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Preface

Audience

This book has been written to serve the mathematical needs of students engaged in a

�rst course in engineering at degree level. It is primarily aimed at students of electronic,

electrical, communications and systems engineering. Systems engineering typically en-

compasses areas such as manufacturing, control and production engineering. The text-

book will also be useful for engineers who wish to engage in self-study and continuing

education.

Motivation

Engineers are called upon to analyse a variety of engineering systems, which can be

anything from a few electronic components connected together through to a complete

factory. The analysis of these systems bene�ts from the intelligent application of mathe-

matics. Indeed, many cannot be analysed without the use of mathematics. Mathematics

is the language of engineering. It is essential to understand how mathematics works in

order to master the complex relationships present in modern engineering systems and

products.

Aims

There are two main aims of the book. Firstly, we wish to provide an accessible, readable

introduction to engineering mathematics at degree level. The second aim is to encourage

the integration of engineering and mathematics.

Content

The �rst three chapters include a review of some important functions and techniques

that the reader may have met in previous courses. This material ensures that the book is

self-contained and provides a convenient reference.

Traditional topics in algebra, trigonometry and calculus have been covered. Also in-

cluded are chapters on set theory, sequences and series, Boolean algebra, logic, differ-

ence equations and the z transform. The importance of signal processing techniques is

reflected by a thorough treatment of integral transformmethods. Thus the Laplace, z and

Fourier transforms have been given extensive coverage.

In the light of feedback from readers, new topics and new examples have been added

in the �fth edition. Recognizing that motivation comes from seeing the applicability

of mathematics we have focused mainly on the enhancement of the range of applied

examples. These include topics on the discrete cosine transform, image processing, ap-

plications in music technology, communications engineering and frequency modulation.



xviii Preface

Style

The style of the book is to develop and illustrate mathematical concepts through ex-

amples. We have tried throughout to adopt an informal approach and to describe math-

ematical processes using everyday language. Mathematical ideas are often developed

by examples rather than by using abstract proof, which has been kept to a minimum.

This reflects the authors’ experience that engineering students learn better from prac-

tical examples, rather than from formal abstract development. We have included many

engineering examples and have tried to make them as free-standing as possible to keep

the necessary engineering prerequisites to aminimum. The engineering examples, which

have been carefully selected to be relevant, informative and modern, range from short il-

lustrative examples through to complete sections which can be regarded as case studies.

A further bene�t is the development of the link between mathematics and the physical

world. An appreciation of this link is essential if engineers are to take full advantage of

engineering mathematics. The engineering examples make the book more colourful and,

more importantly, they help develop the ability to see an engineering problem and trans-

late it into a mathematical form so that a solution can be obtained. This is one of the most

dif�cult skills that an engineer needs to acquire. The ability to manipulate mathemati-

cal equations is by itself insuf�cient. It is sometimes necessary to derive the equations

corresponding to an engineering problem. Interpretation of mathematical solutions in

terms of the physical variables is also essential. Engineers cannot afford to get lost in

mathematical symbolism.

Format

Important results are highlighted for easy reference. Exercises and solutions are provided

at the end of most sections; it is essential to attempt these as the only way to develop

competence and understanding is through practice. A further set of review exercises is

provided at the end of each chapter. In addition some sections include exercises that are

intended to be carried out on a computer using a technical computing language such as

MATLAB®, GNU Octave, Mathematica or Python®. The MATLAB® command syntax

is supported in several software packages as well as MATLAB® itself and will be used

throughout the book.

Supplements

A comprehensive Solutions Manual is obtainable free of charge to lecturers using this

textbook. It is also available for download via the web at www.pearsoned.co.uk/croft.

Finally we hope you will come to share our enthusiasm for engineering mathematics

and enjoy the book.

Anthony Croft

Robert Davison

Martin Hargreaves

James Flint

March 2017

http://www.pearsoned.co.uk/croft
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1 Review of algebraic
techniques

Contents 1.1 Introduction 1

1.2 Laws of indices 2

1.3 Number bases 11

1.4 Polynomial equations 20

1.5 Algebraic fractions 26

1.6 Solution of inequalities 33

1.7 Partial fractions 39

1.8 Summation notation 46

Review exercises 1 50

1.1 INTRODUCTION

This chapter introduces some algebraic techniques which are commonly used in engi-

neering mathematics. For some readers this may be revision. Section 1.2 examines the

laws of indices. These laws are used throughout engineering mathematics. Section 1.3

looks at number bases. Section 1.4 looks at methods of solving polynomial equations.

Section 1.5 examines algebraic fractions, while Section 1.6 examines the solution of

inequalities. Section 1.7 looks at partial fractions. The chapter closes with a study of

summation notation.

Computers are used extensively in all engineering disciplines to perform calcula-

tions. Some of the examples provided in this book make use of the technical comput-

ing language MATLAB®, which is commonly used in both an academic and industrial

setting.

Because MATLAB® and many other similar languages are designed to compute not

just with single numbers but with entire sequences of numbers at the same time, data

is entered in the form of arrays. These are multi-dimensional objects. Two particular

types of array are vectors andmatrices which are studied in detail in Chapters 7 and 8.
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Apart from being able to perform basic mathematical operations with vectors and

matrices, MATLAB® has, in addition, a vast range of built-in computational functions

which are straightforward to use but nevertheless are very powerful. Many of these high-

level functions are accessible by passing data to them in the form of vectors andmatrices.

A small number of these special functions are used and explained in this text. How-

ever, to get the most out of a technical computing language it is necessary to develop

a good understanding of what the software can do and to make regular reference to the

manual.

1.2 LAWS OF INDICES

Consider the product 6× 6× 6× 6× 6. This may be written more compactly as 65. We

call 5 the index or power. The base is 6. Similarly, y× y× y× y may be written as y4.

Here the base is y and the index is 4.

Example 1.1 Write the following using index notation:

(a) (−2)(−2)(−2) (b) 4.4.4.5.5 (c)
yyy

xxxx
(d)

aa(−a)(−a)

bb(−b)

Solution (a) (−2)(−2)(−2) may be written as (−2)3.

(b) 4.4.4.5.5 may be written as 4352.

(c)
yyy

xxxx
may be written as

y3

x4
.

(d) Note that (−a)(−a) = aa since the product of two negative quantities is positive.

So aa(−a)(−a) = aaaa = a4. Also bb(−b) = −bbb = −b3. Hence

aa(−a)(−a)

bb(−b)
=

a4

−b3
= −

a4

b3

Example 1.2 Evaluate

(a) 73 (b) (−3)3 (c) 23(−3)4

Solution (a) 73 = 7.7.7 = 343

(b) (−3)3 = (−3)(−3)(−3) = −27

(c) 23(−3)4 = 8(81) = 648

Most scienti�c calculators have an xy button to enable easy calculation of expressions

of a similar form to those in Example 1.2.

1.2.1 Multiplying expressions involving indices

Consider the product (62)(63). We may write this as

(62)(63) = (6.6)(6.6.6) = 65
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So

6263 = 65

This illustrates the �rst law of indices which is

aman = am+n

When expressions with the same base are multiplied, the indices are added.

Example 1.3 Simplify each of the following expressions:

(a) 39310 (b) 434446 (c) x3x6 (d) y4y2y3

Solution (a) 39310 = 39+10 = 319

(b) 434446 = 43+4+6 = 413

(c) x3x6 = x3+6 = x9

(d) y4y2y3 = y4+2+3 = y9

Engineering application 1.1

Power dissipation in a resistor

The resistor is one of the three fundamental electronic components. The other two

are the capacitor and the inductor, which we will meet later. The role of the resistor

is to reduce the current 	ow within the branch of a circuit for a given voltage. As

current 	ows through the resistor, electrical energy is converted into heat. Because

the energy is lost from the circuit and is effectively wasted, it is termed dissipated

energy. The rate of energy dissipation is known as the power, P, and is given by

P = I2R (1.1)

where I is the current flowing through the resistor and R is the resistance value. Note

that the current is raised to the power 2. Note that power, P, is measured in watts;

current, I, is measured in amps; and resistance, R, is measured in ohms.

There is an alternative formula for power dissipation in a resistor that uses the volt-

age, V , across the resistor. To obtain this alternative formula we need to use Ohm’s

law, which states that the voltage across a resistor,V , and the current passing through

it, are related by the formula

V = IR (1.2)

From Equation (1.2) we see that

I =
V

R
(1.3)

Combining Equations (1.1) and (1.3) gives

P =

(
V

R

)2

R =
V

R
·
V

R
· R =

V 2

R

➔
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Note that in this formula for P, the voltage is raised to the power 2. Note an im-

portant consequence of this formula is that doubling the voltage, while keeping the

resistance �xed, results in the power dissipation increasing by a factor of 4, that is

22. Also trebling the voltage, for a �xed value of resistance, results in the power dis-

sipation increasing by a factor of 9, that is 32.

Similar considerations can be applied to Equation 1.1. For a �xed value of resis-

tance, doubling the current results in the power dissipation increasing by a factor of

4, and trebling the current results in the power dissipation increasing by a factor of 9.

Consider the product 3(33). Now

3(33) = 3(3.3.3) = 34

Also, using the �rst law of indices we see that 3133 = 34. This suggests that 3 is the

same as 31. This illustrates the general rule:

a = a1

Raising a number to the power 1 leaves the number unchanged.

Example 1.4 Simplify (a) 565 (b) x3xx2

Solution (a) 565 = 56+1 = 57 (b) x3xx2 = x3+1+2 = x6

1.2.2 Dividing expressions involving indices

Consider the expression
45

43
:

45

43
=

4.4.4.4.4

4.4.4

= 4.4 by cancelling 4s

= 42

This serves to illustrate the second law of indices which is

am

an
= am−n

When expressions with the same base are divided, the indices are subtracted.

Example 1.5 Simplify

(a)
59

57
(b)

(−2)16

(−2)13
(c)

x9

x5
(d)

y6

y

Solution (a)
59

57
= 59−7 = 52

(b)
(−2)16

(−2)13
= (−2)16−13 = (−2)3
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(c)
x9

x5
= x9−5 = x4

(d)
y6

y
= y6−1 = y5

Consider the expression
23

23
. Using the second law of indices we may write

23

23
= 23−3 = 20

But, clearly,
23

23
= 1, and so 20 = 1. This illustrates the general rule:

a0 = 1

Any expression raised to the power 0 is 1.

1.2.3 Negative indices

Consider the expression
43

45
. We can write this as

43

45
=

4.4.4

4.4.4.4.4
=

1

4.4
=

1

42

Alternatively, using the second law of indices we have

43

45
= 43−5 = 4−2

So we see that

4−2 =
1

42

Thus we are able to interpret negative indices. The sign of an index changes when the

expression is inverted. In general we can state

a−m =
1

am
am =

1

a−m

Example 1.6 Evaluate the following:

(a) 3−2 (b)
2

4−3
(c) 3−1 (d) (−3)−2 (e)

6−3

6−2

Solution (a) 3−2 =
1

32
=

1

9

(b)
2

4−3
= 2(43) = 2(64) = 128

(c) 3−1 =
1

31
=

1

3

(d) (−3)−2 =
1

(−3)2
=

1

9

(e)
6−3

6−2
= 6−3−(−2) = 6−1 =

1

61
=

1

6
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Example 1.7 Write the following expressions using only positive indices:

(a) x−4 (b) 3x−4 (c)
x−2

y−2
(d) 3x−2y−3

Solution (a) x−4 =
1

x4

(b) 3x−4 =
3

x4

(c)
x−2

y−2
= x−2y2 =

y2

x2

(d) 3x−2y−3 =
3

x2y3

Engineering application 1.2

Power density of a signal transmitted by a radio antenna

A radio antenna is a device that is used to convert electrical energy into electromag-

netic radiation, which is then transmitted to distant points.

An ideal theoretical point source radio antenna which radiates the same power in

all directions is termed an isotropic antenna.When it transmits a radiowave, thewave

spreads out equally in all directions, providing there are no obstacles to block the

expansion of the wave. The power generated by the antenna is uniformly distributed

on the surface of an expanding sphere of area, A, given by

A = 4πr2

where r is the distance from the generating antenna to the wave front.

The power density, S, provides an indication of how much of the signal can po-

tentially be received by another antenna placed at a distance r. The actual power

received depends on the effective area or aperture of the antenna, which is usually

expressed in units of m2.

Electromagnetic �eld exposure limits for humans are sometimes speci�ed in terms

of a power density. The closer a person is to the transmitter, the higher the power

density will be. So a safe distance needs to be determined.

The power density is the ratio of the power transmitted, Pt, to the area over which

it is spread

S =
power transmitted

area
=

Pt

4πr2
=

Pt

4π
r−2 W m−2

Note that r in this equation has a negative index. This type of relationship is

known as an inverse square law and is found commonly in science and engineering.

Note that if the distance, r, is doubled, then the area, A, increases by a factor of

4 (i.e. 22). If the distance is trebled, the area increases by a factor of 9 (i.e. 32) and

so on. This means that as the distance from the antenna doubles, the power density,

S, decreases to a quarter of its previous value; if the distance trebles then the power

density is only a ninth of its previous value.
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1.2.4 Multiple indices

Consider the expression (43)2. This may be written as

(43)2 = 43. 43 = 43+3 = 46

This illustrates the third law of indices which is

(am)n = amn

Note that the indices m and n have been multiplied.

Example 1.8 Write the following expressions using a single index:

(a) (32)4 (b) (7−2)3 (c) (x2)−3 (d) (x−2)−3

Solution (a) (32)4 = 32×4 = 38

(b) (7−2)3 = 7−2×3 = 7−6

(c) (x2)−3 = x2×(−3) = x−6

(d) (x−2)−3 = x−2×−3 = x6

Consider the expression (2452)3. We see that

(2452)3 = (2452)(2452)(2452)

= 242424525252

= 21256

This illustrates a generalization of the third law of indices which is

(ambn)k = amkbnk

Example 1.9 Remove the brackets from

(a) (2x2)3 (b) (−3y4)2 (c) (x−2y)3

Solution (a) (2x2)3 = (21x2)3 = 23x6 = 8x6

(b) (−3y4)2 = (−3)2y8 = 9y8

(c) (x−2y)3 = x−6y3

Engineering application 1.3

Radar scattering

It has already been shown in Engineering application 1.2 that the power density of

an isotropic transmitter of radio waves is

S =
Pt

4π
r−2 W m−2

➔
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It is possible to use radio waves to detect distant objects. The technique involves

transmitting a radio signal, which is then re	ected back when it strikes a target. This

weak re	ected signal is then picked up by a receiving antenna, thus allowing a number

of properties of the target to be deduced, such as its angular position and distance from

the transmitter. This system is known as radar, which was originally an acronym

standing for RAdio Detection And Ranging.

When the wave hits the target it produces a quantity of re	ected power. The

power depends upon the object’s radar cross-section (RCS), normally denoted by

the Greek lower case letter sigma, σ , and having units of m2. The power re	ected at

the object, Pr, is given by

Pr = Sσ =
Ptσ

4π
r−2 W

Some military aircraft use special techniques to minimize the RCS in order to reduce

the amount of power they reflect and hence minimize the chance of being detected.

If the reflected power at the target is assumed to spread spherically, when it

returns to the transmitter position it will have the power density, Sr, given by

Sr =
power reflected at target

area
=

Pr

4π
r−2 W m−2

Substituting for the reflected power, Pr, gives

Sr =
power reflected at target

area
=

(
Ptσ

4π
r−2

)

4π
r−2 =

Ptσ

4π × 4π

(
r−2
)2

=
Ptσ

(4π)2
r−4 W m−2

Note that the product of the two r−2 terms has been calculated using the third law of

indices.

This example illustrates one of the main challenges with radar design which is that

the power density returned by a distant object is very much smaller than the transmit-

ted power, even for targets with a large RCS. For theoretical isotropic antennas, the

received power density depends upon the factor r−4. This factor diminishes rapidly

for large values of r, that is, as the object being detected gets further away.

In practice, the transmit antennas used are not isotropic but directive and often

scan the area of interest. They also make use of receive antennas with a large effective

area which can produce a viable signal from the small reflected power densities.

1.2.5 Fractional indices

The third law of indices states that (am)n = amn. If we take a = 2, m = 1
2
and n = 2 we

obtain

(21/2)2 = 21 = 2

So when 21/2 is squared, the result is 2. Thus, 21/2 is a square root of 2. Each positive

number has two square roots and so

21/2 =
√
2 = ±1.4142 . . .



1.2 Laws of indices 9

Similarly

(21/3)3 = 21 = 2

so that 21/3 is a cube root of 2:

21/3 =
3
√
2 = 1.2599 . . .

In general 21/n is an nth root of 2. The general law states

x1/n is an nth root of x

Example 1.10 Write the following using a single positive index:

(a) (3−2)1/4 (b) x2/3x5/3 (c) yy−2/5 (d)
√
k3

Solution (a) (3−2)1/4 = 3−2× 1
4 = 3−1/2 =

1

31/2

(b) x2/3x5/3 = x2/3+5/3 = x7/3

(c) yy−2/5 = y1y−2/5 = y1−2/5 = y3/5

(d)
√
k3 = (k3)1/2 = k3×

1
2 = k3/2

Example 1.11 Evaluate

(a) 81/3 (b) 82/3 (c) 8−1/3 (d) 8−2/3 (e) 84/3

Solution We note that 8 may be written as 23.

(a) 81/3 = (23)1/3 = 21 = 2

(b) 82/3 = (81/3)2 = 22 = 4

(c) 8−1/3 =
1

81/3
=

1

2

(d) 8−2/3 =
1

82/3
=

1

4

(e) 84/3 = (81/3)4 = 24 = 16

Engineering application 1.4

Skin depth in a radial conductor

When an alternating current signal travels along a conductor, such as a copper wire,

most of the current is found near the surface of the conductor. Nearer to the centre

of the conductor, the current diminishes. The depth of penetration of the signal,

termed the skin depth, into the conductor depends on the frequency of the signal.

Skin depth, illustrated in Figure 1.1, is de�ned as the depth at which the current

➔
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density has decayed to approximately 37% of that at the edge. Skin depth is important

because it affects the resistance of wires and other conductors: the smaller the skin

depth, the higher the effective resistance and the greater the loss due to heating.

At low frequencies, such as those found in the domestic mains supply, the skin

depth is so large that often it can be neglected; however, in very large-diameter con-

ductors and smaller conductors at microwave frequencies it becomes important and

has to be taken into account.

The skin depth, δ, is given by

δ =

(
2

ωµσ

)1/2

where µ is a material constant known as the permeability of the conductor, ω is the

angular frequency of the signal and σ is the conductivity of the conductor.

d

Figure 1.1

Cross-section of a radial conductor

illustrating a skin depth δ.

EXERCISES 1.2

1 Evaluate

(a) 23 (b) 32 (c)
513

512

(d)
19−11

19−13
(e) (21/4)8 (f) (−4)−2

(g) 4−1/2 (h) (91/3)3/2 (i)
√
32

√
2

(j)
√
0.01 (k) 813/4

2 Use a scienti�c calculator to evaluate

(a) 101.2 (b) 6−0.7 (c) 62.5

(d) (3−142)0.8

3 Express each of the following expressions using a

single positive index:

(a) x4x7 (b) x2(−x)

(c)
x2

x
(d)

x−2

x−1

(e) (x−2)4 (f) (x−2.5x−3.5)2

4 Simplify as much as possible

(a)
x1/2

x1/3
(b) (16x4)0.25

(c)

(
27

y3

)1/3
(d)

2xy2

(2xy)2

(e)
√
a2b6c4 (f) (64t3)2/3
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Solutions

1 (a) 8 (b) 9 (c) 5 (d) 361

(e) 4 (f)
1

16
(g)

1

2
(h) 3

(i) 8 (j) 0.1 (k) 27

2 (a) 15.8489 (b) 0.2853

(c) 88.1816 (d) 3.8159

3 (a) x11 (b) −x3 (c) x

(d)
1

x
(e)

1

x8
(f)

1

x12

4 (a) x1/6 (b) 2x (c)
3

y

(d)
1

2x
(e) ab3c2 (f) 16t2

1.3 NUMBER BASES

The decimal system of numbers in common use is based on the 10 digits 0, 1, 2, 3, 4,

5, 6, 7, 8 and 9. However, other number systems have important applications in com-

puter science and electronic engineering. In this section we remind the reader of what is

meant by a number in the decimal system, and show how we can use powers or indices

with bases of 2 and 16 to represent numbers in the binary and hexadecimal systems

respectively. We follow this by an explanation of an alternative binary representation of

a number known as binary coded decimal.

1.3.1 The decimal system

The numbers that we commonly use in everyday life are based on 10. For example, 253

can be written as

253 = 200 + 50 + 3

= 2(100) + 5(10) + 3(1)

= 2(102) + 5(101) + 3(100)

In this form it is clear why we refer to this as a ‘base 10’ number. When we use 10 as a

base we say we are writing in the decimal system. Note that in the decimal system there

are 10 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. You may recall the phrase ‘hundreds, tens and

units’ and as we have seen these are simply powers of 10. To avoid possible confusion

with numbers using other bases, we denote numbers in base 10 with a small subscript,

for example, 519210:

519210 = 5000 + 100 + 90 + 2

= 5(1000) + 1(100) + 9(10) + 2(1)

= 5(103) + 1(102) + 9(101) + 2(100)

Note that, in the previous line, as we move from right to left, the powers of 10 increase.

1.3.2 The binary system

A binary system uses the number 2 for its base. A binary system has only two digits, 0

and 1, and these are called binary digits or simply bits. Binary numbers are based on

powers of 2. In a computer, binary numbers are usually stored in groups of 8 bits which

we call a byte.
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Converting from binary to decimal

Consider the binary number 1101012. As the base is 2 this means that as we move from

right to left the position of each digit represents an increasing power of 2 as follows:

1101012 = 1(25)+ 1(24)+ 0(23)+ 1(22)+ 0(21)+ 1(20)

= 1(32)+ 1(16)+ 0(8)+ 1(4)+ 0(2)+ 1(1)

= 32 + 16 + 4 + 1

= 5310

Hence 1101012 and 5310 are equivalent.

Example 1.12 Convert the following to decimal: (a) 11112 (b) 1010102

Solution (a) 11112 = 1(23)+ 1(22)+ 1(21)+ 1(20)

= 1(8)+ 1(4)+ 1(2)+ 1(1)

= 8 + 4 + 2 + 1

= 1510

(b) 1010102 = 1(25)+ 0(24)+ 1(23)+ 0(22)+ 1(21)+ 0(20)

= 1(32)+ 0 + 1(8)+ 0 + 1(2)+ 0

= 32 + 8 + 2

= 4210

Converting decimal to binary

We now look at some examples of converting numbers in base 10 to numbers in base 2,

that is from decimal to binary. We make use of Table 1.1, which shows various powers

of 2, when converting from decimal to binary. Table 1.1 may be extended as necessary.

Table 1.1

Powers of 2.

20 1 24 16 28 256

21 2 25 32 29 512

22 4 26 64 210 1024

23 8 27 128 211 2048

Example 1.13 Convert 8310 to a binary number.

Solution We need to express 8310 as the sum of a set of numbers, each of which is a power of 2.

From Table 1.1 we see that 64 is the highest number in the table that does not exceed

the given number of 83. We write

83 = 64 + 19

We now focus on the 19. From Table 1.1, 16 is the highest number that does not exceed

19. So we write

19 = 16 + 3
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giving

83 = 64 + 16 + 3

We now focus on the 3 and again using Table 1.1 we may write

83 = 64 + 16 + 2 + 1

= 26 + 24 + 21 + 20

= 1(26)+ 0(25)+ 1(24)+ 0(23)+ 0(22)+ 1(21)+ 1(20)

= 10100112

Example 1.14 Express 20010 as a binary number.

Solution From Table 1.1 we note that 128 is the highest number that does not exceed 200 so we

write

200 = 128 + 72

Using Table 1.1 repeatedly we may write

200 = 128 + 72

= 128 + 64 + 8

= 27 + 26 + 23

= 1(27)+ 1(26)+ 0(25)+ 0(24)+ 1(23)+ 0(22)+ 0(21)+ 0(20)

= 110010002

Another way to convert decimal numbers to binary numbers is to divide by 2 repeatedly

and note the remainder. We rework the previous two examples using this method.

Example 1.15 Convert the following decimal numbers to binary: (a) 83 (b) 200

Solution (a) We divide by 2 repeatedly and note the remainder.

Remainder

83 ÷ 2 = 41 r 1 1

41 ÷ 2 = 20 r 1 1

20 ÷ 2 = 10 r 0 0

10 ÷ 2 = 5 r 0 0

5 ÷ 2 = 2 r 1 1

2 ÷ 2 = 1 r 0 0

1 ÷ 2 = 0 r 1 1

To obtain the binary number we write out the remainder, working from the bottom

one to the top one. This gives

8310 = 10100112

as before.
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(b) We repeat the process by repeatedly dividing 200 by 2 and noting the remainder.

Remainder

200 ÷ 2 = 100 r 0 0

100 ÷ 2 = 50 r 0 0

50 ÷ 2 = 25 r 0 0

25 ÷ 2 = 12 r 1 1

12 ÷ 2 = 6 r 0 0

6 ÷ 2 = 3 r 0 0

3 ÷ 2 = 1 r 1 1

1 ÷ 2 = 0 r 1 1

Reading the remainder column from the bottom to the top gives the required binary

number:

20010 = 110010002

1.3.3 Hexadecimal system

We now consider the number system which uses 16 as a base. This system is termed

hexadecimal (or simply hex). There are 16 digits in the hexadecimal system: 0, 1, 2,

3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F. Notice that conventional decimal digits are

insuf�cient to represent hexadecimal numbers and so additional ‘digits’, A, B, C, D, E,

and F, are included. Table 1.2 shows the equivalence between decimal and hexadecimal

digits. Hexadecimal numbers are based on powers of 16.

Table 1.2

Hexadecimal numbers.

Decimal Hexadecimal Decimal Hexadecimal

0 0 8 8

1 1 9 9

2 2 10 A

3 3 11 B

4 4 12 C

5 5 13 D

6 6 14 E

7 7 15 F

Converting from hexadecimal to decimal

The following example illustrates how to convert from hexadecimal to decimal. We

use the fact that as we move from right to left, the position of each digit represents an

increasing power of 16.
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Example 1.16 Convert the following hexadecimal numbers to decimal numbers: (a) 93A (b) F9B3

Solution (a) Noting that hexadecimal numbers use base 16 we have

93A16 = 9(162)+ 3(161)+ A(160)

= 9(256)+ 3(16)+ 10(1)

= 236210

(b) F9B316 = F(163)+ 9(162)+ B(161)+ 3(160)

= 15(4096)+ 9(256)+ 11(16)+ 3(1)

= 63 92310

Converting from decimal to hexadecimal

Table 1.3 provides powers of 16 which help in the conversion from decimal to hexa-

decimal.

Table 1.3

160 1

161 16

162 256

163 4096

164 65 536

The following example illustrates how to convert from decimal to hexadecimal.

Example 1.17 Convert 14 397 to a hexadecimal number.

Solution We need to express 14397 as the sum of multiples of powers of 16. From Table 1.3 we

see that the highest number that does not exceed 14397 is 4096. We express 14397 as

a multiple of 4096 with an appropriate remainder. Dividing 14397 by 4096 we obtain 3

with a remainder of 2109. So we may write

14397 = 3(4096)+ 2109

We now focus on 2109 and apply the same process as above. From Table 1.3 the highest

number that does not exceed 2109 is 256:

2109 = 8(256)+ 61

Finally, 61 = 3(16)+ 13. So we have

14 397 = 3(4096)+ 8(256)+ 3(16)+ 13

= 3(163)+ 8(162)+ 3(161)+ 13(160)

From Table 1.2 we see that 1310 is D in hexadecimal, so we have

14 39710 = 383D16

As with base 2 we can convert decimal numbers by repeated division and noting the

remainder. The previous example is reworked to illustrate this.
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Example 1.18 Convert 14 397 to hexadecimal.

Solution We divide repeatedly by 16, noting the remainder.

Remainder

14 397 ÷ 16 = 899 r 13 13

899 ÷ 16 = 56 r 3 3

56 ÷ 16 = 3 r 8 8

3 ÷ 16 = 0 r 3 3

Recall that 13 in hexadecimal is D. Reading up the Remainder column we have

14 39710 = 383D16

as before.

Electronic engineers need to be familiar with the decimal, binary and hexadecimal sys-

tems and be able to convert between them. The equivalent representations of the decimal

numbers 0--15 are provided in Table 1.4.

Table 1.4

Decimal Binary Hex Decimal Binary Hex

0 0000 0 8 1000 8

1 0001 1 9 1001 9

2 0010 2 10 1010 A

3 0011 3 11 1011 B

4 0100 4 12 1100 C

5 0101 5 13 1101 D

6 0110 6 14 1110 E

7 0111 7 15 1111 F

Converting from binary to hexadecimal

There is a straightforward way of converting a binary number into a hexadecimal num-

ber. The digits of the binary number are grouped into fours, or quartets, (from the right-

hand side) and each quartet is converted to its hex equivalent using Table 1.4.

Example 1.19 Convert 11010111001112 into hexadecimal.

Solution Working from the right, the binary number is grouped into fours, with additional zeros

being added as necessary to the �nal grouping.

0001 1010 1110 0111
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Table 1.4 is used to express each group of four as its hex equivalent. For example, 0111 =

716, and continuing in this way we obtain

1AE7

Thus 110101110 01112 = 1AE716.

1.3.4 Binary coded decimal

We have seen in Section 1.3.2 that decimal numbers can be expressed in an equivalent

binary form where the position of each binary digit, moving from the right to the left,

represents an increasing power of 2. There is an alternative way of expressing numbers

using the binary digits 1 and 0 that is often used in electronic engineering because for

some applications it is more straightforward to build the necessary hardware. This sys-

tem is called binary coded decimal (b.c.d.).

First of all, recall how the decimal digits 0, 1, 2, . . . , 9 are expressed in their usual

binary form. Note that the largest decimal digit 9 is 1001 in binary, and so we need

at most four digits to store the binary representations of 0, 1, . . . , 9. Expressing each

decimal digit as a four-digit binary number we obtain Table 1.5.

Table 1.5

Decimal digits and their four-digit

binary representations.

0 0000 5 0101

1 0001 6 0110

2 0010 7 0111

3 0011 8 1000

4 0100 9 1001

A four-digit binary number is referred to as a nibble. To express a multi-digit decimal

number, such as 347, in b.c.d. each decimal digit in turn is converted into its binary

representation as shown. Note that a nibble is used for each decimal digit.

3 4 7

↓ ↓ ↓

0011 0100 0111

Recall from Section 1.3.2 that a byte is a group of 8 bits (binary digits). Computers

usually store numbers in 8-bit bytes so there are two common ways of encoding b.c.d.

The �rst is to use a whole byte for each nibble, with the �rst 4 bits always set to 0. So,

for example, 34710 can be stored as

00000011 00000100 00000111

Alternatively, each byte can be used to store two nibbles, in which case 34710 would be

stored as

00000011 01000111

Rules have been developed for performing calculations in b.c.d. but these are beyond the

scope of this book.
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Engineering application 1.5

Seven-segment displays

The number displays found on music systems, video and other electronic equip-

ment commonly employ one or more seven-segment indicators. A single seven-

segment indicator is shown in Figure 1.2(a). The individual segments are typically

illuminatedwith a light-emitting diode (LED) or similar optical device and are either

on or off. The segments are illuminated according to the table shown in Figure 1.2(b),

where 1 indicates that the segment is turned on and 0 indicates that it is turned off.

g

d

a

bf

ce

0000 1

b.c.d.

number a b c d e f g

1 1 1 1 1 0

0 1 1 0 0 0 0

1 1 0 1 1 0 1

1 1 1 1 0 0 1

0 1 1 0 0 1 1

1 0 1 1 0 1 1

1 0 1 1 1 1 1

1 1 1 0 0 0 0

1 1 1 1 1 1 1

1 1 1 1 0 1 1

0001 

0010

0011 

0100

0101 

0110

0111 

1000

1001

(a) (b)

Figure 1.2

(a) Seven-segment LED display. (b) Seven-segment coding.

The numbers in the microprocessor system driving the display are typically

stored in binary format, known as, binary coded decimal (b.c.d.). As an example

we consider displaying binary number 111010102 as a decimal number on seven-

segment displays. This represents the decimal number 234, which requires three

seven-segment displays.

The microprocessor �rst divides the input number by 100 and in this case obtains

the result 2 with a remainder of 34. This can be done directly on the binary number

itself via a series of operations within the assembly language of the microprocessor

without �rst converting to a decimal number. The result 2 = 00102 is then decoded

using Figure 1.2(b), giving the bit pattern 1101101 which is passed to the ‘hundreds’

display.

The remainder of 34 is then divided by 10 giving 3 with a �nal remainder of 4. The

number 3 = 00112 and so this can be outputted to the ‘tens’ display as the pattern

1111001. Finally, 4 = 01002, which is passed to the display as the pattern 0110011.
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The display shows

g

d

a

bf

ce

g

d

a

bf

ce

g

d

a

bf

ce

Notice that prior to decoding for display, by successive division by 100 and 10

the number has been converted into separate b.c.d. digits. Integrated circuits are

available which convert b.c.d. directly into the bit patterns for display. Hence the

output bit pattern of the microprocessor may be chosen to be b.c.d. In this case it

has the advantage that fewer pins are required on the microprocessor to operate the

display.

EXERCISES 1.3

1 Convert the following decimal numbers to binary

numbers: (a) 19 (b) 36 (c) 100 (d) 796

(e) 5000

2 Convert the following binary numbers to decimal

numbers: (a) 111 (b) 10101 (c) 111001

(d) 1110001 (e) 11111111

3 What is the highest decimal number that can be

written in binary form using a maximum of (a) 2

binary digits (b) 3 binary digits (c) 4 binary digits

(d) 5 binary digits? Can you spot a pattern? (e) Write

a formula for the highest decimal number that can be

written using N binary digits.

4 Write the decimal number 0.5 in binary.

5 Convert the following hexadecimal numbers to

decimal numbers: (a) 91 (b) 6C (c) A1B (d) F9D4

(e) ABCD

6 Convert the following decimal numbers to

hexadecimal numbers: (a) 160 (b) 396 (c) 5010

(d) 25 000 (e) 1 000 000

7 Calculate the highest decimal number that can be

represented by a hexadecimal number with (a) 1 digit

(b) 2 digits (c) 3 digits (d) 4 digits (e) N digits

8 Express the decimal number 375 as both a pure binary

number and a number in b.c.d.

9 Convert (a) 11111112 (b) 1010101112 into

hexadecimal.

Solutions

1 (a) 1910 = 100112 (b) 100100 (c) 1100100

(d) 1100011100 (e) 1001110001000

2 (a) 1112 = 7 (b) 21 (c) 57 (d)113 (e) 255

3 (a) 3 (b) 7 (c) 15 (d) 31 (e) 2N − 1

4 The binary system is based on powers of 2. The

examples in the text can be extended to the case of

negative powers of 2 just as in the decimal system

numbers after the decimal place represent negative

powers of 10. So, for example, the binary number

11.1012 is converted to decimal as follows:

11.1012 = 1 × 21 + 1 × 20 + 1 × 2−1

+ 0 × 2−2 + 1 × 2−3

= 2 + 1 +
1

2
+

1

8

= 3
5

8
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In the same way the binary equivalent of the decimal

number 0.5 is 0.1.

5 (a) 9116 = 14510 (b) 6C= 108 (c) 2587 (d) 63 956

(e) 43 981

6 (a) 16010 = A0 (b) 18C (c) 1392 (d) 61A8

(e) F4240

7 (a) 15 (b) 255 (c) 4095 (d) 65 535 (e) 16N − 1

8 (a) 1011101112 (b) 0011 0111 0101bcd

9 (a) 7F (b) 157

1.4 POLYNOMIAL EQUATIONS

A polynomial equation has the form

P(x) = anx
n + an−1x

n−1 + an−2x
n−2 + · · · + a2x

2 + a1x+ a0 = 0 (1.4)

where n is a positive whole number, an, an−1, . . . , a0 are constants and x is a

variable. The constants an, an−1, . . . , a2, a1, a0 are called the coef�cients of the

polynomial.

The roots of an equation are those values of x which satisfy P(x) = 0. So if x = x1 is a

root then P(x1) = 0.

Examples of polynomial equations are

7x2 + 4x− 1 = 0 (1.5)

2x− 3 = 0 (1.6)

x3 − 20 = 0 (1.7)

The degree of an equation is the value of the highest power. Equation (1.5) has degree 2,

Equation (1.6) has degree 1 and Equation (1.7) has degree 3. A polynomial equation of

degree n has n roots.

There are some special names for polynomial equations of low degree (see Table 1.6).

Table 1.6

Equation Degree Name

ax+ b = 0 1 Linear

ax2 + bx+ c = 0 2 Quadratic

ax3 + bx2 + cx+ d = 0 3 Cubic

ax4 + bx3 + cx2 + dx+ e = 0 4 Quartic

1.4.1 Quadratic equations

We now focus attention on quadratic equations. The standard form of a quadratic equa-

tion is ax2 + bx+ c = 0. We look at three methods of solving quadratic equations:

(1) factorization,

(2) use of a formula,

(3) completing the square.

Example 1.20 illustrates solution by factorization.
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Example 1.20 Solve

6x2 + 11x− 10 = 0

Solution The left-hand side (l.h.s.) is factorized:

(3x− 2)(2x+ 5) = 0

So either

3x− 2 = 0 or 2x+ 5 = 0

Hence

x =
2

3
,−

5

2

When roots cannot be found by factorization we can make use of a formula.

The formula for �nding the roots of ax2 + bx+ c = 0 is

x =
−b±

√
b2 − 4ac

2a

Example 1.21 Use the quadratic formula to solve

3x2 − x− 6 = 0

Solution Comparing 3x2 − x− 6 with ax2 + bx+ c we see that a = 3, b = −1 and c = −6. So

x =
−(−1)±

√
(−1)2 − 4(3)(−6)

2(3)

=
1 ±

√
73

6
= −1.2573, 1.5907

Engineering application 1.6

Current used by an electric vehicle

Personal transport systems that make use of electrical power are becoming increas-

ingly common. One of the factors behind this change is that their use can reduce road-

side pollution in an urban environment. Electrical vehicles have also become the base

for self-driving cars when combined with electrical control and navigation systems.

The motor in an operational electric vehicle has to do work to overcome wind,

inertia, friction, road resistance and in order to climb inclines. The energy supply

in the form of electrical power comes from the on-board battery pack. Due to its

internal construction the battery pack has a total internal resistance, R, which serves

to reduce the power available to the motor.

➔
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A simpli�ed circuit diagram of a vehicle is shown in Figure 1.3.

R

V

I

Terminals

Battery pack

Internal 

resistance

Motor and gearbox

Drive 

wheels

Figure 1.3

Electric vehicle wiring diagram.

The total power delivered by the battery pack is

power = voltage × current = VI

This is shared between loss due to the internal resistance and the power, P, to the

motor. The power loss due to the internal resistance is I2R (see Engineering appli-

cation 1.1). So the equation for the power in the circuit is

VI = I2R+ P

This can be rewritten into the form of a quadratic equation

RI2 −VI + P = 0

which can be solved to calculate the current in the wire for a particular power deliv-

ered to the motor. It is important to know the current in order to specify the size of

the fuses, the motor controller and the wire diameters used in the vehicle.

Consider the case where the power output is 2 kW. If the circuit parameters are

V = 150 volts, R = 1.6 �, we have

1.6I2 − 150I + 2000 = 0

The solutions to the quadratic equation are

I =
−b±

√
b2 − 4ac

2a
=

−(−150)±
√
(−150)2 − (4 × 1.6 × 2000)

2 × 1.6

= 77.7 A, 16.1 A

The relevant solution depends on the electrical characteristics of the motor used in the

circuit. In practice, the larger of the two currents would correspond to a substantial

loss in the internal resistance and would be avoided by the correct choice of motor.

The technical computing language MATLAB® has the function roots which

�nds the solutions of a polynomial equation. In this example we would type

roots ([1.6 -150 2000]) at the command line to obtain the results calculated

above.
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We now introduce the method of completing the square. The idea behind completing

the square is to absorb both the x2 and the x term into a single squared term. Note that

this is possible since

x2 + 2kx+ k2 = (x+ k)2

and so

x2 + 2kx = (x+ k)2 − k2

and �nally

x2 + 2kx+ A = (x+ k)2 + A− k2

The x2 and the x terms are both contained in the (x + k)2 term. The coef�cient of x on

the l.h.s. is 2k. The squared term on the right-hand side (r.h.s.) has the form (x + k)2,

that is

(
x+

coef�cient of x

2

)2

. The following example illustrates the idea.

