos2nt 1
sin“(nt) dt = ——dt = —dt=m
. - 2 2

using the orthogonal properties of cos(nt).

(b) / cos?(nt) dt = / 1 — sin®(nt) dt

s —T7T

=2n—TT="T

EXERCISES 16.2

Show f(x) = X% and g(x) = 1 — x are orthogonal

5]
across | 0, = |.
3

It is a simple extension to show that integrating sin®(nt) or cos®(nt) over any interval
of length 27t yields the same result, namely 7t. It is also possible to extend the result of
Example 16.4 to show

T2 (2nmt T2 (2nmt T
sin dr = cos dt = — new n=+#0
-1/2 T -T2 T 2

2nTtt 2nmt
Finally, integrating sin’ (%) and cos? <nT) over any interval of length 7' gives

T
the same result, that is >

(b) Find another interval over which f(z) and g(¢) are
orthogonal.

4 Show f(t) =e' and g(t) =1 — e 2 are orthogonal
across [—1, 1].

1
Show f(x) = — and g(x) = x2 are orthogonal over 5 Show f(x) = /x and g(x) = 1 — /x are orthogonal
[k, k]. 6
(a) Show f(t) =1 —tand g(t) = 1 +1 are on 015 .

orthogonal over [0, «/§].

Solutions

(b) [—+/3,0]

IEIE] MPROPER INTEGRALS

There are two cases when evaluation of an integral needs special care:

(1) one, or both, of the limits of an integral are infinite;

(2) the integrand becomes infinite at one, or more, points of the interval of integration.
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If either (1) or (2) is true the integral is called an improper integral. Evaluation of
improper integrals involves the use of limits.

Example 16.5 Evaluate/ —dr.
2

_ /°°1 [
Solution , 29777,

1 1
To evaluate 7 at the upper limit we consider lim -7 Clearly the limit is 0. Hence,

—00
1 1 1
/ —dt=0—(—-2)==
, 2 2 2

1

Example 16.6 Evaluate/ e™ dx.

—0o0

1 e2x 1
Solution / e dx = [7]
e2¢
We need to evaluate lim > This limit is 0. So,

1 2! 2
/ Fdr= || =% _0=369
. 2. .72

Engineering application 16.1

Capacitors in series

Engineers are often called upon to simplify an electronic circuit in order to make
it easier to analyse. One of the arrangements frequently met is that of two or more
capacitors connected together in series. It is useful to be able to replace this con-
figuration by a single capacitor with a capacitance value equivalent to that of the
original capacitors in series. Derive an expression for the equivalent capacitance of
two capacitors connected together in series (see Figure 16.1).

Solution

In Engineering application 13.2 we obtained an expression for the voltage across a
capacitor. This was

1/‘_
v=— [ idt
C




v
-

l
G G
- -
Vi L)

Figure 16.1

Two capacitors
connected in series.
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This can be written as a definite integral to give the voltage expression across the
capacitor at a general point in time, 7. The expression is

1 t
v=—/ idt
CJw

Now consider the situation depicted in Figure 16.1. Writing an equation for each of
the capacitors gives

1 [ 1 (!
== ids U, = —
Ch Jss (/.

By Kirchhoff’s voltage law, v = v, + v, and so

1 ! 1 ! 1 1 !
v:—/ idt+—/ idt=<—+—>[ ide
C1 —00 Cz —0o0 Cl C2 —

Therefore, the two capacitors can be replaced by an equivalent capacitance, C, given
by

v, ide

1_1+1_q+q
c ¢ ¢ CG
so that

_ GG
C; 4G
The result is easily generalised for more than two capacitors. For example, for three
capacitors we have

1 1 1 1
cTa'a’e
so that
_ C GG
a GG +C G+ (G

You may wish to prove this result.

Example 16.7 Evaluate/
3

Solution

2 1
— —dt.
2t +1 t

x 2 1
— —dt=[In|2t + 1| — In|z|]]3°
A w1 1 [In |27 + 1] = In|z|]3
:|:ln i| =|:ln
3
. 1 7
= lim |:ln<2+ —>j| —1In -
t—00 t 3

= —0.1542

2t +1

2+ -
t

1:|°o
3

N

:1n2—lnz:1n
3
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Example 16.8

Solution

o0
Evaluate / sint dt.
1

o0
: o0
/1 sint dt = [—cost]]

Now lim, , . (— cost) does not exist, that is the function cos ¢ does not approach a limit
ast — 0o, and so the integral cannot be evaluated. We say the integral diverges.

Example 16.9

Solution

1
1
Evaluate / —dx
0 VX

The integrand, , becomes infinite when x = 0, which is in the interval of integration.

1
Jx
1
1
The point x = 0 is ‘removed’ from the interval. We consider / —— dx where b is
b

NG

slightly greater than 0, and then let b — 0. Now,

1
1 _ |
/bﬁdx_[zﬁ]b_z 2Vb
Then,

/—dx_h /—dx_bhm(2 2Vb) =2

b—0F

The improper integral exists and has value 2.

Example 16.10

Solution

1
Determine whether the integral / — dx exists or not.
0o X
21
As in Example 16.9 the integrand is not defined at x = 0, so we consider / — dx for
r X
b > 0and then let b — 07,
*1
/ —dx=[In[x|]]; =In2 —Inb
b X
So,

21
lim(/ - dx) = 1lim(In2 — Inb)
b—0 p X b—0

Since lim,,_, , In b does not exist the integral diverges.

Example 16.11

Solution

2

1
Evaluate — dx if possible.
1 X

We ‘remove’ the point x = 0 where the integrand becomes 1nﬁn1te and consider two
b

1
integrals: — dx where b is slightly smaller than 0, and / — dx where c is slightly
1 X

larger than 0. If these integrals exist as b — 0~ and ¢ — 0 then f — dx converges. If
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2
1

either of the integrals fails to converge then / — dx diverges. Now,
X

b
—dx=1In|b| —In|—1| = In|b|
1 X
b
lim —dx = lim (In |b])
b—0- J_| x b0~
2

This limit fails to exist and so — dx diverges.
1 X

Engineering application 16.2

Energy stored in a capacitor

A capacitor provides a useful means of storing energy. This energy can be discharged
by connecting the capacitor in series with a load resistor and closing a switch. The
stored electrical energy is converted into heat energy as a result of electrical cur-
rent flowing through the resistor. Consider the circuit shown in Figure 16.2 which
consists of a capacitor, C F, connected in series with a resistor with value R 2 and
isolated by means of a switch, S. We wish to calculate the amount of energy stored in
the capacitor. The switch is closed at # = 0 and a current, 7, flows in the circuit. We
have already seen in Chapter 2 that for such a case the time-varying voltage across
the capacitor decays exponentially and is given by

v = Ve—t/RC

So, using Ohm’s law

Figure 16.2
The capacitor is discharged by closing the switch.

Q
| 1
L

=

Now the effect of closing the switch is to allow the energy stored in the capacitor to
be dissipated in the resistor. Therefore, if the total energy dissipated in the resistor
is calculated then this will allow the energy stored in the capacitor to be obtained.
However, the energy dissipation rate, that is power dissipated, is not a constant for
the resistor but depends on the current flowing through it. The total energy dissipated,
E, is given by

E = /OOP(t)dt
0

where P(¢) is the power dissipated in the resistor at time ¢. This equation has been
discussed in Engineering application 13.3. Now,
RV2 e—2t/RC V2 e—2t/RC

P =i’R =
R2 R
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[ee] VZ —2t/RC V2 [e'e}
E= f T dr=— | g
0 R R Jo
_ VZRC[ —2t/RC]°°
Y 2 S
Now
lim e 2/R¢€ =
—00

and so the energy stored in the capacitor is given by

cv?
1§ ===
2

Example 16.12 Find

o0
/ e ¥ sint dt s>0
0

. o . . d .
Solution Using integration by parts, with u = e~ and d_: = sint, we have

(o] o0
— . —] o0 ¢
/ e Vsinrdr = [—e " cost] —s/ e ¥ costdt
0 0

Consider the first term on the r.h.s. We need to evaluate [—e’” cos t] ast — oo and when
t = 0. Note that —e ™ cost — 0 ast — oo because we are given that s is positive. When
t =0, —e ¥ cost evaluates to —1, and so

o0 o0
/ e sintdt =1— s/ e costdt
0 0

Integrating by parts for a second time yields
/ e Vsintdt =1—s {[es’ sint] + s/ e sintdt}
0 0
=1 —s2/ e " sint dr
0

because [e‘“ sin t];o evaluates to zero at both limits. At this stage the reader might sus-
pect that we have gone around in a circle and still need to evaluate the original integral.
However, some algebraic manipulation yields the required result. We have

o0 o0
/ e sinrdr + 5 / e ¥sinrdr = 1
0 0

a+ﬁ/ e sintdr = 1
0
o0

1
/ e sintdt =
0 1 + S2




EXERCISES 16.3

1 Evaluate, if possible,

(a)/ e ' dr
0
(b)/ e M qr
0
% |
(C)/ —dx
1 X
%
(cl)/l S

3
(e) [1 x_zdx

16.4 Integral properties of the delta function 489

2 Evaluate the following integrals where possible:
4 3
3 1 1
(a) / — dx (b) / + dx
0o X— 2 0o X— 1 x—2

2 1 o)
k is a constant, k > 0 (c) / 5 dx (d) / sin 3¢ dt
0o x*—1 0

3
(e) / xe¥dx

3 Find

o0
/ e costdr s>0
0

Solutions
1 d t exist d) d t exist
7 @ 1 ) L (©) does not exist (c) does not exis (d) does not exis
k (e) 2¢°
(d 1 (e) does not exist 3 s
241

2 (a) does not exist

(b) does not exist

INTEGRAL PROPERTIES OF THE DELTA FUNCTION

The delta function, § ( — d), was introduced in Chapter 2. The function is defined to be a
rectangle whose area is 1 in the limit as the base length tends to O and as the height tends
to infinity. Sometimes we need to integrate the delta function. In particular, we consider
the improper integral

/008(t—d)dt

The integral gives the area under the function and this is defined to be 1. Hence,

/OOS(t—d)dtzl

o0

In Chapter 21 we need to consider the improper integral

/00 f@)s(t —d)dt

where f(¢) is some known function of time. The delta function 8 (t — d) is zero every-
where except att = d. When t = d, then f(r) has a value f(d). Hence,

/oo F8(t —d)dt = /m F(@)s(t —d)dt =f(d)/008(t—d)dt
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(e 9)

since f(d) is a constant. But / &6(t —d)dr = 1 and hence

—00

/ fO)8(t —d)ydt = f(d)

/OOS(t—d)dt=1

o

/ f@®)s(r —d)drt = f(d)

The result
/ SO —d)ydt = f(d)

is known as the sifting property of the delta function. By multiplying a function, f(¢),
by §(t — d) and integrating from —oo to co we sift from the function the value f(d).

Example 16.13 Evaluate the following integrals:

(a) /wt28(t—2)dt (b) /ooe’S(t—l)dt
o 0

Solution (a) We use
/:f(t)é(t —d)dt = f(d)
with f() = 1> and d = 2. Hence
/OOIZS(I—Z)dt =fQQ)=2"=4

o0

(b) We note that the expression €'8(t — 1) is 0 everywhere except at# = 1. Hence

/e’a(t—l)dt:/ e's(t—1)dr
0 —0o0

Using
/ f(®)8@ —d)dt = f(d)
with f(t) = ¢’ and d = 1 gives

/Ooe’S(t—l)dtzf(l)zel =e
0

EXERCISES 16.4

1 Evaluate (c) / e's(t +3)dt
(a)/ e'8(t) dt -
- (d)4/ 28(t —3)dr

—0Q

(b)/Oo e'8(t —4)dt
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* 1 8(—1 0
O Dy © [ esata

2

(f) /Oo e Ms(r)dt

(g)/ e M5t —a)dr

10

(d)/ ©8(x —2)dx
0
1

(e / K8(x+2)dx
-1

3 Evaluate the following:

(h)/oo e k=05t — q) dr (a) / 1(sin20)8(r — 3) dr
2 Evaluate the following integrals: (b) /0 S(t+1)—=8@—1)dt

(a) / (sint)8(t — 2) dt © /o 8(t —d)dt

(b) foo 15+ 1) dr @ /_a8(t—d)dz
Solutions
1 @1 (b) 54.5982 d 8

(c) 4.9787 x 1072 () 36 @ 0

1 1
((; e~ak ((8 1 3 (a) —0.8382
(b) —1

2 (a) 0.9093

(b) 2.7183 (¢) 1ifd > 0, 0 otherwise

(c) 20.0855 (d) 1if —a < d < a, 0 otherwise

INTEGRATION OF PIECEWISE CONTINUOUS FUNCTIONS

Integration of piecewise continuous functions is illustrated in Example 16.14. If a dis-
continuity occurs within the limits of integration then the interval is divided into sub-
intervals so that the integrand is continuous on each sub-interval.

Example 16.14

Solution

Given
) 2 0<r<1
S 1<r <3
evaluate f: f@®)de.

The function, f (), is piecewise continuous with a discontinuity at t = 1. The function
is illustrated in Figure 16.3. The discontinuity occurs within the limits of integration.
We split the interval of integration at the discontinuity thus:

3 1 3
/ f(t)dt:/ f(t)dt+f f()dt
0 0 1
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f@® A

| - Figure 16.3
1 3 t  The function f(¢) = {

2 0<r<1
2 1<r < 3.