Example 1.22 Solve the following quadratic equations by completing the square:

(a) x2 + 8x+ 2 = 0

(b) 2x2 − 4x+ 1 = 0

Solution (a) By comparing x2 + 8x+ 2 with x2 + 2kx+ A we see k = 4. Thus the squared term

must be (x+ 4)2. Now

(x+ 4)2 = x2 + 8x+ 16

and so

x2 + 8x = (x+ 4)2 − 16

Therefore

x2 + 8x+ 2 = (x+ 4)2 − 16 + 2

= (x+ 4)2 − 14

At this stage we have completed the square. Finally, solving x2 + 8x + 2 = 0 we

have

x2 + 8x+ 2 = 0

(x+ 4)2 − 14 = 0

(x+ 4)2 = 14

x+ 4 = ±
√
14

x = −4 ±
√
14 = −7.7417,−0.2583

(b) 2x2 − 4x+ 1 = 0 may be expressed as x2 − 2x+ 0.5 = 0. Comparing x2 − 2x+ 0.5

with x2 + 2kx + A we see that k = −1. Thus the required squared term must be

(x− 1)2. Now

(x− 1)2 = x2 − 2x+ 1

and so

x2 − 2x = (x− 1)2 − 1
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and

x2 − 2x+ 0.5 = (x− 1)2 − 1 + 0.5

= (x− 1)2 − 0.5

Finally, solving x2 − 2x+ 0.5 = 0 we have

(x− 1)2 − 0.5 = 0

(x− 1)2 = 0.5

x− 1 = ±
√
0.5

x = 1 ±
√
0.5 = 0.2929, 1.7071

1.4.2 Polynomial equations of higher degree

Example 1.23 Verify that x = 1 and x = 2 are roots of

P(x) = x4 − 2x3 − x+ 2 = 0

Solution P(x) = x4 − 2x3 − x+ 2

P(1) = 1 − 2 − 1 + 2 = 0

P(2) = 24 − 2(23)− 2 + 2 = 16 − 16 − 2 + 2 = 0

Since P(1) = 0 and P(2) = 0, then x = 1 and x = 2 are roots of the given polynomial

equation and are sometimes referred to as real roots. Further knowledge is required to

�nd the two remaining roots, which are known as complex roots. This topic is covered

in Chapter 9.

Example 1.24 Solve the equation

P(x) = x3 + 2x2 − 37x+ 52 = 0

Solution As seen in Example 1.21 a formula can be used to solve quadratic equations. For higher

degree polynomial equations such simple formulae do not always exist. However, if

one of the roots can be found by inspection we can proceed as follows. By inspection

P(4) = 43 + 2(4)2 − 37(4)+ 52 = 0 so that x = 4 is a root. Hence x− 4 is a factor of

P(x). Therefore P(x) can be written as

P(x) = x3 + 2x2 − 37x+ 52 = (x− 4)(x2 + αx+ β)

where α and β must now be found. Expanding the r.h.s. gives

P(x) = x3 + αx2 + βx− 4x2 − 4αx− 4β

Hence

x3 + 2x2 − 37x+ 52 = x3 + (α − 4)x2 + (β − 4α)x− 4β

By comparing constant terms on the l.h.s. and r.h.s. we see that

52 = −4β
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so that

β = −13

By comparing coef�cients of x2 we see that

2 = α − 4

Therefore,

α = 6

Hence, P(x) = (x− 4)(x2 + 6x− 13). The quadratic equation x2 + 6x− 13 = 0 can be

solved using the formula

x =
−6 ±

√
36 − 4(−13)

2

=
−6 ±

√
88

2

= 1.690,−7.690

We conclude that P(x) = 0 has roots at x = 4, x = 1.690 and x = −7.690.

EXERCISES 1.4

1 Calculate the roots of the following linear equations:

(a) 4x− 12 = 0

(b) 5t + 20 = 0

(c) t + 10 = 2t

(d)
y

2
− 1 = 3

(e) 0.5t − 6 = 0

(f) 2x+ 3 = 5x− 6

(g)
3x

2
− 17 = 0

(h)
x

2
+
x

3
= 1

(i) 2x− 1 =
x

2
+ 2

(j) 2(y+ 1) = 6

(k) 3(2y− 1) = 2(y+ 2)

(l)
3

2
(t + 3) =

2

3
(4t − 1)

2 Solve the following quadratic equations by

factorization:

(a) t2 − 5t + 6 = 0

(b) x2 + x− 12 = 0

(c) t2 = 10t − 25

(d) x2 + 4x− 21 = 0

(e) x2 − 9x+ 18 = 0

(f) x2 = 1

(g) y2 − 10y+ 9 = 0

(h) 2z2 − z− 1 = 0

(i) 2x2 + 3x− 2 = 0

(j) 3t2 + 4t + 1 = 0

(k) 4y2 + 12y+ 5 = 0

(l) 4r2 − 9r + 2 = 0

(m) 6d2 − d − 2 = 0

(n) 6x2 − 13x+ 2 = 0

3 Complete the square for the following quadratic

equations and hence �nd their roots:

(a) x2 + 2x− 8 = 0

(b) x2 − 6x− 5 = 0

(c) x2 + 4x− 6 = 0

(d) x2 − 14x− 10 = 0

(e) x2 + 5x− 49 = 0

4 Solve the following quadratic equations using the

quadratic formula:

(a) x2 + x− 1 = 0

(b) t2 − 3t − 2 = 0
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(c) h2 + 5h+ 1 = 0

(d) 0.5x2 + 3x− 2 = 0

(e) 2k2 − k − 3 = 0

(f) −y2 + 3y+ 1 = 0

(g) 3r2 = 7r + 2

(h) x2 − 70 = 0

(i) 4s2 − 2 = s

(j) 2t2 + 5t + 2 = 0

(k) 3x2 = 50

5 Calculate the roots of the following polynomial

equations:

(a) x3 − 6x2 + 11x− 6 = 0 given x = 1 is a root

(b) t3 − 2t2 − 5t + 6 = 0 given t = 3 is a root

(c) v3 − v2 − 30v + 72 = 0 given v = 4 is a root

(d) 2y3 + 3y2 − 11y+ 3 = 0 given y = 1.5 is a root

(e) 2x3 + 3x2 − 7x− 5 = 0 given x = −
5

2
is a root.

6 Check that the given values are roots of the following

polynomial equations:

(a) x2 + x− 2 = 0 x = −2, 1

(b) 2t3 − 3t2 − 3t + 2 = 0 t = −1, 0.5

(c) y3 + y2 + y+ 1 = 0 y = −1

(d) v4 + 4v3 + 6v2 + 3v = 0 v = −1, 0

Solutions

1 (a) 3 (b) −4 (c) 10 (d) 8

(e) 12 (f) 3 (g)
34

3
(h)

6

5

(i) 2 (j) 2 (k)
7

4
(l)

31

7

2 (a) 2, 3 (b) −4, 3 (c) 5

(d) −7, 3 (e) 3, 6 (f) −1, 1

(g) 1, 9 (h) −0.5, 1 (i) −2, 0.5

(j) −1,−
1

3
(k) −2.5,−0.5 (l) 0.25, 2

(m) −
1

2
,
2

3
(n)

1

6
, 2

3 (a) (x+ 1)2 − 9 = 0, x = −4, 2

(b) (x− 3)2 − 14 = 0, x = −0.7417, 6.7417

(c) (x+ 2)2 − 10 = 0, x = −5.1623, 1.1623

(d) (x− 7)2 − 59 = 0, x = −0.6811, 14.6811

(e)
(
x+

5

2

)2
−

221

4
= 0, x = −9.9330, 4.9330

4 (a) −1.6180, 0.6180

(b) −0.5616, 3.5616

(c) −4.7913,−0.2087

(d) −6.6056, 0.6056

(e) −1, 1.5

(f) −0.3028, 3.3028

(g) −0.2573, 2.5907

(h) −8.3666, 8.3666

(i) −0.5931, 0.8431

(j) −2,−0.5

(k) −4.0825, 4.0825

5 (a) 1, 2, 3 (b) −2, 1, 3

(c) −6, 3, 4 (d) −3.3028, 0.3028, 1.5

(e) −2.5,−0.6180, 1.6180

1.5 ALGEBRAIC FRACTIONS

An algebraic fraction has the form

algebraic fraction =
numerator

denominator
=

polynomial expression

polynomial expression

For example,

3t + 1

t2 + t + 4
,

x3

x2 + 1
and

y2 + 1

y2 + 2y+ 3

are all algebraic fractions.
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1.5.1 Proper and improper fractions

When presented with a fraction, we can note the degree of the numerator, say n, and the

degree of the denominator, say d.

A fraction is proper if d > n, that is the degree of the denominator is greater than

the degree of the numerator. If d 6 n then the fraction is improper.

Example 1.25 Classify the following fractions as either proper or improper. In each case, state the

degree of both numerator and denominator.

(a)
x2 + 9x− 6

3x3 + x2 + 100

(b)
t3 + t2 + 9t − 6

t5 + 9

(c)
(v + 1)(v − 6)

v2 + 3v + 6

(d)
(z+ 2)3

5z2 + 10z+ 16

Solution (a) The degree of the numerator, n, is 2. The degree of the denominator, d, is 3. Since

d > n the fraction is proper.

(b) Here n = 3 and d = 5. The fraction is proper since d > n.

(c) Here n = 2 and d = 2, so d = n and the fraction is improper.

(d) Here n = 3 and d = 2, so d < n and the fraction is improper.

1.5.2 Equivalent fractions

Consider the numerical fractions
1

2
and

2

4
. These fractions have the same value. Sim-

ilarly,
2

3
,
6

9
and

20

30
all have the same value. The algebraic fractions

x

y
,
2x

2y
and

xt

yt
all

have the same value. Fractions with the same value are called equivalent fractions.

The value of a fraction remains unchanged if both numerator and denominator are

multiplied or divided by the same quantity. This fact can be used to write a fraction in

many equivalent forms. Consider for example the fractions

(a)
2

x
(b)

2(x+ 1)

x(x+ 1)
(c)

2xt

x2t

These are all equivalent fractions. Fraction (b) can be obtained by multiplying both nu-

merator and denominator of fraction (a) by (x+ 1), so they are equivalent. Fraction (a)

can be obtained by dividing numerator and denominator of fraction (c) by xt and so they

are also equivalent.

Example 1.26 Show that

x+ 1

x+ 7
and

x2 + 4x+ 3

x2 + 10x+ 21

are equivalent.
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Solution We factorize the numerator and denominator of the second fraction:

x2 + 4x+ 3

x2 + 10x+ 21
=
(x+ 1)(x+ 3)

(x+ 7)(x+ 3)

Dividing both numerator and denominator by (x+ 3) results in
x+ 1

x+ 7
. So the two given

fractions are equivalent.

Dividing both numerator and denominator by x+ 3 is often referred to as ‘cancelling

x+ 3’.

1.5.3 Expressing a fraction in its simplest form

Consider the numerical fraction
6

10
. To simplify this we factorize both numerator and

denominator and then cancel any common factors. Thus

6

10
=

2 × 3

2 × 5
=

3

5

The fractions
6

10
and

3

5
have identical values but

3

5
is in a simpler form than

6

10
. It is im-

portant to stress that only factors which are common to both numerator and denominator

can be cancelled.

Example 1.27 Simplify

(a)
6x

18x2

(b)
12x3y2

4x2yz

Solution (a) Note that 18 can be factorized to 6×3 and so 6 is a factor common to both numerator

and denominator. Also x2 is x× x and so x is also a common factor. Cancelling the

common factors, 6 and x, produces

6x

18x2
=

6x

(6)(3)(x)(x)
=

1

3x

(b) The common factors are 4, x2 and y. Cancelling these factors gives

12x3y2

4x2yz
=

3xy

z

Example 1.28 Simplify (a)
4

6x+ 4
(b)

6t3 + 3t2 + 6t

3t2 + 3t

Solution (a) Factorizing both numerator and denominator and cancelling common factors yields

4

6x+ 4
=

(2)(2)

2(3x+ 2)
=

2

3x+ 2
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(b) Factorizing and cancelling common factors yields

6t3 + 3t2 + 6t

3t2 + 3t
=

3t(2t2 + t + 2)

3t(t + 1)
=

2t2 + t + 2

t + 1

Note that the common factor, 3t, has been cancelled.

Example 1.29 Simplify (a)
4t + 8

t2 + 3t + 2
(b)

2y2 − y− 1

y2 − 2y+ 1

Solution The numerator and denominator are factorized and common factors are cancelled.

(a)
4t + 8

t2 + 3t + 2
=

4(t + 2)

(t + 2)(t + 1)
=

4

t + 1

The common factor, t + 2, has been cancelled.

(b)
2y2 − y− 1

y2 − 2y+ 1
=
(2y+ 1)(y− 1)

(y− 1)2
=

2y+ 1

y− 1

The common factor, y− 1, has been cancelled.

1.5.4 Multiplication and division of algebraic fractions

To multiply two algebraic fractions together, we multiply their numerators together, and

multiply their denominators together, that is

a

b
×
c

d
=
a× c

b× d
=
ac

bd

Division is performed by inverting the second fraction and then multiplying, that is

a

b
÷
c

d
=
a

b
×
d

c
=
ad

bc

Before multiplying or dividing fractions it is advisable to express each fraction in its

simplest form.

Example 1.30 Simplify

x2 + 5x+ 6

2x− 2
×

x2 − x

x2 + 3x+ 2

Solution Factorizing numerators and denominators produces

x2 + 5x+ 6

2x− 2
×

x2 − x

x2 + 3x+ 2
=
(x+ 2)(x+ 3)

2(x− 1)
×

x(x− 1)

(x+ 1)(x+ 2)

=
(x+ 2)(x+ 3)x(x− 1)

2(x− 1)(x+ 1)(x+ 2)

Common factors (x+ 2) and (x− 1) can be cancelled from numerator and denominator

to give

(x+ 2)(x+ 3)x(x− 1)

2(x− 1)(x+ 1)(x+ 2)
=
(x+ 3)x

2(x+ 1)
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Hence

x2 + 5x+ 6

2x− 2
×

x2 − x

x2 + 3x+ 2
=
x(x+ 3)

2(x+ 1)

Example 1.31 Simplify

x2 + 8x+ 7

x2 − 6x
÷

x+ 7

x3 + x2

Solution The second fraction is inverted to give

x2 + 8x+ 7

x2 − 6x
×
x3 + x2

x+ 7

Factorizing numerators and denominators yields

(x+ 1)(x+ 7)

x(x− 6)
×
x2(x+ 1)

(x+ 7)
=
(x+ 1)(x+ 7)x2(x+ 1)

x(x− 6)(x+ 7)

Common factors of x and (x+ 7) are cancelled leaving

(x+ 1)x(x+ 1)

x− 6

which may be written as

x(x+ 1)2

x− 6

1.5.5 Addition and subtraction of algebraic fractions

The method of adding and subtracting algebraic fractions is identical to that for numer-

ical fractions.

Each fraction is written in its simplest form. The denominators of the fractions are

then examined and the lowest common denominator (l.c.d.) is found. This is the sim-

plest expression that has the given denominators as factors. All fractions are then writ-

ten in an equivalent form with the l.c.d. as denominator. Finally the numerators are

added/subtracted and placed over the l.c.d. Consider the following examples.

Example 1.32 Express as a single fraction

2

x+ 1
+

4

x+ 2

Solution Both fractions are already in their simplest form. The l.c.d. of the denominators, (x+ 1)

and (x + 2), is found. This is (x + 1)(x + 2). Note that this is the simplest expression

that has both x+ 1 and x+ 2 as factors.

Each fraction is written in an equivalent form with the l.c.d. as denominator. So

2

x+ 1
is written as

2(x+ 2)

(x+ 1)(x+ 2)
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and

4

x+ 2
is written as

4(x+ 1)

(x+ 1)(x+ 2)

Finally the numerators are added. Hence we have

2

x+ 1
+

4

x+ 2
=

2(x+ 2)

(x+ 1)(x+ 2)
+

4(x+ 1)

(x+ 1)(x+ 2)

=
2(x+ 2)+ 4(x+ 1)

(x+ 1)(x+ 2)

=
6x+ 8

(x+ 1)(x+ 2)

=
6x+ 8

x2 + 3x+ 2

Example 1.33 Express as a single fraction

x2 + 3x+ 2

x2 − 1
−

2

2x+ 6

Solution Each fraction is written in its simplest form:

x2 + 3x+ 2

x2 − 1
=
(x+ 1)(x+ 2)

(x− 1)(x+ 1)
=
x+ 2

x− 1

2

2x+ 6
=

2

2(x+ 3)
=

1

x+ 3

The l.c.d. is (x− 1)(x+ 3). Each fraction is written in an equivalent form with l.c.d. as

denominator:

x+ 2

x− 1
=
(x+ 2)(x+ 3)

(x− 1)(x+ 3)
,

1

x+ 3
=

x− 1

(x− 1)(x+ 3)

So

x2 + 3x+ 2

x2 − 1
−

2

2x+ 6
=
x+ 2

x− 1
−

1

x+ 3

=
(x+ 2)(x+ 3)

(x− 1)(x+ 3)
−

(x− 1)

(x− 1)(x+ 3)

=
(x+ 2)(x+ 3)− (x− 1)

(x− 1)(x+ 3)

=
x2 + 5x+ 6 − x+ 1

(x− 1)(x+ 3)

=
x2 + 4x+ 7

(x− 1)(x+ 3)
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Engineering application 1.7

Resistors in parallel

When carrying out circuit analysis it is often helpful to reduce the complexity of a

circuit by calculating an equivalent single resistance for several resistors connected

together in parallel. This simpli�ed version of the original circuit then becomes much

easier to understand. Figure 1.4 shows the simplest case of two resistors connected

together in parallel.

R2R1

Figure 1.4

Two resistors in parallel.

The equivalent resistance, RE, of this simple network is found from the formula

1

RE

=
1

R1

+
1

R2

By combining the fractions on the r.h.s. we see

1

RE

=
R2 + R1

R1R2

and hence

RE =
R1R2

R1 + R2

Consider the case when R1 and R2 are equal and have value R. The equivalent resis-

tance then becomes

RE =
RR

R+ R
=

R2

2R
=
R

2

So

RE =
R

2
= 0.5R

Therefore the effect of putting two equal resistors in parallel is to produce an overall

equivalent resistance which is half that of a single resistor.

EXERCISES 1.5

1 Classify each fraction as either proper or improper.

(a)
x+ 2

x2 + 2
(b)

2

x+ 2
(c)

2 + x

2

(d)
x2 + 2

x+ 2
(e)

x2 + 2

x2 + 1
(f)

x2 + 1

x2 + 2

2 Classify each of the following algebraic fractions as

proper or improper.

(a)
3t + 1

t2 − 1
(b)

10v2 + 4v − 6

3v2 + v − 1
(c)

6 − 4t + t3

6t2 + 1

(d)
9t + 1

t + 1
(e)

100 f 2 + 1

f 3 − 1
(f)

(x+ 1)(x+ 2)

(x+ 3)3
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(g)
(y+ 1)(y+ 2)(y+ 3)

(y+ 4)3

(h)
(z+ 1)10

(2z+ 1)10
(i)

(q+ 1)10

(q2 + 1)6

(j)
3k2 + 2k − 1

k3 + k2 − 4k + 1

3 Express each fraction in its simplest form.

(a)
y3 + 2y

2y− y2
(b)

5x2 + 5

10x− 10

(c)
t2 + 7t + 12

t2 + 5t + 4
(d)

x2 − 1

x3 − 2x2 + x

(e)
x2 + 2x+ 1

x2 − 2x+ 1

4 Simplify the following:

(a)
x+ 1

x+ 3
×
x+ 3

x+ 2

(b)
4

x2 − 1
×
x+ 1

6

(c)
x2 + 3x

x3 + 2x2
×
x2 + 4x+ 4

4x

(d)
4xt + 4t

xt2 − t2
×

4x2 − 4

8x+ 8

(e)
x2 + 2x− 15

x2 + 4x− 5
×
x2 + 3x− 4

x2 − 4x+ 3

5 Express as a single fraction

(a)
3

x+ 6
+

2

x+ 1

(b)
4

x+ 2
−

2

(x+ 2)2

(c)
2x+ 1

x2 + x+ 1
+

4

x− 1

(d)
x2 + 3x− 18

x2 + 7x+ 6
−

2x2 + 7x− 4

x2 + 9x+ 20

(e)
3(x+ 1)

x2 + 4x+ 4
+

2(x− 1)

x2 − 4

Solutions

1 (a) proper (b) proper (c) improper

(d) improper (e) improper (f) improper

2 (a) proper (b) improper (c) improper

(d) improper (e) proper (f) proper

(g) improper (h) improper (i) proper

(j) proper

3 (a)
y2 + 2

2 − y
(b)

x2 + 1

2x− 2
(c)

t + 3

t + 1

(d)
x+ 1

x(x− 1)
(e)

x2 + 2x+ 1

x2 − 2x+ 1

4 (a)
x+ 1

x+ 2
(b)

2

3(x− 1)

(c)
(x+ 2)(x+ 3)

4x2
(d)

2(x+ 1)

t
(e)

x+ 4

x− 1

5 (a)
5x+ 15

(x+ 1)(x+ 6)
(b)

4x+ 6

(x+ 2)2

(c)
6x2 + 3x+ 3

(x− 1)(x2 + x+ 1)

(d)
−x2 + x− 14

(x+ 1)(x+ 5)
(e)

5x2 − x− 10

(x+ 2)2(x− 2)

1.6 SOLUTION OF INEQUALITIES

An inequality is any expression involving one of the symbols >, > , <, 6 .

a > bmeans a is greater than b

a < bmeans a is less than b

a > bmeans a is greater than or equal to b

a 6 bmeans a is less than or equal to b

Just as with an equation, when we add or subtract the same quantity to both sides of an

inequality the inequality still remains. Mathematically we have
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If a > b then

a+ k > b+ k adding k to both sides

a− k > b− k subtracting k from both sides

We can make similar statements for a > b, a < b and a 6 b.

When multiplying or dividing both sides of an inequality extra care must be taken.

Suppose we wish to multiply or divide an inequality by a quantity k. If k is positive the

inequality remains the same; if k is negative then the inequality is reversed.

If a > b then

ka > kb

a

k
>
b

k



 if k is positive

ka < kb

a

k
<
b

k



 if k is negative

Note that when k is negative the inequality changes from> to<. Similar statements can

be made for a > b, a < b and a 6 b. When asked to solve an inequality we need to state

all the values of the variable for which the inequality is true.

Example 1.34 Solve the following inequalities:

(a) 3t + 1 > t + 7 (b) 2 − 3z 6 6 + z

Solution (a) 3t + 1> t + 7

2t + 1> 7 subtracting t from both sides

2t > 6 subtracting 1 from both sides

t > 3 dividing both sides by 2

Hence all values of t greater than 3 satisfy the inequality.

(b) 2 − 3z 6 6 + z

−3z 6 4 + z subtracting 2 from both sides

−4z 6 4 subtracting z from both sides

z > −1 dividing both sides by −4, remembering to reverse

the inequality

Hence all values of z greater than or equal to −1 satisfy the inequality.

We often have inequalities of the form
α

β
> 0,

α

β
< 0, αβ > 0 and αβ < 0 to solve. It

is useful to note that if

α

β
> 0 then either α > 0 and β > 0 or α < 0 and β < 0

α

β
< 0 then either α > 0 and β < 0 or α < 0 and β > 0

αβ > 0 then either α > 0 and β > 0 or α < 0 and β < 0

αβ < 0 then either α > 0 and β < 0 or α < 0 and β > 0

The following examples illustrate this.
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Example 1.35 Solve the following inequalities:

(a)
x+ 1

2x− 6
> 0 (b)

2t + 3

t + 2
6 1

Solution (a) Consider the fraction
x+ 1

2x− 6
. For the fraction to be positive requires either of the

following:

(i) x+ 1 > 0 and 2x− 6 > 0.

(ii) x+ 1 < 0 and 2x− 6 < 0.

We consider both cases.

Case (i) x+ 1 > 0 and so x > −1.

2x− 6 > 0 and so x > 3.

Both of these inequalities are true only when x > 3. Hence the fraction is positive

when x > 3.

Case (ii) x+ 1 < 0 and so x < −1.

2x− 6 < 0 and so x < 3.

Both of these inequalities are true only when x < −1. Hence the fraction is positive

when x < −1.

In summary,
x+ 1

2x− 6
> 0 when x > 3 or x < −1.

(b)
2t + 3

t + 2
6 1

2t + 3

t + 2
− 1 6 0

t + 1

t + 2
6 0

We now consider the fraction
t + 1

t + 2
. For the fraction to be negative or zero requires

either of the following:

(i) t + 1 6 0 and t + 2 > 0.

(ii) t + 1 > 0 and t + 2 < 0.

We consider each case in turn.

Case (i) t + 1 6 0 and so t 6 −1.

t + 2 > 0 and so t > −2.

Hence the inequality is true when t is greater than −2 and less than or equal to −1.

We write this as −2 < t 6 −1.

Case (ii) t + 1 > 0 and so t > −1.

t + 2 < 0 and so t < −2.
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It is impossible to satisfy both t > −1 and t < −2 and so this case yields no values

of t.

In summary,
2t + 3

t + 2
6 1 when −2 < t 6 −1.

Example 1.36 Solve the following inequalities:

(a) x2 > 4 (b) x2 < 4

Solution (a) x2 > 4

x2 − 4> 0

(x− 2)(x+ 2) > 0

For the product (x− 2)(x+ 2) to be positive requires either

(i) x− 2 > 0 and x+ 2 > 0

or

(ii) x− 2 < 0 and x+ 2 < 0.

We examine each case in turn.

Case (i) x− 2 > 0 and so x > 2.

x+ 2 > 0 and so x > −2.

Both of these are true only when x > 2.

Case (ii) x− 2 < 0 and so x < 2.

x+ 2 < 0 and so x < −2.

Both of these are true only when x < −2.

In summary, x2 > 4 when x > 2 or x < −2.

(b) x2 < 4

x2 − 4< 0

(x− 2)(x+ 2) < 0

For the product (x− 2)(x+ 2) to be negative requires either

(i) x− 2 > 0 and x+ 2 < 0

or

(ii) x− 2 < 0 and x+ 2 > 0.

We examine each case in turn.

Case (i) x− 2 > 0 and so x > 2.

x+ 2 < 0 and so x < −2.

No values of x are possible.



1.6 Solution of inequalities 37

Case (ii) x− 2 < 0 and so x < 2.

x+ 2 > 0 and so x > −2.

Here we have x < 2 and x > −2. This is usually written as −2 < x < 2. Thus all

values of x between −2 and 2 will ensure that x2 < 4.

In summary, x2 < 4 when −2 < x < 2.

The previous example illustrates a general rule.

If x2 > k then x >
√
k or x < −

√
k.

If x2 < k then −
√
k < x <

√
k.

Example 1.37 Solve the following inequalities:

(a) x2 + x− 6 > 0 (b) x2 + 8x+ 1 < 0

Solution (a) x2 + x− 6> 0

(x− 2)(x+ 3) > 0

For the product (x− 2)(x+ 3) to be positive requires either

(i) x− 2 > 0 and x+ 3 > 0

or

(ii) x− 2 < 0 and x+ 3 < 0.

Case (i) x− 2 > 0 and so x > 2.

x+ 3 > 0 and so x > −3.

Both of these inequalities are satis�ed only when x > 2.

Case (ii) x− 2 < 0 and so x < 2.

x+ 3 < 0 and so x < −3.

Both of these inequalities are satis�ed only when x < −3.

In summary, x2 + x− 6 > 0 when either x > 2 or x < −3.

(b) The quadratic expression x2 + 8x + 1 does not factorize and so the technique of

completing the square is used.

x2 + 8x+ 1 = (x+ 4)2 − 15

Hence

(x+ 4)2 − 15 < 0

(x+ 4)2 < 15
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Using the result after Example 1.36 we may write

−
√
15 < x+ 4 <

√
15

−
√
15 − 4 < x <

√
15 − 4

−7.873 < x < −0.127

EXERCISES 1.6

1 Solve the following inequalities:

(a) 2x > 6 (b)
y

4
> 0.6

(c) 3t < 12 (d) z+ 1 > 4

(e) 3v − 2 6 4 (f) 6 − k > −1

(g)
6 − 2v

3
< 1 (h) m2

> 2

(i) x2 < 9 (j) v2 + 1 6 10

(k) x2 + 10 < 6 (l) 2k2 − 3 > 1

(m) 10 − 2v2 6 6 (n) 5 + 4k2 > 21

(o) (v − 2)2 6 25 (p) (3t + 1)2 > 16

2 Solve the following inequalities:

(a) x2 − 6x+ 8 > 0

(b) x2 + 6x+ 8 6 0

(c) 2t2 + 3t − 2 < 0

(d) y2 − 2y− 24 > 0

(e) h2 + 6h+ 9 6 1

(f) r2 + 6r + 7 > 0

(g) x2 + 4x− 6 < 0

(h) 4t2 + 4t + 9 6 12

(i)
x+ 4

x− 5
> 1 (j)

2t − 3

t + 6
6 6

(k)
3v + 12

6 − 2v
> 0 (l)

x2

x+ 1
> 0

(m)
x

x2 + 1
< 0 (n)

3y+ 1

y− 2
6 2

(o) k3 > 0 (p) x3 > 8

(q)
t2 + 6t + 9

t + 5
< 0

(r) (x+ 1)(x− 2)(x+ 3) > 0

Solutions

1 (a) x > 3 (b) y > 2.4 (c) t < 4

(d) z > 3 (e) v 6 2 (f) k 6 7

(g) v >
3

2
(h) m >

√
2 or m 6 −

√
2

(i) −3 < x < 3

(j) −3 6 v 6 3

(k) no solution

(l) k >
√
2 or k 6 −

√
2

(m) v >
√
2 or v 6 −

√
2

(n) k > 2 or k < −2

(o) −3 6 v 6 7

(p) t > 1 or t < −
5

3

2 (a) x > 4 or x < 2

(b) −4 6 x 6 − 2

(c) −2 < t <
1

2

(d) y > 6 or y 6 −4

(e) −4 6 h 6 −2

(f) r >
√
2 − 3 or r 6 −

√
2 − 3

(g) −
√
10 − 2 < x <

√
10 − 2

(h) −
3

2
6 t 6

1

2

(i) x > 5

(j) t 6 −
39

4
or t > −6

(k) −4 6 v < 3

(l) x > −1 with x 6= 0

(m) x < 0 (n) −5 6 y < 2

(o) k > 0 (p) x > 2

(q) t < −5

(r) x > 2 or −3 < x < −1
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1.7 PARTIAL FRACTIONS

Given a set of fractions, we can add them together to form a single fraction. For example,

in Example 1.32 we saw

2

x+ 1
+

4

x+ 2
=

2(x+ 2)+ 4(x+ 1)

(x+ 1)(x+ 2)

=
6x+ 8

x2 + 3x+ 2

Alternatively, if we are given a single fraction, we can break it down into the sum of easier

fractions. These simple fractions, which when added together form the given fraction,

are called partial fractions. The partial fractions of
6x+ 8

x2 + 3x+ 2
are

2

x+ 1
and

4

x+ 2
.

When expressing a given fraction as a sum of partial fractions it is important to clas-

sify the fraction as proper or improper. The denominator is then factorized into a product

of factors which can be linear and/or quadratic. Linear factors are those of the form

ax + b, for example 2x − 1,
x

2
+ 6. Repeated linear factors are those of the form

(ax+ b)2, (ax+ b)3 and so on, for example (3x− 2)2 and (2x+ 1)3 are repeated linear

factors.Quadratic factors are those of the form ax2 +bx+ c, for example 2x2 −6x+1.

1.7.1 Linear factors

We can calculate the partial fractions of proper fractions whose denominator can be

factorized into linear factors. The following steps are used:

(1) Factorize the denominator.

(2) Each factor of the denominator produces a partial fraction. A factor ax+b produces

a partial fraction of the form
A

ax+ b
where A is an unknown constant.

(3) Evaluate the unknown constants of the partial fractions. This is done by evaluation

using a speci�c value of x or by equating coef�cients.

A linear factor ax + b in the denominator produces a partial fraction of the form
A

ax+ b
.

Example 1.38 Express

6x+ 8

x2 + 3x+ 2

as its partial fractions.

Solution The denominator is factorized as

x2 + 3x+ 2 = (x+ 1)(x+ 2)
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The linear factor, x+ 1, produces a partial fraction of the form
A

x+ 1
. The linear factor,

x + 2, produces a partial fraction of the form
B

x+ 2
. A and B are unknown constants

whose values have to be found. So we have

6x+ 8

x2 + 3x+ 2
=

6x+ 8

(x+ 1)(x+ 2)
=

A

x+ 1
+

B

x+ 2
(1.8)

Multiplying both sides of Equation (1.8) by (x+ 1) and (x+ 2) we obtain

6x+ 8 = A(x+ 2)+ B(x+ 1) (1.9)

We now evaluate A and B. There are two techniques which enable us to do this: evalu-

ation using a speci�c value of x and equating coef�cients. Each is illustrated in turn.

Evaluation using a specific value of x

We examine Equation (1.9). We will substitute a speci�c value of x into this equation.

Although any value can be substituted for x we will choose a value which simpli�es

the equation as much as possible. We note that substituting x = −2 will simplify the

r.h.s. of the equation since the term A(x+ 2) will then be zero. Similarly, substituting in

x = −1 will simplify the r.h.s. because the term B(x+ 1) will then be zero. So x = −1

and x = −2 are two convenient values to substitute into Equation (1.9). We substitute

each in turn.

Evaluating Equation (1.9) with x = −1 gives

−6 + 8 = A(−1 + 2)

2 = A

Evaluating Equation (1.9) with x = −2 gives

−4 = B(−1)

B = 4

Substituting A = 2, B = 4 into Equation (1.8) yields

6x+ 8

x2 + 3x+ 2
=

2

x+ 1
+

4

x+ 2

Thus the required partial fractions are
2

x+ 1
and

4

x+ 2
.

The constants A and B could have been found by equating coef�cients.

Equating coe	cients

Equation (1.9) may be written as

6x+ 8 = (A+ B)x+ 2A+ B

Equating the coef�cients of x on both sides gives

6 = A+ B

Equating the constant terms on both sides gives

8 = 2A+ B
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Thus we have two simultaneous equations in A and B, which may be solved to give

A = 2 and B = 4 as before.

1.7.2 Repeated linear factor

We now examine proper fractions whose denominators factorize into linear factors,

where one or more of the linear factors is repeated.

A repeated linear factor, (ax+ b)2, produces two partial fractions of the form

A

ax+ b
+

B

(ax+ b)2

A repeated linear factor, (ax+ b)2, leads to partial fractions

A

ax+ b
+

B

(ax+ b)2

Example 1.39 Express

2x+ 5

x2 + 2x+ 1

as partial fractions.

Solution The denominator is factorized to give (x+1)2. Here we have a case of a repeated factor.

This repeated factor generates partial fractions
A

x+ 1
+

B

(x+ 1)2
. Thus

2x+ 5

x2 + 2x+ 1
=

2x+ 5

(x+ 1)2
=

A

x+ 1
+

B

(x+ 1)2

Multiplying by (x+ 1)2 gives

2x+ 5 = A(x+ 1)+ B = Ax+ A+ B

Equating coef�cients of x gives A = 2. Evaluation with x = −1 gives B = 3. So

2x+ 5

x2 + 2x+ 1
=

2

x+ 1
+

3

(x+ 1)2

Example 1.40 Express

14x2 + 13x

(4x2 + 4x+ 1)(x− 1)

as partial fractions.

Solution The denominator is factorized to (2x+1)2(x−1). The repeated factor, (2x+1)2, produces

partial fractions of the form

A

2x+ 1
+

B

(2x+ 1)2
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The factor, (x− 1), produces a partial fraction of the form
C

x− 1
. So

14x2 + 13x

(4x2 + 4x+ 1)(x− 1)
=

14x2 + 13x

(2x+ 1)2(x− 1)
=

A

2x+ 1
+

B

(2x+ 1)2
+

C

x− 1

Multiplying both sides by (2x+ 1)2(x− 1) gives

14x2 + 13x = A(2x+ 1)(x− 1)+ B(x− 1)+C(2x+ 1)2 (1.10)

The unknown constants A,B andC can now be found.

Evaluating Equation (1.10) with x = 1 gives

27 = C(3)2

from which

C = 3

Evaluating Equation (1.10) with x = −0.5 gives

14(−0.5)2 + 13(−0.5) = B(−0.5 − 1)

from which

B = 2

Finally, comparing the coef�cients of x2 on both sides of Equation (1.10) we have

14 = 2A+ 4C

Since we already haveC = 3 then

A = 1

Hence we see that

14x2 + 13x

(4x2 + 4x+ 1)(x− 1)
=

1

2x+ 1
+

2

(2x+ 1)2
+

3

x− 1

1.7.3 Quadratic factors

We now look at proper fractions whose denominator contains a quadratic factor, that is

a factor of the form ax2 + bx+ c.

A quadratic factor, ax2 + bx+ c, produces a partial fraction of the form

Ax+ B

ax2 + bx+ c

Example 1.41 Noting that x3 + 2x2 − 11x− 52 = (x− 4)(x2 + 6x+ 13), express

3x2 + 11x+ 14

x3 + 2x2 − 11x− 52

as partial fractions.
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Solution The denominator has already been factorized. The linear factor, x−4, produces a partial

fraction of the form
A

x− 4
.

The quadratic factor, x2 + 6x + 13, will not factorize further into two linear factors.

Thus this factor generates a partial fraction of the form
Bx+C

x2 + 6x+ 13
. Hence

3x2 + 11x+ 14

(x− 4)(x2 + 6x+ 13)
=

A

x− 4
+

Bx+C

x2 + 6x+ 13

Multiplying by (x− 4) and (x2 + 6x+ 13) produces

3x2 + 11x+ 14 = A(x2 + 6x+ 13)+ (Bx+C)(x− 4) (1.11)

The constants A, B andC can now be found.

Putting x = 4 into Equation (1.11) gives

106 = A(53)

A = 2

Equating the coef�cients of x2 gives

3 = A+ B

B = 1

Equating the constant term on both sides gives

14 = A(13)− 4C

C = 3

Hence

3x2 + 11x+ 14

x3 + 2x2 − 11x− 52
=

2

x− 4
+

x+ 3

x2 + 6x+ 13

1.7.4 Improper fractions

The techniques of calculating partial fractions in Sections 1.7.1 to 1.7.3 have all been

applied to proper fractions. We now look at the calculation of partial fractions of im-

proper fractions. The techniques described in Sections 1.7.1 to 1.7.3 are all applicable

to improper fractions. However, when calculating the partial fractions of an improper

fraction, an extra term needs to be included. The extra term is a polynomial of degree

n − d, where n is the degree of the numerator and d is the degree of the denomina-

tor. A polynomial of degree 0 is a constant, a polynomial of degree 1 has the form

Ax + B, a polynomial of degree 2 has the form Ax2 + Bx + C, and so on. For exam-

ple, if the numerator has degree 3 and the denominator has degree 2, the partial fractions

will include a polynomial of degree n − d = 3 − 2 = 1, that is a term of the form

Ax + B. If the numerator and denominator are of the same degree, the fraction is im-

proper. The partial fractions will include a polynomial of degree n − d = 0, that is a

constant term.
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Let the degree of the numerator be n and the degree of the denominator be d. If n > d

then the fraction is improper. Improper fractions have partial fractions in addition to

those generated by the factors of the denominator. These additional partial fractions

take the form of a polynomial of degree n− d.

Example 1.42 Express as partial fractions

4x3 + 10x+ 4

2x2 + x

Solution The degree of the numerator is 3, that is n = 3. The degree of the denominator is 2, that

is d = 2. Thus, the fraction is improper.

Now n− d = 1 and this is a measure of the extent to which the fraction is improper.

The partial fractions will include a polynomial of degree 1, that is Ax+B, in addition to

the partial fractions generated by the factors of the denominator.

The denominator factorizes to x(2x + 1). These factors generate partial fractions of

the form
C

x
+

D

2x+ 1
. Hence

4x3 + 10x+ 4

2x2 + x
=

4x3 + 10x+ 4

x(2x+ 1)
= Ax+ B+

C

x
+

D

2x+ 1

Multiplying by x and 2x+ 1 yields

4x3 + 10x+ 4 = (Ax+ B)x(2x+ 1)+C(2x+ 1)+ Dx (1.12)

The constants A, B, C and D can now be evaluated.

Putting x = 0 into Equation (1.12) gives

4 = C

Putting x = −0.5 into Equation (1.12) gives

−1.5 = −
D

2

D = 3

Equating coef�cients of x3 gives

4 = 2A

A = 2

Equating coef�cients of x gives

10 = B+ 2C + D

B = −1

Hence

4x3 + 10x+ 4

2x2 + x
= 2x− 1 +

4

x
+

3

2x+ 1
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EXERCISES 1.7

1 Calculate the partial fractions of the following

fractions:

(a)
6x+ 14

x2 + 4x+ 3
(b)

7 − 2x

x2 − x− 2

(c)
3x+ 6

2x2 + 3x
(d)

8 − x

6x2 − x− 1

(e)
13x2 + 11x+ 2

(x+ 1)(2x+ 1)(3x+ 1)

2 Calculate the partial fractions of the following

fractions:

(a)
2x+ 7

x2 + 6x+ 9
(b)

4x− 5

x2 − 2x+ 1

(c)
3x2 + 8x+ 6

(x2 + 2x+ 1)(x+ 2)

(d)
3x2 − 3x− 2

(x2 − 1)(x− 1)
(e)

3x2 + 7x+ 6

x3 + 2x2

3 Express the following as partial fractions:

(a)
x2 + x+ 2

(x2 + 1)(x+ 1)

(b)
5x2 + 11x+ 5

(2x+ 3)(x2 + 5x+ 5)

(c)
4x2 + 5

(x2 + 1)(x2 + 2)

(d)
18x2 + 7x+ 44

(2x− 3)(2x2 + 5x+ 7)

(e)
2x

(x2 − x+ 1)(x2 + x+ 1)

4 Express the following fractions as partial fractions:

(a)
x2 + 7x+ 13

x+ 4
(b)

12x− 4

2x− 1

(c)
x2 + 8x+ 2

x2 + 6x+ 1

(d)
x3 − 2x2 + 3x− 3

x2 − 2x+ 1

(e)
2x3 + 2x2 − 2x− 1

x2 + x

Solutions

1 (a)
2

x+ 3
+

4

x+ 1
(b)

1

x− 2
−

3

x+ 1

(c)
2

x
−

1

2x+ 3
(d)

3

2x− 1
−

5

3x+ 1

(e)
2

x+ 1
+

1

2x+ 1
−

1

3x+ 1

2 (a)
2

x+ 3
+

1

(x+ 3)2
(b)

4

x− 1
−

1

(x− 1)2

(c)
1

x+ 1
+

1

(x+ 1)2
+

2

x+ 2

(d)
2

x− 1
−

1

(x− 1)2
+

1

x+ 1

(e)
2

x
+

3

x2
+

1

x+ 2

3 (a)
1

x+ 1
+

1

x2 + 1

(b)
2x

x2 + 5x+ 5
+

1

2x+ 3

(c)
1

x2 + 1
+

3

x2 + 2

(d)
5

2x− 3
+

4x− 3

2x2 + 5x+ 7

(e)
1

x2 − x+ 1
−

1

x2 + x+ 1

4 (a) x+ 3 +
1

x+ 4
(b) 6 +

2

2x− 1

(c) 1 +
2x+ 1

x2 + 6x+ 1

(d) x+
2

x− 1
−

1

(x− 1)2

(e) 2x−
1

x
−

1

x+ 1
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Technical Computing Exercises 1.7

1 Use a technical computing language such as

MATLAB® to verify the solutions to the problems in

Exercises 1.7. In MATLAB®, the function residue

calculates the partial fraction expansion. For example,

exercise 1(a) would be solved by typing the following:

b = [6 14];

a = [1 4 3];

[r,p,k] = residue(b, a)

Notice how the coef�cients of the numerator are input

in the form b = [6 14]; this is known as a row

vector. The concept of a vector will be discussed in

later chapters. For now it is adequate to treat this as a

horizontal list of numbers which are passed to

MATLAB® in a speci�c order.

Similarly, the coef�cients of the denominator are

input by a = [1 4 3].

Each vector is arranged with the coef�cient of the

highest power of x �rst.

The result is:

r =

4.0000

2.0000

p =

-1

-3

k =

[]

Examining the solution we note that the output for

both r and p is arranged as a vertical list. This way of

representing the output is known as a column vector.

We note that the numbers returned in column vector p

have a negative sign. This is because the result

calculated contains the poles of the partial fraction

expansion. These are values of the variable which

make the denominator of the fraction zero. The

signi�cance of this will become clear later in the text

but for now it is adequate to note the difference in

sign from what might have been expected.

1.8 SUMMATION NOTATION

In engineering we often want to measure the value of a variable, such as current, voltage

or pressure.

Suppose we make three measurements of a variable x. We can label these measure-

ments x1, x2 and x3. In this context, the numbers 1, 2, 3 are called subscripts.

In mathematics, the Greek letter sigma, written
∑

, stands for a ‘sum’. For example,

the sum x1 + x2 + x3 is written

3∑

k=1

xk

Note that the subscript k ranges from 1 to 3. As k ranges from 1 to 3, xk becomes x1 then

x2 and then x3 and the sigma sign tells us to add up these quantities.

In general,

N∑

k=1

xk = x1 + x2 + · · · + xN

This notation is often used to express some of the fundamental equations of electrical

circuit analysis. Sometimes ‘Summation Notation’ is known as ‘Sigma Notation’.
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Engineering application 1.8

Kirchho�’s current law

Kirchhoff’s current law, often abbreviated to KCL, provides one of the fundamental

equations for analysing electrical circuits. The law states that the sum of the currents

	owing out of any junction, or node, in a circuit must equal the sum of the currents

	owing into it.

This principle is intuitive as it has a direct analogy with fluid flow in connected

water pipes. Currents flowing into a junction are considered positive; those flowing

out of a junction are negative. It is then valid to say that the sum of the currents

at a junction is zero. If there are N currents at the junction, denoted I1, I2, . . . , IN,

then

I1 + I2 + I3 + · · · + IN−1 + IN = 0

This can be expressed using the summation notation as

N∑

k=1

Ik = 0

Here Ik means ‘the current, I, in branch k’. The �rst equation can be produced from

the summation notation by �rst substituting k = 1, then k = 2, right up to k = N.

The expression below the summation symbol tells you where to start and the variable

to be substituted, and the number above the summation symbol indicates where to

stop counting. Summation notation is a very compact and precise way of expressing

KCL for any number of currents at a node.

Consider the node shown in Figure 1.5.

Branch 1 Branch 3

Branch 2 Branch 4

1 A
2 A

3 A 2 A Figure 1.5

A circuit node with four separate branches. The currents are

given in amperes (or amps, A).

It can be seen that the total current flowing into the node is 1 + 3 = 4 amps. The

current flowing out of the node is 2 + 2 = 4 amps. Clearly,

Total current flowing into node = total current flowing out of node

Alternatively, using the summation form of KCL we have

4∑

k=1

Ik = I1 + I2 + I3 + I4 = 0 = 1 + 3 − 2 − 2

Note that for currents flowing out of the node a negative sign is used and for currents

flowing into the node a positive sign is used. This is equivalent to considering the

currents separately as inward and outward flowing currents and equating the two.

Suppose for a moment that we did not know the current in branch 4 and,

furthermore, it was not labelled with an arrow to show the direction of current flow.

➔
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This situation is likely to occur in a circuit problem in electronics. There are

two options for labelling the current flow direction, and these are summarized in

Figure 1.6.

Branch 4

1 A
2 A

3 A I4

Branch 4

1 A
2 A

3 A I4 Figure 1.6

Two different ways of de�ning the

current direction in Branch 4.

1 + 3 − 2 − I4 = 0 1 + 3 − 2 + I4 = 0

I4 = 2 I4 = −2

Note that the two solutions are both correct but I4 = −2 has a negative sign, which

simply indicates that the current flows in the opposite direction to the arrow drawn

on the right-hand diagram. It does not matter which way round the arrow is marked,

as long as we observe the sign.

Engineering application 1.9

Kirchho�’s voltage law

Kirchhoff’s voltage law, often abbreviated to KVL, provides another of the funda-

mental equations for analysing electrical circuits. The law states that the sum of the

voltages around a closed loop equals zero. It is often written down in the form of a

summation, as follows:

N∑

k=1

Vk = 0

For the circuit shown in Figure 1.7 there are three possible loops to which we

could apply KVL.

Va

Vc

Vb

Ve

Vd

Figure 1.7

A simple circuit to illustrate Kirchhoff’s voltage law.

In this example an ideal voltage source and resistors are used, although any compo-

nents could be substituted as KVL applies universally. Note that we ‘walk around’
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the circuit when writing down the equations. If the arrow is in the direction of travel

then it is given a positive sign; if it opposes the direction of travel it is given a

negative sign.

The equations are

Va

Vb

Vc

Va

Vb

Ve

Vd

Vc

Ve

Vd

Va −Vb −Vc = 0 Va −Vb −Vd −Ve = 0 Vc −Vd −Ve = 0

If the equations are solved and the voltage has a negative sign it indicates that the

polarity is opposite to the direction of the voltage arrow drawn on the diagram. KVL

and KCL are the fundamental circuit laws that allow networks of electronic compo-

nents to be mathematically analysed. Although they are simple in concept they are

very powerful techniques.

EXERCISES 1.8

1 Write out fully what is meant by each of the following

expressions:

(a)
∑4

k=1 xk (b)
∑4

i=1 xi

(c)
∑7

k=1 xk (d)
∑3

k=1 x
2
k

(e)
∑4

j=1(x j − 2)3 (f)
∑3

n=0(2n+ 1)2

2 Write out fully

(a)
∑4

k=1(−1)k k (b)
∑5

k=1(−1)k+1k2

3 Write the following sums more concisely by using

sigma notation:

(a) 13 + 23 + 33 + · · · + 103

(b)
1

1
−

1

2
+

1

3
−

1

4
+ · · · −

1

12

(c) 1 +
1

3
+

1

5
+

1

7

4 Determine the current, I, at each of the following

circuit nodes:

(a)

I

1 A3 A
(b)

I

1 A3 A

(c)

I

1 A
3 A

(d)

I

I1

I2

I3
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5 Find Va in each of the following circuits:

(a)

2 V

1 V

Va

(b)

−1 V

Va

2 V

6 Find Va and Vb using KVL.

3 V

1 V

Vb

1 V

Va

Solutions

1 (a) x1 + x2 + x3 + x4 (b) x1 + x2 + x3 + x4

(c) x1 + x2 + x3 + x4 + x5 + x6 + x7

(d) x21 + x22 + x23

(e) (x1 − 2)3 + (x2 − 2)3 + (x3 − 2)3 + (x4 − 2)3

(f) 1 + 32 + 52 + 72

2 (a) −1 + 2 − 3 + 4

(b) 1 − 4 + 9 − 16 + 25

3 (a)
∑10

k=1 k
3

(b)
∑12

k=1
(−1)k+1

k

(c)
∑3

n=0
1

2n+1 or
∑4

n=1
1

2n−1

4 All solved using KCL

(a) 3 − 1 − I = 0 ·
· · I = 2

(b) 3 + 1 − I = 0 ·
· · I = 4

(c) 3 + 1 + I = 0 ·
· · I = −4

(d) I1 + I2 + I3 − I = 0, ·
· · I = I1 + I2 + I3

or I =
∑3

k=1 Ik

5 Both solved using KVL

(a) 2 − 1 −Va = 0 ·
· · Va = 1

(b) 2 + (−1)+Va = 0 ·
· · Va = −1

6 3 − 1 −Va = 0 ·
· · Va = 2

3 − 1 − 1 −Vb = 0 ·
· · Vb = 1

or Va − 1 −Vb = 0 ·
· · by substitution for Va,

Vb = 1

REVIEW EXERCISES 1

1 Simplify each of the following as far as possible:

(a) 7674 (b)
63

6−2
(c) (34)−2

(d)
√
3462 (e) (32/341/3)6 (f)

10−3

10−4

2 Simplify as far as possible:

(a) x7x−3 (b) (x2)4 (c)

(√
x

x

)−1

(d) (y−2)−1 (e) y1/3yy2
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3 Remove the brackets and simplify:

(a) (2x2y)3 (b) (6a2b3
√
c)2 (c)

(
y−2

2

)−1

(d) (x2y−1)0.5 (e)

(
3−1x−2

y−3

)−2

4 Express the following as their partial fractions:

(a)
3x+ 11

(x− 3)(x+ 7)
(b)

−3 − x

x2 − x

(c)
6x2 − 2

2x2 − x
(d)

2x2 − x− 7

(x+ 1)(x− 1)(x+ 2)

(e)
4x− 11

2x2 + 15x+ 7

5 Convert the following into a single fraction:

(a)
1

x
+

3

x+ 2
+

6

8x+ 4

(b)
1

s
+

2

s2
+

3s+ 4

8s+ 6

(c)
6

s
+

10

s2
−

s+ 1

(s+ 2)(s+ 3)
+

s− 1

(s+ 4)(s+ 3)

6 Express the following as partial fractions:

(a)
5x

(x+ 1)(2x− 3)
(b)

3x+ 2

x2 + 5x+ 6

(c)
y+ 3

y2 + 3y+ 2
(d)

1

t2 + 3t + 2

(e)
2z2 + 15z+ 30

(z+ 2)(z+ 3)(z+ 6)

(f)
24x2 + 33x+ 11

(2x+ 1)(3x+ 2)(4x+ 3)

(g)
s+ 3

(s+ 1)2
(h)

2k2 + k + 1

k3 − k

(i)
x3

x2 + 1
(j)

t + 5

(t + 3)2

(k)
s2

s2 + 1
(l)

8x− 15

4x2 − 12x+ 9

(m)
6d2 + 15d + 8

(d + 1)2(d + 2)
(n)

2x2 + x+ 3

x2 + 2x+ 1

(o)
−y− 1

(y2 + 1)(y− 1)
(p)

s2 − 8s− 5

(s2 + s+ 1)(s− 4)

(q)
t2 + t − 2

(t − 2)2(t + 1)
(r)

2s3 + 3s2 − s− 4

s2 + s− 1

(s)
x3 + 4x2 + 7x+ 5

x2 + 3x+ 2

7 Solve the following quadratic equations using the

quadratic formula:

(a) x2 + 10x+ 2 = 0

(b) y2 − 6y− 3 = 0

(c) 2t2 + 2t − 9 = 0

(d) 3z2 − 9z− 1 = 0

(e) 5v2 + v − 6 = 0

8 Solve the quadratic equations in Question 7 by

completing the square.

9 Solve

x3 − 4x2 − 25x+ 28 = 0

given x = 7 is a root.

10 Solve the following inequalities:

(a) 6t − 1 6 4 (b) −6 6 3r 6 6

(c) 1 − 2v < v + 4 (d) 2 6
x− 2

3

(e) (x− 2)2 > 36 (f) x2 − 2x− 3 < 0

(g)
x− 3

x+ 1
> 0 (h) x2 − 8x+ 5 6 0

(i)
x

2
6

3

x
(j)

x2 − 2x− 3

x− 5
> 0

11 Express each fraction in its simplest form.

(a)
3ab2

12ab
(b)

6x2y2z

3xy3z
(c)

9t + 6

12 − 3t

(d)
3x2 + 3x

6x2 − 3x
(e)

xyz− 2x2y2z

x2y2 − 2x3y3

12 Express each fraction in its simplest form.

(a)
x2 + 2x− 15

x2 − 2x− 3
(b)

y2 + 4y− 12

y2 + 13y+ 42

(c)
2x2 + 7x− 4

2x2 − 3x+ 1
(d)

3x2t + 3xt − 3t

4x2z+ 4xz− 4z

(e)
x3 − 2x2 + x− 2

x3 + x2 + x+ 1

13 Express as a single fraction in its simplest form.

(a)
x+ 1

x+ 6
×
x+ 6

x+ 2

(b)
3x− 6

xy+ 2y
×
xy+ 3y

4x− 8

(c)
x2 − 1

4
÷
x− 1

6

(d)
x2 − 9x

x+ 1
÷

x− 9

x3 + x2

(e)
x2 − 5x− 6

x2 + x− 42
÷

x2 − 1

x2 + 6x− 7
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14 Express as a single fraction:

(a)
5

x+ 6
+

3

x+ 1

(b)
3x

2x− 1
−

4

x+ 5

(c)
x+ 1

x2 − 5x− 6
+

5x

x+ 3

(d) x+ 1 +
2

x− 3

(e) 2x− 3 +
1

x+ 1
−

x

x2 + 1

Solutions

1 (a) 710 (b) 65 (c) 3−8

(d) 326 (e) 3442 (f) 10

2 (a) x4 (b) x8 (c)
√
x

(d) y2 (e) y10/3

3 (a) 8x6y3 (b) 36a4b6c (c) 2y2

(d) xy−0.5 (e)
9x4

y6

4 (a)
2

x− 3
+

1

x+ 7

(b)
3

x
−

4

x− 1

(c) 3 +
2

x
−

1

2x− 1

(d)
2

x+ 1
−

1

x− 1
+

1

x+ 2

(e)
3

x+ 7
−

2

2x+ 1

5 (a)
19x2 + 22x+ 4

2x(x+ 2)(2x+ 1)

(b)
3s3 + 12s2 + 22s+ 12

2s2(4s+ 3)

(c)
2(3s4 + 30s3 + 120s2 + 202s+ 120)

s2(s+ 2)(s+ 3)(s+ 4)

6 (a)
1

x+ 1
+

3

2x− 3

(b)
7

x+ 3
−

4

x+ 2

(c)
2

y+ 1
−

1

y+ 2

(d)
1

t + 1
−

1

t + 2

(e)
2

z+ 2
−

1

z+ 3
+

1

z+ 6

(f)
1

2x+ 1
+

3

3x+ 2
−

2

4x+ 3

(g)
1

s+ 1
+

2

(s+ 1)2

(h)
1

k + 1
+

2

k − 1
−

1

k

(i) x−
x

x2 + 1

(j)
1

t + 3
+

2

(t + 3)2

(k) 1 −
1

s2 + 1

(l)
4

2x− 3
−

3

(2x− 3)2

(m)
4

d + 1
−

1

(d + 1)2
+

2

d + 2

(n) 2 −
3

x+ 1
+

4

(x+ 1)2

(o)
y

y2 + 1
−

1

y− 1

(p)
2s+ 1

s2 + s+ 1
−

1

s− 4

(q)
11

9(t − 2)
+

4

3(t − 2)2
−

2

9(t + 1)

(r) 2s+ 1 −
3

s2 + s− 1

(s) x+ 1 +
1

x+ 1
+

1

x+ 2

7 (a) −9.7958,−0.2042

(b) −0.4641, 6.4641

(c) −2.6794, 1.6794

(d) −0.1073, 3.1073

(e) −1.2, 1

8 (a) (x+ 5)2 − 23 = 0

(b) (y− 3)2 − 12 = 0

(c) 2

[(
t +

1

2

)2

−
19

4

]
= 0
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(d) 3

[(
z−

3

2

)2

−
31

12

]
= 0

(e) 5

[(
v +

1

10

)2

−
121

100

]
= 0

Solutions same as for Question 7

9 x = −4, 1, 7

10 (a) t 6
5

6
(b) −2 6 r 6 2

(c) v > −1 (d) x > 8

(e) x 6 − 4 or x > 8

(f) −1 < x < 3

(g) x < −1 or x > 3

(h) 4 −
√
11 6 x 6 4 +

√
11

(i) 0 < x 6
√
6, x 6 −

√
6

(j) x > 5 or −1 < x < 3

11 (a)
b

4
(b)

2x

y
(c)

3t + 2

4 − t

(d)
x+ 1

2x− 1
(e)

z

xy

12 (a)
x+ 5

x+ 1
(b)

y− 2

y+ 7
(c)

x+ 4

x− 1

(d)
3t

4z
(e)

x− 2

x+ 1

13 (a)
x+ 1

x+ 2
(b)

3(x+ 3)

4(x+ 2)

(c)
3(x+ 1)

2
(d) x3 (e) 1

14 (a)
8x+ 23

(x+ 1)(x+ 6)

(b)
3x2 + 7x+ 4

(2x− 1)(x+ 5)

(c)
5x2 − 29x+ 3

(x− 6)(x+ 3)

(d)
x2 − 2x− 1

x− 3

(e)
2x4 − x3 − x2 − 2x− 2

(x+ 1)(x2 + 1)
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2.1 INTRODUCTION

The study of functions is central to engineering mathematics. Functions can be used to

describe the way quantities change: for example, the variation in the voltage across an

electronic component with time, the variation in position of an electric motor with time

and the variation in the strength of a signal with both position and time.

In this chapter we introduce several concepts associated with functions before going

on to catalogue a number of engineering functions in Section 2.4. Much of the material

of Section 2.4 will already be familiar to the reader and so this section should be treated

as a reference section to be dipped into whenever necessary. A number of mathematical

methods are also included in Section 2.4, most of which will be familiar but they have

been collected together in order to make the book complete.

When trying to understand a mathematical function it is always useful to sketch a

graph in order to obtain an idea of its behaviour. The reader is encouraged to sketch such

graphs whenever a new function is met. Graphics calculators are now readily available

and they make this task relatively easy. If you possess such a calculator then it would be

useful to make use of it whenever a new function is introduced. Software packages are

also available to allow such plots to be carried out on a computer. These can be useful for

plotting more complicated functions and ones that depend on more than one variable.

We examine functions of more than one variable in Chapter 25.

Throughout the book we make use of the termmathematical model. When doing so

we mean an idealization of an engineering system or a physical situation so that it can be

described by mathematical equations. To reflect an engineering system very accurately,

a sophisticated model, consisting of many interrelated equations, may be needed. Al-

though accurate, such a model may be cumbersome to use. Accuracy can be sacri�ced
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in order to achieve a simple, easy-to-use model. A judgement is made as to when the

right blend of accuracy and conciseness is achieved. For example, the most common

mathematical model for a resistor uses Ohm’s law which states that the voltage across a

resistor equals the current through the resistor multiplied by the resistance value of the

resistor, that is V = IR. However, this model is based on a number of simpli�cations. It

ignores any variation in current density across the cross-section of the resistor and as-

sumes a single current value is acceptable. It also ignores the fact that if a large enough

voltage is placed across the resistor then the resistor will break down. In most cases it is

worth accepting these simpli�cations in order to obtain a concise model.

Having obtained a mathematical model, it is then used to predict the effect of chang-

ing elements or conditions within the actual system. Using the model to examine these

effects is often cheaper, safer and more convenient than using the actual system.

2.2 NUMBERS AND INTERVALS

Numbers can be grouped into various classes, or sets. The integers are the set of numbers

{. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

denoted byZ. The natural numbers are {0, 1, 2, 3, . . .} and this set is denoted byN. The

positive integers, denoted by N+, are given by {1, 2, 3, . . .}. Note that some numbers

occur in more than one set, that is the sets overlap.

A rational number has the form p/q, where p and q are integers with q 6= 0. For

example, 5/2, 7/118,−1/9 and 3/1 are all rational numbers. The set of rational numbers

is denoted by Q. When rational numbers are expressed as a decimal fraction they either

terminate or recur in�nitely.

5
2
can be expressed as 2.5

1
8
can be expressed as 0.125

}
These decimal fractions terminate,

that is they are of �nite length.

1
9
can be expressed as 0.111 111 . . .

1
11

can be expressed as 0.090 909 . . .

}
These are in�nitely

recurring decimal fractions.

A number which cannot be expressed in the form p/q is called irrational. When

written as a decimal fraction, an irrational number is in�nite in length and non-recurring.

The numbers π and
√
2 are both irrational.

It is useful to introduce the factorial notation. We write 3! to represent the product

3 × 2 × 1. The expression 3! is read as ‘factorial 3’. Similarly 4! is a shorthand way of

writing 4 × 3 × 2 × 1. In general, for any positive integer, n, we can write

n! = n(n− 1)(n− 2)(n− 3) . . . (3)(2)(1)

It is useful to represent numbers by points on the real line. Figure 2.1 illustrates some

rational and irrational numbers marked on the real line. Numbers which can be repre-

sented by points on the real line are known as real numbers. The set of real numbers

is denoted by R. This set comprises all the rational and all the irrational numbers. In

Chapter 9 we shall meet complex numbers which cannot be represented as points on the

–2 3
2

5
2

– – –1 0 1 2 2 – 3 4p√

Figure 2.1

Both rational and irrational numbers are represented on the real line.
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–6 –4 –1 20 3 4

Figure 2.2

The intervals (−6,−4), [−1, 2], (3, 4] depicted on the real line.

real line. The real line extends inde�nitely to the left and to the right so that any real

number can be represented.

Sometimes we are interested in only a small section, or interval, of the real line. We

write [1, 3] to denote all the real numbers between 1 and 3 inclusive, that is 1 and 3 are

included in the interval. Thus the interval [1, 3] consists of all real numbers x, such that

1 6 x 6 3. The square brackets, [ ], are used to denote that the end-points are included

in the interval and such an interval is said to be closed. The interval (1, 3) consists of

all real numbers x, such that 1 < x < 3. In this case the end-points are not included

and the interval is said to be open. Brackets, (), denote open intervals. An interval may

be open at one end and closed at the other. For example, (1, 3] is open at the left and

closed at the right. It consists of all real numbers x, such that 1 < x 6 3, and is known

as a semi-open interval. Open and closed intervals can be represented on the real line.

A closed end-point is denoted by •; an open end-point is denoted by ◦. The intervals

(−6,−4), [−1, 2] and (3, 4] are illustrated in Figure 2.2.

An upper bound of a set of numbers is any number which is greater than or equal

to every number in the given set. So, for example, 7 is an upper bound for the set [3, 6].

Clearly, 7 is greater than every number in the interval [3, 6].

A lower bound of a set of numbers is any number which is less than or equal to every

number in the given set. For example, 3 is a lower bound for the set (3.7, 5).

Note that upper and lower bounds are not unique. Both 3 and 10 are upper bounds

for (1, 2). Both −1 and −3 are lower bounds for [0, 6].

Technical computing languages such as MATLAB® usually have functions that auto-

matically generate a set of numbers within a particular interval. In MATLAB® we could

generate a set of time values, t, by typing:

t= 0:0.1:1

This generates a set of real numbers from the interval [0,1] stored in a row vector t, each

individual number being separated by an increment of 0.1. The values of t generated

are:

0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000

0.8000 0.9000 1.0000

2.3 BASIC CONCEPTS OF FUNCTIONS

Loosely speaking, we can think of a function as a rule which, when given an input,

produces a single output. If more than one output is produced, the rule is not a function.

Consider the function given by the rule: ‘double the input’. If 3 is the input then 6 is the

output. If x is the input then 2x is the output, as shown in Figure 2.3.

If the doubling function has the symbol f we write

f : x → 2x

or more compactly,

f (x) = 2x
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double
the input

3 6 2xx

f

double 

the input

f

Figure 2.3

The function: ‘double the input’.

The last form is often written simply as f = 2x. If f (x) is a function of x, then the value

of the function when x = 3, for example, is written as f (x = 3) or simply as f (3).

Example 2.1 Given f (x) = 2x+ 1 �nd

(a) f (3) (b) f (0)

(c) f (−1) (d) f (α)

(e) f (2α) (f) f (t)

(g) f (t + 1)

Solution (a) f (3) = 2(3)+ 1 = 7

(b) f (0) = 2(0)+ 1 = 1

(c) f (−1) = 2(−1)+ 1 = −1

(d) f (α) is the value of f (x) when x has a value of α, hence f (α) = 2α + 1

(e) f (2α) = 2(2α)+ 1 = 4α + 1

(f) f (t) = 2t + 1

(g) f (t + 1) = 2(t + 1)+ 1 = 2t + 3

Observe from Example 2.1 that it is the rule that is important and not the letter being

used. Both f (t) = 2t + 1 and f (x) = 2x + 1 instruct us to double the input and then

add 1.

2.3.1 Argument of a function

The input to a function is often called the argument. In Example 2.1(d) the argument is

α, while in Example 2.1(e) the argument is 2α.

Example 2.2 Given f (x) =
x

5
, write down

(a) f (5x) (b) f (−x)

(c) f (x+ 2) (d) f (x2)

Solution (a) f (5x) =
5x

5
= x (b) f (−x) = −

x

5

(c) f (x+ 2) =
x+ 2

5
(d) f (x2) =

x2

5

Example 2.3 Given y(t) = t2 + t, write down

(a) y(t + 2) (b) y

(
t

2

)
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Solution (a) y(t + 2) = (t + 2)2 + (t + 2) = t2 + 5t + 6

(b) y

(
t

2

)
=

(
t

2

)2

+

(
t

2

)
=
t2

4
+
t

2

2.3.2 Graph of a function

A function may be represented in graphical form. The function f (x) = 2x is shown in

Figure 2.4. Note that the function values are plotted vertically and the x values horizon-

tally. The horizontal axis is then called the x axis. The vertical axis is commonly referred

to as the y axis, so that we often write

y = f (x) = 2x

–4

f (x)

2

1 x

–2

Figure 2.4

The function: f (x) = 2x.

Since x and y can have a number of possible values, they are called variables: x is the

independent variable and y is the dependent variable. Knowing a value of the in-

dependent variable, x, allows us to calculate the corresponding value of the dependent

variable, y. To show this dependence we often write y(x). The set of values that x is al-

lowed to take is called the domain of the function. A domain is often an interval on the

x axis. For example, if

f (x) = 3x+ 1 −5 6 x 6 10 (2.1)

the domain of the function, f , is the closed interval [−5, 10]. If the domain of a function

is not explicitly given it is taken to be the largest set possible. For example,

g(x) = x2 − 4 (2.2)

has a domain of (−∞,∞) since g is de�ned for every value of x and the domain has not

been given otherwise. The set of values that the function takes on is called the range.

The range of f (x) in Equation (2.1) is [−14, 31]; the range of g(x) in Equation (2.2) is

[−4,∞).

We now consider plotting the function f (t) = t2 for 0 6 t < 100 in a technical com-

puting language. First we generate a number set as shown in Section 2.2.

t= 0:1:100

Then we produce a graph of the function by using the MATLAB® plot command to

give the following

plot(t, t.^2)

Example 2.4 Consider the function, f , given by the rule: ‘square the input’. This can be written as

f (x) = x2

The rule and the graph of f are shown in Figure 2.5. The domain of f is (−∞,∞) and

the range is [0,∞).
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square
the input

x x2

f

4

9

f(x)

–2 0  3 x

Figure 2.5

The function: ‘square the input’.

Many variables of interest to engineers, for example voltage, resistance and current, can

be related by means of functions. We try to choose an appropriate letter for a particular

variable; so, for example, t is used for time and P for power.

Engineering application 2.1

Function to model the power dissipation in a resistor

Recall from Engineering application 1.1 that the power, P, dissipated by a resis-

tor depends on the current, I, 	owing through the resistance, R. The relationship is

given by

P = I2R

The power dissipated in the resistor depends on the square of the current passing

through it. In this case I is the independent variable and P is the dependent variable,

assuming R remains constant. The function is given by the rule: ‘square the input and

multiply by the constant R’, and the input to the function is I. The output from the

function is P. This is illustrated in Figure 2.6, for the cases R = 4 and R = 2.

square the 
input and 
multiply 

by R

I P

2
4

8

16

R = 4

R = 2

P

–1  2 I

Figure 2.6

The function: P = I2R.

This model for a resistor only approximates the behaviour of the device. In prac-

tice, changes in the temperature of the resistor lead to slight changes in the resistance

value. If the current through the resistor is excessively high then the resistor over-

heats and is permanently damaged. It no longer has the correct resistance value. The

amount of power that a resistor can handle depends on the materials that have been

used in its construction. A good circuit designer would calculate the amount of power

to be dissipated and then allow a suitable safety margin to ensure that the resistor can-

not be overloaded.
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2.3.3 One-to-many

Some rules relating input to output are not functions. Consider the rule: ‘take plus or

minus the square root of the input’, that is

x → ±
√
x

Now, for example, if 4 is the input, the output is ±
√
4 which can be 2 or −2. Thus a

single input has produced more than one output. The rule is said to be one-to-many,

meaning that one input has produced many outputs. Rules with this property are not

functions. For a rule to be a function there must be a single output for any given input.

By de�ning a rule more speci�cally, it may become a function. For example, consider

the rule: ‘take the positive square root of the input’. This rule is a function because there

is a single output for a given input. Note that the domain of this function is [0,∞) and

the range is also [0,∞).

2.3.4 Many-to-one and one-to-one functions

Consider again the function f (x) = x2 given in Example 2.4. The inputs 2 and −2 both

produce the same output, 4, and the function is said to bemany-to-one. This means that

many inputs produce the same output. A many-to-one function can be recognized from

its graph. If a horizontal line intersects the graph in more than one place, the function is

many-to-one. Figure 2.7 illustrates a many-to-one function, g(x). The inputs x1, x2, x3
and x4 all produce the same output.

A function is one-to-one if different inputs always produce different outputs. A hori-

zontal line will intersect the graph of a one-to-one function in only one place. Figure 2.8

illustrates a one-to-one function, h(x).

Both one-to-one functions andmany-to-one functions are supported in technical com-

puting languages. For example, in MATLAB® the function f (x) = x2 can be de�ned by

using the command:

f = @(x) x^2;

It is now possible to type:

f(3)

or

f(-3)

x1 x2 x3 x4 x

g(x)

Figure 2.7

The inputs x1, x2, x3 and x4 all produce the same

output, therefore g(x) is a many-to-one function.

x

h(x)

Figure 2.8

Each input produces a different output and so

h(x) is a one-to-one function.
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both of which have the same result:

ans = 9

af�rming that f (x) = x2 is a many-to-one function.

Notice that the variable used by the function is de�ned in brackets after the @ sign. This

indicates that the input to the function is x and the command creates a function handle,

f. Giving the function a handle enables it to be used elsewhere in the program.

More complicated functions are usually created in a separate �le and saved on the

computer’s internal storage devices. They can be easily reused to create sophisticated

programs. In MATLAB® these �les are saved with the �le name extension .m and are

often termedm-�les.

2.3.5 Parametric definition of a function

Functions are often expressed in the form y(x). For every value of x the corresponding

value of y can be found and the point with coordinates (x, y) can then be plotted. Some-

times it is useful to express x and y coordinates in terms of a third variable known as a

parameter. Commonly we use t or θ to denote a parameter. Thus the coordinates (x, y)

of the points on a curve can be expressed in the form

x = f (t) y = g(t)

For example, given the parametric equations

x = t2 y = 2t 0 6 t 6 5

we can calculate x and y for various values of the parameter t. Plotting the points (x, y)

produces part of a curve known as a parabola.

2.3.6 Composition of functions

Consider the function y(x) = 2x2. We can think of y(x) as being composed of two func-

tions. One function is described by the rule: ‘square the input’, while the other function

is described by the rule: ‘double the input’. This is shown in Figure 2.9.

double
the input

x2
2x2

h

square 

the input
x

g

8

2

y(x)

–2 1 x

Figure 2.9

The function: y(x) = h(g(x)).

Mathematically, if h(x) = 2x and g(x) = x2 then

y(x) = 2x2 = 2(g(x)) = h(g(x))

The form h(g(x)) is known as a composition of the functions h and g. Note that the

composition h(g(x)) is different from g(h(x)) as Example 2.5 illustrates.
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Example 2.5 If f (t) = 2t + 3 and g(t) =
t + 1

2
write expressions for the compositions

(a) f (g(t))

(b) g( f (t))

Solution (a) f (g(t)) = f

(
t + 1

2

)

The rule describing the function f is: ‘double the input and then add 3’. Hence,

f

(
t + 1

2

)
= 2

(
t + 1

2

)
+ 3 = t + 4

So

f (g(t)) = t + 4

(b) g( f (t)) = g(2t + 3)

The rule for g is: ‘add 1 to the input and then divide everything by 2’. So,

g(2t + 3) =
2t + 3 + 1

2
= t + 2

Hence

g( f (t)) = t + 2

Clearly f (g(t)) 6= g( f (t)).

2.3.7 Inverse of a function

Consider a function f (x). It can be thought of as accepting an input x, and producing an

output f (x). Suppose now that this output becomes the input to the function g(x), and

the output from g(x) is x, that is

g( f (x)) = x

We can think of g(x) as undoing the work of f (x). Figure 2.10 illustrates this situation.

Then g(x) is the inverse of f , and is written as f−1(x). Since f−1(x) undoes the work

of f (x) we have

f ( f−1(x)) = f−1( f (x)) = x

f (x) g( f (x))=xx

f g

Figure 2.10

The function g is the inverse of f .
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Example 2.6 If f (x) = 5x verify that the inverse of f is given by f−1(x) =
x

5
.

Solution The function f receives an input of x, and produces an output of 5x. Hence when the

inverse function, f−1, receives an input of 5x, it produces an output of x, that is

f−1(5x) = x

We introduce a new variable, z, given by

z = 5x

so

x =
z

5

Then

f−1(z) = x =
z

5

Writing f−1 with x as the argument gives

f−1(x) =
x

5

Example 2.7 If f (x) = 2x+ 1, �nd f−1(x).

Solution The function f receives an input of x and produces an output of 2x + 1. So when the

inverse function, f−1, receives an input of 2x+ 1 it produces an output of x, that is

f−1(2x+ 1) = x

We introduce a new variable, z, de�ned by

z = 2x+ 1

Rearranging gives

x =
z− 1

2

So

f−1(z) = x =
z− 1

2

Writing f−1 with x as the argument gives

f−1(x) =
x− 1

2
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Example 2.8 Given g(x) =
x− 1

2
�nd the inverse of g.

Solution We know g(x) =
x− 1

2
, and so g−1

(
x− 1

2

)
= x. Let y =

x− 1

2
so that

g−1(y) = x

But,

x = 2y+ 1

and so

g−1(y) = 2y+ 1

Using the same independent variable as for the function g, we obtain

g−1(x) = 2x+ 1

We note that the inverses of the functions in Examples 2.7 and 2.8 are themselves func-

tions. They are called inverse functions. The inverse of f (x) = 2x + 1 is f−1(x) =
x− 1

2
, and the inverse of g(x) =

x− 1

2
is g−1(x) = 2x + 1. This illustrates the impor-

tant point that if f (x) and g(x) are two functions and f (x) is the inverse of g(x), then

g(x) is the inverse of f (x). It is important to point out that not all functions possess an

inverse function. Consider f (x) = x2, for −∞ < x < ∞.

The function, f , is given by the rule: ‘square the input’. Since both a positive and

negative value of x will yield the output x2, the inverse rule is given by: ‘take plus or

minus the square root of the input’. As discussed earlier, this is a one-to-many rule and

so is not a function. Clearly not all functions have an inverse function. In fact, only one-

to-one functions have an inverse function. Suppose we restrict the domain of f (x) = x2

such that x > 0. Then f is a one-to-one function and so there is an inverse function. The

inverse function is f−1(x) given by

f−1(x) = +
√
x

Clearly,

f−1( f (x)) = f−1(x2) = x

where x is the positive square root of x2. Restricting the domain of a many-to-one func-

tion so that a one-to-one function results is a common technique of ensuring an inverse

function can be found.

2.3.8 Continuous and piecewise continuous functions

We now introduce in an informal way the concept of continuous and piecewise continu-

ous functions. A more rigorous treatment follows in Chapter 10 after we have discussed

limits. Figure 2.11 shows a graph of f (x) =
1

x
. Note that there is a break, or discontinu-

ity, in the graph at x = 0. The function f (x) =
1

x
is said to be discontinuous at x = 0.
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f (x)

x

Figure 2.11

The function f (x) =
1

x
has a discontinuity at

x = 0.

f (t)

31 t

1

2

3

Figure 2.12

The function f (t) is a piecewise continuous

function with a discontinuity at t = 1.

If the graph of a function, f (x), contains a break, then f (x) is discontinuous.

A function whose graph has no breaks is a continuous function.

Sometimes a function is de�ned by different rules on different intervals of the domain.

For example, consider

f (t) =

{
2 0 6 t < 1

t 1 6 t 6 3

g(t)

31 t

2

6

Figure 2.13

The function g(t) is a

continuous function

on (0, 3).

The domain is [0, 3] but the rule on [0, 1) is different to that on [1, 3]. The graph of f (t)

is shown in Figure 2.12. Recall the convention of using • to denote that the end-point

is included and ◦ to denote the end-point is excluded. Note that f (t) has a discontinuity

at t = 1. Each component, or piece, of the graph is continuous and f (t) is said to be

piecewise continuous.

A piecewise continuous function has a �nite number of discontinuities in any given

interval.

Not all functions de�ned differently on different intervals are discontinuous. For example,

g(t) =

{
2 0 < t < 1

2t 1 6 t < 3

is a continuous function on the interval (0, 3), as shown in Figure 2.13.

2.3.9 Periodic functions

A periodic function is a functionwhich has a de�nite patternwhich is repeated at regular

intervals. More formally we say a function, f (t), is periodic if

f (t) = f (t + T )

for all values of t. The constant, T , is known as the period of the function.
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Example 2.9 Figure 2.14 illustrates a periodic waveform. It is often referred to as a triangular wave-

form because of its shape. The form of the function is repeated every two seconds, that

is

f (t) = f (t + 2)

and so the function is periodic. The period is 2 seconds, that is T = 2. Note that this

function is continuous.

f(t)

–2 –1 0 1 2 3 4 t

Figure 2.14

The triangular waveform is a periodic function.

Engineering application 2.2

Saw-tooth waveform

Figure 2.15 illustrates a saw-tooth voltage waveform. It is called a saw-tooth wave-

form because its shape is similar to that of the teeth on a saw. It has many uses in

electronic engineering. One use would be to provide a signal to sweep a beam of elec-

trons across a cathode ray tube in a uniform way and then quickly move the beam

back to the start again. This technique is used in an analogue oscilloscope and forms

a signal for the time base.

The form of the function is repeated every three seconds, that is

v(t) = v(t + 3)

v(t)

–3 30

1

6 9 t

Figure 2.15

The saw-tooth waveform is a periodic function.
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Technical computing languages often have a range of built-in functions for pro-

ducing waveforms. Sometimes specialist functions are provided in a separate soft-

ware package. In MATLAB®, these software packages are known as toolboxes. The

signal processing toolbox has a function for generating saw-tooth waves. This can be

accessed by typing, for example:

t=(-2*pi:0.1:2*pi);

plot(t, sawtooth(t));

This will plot two periods of a saw-tooth wave. The �rst line generates a set of time

values−2π ≤ t < 2π in a vector formwith a spacing of 0.1 between each point. The

second line plots t against the result of passing the vector t to the sawtooth function.