On the intervals (0, 1) and (1, 3), f(¢) is continuous, so

3 1 3
/fdt:/ 2dt+/ 2 dt

0 0 1
1 393

t 1 32

= |2t —| =2 9——| = —

[ ]0+[3]1 +[ 3] 3

. Given 3 6
(©) g(r) dr (d) g(t)dr

3 —I<t<l1 3 0

4.5

1) =12t 1<t<2
fo © f g0 e
2 2<1<3 3.5
evaluate . Given u(t) is the unit step function, evaluate

1 1.5
@ / ra o [ e s
- - @ f u(t) di
0

o [ @ f Far

. Given

2
(b)/ u(t)dt
=3

4
3 0<t<3 (©) /22u(t+1)dt
g(t)—{15—2t 3<t<4 _2
6 4<1r<6 () / tu(r)dr
evaluate -1
2 4 4 kt
(a) / g(t) dt (b) / g(t) dr (e) /(; € u(t — 3) dr k constant
0 2
1 @6 (b) 575 3 @4 (b) 2
(c) 8.5417 (d) 15.3333 ) 10 @ 2
2 @6 ® 155 () 14 © e‘”‘;esk

(d) 335 (e) 6.75
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m INTEGRATION OF VECTORS

If a vector depends upon time ¢, it is often necessary to integrate it with respect to time.
Recall that i, j and k are constant vectors and are treated thus in any integration. Hence
the integral

I= /(f(t)i +g(®)j + h(t)k) dr

is simply evaluated as three scalar integrals, and so

1= (/ £ dr)i+ <f g(r)dt)j + (f h(r)dr)k

Example 16.15 Ifr = 3ti + 2j + (1 + 2t)k, evaluate fol rdr.

1 1 1 1
Solution / rdr = (/ 3tdt)i+ (/ t2dt)j + (/ 1 +2tdt>k
0 0 0 0

327, 247 I < T
=|—|i+|z|i+|t+|k=Zi+Zj+2k
Ll

EXERCISES 16.6

1 Givenr = 3sinti—costj+ (2 — 1)k, evaluate foﬂ rdr. Evaluatle ; .
2 Givenv =1i— 3j+Kk, evaluate @ /(; ads (b) /2 ads © /1 ads
1 2 4 Letaand b be two three-dimensional vectors. Is the
(a) /0 vdr (b) /0 vdr following true?

ZZ r2 ZZ

3 The vector, a, is defined by /z‘ adr x /t bdr = /t‘ axbds
1 1 1

a=r%i+ e 'j+1k Recall that x denotes the vector product.
Solutions
1 6i+ 1.348k (b) 6.333i + 0.0855j + 2.5k

2 (@ i-3j+k (b) 2i —6j + 2k (c) 21i 4+ 0.3496j + 7.5k
3 (a)0.333i +0.632j + 0.5k 4 no
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REVIEW EXERCISES 16

1

Show f(x) = x" and g(x) = X" are orthogonal on
[—k, k] if n + m is an odd number.

Show f(¢) = sint and g(¢) = cost are orthogonal on
la, a + nm].

Show f(¢) = sinhr and g(¢) = cosht are orthogonal
over [—k, k].

Determine the values of k for which fooo K dr exists.

Evaluate if possible
[o.¢]

(a) / u(t)dt

(b) / —1000¢ dt

o [) e
(d)/ u(t)e™ dt
o 1
(e) /,2x2—1

(Note that u(t) is the unit step function.)

Find the values of k for which f o0 ekt dr exists.

Evaluate
() /00(12+1)8(t—1)dt
(b) / ” '8t —2) dt

(c)/ (P +1+2)50—1)dr

°°6(z+2)
@ /oo 12+1

(e) / S+ )8t +2)dr

(a) Evaluate

o0
f (> + 1)8(2t) dr
—0Q
[Hint: substitute z = 2¢.]
(b) Show
o0 1
/ f@®)8(nt)dt = - £(0), n>0
oo n
Evaluate

@)/wﬂ+ﬁﬁ0—bw
0

10

11

(b) /Oo 18(1 +1)dt
©) /oo(1+t)8(—z)dr
0
m)/ 5t —6) +5(t +6) dr

4k
(e) / 8(t+k)+ 8@+ 3k)+8(t+ Sk)de
—2k
k>0

The function g(¢) is piecewise continuous and
defined by

) = 2t 0<t<1
=13 1<r<2
Evaluate
1
(2) / g(t)dt
0
15
o [ e
0
1.7
(©) / g(r)dr
0.5
2
m>ﬁgmm
15
(e) / g(r)dr
13
Given
1+t —-1<t<3
f@)y=qt—1 3<t<4
0 otherwise
evaluate

2
@)/lﬂom

4
w>/lﬂow

5
(©) / fo)ydr

0
(d)[ f@0)8(—2)dt

(e / f@)u(r)dt



12 Given
2 —2<1<2
ht)=3 2<1<3
4 3 <t<5

evaluate

2
(a) / h(t) dt
—1

2.5

(b)/ h(t) dt
0
4

(© f h(t) + 1dt
2
4

(d) / h(t+1)de
0

2
(e) / h(2t) dt
—1

13 Ifa=ri—2j+ 3k, find [ adr.

Solutions

4 k<-—1

5 (a) does not exist
(b) does not exist
(c) does not exist
(@ 1
(e) does not exist

6 k<0

7 (@ 2 (b) 14.7781 (c) 4
(d) 0.2 e) 0

1
8 (a) 5

9 (a 3 (b) —1 (© 1
d 1 e) 1

10 (a) 1 (b) % (c) 2.85
d 3 (e) 0.6

Review exercises 16

14 Given
v(t) =2ti+ 3 —12)j+ 1k

15

11

12

13

14

15

find

1
(a) / vdt
0
2
(b) / vdr
1
2
(©) / vdt
0

Evaluate the following integrals:

3

@ / o] dr
1
2

(b) / It + 2| dt
-3

2
©) / 13t — 1| dt
0

(a) 4.5 (b) 10.5 (c) 10

(d 3
(@ 3

(e) 10

(b) 8.4323
(c) 22.25

(d) 26.5833
(e) 12.7917

0.5i — j+ 1.5k

.8, 1
(@) i+ §J+*k

4

2. 15
(b) 3i+ Zj+ —k

3 4

10
(c) 4i+ —j+4k

@ 5

3
13
) 85 (© -
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INTRODUCTION

X

e
Many functions, for example sinx?> and —, cannot be integrated analytically. Integra-
X

tion of such functions must be performed numerically. This section outlines two simple
numerical techniques — the trapezium rule and Simpson’s rule. More sophisticated ones
exist and there are many excellent software packages available which implement these
methods.

TRAPEZIUM RULE

‘We wish to find the area under y(x), from x = a to x = b, that is we wish to evaluate
fab ydx. The required area is divided into # strips, each of width /4. Note that the width,

b—
h, of each strip is given by h = —a. Each strip is then approximated by a trapezium.
n

1
A typical trapezium is shown in Figure 17.1. The area of the trapezium is Eh[yi + Vil

Summing the areas of all the trapezia will yield an approximation to the total area:

h h h
area of trapezia = 5(yO_|.yl)_|_ 5(yl +y,) -+ 5@"—1 +y,)

h
= 50’0"‘2}’1 +2y, +2y;+---+2y,  +y,)
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x  Figure 17.1
Each strip is approximated by a trapezium.