The sawtooth function always produces a wave with a period of 2π. It highlights

the need to read the manual pages carefully before using a function to understand

how it will behave.

Engineering application 2.3

Square waveform

Periodic functions may be piecewise continuous. Consider the function g(t) de�ned

by

g(t) =

{
1 0 6 t < 1

0 1 6 t < 2
period = 2

The function g(t) is periodic with period 2. A graph of g(t) is shown in Figure 2.16.

This function is commonly referred to as a square waveform by engineers. In Fig-

ure 2.16 the open and closed end-points have been shown for mathematical correct-

ness. Note, however, that engineers tend to omit these when sketching functions with

discontinuities and usually they use a vertical line to show the discontinuity. This

reflects the fact that no practical waveform can ever change its level instantaneously:

even very fast rising waveforms still have a �nite rise time. The function has discon-

tinuities at t = . . . ,−3,−2,−1, 0, 1, 2, 3, 4, 5, . . . .

g(t)

–5 –4 –3 –2 –1 0

1

21 3 4 5 t

Figure 2.16

The function g(t) is both piecewise continuous and periodic.

The square waveform is often used in electronic engineering, particularly in digital

electronic systems. One example is the clock signal that is generated to ensure that

all of the digital electronic circuits switch around the same time and so remain in

synchronisation.
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EXERCISES 2.3

1 Represent the following intervals on the real line:

(a) [1, 3] (b) [2, 4)

(c) (0, 3.5) (d) [−2, 0)

(e) (−1, 1] (f) 2 6 x < 4

(g) 0 < x < 2 (h) −3 6 x 6 − 1

(i) 0 6 x < 3

2 Describe the rule associated with the following

functions, sketch their graphs and state their domains

and ranges:

(a) f (x) = 2x2

(b) f (x) = x2 − 1 0 6 x

(c) g(t) = 3t − 4 0 6 t

(d) y(x) = x3

(e) f (t) = 0.5t + 2 − 2 6 t 6 10

(f) z(x) = 3x− 2 3 6 x 6 8

3 If f (x) = 5x+ 4, �nd

(a) f (3)

(b) f (−3)

(c) f (α)

(d) f (x+ 1)

(e) f (3α)

(f) f (x2)

4 If g(t) = 5t2 − 4, �nd

(a) g(0)

(b) g(2)

(c) g(−3)

(d) g(x)

(e) g(2t − 1)

5 The reactance, XC, offered by a capacitor is given by

XC =
1

2π fC
, where f is the frequency of the applied

alternating current, andC is the capacitance of the

capacitor. IfC = 10−6 F, �nd XC when f = 50 Hz.

6 Classify the functions in Question 2 as one-to-one or

many-to-one.

7 Find the inverse of the following functions:

(a) f (x) = x+ 4

(b) g(t) = 3t + 1

(c) y(x) = x3

(d) h(t) =
t − 8

3

(e) f (t) =
t − 1

3

(f) h(x) = x3 − 1

(g) k(v) = 7 − v

(h) m(n) = 1
3 (1 − 2n)

8 Given f (t) = 2t, g(t) = t − 1 and h(t) = t2 write

expressions for

(a) f (g(t)) (b) f (h(t))

(c) g(h(t)) (d) g( f (t))

(e) h(g(t)) (f) h( f (t))

(g) f ( f (t)) (h) g(g(t))

(i) h(h(t)) (j) f (g(h(t)))

(k) g( f (h(t))) (l) h(g( f (t)))

9 Given f (t) = t2 + 1, g(t) = 3t + 2 and h(t) =
1

t
,

write expressions for

(a) f (g(t)) (b) f (h(t))

(c) g(h(t)) (d) h( f (t))

(e) f (g(h(t)))

10 Given f (t) = 2t, g(t) = 2t + 1, h(t) = 1 − 3t, write

expressions for the following:

(a) f−1(t) (b) g−1(t) (c) h−1(t)

11 Given a(x) = 3x− 2, b(x) =
2

x
, c(x) = 1 +

1

x
write

expressions for

(a) a−1(x) (b) b−1(x) (c) c−1(x)

12 Given f (t) = 2t + 3, g(t) = 3t and h(t) = f (g(t))

write expressions for

(a) h(t)

(b) f−1(t)

(c) g−1(t)

(d) h−1(t)

(e) g−1( f−1(t))

What do you notice about (d) and (e)?

13 Sketch the following functions:

(a) f (t) =

{
t 0 6 t 6 3

3 3 < t 6 4

(b) g(x) =

{
2 − x 0 6 x < 1

2 1 6 x 6 3

(c) a(t) =

{
1 − t 0 6 t 6 1

t − 1 1 < t 6 2

(d) b(x) =





2 0 6 x 6 1

1 1 < x 6 2

3 − x 2 < x 6 3
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14 Sketch

f (t) =

{
t 0 6 t < 2

5 − 2t 2 6 t < 3

Is the function piecewise continuous or continuous?

State, if they exist, the position of any discontinuities.

15 The function h(t) is de�ned by

h(t) =

{
2 − t 0 6 t < 2

2t − 4 2 6 t 6 3

and h(t) has period 3. Sketch h(t) on the interval

[0, 6].

16 The function g(t) is de�ned by

g(t) =

{
1 0 6 t 6 1

2 − t 1 < t < 2

and g(t) has period 2. Sketch g(t) on the interval

[−1, 4]. State any points of discontinuity.

Solutions

2 (a) Square the input and then multiply by 2; domain

(−∞,∞), range [0,∞)

(b) Square the input, then subtract 1; domain [0,∞),

range [−1,∞)

(c) Multiply input by 3 and subtract 4; domain

[0,∞), range [−4,∞)

(d) Cube the input; domain (−∞,∞), range

(−∞,∞)

(e) Multiply input by 0.5 and then add 2; domain

[−2, 10], range [1, 7]

(f) Multiply input by 3 and then subtract 2; domain

[3, 8], range [7, 22]

3 (a) 19 (b) −11 (c) 5α + 4

(d) 5x+ 9 (e) 15α + 4 (f) 5x2 + 4

4 (a) −4 (b) 16 (c) 41

(d) 5x2 − 4 (e) 20t2 − 20t + 1

5 3183 ohms

6 (a) many-to-one (b) one-to-one

(c) one-to-one (d) one-to-one

(e) one-to-one (f) one-to-one

7 (a) f−1(x) = x− 4

(b) g−1(t) =
t − 1

3

(c) y−1(x) = x1/3

(d) h−1(t) = 3t + 8

(e) f−1(t) = 3t + 1

(f) h−1(x) = (x+ 1)1/3

(g) k−1(v) = 7 − v

(h) m−1(n) =
1 − 3n

2

8 (a) 2(t − 1) (b) 2t2 (c) t2 − 1

(d) 2t − 1 (e) (t − 1)2 (f) 4t2

(g) 4t (h) t − 2 (i) t4

(j) 2(t2 − 1) (k) 2t2 − 1 (l) (2t − 1)2

9 (a) 9t2 + 12t + 5 (b)
1

t2
+ 1

(c)
3

t
+ 2 (d)

1

t2 + 1

(e)
9

t2
+

12

t
+ 5

10 (a)
t

2
(b)

t − 1

2
(c)

1 − t

3

11 (a)
x+ 2

3
(b)

2

x
(c)

1

x− 1

12 (a) 6t + 3 (b)
t − 3

2
(c)

t

3

(d)
t − 3

6
(e)

t − 3

6

13 See Figure S.1.

10(a)

(c)

(b)

(d)

2 3 4 t

f

3
2
1

2
1

10 2 3 x

g

1

1

0 2  t

a

2
1

10 2 3 x

b

Figure S.1
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14 Piecewise continuous; discontinuity at t = 2. See

Figure S.2.

2
1

1–1
0 2 t

f

3

Figure S.2

15 See Figure S.3.

t

2
1

10 2 3 4 5 6

h

Figure S.3

16 Discontinuities at t = 0, 2. See Figure S.4.

t

1

10–1 2 3 4

g

Figure S.4

2.4 REVIEW OF SOME COMMON ENGINEERING FUNCTIONS
AND TECHNIQUES

This section provides a catalogue of the more common engineering functions. The im-

portant properties and de�nitions are included together with some techniques. It is in-

tended that readers will refer to this section for revision purposes and as the need arises

throughout the rest of the book.

2.4.1 Polynomial functions

A polynomial expression has the form

anx
n + an−1x

n−1 + an−2x
n−2 + · · · + a2x

2 + a1x+ a0

where n is a non-negative integer, an, an−1, . . . , a1, a0 are constants and x is a vari-

able. A polynomial function, P(x), has the form

P(x) = anx
n + an−1x

n−1 + an−2x
n−2 + · · · + a2x

2 + a1x+ a0 (2.3)

Examples of polynomial functions include

P1(x) = 3x2 − x+ 2 (2.4)

P2(z) = 7z4 + z2 − 1 (2.5)

P3(t) = 3t + 9 (2.6)

P4(t) = 6 (2.7)
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where x, z and t are independent variables. It is common practice to contract the term

polynomial expression to polynomial. By convention, a polynomial is usually written

with the powers either increasing or decreasing. For example,

3x+ 9x2 − x3 + 2

would be written as either

−x3 + 9x2 + 3x+ 2 or 2 + 3x+ 9x2 − x3

The degree of a polynomial or polynomial function is the value of the highest power.

Equation (2.4) has degree 2, Equation (2.5) has degree 4, Equation (2.6) has degree 1 and

Equation (2.7) has degree 0. Equation (2.3) has degree n. Polynomials with low degrees

have special names (see Table 2.1).

Table 2.1

Polynomial Degree Name

ax4 + bx3 + cx2 + dx+ e 4 Quartic

ax3 + bx2 + cx+ d 3 Cubic

ax2 + bx+ c 2 Quadratic

ax+ b 1 Linear

a 0 Constant

Typical graphs of some polynomial functions are shown in Figure 2.17.

P(x)

Degree 0

Degree 1

Degree 2

Degree 3

x

Figure 2.17

Some typical polynomials.

Engineering application 2.4

Ohm’s law

Recall from Engineering application 1.1 that the current 	owing through a resistor is

related to the voltage applied across it by Ohm’s law. The equation is

V = IR

where V = voltage across the resistor;

I = current through the resistor;

R = resistance value of the resistor, which is a constant

for a given temperature.
➔
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Note that the voltage is a linear polynomial function with I as the independent

variable.

This equation is only valid for a �nite range of currents. If too much voltage is

applied to the resistor, then the current 	owing through the resistor becomes suf�cient

for the resistor to overheat and breakdown.

Engineering application 2.5

A non-ideal voltage source

An ideal voltage source has zero internal resistance and its output voltage, V , is in-

dependent of the load applied to it; that is, V remains constant, independent of the

current it supplies. It is called an ideal voltage source because it is dif�cult to create

such a source in practice; it is in effect an abstraction that is useful when develop-

ing engineering models of real electronic systems. A non-ideal voltage source has

an internal resistance. Due to this internal resistance, the output voltage from such a

source is reduced when current is drawn from the source. The voltage reduction in-

creases as more current is drawn. Figure 2.18 shows a non-ideal voltage source. It is

modelled as an ideal voltage source in series with an internal resistor with resistance

Rs. The output voltage of the non-ideal voltage source is vo while vR is the voltage

drop across the internal resistor and i is the load current. Using Kirchhoff’s voltage

law,

V = vR + vo

and hence by Ohm’s law,

V = iRs + vo

vo = V − iRs

Note that V and Rs are constants and so the output voltage is a linear polynomial

function with independent variable i. The equation gives the output voltage across

the load as a function of the current through the load. The output characteristic for the

non-ideal voltage source is obtained by varying the load resistor RL and is plotted in

Figure 2.19. Notice that the output voltage of the non-ideal voltage source decreases

as the load current increases and is equal in value to the ideal voltage source only

when there is no load current.

Rs

RL
vo

i

+

non-ideal voltage source

–

vRV

Figure 2.18

A non-ideal voltage source connected to a load

resistor, RL.

vo

V gradient = –Rs

i

Figure 2.19

Output characteristic of a non-ideal

voltage source.
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This is why it is called a non-ideal voltage source. Engineers would prefer to have

a source that maintained a constant voltage no matter how much current was drawn

but it is not possible to build such a source.

Engineering application 2.6

Wind power turbines

Wind turbines are an important source of electrical power. The most common type,

and the ones which are usually found in offshore installations, resemble a desktop fan

and are called horizontal axis turbines. The wind driving a turbine blade consists

of many molecules of air, each having a tiny amount of mass. This mass passing the

blade area each second carries kinetic energy, which is the source of the wind power.

The wind power, P, can be calculated using the formula

P =
1

2
Mv2

where M is the total mass of air per second passing the blade in kg s−1 and v is the

velocity of the air in m s−1.

The mass per second can be calculated by considering the area swept out by the

blade, A, the density of the air, ρ, and the velocity:

M = ρAv

This equation can be substituted in the power equation

P =
1

2
(ρAv) v2 =

1

2
ρAv3 (2.8)

The available wind power therefore increases with the cube of the velocity. Note that

the power is a cubic polynomial function of the independent variable, v.

At 20 ◦C the air density is approximately 1.204 kg m−3. Consider the case of an

offshore turbine that has a swept area of 6362 m2 and a rated wind speed of 15 m s−1.

The maximum theoretical power at the rated speed is therefore

P =
1

2
ρAv3 =

1

2
× 1.204 × 6362 × 153 = 12.93 MW

The actual rated power of the device is approximately 3 MW because other physical

processes and losses have to be accounted for, yet Equation (2.8) remains one of the

most fundamental in the study of wind power.

Many excellent computer software packages exist for plotting graphs and these, as well

as graphics calculators, may be used to solve polynomial equations. The real roots of

the equation P(x) = 0 are given by the values of the intercepts of the function y = P(x)

and the x axis, because on the x axis y is zero.

Figure 2.20 shows a graph of y = P(x). The graph intersects the x axis at x = x1,

x = x2 and x = x3, and so the equation P(x) = 0 has real roots x1, x2 and x3, that is

P(x1) = P(x2) = P(x3) = 0.
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P(x)

x1 x2 x3 x
Figure 2.20

A polynomial function which cuts

the x axis at points x1, x2 and x3.

EXERCISES 2.4.1

1 State the degree of the following polynomial

expressions:

(a) z3 + 2z2 − 8 + 13z

(b) t2 − 5t5 + 2 − 8t3

(c) 3w − 5w2 + 12w4

(d) 7x− x2

(e) 3(2t2 − 9t + 1)

(f) 2z(2z+ 1)(2z− 1)

Solutions

1 (a) 3 (b) 5 (c) 4 (d) 2 (e) 2 (f) 3

Technical Computing Exercises 2.4.1

Use a technical computing language such as MATLAB® to

do the following exercises.

1 (a) Plot y = x3 and y = 4 − 2x in the interval

[-3, 3]. Be aware that in MATLAB®, to carry out

operations on individual elements of a vector,

special notation is used. For example to multiply

each element in vector a by the corresponding

element in vector b (having the same dimension

as vector a) you would type a.*b. Other

functions such as raising to a power also require a

dot pre�x if they are to be carried out on each

individual element, rather than the whole matrix.

Note the x coordinate of the point of intersection.

(b) Draw y = x3 + 2x− 4. Note the coordinate of

the point where the curve cuts the x axis.

Compare your answer with that from (a). Explain

your �ndings.

2 Plot the following functions:

(a) y = 3x3 − x2 + 2x+ 1 −2 6 x 6 2

(b) y = x4 +
x3

3
−

5x2

2
+ x− 1 −3 6 x 6 2

(c) y = x5 − x2 + 2 −2 6 x 6 2

Hence estimate the real roots of

0 = 3x3 − x2 + 2x+ 1 −2 6 x 6 2

0 = x4 +
x3

3
−

5x2

2
+ x− 1

−3 6 x 6 2

0 = x5 − x2 + 2 −2 6 x 6 2

3 Use the roots function in MATLAB® or equivalent

to calculate a more accurate value for the real roots

estimated in question 2 and con�rm your answers are

correct.

4 (a) Draw y = 2x2 and y = x3 + 6 using the same

axes. Use your graphs to �nd approximate

solutions to x3 − 2x2 + 6 = 0.

(b) Add the line y = −3x+ 5 to your graph. State

approximate solutions to

(i) x3 + 3x+ 1 = 0

(ii) 2x2 + 3x− 5 = 0
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2.4.2 Rational functions

A rational function, R(x), has the form

R(x) =
P(x)

Q(x)

where P and Q are polynomial functions; P is the numerator and Q is the

denominator.

The functions

R1(x) =
x+ 6

x2 + 1
R2(t) =

t3 − 1

2t + 3
R3(z) =

2z2 + z− 1

z2 + 3z− 2

are all rational. When sketching the graph of a rational function, y = f (x), it is usual to

draw up a table of x and y values. Indeed this has been common practice when sketching

any graph although the use of graphics calculators is now replacing this custom. It is still

useful to answer questions such as:

‘How does the function behave as x becomes large positively?’

‘How does the function behave as x becomes large negatively?’

‘What is the value of the function when x = 0?’

‘At what values of x is the denominator zero?’

Figure 2.21 shows a graph of the function y =
1 + 2x

x
=

1

x
+ 2. As x increases, the

value of y approaches 2. We write this as

y → 2 as x → ∞

and say ‘y tends to 2 as x tends to in�nity’. Also from Figure 2.21, we see that

y → ±∞ as x → 0

As x → ∞, the graph gets nearer and nearer to the straight line y = 2. We say that y = 2

is an asymptote of the graph. Similarly, x = 0, that is the y axis, is an asymptote since

the graph approaches the line x = 0 as x → 0.

If the graph of any function gets closer and closer to a straight line then that line is

called an asymptote. Figure 2.22 illustrates some rational functionswith their asymptotes

indicated by dashed lines. In Figure 2.22(a) the asymptotes are the horizontal line y = 3

2

y

x

Figure 2.21

The function: y =
1 + 2x

x
=

1

x
+ 2.
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y

x

(a) (c)(b)

3

y

x

1

–2

y

x–1

Figure 2.22

Some examples of functions with their asymptotes:

(a) y =
3x+ 1

x
= 3 +

1

x
; (b) y =

x− 1

x+ 2
; (c) y =

x2 + 4x+ 2

x+ 1
= x+ 3 −

1

x+ 1
.

and the y axis, that is x = 0. In Figure 2.22(b) the asymptotes are the horizontal line

y = 1 and the vertical line x = −2; in Figure 2.22(c) they are y = x+ 3 and the vertical

line x = −1. The asymptote y = x+3, being neither horizontal nor vertical, is called an

oblique asymptote. Oblique asymptotes occur only when the degree of the numerator

exceeds the degree of the denominator by one.

We see that the vertical asymptotes occur at values of x which make the denominator

zero. These values are particularly important to engineers and are known as the poles

of the function. The function shown in Figure 2.22(a) has a pole at x = 0; the function

shown in Figure 2.22(b) has a pole at x = −2; and the function shown in Figure 2.22(c)

has a pole at x = −1.

If the graph of a function approaches a straight line, the line is known as an asymp-

tote. Asymptotes may be horizontal, vertical or oblique.

Values of the independent variable where the denominator is zero are called poles

of the function.

Example 2.10 Sketch the rational function y =
x

x2 + x− 2
.

Solution For large values of x, the x2 term in the denominator has a much greater value than the

x in the numerator. Hence,

y → 0 as x → ∞

y → 0 as x → −∞

Therefore the x axis, that is y = 0, is an asymptote. Writing y as

y =
x

(x− 1)(x+ 2)
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we see the function has poles at x = 1 and x = −2; that is, there are vertical asymptotes

at x = 1 and x = −2. Substitution into the function of a number of values of x allows a

table to be drawn up:

x −3 −2.5 −2.1 −1.9 −1.5 −1 0 0.5 0.9 1.1 1.5 2 3

y −0.75 −1.43 −6.77 6.55 1.20 0.50 0 −0.40 −3.10 3.55 0.86 0.50 0.30

The graph of the function can then be sketched as shown in Figure 2.23.

1 x

y

–2

Figure 2.23

The function: y =
x

x2 + x− 2
.

Engineering application 2.7

Equivalent resistance

Recall from Engineering application 1.2 that the formula for the equivalent resistance

of two resistors in parallel is given by:

1

RE

=
1

R1

+
1

R2

Consider a circuit consisting of two resistors in parallel as shown in Figure 2.24.

One has a known resistance of 1 � and the other has a variable resistance, R �. The

equivalent resistance, RE �, satis�es

1

RE

=
1

R
+

1

1
=

1 + R

R

Hence,

RE =
R

1 + R

Thus the equivalent resistance is a rational function of R, with domain R > 0.

The graph of this function is shown in Figure 2.25. When R = 0 we note

that RE = 0, corresponding to a short circuit. As the value of R increases, that

is R → ∞, the equivalent resistance RE approaches 1 so that RE = 1 is an asymptote.
➔
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RE1 VR

Figure 2.24

Two resistors in parallel.

RE

1

R

Figure 2.25

The equivalent resistance, RE,

increases as R increases.

EXERCISES 2.4.2

1 State the poles of the following rational functions:

(a) y(x) =
x+ 3

x− 2
(b) y(x) =

2x+ 1

x+ 7

(c) y(t) =
t2 + t + 1

2t + 3
(d) X (s) =

s+ 1

s2 − 4

(e) H(s) =
3

s2 + 6s+ 5

(f) G(s) =
2s+ 7

s2 + 3s− 18

(g) x(t) =
9

t3 − t

(h) p(t) =
2t − 6

t2 + 10t + 25

2 Describe the horizontal asymptote of each of the

following functions:

(a) y(x) = 6 +
1

x
(b) h(t) =

2

t
− 1

(c) y(r) = 3 −
2

5r
(d) v(t) =

6 + t

t

(e) r(v) =
2v − 5

3v

(f) a(t) =
t2 + 2t + 1

t2

(g) m(s) =
10 − 2s− 3s2

2s2

3 Describe the vertical asymptotes of each of the

following functions:

(a) y(x) =
3x+ 1

x− 2
(b) y(t) =

6t − 3

4t + 4

(c) h(s) =
9

(s+ 2)(s− 1)

(d) G(t) =
1

t2 − 1
(e) H(s) =

s

s2 − 1

(f) y(x) =
2x

x2 − 1

(g) w( f ) =
f + 2

f 2 + f − 6

(h) P(t) =
t2 + t + 1

t2 + 6t + 9

(i) T (x) =
x3

2x− 1

(j) Q(r) =
6 + r

r2 − r − 12

4 Describe the oblique asymptote of each of the

following functions:

(a) y(x) = x+ 3 +
1

x− 1

(b) y(x) = 2x− 1 +
3

x+ 2

(c) y(x) =
x

2
−

3

4
+

1

2x+ 7

(d) y(x) = 3x− 1 +
5

2x+ 2

(e) y(x) = 2x− 1 +
x+ 2

x2 − 1

(f) y(x) = 3x− 2 +
4

2x− 1

(g) y(x) = 4 − 2x+
3

2x+ 3
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5 Show that

I(x) =
2x

3
−

7

9
+

23

9(3x+ 2)

can be expressed in the equivalent form

2x2 − x+ 1

3x+ 2

Sketch the rational function I(x) and state any

asymptotes.

6 Show that

p(x) = 2x+
1

2
+

9

2(2x+ 3)

can be written in the equivalent form

4x2 + 7x+ 6

2x+ 3

Sketch the rational function p(x) and state any

asymptotes.

7 Show that the function

y(x) = x+
7 − x

x2 + 3

can be expressed in the equivalent form

x3 + 2x+ 7

x2 + 3

Sketch the rational function y(x) and state any

asymptotes.

Solutions

1 (a) 2 (b) −7 (c) −
3

2

(d) −2, 2 (e) −5,−1 (f) −6, 3

(g) −1, 0, 1 (h) −5

2 (a) y = 6 (b) h = −1

(c) y = 3 (d) v = 1

(e) r =
2

3
(f) a = 1

(g) m = −
3

2

3 (a) x = 2 (b) t = −1

(c) s = −2, 1 (d) t = −1, 1

(e) s = −1, 1 (f) x = −1, 1

(g) f = −3, 2 (h) t = −3

(i) x = 0.5 (j) r = −3, 4

4 (a) y = x+ 3 (b) y = 2x− 1

(c) y =
x

2
−

3

4
(d) y = 3x− 1

(e) y = 2x− 1 (f) y = 3x− 2

(g) y = 4 − 2x

5 x = −
2

3
, I =

2x

3
−

7

9

6 x = −
3

2
, p = 2x+

1

2

7 y = x

Technical Computing Exercises 2.4.2

1 Use a technical computing language to plot the

following rational functions. State any asymptotes.

(a) f (x) =
(2x+ 1)

(x− 3)
−4 6 x 6 4

(b) g(s) =
s

(s+ 1)
−3 6 s 6 3

(c) h(z) =
z

(z2 + 1)
−3 6 z 6 3

(d) y(x) =
(x+ 1)

x
−3 6 x 6 3

(e) r(x) =
2x

(x− 1)(x− 2)
−3 6 x 6 3

2 Plot the functions given in Question 4 in

Exercises 2.4.2 for −10 6 x 6 10.
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2.4.3 Exponential functions

An exponent is another name for a power or index. Expressions involving exponents are

called exponential expressions, for example 34, ab, and mn. In the exponential expres-

sion ax, a is called the base; x is the exponent. Exponential expressions can be simpli�ed

and manipulated using the laws of indices. These laws are summarized here.

aman = am+n am

an
= am−n a0 = 1 a−m =

1

am
(am)n = amn

Example 2.11 Simplify

(a)
a3xa2x

a4x
(b) a2t (1 − at )+ a3t (c)

(ay)2

2ay
(d)

a−6z

a−2z

(e)
(2a3r)2a2r

3a−5r
(f)

ax+yay

a2x
(g)

3a(x/y)ax

ay

Solution (a)
a3xa2x

a4x
=
a5x

a4x
= ax

(b) a2t (1 − at )+ a3t = a2t − a3t + a3t = a2t

(c)
(ay)2

2ay
=

a2y

2ay
=
ay

2

(d)
a−6z

a−2z
= a−6z−(−2z) = a−4z

(e)
(2a3r)2a2r

3a−5r
=

4a6ra2r

3a−5r
=

4a8r

3a−5r
=

4a13r

3

(f)
ax+yay

a2x
= ax+2y−2x = a2y−x

(g)
3a(x/y)ax

ay
= 3a(x/y)+x−y

Exponential functions

An exponential function, f (x), has the form

f (x) = ax

where a is a positive constant called the base.

Some typical exponential functions are tabulated in Table 2.2 and are shown in Fig-

ure 2.26. Note from the graphs that these are one-to-one functions.

An exponential function is not a polynomial function. The powers of a polynomial

function are constants; the power of an exponential function, that is the exponent, is the

variable x.
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Table 2.2

Values of ax for a = 0.5, 2 and 3.

x 0.5x 2x 3x

−3 8 0.125 0.037

−2 4 0.25 0.111

−1 2 0.5 0.333

0 1 1 1

1 0.5 2 3

2 0.25 4 9

3 0.125 8 27

y

x

2x3x(0.5)x

Figure 2.26

Some typical exponential functions.

The most widely used exponential function, commonly called the exponential func-

tion, is

f (x) = ex

where e is an irrational constant (e = 2.718 281 828 . . .) commonly called the

exponential constant.

Most scienti�c calculators have values of ex available. The function is tabulated

in Table 2.3. The graph is shown in Figure 2.27. This particular exponential function

so dominates engineering applications that whenever an engineer refers to the expo-

nential function it almost invariably means this one. We will see later why it is so

important.

As x increases positively, ex increases very rapidly; that is, as x → ∞, ex → ∞. This

situation is known as exponential growth. As x increases negatively, ex approaches zero;

that is, as x → −∞, ex → 0. Thus y = 0 is an asymptote. Note that the exponential

function is never negative.

Figure 2.28 shows a graph of e−x. As x increases positively, e−x decreases to zero; that

is, as x → ∞, e−x → 0. This is known as exponential decay. The function is tabulated

in Table 2.4.

Table 2.3

The values of the exponential

function f (x) = ex for

various values of x.

x ex

−3 0.050

−2 0.135

−1 0.368

0 1

1 2.718

2 7.389

3 20.086

x

ex

1

Figure 2.27

Graph of y = ex showing exponential growth.
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Table 2.4

The values of the exponential

function f (x) = e−x for

various values of x.

x e−x

−3 20.086

−2 7.389

−1 2.718

0 1

1 0.368

2 0.135

3 0.050

e–x

1

x

Figure 2.28

Graph of y = e−x showing exponential decay.

Engineering application 2.8

Discharge of a capacitor

The capacitor is another of the three fundamental electronic components. It is a

device that is used to store electrical charge. It consists of two parallel conducting

plates separated by an insulating material, known as a dielectric. A build up of a net

positive charge on one plate and a net negative charge on the other plate creates an

electric �eld across the dielectric, allowing electrical energy to be stored that has the

potential to do useful work. The symbol for a capacitor is two parallel lines that are

perpendicular to the conductors in the circuit.

Consider the circuit of Figure 2.29. Before the switch is closed, the capacitor has

a voltageV across it. Suppose the switch is closed at time t = 0. A current then flows

in the circuit and the voltage, v, across the capacitor decays with time. The voltage

across the capacitor is given by

v =

{
V t < 0

Ve−t/(RC) t > 0

The quantity RC is known as the time constant of the circuit and is usually denoted

by τ . So

v =

{
V t < 0

Ve−t/τ t > 0

RC

Figure 2.29

Circuit to discharge a capacitor.

t larger

t

v 

V

Figure 2.30

The capacitor takes longer to discharge for a

larger circuit time constant, τ .

If τ is small, then the capacitor voltage decays more quickly than if τ is large.

This is illustrated in Figure 2.30.
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Engineering application 2.9

The diode equation

A diode is an electronic device that allows current to 	ow with ease in one direction

and with dif�culty in the other. In plumbing terms it is the equivalent of a non-return

valve. It is constructed by sandwiching two different types of semiconductor material

together, known as p-type and n-type semiconductors. The resultant construction is

referred to as a p-n junction. These different types of semiconductors are created

by a procedure known as doping. The technical details are complex but it is one

of the most fundamental processes underpinning the electronics revolution that has

transformed society in recent decades.

A semiconductor diode can be modelled by the equation

I = Is

(
e

qV
nkT − 1

)

where V = applied voltage (V);

I = diode current (A);

Is = reverse saturation current (A);

k= 1.38 × 10−23 J K−1;

q= 1.60 × 10−19 C;

T = temperature (K);

n= ideality factor.

This equation relates the current through the diode to the voltage across it. The ide-

ality factor, n, typically ranges between 1 and 2 depending on how the diode is man-

ufactured and the type of semiconductor material used. We will consider the case

n = 1, which corresponds to that of an ideal diode. At room temperature q/(kT ) ≈ 40

and so the equation can be written as

I = Is(e
40V − 1)

Figure 2.31 shows a graph of I against V . Notice that for negative values of V , the

equation may be approximated by

I ≈ −Is

since e40V ≈ 0. The diode is said to be reverse saturated in this case. In reality,

Is is usually quite small for a practical device, although its size has been exagger-

ated in Figure 2.31. This model does not cater for the breakdown of the diode.

According to the model it would be possible to apply a very large reverse voltage

to a diode and yet only a small saturation current would flow. This illustrates an

important point that no mathematical model covers every facet of the physical device

or system it is modelling. A different model would be needed to deal with breakdown

characteristics. ➔
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I

V
–Is

Figure 2.31

A typical diode characteristic.

EXERCISES 2.4.3

1 Simplify

(a)
e2x

3e3x
(b)

e2t−3

e2

(c)
ex(ex + e2x)

e2x
(d)

e−3e−7

e6e−2

(e)
(e2t )3(e3t )4

e10t

2 Consider the RC circuit of Figure 2.29. Given an

initial capacitor voltage of 10 V plot the variation in

capacitor voltage with time, using the same axes, for

the following pairs of component values:

(a) R = 1 �, C = 1 µF

(b) R = 10 �,C = 1 µF

(c) R = 3.3 �, C = 1 µF

(d) R = 56 �,C = 0.1 µF

Calculate the time constant, τ , in each case.

3 Sketch the following functions, using the same axes:

y = e2x y = ex/2 y = e−2x

for −3 6 x 6 3

4 Sketch a graph of the function y = 1 − e−x for

x > 0.

Solutions

1 (a)
e−x

3
(b) e2t−5 (c) 1 + ex

(d) e−14 (e) e8t

2 (a) 10−6 (b) 10−5 (c) 3.3 × 10−6

(d) 5.6 × 10−6

Technical Computing Exercises 2.4.3

1 Plot y = ekx for k = −3, −2, −1, 0, 1, 2, 3, for

−3 6 x 6 3.

2 Plot y = kex for k = −3, −2, −1, 0, 1, 2, 3, for

−3 6 x 6 3.

3 Plot y = 5− x2 and y = ex for −3 6 x 6 3. For which

values of x is ex < 5 − x2?

4 Plot y = x4 and y = ex for −1 6 x 6 9. For which

values of x is (a) ex < x4, (b) ex > x4?
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2.4.4 Logarithm functions

Logarithms

The equation 16 = 24 may be expressed in an alternative form using logarithms. In

logarithmic form we write

log2 16 = 4

and say ‘log to the base 2 of 16 equals 4’. Hence logarithms are nothing other than

powers. The logarithmic form is illustrated by more examples:

125 = 53 so log5 125 = 3

64 = 82 so log8 64 = 2

16 = 42 so log4 16 = 2

1000 = 103 so log10 1000 = 3

In general,

if c = ab, then b = loga c

In practice, most logarithms use base 10 or base e. Logarithms using base e are called

natural logarithms. Log10x and loge x are usually abbreviated to log x and ln x, respec-

tively. Most scienti�c calculators have both logs to base 10 and logs to base e as pre-

programmed functions, usually denoted as log and ln, respectively. Some calculations

in communications engineering use base 2. Your calculator will probably not calculate

base 2 logarithms directly. We shall see how to overcome this shortly.

Focusing on base 10 we see that

if y = 10x then x = log y

Equivalently,

if x = log y then y = 10x

Using base e we see that

if y = ex then x = ln y

Equivalently,

if x = ln y then y = ex

Example 2.12 Solve the equations

(a) 16 = 10x (b) 30 = ex (c) log x = 1.5 (d) ln x = 0.75

Solution (a) 16 = 10x

log 16 = x

x = 1.204

(b) 30 = ex

ln 30 = x

x = 3.401

(c) log x = 1.5

x = 101.5

= 31.623

(d) ln x = 0.75

x = e0.75

= 2.117

Example 2.13 Solve the equations

(a) 50 = 9(102x) (b) 3e−(2x+1) = 10

(c) log(x2 − 1) = 2 (d) 3 ln(4x+ 7) = 12
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Solution (a) 50 = 9(102x)

102x =
50

9

2x = log
50

9

x =
1

2
log

50

9
= 0.372

(b) 3e−(2x+1) = 10

e−(2x+1) =
10

3

−(2x+ 1) = ln
10

3

2x = − ln
10

3
− 1

2x = −2.204

x = −1.102

(c) log(x2 − 1) = 2

x2 − 1 = 102 = 100

x2 = 101

x = ±10.050

(d) 3 ln(4x+ 7) = 12

4x+ 7 = e4

4x = e4 − 7

x =
e4 − 7

4
= 11.900

Logarithmic expressions can bemanipulated using the laws of logarithms. These laws

are identical for any base, but it is essential when applying the laws that bases are not

mixed.

loga A+ loga B = loga(AB)

loga A− loga B = loga

(
A

B

)

n loga A = loga(A
n)

loga a = 1

We sometimes need to change from one base to another. This can be achieved using the

following rule.

loga X =
logb X

logb a

In particular,

log2 X =
log10 X

log10 2
=

log10 X

0.3010

Example 2.14 Simplify

(a) log x+ log x3

(b) 3 log x+ log x2

(c) 5 ln x+ ln

(
1

x

)

(d) log(xy)+ log x− 2 log y

(e) ln(2x3)− ln

(
4

x2

)
+

1

3
ln 27

Solution (a) Using the laws of logarithms we �nd

log x+ log x3 = log x4
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(b) 3 log x+ log x2 = log x3 + log x2 = log x5

(c) 5 ln x+ ln

(
1

x

)
= ln x5 + ln

(
1

x

)
= ln

(
x5

x

)
= ln x4

(d) log xy+ log x− 2 log y= log xy+ log x− log y2

= log

(
xyx

y2

)
= log

(
x2

y

)

(e) ln(2x3)− ln

(
4

x2

)
+

ln 27

3
= ln

(
2x3

4/x2

)
+ ln 271/3

= ln

(
2x3x2

4

)
+ ln 3

= ln

(
x5

2

)
+ ln 3 = ln

(
3x5

2

)

Example 2.15 Find log2 14.

Solution Using the formula for change of base we have

log2 14 =
log10 14

log10 2
=

1.146

0.301
= 3.807

Engineering application 2.10

Signal ratios and decibels

The ratio between two signal levels is often of interest to engineers. For example, the

output and input signals of an electronic system can be compared to see if the system

has increased the level of a signal. A common case is an ampli�er, where the output

signal is usually much larger than the input signal. This signal ratio, known as the

power gain, is often expressed in decibels (dB) given by

power gain (dB) = 10 log

(
Po

Pi

)

where Po is the power of the output signal and Pi is the power of the input signal. The

term gain is used because if Po > Pi, then the logarithm function is positive, corre-

sponding to an increase in power. If Po < Pi then the gain is negative, corresponding

to a decrease in power. In this situation the signal is said to be attenuated.

The advantage of using decibels as a measure of gain is that if several electronic

systems are connected together then it is possible to obtain the overall system gain

in decibels by adding together the individual system gains. We will show this for

three systems connected together, but the development is easily generalized to more

systems. Let the power input to the �rst system be Pi1, and the power output from
➔
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the third system be Po3. Suppose the three are connected so that the power output

from system 1, Po1, is used as input to system 2, that is Pi2 = Po1. The power output

from system 2, Po2, is then used as input to system 3, that is Pi3 = Po2. We wish to

�nd the overall power gain, 10 log(Po3/Pi1). Now

Po3

Pi1
=
Po3

Pi3

Po2

Pi2

Po1

Pi1

because Pi3 = Po2 and Pi2 = Po1. Therefore,

10 log

(
Po3

Pi1

)
= 10 log

(
Po3

Pi3

Po2

Pi2

Po1

Pi1

)

that is

10 log

(
Po3

Pi1

)
= 10 log

(
Po3

Pi3

)
+ 10 log

(
Po2

Pi2

)
+ 10 log

(
Po1

Pi1

)

using the laws of logarithms.

It follows that the overall power gain is equal to the sum of the individual power

gains. Often engineers are more interested in voltage gain rather than power gain.

The power of a signal is proportional to the square of its voltage. We de�ne voltage

gain (dB) by

voltage gain (dB) = 10 log

(
V 2
o

V 2
i

)
= 20 log

(
Vo

Vi

)

Engineering application 2.11

The use of dBm in radio frequency engineering

In the previous engineering application it was shown how the decibel can be used to

express a ratio of the power of two signal levels Po and Pi. It is possible to specify

a �xed value for the input signal Pi. This is termed a reference level. When this is

done the decibel becomes an absolute quantity. The notation is normally changed

slightly to indicate the assumed reference level. For example, dBm is used as an

absolute measure of power in the �eld of radio frequency (RF) engineering. Amobile

telephone handset, a microwave oven and a radar transmitter on an air�eld are all

devices that might have their output power quoted in dBm. The de�nition of power

gain measured in dBm is as follows:

power gain (dBm) = 10 log

(
Po

10−3

)

Here the reference level chosen is 1 mW or 10−3 W.

If a device is quoted as having an output power of 15 dBm we can convert this

into a power value in watts as follows:

15 (dBm) = 10 log

(
Po

10−3

)

Dividing both sides by 10

1.5 = log

(
Po

10−3

)



2.4 Review of some common engineering functions and techniques 89

And so

101.5 =

(
Po

10−3

)

Therefore the actual power is

Po = 101.5 × 10−3 = 10−1.5 = 0.0316 ∼= 32 mW

This is the typical amount of RF power that might be transmitted by a laptop computer

with WiFi capability.

Engineering application 2.12

Attenuation in a step-index optical fibre

Fibre optical cables are used to guide high-bandwidth light signals generated by

lasers. One design is the step-index optical �bre. This consists of a glass core of

silicon dioxide with a high refractive index, obtained by doping the glass with the el-

ement germanium. A surrounding sheath of lower refractive index glass ensures that

nearly all of the light remains within the core. Transmission occurs by total internal

reflection at the interface between the two types of glass.

The losses that do occur in the optical �bre can be described by the following

equation:

I(z) = I0 e
−αz

where the intensity of the light I(z) is a function of the distance along the �bre, z,

from the light source. The intensity of the light source at the insertion point is I0 and

α is an attenuation factor.

Note that α varies with the wavelength of the light and so the rate of attenuation

depends on the colour of the light. It is possible to obtain plots for the variation of the

attenuation factor with wavelength from the manufacturers. The attenuation factor is

often expressed in units of dB km−1. A typical value for a cable operating at a light

wavelength of 1550 nm is 0.3 dB km−1.

An alternative measure for gain/attenuation is that of the neper (Np). Like the

decibel this is also a dimensionless ratio that has a logarithmic form. Whereas the

decibel is de�ned in terms of base 10 logarithms, the neper is de�ned in terms of

natural logarithms, that is base e logarithms. The gain measured in Np is de�ned by

the following expression:

voltage gain (Np) = ln
Vo

Vi
= lnVo − lnVi

where Vo is the signal value in volts after gain/attenuation and Vi is the reference

signal value in volts.

It is possible to derive a conversion factor between Np and dB by considering

the case when Vo is a factor of 10 greater than Vi. Using the neper measurement this

corresponds to

voltage gain (Np) = ln
10Vi
Vi

= ln 10

➔
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Using the dB measurement for voltage gain (see Engineering application 2.10)

this corresponds to voltage gain (dB)= 20 log
Vo

Vi
which equals 20 log 10. So,

ln 10 (Np) = 20 log 10 (dB). Thus,

1Np =
20 log 10

ln 10
dB ≈ 8.685 89 dB

Using the value quoted earlier of an attenuation factor of 0.3 dB km−1, this corre-

sponds to

0.3 ÷ 8.685 89 Np km−1 = 0.034 539 Np km−1

It is more usual to quote values of Np m−1 and so this value becomes 3.4539 ×

10−5 Np m−1.

Engineering application 2.13

Reference levels

We saw in Engineering application 2.11 that the suf�x ‘m’ is used in dBm to indi-

cate the provision of a speci�c reference level. Alternative suf�xes are used to denote

other reference levels and quantities, which do not necessarily have to be related to

electrical power. For example, when measuring sound pressure, P, in air the conven-

tional reference level for sound pressure is 20 µPa r.m.s. This is chosen to correspond

to the approximate threshold of human hearing for a 1 kHz sinusoidal signal. The unit

for sound pressure is therefore quoted with reference to an input pressure of 20 µPa.

This is commonly written as dB re 20 µPa r.m.s. or using the shorthand dB SPL (dB,

sound pressure level). In other words we have

sound pressure level (dB SPL) = 20 log

(
P

20 × 10−6

)

As a consequence of the choice of the human hearing threshold as the reference level,

a negative value of dB SPL corresponds to a sound that is too quiet to be heard by the

average person; 0 dB SPL is a sound that can just be heard and anything above this is

fully audible. An of�ce might have an ambient (background) level of 30 dB SPL and

a person talking to you at the next desk might produce 60 dB SPL, both quantities

being measured at your hearing position.

Logarithm functions

The logarithm functions are de�ned by

f (x) = loga x x > 0

where a is a positive constant called the base.

In particular the logarithm functions f (x) = log x and f (x) = ln x are shown in Fig-

ure 2.32 and some values are given in Table 2.5. The domain of both of these functions is

(0,∞) and their ranges are (−∞,∞). We observe from the graphs that these functions
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Table 2.5

Some values for logarithm

functions log x and ln x.

x log x ln x

0.1 −1 −2.303

0.5 −0.301 −0.693

1 0 0

2 0.301 0.693

5 0.699 1.609

10 1 2.303

50 1.699 3.912

y

1 x

log x

ln x

Figure 2.32

Graphs of ln x and log x.

are one-to-one. It is important to stress that the logarithm functions, loga x, are only

de�ned for positive values of x. The following properties should be noted:

log x → ∞

ln x → ∞

}
as x → ∞

log x → −∞

ln x → −∞

}
as x → 0

log 1 = ln 1 = 0 log 10 = 1 ln e = 1

Connection between exponential and logarithm functions

The exponential function, f (x) = ax, is a one-to-one function and so an inverse function,

f−1(x), exists. Recall

f−1( f (x)) = x

So

f−1(ax) = x

Now

loga(a
x) = x loga a using laws of logarithms

= x since loga a = 1

Hence the inverse of f (x) = ax is f−1(x) = loga x. By similar analysis the inverse of

f (x) = loga x is f
−1(x) = ax.

The inverse of the exponential function, f (x) = ax, is the logarithm function, that

is f−1(x) = loga x.

The inverse of the logarithm function, f (x) = loga x, is the exponential function,

that is f−1(x) = ax.

In particular:

If f (x) = ex, then f−1(x) = ln x.

If f (x) = ln x, then f−1(x) = ex.

If f (x) = 10x, then f−1(x) = log x.

If f (x) = log x, then f−1(x) = 10x.
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x y

1 1

2 64

3 729

4 4 096

5 15 625

6 46 656

7 117 649

8 262 144

9 531 441

10 1000 000

1

6

5

4

3

2

1

0
2 3 4 5 6 7 8 9 10 x

log y

Figure 2.33

The function y = x6 plotted on a log--linear graph.

Use of log–log and log–linear scales

Suppose we wish to plot

y(x) = x6 1 6 x 6 10

This may appear a straightforward exercise but consider the variation in the x and y

values. As x varies from 1 to 10, then y varies from 1 to 1 000 000, as tabulated above.

Several of these points would not be discernible on a graph and so information would be

lost. This can be overcome by using a log scalewhich accommodates the large variation

in y. Thus log y is plotted against x, rather than y against x. Note that in this example

log y = log x6 = 6 log x

so as x varies from 1 to 10, log y varies from 0 to 6. A plot in which one scale is loga-

rithmic and the other is linear is known as a log--linear graph. Figure 2.33 shows log y

plotted against x. In effect, use of the log scale has compressed a large variation into one

which is much smaller and easier to observe.

Example 2.16 Consider y = 7x for −3 6 x 6 3. Plot a log--linear graph of this function.

Solution We have

y = 7x

and so

log y = log(7x) = x log 7 = 0.8451x

Putting Y = log y we have Y = 0.8451x which is the equation of a straight line passing

through the origin with gradient log 7. Hence when log y is plotted against x a straight

line graph is produced. This is shown in Figure 2.34. Note that by taking logs, the range

on the vertical axis has been greatly reduced.

A plot in which both scales are logarithmic is known as a log--log plot. Here log y is

plotted against log x.
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x y Y = log y

−3 0.003 −2.54

−2 0.020 −1.69

−1 0.143 −0.85

0 1 0

1 7 0.85

2 49 1.69

3 343 2.54

–3 –2 –1 1 2 3 x

Y

–2.5

2.5

Figure 2.34

A log--linear plot of y = 7x produces a

straight line graph.

Example 2.17 Consider y = x7 for 1 6 x 6 10. Plot a log--log graph of this function.

Solution We have

y = x7

and so

log y = log(x7) = 7 log x

We plot log y against log x in Figure 2.35 for a log--log plot. Putting Y = log y and

X = log x we have Y = 7X which is a straight line through the origin with gradient 7.

x y X = log x Y = log y

1 1 0 0

2 128 0.301 2.107

3 2 187 0.477 3.340

4 16 384 0.602 4.214

5 78 125 0.699 4.893

6 279 936 0.778 5.447

7 823 543 0.845 5.916

8 2 097 152 0.903 6.322

9 4 782 969 0.954 6.680

10 10 000 000 1 7

Y 

7

1 X

Figure 2.35

A log--log plot of y = x7

produces a straight line graph.

Examples 2.16 and 2.17 illustrate the following general points:

A log--linear plot of y = ax produces a straight line with a gradient of log a.

A log--log plot of y = xn produces a straight line with a gradient of n.
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Figure 2.36

Two-cycle log--linear graph paper.

Use of log–linear and log–log graph paper

The requirement to take logarithms is a tedious process which can be avoided by using

special graph papers called log--linear graph paper and log--log graph paper. An example

of log--linear graph paper is shown in Figure 2.36.

Note that on one axis the scale is uniform; this is the linear scale. On the other, the

scale is not uniform and is marked in cycles from 1 to 9. This is the logarithmic scale. On

this scale values of y are plotted directly, without �rst taking logarithms. On the graph

paper shown in Figure 2.36 there are two cycles but papers are also available with three
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or more cycles. To decide which sort of graph paper is appropriate it is necessary to

examine the variation in size of the variable to be plotted measured in powers of 10. If,

for example, y varies from 1 to 10, then paper with one cycle is appropriate. If y varies

from 1 to 102, two-cycle paper is necessary. If y varies from 10−1 to 104, then paper

with 4− (−1) = 5 cycles would be appropriate. To see how log--linear paper is used in

practice, consider the following example.

Example 2.18 During an experiment the following pairs of data values were recorded:

A B C D

x 0 1 5 12

y 4.00 5.20 14.85 93.19

It is believed that y and x are related by the equation y = abx. By plotting a log--linear

graph verify the relationship is of this form and determine a and b.

Solution If the relationship is given by y = abx, then taking logarithms yields

log y = log a+ x log b

So, plotting log y against x should produce a straight line graph with gradient log b and

vertical intercept log a. The need to �nd log y is eliminated by plotting the y values di-

rectly on a logarithmic scale. Examining the table of data we see that y varies from

approximately 100 to 102 so that two-cycle paper is appropriate. Values of y between 1

and 10 are plotted on the �rst cycle, and those between 10 and 100 are plotted on the

second. The points are plotted in Figure 2.37. Note in particular that in this example the

‘1’ at the start of the second cycle represents the value 10, the ‘2’ represents the value 20

and so on. From the graph, the straight line relationship between log y and x is evident.

It is therefore reasonable to assume that the relationship between y and x is of the form

y = abx.

To �nd the gradient of the graphwe can choose any two points on the line, for example

C and B. The gradient is then

log 14.85 − log 5.20

5 − 1
=

log(14.85/5.20)

4
= 0.1139

Recall that log b is the gradient of the line and so

log b = 0.1139, that is b = 100.1139 = 1.2999

The vertical intercept is log a. From the graph the vertical intercept is log 4 so that

log a = log 4, that is a = 4

We conclude that the relationship between y and x is given by y = 4(1.3)x.
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Figure 2.37

The log--linear graph is a straight line.

Engineering application 2.14

Bode plot of a linear circuit

It is possible to �nd out a great deal about an electronic circuit by measuring how

it responds to a sinusoidal input signal. We will examine the sinusoidal functions in
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Section 3.4. The usual procedure is to apply a range of �xed-amplitude sinusoidal

signals with different frequencies in order to obtain information about the circuit or

system. In Section 23.9 we will see that if the circuit is linear then, after it has settled

down, the output signal is also a sinusoidal signal of the same frequency but with a

different amplitude and phase (see Section 3.7 for details of these terms).

A Bode plot consists of two components:

(1) The ratio of the amplitudes of the output signal and the input signal is plotted

against frequency.

(2) The phase shift between the input and output signals is plotted against frequency.

A log scale is used for the frequency in order to compress its length; for example,

a typical frequency range is 0.1 to 106 Hz which corresponds to a range of −1 to 6

on a log scale. A log scale is also used for the ratio of the signal powers as this is

calculated in decibels. Phase shift is plotted on a linear scale. So the signal amplitude

ratio versus frequency is a log--log graph and the phase shift versus frequency is a

linear-- log graph.

An operational ampli�er is an example of a linear circuit. In a technical computing

language such as MATLAB® it is usually easy to produce a Bode plot.

An example function which describes the behaviour of such a device is:

A( f ) =
100000

1 + j
f

8

which gives the input-output voltage function. Do not worry about the meaning of

the ‘j’ in the equation for now. This will be covered in Chapter 9 when we discuss

complex numbers.

We could produce a Bode plot by typing:

f=1:1:10000;

semilogx(f, 20*log10(abs(100000./(1+j*f/8))));

The function semilogx plots a graph with a logarithmic scale on the x-axis. Chapter

21 examines Bode plots in more detail.

EXERCISES 2.4.4

1 Evaluate

(a) log2 8 (b) log2 15

(c) log16 50 (d) log16 123

(e) log8 23 (f) log8 47

2 Simplify each of the following to a single log term:

(a) log 7 + log x

(b) log x+ log y+ log z

(c) ln y− ln 3

(d) 2 log y+ log x

(e) ln(xy)+ ln(y2)

(f) ln(x+ y)− ln y

(g) log(2x2)+ log(4x)

(h) 3 log y+ 2 log x

(i) 1
2 log x

4 − 2 log x

(j) 3 ln x+ 2 ln y+ 4 ln z

(k) log z− 2 log x+ 3 log y

(l) log t3 − log(2t)+ 2 log t

3 Simplify each of the following to a single log term:

(a) 3 ln t − ln t

(b) 6 log t2 + 4 log t
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(c) ln(3y6)− 2 ln 3 + ln y

(d) ln(6x+ 4)− ln(3x+ 2)

(e)
log(9x)

2
− log

(
2

3x

)

4 Sketch graphs of the following functions, using the

same axes:

y = ln(2x), y = ln x 0 < x 6 10

Measure the vertical distance between the graphs for

x = 1, x = 2 and x = 8. Can you explain your

�ndings using the laws of logarithms?

5 Solve the following equations:

(a) ex = 70 (b) ex =
1

3

(c) e−x = 1 (d) 3ex = 50

(e) e3x = 50 (f) e2x+3 = 300

(g) e−x+1 = 0.75 (h) 2ee2x = 50

(i)
3

ex + 1
= 0.6 (j)

3

ex+1
= 0.6

(k) (ex)3 = 200 (l)
√
e2x = 2

(m)
√
e2x + 4 = 6 (n)

ex

ex + 2
= 0.7

(o) e2x = 7ex (p) 2e−x = 9

(q) (ex + 3)2 = 25 (r) (3e−x − 6)3 = 8

(s) e2x − 3ex + 2 = 0 (t) 2e2x − 7ex + 3 = 0

(u) ex(5 − ex) = 6 (v) ex − 7 +
12

ex
= 0

6 Solve the following equations:

(a) 10x = 30 (b) 10x = 0.25

(c) 4(10x) = 20 (d) 102x = 90

(e) 103x−2 = 20 (f) 3(10x+3) = 36

(g) 10−3x = 0.02 (h) 7(10−2x) = 1.4

(i) 10x−2 = 20 (j) 103x+1 = 75

(k)
4

10x
= 6 (l) (10−x)2 = 40

(m)
√
104x = 3 (n)

10−x

2 + 10−x
=

1

2

(o)
√
102x + 6 = 5 (p) 106x = 30(103x)

(q) (10−x + 2)2 = 6 (r) 6(10−3x) = 10

(s) 102x − 7(10x)+ 10 = 0

(t) 104x − 8(102x)+ 16 = 0

(u) 10x − 5 + 6(10−x) = 0

(v) 4(102x)− 8(10x)+ 3 = 0

7 Solve

(a) log x = 1.6 (b) log 2x = 1.6

(c) log(2 + x) = 1.6 (d) 2 log(x2) = 2.4

(e) log(2x− 3) = 0.7

8 Solve

(a) ln x = 2.4 (b) ln 3x = 4

(c) 2 ln(2x− 1) = 5 (d) ln(2x2) = 4.5

(e) ln

(
x+ 1

3

)
= 0.9

9 Solve

(a) e3x = 21 (b) 10−2x = 6.7

(c)
1

e−x + 2
= 0.3 (d) 2e(x/2) − 1 = 0

(e) 3(10(−4x+6)) = 17

(f) (ex−1)3 + e3x = 500

(g)
√
102x + 100 = 3(10x)

10 Calculate the voltage gain in decibels of the following

ampli�ers:

(a) input signal = 0.1 V, output signal = 1 V;

(b) input signal = 1 mV, output signal = 10 V;

(c) input signal = 5 mV, output signal = 8 V;

(d) input signal = 60 mV, output signal = 2 V.

11 An audio ampli�er consists of two stages: a

preampli�er and a main ampli�er. Given the

following data, calculate the voltage gain in decibels

of the individual stages and the overall gain in

decibels of the audio ampli�er:

preampli�er: input signal = 10 mV,

output signal = 200 mV

main ampli�er: input signal = 400 mV,

output signal = 3 V

12 A Bluetooth radio system operating in Class 3 has a

maximum output power of 0 dBm at 2.45 GHz. Find

the maximum output power in watts (W).

13 A microwave oven has an output power of 1 kW.

Express this �gure in dBm.

14 Express 0 dB SPL as a sound pressure in

micropascals (µPa).

15 A car audio speaker has an output sound pressure

level of 55 dB SPL when measured at a distance of

1 m. Calculate the sound pressure at that point in

pascal r.m.s.

16 An active sonar system �tted to a boat produces a

source level of 220 dB re 1µPa at 1 m. Calculate the

sound pressure in kPa.
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17 By using log--linear paper �nd the relationship

between x and y given the following table of values:

x 1.5 1.7 3.2 3.9 4.3 4.9

y 8.5 9.7 27.6 44.8 59.1 89.6

18 By using log--log paper �nd the relationship between

x and y given the following table of values:

x 2.0 2.5 3.0 3.5 4.0 4.5

y 13.0 19.0 25.9 33.6 42.2 51.6

Solutions

1 (a) 3 (b) 3.9069

(c) 1.4110 (d) 1.7356

(e) 1.5079 (f) 1.8515

2 (a) log 7x (b) log xyz

(c) ln

(
y

3

)
(d) log xy2

(e) ln(xy3) (f) ln

(
x+ y

y

)

(g) log 8x3 (h) log x2y3

(i) log 1 = 0 (j) ln x3y2z4

(k) log

(
y3z

x2

)
(l) log

(
t4

2

)

3 (a) 2 ln t or ln t2 (b) 16 log t

(c) ln

(
y7

3

)
(d) ln 2

(e) log

(
9x3/2

2

)

5 (a) 4.2485 (b) −1.0986

(c) 0 (d) 2.8134

(e) 1.3040 (f) 1.3519

(g) 1.2877 (h) 1.1094

(i) 1.3863 (j) 0.6094

(k) 1.7661 (l) 0.6931

(m) 1.7329 (n) 1.5404

(o) 1.9459 (p) −1.5041

(q) 0.6931 (r) −0.9808

(s) 0, 0.6931 (t) −0.6931, 1.0986

(u) 0.6931, 1.0986 (v) 1.0986, 1.3863

6 (a) 1.4771 (b) −0.6021

(c) 0.6990 (d) 0.9771

(e) 1.1003 (f) −1.9208

(g) 0.5663 (h) 0.3495

(i) 3.3010 (j) 0.2917

(k) −0.1761 (l) −0.8010

(m) 0.2386 (n) −0.3010

(o) 0.6395 (p) 0.4924

(q) 0.3473 (r) −0.0739

(s) 0.3010, 0.6990 (t) 0.3010

(u) 0.3010, 0.4771 (v) −0.3010, 0.1761

7 (a) 39.81 (b) 19.91 (c) 37.81

(d) ±3.98 (e) 4.01

8 (a) 11.02 (b) 18.20 (c) 6.59

(d) ±6.71 (e) 6.38

9 (a) 1.0148 (b) −0.4130 (c) −0.2877

(d) −1.3863 (e) 1.3117 (f) 2.0553

(g) 0.5485

10 (a) 20 dB (b) 80 dB (c) 64.1 dB

(d) 30.46 dB

11 Preampli�er gain = 26.02 dB, main ampli�er gain

= 17.50 dB, total gain = 43.52 dB

12 10−3 W or 1 mW

13 60 dBm

14 20 µPa

15 0.011 Pa or 11 mPa

16 105 or 100 kPa

17 y = 3(2x)

18 y = 4x1.7
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Technical Computing Exercises 2.4.4

1 Use a technical computing language to draw

y = log(kx) for 0.5 6 x 6 50 for k = 1, 2, 3 and 4.

2 Draw y = ln x and y = ln

(
1

x

)
for

0.5 6 x 6 20. What do you observe? Can you explain

your observation using the laws of logarithms?

3 Draw y = ln x and y = 1 −
x

3
for

0.5 6 x 6 4. From your graphs state an approximate

solution to

ln x = 1 −
x

3

2.4.5 The hyperbolic functions

The hyperbolic functions are y(x) = cosh x, y(x) = sinh x, y(x) = tanh x, y(x) =

sech x, y(x) = cosech x and y(x) = coth x. Cosh is a contracted form of ‘hyperbolic

cosine’, sinh of ‘hyperbolic sine’ and so on. We de�ne cosh x and sinh x by

y(x) = cosh x =
ex + e−x

2
y(x) = sinh x =

ex − e−x

2

Note:

cosh(−x) =
e−x + ex

2
= cosh x

sinh(−x) =
e−x − ex

2
= − sinh x

so, for example, cosh 1.7 = cosh(−1.7) and sinh(−1.7) = − sinh 1.7. Clearly, hyper-

bolic functions are nothing other than combinations of the exponential functions ex and

e−x. However, these particular combinations occur so frequently in engineering that it is

worth introducing the cosh x and sinh x functions. The remaining hyperbolic functions

are de�ned in terms of cosh x and sinh x.

y(x) = tanh x =
sinh x

cosh x
=

ex − e−x

ex + e−x

y(x) = sech x =
1

cosh x
=

2

ex + e−x

y(x) = cosech x =
1

sinh x
=

2

ex − e−x

y(x) = coth x =
cosh x

sinh x
=

1

tanh x
=

ex + e−x

ex − e−x

Values of the hyperbolic functions for various x values can be found from a scienti�c

calculator. Usually a Hyp button followed by a Sin, Cos or Tan button is used.

Example 2.19 Evaluate

(a) cosh 3 (b) sinh(−2)

(c) tanh 1.6 (d) sech(−2.5)

(e) coth 1 (f) cosech(−1)
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Solution (a) cosh 3 = 10.07

(b) sinh(−2) = −3.627

(c) tanh(1.6) = 0.9217

(d) sech(−2.5) = 1/ cosh(−2.5) = 0.1631

(e) coth 1 = 1/ tanh 1 = 1.313

(f) cosech(−1) = 1/ sinh(−1) = −0.8509

Graphs of the functions sinh x, cosh x and tanh x can be obtained using a graphics

calculator.

Hyperbolic identities

Several identities involving hyperbolic functions exist. They can be veri�ed algebraically

using the de�nitions given, and are listed for reference.

cosh2 x− sinh2 x = 1

1 − tanh2 x = sech2x

coth2 x− 1 = cosech2x

sinh(x± y) = sinh x cosh y± cosh x sinh y

cosh(x± y) = cosh x cosh y± sinh x sinh y

sinh 2x = 2 sinh x cosh x

cosh 2x = cosh2 x+ sinh2 x

cosh2 x =
cosh 2x+ 1

2

sinh2 x =
cosh 2x− 1

2

Note also that

ex = cosh x+ sinh x e−x = cosh x− sinh x

Hence any combination of exponential terms may be expressed as a combination of

cosh x and sinh x, and vice versa.

Example 2.20 Express

(a) 3ex − 2e−x in terms of cosh x and sinh x,

(b) 2 sinh x+ cosh x in terms of ex and e−x.

Solution (a) 3ex − 2e−x = 3(cosh x+ sinh x)− 2(cosh x− sinh x) = cosh x+ 5 sinh x.

(b) 2 sinh x+ cosh x = ex − e−x +
ex + e−x

2
=

3ex − e−x

2
.
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Inverse hyperbolic functions

The inverse hyperbolic functions use the familiar notation. Both y = sinh x and y =

tanh x are one-to-one functions and no domain restriction is needed for an inverse to be

de�ned. However, on (−∞,∞), y = cosh x is a many-to-one function. If the domain is

restricted to [0,∞) the resulting function is one-to-one and an inverse function can be

de�ned.

The inverse of the function sinh x is denoted by sinh−1 x. Here the −1 must not be

interpreted as a power but rather the notation we use for the inverse function. Similarly

the inverses of cosh x and tanh x are denoted by cosh−1 x and tanh−1 x respectively.

Values of sinh−1 x, cosh−1 x and tanh−1 x can be obtained using a scienti�c

calculator.

Example 2.21 Evaluate

(a) cosh−1(3.7) (b) sinh−1(−2) (c) tanh−1(0.5)

Solution Using a calculator we get

(a) 1.9827 (b) −1.4436 (c) 0.5493

Engineering application 2.15

Capacitance between two parallel wires

Although it may not seem obvious, a small capacitance exists between two wires that

run close to each other and at certain frequencies this can be a signi�cant factor for

some electrical systems.

Themutual capacitance per metre,C, between two long parallel wires in air each

having a radius rmetres and with the wire centres separated by d metres is calculated

using

C =
πε0

cosh−1(d/2r)

This expression includes an inverse hyperbolic function. In the equation d> 2r, oth-

erwise the wires would be overlapping. The constant ε0 is a fundamental physi-

cal constant called the permittivity of free space. It has an approximate value of

8.85 × 10−12 F m−1.

Recall the general expression for the hyperbolic function cosh x:

cosh x =
ex + e−x

2

To derive the inverse of this hyperbolic function, we need to restrict the domain to

[0, ∞), that is x > 0. We let y = cosh x and then solve for x in terms of y:

y =
ex + e−x

2
2y = ex + e−x

0 = ex − 2y+ e−x
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In order to solve this equation we �rst multiply both sides by ex, to give

0 = exex − ex2y+ exe−x

Using the laws of indices,

0 = e2x − 2exy+ 1

We can now write this as a quadratic equation in ex and solve it using the standard

formula. This gives

(ex)2 − 2y(ex)+ 1 = 0

ex =
−b±

√
b2 − 4ac

2a
=

−(−2y)±
√
(−2y)2 − 4(1)(1)

2(1)

=
2y±

√
4y2 − 4

2
= y±

√
y2 − 1

As x > 0, the function ex > 1 so we reject the negative root and it follows that

ex = y+
√
y2 − 1

from which we get

x = ln
(
y+

√
y2 − 1

)

Recall that y = cosh x and so x = cosh−1y. Therefore

cosh−1 y = ln
(
y+

√
y2 − 1

)

Hence the equation for the pair of wires can also be written in terms of logarithms as

C =
πε0

ln
[
(d/2r)+

√
(d/2r)2 − 1

]

A word of warning about the inverse of cosh x is needed. The calculator returns a

value of 1.9827 for cosh−1(3.7). Note, however, that cosh(−1.9827) = 3.7. The value

−1.9827 is not returned by the calculator; only values on [0,∞) will be returned. This

is because the domain of y = cosh x is restricted to ensure it has an inverse function.

EXERCISES 2.4.5

1 Evaluate the following:

(a) sinh 3 (b) cosh 1.6

(c) tanh 0.95 (d) sech 1

(e) cosech 2 (f) coth 1.5

(g) cosh(−3) (h) cosech(−1.6)

(i) sinh(−2) (j) coth(−2.7)

(k) tanh(−1.4) (l) sech(−0.5)

2 Evaluate

(a) sinh−1 3

(b) cosh−1 2

(c) tanh−1(−0.25)

3 Express

(a) 6ex + 5e−x in terms of sinh x and cosh x,

(b) 4e2x − 3e−2x in terms of sinh 2x and cosh 2x,

(c) 2e−3x − 5e3x in terms of sinh 3x and cosh 3x.

4 Express

(a) 4 sinh x+ 3 cosh x in terms of ex and e−x,

(b) 3 sinh 2x− cosh 2x in terms of e2x and e−2x,

(c) 3 cosh 3x− 0.5 sinh 3x in terms of e3x and e−3x.

5 Express aex + be−x, where a and b are constants, in

terms of cosh x and sinh x.
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6 Express a cosh x+ b sinh x, where a and b are

constants, in terms of ex and e−x.

7 Show that the point x = cosh u, y = sinh u lies on the

curve

x2 − y2 = 1

8 Prove the hyperbolic identities listed in the box earlier

in this section.

Solutions

1 (a) 10.0179 (b) 2.5775 (c) 0.7398

(d) 0.6481 (e) 0.2757 (f) 1.1048

(g) 10.0677 (h) −0.4210 (i) −3.6269

(j) −1.0091 (k) −0.8854 (l) 0.8868

2 (a) 1.8184 (b) 1.3170 (c) −0.2554

3 (a) 11 cosh x+ sinh x (b) cosh 2x+ 7 sinh 2x

(c) −3 cosh 3x− 7 sinh 3x

4 (a) 3.5ex − 0.5e−x

(b) e2x − 2e−2x

(c) 1.25e3x + 1.75e−3x

5 (a+ b) cosh x+ (a− b) sinh x

6
a+ b

2
ex +

a− b

2
e−x

Technical Computing Exercises 2.4.5

1 Use a technical computing language to draw

(a) y = sinh x (b) y = cosh x

(c) y = tanh x for −5 6 x 6 5.

2 Draw graphs of y = sinh x, y = cosh x and y =
ex

2
for

0 6 x 6 5. What happens to the three graphs as x

increases? Can you explain this algebraically?

3 Draw

(a) y = sinh−1 x −5 6 x 6 5

(b) y = cosh−1 x 1 6 x 6 5

(c) y = tanh−1 x −1 < x < 1

2.4.6 The modulus function

Themodulus of a positive number is simply the number itself. The modulus of a negative

number is a positive number of the same magnitude. For example, the modulus of 3 is

3; the modulus of −3 is also 3. We enclose the number in vertical lines to show we are

�nding its modulus, thus

|3| = 3 | − 3| = 3

Mathematically we de�ne the modulus function as follows:

The modulus function is de�ned by

f (x) = |x| =

{
x x > 0

−x x < 0

Figure 2.38 illustrates a graph of f (x) = |x|. Themodulus of a quantity is never negative.

Consider two points on the x axis, a and b, as shown in Figure 2.39. Then

|a− b| = |b− a| = distance from a to b
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f (x)

x

Figure 2.38

The function: f (x) = |x|.

a b

|a – b|

0

Figure 2.39

Distance from a to b = |a− b|.

Example 2.22 Find the distance from

(a) x = 2 to x = 9 (b) x = −2 to x = 9 (c) x = −2 to x = −9

Solution (a) Distance = |2 − 9| = | − 7| = 7

(b) Distance = | − 2 − 9| = | − 11| = 11

(c) Distance = | − 2 − (−9)| = |7| = 7

From the de�nition of the modulus function it follows:

If |x| = a, then either x = a or x = −a.

If |x| < a, then −a < x < a.

If |x| > a, then either x > a or x < −a.

For example, if |x| = 4 then either x = 4 or x = −4. If |x| < 4 then −4 < x < 4; that

is, x lies between −4 and 4. If |x| > 4, then either x > 4 or x < −4; that is, x is either

greater than 4 or less than −4.

Example 2.23 Describe the interval on the x axis de�ned by

(a) |x| < 2

(b) |x| > 3

(c) |x− 1| < 3

(d) |x+ 2| > 1

Solution (a) |x| < 2 is the same statement as −2 < x < 2; that is, x is numerically less than 2.

Figure 2.40 illustrates this region. Note that the region is an open interval. Since the

points x = −2 and x = 2 are not included, they are shown on the graph as ◦.

(b) If |x| > 3 then either x > 3 or x 6 − 3. This is shown in Figure 2.41. The required

region of the x axis has two distinct parts. Since the points x = 3 and x = −3 are

included in the interval of interest, they are shown on the graph as •.

(c) |x− 1| < 3 is equivalent to −3 < x− 1 < 3, that is −2 < x < 4.

(d) |x+ 2| > 1 is equivalent to x+ 2 > 1 or x+ 2 < −1, that is x > −1 or x < −3.
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0

|x| < 2

2–2

Figure 2.40

The quantity |x| < 2 is equivalent to −2 < x < 2.

0 3–3

|x| > 3 |x| > 3

Figure 2.41

The quantity |x| > 3 is equivalent to x > 3 or x 6 − 3.

The modulus function can be used to describe regions in the x--y plane.

Example 2.24 Sketch the region de�ned by

(a) |x| < 2 and |y| < 1

(b) |x2 + y2| 6 9

Solution (a) The region is a rectangle as shown in Figure 2.42. The boundary is not part of the

region as strict inequalities were used to de�ne it. The region |x| 6 2, |y| 6 1 is the

same as that in Figure 2.42 with the boundary included.

(b) |x2 + y2| 6 9 is equivalent to −9 6 x2 + y2 6 9. Note, however, that x2 + y2 is never

negative and so the region is given by 0 6 x2 + y2 6 9.

Let P(x, y) be a general point as shown in Figure 2.43. Then from Pythagoras’s

theorem, the distance from P to the origin is
√
x2 + y2. So,

(distance from origin)2 = x2 + y2 6 9

Then,

(distance from origin) 6 3

This describes a disc, centre the origin, of radius 3 (see Figure 2.44).

y

x2–2

–1

1

Figure 2.42

The region: |x| < 2 and |y| < 1.

P (x, y)

r

O

y

x

Figure 2.43

Point P(x, y) is a general point.

3

3 x

y

–3

–3

Figure 2.44

The region: |x2 + y2| 6 9.

Engineering application 2.16

Full-wave rectifier

A recti�er is an electronic circuit that is used to convert an alternating voltage to

a direct voltage, that is, one that does not change in polarity with time. Usually

the alternating voltage has the shape of a sinusoidal function. We will examine the
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sinusoidal functions in Section 3.4. A full-wave recti�er is one that makes use of the

negative part of the input sinusoidal signal as well as the positive part, by reversing its

polarity. It contrasts with a half-wave recti�er that merely discards the negative part

of the input sinusoidal signal. This means that the half-wave circuit is not driven by

the alternating voltage supply at all during half of the cycle. In both types of circuit

a capacitor is usually connected across the output to store energy when the signal

approaches a peak. The capacitor then discharges into the circuit when the recti�er

output voltage falls. By this means, a relatively constant voltage is produced at the

power supply output.

A fully recti�ed sine wave is the modulus of the sine wave. The circuit for a full-

wave recti�er is shown in Figure 2.45 together with the input and output waveforms.

The input signal is vin and the output signal is vo. Ignoring the voltage drops across

the diodes gives

vo = |vin|

vin

t

vo

t
vin

vo

Figure 2.45

A full-wave recti�er.

EXERCISES 2.4.6

1 Sketch the interval de�ned by

(a) |x| > 4 (b) |y− 1| 6 3

(c) |t + 6| > 3 (d) |t2 − 2| < 7

(e) |t| < −1

Also, state the intervals without using the modulus

signs.

2 Sketch the regions de�ned by

(a) |x| > 2, |y| < 3

(b) |x+ 2| < 4, |y+ 1| < 3

(c) |x2 + y2 − 1| 6 4

(d) |(x− 1)2 + (y+ 2)2| > 1

3 Express the following intervals using modulus

notation:

(a) −2 6 x 6 2 (b) −4 < t < 4

(c) 1 < y < 3 (d) −6 6 t 6 0

Solutions

1 (a) x > 4 or x < −4 (b) −2 6 y 6 4

(c) t > − 3 or t 6 − 9 (d) −3 < t < 3

(e) no value of t satis�es this

3 (a) |x| 6 2 (b) |t| < 4

(c) |y− 2| < 1 (d) |t + 3| 6 3



108 Chapter 2 Engineering functions

Technical Computing Exercises 2.4.6

1 Use a technical computing language such as

MATLAB® to produce a plot of the output of:

(a) a full wave recti�er circuit

(b) a half wave recti�er circuit

2.4.7 The ramp function

The ramp function is de�ned by

f (t) =

{
ct t > 0 c constant

0 t < 0

Its graph is shown in Figure 2.46.

f (t)

slope = c

t

Figure 2.46

The ramp function.

Engineering application 2.17

Telescope drive signal

In order to track the motion of the stars large telescopes are usually driven by an elec-

tric motor. The speed of this motor is controlled in order that the angular position of

the telescope follows a speci�ed trajectory with time. The whole assembly, including

telescope, gears, motor, controller and sensors, forms a position control system or

servo-system. This servo-system must be fed a signal corresponding to the desired

trajectory of the system. Often this trajectory is a ramp function as illustrated in Fig-

ure 2.47. The drive motor is started at time t = t0 and the desired angular position of

the telescope is θ .

u
Drive motor started

Desired telescope 

position

tt0
Figure 2.47

Tracking signal for a telescope.

2.4.8 The unit step function, u(t)

The unit step function is de�ned by

u(t) =

{
1 t > 0

0 t < 0
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u (t)

1

t

Figure 2.48

The unit step function.

u (t – d)

1

td

Figure 2.49

Graph of u(t − d).

Its graph is shown in Figure 2.48. Note that u(t) has a discontinuity at t = 0. The point

(0, 1) is part of the function de�ned on t > 0. This is depicted by •. The point (0, 0) is

not part of the function de�ned on t < 0. We use ◦ to illustrate this.

The position of the discontinuity may be shifted.

u(t − d) =

{
1 t > d

0 t < d

The graph of u(t − d) is shown in Figure 2.49.

Engineering application 2.18

RLC circuit

The inductor is another of the three fundamental electronic components. It is a device

that is used to store electrical energy in the form of a concentrated magnetic �eld. It

consists of a tightly wound coil, often around a ferromagneticmaterial, which helps

to strengthen the magnetic �eld. It is usually depicted on a circuit diagram as a set

of loops. Figure 2.50 shows a resistor, inductor and a capacitor connected in parallel.

This is usually known as an RLC circuit. The circuit also contains a switch, which

here is depicted as an arrow connecting two terminals with the switch in the open

position. When the switch is open the voltage v across terminals A and B is zero. If

the switch is closed at t = 0 the voltage across A and B is VS, where VS is the supply

voltage. Thus v can be modelled by the function

v(t) =

{
0 t < 0

VS t > 0

This can be written, using the unit step function, as

v(t) = VSu(t)

VS

L R C

+

A

B

–

Figure 2.50

RLC circuit.
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Example 2.25 Sketch the following functions:

(a) f = u(t − 3) (b) f = u(t − 1)

(c) f = u(t − 1)− u(t − 3) (d) f = u(t − 3)− u(t − 1)

(e) f = etu(t)

Solution (a) See Figure 2.51. (b) See Figure 2.52.

(c) See Figure 2.53. (d) See Figure 2.54.

(e) See Figure 2.55.

f 

1

3 t

Figure 2.51

The function: f = u(t − 3).

1

1

f

t

Figure 2.52

The function: f = u(t − 1).

f

1

t31

Figure 2.53

The function:

f = u(t − 1)− u(t − 3).

f

–1

t1 3

Figure 2.54

The function:

f = u(t − 3)− u(t − 1).

f

t

1

Figure 2.55

The function: f = etu(t).

EXERCISES 2.4.8

1 Sketch the following functions:

(a) f (t) = u(t − 1)

(b) f (t) = u(t + 1)

(c) f (t) = u(t − 2)− u(t − 6)

(d) f (t) = 3u(t − 1)

(e) f (t) = u(t + 1)− u(t − 1)

(f) f (t) = u(t − 1)− u(t + 1)

(g) f (t) = u(t + 1)− 2u(t − 1)

(h) f (t) = 2u(t + 1)− u(t − 1)

(i) f (t) = 3u(t − 1)− 2u(t − 2)

2 A ramp function, f (t), is de�ned by

f (t) =

{
2t t > 0

0 t < 0

Sketch the following for −1 6 t 6 3:

(a) f (t)

(b) u(t) f (t)

(c) u(t − 1) f (t)

(d) u(t − 1) f (t)− u(t − 2) f (t)

Solutions

2 See Figure S.5.
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10–1(a) (b) 2  3   t

f

6 

4 

2

10–1(d) 2  3         t

6 

4 

2

u(t – 1)f – u(t –2)f

10–1(c) 2  3         t

6 

4 

2

u(t – 1)f 

Figure S.5

2.4.9 The delta function or unit impulse function, δ(t)

Consider the rectangle function, R(t), shown in Figure 2.56. The base of the rectangle

is h, the height is 1/h and so the area is 1. For t > h/2 and t < −h/2, the function is 0.

As h decreases, the base diminishes and the height increases; the area remains constant

at 1.

As h approaches 0, the base becomes in�nitesimally small and the height in�nitely

large. The area remains at unity. The rectangle function is then called a delta function

or unit impulse function. It has a value of 0 everywhere except at the origin.

δ(t) = rectangle function as h approaches 0

We write this concisely as

δ(t) = R(t) as h → 0

The position of the delta function may be changed from the origin to t = d. Consider a

rectangle function, R(t − d), shown in Figure 2.57. R(t − d) is obtained by translating

R(t) an amount d to the right. Again, letting h approach 0 produces a delta function, this

time centred on t = d.

δ(t − d) = R(t − d) as h → 0

We have seen that the delta function can be regarded as bounding an area 1 between

itself and the horizontal axis. More generally the area bounded by the function

f (t) = kδ(t)

is k. We say that kδ(t) represents an impulse of strength k at the origin, and kδ(t − d) is

an impulse of strength k at t = d. It is often useful to depict such an impulse by an arrow

where the height of the arrow gives the strength of the impulse. A series of impulses is

often termed an impulse train.

h–
2

h–
2

1–
h

–

R (t)

t

Figure 2.56

The rectangle function, R(t).

d – d +d

R (t – d)

t

1–
h

h–
2

h–
2

Figure 2.57

The delayed rectangle function, R(t − d).
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Example 2.26 A train of impulses is given by

f (t) = δ(t)+ 3δ(t − 1)+ 2δ(t − 2)

Depict the train graphically.