If the number of strips is increased, that is 4 is decreased, then the accuracy of the ap-
proximation is increased.

Example 17.1

Solution

Table 17.1

X y=el®

0.5 1.2840 = y,
0.7 1.6323 = y,
0.9 2.2479 =y,
1.1 3.3535 =y,
1.3 54195 =y,

13
. . 2 .
Use the trapezium rule to estimate / e dx using
05

(a) a strip width of 0.2 (b) a strip width of 0.1.

(a) Table 17.1 lists values of x and corresponding values of e,

We note that 7 = 0.2. Using the trapezium rule we find

0.2
sum of areas of trapezia = 7{1.2840 +2(1.6323) + 2(2.2479)

+2(3.3535) + 5.4195}
=2.117
Table 17.2
Hence
13 X — @)
/ e dx ~ 2.117 '

05 Xy =0.5 1.2840 =y,
x; = 0.6 1.4333 =y,
x, = 0.7 1.6323 = y,
x; =08 1.8965 = y,
x, =09 22479 =y,
xs=1.0 27183 = ys
xg = 1.1 3.3535 = yg
=12 4.2207 =y,
xg =13 5.4195 = yq

(b) Table 17.2 lists x values and corresponding values of e,
Using Table 17.2, we find

0.1
sum of areas of trapezia = 7{1.2840 +2(1.4333) +2(1.6323) + - - -

+2(4.2207) + 5.4195)
—2.085

1.3
Hence / e dx A 2.085.
0.5

Dividing the interval [0.5, 1.3] into strips of width 0.1 results in a more accurate estimate
than using strips of width 0.2.
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17.2.1

Engineering application 17.1

Distance travelled by a rocket

A rocket is released and travels at a variable speed v. A motion sensor on the rocket
measures this speed and the value is sampled by an onboard computer at 1 second
intervals. The computer is required to calculate the distance travelled by the rocket
and relay the value to a ground station at regular intervals. Table 17.3 records values
of the measurements taken by the computer during the first 10 seconds of flight.
Assuming that the computer uses the trapezium rule to estimate the distance travelled
by the rocket, calculate the value that the computer will relay to the ground station
after 10 seconds.

Table 17.3

Time (s) Speed (m s—h)
0 10.1
1 17.2
2 24.4
3 29.2
4 34.6
5 41.2
6 50.9
7 57.8
8 60.3
9 61.2
10 62.1

Solution

ds . .
We know that v = Fn where v = speed and s = distance travelled in time 7. So

t
s=/ vdt
0

We estimate the value of this integral using the trapezium rule. We choose a strip of
width 2 = 1 as this is the time interval at which data is collected by the computer.
Therefore

10
1
§= / vdr = 5{10.1 +2(17.24+24.44+29.2 4+ 34.6
0

+41.2+50.9 +57.8 +60.3 + 61.2) + 62.1}
1

= —(825.8
5 )

=412.9

The distance travelled after 10 seconds is approximately 412.9 m.

Error due to the trapezium rule

Suppose we wish to estimate fa b f dx using the trapezium rule. The interval [a, b] is
—a

divided into n equal strips, each of width & =
n
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The difference between the estimated value of the integral and the true value of the
integral is the error. So

error = estimated value — true value

We are able to find the maximum value of |error|. Firstly we calculate the second deriva-
tive of f, that is f”. Suppose that | f”| is never greater than some value, M, throughout
the interval [a, b], that is

<M for all x values on [a, b]

We say that M is an upper bound for | f”| on [a, b]. Then the error due to the trapezium
rule is such that

(b—-a) ,
< —hM
| error | < B

(b—a)

The expression h’M is an upper bound for the error. Note that the error

depends upon /2: if the strip width, A, is halved the error reduces by a factor of 4; if
h is divided by 10 the error is divided by 100.

Example 17.2

Solution

Find an upper bound for the error in the estimates calculated in Example 17.1. Hence
find upper and lower bounds for the true value of fol_'; e dx.

We have f = e¢“"). Then
=2 o and  f=2e")(1 4+ 24%)

We note that f” is increasing on [0.5, 1.3] and so its maximum value is obtained at
x = 1.3. Thus the maximum value of f” on [0.5, 1.3] is 2¢"°[1 + 2(1.3)2]. Noting
that 2¢1-9°[1 + 2(1.3)2] = 47.47 we see that 48 is an upper bound for f” on [0.5, 1.3],
that is M = 48.

We note that a = 0.5, b = 1.3. Thus

2

< (0.8)h=(48)
12

(a) In Example 17.1(a), h = 0.2 and so

| error | =3.21°
| error | < 3.2(0.2)? = 0.128
Thus an upper bound for the error is 0.128. We have
—0.128 < error < 0.128
The estimated value of the integral is 2.117 and so
2.117 — 0.128 < true value of integral < 2.117 4+ 0.128

that is

1.3
1.989 < / e dy < 2.245
0.5

An upper bound for f01_'53 e dx is 2.245 and a lower bound is 1.989.



500 Chapter 17 Numerical integration

(b) In Example 17.1(b), # = 0.1 and so

| error | < 3.2(0.1)> = 0.032

Hence an upper bound for the error is 0.032. Now

—0.032 < error < 0.032

The estimated value of the integral is 2.085 and so

1
2.085 —0.032 < /

0.5

that is

3
e dx < 2.085 + 0.032

1.3
2.053 < / e dx < 2.117
0.5

EXERCISES 17.2

1 Estimate the following definite integrals using the
trapezium rule:

1
() / sin(/>)dt useh=0.2
0

Solutions

1 (a) 03139 (b) 0.5467

Technical Computing Exercises 17.2

1 (a) Plot the second derivative of f(r) = sin(s2) for
0 < < 1. Use your graph to find an upper bound
for f”/(t) for 0 < ¢ < 1. Hence find an upper
bound for the error in Question 1(a) in
Exercises 17.2. State upper and lower bounds for
the integral given in the question.

1.2 e~
(b)/ —dx use five strips
1 X

X
(b) Repeat (a) with f(x) = — for 1 < x< 12,
Hence find an upper bourjlcd for the error in
Question 1(b) in Exercises 17.2. State upper and
lower bounds for the integral given in the
question.

IELE] sivPson's RULE

In the trapezium rule the curve y(x) is approximated by a series of straight line segments.
In Simpson’s rule the curve is approximated by a series of quadratic curves as shown in
Figure 17.2. The area is divided into an even number of strips of equal width. Consider
the first pair of strips. A quadratic curve is fitted through the points A, B and C. Another
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quadratic curve is fitted through the points C, D and E. After some analysis an expression
for approximating the area is found.

Simpson’s rule states:

h
area ~ §(yo +4y, + 2y, +4y; + 2y, + -+ 2y, , + 4y, + )

Figure 17.2 h

In Simpson’s rule an - §{yo A Ty )+ 200 Tyt ) )
even number of strips
is used. The curve is
approximated by
quadratic curves.

where 7 is an even number.