Solution Figure 2.58 shows the representation. In Section 22.8 we shall call such a function a

series of weighted impulses where the weights are 1, 3 and 2, respectively.

f (t)

1

0 1 2 t

3

2

Figure 2.58

A train of impulses given by

f (t) = δ(t)+ 3δ(t − 1)+ 2δ(t − 2).

Engineering application 2.19

Impulse response of a system

An impulse signal is sometimes used to test an electronic system. It can be thought

of as giving the system a very harsh jolt for a very short period of time.

It is not possible to produce an impulse function electronically as no practical

signal can have an in�nite height. However, an approximation to an impulse function

is often used, consisting of a pulse with a large voltage,V , and short duration, T . The

strength of such an impulse is VT . When this pulse signal is injected into a system

the output obtained is known as the impulse response of the system.

The approximation is valid provided the width of the pulse is an order of magni-

tude less than the fastest time constant in the system. If the value of T required is small

in order to satisfy this constraint, then the value ofV may need to be large to achieve

the correct impulse strength, VT . Often this can rule out its use for many systems as

the value of V would then be large enough to distort the system characteristics.

EXERCISES 2.4.9

1 Sketch the impulse train given by

(a) f (t) = δ(t − 1)+ 2δ(t − 2)

(b) f (t) = 3δ(t)+ 4δ(t − 2)+ δ(t − 3)
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REVIEW EXERCISES 2

1 State the rule and sketch the graph of each of the

following functions:

(a) f (x) = 7x− 2

(b) f (t) = t2 − 2 0 6 t 6 5

(c) g(x) = 3ex + 4 0 6 x 6 2

(d) y(t) = (e2t − 1)/2 t > 0

(e) f (x) = x3 + 2x+ 5 −2 6 x 6 2

2 State the domain and range of the functions in

Question 1.

3 Determine the inverse of each of the following

functions:

(a) y(x) = 2x (b) f (t) = 8t − 3

(c) h(x) =
2x

3
+ 1 (d) m(r) = 1 − 3r

(e) H(s) =
3

s
+ 2 (f) f (v) = ln v

(g) f (t) = e2t (h) g(v) = ln v + 1

(i) g(v) = ln(v + 1) (j) y(t) = 3et−2

4 If f (t) = et �nd

(a) f (2t) (b) f (x)

(c) f (λ) (d) f (t − λ)

5 If g(t) = ln(t2 + 1) �nd (a) g(λ), (b) g(t − λ).

6 Sketch the following functions:

(a) f (t) =

{
0 t < 0

0.5t t > 0

(b) f (t) =




4 t < 0

t 0 6 t < 3

2t 3 6 t 6 4

(c) f (t) = |et | −3 6 t 6 3

7 The function f (x) is periodic with a period of 2, and

f (x) = |x|, −1 6 x 6 1. Sketch f for −3 6 x 6 3.

8 Given a(t) = 3t, b(t) = t + 3 and c(t) = t2 − 3 write

expressions

(a) b(c(t)) (b) c(b(t))

(c) a(b(t)) (d) a(c(t))

(e) a(b(c(t))) (f) c(b(a(t)))

9 Sketch the following functions, stating any

asymptotes:

(a) y(x) =
3 + x

x
(b) y(x) =

2x

x2 − 1

(c) y(x) = 3 − e−x (d) y(x) =
ex + 1

ex

10 Simplify each expression as far as possible.

(a) e2xe3x (b) exe2xe−3x

(c) e4e3e (d)
ex

e−x

(e)

(
ex

e−x

)2

(f) ln 3x+ ln

(
2

x

)

(g) 3 ln t + 2 ln t2 (h) eln x

(i) ln(ex) (j) eln x
2

(k) e0.5 ln x
2

(l) ln(e2x)

(m) e2 ln x (n) ln(e3)+ ln(e2x)

11 Solve the following:

(a) e4x = 200 (b) e3x−6 = 150

(c) 9e−x = 54 (d) e(x
2 ) = 60

(e)
1

6 + e−x
= 0.1

12 Solve the following:

(a) 0.5 ln t = 1.2

(b) ln(3t + 2) = 1.4

(c) 3 ln(t − 1) = 6

(d) log10(t
2 − 1) = 1.5

(e) log10(ln t) = 0.5

(f) ln(log10 t) = 0.5

13 Express each of the following in terms of sinh x and

cosh x:

(a) 7ex + 3e−x (b) 6ex − 5e−x

(c)
3ex − 2e−x

2
(d)

1

ex + e−x

(e)
ex

1 + ex

14 Express each of the following in terms of ex and e−x:

(a) 2 sinh x+ 5 cosh x

(b) tanh x+ sech x

(c) 2 cosh x−
3

4
sinh x

(d)
1

sinh x− 2 cosh x

(e) (sinh x)2
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15 Describe the interval on the x axis de�ned by

(a) |x| < 1.5 (b) |x| > 2

(c) |x+ 3| < 7 (d) |2x| > 6

(e) |2x− 1| 6 5

16 Sketch

(a) f = | − 2t| − 3 6 t 6 3

(b) f = −|2t| − 3 6 t 6 3

(c) 2δ(t)− δ(t − 1)+ 3δ(t + 1)

Solutions

1 (a) Multiply input by 7, then subtract 2

(b) Square the input, then subtract 2

(c) Calculate ex, where x is the input, multiply by 3

and then add 4

(d) Multiply by 2, calculate exponential, subtract 1

and then divide by 2

(e) Cube input, add to twice the input and add 5

2 (a) Domain (−∞,∞) range (−∞,∞)

(b) Domain [0, 5] range [−2, 23]

(c) Domain [0, 2] range [7, 3e2 + 4]

(d) Domain [0,∞) range [0,∞)

(e) Domain [−2, 2] range [−7, 17]

3 (a) y−1(x) =
x

2

(b) f−1(t) =
t + 3

8

(c) h−1(x) =
3

2
(x− 1)

(d) m−1(r) =
1 − r

3

(e) H−1(s) =
3

s− 2

(f) f−1(v) = ev

(g) f−1(t) = 1
2 ln t

(h) g−1(v) = ev−1

(i) g−1(v) = ev − 1

(j) y−1(t) = ln

(
t

3

)
+ 2

4 (a) e2t (b) ex (c) eλ (d) et−λ

5 (a) ln(λ2 + 1) (b) ln((t − λ)2 + 1)

8 (a) t2

(b) (t + 3)2 − 3 or t2 + 6t + 6

(c) 3(t + 3)

(d) 3(t2 − 3)

(e) 3t2

(f) (3t + 3)2 − 3 or 9t2 + 18t + 6

10 (a) e5x (b) 1 (c) e8

(d) e2x (e) e4x (f) ln 6

(g) ln t7 (h) x (i) x

(j) x2 (k) x (l) 2x

(m) x2 (n) 3 + 2x

11 (a) 1.3246 (b) 3.6702

(c) −1.7918 (d) ±2.0234

(e) −1.3863

12 (a) 11.0232 (b) 0.6851

(c) 8.3891 (d) ±5.7116

(e) 23.6243 (f) 44.5370

13 (a) 10 cosh x+ 4 sinh x

(b) cosh x+ 11 sinh x

(c)
cosh x+ 5 sinh x

2

(d)
1

2 cosh x

(e)
cosh x+ sinh x

1 + cosh x+ sinh x

14 (a)
7

2
ex +

3

2
e−x

(b)
ex − e−x + 2

ex + e−x

(c)
5ex + 11e−x

8

(d)
−2

ex + 3e−x

(e)

(
ex − e−x

2

)2

15 (a) −1.5 < x < 1.5

(b) x > 2 and x < −2

(c) −10 < x < 4

(d) x > 3 and x 6 −3

(e) −2 6 x 6 3
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3.1 INTRODUCTION

Many common engineering functions were studied in Section 2.4. However, the trigono-

metric functions are so important that they deserve separate treatment. Often alternating

currents and voltages can be described using trigonometric functions, and they occur

frequently in the solution of various kinds of equations.

Section 3.3 introduces the three trigonometric ratios: sin θ , cos θ and tan θ . These are

de�ned as ratios of the sides of a right-angled triangle. The de�nitions are then extended

so that angles of any magnitude may be considered. Section 3.5 introduces an impor-

tant function, sinc x. This is really a combination of the familiar functions x and sin x,

but because this combination occurs frequently in some engineering applications it de-

serves special mention. Trigonometric identities are introduced in Section 3.6, the most

common ones being tabulated. These identities are useful in simplifying trigonomet-

ric expressions. Graphs of the trigonometric functions are illustrated. The application

of these functions to the modelling of waveforms is an important section. The chapter

closes with the solution of trigonometric equations.
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3.2 DEGREES AND RADIANS

Angles can be measured in units of either degrees or radians. The symbol for degree

is ◦. Usually no symbol is used to denote radians and this is the convention adopted in

this book.

A complete revolution is de�ned as 360◦ or 2π radians. It is easy to use this fact to

convert between the two measures. We have

360◦ = 2π radians

1◦ =
2π

360
=

π

180
radians

1 radian =
180

π
degrees ≈ 57.3◦

Note that

π

2
radians = 90◦

π radians = 180◦

3π

2
radians = 270◦

Your calculator should be able to workwith angles measured in both radians and degrees.

Usually the Mode button allows you to select the appropriate measure.

3.3 THE TRIGONOMETRIC RATIOS

Consider the angle θ in the right-angled triangle ABC, as shown in Figure 3.1. We de�ne

the trigonometric ratios sine, cosine and tangent as follows:

sin θ =
side opposite to angle

hypotenuse
=

BC

AC

cos θ =
side adjacent to angle

hypotenuse
=

AB

AC

tan θ =
side opposite to angle

side adjacent to angle
=

BC

AB

A

C

B

a

u Figure 3.1

A right-angled triangle, ABC.
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Note that

tan θ =
BC

AB
=

BC

AC
×

AC

AB
=

sin θ

cos θ

Note that when θ reduces to 0◦ the length of the side BC reduces to zero and so

sin 0◦ = 0, tan 0◦ = 0

Also when θ reduces to 0◦ the lengths of AB and AC become equal and so

cos 0◦ = 1

Similarly when θ approaches 90◦, the lengths of BC andAC become equal and the length

of AB shrinks to zero. Hence

sin 90◦ = 1, cos 90◦ = 0

Note also that the length of AB shrinks to zero as θ approaches 90◦, and so tan θ ap-

proaches in�nity. We write this as

tan θ → ∞ as θ → 90◦

The trigonometric ratios of 30◦, 45◦ and 60◦ occur frequently in calculations. They can

be calculated exactly by considering the right-angled triangles shown in Figure 3.2.

sin 45◦ =
1

√
2
, cos 45◦ =

1
√
2
, tan 45◦ = 1

sin 30◦ =
1

2
, cos 30◦ =

√
3

2
, tan 30◦ =

1
√
3

sin 60◦ =

√
3

2
, cos 60◦ =

1

2
, tan 60◦ =

√
3

Most scienti�c calculators have pre-programmed values of sin θ , cos θ and tan θ . An-

gles can be measured in degrees or radians. We will use radians unless stated otherwise.

If we let 6 ACB = α (see Figure 3.1), then

sinα =
AB

AC
= cos θ

and

cosα =
BC

AC
= sin θ

1

1
2

45°

45°

3

1
2

30°

60°

Figure 3.2

The trigonometric ratios for 30◦,

45◦ and 60◦ can be found exactly

from these triangles.
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But

α + θ =
π

2

Hence,

sin θ = cos

(
π

2
− θ

)

cos θ = sin

(
π

2
− θ

)

Since θ is an angle in a right-angled triangle it cannot exceed π/2. In order to de�ne

the sine, cosine and tangent ratios for angles larger than π/2 we introduce an extended

de�nition which is applicable to angles of any size.

Consider an arm, OP, �xed at O, which can rotate (see Figure 3.3). The angle, θ , in

radians, between the arm and the positive x axis is measured anticlockwise. The arm can

be projected onto both the x and y axes. These projections are OA and OB, respectively.

Whether the arm projects onto the positive or negative x and y axes depends upon which

quadrant the arm is situated in. The length of the arm OP is always positive. Then,

sin θ =
projection of OP onto y axis

OP
=
OB

OP

cos θ =
projection of OP onto x axis

OP
=
OA

OP

tan θ =
projection of OP onto y axis

projection of OP onto x axis
=
OB

OA

In the �rst quadrant, that is 0 6 θ < π/2, both the x and y projections are positive,

so sin θ , cos θ and tan θ are positive. In the second quadrant, that is π/2 6 θ < π, the

x projection, OA, is negative and the y projection, OB, positive. Hence sin θ is positive,

and cos θ and tan θ are negative. Both the x and y projections are negative for the third

quadrant and so sin θ and cos θ are negative while tan θ is positive. Finally, in the fourth

quadrant, the x projection is positive and the y projection is negative. Hence, sin θ and

tan θ are negative, and cos θ is positive (see Figure 3.4). The sign of the trigonometric

ratios can be summarized by Figure 3.5.

For angles greater than 2π, the arm OP simply rotates more than one revolution be-

fore coming to rest. Each complete revolution brings OP back to its original position.

Second quadrant First quadrant

P

Third quadrant Fourth quadrant

B

y

A xO

u

Figure 3.3

An arm, OP, �xed at O, which can rotate.
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y 

B

O  A  x

P

y

B

OA x

P

y

B

O A

x

P

y

B

O

A

x

P

u

u
u

u

First quadrant Second quadrant

Third quadrant Fourth quadrant

Figure 3.4

Evaluating the trigonometric ratios in each of the four quadrants.

So, for example,

sin(8.76) = sin(8.76 − 2π) = sin(2.477) = 0.617

cos(14.5) = cos(14.5 − 4π) = cos(1.934) = −0.355

Negative angles are interpreted as a clockwise movement of the arm. Figure 3.6 illus-

trates an angle of −2. Note that

sin(−2) = sin(2π − 2) = sin(4.283) = −0.909

since an anticlockwise movement of OP of 4.283 radians would result in the arm being

in the same position as a clockwise movement of 2 radians.

sin u < 0

cos u < 0 

tan u > 0

sin u < 0

cos u > 0 

tan u < 0

sin u > 0

cos u < 0 

tan u < 0

sin u > 0

cos u > 0 

tan u > 0

y

x

Figure 3.5

Sign of the trigonometric ratios in

each of the four quadrants.

y

O

x

P

u = –2

Figure 3.6

Illustration of the angle θ = −2.
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The cosecant, secant and cotangent ratios are de�ned as the reciprocals of the sine,

cosine and tangent ratios.

cosec θ =
1

sin θ

sec θ =
1

cos θ

cot θ =
1

tan θ

Example 3.1 An angle θ is such that sin θ > 0 and cos θ < 0. In which quadrant does θ lie?

Solution From Figure 3.5 we see that sin θ > 0 when θ is in the �rst and second quadrants. Also,

cos θ < 0 when θ is in the second and third quadrants. For both sin θ > 0 and cos θ < 0

thus requires θ to be in the second quadrant. Hence sin θ > 0 and cos θ < 0 when θ is

in the second quadrant.

EXERCISES 3.3

1 Verify using a scienti�c calculator that

(a) sin 30◦ = sin 390◦ = sin 750◦

(b) cos 100◦ = cos 460◦ = cos 820◦

(c) tan 40◦ = tan 220◦ = tan 400◦

(d) sin 70◦ = sin(−290◦) = sin(−650◦)

(e) cos 200◦ = cos(−160◦) = cos(−520◦)

(f) tan 150◦ = tan(−30◦) = tan(−210◦)

2 Verify the following using a scienti�c calculator. All

angles are in radians.

(a) sin 0.7 = sin(0.7 + 2π) = sin(0.7 + 4π)

(b) cos 1.4 = cos(1.4 + 8π) = cos(1.4 − 6π)

(c) tan 1 = tan(1 + π) = tan(1 + 2π) = tan(1 + 3π)

(d) sin 2.3 = sin(2.3 − 2π) = sin(2.3 − 4π)

(e) cos 2 = cos(2 − 2π) = cos(2 − 4π)

(f) tan 4 = tan(4 − π) = tan(4 − 2π) = tan(4 − 3π)

3 An angle θ is such that cos θ > 0 and tan θ < 0. In

which quadrant does θ lie?

4 An angle α is such that tanα > 0 and sinα < 0. In

which quadrant does α lie?

Solutions

3 4th quadrant 4 3rd quadrant

3.4 THE SINE, COSINE AND TANGENT FUNCTIONS

The sine, cosine and tangent functions follow directly from the trigonometric ratios.

These are de�ned to be f (x) = sin x, f (x) = cos x and f (x) = tan x. Graphs can be

constructed from a table of values found using a scienti�c calculator. They are shown in

Figures 3.7 to 3.9. Note that these functions are many-to-one.
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p–
2

p–p –
2

–
p

2p 3p

1

–1

f (x)

x

Figure 3.7

Graph of f (x) = sin x.

2pp–p

1

–1

f (x)

x

Figure 3.8

Graph of f (x) = cos x.

2p0 x

f (x)

p

Figure 3.9

Graph of f (x) = tan x.

By shifting the cosine function to the right by an amount π/2 the sine function is

obtained. Similarly, shifting the sine function to the left by π/2 results in the cosine

function. This interchangeability between the sine and cosine functions is reflected in

their being commonly referred to as sinusoidal functions. Notice also from the graphs

two important properties of sin x and cos x:

sin x= − sin(−x)

cos x= cos(−x)

For example,

sin
π

3
= −sin

(
−

π

3

)
and cos

π

3
= cos

(
−

π

3

)

Note that f (x) = sin x is 0 when x = 0,±π,±2π,±3π, . . . , ±nπ, . . . . Also f (x) =

cos x is 0 when x = ±
π

2
,±

3π

2
,±

5π

2
, . . . , ±(2n+ 1)

π

2
, . . . .

3.4.1 Inverse trigonometric functions

All six trigonometric functions have an inverse but we will only examine those of sin x,

cos x and tan x. The inverse functions of sin x, cos x and tan x are denoted sin−1 x, cos−1 x

and tan−1 x. This notation can and does cause confusion. The ‘−1’ in sin−1 x is some-

times mistakenly interpreted as a power. We write (sin x)−1 to denote 1/ sin x. Values of

sin−1 x, cos−1 x and tan−1 x can be found using a scienti�c calculator. If y = sin x, then

x = sin−1 y, as in

sin x = 0.7654 x = sin−1(0.7654) = 0.8717
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sin x

xp–
2

p–
2

–

1

–1

Figure 3.10

The function sin x is one-to-one if the

domain is restricted to

[
−

π

2
,
π

2

]
.

sin–1 x

x

–

1

–1

p–
2

p–
2

Figure 3.11

The inverse sine

function, sin−1 x.

–1  1 x

Figure 3.12

A single input produces many

output values. This is not a function.

Note that y = sin x is a many-to-one function. If the domain is restricted to [−π/2, π/2]

then the resulting function is one-to-one. This is shown in Figure 3.10.

Recall from Section 2.3 that a one-to-one function has a corresponding inverse. So

if the domain of y = sin x is restricted to [−π/2,π/2], then an inverse function ex-

ists. A graph of y = sin−1 x is shown in Figure 3.11. Without the domain restriction, a

one-to-many graph would result as shown in Figure 3.12. To denote the inverse sine

function clearly, we write

y = sin−1 x −
π

2
6 y 6

π

2

Example 3.2 Use a scienti�c calculator to evaluate

(a) sin−1(0.3169)

(b) sin−1(−0.8061)

Solution (a) sin−1(0.3169) = 0.3225

(b) sin−1(−0.8061) = −0.9375

A word of warning about inverse trigonometric functions is needed. The calculator re-

turns a value of 0.3225 for sin−1(0.3169). Note, however, that sin(0.3225 ± 2nπ) =

0.3169, n = 0, 1, 2, 3, . . . , so there are an in�nite number of values of x such that

sin x = 0.3169. Only one of these values is returned by the calculator. This is because

the domain of y = sin x is restricted to ensure it has an inverse function. To ensure the

inverse functions y = cos−1 x and y = tan−1 x can be obtained, restrictions are placed

on the domains of y = cos x and y = tan x. By convention, y = cos x has its domain

restricted to [0,π] whereas with y = tan x the restriction is (−π/2,π/2).
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EXERCISES 3.4

1 Evaluate the following:

(a) sin−1(0.75) (b) cos−1(0.625) (c) tan−1 3

(d) sin−1(−0.9) (e) cos−1(−0.75) (f) tan−1(−3)

2 Show that

sin−1 x+ cos−1 x =
π

2

3 Sketch y = sin x and y = cos x for x in the interval

[−2π, 2π]. Mark on the graphs the points where

x = 1, x = 1.5, x = −3 and x = 2.3.

Solutions

1 (a) 0.8481 (b) 0.8957 (c) 1.2490 (d) − 1.1198 (e) 2.4189 (f) − 1.2490

Technical Computing Exercises 3.4

1 Using a technical computing language draw y = sin x

and y = cos x for 0 6 x 6 4π on the same axes. Use

your graphs to �nd approximate solutions to the

equation sin x = cos x.

2 Draw the graphs of y = cos−1 x and y = tan−1 x.

3.5 THE SINC x FUNCTION

The sine function is used to de�ne another important function used in engineering. The

cardinal sine function, sinc x, occurs frequently in engineering mathematics in applica-

tions ranging from communications, power electronics, digital signal processing (d.s.p.)

and optical engineering. The standard sinc x function without normalization is plotted

in Figure 3.13 and is de�ned by

sinc x =





sin x

x
x 6= 0

1 x = 0

It is necessary to separately de�ne the value of the function at x = 0 because the

de�nition of the function,
sin x

x
, would cause a division by zero at this point. Fortunately

it can be shown that as x approaches 0, then
sin x

x
approaches 1, and so specifying the

value sinc x = 1 at x = 0 is adequate to resolve the problem. Note that the sinc function

without normalization is 0 when x = . . . ,−3π, −2π, −π, π, 2π, 3π, . . ., so that apart

from x = 0 where sinc x = 1 by de�nition, it has the same zero crossing points as that

of sin x.

Some engineers use a different de�nition of the sinc x function:

sinc x =





sinπ x

π x
x 6= 0

1 x = 0

This is commonly termed the normalized sinc function.
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1

Sinc x

0.75

0.5 

0.25

–0.25

–4p –3p –2p –p p 2p 3p 4p
x

Figure 3.13

The standard sinc function without normalization.

Engineering application 3.1

Zero crossing points of the normalized sinc(x) function

The sinc function often appears in communications engineering and signal process-

ing. In general, a signal can be regarded as beingmade of a large number of individual

frequency components. In the case of a square pulse, the graph showing the amplitude

of these components against their frequencies takes the form of a sinc function.

Find the zero crossing points of the normalized sinc function,

sinc(x) =





sin(π x)

π x
x 6= 0

1 x = 0

Solution

It is evident from Figure 3.13 that the sinc function which has not been normalized

has the same zero crossing points as sin x, with the exception of the crossing at x = 0,

that is at x = ±π, ±2π,±3π, . . . ,±nπ, . . . .

The normalized sinc function is 0 when sin(π x) is 0. Now, from page 121 we see

that

sin x = 0 when x = . . .−3π,−2π,−π, 0,π, 2π, 3π, . . .

and so

sinπ x = 0 when π x = . . .−3π,−2π,−π, 0,π, 2π, 3π, . . .

and hence

sin(π x) = 0 when x = −3,−2,−1, 0, 1, 2, 3 . . .

Noting that sinc(0) is de�ned to have a value of 1, then we see that

sinc(x) = 0 when x = . . .− 3,−2,−1, 1, 2, 3, . . .
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or

sinc(x) = 0 when x = ±n for n = 1, 2, 3, . . .

The plot of the normalized sinc function is shown in Figure 3.14.

1

Sinc x

0.75

0.5 

0.25

–0.25

–15 –10 –5 5 10
x

15

Figure 3.14

The sinc function with normalization.

3.6 TRIGONOMETRIC IDENTITIES

We have seen that tan θ =
sin θ

cos θ
for all values of θ . We call this an identity. In an

identity, the l.h.s. and the r.h.s. are always equal, unlike in an equation where the l.h.s.

and the r.h.s. are equal only for particular values of the variable concerned. Table 3.1

lists some common trigonometric identities.

Example 3.3 Simplify

cotA

cosA

Solution We know that

tanA =
sinA

cosA
and so

cotA =
1

tanA
=

cosA

sinA
Hence

cotA

cosA
= cotA×

1

cosA

=
cosA

sinA
×

1

cosA

=
1

sinA

This may also be written as cosec A.
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Table 3.1

Common trigonometric identities.

tanA =
sinA

cosA

sin(A± B) = sinA cosB± sinB cosA

cos(A± B) = cosA cosB∓ sinA sinB

tan(A± B) =
tanA± tanB

1 ∓ tanA tanB

2 sinA cosB = sin(A+ B)+ sin(A− B)

2 cosA cosB = cos(A+ B)+ cos(A− B)

2 sinA sinB = cos(A− B)− cos(A+ B)

sin2 A+ cos2 A = 1

1 + cot2 A = cosec2A

tan2 A+ 1 = sec2 A

cos 2A = 1 − 2 sin2 A = 2 cos2 A− 1 = cos2 A− sin2 A

sin 2A = 2 sinA cosA

sin2 A =
1 − cos 2A

2

cos2 A =
1 + cos 2A

2

Note: sin2 A is the notation used for (sinA)2. Similarly cos2 A means (cosA)2.

Example 3.4 Show that

tanA+ cotA

may be written as

2

sin 2A

Solution We have

tanA =
sinA

cosA
, cotA =

cosA

sinA

and so

tanA+ cotA =
sinA

cosA
+

cosA

sinA

=
sin2 A+ cos2 A

sinA cosA

=
1

sinA cosA
using the identity sin2 A+ cos2 A = 1

=
2

2 sinA cosA

=
2

sin 2A
using the identity sin 2A = 2 sinA cosA
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Example 3.5 Use the identities in Table 3.1 to simplify the following expressions:

(a) sin

(
π

2
+ θ

)
(b) cos

(
3π

2
− θ

)

(c) tan(2π − θ ) (d) sin(π − θ )

Solution (a) The expression sin
(
π

2
+ θ

)
is of the form sin(A+ B) and so we use the identity

sin(A+ B) = sinA cosB+ sinB cosA

Putting A =
π

2
and B = θ we obtain

sin
(
π

2
+ θ

)
= sin

π

2
cos θ + sin θ cos

π

2

We note that sin
π

2
= 1, cos

π

2
= 0 and so

sin
(
π

2
+ θ

)
= 1 cos θ + sin θ (0)

= cos θ

(b) The expression cos

(
3π

2
− θ

)
has the form cos(A− B); hence we use the identity

cos(A− B) = cosA cosB+ sinA sinB

Putting A =
3π

2
, B = θ we obtain

cos

(
3π

2
− θ

)
= cos

3π

2
cos θ + sin

3π

2
sin θ

Now cos
3π

2
= 0, sin

3π

2
= −1 and so

cos

(
3π

2
− θ

)
= 0 cos θ + (−1) sin θ

= −sin θ

(c) We use the identity

tan(A− B) =
tanA− tanB

1 + tanA tanB

Substituting A = 2π, B = θ we obtain

tan(2π − θ ) =
tan 2π − tan θ

1 + tan 2π tan θ

Since tan 2π = 0 this simpli�es to

tan(2π − θ ) =
− tan θ

1
= − tan θ

(d) We use the identity

sin(A− B) = sinA cosB− sinB cosA
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Substituting A = π, B = θ , this then becomes

sin(π − θ ) = sinπ cos θ − sin θ cosπ

Now sinπ = 0, cosπ = −1 and so we obtain

sin(π − θ ) = 0 cos θ − sin θ (−1) = sin θ

Example 3.6 Simplify

(a) cos(π + θ )

(b) tan(π − θ )

(c) sin3 B+ sinB cos2 B

(d) tanA(1 + cos 2A)

Solution (a) Using the identity for cos(A+ B) with A = π, B = θ we obtain

cos(π + θ ) = cosπ cos θ − sinπ sin θ

= (−1) cos θ − (0) sin θ

= −cos θ

(b) Using the identity for tan(A− B) with A = π, B = θ we obtain

tan(π − θ ) =
tanπ − tan θ

1 + tanπ tan θ

=
0 − tan θ

1 + (0) tan θ

= − tan θ

(c) sin3 B+ sinB cos2 B= sinB(sin2 B+ cos2 B)

= sinB since sin2 B+ cos2 B = 1

(d) Firstly we note that tanA =
sinA

cosA
. Also we have from Table 3.1

cos2 A =
1 + cos 2A

2

from which

1 + cos 2A = 2 cos2 A

Hence

tanA(1 + cos 2A) =
sinA

cosA
2 cos2 A

= 2 sinA cosA

= sin 2A
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Example 3.7 Show that

sinA+ sinB = 2 sin

(
A+ B

2

)
cos

(
A− B

2

)

Solution Consider the identities

sin(C + D) = sinC cosD+ sinD cosC

sin(C − D) = sinC cosD− sinD cosC

By adding these identities we obtain

sin(C + D)+ sin(C − D) = 2 sinC cosD

We now make the substitutionsC + D = A, C − D = B from which

C =
A+ B

2
, D =

A− B

2

Hence

sinA+ sinB = 2 sin

(
A+ B

2

)
cos

(
A− B

2

)

The result of Example 3.7 is one of many similar results. These are listed in Table 3.2.

Table 3.2

Further trigonometric identities

sinA+ sinB = 2 sin

(
A+ B

2

)
cos

(
A− B

2

)

sinA− sinB = 2 sin

(
A− B

2

)
cos

(
A+ B

2

)

cosA+ cosB= 2 cos

(
A+ B

2

)
cos

(
A− B

2

)

cosA− cosB= −2 sin

(
A+ B

2

)
sin

(
A− B

2

)

Example 3.8 Simplify

sin 70◦ − sin 30◦

cos 50◦

Solution We note that the numerator, sin 70◦ − sin 30◦, has the form sinA − sinB. Using the

identity for sinA− sinB with A = 70◦ and B = 30◦ we see

sin 70◦ − sin 30◦ = 2 sin

(
70◦ − 30◦

2

)
cos

(
70◦ + 30◦

2

)

= 2 sin 20◦ cos 50◦
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Hence

sin 70◦ − sin 30◦

cos 50◦
=

2 sin 20◦ cos 50◦

cos 50◦

= 2 sin 20◦

EXERCISES 3.6

1 Use the identities for sin(A± B), cos(A± B) and

tan(A± B) to simplify the following:

(a) sin

(
θ −

π

2

)
(b) cos

(
θ −

π

2

)

(c) tan(θ + π) (d) sin(θ − π)

(e) cos(θ − π) (f) tan(θ − 3π)

(g) sin(θ + π) (h) cos

(
θ +

3π

2

)

(i) sin

(
2θ +

3π

2

)
(j) cos

(
θ −

3π

2

)

(k) cos

(
π

2
+ θ

)

2 Write down the trigonometric identity for tan(A+ θ ).

By letting A →
π

2
show that tan

(
π

2
+ θ

)
can be

simpli�ed to − cot θ .

3 (a) By dividing the identity

sin2 A+ cos2 A = 1 by cos2 A show that

tan2 A+ 1 = sec2 A.

(b) By dividing the identity

sin2 A+ cos2 A = 1 by sin2 A show that

1 + cot2 A = cosec 2A.

4 Simplify the following expressions:

(a) cosA tanA (b) sin θ cot θ

(c) tanB cosec B (d) cot 2x sec 2x

(e) tan θ tan

(
π

2
+ θ

)
(f)

sin 2t

cos t

[Hint: see Question 2.]

(g) sin2 A+ 2 cos2 A (h) 2 cos2 B− 1

(i) (1 + cot2 X ) tan2 X (j) (sin2 A+ cos2 A)2

(k)
1

2
sin 2A tanA (l) (sec2 t − 1) cos2 t

(m)
sin 2A

cos 2A
(n)

sinA

sin 2A

(o) (tan2 θ + 1) cot2 θ (p) cos 2A+ 2 sin2 A

5 Simplify

(a) sin 110◦ − sin 70◦

(b) cos 20◦ − cos 80◦

(c) sin 40◦ + sin 20◦

(d)
cos 50◦ + cos 40◦

√
2

6 Show that

sin 60◦ + sin 30◦

sin 50◦ − sin 40◦

is equivalent to

cos 15◦

sin 5◦

Solutions

1 (a) − cos θ (b) sin θ (c) tan θ

(d) − sin θ (e) − cos θ (f) tan θ

(g) − sin θ (h) sin θ (i) − cos 2θ

(j) − sin θ (k) − sin θ

4 (a) sinA (b) cos θ (c) secB

(d) cosec 2x (e) −1 (f) 2 sin t

(g) 1 + cos2 A (h) cos 2B (i) sec2 X

(j) 1 (k) sin2 A (l) sin2 t

(m) tan 2A (n) 1
2 secA (o) cosec 2θ

(p) 1

5 (a) 0 (b) sin 50◦ (c) cos 10◦ (d) cos 5◦
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3.7 MODELLING WAVES USING SIN t AND COS t

Examining the graphs of sin x and cos x reveals that they have a similar shape to waves.

In fact, sine and cosine functions are often used to model waves and we will see in

Chapter 23 that almost any wave can be broken down into a combination of sine and

cosine functions. The main waves found in engineering are ones that vary with time and

so t is often the independent variable.

The amplitude of a wave is the maximum displacement of the wave from its mean

position. So, for example, sin t and cos t have an amplitude of 1, the amplitude of 2 sin t

is 2, and the amplitude of A sin t is A (see Figure 3.15).

The amplitude of A sin t is A. The amplitude of A cos t is A.

A more general wave is de�ned by A cosωt or A sinωt. The symbol ω represents the

angular frequency of the wave. It is measured in radians per second. For example, sin 3t

has an angular frequency of 3 rad s−1. As t increases by 1 second the angle, 3t, increases

by 3 radians. Note that sin t has an angular frequency of 1 rad s−1.

The angular frequency of y = A sinωt and y = A cosωt is ω radians per second.

The sine and cosine functions repeat themselves at regular intervals and so are pe-

riodic functions. Looking at Figure 3.7 we see that one complete cycle of sin t is com-

pleted every 2π seconds. The time taken to complete one full cycle is called the period

and is denoted by T . Hence the period of y = sin t is 2π seconds. Similarly the period of

y = cos t is 2π seconds. Mathematically this means that adding or subtracting multiples

of 2π to t does not change the sine or cosine of that angle.

sin t = sin(t ± 2nπ) n= 0, 1, 2, 3, . . .

cos t = cos(t ± 2nπ) n= 0, 1, 2, 3, . . .

In particular we note that

sin t = sin(t + 2π)

cos t = cos(t + 2π)

We now consider y = A sinωt and y = A cosωt. When t = 0 seconds, ωt = 0 radians.

When t =
2π

ω
seconds, ωt = ω

2π

ω
= 2π radians. We can see that as t increases from 0

A sin t 

2 sin t

f (t) 

A

–A

2

–2
2p t

Figure 3.15

The amplitude of f (t) = A sin t is A.
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to
2π

ω
seconds, the angle ωt increases from 0 to 2π radians. We know that as the angle

ωt increases by 2π radians then A sinωt completes a full cycle. Hence a full cycle is

completed in
2π

ω
seconds, that is the period of y = A sinωt is

2π

ω
seconds.

If y = A sinωt or y = A cosωt, then the period T is
2π

ω
.

In particular we note that the period of y = A sin t and y = A cos t is 2π.

Closely related to the period is the frequency of a wave. The frequency is the number

of cycles completed in 1 second. Frequency is measured in units called hertz (Hz). One

hertz is one cycle per second. We have seen that y = A sinωt takes

2π

ω
seconds to complete one cycle

and so it will take

1 second to complete
ω

2π
cycles

We use f as the symbol for frequency and so

frequency, f =
ω

2π

For example, sin 3t has a frequency of

(
3

2π

)
Hz.

Note that by rearrangement we may write

ω = 2π f

and so the wave y = A sinωt may also be written as y = A sin 2π f t.

From the de�nitions of period and frequency we can see that

period =
1

frequency

that is

T =
1

f

We see that the period is the reciprocal of the frequency. Identical results apply for the

wave y = A cosωt.

A �nal generalization is to introduce a phase angle or phase, φ. This allows the

wave to be shifted along the time axis. It also means that either a sine function or a

cosine function can be used to represent the same wave. So the general forms are

A cos(ωt + φ), A sin(ωt + φ)

Figure 3.16 depicts A sin(ωt + φ). Note from Figure 3.16 that the actual movement of

the wave along the time axis is φ/ω. It is easy to show this mathematically:

A sin(ωt + φ) = A sinω

(
t +

φ

ω

)

The quantity
φ

ω
is called the time displacement.
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f (t)

A

t

1–
f

2p–
v

f
–
v

T = =

Figure 3.16

The generalized wave A sin(ωt + φ).

The waves met in engineering are often termed signals or waveforms. There are

no rigid rules concerning the use of the words wave, signal and waveform, and often

engineers use them interchangeably. We will follow this convention.

Example 3.9 State the amplitude, angular frequency and period of each of the following waves:

(a) 2 sin 3t

(b)
1

2
cos

(
2t +

π

6

)

Solution (a) Amplitude, A = 2, angular frequency, ω = 3, period, T =
2π

ω
=

2π

3
.

(b) Amplitude, A = 0.5, angular frequency, ω = 2, period, T =
2π

ω
=

2π

2
= π.

Example 3.10 State the amplitude, period, phase angle and time displacement of

(a) 2 sin(4t + 1)

(b)
2 cos(t − 0.7)

3

(c) 4 cos

(
2t + 1

3

)

(d)
3

4
sin

(
4t

3

)

Solution (a) Amplitude = 2, period =
2π

4
=

π

2
, phase angle = 1 relative to 2 sin 4t, time

displacement = 0.25.

(b) Amplitude=
2

3
, period= 2π, phase angle= −0.7 relative to

2

3
cos t, time displace-

ment = −0.7.

(c) Amplitude = 4, period =
2π

2/3
= 3π, phase angle =

1

3
relative to 4 cos

(
2t

3

)
, time

displacement = 0.5.

(d) Amplitude =
3

4
, period =

2π

4/3
=

3π

2
, phase angle = 0 relative to

3

4
sin

(
4t

3

)
, time

displacement = 0.
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Engineering application 3.2

Alternating current waveforms and the electricity supply

Alternating current waveforms are often found in engineering. The electricity supply

to homes and businesses most often takes the form of an alternating current. This is

because it is far easier to supply alternating current electricity than direct current elec-

tricity when distributing across long distances. Energy losses along the supply cables

can be reduced by transforming the electricity to high voltages prior to distribution

but electricity transformers only work with alternating currents.

Sine and cosine functions are often used to model alternating current (a.c.) wave-

forms. The equations for an a.c. waveform are

I = Im sin(ωt + φ) or I = Im cos(ωt + φ)

where Im = maximum current, ω = angular frequency and φ = phase angle. In prac-

tice the functions can be shifted along the time axis by giving φ a non-zero value and

so both the sine and the cosine function can be used to model any a.c. waveform;

which one is used is usually a matter of convenience.

The angular frequency, ω, can be written as ω = 2π f , where f is the frequency

of the waveform in Hertz (Hz). The frequency of the electricity supply in Europe

and across large parts of the world is 50 Hz, while in the Americas and in areas of

Asia it is 60 Hz. Alternating current supplies are also found on ships, submarines and

aircraft but these often use 400 Hz as the operating frequency.

3.7.1 Combining waves

There are many situations in which engineers need to combine two or more waves

together to form a single wave. It is possible to make use of trigonometric identities

to calculate the resulting waveform when several waves are combined. Consider the

following example.

Engineering application 3.3

Combining two sinusoidal voltage signals

Two voltage signals, v1(t) and v2(t), have the following mathematical expressions:

v1(t) = 3 sin t

v2(t) = 2 cos t

(a) State the amplitude and angular frequency of the two signals.

(b) Obtain an expression for the signal, v3(t), given by

v3(t) = v1(t)+ 2v2(t)

(c) Reduce the expression obtained in part (b) to a single sinusoid and hence state

its amplitude and phase.
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Solution

(a) v1(t) has an amplitude of 3 volts and an angular frequency ω = 1 rad s−1. v2(t)

has an amplitude of 2 volts and an angular frequency ω = 1 rad s−1. Note that

both of these signals have the same angular frequency.

(b) v3(t)= v1(t)+ 2v2(t)

= 3 sin t + 2(2 cos t)

= 3 sin t + 4 cos t

(c) We wish to write v3(t) in the form R sin(t + φ). The choice of sine is arbitrary.

We could have chosen cosine instead. R is the amplitude of the single sinusoid

and φ is its phase angle.