Example 17.3 Estimate fol": e dx using Simpson’s rule with (a) four strips, (b) eight strips.
Solution (a) We use Table 17.1 and note that & = 0.2. Using Simpson’s rule we have

0.2
estimated value = —=(1.2840+4(1.6323+3.3535)+2(2.2479) +5.4195)

= 2.0762

Using Simpson’s rule we have found f()"'; e® dx & 2.0762.
(b) We use Table 17.2 and note that 2 = 0.1:

0.1
estimated value = —={1.2840 + 4(1.4333 + 1.8965 + 2.7183 + 4.2207)

+2(1.6323 4 2.2479 + 3.3535) + 5.4195}
= 2.0749

Using Simpson’s rule we have found fol"; e dx & 2.0749.

Example 17.4 Estimate flz ~/1 4+ x* dx using Simpson’s rule with 10 strips.
Solution  With 10 strips 4 = 0.1. Using Table 17.4, we find

0.1
estimated value ~ T{l.4142+4(1.5268+ 1.7880+2.0917+2.4317+2.8034)

+2(1.6517 4 1.9349 + 2.2574 4 2.6138) + 3.000}
=2.130

In some cases the numerical values are not derived from a function but from actual
measurements. Numerical methods can still be applied in an identical manner.
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Table 17.4 Table 17.5

Using Simpson’s rule to estimate Measurements used to
/; 12 V143 dx estimate the integral.
X y=+1+x3 t Measurement (f)
xp =10 14142 =y, 0 4

x = 1.1 1.5268 =y, 1 4.7

x, =12 1.6517 =y, 2 4.9
xny=13 1.7880 = y, 3 5.3

xy =14 1.9349 =y, 4 6.0

x5 =1.5 2.0917 = ys 5 5.3

xg =16 2.2574 =y, 6 5.9

x; =17 24317 =y,

xg = 1.8 2.6138 = yg

X9 =19 2.8034 =y,

X1 =20 3.0000 = yy,

Example 17.5

Solution

Measurements of a variable, f, were made at 1 second intervals and are given in
Table 17.5. Estimate f06 £ dt using

(a) the trapezium rule

(b) Simpson’s rule.
(a) The sum of the areas of the trapezia is

1
S4+2(47+49+53460+53)+59] =312

(b) The area has been divided into six strips and so Simpson’s rule can be applied:

1
approximate value of integral = 5[4 +4(4.745345.3)

+2(4.9+6.0)+59] =31.0

Engineering application 17.2

Energy dissipation in a resistor

A resistor is being used to dissipate energy from a variable d.c. supply. A calculation
is needed of how much energy has been dissipated over a period of time. Table 17.6
contains values of current, /, through the resistor, and voltage, V, across the resistor
for the first 100 seconds since electrical power was first applied. Calculate the energy
dissipation during this time period using Simpson’s rule with a step interval of 10
seconds.

Solution
The energy dissipated, E, is given by

t
E:/sz
0
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Table 17.6 Table 17.7

Time (s) Voltage (V) Current (A) Time (s) Voltage (V) Current (A) Power (W)

0 50.5 10.1 0 50.5 10.1 510.05
10 101.0 20.2 10 101.0 20.2 2040.20
20 67.5 13.5 20 67.5 13.5 911.25
30 80.5 16.1 30 80.5 16.1 1296.05
40 92.0 18.4 40 92.0 18.4 1692.80
50 96.0 19.2 50 96.0 19.2 1843.20
60 78.5 15.7 60 78.5 15.7 1232.45
70 82.0 16.4 70 82.0 16.4 1344.80
80 90.5 18.1 80 90.5 18.1 1638.05
90 107.0 214 90 107.0 214 2289.80

100 86.0 17.2 100 86.0 17.2 1479.20

where P is the power. Also P = IV, and so

t
E:/IVdI
0

We first need to evaluate P as shown in Table 17.7.
Then using Simpson’s rule with 4 = 10 we have

100 10
E = f 1V dt = ?{510.05 + 4(2040.20 + 1296.05 + 1843.20 + 1344.80
0

+2289.80) +2(911.25 + 1692.80 + 1232.45 + 1638.05)
+ 1479.20}
= 160648.51
= 160.649 kJ
The energy dissipated is therefore approximately 160.6 kJ.

Error due to Simpson’s rule

Simpson’s rule provides an estimated value of a definite integral. The difference between
the estimated value and the true (exact) value is the error. Just as with the trapezium rule,
we can calculate an upper bound for this error.

We need to calculate the fourth derivative of £, that is f®. Suppose || is never
greater than some value, M, throughout the interval [a, b], that is

lfPr<m for all x values on [a, b]

Clearly M is an upper bound for | f| on [a, b]. The error due to Simpson’s rule is such
that

(b—a)h*M

| error | <
180

Note that the error is proportional to h*.
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Example 17.6 Find an upper bound for the error in the estimates calculated in Example 17.3. Hence
1.3 (x2)
find upper and lower bounds for fo.s e™) dx.

Solution Here we have f = ™). Calculating the fourth derivative gives
SO =4 (@dxt 1247 4 3)

We seek an upper bound for | f®| on [0.5, 1.3]. We note that f* increases as x increases
and so its maximum value in the interval occurs when x = 1.3:

F®(1.3) =752.319 < 753

Hence 753 is an upper bound for | f®|.
In this example a = 0.5 and b = 1.3 and so

- (0.8)h*(753)
h 180
(a) Here h = 0.2 and so

| error | = 3.347n*

| error | < 3.347(0.2)* = 0.0054
An upper bound for the error is 0.0054. Now
—0.0054 < error < 0.0054

The estimated value of the integral is 2.0762 and so

13
2.0762 — 0.0054 < / e dx < 2.0762 + 0.0054

0.5

that is

1.3
2.0708 < / e dx < 2.0816

0.5

(b) Here h = 0.1 and so
| error | < 3.347(0.1)* = 3.347 x 10*
An upper bound for the error is 3.347 x 10~*. Now
—3.347 x 107* < error < 3.347 x 107*

Noting that the estimated value of the integral is 2.0749 we have

1.3
2.0749 — 3.347 x 107* < / e dx < 2.0749 +3.347 x 107*

0.5

that is

1.3
2.0746 < f e dx < 2.0752

0.5
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EXERCISES 17.3

Estimate the values of the following integrals using
Simpson’s rule:
3
(a) / ln(x3 + 1)dx use 10 strips
2
2.6
(b) e dr use eight strips
1
Solutions
(a) 2.7955 (b) 15.1164
(a) trapezium rule: 1.5900, Simpson’s rule: 1.5681

Technical Computing Exercises 17.3

(a) Plot the fourth derivative of f(x) =
In(x> 4 1) for 2 < x < 3. Use your graph

to find an upper bound for ™ (x) for 2 < x < 3.

Hence find an upper bound for the error in
Question 1(a) in Exercises 17.3. State upper and
lower bounds for the integral given in the
question.
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2 Evaluate, using the trapezium rule and Simpson’s

rule,

1
(@) / o2 + 1% dx use four strips
0

16 §in2¢
(b) dr
1 t

use six strips

(b) trapezium rule: 0.2464, Simpson’s rule:
0.2460

(b) Repeat (a) with f(t) = /te’ for 1 <t <2.6.
Hence find an upper bound for the error in Ques-
tion 1(b) in Exercises 17.3. State lower and upper
bounds for the integral given in the question.

Use MATLAB® or a similar technical computing
language to find upper and lower bounds for the
integrals in Question 2 in Exercises 17.3.

1

If £(1) = v/1> + 1 find [} f(1)dt using
(a) the trapezium rule with 7 = 0.25
(b) Simpson’s rule using eight strips.

Estimate the following definite integrals using the
trapezium rule with six strips:

4 0.6
(a) / Va3 4+ 1dx () / sin(#2) dt
1 0

0.8 N 0.3 3
(©) / e dr (d) / — dx
0.2 0 X342

2.5 ef
(e) / — dr
1 13

Estimate the definite integrals in Question 2 using
Simpson’s rule with six strips.

REVIEW EXERCISES 17

4 Estimate the following definite integrals using the

trapezium rule with eight strips:

4

(a) / cos(+/1) dt
0
6

(b) / >+ 132 dr
-2
3

(©) / eV dx
1
0.8

() / tan(r2) dt
0

5
(e) / In(x2 + 1) dx
3
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. (a) 1.8111 (C) 0.80643
(b) 1.8101 (d) 0.44849

2 (@ 129113 () 5.17879
(b) 0.07227 % @ 081058
() 0.80860 o 37025
(d) 0.44845 '
() 5.19384 (c) 8.27686

3 (@ 1287181 (d 0.18390
(b) 0.071334 () 5.63032

language to find upper bounds for the errors in these questions.

. Use MATLAB® or a similar technical computing ‘ upper and lower bounds for the integrals given in
Questions 1 to 4 in Review exercises 17. Hence find
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INTRODUCTION

Often the value of a function and the values of its derivatives are known at a particular
point and from this information it is desired to obtain values of the function around that
point. The Taylor polynomials and Taylor series allow engineers to make such estimates.
One application of this is in obtaining linearized models of non-linear systems. The great
advantage of a linear model is that it is much easier to analyse than a non-linear one. It is
possible to make use of the principle of superposition: this allows the effects of multiple
inputs to a system to be considered separately, and the resultant output to be obtained by
summing the individual outputs.

Often a system may contain only a few components that are non-linear. By linearizing
these it is then possible to produce a linear model for the system. We saw an example of
this when we analysed a fluid system in Engineering application 10.6. Although electri-
cal systems are often linear, mechanical, thermal and fluid systems, or systems contain-
ing a mixture of these, are likely to contain some non-linear components. Unfortunately
it may not be possible to obtain a sufficiently accurate linear model for every non-linear
system as we shall see in this chapter.

Taylor polynomials of higher degree can be found which approximate to a given func-
tion. This is dealt with in Sections 18.3 and 18.4. The difference between a given function
and the corresponding Taylor polynomial is covered in Section 18.5. The chapter closes
with a treatment of Taylor and Maclaurin series.
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(0] a ;
Figure 18.1

Graphical representation
of a first-order Taylor
polynomial.

LINEARIZATION USING FIRST-ORDER TAYLOR
POLYNOMIALS

Suppose we know that y is a function of x and we know the values of y and y* when
x = a, thatis y(a) and y'(a) are known. We can use y(a) and y'(a) to determine a linear
polynomial which approximates to y(x). Let this polynomial be

pi(x) =cy+cyx

We choose the constants ¢, and ¢, so that
p(@) = y(a)
pi(a) =y(a)

that is, the values of p, and its first derivative evaluated at x = a match the values of y
and its first derivative evaluated at x = a. Then,

pi(a) = y(a) = ¢y +cja

Pi@) =y(a)=c,
Solving for ¢, and ¢, yields

g =y@—a(a ¢ =y
Thus,

p(x) = y(a) —ay'(a) + Y (a)x

pi(x) =y(@ +y (@) (x—a)

D, (x) is the first-order Taylor polynomial generated by y at x = a.

The function, y(x), is often referred to as the generating function. Note that p, (x) and
its first derivative evaluated at x = a agree with y(x) and its first derivative evaluated at
X =a.

First-order Taylor polynomials can also be viewed from a graphical perspective.
Figure 18.1 shows the function, y(x), and a tangent at Q where x = a. Let the equa-
tion of the tangent at x = a be

p) = mx+c

The gradient of the tangent is, by definition, the derivative of y at x = q, that is y'(a).
So,

px) =y (@x+c
The tangent passes through the point (a, y(a)), and so
y(a) =y(a)a+c
that is ¢ = y(a) — y'(a)a. The equation of the tangent is thus
p(x) =y (@x+y(a) —y(aa
p(x) =y(@) +y (@) (x—a)
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This is the first-order Taylor polynomial. We see that the first-order Taylor polynomial
is simply the equation of the tangent to y(x) where x = a.

Clearly, for values of x near to x = a the value of p, (x) will be near to y(x); p, (x) isa
linear approximation to y(x). In the neighbourhood of x = a, p, (x) closely approximates
y(x), but being linear is a much easier function to deal with.

Example 18.1

Solution

A function, y, and its first derivative are evaluated at x = 2.
yo=1 y@=3
(a) State the first-order Taylor polynomial generated by y at x = 2.
(b) Estimate y(2.5).
@ px)=y2Q)+y2)(x—-2)=1+3(x—-2)=-5+3
(b) We use the first-order Taylor polynomial to estimate y(2.5):
p(2.5)=-5+32.5)=25
Hence, y(2.5) =~ 2.5.

Example 18.2

Find a linear approximation to y(¢) = t*> near t = 3.

Solution We require the equation of the tangent to y = ¢ att = 3, that is the first-order Taylor
polynomial about ¢+ = 3. Note that y(3) =9 and y'(3) = 6.
pi(t) = y(@) +y (@)t —a) =y(3) +y (3)( —3)

=946(—-3)
=6t—9

Att = 3, p,(t) and y(r) have an identical value. Near to t = 3, p,(¢) and y(t) have

similar values, for example p,(2.8) = 7.8, y(2.8) = 7.84.

18.2.1 Linearization

It is a frequent requirement in engineering to obtain a linear mathematical model of a
system which is basically non-linear. Mathematically and computationally linear models
are far easier to deal with than non-linear models. The main reason for this is that linear
models obey the principle of superposition. It follows that if the application, separately,
of inputs u, () and u,(¢) to the system produces outputs y, (t) and y, (¢), respectively,
then the application of an input u, (¢) 4 u, () will produce an output y, (¢) + y,(¢). This
is only true for linear systems.