Using the trigonometric identity sin(t + φ) = sin t cosφ + sinφ cos t found

in Table 3.1 we can write

R sin(t + φ) = R(sin t cosφ + sinφ cos t)

= (R cosφ) sin t + (R sinφ) cos t

Comparing this expression with that for v3(t) we note that, in order to make the

expressions identical,

R cosφ = 3 (3.1)

R sinφ = 4 (3.2)

We need to solve (3.1) and (3.2) to obtain R and φ. Squaring each equation gives

R2 cos2 φ = 9

R2 sin2 φ = 16

Adding these equations together we obtain

R2 cos2 φ + R2 sin2 φ = 9 + 16

R2(cos2 φ + sin2 φ) = 25

Using the identity cos2 φ + sin2 φ = 1 this simpli�es to

R2 = 25

R = 5

Next we determine φ. Dividing (3.2) by (3.1) we �nd

R sinφ

R cosφ
=

4

3

tanφ =
4

3

φ = tan−1

(
4

3

)

From (3.1) and (3.2) we can see that both sinφ and cosφ are positive, and so

φ must lie in the �rst quadrant. Calculating tan−1
(
4
3

)
using a calculator gives

φ = 0.927 radians. So we can express v3(t) as

v3(t) = 3 sin t + 4 cos t = 5 sin(t + 0.927)

Finally v3(t) has amplitude 5 volts and phase 0.927 radians.
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Engineering application 3.3 illustrates an important property when combining to-

gether two sinusoidal waves of the same angular frequency.

If two waves of equal angular frequency, ω, are added the result is a wave of the

same angular frequency, ω.

In fact this result holds truewhen combining any number of waves of the same angular

frequency.

Engineering application 3.4

Combining two sinusoidal current signals

Two current signals, i1(t) and i2(t), have the following mathematical expressions:

i1(t) = 10 sin 4t

i2(t) = 5 cos 4t

(a) State the amplitude and angular frequency of the two signals.

(b) Obtain an expression for the signal, i3(t), given by i3(t) = 0.3i1(t)− 0.4i2(t).

(c) Reduce the expression obtained in part (b) to a single sinusoid in the form

R cos(4t + φ) and hence state its amplitude and phase.

Solution

(a) i1(t) has an amplitude of 10 amps and an angular frequency ω = 4 rad s−1. i2(t)

has an amplitude of 5 amps and an angular frequency ω = 4 rad s−1. Note that

both signals have the same angular frequency.

(b) i3(t)= 0.3i1(t)− 0.4i2(t)

= 0.3 × 10 sin 4t − 0.4 × 5 cos 4t

= 3 sin 4t − 2 cos 4t

(c) Let

3 sin 4t − 2 cos 4t = R cos(4t + φ)

Then using the trigonometric identity given in Table 3.1

cos(A+ B) = cosA cosB− sinA sinB

with A = 4t and B = φ we �nd

3 sin 4t − 2 cos 4t = R cos(4t + φ)

= R(cos 4t cosφ − sin 4t sinφ)

= (R cosφ) cos 4t − (R sinφ) sin 4t

Hence

3 = −R sinφ (3.3)

−2 = R cosφ (3.4)

By squaring each equation and adding we obtain

9 + 4 = R2(sin2 φ + cos2 φ) = R2

so that R =
√
13.
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From (3.3) and (3.4), both sinφ and cosφ are negative and so φ lies in the

third quadrant. Division of (3.3) by (3.4) gives

3

−2
=

−R sinφ

R cosφ
= − tanφ

tanφ = 1.5

Using a calculator and noting that φ lies in the third quadrant we �nd φ = 4.124.

Finally

3 sin 4t − 2 cos 4t =
√
13 cos(4t + 4.124)

So i3(t) =
√
13 cos(4t + 4.124). Therefore i3(t) has an amplitude of

√
13 amps

and a phase of 4.124 radians.

Example 3.11 Express 0.5 cos 3t + sin 3t as a single cosine wave.

Solution Let

0.5 cos 3t + sin 3t = R cos(3t + φ)

= R(cos 3t cosφ − sin 3t sinφ)

= (R cosφ) cos 3t − (R sinφ) sin 3t

Hence

0.5 = R cosφ (3.5)

1 = −R sinφ (3.6)

By squaring and adding we obtain

1.25 = R2

R =
√
1.25 = 1.1180 (4 d.p.)

Division of (3.6) by (3.5) yields

2 = − tanφ

From (3.5), cosφ is positive; from (3.6), sinφ is negative; and so φ lies in the fourth

quadrant. Hence, using a calculator, φ = 5.1760. So

0.5 cos 3t + sin 3t = 1.1180 cos(3t + 5.1760)

Example 3.12 If a cosωt + b sinωt is expressed in the form R cos(ωt − θ ) show that R =
√
a2 + b2

and tan θ =
b

a
.

Solution Let

a cosωt + b sinωt = R cos(ωt − θ )

Then, using the trigonometric identity for cos(A− B), we can write

a cosωt + b sinωt = R cos(ωt − θ )

= R(cosωt cos θ + sinωt sin θ )

= (R cos θ ) cosωt + (R sin θ ) sinωt
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Equating coef�cients of cosωt and then sinωt gives

a = R cos θ (3.7)

b = R sin θ (3.8)

Squaring these equations and adding gives

a2 + b2 = R2

that is

R =
√
a2 + b2

Division of (3.8) by (3.7) gives

b

a
= tan θ

as required.

Note that this example demonstrates that adding two waves of angular frequency ω

forms another wave having the same angular frequency but with a modi�ed amplitude

and phase.

3.7.2 Wavelength, wave number and horizontal shift

The sine and cosine waves described earlier in this section had t as their independent

variable because the waves commonly met in engineering vary with time. There are

occasions where the independent variable is distance, x say, and in this case some of the

terminology changes. Consider the wave

y = A sin(kx+ φ)

As before, A is the amplitude of the wave. The quantity k is called the wave number. It

plays the same role as did the angular frequency,ω, when t was the independent variable.

The length of one cycle of the wave, that is the wavelength, commonly denoted λ, is

related to k by the formula λ =
2π

k
. The phase angle is φ and its introduction has the

effect of shifting the graph horizontally.

Example 3.13 Figure 3.17 shows a graph of y = sin 2x.

(a) State the wave number for this wave.

(b) Find the wavelength of the wave.

(c) State the phase angle.

Solution (a) Comparing y = sin 2x with y = sin kx we see that the wave number, k, is 2.

(b) The wavelength, λ =
2π

k
= π. Note by observing the graph that this result is

consistent in that the distance required for one cycle of the wave is π units.

(c) Comparing y = sin 2x with sin(kx+ φ) we see that the phase angle, φ, is 0.
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0–2p

–1

1

2p x

y

p–p

Figure 3.17

A graph of the wave y = sin 2x.

Example 3.14 Figure 3.18 shows a graph of sin

(
2x+

π

3

)
.

(a) State the phase angle.

(b) By comparing Figures 3.17 and 3.18 we see that the introduction of the phase angle

has caused a horizontal shift of the graph (to the left). Calculate this shift.

0–2p

–1

1

2p–p p x

y

p
–
6

Figure 3.18

A graph of the wave

y = sin

(
2x+

π

3

)
.

Solution (a) By comparing sin

(
2x +

π

3

)
with sin(kx+ φ) we see that the phase angle is

π

3
.

(b) By writing y = sin

(
2x +

π

3

)
as sin 2

(
x +

π

6

)
we note that this is y = sin 2x

shifted to the left by a horizontal distance
π

6
units.

The results of this example can be generalized. The wave y = A sin(kx + φ) can be

written y = A sin k(x + φ/k) so that a phase angle of φ introduces a horizontal shift of

length φ/k. (Compare this with the expression for time displacement in Section 3.7.)

Noting that λ =
2π

k
, then k =

2π

λ
and we may write A sin(kx + φ) equivalently

as A sin

(
2πx

λ
+ φ

)
. Again, using k =

2π

λ
, the horizontal shift,

φ

k
, may similarly be

written as

horizontal shift =
φ

k
=

φ

2π/λ
=
φλ

2π
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from which

phase angle = φ =
2π × horizontal shift

λ

This result is important in the engineering application that follows because, more gen-

erally, when any two waves arrive at a receiver it enables the difference in their phases,

φ, to be calculated from knowledge of the horizontal shift between them.

The presence of φ in y = A sin(kx+ φ) causes a horizontal (left) shift of
φ

k
=
φλ

2π
.

Note that adding any multiple of 2π onto the phase angle φ will result in the same

graph because of the periodicity of the sine function. Consequently, a phase angle could

be quoted as φ + 2nπ. For example, the wave sin
(
2x+

π

3

)
is the same wave as

sin
(
2x+

π

3
+ 2π

)
, sin

(
2x+

π

3
+ 4π

)
and so on. Normally, we would quote a value

of the phase that was less than 2π by subtracting multiples of 2π as necessary.

Engineering application 3.5

Two-ray propagation model

It is very useful to be able to model how an electromagnetic wave emitted by a trans-

mitter propagates through space, in order to predict what signal is collected by the

receiver. This can be quite a complicated modelling exercise. One of the simplest

models is the two-ray propagation model. This model assumes that the signal re-

ceived consists of two main components. There is the signal that is sent direct from

the transmitter to the receiver and there is the signal that is received after being re-

	ected off the ground.

Figure 3.19 shows a transmitter with height above the ground ht together with a

receiver with height above the ground hr. The distance between the transmitter and

the receiver along the ground is d.

dd

dr

d

hr

ht

S

T

Q

R

ReceiverTransmitter

Ground

PAO

Figure 3.19

A transmitter and receiver at

different heights above the

ground.

Note that the quantities ht, hr and d are all known.
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Waves can be considered to propagate between the transmitter and the receiver

in two ways. There is the direct route between transmitter and receiver. The direct

distance between transmitter and receiver is dd. We obtain an expression for dd in

terms of the known quantities ht, hr and d by considering the triangle 1RST. In this

triangle, RS = d and ST = TO − SO = ht − hr. Hence by Pythagoras’s theorem in

1RST we have

TR2 = RS2 + ST2

d2d = d2 + (ht − hr)
2

and so

dd =

√
d2 + (ht − hr)

2

Note that dd is expressed in terms of the known quantities ht, hr and d.

There is also a route whereby a wave is reflected off the ground at point A before

arriving at the receiver. The point A on the ground is such that 6 TAO equals 6 RAP.

The distance travelled in this case is dr = TA+AR. We wish to �nd an expression

for dr in terms of the known quantities ht, hr and d. In order to simplify the calculation

of this distance we construct an isosceles triangle, 1TAQ, in which TA = QA and
6 TAO = 6 QAO. Note that in this triangle, TO = QO = ht.

Then the distance travelled by this reflected wave, dr, is

distance travelled = dr = TA + AR

= QA + AR

= QR

Consider now 1QSR. QR is the hypotenuse of this triangle. So by Pythagoras’s

theorem we have

d2r = QR2 = SR2 + SQ2

We have SR = d and SQ = QO + SO = ht + hr. So

d2r = d2 + (ht + hr)
2

from which

dr =

√
d2 + (ht + hr)

2

Now if the wavelength of the transmitted wave is λ then we can calculate the phase

difference between the direct wave and the reflected wave, φ, by noting the difference

in the distance travelled, dr − dd. Using the result for phase difference from Section

3.7.2 we have

φ =
2π

λ
× horizontal shift =

2π

λ
(dr − dd)

φ =
2π

λ

(√
d2 + (ht + hr)

2 −

√
d2 + (ht − hr)

2

)

φ =
2π

λ


d
√
1 +

(
ht + hr

d

)2

− d

√
1 +

(
ht − hr

d

)2




➔
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Now the binomial expansion for
√
(1 + x) is (see Section 6.4)

√
(1 + x) = (1 + x)1/2 = 1 +

x

2
−
x2

8
+
x3

16
− · · · ≈ 1 +

x

2
, if |x| < 1

Using this expansion in the expression for φ and noting that the moduli of both (ht +

hr)/d and (ht − hr)/d are less than 1, we have

φ ≈
2πd

λ

(
1 +

(ht + hr)
2

2d2
− 1 −

(ht − hr)
2

2d2

)

Expanding the bracketed terms gives

φ ≈
2πd

λ

(
h2t + 2hthr + h2r − h2t + 2hthr − h2r

)

2d2

So

φ ≈
4hthrπ

λ d

This is a simpli�ed approximation for the phase difference between the direct wave

and the reflected wave. Note that it depends on the height of the transmitter, the height

of the receiver and the distance between the transmitter and the receiver.

This calculation is important because under some conditions the phase difference

between the two paths means that the directed and reflected waves destructively

interfere. In severe cases this causes the signal to decrease at the receiver enough so

that the communications link is lost. The effect is often termed multipath-induced

fading.

EXERCISES 3.7

1 State the amplitude, angular frequency, frequency,

phase angle and time displacement of the following

waves:

(a) 3 sin 2t (b)
1

2
sin 4t (c) sin(t + 1)

(d) 4 cos 3t (e) 2 sin(t − 3) (f) 5 cos(0.4t)

(g) sin(100πt) (h) 6 cos(5t + 2) (i)
2

3
sin(0.5t)

(j) 4 cos(πt − 20)

2 State the period of

(a) 2 sin 7t (b) 7 sin(2t + 3)

(c) tan
t

2
(d) sec 3t

(e) cosec(2t − 1) (f) cot

(
2t

3
+ 2

)

3 A voltage source produces a time-varying voltage,

v(t), given by

v(t) = 15 sin(20πt + 4) t > 0

(a) State the amplitude of v(t).

(b) State the angular frequency of v(t).

(c) State the period of v(t).

(d) State the phase of v(t).

(e) State the time displacement of v(t).

(f) State the minimum value of v(t).

4 A sinusoidal function has an amplitude of 2
3 and a

period of 2. State a possible form of the function.

5 State the phase angle and time displacement of

(a) 2 sin(t + 3) relative to 2 sin t

(b) sin(2t − 3) relative to sin 2t

(c) cos

(
t

2
+ 0.2

)
relative to cos

t

2

(d) cos(2 − t) relative to cos t

(e) sin

(
3t + 4

5

)
relative to sin

3t

5

(f) sin(4 − 3t) relative to sin 3t
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(g) sin(2πt + π) relative to sin 2πt

(h) 3 cos(5πt − 3) relative to 3 cos 5πt

(i) sin

(
πt

3
+ 2

)
relative to sin

πt

3

(j) cos(3π − t) relative to cos t

6 Write each of the following in the form

A sin(3t + θ ), θ > 0:

(a) 2 sin 3t + 3 cos 3t

(b) cos 3t − 2 sin 3t

(c) sin 3t − 4 cos 3t

(d) − cos 3t − 4 sin 3t

7 Write each of the following in the form

A cos(t − θ ), θ > 0:

(a) 2 sin t − 3 cos t

(b) 9 sin t + 6 cos t

(c) 4 cos t − sin t

(d) 3 sin t

8 Write each of the following expressions in the form

(i) A sin(ωt + θ ), (ii) A sin(ωt − θ ),

(iii) A cos(ωt + θ ), (iv) A cos(ωt − θ ) where θ > 0:

(a) 5 sin t + 4 cos t (b) −2 sin 3t + 2 cos 3t

(c) 4 sin 2t − 6 cos 2t (d) − sin 5t − 3 cos 5t

Solutions

1 (a) 3, 2,
1

π
, 0, 0 (b)

1

2
, 4,

2

π
, 0, 0

(c) 1, 1,
1

2π
, 1, 1 (d) 4, 3,

3

2π
, 0, 0

(e) 2, 1,
1

2π
,−3,−3 (f) 5, 0.4,

1

5π
, 0, 0

(g) 1, 100π, 50, 0, 0 (h) 6, 5,
5

2π
, 2, 0.4

(i)
2

3
, 0.5,

1

4π
, 0, 0 (j) 4,π,

1

2
,−20,−

20

π

2 (a)
2π

7
(b) π (c) 2π

(d)
2π

3
(e) π (f)

3π

2

3 (a) 15 (b) 20π (c) 0.1

(d) 4 (e)
1

5π
(f) −15

4
2

3
sin(πt + k) or

2

3
cos(πt + k)

5 (a) 3, 3 (b) −3,−
3

2
(c) 0.2, 0.4

(d) −2,−2 (e)
4

5
,
4

3
(f) −0.858,−0.286

(g) π,
1

2
(h) −3,−

3

5π
(i) 2,

6

π

(j) −3π,−3π

6 (a)
√
13 sin(3t + 0.9828)

(b)
√
5 sin(3t + 2.6779)

(c)
√
17 sin(3t + 4.9574)

(d)
√
17 sin(3t + 3.3866)

7 (a)
√
13 cos(t − 2.5536)

(b)
√
117 cos(t − 0.9828)

(c)
√
17 cos(t − 6.0382)

(d) 3 cos

(
t −

π

2

)

8 (a) (i)
√
41 sin(t + 0.675)

(ii)
√
41 sin(t − 5.608)

(iii)
√
41 cos(t + 5.387)

(iv)
√
41 cos(t − 0.896)

(b) (i)
√
8 sin

(
3t +

3π

4

)

(ii)
√
8 sin

(
3t −

5π

4

)

(iii)
√
8 cos

(
3t +

π

4

)

(iv)
√
8 cos

(
3t −

7π

4

)

(c) (i)
√
52 sin(2t + 5.300)

(ii)
√
52 sin(2t − 0.983)

(iii)
√
52 cos(2t + 3.730)

(iv)
√
52 cos(2t − 2.554)

(d) (i)
√
10 sin(5t + 4.391)

(ii)
√
10 sin(5t − 1.893)

(iii)
√
10 cos(5t + 2.820)

(iv)
√
10 cos(5t − 3.463)
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Technical Computing Exercises 3.7

1 Plot y = sin 2t for 0 6 t 6 2π.

2 Plot y = cos 3t for 0 6 t 6 3π.

3 Plot y = sin

(
t

2

)
for 0 6 t 6 4π.

4 Plot y = cos

(
2t

3

)
for 0 6 t 6 6π.

5 Plot y = sin t + 3 cos t for 0 6 t 6 3π. By reading

from your graph, state the maximum value of

sin t + 3 cos t.

6 (a) Plot y = 2 sin 3t − cos 3t for 0 6 t 6 2π.

Use your graph to �nd the amplitude of

2 sin 3t − cos 3t.

(b) On the same axes plot y = sin 3t. Estimate the

time displacement of 2 sin 3t − cos 3t.

3.8 TRIGONOMETRIC EQUATIONS

We examine trigonometric equations which can be written in one of the forms sin z = k,

cos z = k or tan z = k, where z is the independent variable and k is a constant. These

equations all have an in�nite number of solutions. This is a consequence of the trigono-

metric functions being periodic. For example, sin z = 1 has solutions z = . . . ,
−7π

2
,

−3π

2
,
π

2
,
5π

2
, . . . . These solutions could be expressed as z =

π

2
±2nπ, n = 0, 1, 2, . . . .

Sometimes it is useful, indeed necessary, to state all the solutions. At other times we are

interested only in solutions in some speci�ed interval, for example solving sin z = 1 for

0 6 z 6 2π. The following examples illustrate the method of solution.

Example 3.15 Solve

(a) sin t = 0.6105 for 0 6 t 6 2π (b) sin t = −0.6105 for 0 6 t 6 2π.

Solution Figure 3.20 shows a graph of y = sin t, with horizontal lines drawn at y = 0.6105 and

y = −0.6105.

(a) From Figure 3.20 we see that there are two solutions in the interval 0 6 t 6 2π.

These are given by points A and B. We have

sin t = 0.6105

and so, using a scienti�c calculator, we have

t = sin−1(0.6105) = 0.6567

This is the solution at point A. From the symmetry of the graph, the second solu-

tion is

t = π − 0.6567 = 2.4849

This is the solution at point B. The required solutions are t = 0.6567, 2.4849.

(b) Again from Figure 3.20 we see that the equation has two solutions in the interval

0 6 t 6 2π. These are given by the points C and D. One solution lies in the interval

π to
3π

2
; the other solution lies in the interval

3π

2
to 2π. We have

sin t = −0.6105
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sin t 

1

0.6105

–0.6105

–1

A  B C  D 2pp t0 p–
2

3p–
2

Figure 3.20

A and B are solution points for

sin t = 0.6105. C and D are

solution points for sin t = −0.6105.

and so, using a calculator, we see

t = sin−1(−0.6105) = −0.6567

Although this value of t is a solution of sin t = −0.6105 it is outside the range of

values of interest. Recall that

sin t = sin(t + 2π)

that is, adding 2π to an angle does not change the sine of the angle. Hence

t = −0.6567 + 2π = 5.6265

is a required solution. This is the solution given by point D. From the symmetry of

Figure 3.20 the other solution is

t = π + 0.6567 = 3.7983

This is the solution at point C. The required solutions are t = 3.7983, 5.6265.

Example 3.16 Solve

(a) cos t = 0.3685 for 0 6 t 6 2π

(b) cos t = −0.3685 for 0 6 t 6 2π

Solution Figure 3.21 shows a graph of y = cos t between t = 0 and t = 2π together with

horizontal lines at y = 0.3685 and y = −0.3685.

(a) From Figure 3.21 we see that there is a solution of cos t = 0.3685 between 0 and
π

2

and a solution between
3π

2
and 2π. These are given by points A and D. Now

cos t = 0.3685

and so, using a scienti�c calculator, we see

t = cos−1(0.3685) = 1.1934
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cos t 

1

0.3685

–0.3685

–1

A p

B D

C  2p t0 p–
2

3p–
2

Figure 3.21

A and D are solution points for

cos t = 0.3685. B and C are

solution points for cos t = −0.3685.

This is the solution between 0 and
π

2
, that is at point A. Using the symmetry of

Figure 3.21 the other solution at point D is

t = 2π − 1.1934 = 5.0898

The required solutions are t = 1.1934 and 5.0898.

(b) The graph in Figure 3.21 shows there are two solutions of cos t = −0.3685. These

solutions are at points B and C. Given

cos t = −0.3685

then using a scienti�c calculator we have

t = cos−1(−0.3685) = 1.9482

This is the solution given by point B. By symmetry the other solution at point C is

t = 2π − 1.9482 = 4.3350

The required solutions are t = 1.9482 and 4.3350.

Example 3.17 Solve

(a) tan t = 1.3100 for 0 6 t 6 2π

(b) tan t = −1.3100 for 0 6 t 6 2π

Solution Figure 3.22 shows a graph of y = tan t for t = 0 to t = 2π together with horizontal lines

y = 1.3100 and y = −1.3100.

(a) There is a solution of tan t = 1.3100 between 0 and
π

2
and a solution between π and

3π

2
. These are given by points A and C.

tan t = 1.3100

t = tan−1(1.3100) = 0.9188
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A B C tD 2pp

tan t 

2

1.3100

1

0

–1.3100

–2

–1

p–
2

3p–
2

Figure 3.22

A and C are solution points for tan t = 1.3100. B and D are

solution points for tan t = −1.3100.

This is the solution between 0 and
π

2
given by point A. Using Figure 3.22 we can

see that the second solution is given by

t = π + 0.9188 = 4.0604

This is given by point C.

(b) Figure 3.22 shows that there are two solutions of tan t = −1.3100, one between
π

2

and π, the other between
3π

2
and 2π. Points B and D represent these solutions. Using

a scienti�c calculator we have

t = tan−1(−1.3100) = −0.9188

This solution is outside the range of interest. Noting that the period of tan t is π we

see that

t = −0.9188 + π = 2.2228

is a solution between
π

2
and π. This is given by point B. The second solution is

t = −0.9188 + 2π = 5.3644

This is the solution given by point D. The required solutions are t = 2.2228 and

5.3644.
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Example 3.18 Solve

(a) sin 2t = 0.6105 for 0 6 t 6 2π

(b) cos(3t + 2) = −0.3685 for 0 6 t 6 2π

Solution (a) Let z = 2t. As t varies from 0 to 2π then z varies from 0 to 4π. Thus the problem is

equivalent to solving

sin z = 0.6105 0 6 z 6 4π

From Example 3.15 the solutions between 0 and 2π are 0.6567 and 2.4849. Since

sin z has period 2π, then the solutions in the next cycle, that is between 2π and 4π,

are z = 0.6567 + 2π = 6.9399 and z = 2.4849 + 2π = 8.7681. Hence

z = 2t = 0.6567, 2.4849, 6.9399, 8.7681

and so, to four decimal places,

t = 0.3284, 1.2425, 3.4700, 4.3840

(b) Let z = 3t + 2. As t varies from 0 to 2π then z varies from 2 to 6π + 2. Hence the

problem is equivalent to solving

cos z = −0.3685 2 6 z 6 6π + 2

Solutions between 0 and 2π are given in Example 3.16 as z = 1.9482, 4.3350.

Noting that cos z has period 2π, then solutions between 2π and 4π are z = 1.9482+

2π = 8.2314 and z = 4.3350 + 2π = 10.6182, solutions between 4π and 6π are

z = 1.9482+4π = 14.5146 and z = 4.3350+4π = 16.9014 and solutions between

6π and 8π are z = 1.9482 + 6π = 20.7978 and z = 4.3350 + 6π = 23.1846. The

solutions between z = 0 and z = 8π are thus

z = 1.9482, 4.3350, 8.2314, 10.6182, 14.5146, 16.9014, 20.7978, 23.1846

Noting that 6π + 2 = 20.8496 we require values of z between 2 and 20.8496,

that is

z = 4.3350, 8.2314, 10.6182, 14.5146, 16.9014, 20.7978

Finally

t =
z− 2

3
= 0.7783, 2.0771, 2.8727, 4.1715, 4.9671, 6.2659

Example 3.19 A voltage, v(t), is given by

v(t) = 3 sin(t + 1) t > 0

Find the �rst time that the voltage has a value of 1.5 volts.

Solution We need to solve 3 sin(t + 1) = 1.5, that is

sin(t + 1) = 0.5 t > 0

Let z = t + 1. Since t > 0 then z > 1. The problem is thus equivalent to

sin z = 0.5 z > 1
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Using a scienti�c calculator we have

z = sin−1(0.5) = 0.5236

This solution is outside the range of interest. By reference to Figure 3.7 the next solu-

tion is

z = π − 0.5236 = 2.6180

This is the �rst value of z greater than 1 such that sin z = 0.5. Finally

t = z− 1 = 1.6180

The voltage �rst has a value of 1.5 volts when t = 1.618 seconds.

EXERCISES 3.8

1 Solve the following equations for 0 6 t 6 2π:

(a) sin t = 0.8426 (b) sin t = 0.2146

(c) sin t = 0.5681 (d) sin t = −0.4316

(e) sin t = −0.9042 (f) sin t = −0.2491

2 Solve the following equations for 0 6 t 6 2π:

(a) cos t = 0.4243 (b) cos t = 0.8040

(c) cos t = 0.3500 (d) cos t = −0.5618

(e) cos t = −0.7423 (f) cos t = −0.3658

3 Solve the following equations for 0 6 t 6 2π:

(a) tan t = 0.8493 (b) tan t = 1.5326

(c) tan t = 1.2500 (d) tan t = −0.8437

(e) tan t = −2.0612 (f) tan t = −1.5731

4 Solve the following equations for 0 6 t 6 2π:

(a) sin 2t = 0.6347

(b) sin 3t = −0.2516

(c) sin

(
t

2

)
= 0.4250

(d) sin(2t + 1) = −0.6230

(e) sin(2t − 3) = 0.1684

(f) sin

(
t + 2

3

)
= −0.4681

5 Solve the following equations for 0 6 t 6 2π:

(a) cos 2t = 0.4234

(b) cos

(
t

3

)
= −0.5618

(c) cos

(
2t

3

)
= 0.6214

(d) cos(2t + 0.5) = −0.8300

(e) cos(t − 2) = 0.7431

(f) cos(πt − 1) = −0.5325

6 Solve the following equations for 0 6 t 6 2π:

(a) tan 2t = 1.5234

(b) tan

(
t

3

)
= −0.8439

(c) tan(3t − 2) = 1.0641

(d) tan(1.5t − 1) = −1.7300

(e) tan

(
2t + 1

3

)
= 1.0000

(f) tan(5t − 6) = −1.2323

7 A time-varying voltage, v(t), has the form

v(t) = 20 sin(50πt + 20) t > 0

Calculate the �rst time that the voltage has a value of

(a) 2 volts (b) 10 volts (c) 15 volts

Solutions

1 (a) 1.0021, 2.1395 (b) 0.2163, 2.9253

(c) 0.6042, 2.5374 (d) 3.5879, 5.8369

(e) 4.2711, 5.1537 (f) 3.3933, 6.0314

2 (a) 1.1326, 5.1506 (b) 0.6368, 5.6464

(c) 1.2132, 5.0700 (d) 2.1674, 4.1158

(e) 2.4073, 3.8759 (f) 1.9453, 4.3379
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3 (a) 0.7041, 3.8457 (b) 0.9927, 4.1343

(c) 0.8961, 4.0376 (d) 2.4408, 5.5824

(e) 2.0225, 5.1641 (f) 2.1370, 5.2786

4 (a) 0.3438, 1.2270, 3.4854, 4.3686

(b) 1.1320, 2.0096, 3.2264, 4.1040, 5.3208, 6.1984

(c) 0.8779, 5.4053

(d) 1.4071, 2.3053, 4.5487, 5.4469

(e) 1.5846, 2.9862, 4.7262, 6.1278

(f) no solutions

5 (a) 0.5668, 2.5748, 3.7084, 5.7164

(b) no solutions

(c) 1.3504

(d) 1.0250, 1.6166, 4.1665, 4.7582

(e) 1.2669, 2.7331

(f) 0.9971, 1.6396, 2.9971, 3.6396, 4.9971, 5.6396

6 (a) 0.4950, 2.0658, 3.6366, 5.2073

(b) no solutions

(c) 0.9388, 1.9860, 3.0332, 4.0804, 5.1276, 6.1748

(d) 2.0633, 4.1577, 6.2521

(e) 0.6781, 5.3905

(f) 0.3939, 1.0222, 1.6505, 2.2788, 2.9071, 3.5355,

4.1638, 4.7921, 5.4204, 6.0487

7 (a) 1.2038 × 10−2

(b) 9.3427 × 10−3

(c) 7.2771 × 10−3

Technical Computing Exercises 3.8

1 Plot y = sin t for 0 6 t 6 2π and y = 0.3500 using

the same axes. Use your graphs to �nd approximate

solutions to

sin t = 0.3500 0 6 t 6 2π

2 Plot y = cos t for 0 6 t 6 2π and y = −0.5500 using

the same axes. Use your graphs to �nd approximate

solutions to

cos t + 0.5500 = 0 0 6 t 6 2π

3 Plot y = sin(2t + 1) and y = 2 sin t for 0 6 t 6 2π.

Use your graphs to state approximate solutions to

sin(2t + 1) = 2 sin t 0 6 t 6 2π

4 Plot y = 2 sin 3t and y = 3 cos 2t for 0 6 t 6 2π.

Hence state approximate solutions of

2 sin 3t = 3 cos 2t 0 6 t 6 2π

REVIEW EXERCISES 3

1 Express the following angles in radians:

(a) 45◦ (b) 72◦ (c) 100◦ (d) 300◦

(e) 440◦

2 The following angles are in radians. Express them in

degrees.

(a)
π

3
(b) 3π (c)

3π

4
(d) 2 (e) 3.62

3 State the quadrant in which the angle α lies given

(a) sinα > 0 and tanα > 0

(b) cosα > 0 and sinα < 0

(c) tanα > 0 and cosα < 0

(d) sinα < 0 and cosα < 0

(e) tanα < 0 and cosα < 0

4 Simplify the following expressions:

(a) sin t cosec t

(b)
sin x

tan x

(c)
cotA

cosA

(d)
secA

cosec A
(e) cot x tan x

5 Simplify the following expressions:

(a) cos2 A+ 1 + sin2 A

(b)
2 sinA cosA

cos2 A− sin2 A

(c)
√
sec2 x− 1

(d) sin t cos t +
1

sec t cosec t

(e)
1

cosec 2A− 1
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6 Simplify the following expressions:

(a) (sin x+ cos x)2 − 1

(b) tanA sin 2A+ 1 + cos 2A

(c)
sin 4θ + sin 2θ

cos 2θ − cos 4θ

(d) 4 sinA cosA cos 2A

(e)
sin t

cos

(
t

2

)

7 State the amplitude, angular frequency, period,

frequency, phase and time displacement of the

following waves:

(a) 2 sin 3t

(b) 4 cos 6t

(c) 0.7 sin(2t + 3)

(d) 0.1 cosπt

(e) sin(50πt + 20)

(f) 6 cos(100πt − 30)

(g)
1

2
sin

(
t

2

)

(h) 0.25 cos(2πt + 1)

8 Express the following in the form

A sin(ωt + φ), φ > 0:

(a) 6 sin 5t + 5 cos 5t

(b) 0.1 sin t − 0.2 cos t

(c) 7 sin 3t + 6 cos 3t

(d) 9 cos

(
t

2

)
− 4 sin

(
t

2

)

(e) 3 sin 2t + 15 cos 2t

9 Express the following in the form

A sin(ωt − φ), φ > 0:

(a) 3 sin 4t + 7 cos 4t

(b) 3 cos 2t − 5 sin 2t

(c) 4 sin 6t − 7 cos 6t

(d)
1

2
cos t +

2

3
sin t

(e) 0.75 sin(0.5t)− 1.25 cos(0.5t)

10 Express the following in the form A cos(ωt + φ),

φ > 0:

(a) 10 sin 3t + 16 cos 3t

(b) −6 sin 2t − 3 cos 2t

(c) sin t − 2 cos t

(d) 0.6 cos 4t + 1.3 sin 4t

(e) cos 7t − 5 sin 7t

11 Express each of the following in the form

A cos(ωt − φ), φ > 0:

(a) 2.3 sin 3t + 6.4 cos 3t

(b) − sin 2t − 2 cos 2t

(c) 2 cos 9t + 9 sin 9t

(d) 4 sin 4t + 5 cos 4t

(e) −6 cos

(
t

2

)
− 2 sin

(
t

2

)

12 Express each of the following in the form

A sin(ωt + φ), φ > 0:

(a) sin(t + 1)+ cos(t + 1)

(b) 2 sin(2t + 3)− 3 cos(2t + 1)

(c) cos(3t − 1)− 2 sin(3t + 4)

(d) sin(t + 1)+ sin(t + 3)

(e) cos(2t − 1)+ 3 cos(2t + 3)

13 Reduce each of the following expressions to a single

wave and in each case state the amplitude and phase

angle of the resultant wave:

(a) 2 cosωt + 3 sinωt

(b) cos

(
ωt +

π

4

)
+ sinωt

(c) 2 sin

(
ωt +

π

2

)
+ 4 cos

(
ωt +

π

4

)

(d) 0.5 sin

(
ωt −

π

4

)
+ 1.5 sin

(
ωt +

π

4

)

(e) 3 sinωt + 4 sin(ωt + π)− 2 cos

(
ωt −

π

2

)

14 Solve the following equations, stating all solutions

between 0 and 2π:

(a) sin t = 0.5216

(b) sin t = −0.3724

(c) cos t = 0.9231

(d) cos t = −1

(e) tan t = 0.1437

(f) tan t = −1

15 Solve the following equations, stating all solutions

between 0 and 2π:

(a) sin 2t = 0.5421

(b) cos 2t = −0.4687

(c) tan

(
t

2

)
= −1.6235

(d) 2 sin 4t = 1.5

(e) 5 cos 2t = 2

(f) 4 tan 2t = 5
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16 A voltage, v(t), varies with time, t, according to

v(t) = 240 sin(100πt + 30) t > 0

Find the �rst time that v(t) has a value of

(a) 240 (b) 0

(c) −240 (d) 100

17 Simplify as far as possible

(a) cos 100◦ + cos 80◦

(b) cos 100◦ − cos 80◦

(c)
sin 50◦ + sin 40◦

cos 5◦

(d)
sin 80◦ − sin 60◦

2 sin 10◦

Solutions

1 (a)
π

4
(b)

2π

5
(c) 1.7453

(d) 5.2360 (e) 7.6794

2 (a) 60◦ (b) 540◦ (c) 135◦

(d) 114.6◦ (e) 207.4◦

3 (a) 1st (b) 4th (c) 3rd

(d) 3rd (e) 2nd

4 (a) 1 (b) cos x (c) cosec A

(d) tanA (e) 1

5 (a) 2 (b) tan 2A (c) tan x

(d) sin 2t (e) tan2 A

6 (a) sin 2x (b) 2 (c) cot θ

(d) sin 4A (e) 2 sin

(
t

2

)

7 (a) 2, 3,
2π

3
,
3

2π
, 0, 0

(b) 4, 6,
π

3
,
3

π
, 0, 0

(c) 0.7, 2,π,
1

π
, 3,

3

2

(d) 0.1,π, 2,
1

2
, 0, 0

(e) 1, 50π, 0.04, 25, 20,
2

5π

(f) 6, 100π, 0.02, 50,−30,−
3

10π

(g)
1

2
,
1

2
, 4π,

1

4π
, 0, 0

(h) 0.25, 2π, 1, 1, 1,
1

2π

8 (a)
√
61 sin(5t + 0.6947)

(b)
√
0.05 sin(t + 5.1760)

(c)
√
85 sin(3t + 0.7086)

(d)
√
97 sin

(
t

2
+ 1.9890

)

(e)
√
234 sin(2t + 1.3734)

9 (a)
√
58 sin(4t − 5.1173)

(b)
√
34 sin(2t − 3.6820)

(c)
√
65 sin(6t − 1.0517)

(d)
5

6
sin(t − 5.6397)

(e) 1.4577 sin(0.5t − 1.0304)

10 (a)
√
356 cos(3t + 5.7246)

(b)
√
45 cos(2t + 2.0344)

(c)
√
5 cos(t + 3.6052)

(d)
√
2.05 cos(4t + 5.1448)

(e)
√
26 cos(7t + 1.3734)

11 (a) 6.8007 cos(3t − 0.3450)

(b)
√
5 cos(2t − 3.6052)

(c)
√
85 cos(9t − 1.3521)

(d)
√
41 cos(4t − 0.6747)

(e)
√
40 cos

(
t

2
− 3.4633

)

12 (a)
√
2 sin(t + 1.7854)

(b) 1.4451 sin(2t + 5.0987)

(c) 2.9725 sin(3t + 0.7628)

(d) 1.0806 sin(t + 2)

(e) 2.4654 sin(2t + 4.8828)

13 (a)
√
13 sin(ωt + 0.5880), amplitude =

√
13, phase

angle = 0.5880

(b) 0.765 sin(ωt + 1.1781), amplitude = 0.765,

phase angle = 1.1781

(c) 5.596 sin(ωt + 2.10), amplitude = 5.596, phase

angle = 2.10
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(d) 1.581 sin(ωt + 0.4636), amplitude = 1.581,

phase angle = 0.4636

(e) −3 sinωt, amplitude = 3, phase angle = π

14 (a) 0.5487, 2.5929 (b) 3.5232, 5.9016

(c) 0.3947, 5.8885 (d) 3.1416, i.e. π

(e) 0.1427, 3.2843 (f)
3π

4
,
7π

4

15 (a) 0.2865, 1.2843, 3.4281, 4.4259

(b) 1.0293, 2.1123, 4.1709, 5.2539

(c) 4.2457

(d) 0.2120, 0.5734, 1.7828, 2.1442, 3.3536, 3.7150,

4.9244, 5.2858

(e) 0.5796, 2.5620, 3.7212, 5.7035

(f) 0.4480, 2.0188, 3.5896, 5.1604

16 (a) 9.5070 × 10−3 (b) 4.5070 × 10−3

(c) 1.9507 × 10−2 (d) 5.8751 × 10−3

17 (a) 0 (b) −2 sin 10◦

(c)
√
2 (d) cos 70◦
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4.1 INTRODUCTION

The coordinates of a point describe its position. The most common coordinate system

is the x--y system: the �rst number, x, gives the distance along the x axis, the second

number, y, gives the distance along the y axis. However, this is not the only way to

describe the position of a point. This chapter outlines several ways in which the position

of a point can be described.

4.2 CARTESIAN COORDINATE SYSTEM -- TWO DIMENSIONS

The Cartesian coordinate system is named after the French mathematician Descartes.

The system comprises two axes -- the x axis and the y axis -- which intersect at right

angles at the point O. The point O is called the origin. Figure 4.1 shows the Cartesian

coordinate system. By convention the x axis is drawn horizontally. The positive x axis

lies to the right of the origin, the negative x axis lies to the left of the origin, the positive

y axis lies above the origin and the negative y axis lies below the origin.

Note that this coordinate system can be used only for locating points in a plane, that

is it has two dimensions.

Consider any point, P, in the plane. The horizontal distance of P from the y axis

is called the x coordinate. The vertical distance of P from the x axis is called the y

coordinate. Either coordinate can be positive or negative.
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1

3 

2

1

–1 

–2

–3

2

P

O 3 4–4 –3 –2 –1

x coordinate

x

y

y coordinate

Figure 4.1

Cartesian coordinate system in

two dimensions.

When stating the coordinates of a point, by convention we always state the x coor-

dinate �rst. Thus (3, 1) means that the x coordinate is 3 and the y coordinate is 1. We

also write, for example, A(3, 1) to mean that the point whose coordinates are (3, 1) is

labelled A. In Figure 4.1 P has coordinates (2, 3).