The value of this principle is that the effect of several inputs to a system can be cal-
culated merely by adding together the effects of the individual inputs. This allows the
effect of simple individual inputs to the system to be analysed and then combined to
evaluate the effect of more complicated combinations of inputs. A few examples will
help clarify these points.
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Engineering application 18.1

A d.c. electrical network

Consider the d.c. network of Figure 18.2. This network is a linear system. This is
because the voltage/current characteristic of a resistor is linear provided a certain
voltage is not exceeded. Recall Ohm’s law which is given by

V =IR

where V is the voltage across the resistor, / is the current through the resistor and R
is the resistance. This makes the analysis of the network relatively easy. The voltage
sources, V;, V,, V5, V,, can be thought of as the inputs to the system. It is possible to
analyse the effect of each of these sources separately, for example the voltage drop
across the resistor, R, resulting from the voltage source V,, and then combine these
effects to obtain the total effect on the system. The voltage drop across R; when all
sources are considered would be the sum of each of the voltage drops due to the
individual sources V;, V,, V; and V.

Figure 18.2
A d.c. electrical network.

Engineering application 18.2

A gravity feed water supply

Consider the water supply network of Figure 18.3. The network consists of three
source reservoirs and a series of connecting pipes. Water is taken from the network at
two points, S; and S,. In a practical network, reservoirs are usually several kilometres
away from the points at which water is taken from the network and so the effect of
pressure drops along the pipes is significant. For this reason many networks require
pumps to boost the pressure.

The main problem with analysing this network is that it is non-linear. This is be-
cause the relationship between pressure drop along a pipe and water flow through a
pipe is not linear: a doubling of pressure does not lead to a doubling of flow. For this

L5 [R] %]

Figure 18.3
A water supply network.
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reason, it is not possible to use the principle of superposition when analysing the
network. For example, if the effect of the pressure at S, for a given flow rate was
calculated separately for each of the inputs to the system — the reservoirs R, R,, R; —
then the effect of all the reservoirs could not be obtained by adding the individual
effects. It is not possible to obtain a linear model for this system except under very
restrictive conditions and so the analysis of water networks is very complicated.

Having demonstrated the value of linear models it is worth analysing how and when
a non-linear system can be linearized. The first thing to note is that many systems may
contain a mixture of linear and non-linear components and so it is only necessary to lin-
earize certain parts of the system. A system of this type has been studied in Engineering
application 10.6. Therefore linearization involves deciding which components of a sys-
tem are non-linear, deciding whether it would be valid to linearize the components and,
if so, then obtaining linearized models of the components.

Consider again Figure 18.1. Imagine it illustrates a component characteristic. The
actual component characteristic is unimportant for the purposes of this discussion. For
instance, it could be the pressure/flow relationship of a valve or the voltage/current
relationship of an electronic device. The main factor in deciding whether a valid linear
model can be obtained is the range of values over which the component is required to
operate. If an operating point Q were chosen and deviations from this operating point
were small then it is clear from Figure 18.1 that a linear model — corresponding to the
tangent to the curve at point Q — would be an appropriate model.

Obtaining a linear model is relatively straightforward. It consists of calculating the
first-order Taylor polynomial centred around the operating point Q. This is given by

i) =y@@) +y(a)(x—a)
Then p, (x) is used as the linearized model of the component with characteristic y(x). It
is valid provided that it is only used for values of x such that |x — a| is sufficiently small.
As stated, p, (x) is also the equation of the tangent to the curve at point Q. The range of
values for which the model is valid depends on the curvature of the characteristic and
the accuracy required.

Engineering application 18.3

Power dissipation in a resistor

The power dissipated in a resistor varies with the current. Derive a linear model for
this power variation valid for an operating point of 0.5 A. The resistor has a resistance
of 10 Q.

Solution
For a resistor

P=1IR

where
P = power dissipated (W)
I = current (A)

R = resistance (2).
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The first-order polynomial, valid around an operating point / = 0.5, is
p, (1) = P(0.5) + P'(0.5)(I — 0.5)

Now P(0.5) = (0.5)?10 = 2.5, P'(0.5) = 2(0.5)(10) = 10, and so
pI) =254+10(/ —0.5) =10/ — 2.5

It is interesting to compare this linear approximation with the true curve for values
of I around the operating point. Table 18.1 shows some typical values. Figure 18.4
shows a graph of the power dissipated in the resistor, P, against the current flowing
in the resistor, /. Notice that the linear approximation is quite good when close to the
operating point but deteriorates further away.

Table 18.1
A comparison of linear approximations with true values.
1(A) True value of P (W) Approximate value of P (W)
0.5 2.5 2.5
0.499 2.49001 2.49
0.501 2.51001 2.51
0.49 2.401 2.4
0.51 2.601 2.6
0.4 1.6 1.5
0.6 3.6 3.5
1.0 10 7.5
Py
10 P=1017

6 - Operating point
Al \ P (D =101-25

2r Figure 18.4
0 ! L L L We see that the tangential approximation is
02 04 06 08 1 [ good when close to the operating point.
EXERCISES 18.2
1 Calculate the first-order Taylor polynomial generated 3 Calculate the first-order Taylor polynomial generated
by y(x) = e* about by y(x) = cosx about
(@ x=0 (b) x=2 (c) x=-3 @x=0
2 Calculate the first-order Taylor polynomial generated (b)x=1
by y(x) = sinx about (c)x=-0.5
(@ x=0 (b) x=1 (c) x=-0.5
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| @ 5 (a) Find alinear approximation, p,(t), to R(t) = %
about = 2. about t = 0.5.
(b) Evaluate 2(2.3) and p; (2.3). (b) Evaluate R(0.7) and p;(0.7).
Solutions
1 (@ p(x)=x+1 4 (a) p(t) =12t - 16
b) px) = 2(x—1) (b) h(2.3) =12.167, p;(2.3) = 11.6
© pi) =e(x+4) 5 (a) p,(t)=—4t+4
2 (a p(x)=x (b) R(0.7) =1.4286, p;(0.7) =1.2
(b) p;(x) =0.5403x + 0.3012
() p;(x) =0.8776x — 0.0406
3 (@ pn=1
(b) p,(x) =—0.8415x + 1.3818
(©) p;(x) =0.4794x 4+ 1.1173

IELE] sECOND-ORDER TAYLOR POLYNOMIALS

Suppose that in addition to y(a) and y'(a), we also have a value of y”(a). With this
information a second-order Taylor polynomial can be found, which provides a quadratic
approximation to y(x). Let

P, (x) = ¢y + ¢ x + o, x°
We require

py(a) = y(a)

pa(a) =Y (a)

pa(a) =y"(a)

that is, the polynomial and its first two derivatives evaluated at x = a match the function
and its first two derivatives evaluated at x = a. Hence

p,(@) = ¢y + c,a+ c,d* = y(a) (18.1)
ph(a) = ¢, +2ca =y (a) (18.2)
pi(a) = 2¢, =" (a) (18.3)

Solving for ¢, ¢, and ¢, yields

Y@ om Bquation (18.3)

)
¢, =Y (a)—ay'(a) from Equation (18.2)

2
cy =y(a) —ay'(a) + %y”(a) from Equation (18.1)
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Hence,

2
P, (x) = y(a) — ay'(a) + %y” (a)

HO @~ @+ 500
Finally,
/ ” ()C — (1)2
p,(x) =y(@) +y(a)(x —a) +y (a) 5

D, (x) is the second-order Taylor polynomial generated by y about x = a.

Example 18.3 Giveny(1) =0,y (1) = 1,y"(1) = —2, estimate

(@) y(1.5)
(b) ¥(2)
(¢) ¥(0.5)

using the second-order Taylor polynomial.

Solution The second-order Taylor polynomial is p, (x):
/ NS
() =y(H)+y(Mx—1)+y (UT

(x—1)?
—x—1-2
* 2

=x—1-(@x-1)>=-x"+3x-2
We use p,(x) as an approximation to y(x).
(a) The value of y(1.5) is approximated by p,(1.5):
y(1.5) ~ p,(1.5) = 0.25
(b) The value of y(2) is approximated by p,(2):
Y2~ p,(2) =0
(c) The value of y(0.5) is approximated by p, (0.5):
¥(0.5) ~ p,(0.5) = =0.75

Example 18.4 (a) Calculate the second-order Taylor polynomial, p,(x), generated by
y(x) = x* +x*> — 6 about x = 2.

(b) Verify that y(2) = p,(2).¥'(2) = p(2) and y'(2) = p}(2).
(c) Compare y(2.1) and p,(2.1).

Solution (a) We need to calculate y(2), y'(2) and y’(2). Now
yx) =5 +x% =6,y (x) =3x8 +2x, ) (x) = 6x +2
and so

y(2) =6,y(2) =16,y"(2) = 14
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The required second-order Taylor polynomial, p, (x), is thus given by

’ " ()C— 2)2
P(x) =y2)+y2)(x—=2)+y (Z)T

(x —2)?

=6+16(x—2)+ 14
=64+ 16x—32+7(x% —4x+4)
=T — 12x 42
(b) Using (a) we can see that
p,(x) = Tx* — 12x 4+ 2, ph(x) = 14x — 12, pi(x) = 14

and so
P(2) =6, p,(2) = 16, py(2) = 14
Hence
¥(2) = p,(2),Y'(2) = p5(2),y"(2) = p5(2)
(c) We have

y2.1) = 2.1+ (2.1)* -6=17.671
p,(2.1) =7(2.1)* = 12(2.1) +2 = 7.67

Clearly there is a very close agreement between values of y(x) and p,(x) near to
x=2.

Engineering application 18.4

Quadratic approximation to a diode characteristic

In Engineering application 10.5 we derived a linear approximation to a diode char-
acteristic suitable for small signal variations around an operating point. Sometimes
it is not possible to use a linear approximation because the variations are too large
to maintain sufficient accuracy. Even so, an approximate model may be desirable.
In general, a higher order Taylor polynomial will give a more accurate model than
that of a lower order polynomial. We will consider a quadratic model for a diode
characteristic. The V' — I characteristic of typical diode at room temperature can be
modelled by the equation

[=1V)=LE"-1)
Given an operating point, V,, the second-order Taylor polynomial is

v -V,

P (V) =1(V) +1I'(V)(V = V) +1"(V,) >

Now
I'(V)=40Le""  I"(V) = 1600 e




516

Chapter 18 Taylor polynomials, Taylor series and Maclaurin series

SO

p,(V) = L& — 1) +40L e*% (V — V) + 16001, ¢*°

v V=V

The coefficients need to be calculated only once. After that the calculation of a current
value only involves evaluating a quadratic.

EXERCISES 18.3

1

(a) Obtain the second-order Taylor polynomial,

P, (x), generated by y(x) = 3x* 4+ 1 about x = 2.

(b) Verify that y(2) = p,(2),y'(2) = p,(2) and
V'(2) = py(2).

(c) Evaluate p,(1.8) and y(1.8).

(a) Calculate the second-order Taylor polynomial,
P, (x), generated by y(x) = sinx about x = 0.

(b) Calculate the second-order Taylor polynomial,
P, (x), generated by y(x) = cosx about x = 0.

(c) Compare your results from (a) and (b) with the

small-angle approximations given in Section 6.5.

A function, y(x), is such that y(—1) = 3,y (=1) =2
and y’(—1) = —2.

(a) State the second-order Taylor polynomial
generated by y about x = —1.

(b) Estimate y(—0.9).
A function, y(x), satisfies the equation
y)=2

(a) Estimate y(1.3) using a first-order Taylor
polynomial.

Y=y +x

(b) By differentiating the equation with respect to x,
obtain an expression for y”. Hence evaluate
y' (D).

(c) Estimate y(1.3) using a second-order Taylor
polynomial.

Solutions

(@) py(x) = 72x% — 192x + 145
() p,(1.8) =32.68, y(1.8) = 32.4928

2

) pyx)=1-=

(@) py(x) =x >

@ pyx)=—x*+4
(b) p,(—0.9) = 3.19. This is an approximation to
y(—0.9).

A function, x(t), satisfies the equation

X=x++t+1 x(0) =2
(a) Estimate x(0.2) using a first-order Taylor
polynomial.

(b) Difterentiate the equation w.r.t. # and hence
obtain an expression for X.

(c) Estimate x(0.2) using a second-order Taylor
polynomial.
A function, &(t), is defined by
h(t) = sin 2t + cos 3¢

Obtain the second-order Taylor polynomial generated
by A(t) about r = 0.

The functions y, (x), y, (x) and y;(x) are defined by

¥, (x) = Ae”, y,(x) = Bx® + Cx,
y3(x) = () + yz(x)
(a) Obtain a second-order Taylor polynomial for
¥y (x) about x = 0.
(b) Obtain a second-order Taylor polynomial for
¥, (x) about x = 0.
(c) Obtain a second-order Taylor polynomial for
¥3(x) about x = 0.

(d) Can you draw any conclusions from your
answers to (a), (b) and (¢)?

(a) 3.5
(b) ¥y =2y +1,y"(1) =21
(c) 4.445
(@) 2.6
" 1
(b) =it —
(c) 2.67
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6 p,()=1+2—45> (b) Cx
2

: A+ (AtOxt
7 (a A<1+x+x2> © A+ (A+Cxt

Technical Computing Exercises 18.3

Many technical computing languages have the 2 ()
capability of producing a Taylor polynomial of a
function. In some languages this is available as a
default whereas in others, such as MATLAB®, this is (b) Draw y(x) and p, (x) for =2 < x < 2.
offered via a toolbox function which may need to be 3
loaded or purchased separately. If the software you

Calculate the second-order Taylor polynomial,
P, (x), generated by y(x) = sinx about x = 0.

(a) Calculate the second-order Taylor polynomial,

are using (.10es not haYe the capability to produce thg P, (x), generated by y(x) = sin 1 about x = 3