Example 4.1 Plot the points whose Cartesian coordinates are

(a) (4, 2) (b) (−1,−3) (c) (−2, 1)

Solution As plotted in Figure 4.2

(a) R has coordinates (4, 2).

(b) S has coordinates (−1,−3).

(c) T has coordinates (−2, 1).

Example 4.2 State the coordinates of the points A and B as shown in Figure 4.3.

Solution A has coordinates (−3,−1); B has coordinates (3,−2).

1

2 

1

–1 

–2

–3

2

R

y

xO 3 4–4 –3 –2 –1

T

S

Figure 4.2

1

2 

1

2

y

xO 3–3 –2 –1

A

B

–1 

–2

–3

Figure 4.3
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Engineering application 4.1

Electrode coordinates

Often in science and engineering it is useful to place metallic conductors, known as

electrodes, inside a glass container from which air has been evacuated. For exam-

ple, electrical valves, which are also known as vacuum tubes, are constructed in this

manner. Audio ampli�ers that make use of valve technology have made a comeback

in recent years. Many musicians prefer the sound they generate.

Figure 4.4 shows two electrodes inside an evacuated glass envelope. State the

coordinates of the four points A, B, C and D.

10  2 3 4 5 6 7 8 9 10 11 12

12 

11 

10

9 

8 

7 

6 

5 

4 

3 

2 

1

A

C

D

x

y

B

glass envelope

Figure 4.4

Electrode coordinates.

Solution

A has coordinates (4, 9).

B has coordinates (9, 6).

C has coordinates (8, 10).

D has coordinates (8, 6).

To simulate the electric �eld between these electrodes, and to produce a proper design

for manufacture, a computer model may be used. Such a model would involve the use

of mathematical techniques to solve the �elds in the space between the electrodes.

However, the user would have to input the shape of the device. Coordinates would

be used to specify exactly where each part of the device is located. The coordinates

could easily be changed in the computer model to test the effects of changing the

size and position of the electrodes. Computer models speed up the design process by

avoiding the need for early-stage prototypes.
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EXERCISES 4.2

1 Plot the following points: A(2,−2), B(−2, 1),

C(−1, 0), D(0, −2).

2 State the coordinates of the points U, V and W as

shown in Figure 4.5.

3 A point P lies on the x axis. State the y coordinate

of P.

4 A point Q lies on the y axis. State the x coordinate

of Q.

1

2 

1

–1 

–2

2

V

y

xO 3 4–2 –1

U

W

Figure 4.5

1

2 

1

–1 

–2

2

C

y

xO–2 –1

B

D A

Figure S.6

Solutions

1 Figure S.6 shows the points A, B, C and D.

2 U(−2, −2), V(4, 1), W(3, −1)

3 0

4 0

4.3 CARTESIAN COORDINATE SYSTEM -- THREE DIMENSIONS

Many engineering problems require the use of three dimensions. Figure 4.6 illustrates a

three-dimensional coordinate system. It comprises three axes, x, y and z. The axes are

all at right angles to one another and intersect at the origin, O.

The position of any point in three-dimensional space is given by specifying its x, y

and z coordinates. By convention the x coordinate is stated �rst, then the y coordinate and

�nally the z coordinate. For example, P(2, 3, 4) has an x coordinate of 2, a y coordinate

of 3 and a z coordinate of 4. It is illustrated in Figure 4.6. From the origin, P is located

by travelling 2 units in the x direction, followed by 3 units in the y direction, followed

by 4 units in the z direction.

Note that, as with a two-dimensional system, coordinates can be negative.

Example 4.3 Plot the following points: A(1,−1, 2), B(0, 1, 2), C(0, 0, 1).

Solution Figure 4.7 illustrates the points A, B and C.

We now consider the equation of a plane. Any point on the x--y plane has a z coordinate

of 0. Hence the equation of the x--y plane is z = 0. Similarly z = 1 represents a plane

parallel to the x--y plane but 1 unit above it. Point C in Figure 4.7 lies in the plane

z = 1. All points in this plane have a z coordinate of 1.
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11

2

O
2

2

3 y

x

z

3

4

4 

3

2 

1

P (2, 3, 4)

Figure 4.6

Cartesian coordinate system in three

dimensions.

1

C

A

1

–1

2 y

x

z

2 

1

B

Figure 4.7

The points A, B and C are

plotted in three dimensions.

A and B in Figure 4.7 lie in the plane z = 2. All points in this plane have a z coordinate

of 2.

EXERCISES 4.3

1 Plot the points A(2, 0, −1), B(1, −1, 1) and

C(−1, 1, 2).

2 State the equation of the plane passing through

(4, 7, −1), (3, 0,−1) and (1, 2, −1).

3 State the equation of the plane passing through

(3, 1, 7), (−1, 1, 0) and (6, 1, −3).

Solutions

1 Figure S.7 illustrates the points A, B and C.

2 z = −1

3 y = 1

1

B (1, –1, 1)

C (–1, 1, 2)

A (2, 0, –1)

1
2

–1

–1

–1

2 y

x

z

2 

1

Figure S.7

P (x, y)

O

y

x

r

y

xA
u

Figure 4.8

P has polar coordinates r and θ .
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4.4 POLAR COORDINATES

We have seen how the x and y coordinates of a point describe its location in the x--y

plane. There is an alternative way to describe the location of a point. Figure 4.8 illustrates

a point P in the x--y plane.

P has Cartesian coordinates (x, y). Hence

OA = x, AP = y

Consider the arm OP. The length of OP is the distance of P from the origin. We denote

this by r, that is

length of OP = r

Clearly, r is never negative, that is r > 0.

We note that the angle between the positive x axis and OP is θ . The value of θ lies

between 0 and 2π radians or 0◦ to 360◦ if degrees are used.

The values of r and θ are known as the polar coordinates of P. Conventionally, the

value of r is stated �rst, then the value of θ . We commonly write these polar coordinates

as r 6 θ .

The values of r and θ specify the position of a point. Conventionally, positive values

of θ are measured anticlockwise from the positive x axis.

The polar coordinates of a point, P, are r 6 θ . The value of r is the distance of P from

the origin; the value of θ is the angle between the positive x axis and the arm OP.

r > 0 0 6 θ < 2π (0◦
6 θ < 360◦)

Engineering application 4.2

Pick and place robot

Robots are now widely used in factories in order to reduce labour costs. They vary in

complexity depending on their function. Almost all printed circuit boards found in

electronic devices such as computers andmobiles are assembled by robots. Figure 4.9

shows a simple robot that can pick up a surface-mount electronic component in one

position and place it in another position.

It consists of a rotating arm the length of which can be extended and contracted.

On the end of the arm is a hand which can be closed to pick up a component and

opened to release it.

r
zero datum

u

Figure 4.9

A pick and place robot.

➔



160 Chapter 4 Coordinate systems

It is necessary for a computer to carry out calculations in order to �ndwhere a com-

ponent is located and where to place a component. Decide upon a suitable coordinate

system to use when carrying out these calculations.

Solution

If we examine the geometry of the robot then we see that a polar coordinate system

would be the most suitable. The centre of the coordinate system should be on the axis

of rotation. The length of the arm is then given by r and the orientation of the arm is

given by θ relative to an agreed zero datum mark.

Example 4.4 Plot the points P, Q and R whose polar coordinates are

(a) 2, 70◦

(b) 4, 160◦

(c) 3, 300◦

Solution Figure 4.10 shows the three points plotted.

300°

3

R

O x

y

70°
2

O x

y

160°
4

Q
P

O x

y

(a) (b)                                                                 (c)

Figure 4.10

A point can be located by the values of its polar coordinates.

Consider the arm from the origin to the point. The value of r gives the length of this

arm. The value of θ gives the angle between the positive x axis and the arm, measuring

anticlockwise from the positive x axis.

By studying △OPA, shown in Figure 4.11, we can see that

cos θ =
x

r
and so x = r cos θ (4.1)

sin θ =
y

r
and so y = r sin θ (4.2)

Hence if we know the values of r and θ , that is the polar coordinates of a point, we

can use Equations (4.1) and (4.2) to calculate x and y, the Cartesian coordinates of the

point.
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P

O A

y

x

r

y

x

u

Figure 4.11

The polar coordinates are r, θ ; the

Cartesian coordinates are x, y.

210°

4
–2

–3.4641

x

y

Figure 4.12

The Cartesian coordinates can be

calculated from the polar coordinates.

Example 4.5 A point has polar coordinates r = 4, θ = 210◦. Calculate the Cartesian coordinates of

the point. Plot the point.

Solution The Cartesian coordinates are given by

x = r cos θ = 4 cos 210◦ = −3.4641

y = r sin θ = 4 sin 210◦ = −2

Figure 4.12 illustrates the point.

We now look at the problem of calculating the polar coordinates given the Cartesian

coordinates. Equations (4.1) and (4.2) can be arranged so that r and θ can be found from

the values of x and y. Consider a typical point P as shown in Figure 4.11.

The Cartesian coordinates are (x, y). Suppose that the values of x and y are known.

The polar coordinates are r, θ ; these values are unknown. By applying Pythagoras’s

theorem to △OPA we see that

r2 = x2 + y2

and so

r =
√
x2 + y2

Note that since r is the distance from O to P it is always positive and so the positive

square root is taken.

We now express θ in terms of the Cartesian coordinates x and y. From Figure 4.11

we see that

tan θ =
y

x
and hence

θ = tan−1

(
y

x

)

In summary we have

r =
√
x2 + y2 θ = tan−1

(y
x

)

However, we need to exercise a little extra care before calculating tan−1

(
y

x

)
and

reading the result from a calculator. As an illustration note that

tan 40◦ = 0.8391 and tan 220◦ = 0.8391
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and so tan−1(0.8391) could be 40◦ or 220◦. Similarly tan 105◦ = −3.7321 and

tan 285◦ = −3.7321 and so tan−1(−3.7321) could be 105◦ or 285◦. The value given

on your calculator when calculating tan−1

(
y

x

)
may not be the actual value of θ we

require. In order to clarify the situation it is always useful to sketch the Cartesian coor-

dinates and the angle θ before embarking on the calculation.

Example 4.6 The Cartesian coordinates of P are (4, 7); those of Q are (−5, 6). Calculate the polar

coordinates of P and Q.

Solution Figure 4.13 illustrates the situation for P.

Then

r =
√
42 + 72 =

√
65 = 8.0623

Note from Figure 4.13 that P is in the �rst quadrant, that is θ lies between 0◦ and 90◦.

Now

tan−1

(
y

x

)
= tan−1

(
7

4

)

From a calculator, tan−1

(
7

4

)
= 60.26◦. Since we know that θ lies between 0◦ and 90◦

then clearly 60.26◦ is the required value.

The polar coordinates of P are r = 8.0623, θ = 60.26◦.

Figure 4.14 illustrates the situation for Q.

We have

r =
√

(−5)2 + 62 =
√
61 = 7.8102

From Figure 4.14 we see that θ lies between 90◦ and 180◦. Now

tan−1

(
y

x

)
= tan−1

(
6

−5

)
= tan−1(−1.2)

A calculator returns the value of −50.19◦ which is clearly not the required value. Recall

that tan θ is periodic with period 180◦. Hence the required angle is

180◦ + (−50.19◦) = 129.81◦

The polar coordinates of Q are r = 7.8102, θ = 129.81◦.

P

O

7

4

r

y

x

u

Figure 4.13

P is in the �rst quadrant.

O

Q 6

–5

y

x

u

Figure 4.14

Q lies in the second quadrant.
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EXERCISES 4.4

1 Given the polar coordinates, calculate the Cartesian

coordinates of each point.

(a) r = 7, θ = 36◦

(b) r = 10, θ = 101◦

(c) r = 15.7, θ = 3.7 radians

(d) r = 1, θ =
π

2
radians

2 Given the Cartesian coordinates, calculate the polar

coordinates of each point.

(a) (7, 11) (b) (−6, −12) (c) (0, 15)

(d) (−4, 6) (e) (4, 0) (f) (−4, 0)

Solutions

1 (a) 5.6631, 4.1145 (b) −1.9081, 9.8163

(c) −13.3152, −8.3184 (d) 0, 1

2 (a) r = 13.0384, θ = 57.53◦

(b) 13.4164, 243.43◦

(c) 15, 90◦

(d) 7.2111, 123.69◦

(e) 4, 0◦

(f) 4, 180◦

4.5 SOME SIMPLE POLAR CURVES

Using Cartesian coordinates the equation y = mx describes the equation of a line passing

through the origin. The equation of a line through the origin can also be stated using

polar coordinates. In addition, it is easy to state the equation of a circle using polar co-

ordinates.

Equation of a line

Consider all points whose polar coordinates are of the form r 6 45◦. Note that the angle

θ is �xed at 45◦ but that r, the distance from the origin, can vary. As r increases, a line

at 45◦ to the positive x axis is traced out. Figure 4.15 illustrates this.

Thus, θ = 45◦ is the equation of a line starting at the origin, at 45◦ to the positive

x axis.

In general, θ = θc, where θc is a �xed value, is the equation of a line inclined at θc to

the positive x axis, starting at the origin.

Equation of a circle, centre on the origin

Consider all points with polar coordinates 36 θ . Here r, the distance from the origin, is

�xed at 3 and θ can vary. As θ varies from 0◦ to 360◦ a circle, radius 3, centre on the

origin, is swept out. Figure 4.16 illustrates this.

In general r = rc where rc is a �xed value, 0
◦ 6 θ 6 360◦ describes a circle of radius

rc, centred on the origin.

Example 4.7 Draw the curve traced out by r = 3, 0◦ 6 θ 6 180◦.

Solution Here r is �xed at 3 and θ varies from 0◦ to 180◦. As θ varies a semicircle is traced out.

Figure 4.17 illustrates this.

At P, θ = 0◦, while at Q, θ = 180◦.
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45°

u = 45°

O

y

x

Figure 4.15

When θ is �xed and r varies, a straight

line from the origin is traced out.

y

x

3

3

Figure 4.16

When r is �xed and θ varies, a circle is

swept out.

y

xO

3

PQ

Figure 4.17

As θ varies from 0◦ to 180◦ a

semicircle is traced out.

y

xO P

S 

R

Q

Figure 4.18

Surface for Example 4.8.

Example 4.8 Describe the surface de�ned by 1 6 r 6 2, 0◦ 6 θ 6 90◦.

Solution Here r varies from 1 to 2 and θ varies from 0◦ to 90◦. Figure 4.18 illustrates the surface

so formed.

At P, r = 1, θ = 0◦; at Q, r = 2, θ = 0◦; at R, r = 1, θ = 90◦; at S, r = 2, θ = 90◦.

We have seen some simple polar curves in Figures 4.16 and 4.17. In general a polar

curve is given by the equation r = f (θ ), where the radius r varies with the angle θ .

Engineering application 4.3

Two-dimensional antenna radiation pattern

Polar curves are often used to depict radiation patterns from antennas. It is often the

case that the electric �eld strength at a �xed distance from an antenna such as shown

in Figure 4.19 depends upon the angle θ .

A typical expression for �eld strength at a particular angle θ could be
∣∣∣
cos(π

2
cos θ )

sin θ

∣∣∣.
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Antenna

u

Figure 4.19

Electric �eld strength at a �xed distance from the

antenna depends upon the angle θ .

By considering

r =

∣∣∣∣
cos(π

2
cos θ )

sin θ

∣∣∣∣
we can use a polar curve to depict the �eld strength at any angle. Graph-plotting

software is available for producing polar plots such as the one shown in Figure 4.20,

which shows a typical angle, θ , and its associated radius r.

The radius of the plot for a particular value of θ represents the transmitted �eld

strength and so the antenna in Figure 4.20 has no radiation in the horizontal direction

and maximum radiation in the vertical direction.

0.5

1

–0.5 0.5

–0.5

–1

r

x

y

u

Figure 4.20

The transmitted �eld strength for the antenna,

r, varies with the angular position, θ .

EXERCISES 4.5

1 Describe the curve de�ned by r = 2, 0◦
6 θ 6 90◦. 2 Describe the surface de�ned by 0 6 r 6 2,

30◦
6 θ 6 45◦.
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Solutions

1 This is a quarter circle of radius 2 as shown in

Figure S.8.

y

xO

2

Figure S.8

2 Figure S.9 illustrates the surface. OP is set at 30◦ to

the x axis; OQ is at 45◦ to the x axis. OP = OQ = 2.

y

xO

P

Q

Figure S.9

4.6 CYLINDRICAL POLAR COORDINATES

Consider the problem of studying the flow of water around a cylinder. A problem like

this would be studied by engineers when investigating the forces exerted by the sea on

the cylindrical supports of oil-rigs. It is often mathematically convenient to choose a

coordinate system that �ts the shape of the object being described. It makes sense here

to select a cylindrical coordinate system.

Cylindrical polar coordinates comprise polar coordinates with the addition of a

vertical, or z, axis. Figure 4.21 illustrates a typical point, P, and its cylindrical polar

coordinates.

The point Q is in the x--y plane and lies directly below P. Q is the projection of P

onto the x--y plane.

Consider a point P in three-dimensional space, with Cartesian coordinates (x, y, z).

We can also describe the position of P using cylindrical polar coordinates. To do this,

the x and y coordinates are expressed as their equivalent polar coordinates, while the

z coordinate remains unaltered. Hence the cylindrical polar coordinates of a point have

the form (r, θ, z).

Recall that r is the length of the arm OQ (see Figure 4.21); that is, it is the distance

of a point in the x--y plane from the origin, and so r > 0. The angle θ is measured from

the positive x axis to the arm OQ and so θ has values between 0◦ and 360◦ or 2π radians.

Finally, z is positive for points above the x--y plane and negative for points below the

x--y plane. In summary

r > 0, 0 6 θ < 2π, −∞ < z < ∞

O
y

x

z

z

r

P

Q

u

Figure 4.21

The cylindrical polar coordinates of P are (r, θ, z).
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We can relate the Cartesian coordinates, (x, y, z), to the cylindrical polar coordinates,

(r, θ, z). The following key point does this.

x= r cos θ r > 0

y= r sin θ 0 6 θ < 2π

z= z

Engineering application 4.4

Fluid flow along a pipe

Cylindrical polar coordinates provide a convenient framework for analysing liquid

flow down a pipe. The radial symmetry of a pipe makes it the natural choice. The

distance along the pipe is de�ned using z. In order to utilize the radial symmetry of

the pipe it is necessary to align the z axis with the centre axis of the pipe. Figure 4.22

illustrates the arrangement. Distance from the centre of the pipe is de�ned by r. The

angle θ is used in conjunction with z and r to �x the position within the pipe. A typical

problem that may be analysed is the variation in fluid velocity with distance from the

centre of the pipe. For smooth flow, liquid tends to travel faster at the centre of a pipe

than it does near the edge.

r

z

u

Figure 4.22

Fluid flow along a pipe.

Pipes with metal walls are often used to guide electromagnetic waves, rather

than 	uids, in high-powered microwave communications systems. They are termed

waveguides. Mathematically analysing the waveguide’s propagation modes is made

much simpler by using cylindrical polar coordinates.

Example 4.9 The Cartesian coordinates of P are (4, 7,−6). State the cylindrical polar coordinates

of P.

Solution We have

x = 4, y = 7, z = −6

Using x = 4 and y = 7 the values of r and θ are found to be r = 8.0623, θ = 60.26◦

(see Example 4.6). The z coordinate remains unchanged. Hence the cylindrical polar

coordinates are (8.0623, 60.26◦,−6).
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Example 4.10 Describe the �gure de�ned by

(a) 1 6 r 6 2, θ = 60◦, −1 6 z 6 1

(b) r = 1, 0◦ 6 θ 6 90◦, 0 6 z 6 2

60°

P

Q

O

y

x

Figure 4.23

At P, r = 1; at Q, r = 2.

y

x

z

A

B

P

Q

C

D

Figure 4.24

On the line AB, z = 1; on the line CD, z = −1.

Solution (a) Consider the r and θ coordinates �rst. The r coordinate varies from 1 to 2 while θ

is �xed at 60◦. This represents the line PQ as shown in Figure 4.23. At P the value

of r is 1; at Q the value of r is 2. The length of PQ is 1 and it is inclined at 60◦ to

the x axis.

Now, we note that z varies from −1 to 1. We imagine the line PQ moving in the

z direction from z = −1 to z = 1. This movement sweeps out a plane. Figure 4.24

illustrates this.

(b) The r coordinate is �xed at r = 1. The θ coordinate varies from 0◦ to 90◦. This

produces the quarter circle, AB, as shown in Figure 4.25. At A, r = 1, θ = 0◦; at

B, r = 1, θ = 90◦.

y

xO A

B

Figure 4.25

As θ varies from 0◦ to 90◦, a quarter

circle is swept out.

y

x

z

B

A

D

C

Figure 4.26

As z varies from 0 to 2, the curve AB

sweeps out the curved surface.
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Examining the z coordinate, we see that z varies from 0 to 2. As z varies from

0 to 2, we imagine the curve AB sweeping out the curved surface as shown in Fig-

ure 4.26. At C, r = 1, θ = 0◦, z = 2; at D, r = 1, θ = 90◦, z = 2. This surface is

part of a cylinder.

If the range of values of a coordinate is not given it is understood that that variable

varies across all its possible values. For example, a curve may be described by r = 1,

z = −2. Here there is no mention of the values that θ can have. It is assumed that θ

can have its full range of values, that is 0◦ to 360◦.

Engineering application 4.5

Helical antennas

The helix is a shape commonly found in engineering. For example, the springs used

in a car’s suspension often have a helical shape. Helical antennas were invented by

John Kraus in the 1940s and since then have been used extensively in a variety of

applications including space exploration, satellite communications and mobile tele-

phony. Developing a mathematical de�nition of a helix is essential to analysing its

electromagnetic properties.

We can set up a cylindrical polar coordinate systemwith the z axis aligned with the

axis of the helix as shown in Figure 4.27. If we were to look at the helix along the

direction of the z axis, all wewould seewould be a circle.We say that the projection of

the helix onto the x--y plane is a circle.

y

z

x
Figure 4.27

Helix along the z axis.

Suppose a particular helix can be de�ned parametrically by the Cartesian equa-

tions

x(t) = 3 cos 2t, y(t) = 3 sin 2t, z(t) = t

where t is varied over a particular range in order to generate the �nite length helix

required. By specifying a particular value of t these equations enable us to calculate

particular values of x, y and z corresponding to a point on the helix.
➔
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We now develop the equation of the helix in cylindrical polar coordinates. By

comparing

x = 3 cos 2t, y = 3 sin 2t with x = r cos θ, y = r sin θ

(see Equations (4.1) and (4.2)), we have r = 3 and θ = 2t. Note that r = 3 is the

equation of a circle, radius 3, centre the origin.

So, the projection of the helix onto the x--y plane is a circle of radius 3. Because

z(t) = t, the value of z increases as the parameter t increases and the helix is traced

out.

We can now state an alternative de�nition of the helix in terms of cylindrical polar

coordinates:

r(t) = 3, θ (t) = 2t, z(t) = t

As in the Cartesian case, specifying a value of the parameter t enables us to calculate

particular values of r, θ and z corresponding to a point on the helix. This provides a

more elegant de�nition of the helix than that available using Cartesian coordinates.

Many problems require the use of these alternative coordinate systems in order to

simplify analysis.

EXERCISES 4.6

1 Express the following Cartesian coordinates as

cylindrical polar coordinates.

(a) (−2, −1, 4) (b) (0, 3, −1) (c) (−4, 5, 0)

2 Express the following cylindrical polar coordinates as

Cartesian coordinates.

(a) (3, 70◦, 7) (b) (1, 200◦, 6) (c) (5, 180◦, 0)

3 Describe the surface de�ned by

(a) z = 0

(b) z = −1

(c) r = 2, z = 1

(d) θ = 90◦, z = 3

(e) r = 2, 0 6 z 6 4

Solutions

1 (a) (
√
5, 206.57◦, 4)

(b) (3, 90◦,−1)

(c) (
√
41, 128.66◦, 0)

2 (a) (1.0261, 2.8191, 7)

(b) (−0.9397,−0.3420, 6)

(c) (−5, 0, 0)

3 (a) the x--y plane

(b) a plane parallel to the x--y plane and 1 unit

below it

(c) a circle, radius 2, parallel to the x--y plane and

with centre at (0, 0, 1)

(d) a line 3 units above the positive y axis and

parallel to it

(e) the curved surface of a cylinder, radius 2, height 4

4.7 SPHERICAL POLAR COORDINATES

When problems involve spheres, for example modelling the flow of oil around a ball

bearing, it may be useful to use spherical polar coordinates. The position of a point is

given by three coordinates, (R, θ, φ). These are illustrated in Figure 4.28.
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Figure 4.28

Spherical polar coordinates are (R, θ, φ).

Consider a typical point, P. We look at each of the three coordinates in turn.

The value of R is the distance of the point from the origin; that is, R is the length of

OP. Note that R > 0.

Let Q be the projection of P onto the x--y plane. Then θ is the angle between the

positive x axis and OQ. Thus, θ has the same de�nition as for polar and cylindrical

polar coordinates. Note that θ can have any value from 0◦ to 360◦.

Consider the line OP. Then φ is the angle between the positive z axis and OP. The

angle φ can have values between 0◦ and 180◦. When P is above the x--y plane, then φ

lies between 0◦ and 90◦; when P lies below the x--y plane, then φ is between 90◦ and

180◦. When φ = 0◦, then P is on the positive z axis; when φ = 90◦, P lies in the x--y

plane; when φ = 180◦, P lies on the negative z axis.

We can determine equations which relate the Cartesian coordinates, (x, y, z), and the

spherical polar coordinates, (R, θ, φ).

Note that some books describe spherical polar coordinates as (R, φ, θ), that is the

de�nitions of θ and φ are interchanged. Be aware of this when reading other texts.

Consider △OPQ. Note that 6 OQP is a right angle and so

OQ = OP sinφ = R sinφ

OQ lies in the x--y plane and so

x = OQ cos θ = R sinφ cos θ

y = OQ sin θ = R sinφ sin θ

We also note that

z = OP cosφ = R cosφ

In summary we have

x = R sinφ cos θ

y = R sinφ sin θ

z = R cosφ

and

R > 0, 0 6 φ 6 π(180◦) 0 6 θ < 2π(360◦)
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Example 4.11 Show that

R =
√
x2 + y2 + z2

Solution From Figure 4.28

x2 + y2 = OQ2

From △OPQ

OP2 = OQ2 + PQ2

But OP = R and PQ = z, so

R2 = x2 + y2 + z2

and so

R =
√
x2 + y2 + z2

Example 4.12 Describe the surface R = 4.

Solution We have R = 4 and θ and φ can vary across their full range of values. Such points

generate a sphere of radius 4, centred on the origin.

Engineering application 4.6

Three-dimensional radiation pattern of a half-wave dipole

One of the simplest types of practical antenna is the half-wave dipole. This consists

of two conductor elements stretched out along a straight line having a combined

length of approximately half the wavelength at the frequency of the a.c. signal that is

to be transmitted. The signal is applied to the antenna at the centre of the arrangement

by a feed cable. The electric �eld strength produced by the antenna at a �xed distance

is usually expressed using a spherical coordinate system. The coordinates for the

antenna and the origin of the radiation itself are assumed to be located at the antenna

feed point and the electric �eld strength is represented by the radius,R. Plots produced

like this are in general termed radiation patterns and are a useful way of visualizing

the amount of radiated �eld in a given direction, (θ, φ), for a particular antenna.

The half-wave dipole pattern is described by the equation

R = K

∣∣∣∣∣∣∣

cos
(
π

2
cosφ

)

sinφ

∣∣∣∣∣∣∣
where R represents the electric �eld strength and K is a constant for a given distance

from the antenna centre point. The equation for this simple antenna does not involve

θ , which indicates that R does not depend on it, hence there is radial symmetry to the

pattern. This function is plotted in Figure 4.29.
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Figure 4.29

The half-wave dipole antenna and its radiation pattern in spherical polar coordinates.

EXERCISES 4.7

1 A point has spherical polar coordinates (3, 40◦, 70◦).

Determine the Cartesian coordinates.

2 A point has Cartesian coordinates (1, 2, 3). Determine

the spherical polar coordinates.

3 Describe the surface R = 1, 0◦
6 θ 6 360◦,

0◦
6 φ 6 90◦.

Solutions

1 (2.1595, 1.8121, 1.0261)

2 R = 3.7417, θ = 63.43◦, φ = 36.70◦

3 A hemisphere of radius 1. The flat side is on the x--y

plane.

Technical Computing Exercises 4.7

Use a technical computing language such as

MATLAB® to produce a plot similar to Engineering

application 4.3. You may �nd it helpful to �rst generate

a set of numbers 0 6 t < 2π and then use a built in

function such as polar or polarplot to generate a

graph of the equation.

REVIEW EXERCISES 4

1 P has Cartesian coordinates (6, −3, −2). Calculate

the distance of P from the origin.

2 P has Cartesian coordinates (−4, −3). Calculate the

polar coordinates of P.

3 P has polar coordinates (5, 240◦). Calculate the

Cartesian coordinates of P.

4 Describe the surface de�ned by

1 6 r 6 4, 0◦
6 θ 6 90◦.

5 Calculate the cylindrical polar coordinates of a point

with Cartesian coordinates (−1, 4, 1).

6 Describe the surface x = 0 in three dimensions.
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7 A point has Cartesian coordinates (−1,−1, 2).

Calculate the spherical polar coordinates of the point.

8 Describe the surface R = 2, 0◦
6 θ 6 180◦,

0◦
6 φ 6 180◦.

9 Describe the three-dimensional surface de�ned

by x = y.

10 The sphere de�ned by R = 2 intersects the plane

de�ned by z = 1. Describe the curve of intersection.

Solutions

1 7

2 5, 216.87◦

3 −2.5, −4.3301

4 Figure S.10 illustrates the surface.

y

xO 1 4

Figure S.10

5 (4.1231, 104.04◦, 1)

6 y--z plane

7 R =
√
6, θ = 225◦, φ = 35.26◦

8 A hemisphere of radius 2. The flat surface is on the

x--z plane.

9 The surface is a plane generated by moving the line

y = x up and down the z axis.

10 A circle of radius
√
3, centre (0, 0, 1), in the plane

z = 1.
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5.1 INTRODUCTION

The term discrete is used to describe a growing number of modern branches of mathe-

matics involving topics such as set theory, logic, Boolean algebra, difference equations

and z transforms. These topics are particularly relevant to the needs of electrical and

electronic engineers. Set theory provides us with a language for precisely specifying a

great deal of mathematical work. In recent years this language has become particularly

important as more and more emphasis has been placed upon veri�cation of software.

Boolean algebra �nds its main use in the design of digital electronic circuits. Given

that a very large proportion of electronic circuits are digital rather than analogue, this is

an important area of study. Digital electronic circuits con�ne themselves to two effective

voltage levels rather than the range of voltage levels used by analogue electronic circuits.

These make them easier to design and manufacture as tolerances are not so critical. Dig-

ital circuits are becoming more complex each year and one of the few ways of dealing

with this complexity is to use mathematics. One of the likely trends for the future is that

more andmore circuit designs will be proved to be correct usingmathematics before they

are implemented. Difference equations and z transforms are of increasing importance

in �elds such as digital control and digital signal processing. We shall deal with these

in Chapter 22.

5.2 SET THEORY

A set is any collection of objects, things or states.
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The objects may be numbers, letters, days of the week, or, in fact, anything under discus-

sion. One way of describing a set is to list the whole collection of members or elements

and enclose them in braces { }. Consider the following examples.

A = {1, 0} the set of binary digits, one and zero

B = {off, on} the set of possible states of a two-state system

C = {high, low} the set of effective voltage levels in a digital electronic
circuit

D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} the set of digits used in the decimal system

Notice that we usually use a capital letter to represent a set. To state that a particular

object belongs to a particular set we use the symbol ∈ which means ‘is a member of’.

So, for example, we can write

off ∈ B 3 ∈ D

Likewise, /∈ means ‘is not a member of’ so that

low /∈ B 5 /∈ A

are sensible statements.

Listing members of a set is �ne when there are relatively few but is useless if we are

dealing with very large sets. Clearly, we could not possibly write down all the members

of the set of whole numbers because there are an in�nite number. To assist us special

symbols have been introduced to stand for some commonly used sets. These are

N the set of non-negative whole numbers, 0, 1, 2, 3, . . .

N+ the set of positive whole numbers, 1, 2, 3, . . .

Z the set of whole numbers, positive, negative and zero,

. . . −3,−2,−1, 0, 1, 2, 3 . . .

R the set of all real numbers

R+ the set of positive real numbers

R− the set of negative real numbers

Q the set of rational numbers

Note that a real number is any number in the interval (−∞,∞).

Another way of de�ning a set is to give a rule by which all members can be found.

Consider the following notation:

A = {x : x ∈ R and x < 2}

This reads ‘A is the set of values of x such that x is a member of the set of real numbers

and x is less than 2’. Thus A corresponds to the interval (−∞, 2). Using this notation

other sets can be de�ned.

Note that

R+ = {x : x ∈ R and x > 0}

R− = {x : x ∈ R and x < 0}
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Example 5.1 Use set notation to describe the intervals on the x axis given by

(a) [0, 2] (b) [0, 2) (c) [−9, 9]

Solution (a) {x : x ∈ R and 0 6 x 6 2}

(b) {x : x ∈ R and 0 6 x < 2}

(c) {x : x ∈ R and −9 6 x 6 9}

Sometimes we shall be content to use an English description of a set of objects, such as

M is the set of capacitors made by machine M

N is the set of capacitors made by machine N

Q is the set of faulty capacitors

5.2.1 Equal sets

Two sets are said to be equal if they contain exactly the same members. For example, the

sets {9, 5, 2} and {5, 9, 2} are identical. The order in which we write down the members

is immaterial. The sets {2, 2, 5, 9} and {2, 5, 9} are equal since repetition of elements is

ignored.

5.2.2 Venn diagrams

Venn diagrams provide a graphical way of picturing sets which often aids understanding.

The sets are drawn as regions, usually circles, from which various properties can be

observed.

Example 5.2 Suppose we are interested in discussing the set of positive whole numbers between 1

and 10. LetA = {2, 3, 4, 5} andB = {1, 3, 5, 7, 9}. The Venn diagram representing these

sets is shown in Figure 5.1. The set containing all the numbers of interest is called the

universal set,E.E is represented by the rectangular region. Sets A and B are represented

by the interiors of the circles and it is evident that 2, 3, 4 and 5 are members of Awhile 1,

3, 5, 7 and 9 are members of B. It is also clear that 6 /∈ A, 6 /∈ B, 8 /∈ A, 8 /∈ B. The

elements 3 and 5 are common to both sets.

2 3 

5
4 9

7

1
6

108

A

E

B Figure 5.1

Venn diagram for Example 5.2.

The set containing all the members of interest is called the universal set E.

It is useful to ask whether two or more sets have elements in common. This leads to the

following de�nition.
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5.2.3 Intersection

Given sets A and B, a new set which contains the elements common to both A and B is

called the intersection of A and B, written as

A ∩ B = {x : x ∈ A and x ∈ B}

In Example 5.2, we see that A ∩ B = {3, 5}, that is 3 ∈ A ∩ B and 5 ∈ A ∩ B. If the set

A∩ B has no elements we say the sets A and B are disjoint and write A∩ B = ◦/, where
◦/ denotes the empty set.

A set with no elements is called an empty set and is denoted by ◦/.
If A ∩ B = ◦/, then A and B are disjoint sets.

5.2.4 Union

Given two sets A and B, the set which contains all the elements of A and those of B is

called the union of A and B, written as

A ∪ B = {x : x ∈ A or x ∈ B or both}

In Example 5.2, A∪B = {1, 2, 3, 4, 5, 7, 9}. We note that although the elements 3 and 5

are common to both sets they are listed only once.

5.2.5 Subsets

If all the members of a set A are also members of a set B we say A is a subset of B and

write A ⊂ B. We have already met a number of subsets. Convince yourself that

N ⊂ Z and Z ⊂ R

Example 5.3 IfM represents the set of all capacitors manufactured by machine M, andMf represents

the faulty capacitors made by machine M, then clearlyMf ⊂ M.

5.2.6 Complement

If we are given a well-de�ned universal set E and a set A with A ⊂ E, then the set of

members ofE that are not in A is called the complement of A and is written as A. Clearly

A ∪ A = E. There are no members in the set A ∩ A, that is A ∩ A = ◦/.

Example 5.4 A company has a number of machines which manufacture thyristors. We consider only

two machines, M and N. A small proportion made by each is faulty. Denoting the sets

of faulty thyristors made by M and N byMf and Nf , respectively, depict this situation on

a Venn diagram. Describe the setsMf ∪ Nf and M ∪ N.

Solution Let E be the universal set of all thyristors manufactured by the company. The Venn

diagram is shown in Figure 5.2. Note in particular that M ∩ N = ◦/. There can be no

thyristors in the intersection since if a thyristor is made by machine M it cannot be made
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Venn diagram for Example 5.4.

by machine N and vice versa. Thus M and N are disjoint sets. Also note Mf ⊂ M,

Nf ⊂ N. The setMf ∪Nf is the set of faulty thyristors manufactured by either machine M

or N. The setM ∪ N is the set of thyristors made by machines other than M or N.

We have seen how the operations∩,∪ can be used to de�ne new sets. It is not dif�cult

to show that a number of laws hold, most of which are obvious from the inspection of

an appropriate Venn diagram.

5.2.7 Laws of set algebra

For any sets A, B, C and a universal set E, we have the laws in Table 5.1. From these it

is possible to prove the laws given in Table 5.2.

Table 5.1

The laws of set algebra.

A ∪ B = B ∪ A

A ∩ B = B ∩ A

}
Commutative laws

A ∪ (B ∪C) = (A ∪ B) ∪C

A ∩ (B ∩C) = (A ∩ B) ∩C

}
Associative laws

A ∩ (B ∪C) = (A ∩ B) ∪ (A ∩C)

A ∪ (B ∩C) = (A ∪ B) ∩ (A ∪C)

}
Distributive laws

A ∪ ◦/ = A

A ∩ E = A

}
Identity laws

A ∪ A = E

A ∩ A = ◦/
A = A





Complement laws

Table 5.2

Laws derivable from Table 5.1.

A ∪ (A ∩ B) = A

A ∩ (A ∪ B) = A

}
Absorption laws

(A ∩ B) ∪ (A ∩ B) = A

(A ∪ B) ∩ (A ∪ B) = A

}
Minimization laws

A ∪ B = A ∩ B

A ∩ B = A ∪ B

}
De Morgan’s laws

5.2.8 Sets and functions

If we are given two sets, A and B, a useful exercise is to examine relationships, given by

rules, between the elements of A and the elements of B. For example, if A = {0, 1, 4, 9}
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A relation between sets A and B.

s : D — E

s : m — 3m + 1
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The relation s maps elements of D to E.

and B = {−3,−2,−1, 0, 1, 2, 3} then each element of B is plus or minus the square root

of some element of A. We can depict this as in Figure 5.3.

The rule, which, when given an element of A, produces an element of B, is called a

relation. If the rule of the relation is given the symbol r we write

r : A → B

and say ‘the relation r maps elements of the set A to elements of the set B’. For the

example above, we can write r : 1 → ±1, r : 4 → ±2, and generally r : x → ±
√
x.

The set from which we choose our input is called the domain; the set to which we map

is called the co-domain; the subset of the co-domain actually used is called the range.

As we shall see this need not be the whole of the co-domain.

A relation r maps elements of a set D, called the domain, to one or more elements

of a setC, called the co-domain. We write

r : D → C

Example 5.5 If D = {0, 1, 2, 3, 4, 5} and E = {1, 4, 7, 10, 13, 16, 19, 22} and the relation with sym-

bol s is de�ned by s : D → E, s : m → 3m+ 1, identify the domain and co-domain of

s. Draw a mapping diagram to illustrate the relation. What is the range of s?

Solution The domain of s is the set of values from which we choose our input, that isD = {0, 1, 2,

3, 4, 5}. The co-domain of s is the set to which we map, that is E = {1, 4, 7, 10, 13, 16,

19, 22}. The rule s : m → 3m+1 enables us to draw the mapping diagram. For example,

s : 3 → 10 and so on. The diagram is shown in Figure 5.4. The range of s is the subset

of E actually used, in this case {1, 4, 7, 10, 13, 16}. We note that not all the elements of

the co-domain are actually used.

The notation introduced is very similar to that for functions described in Section 2.3.

This is no accident. In fact, a function is a very special form of a relation. Let us recall

the de�nition of a function:

‘A function is a rule which when given an input produces a single output’.

If we study the two relations r and s, we note that when relation r received input, it

could produce two outputs. On the mapping diagram this shows up as two arrows leaving
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some elements in A. When relation s received an input, it produced a single output. This

shows up as a single arrow leaving each element in D. Hence the relation r is not a

function, whereas the relation s is. This leads to the following more rigorous de�nition

of a function.

A function f is a relation which maps each element of a set D, called the

domain, to a single element of a setC, called the co-domain. We write

f : D → C

Example 5.6 If M = {off, on}, N = {0, 1} and we de�ne a relation r by

r : M → N

r : off → 0 r : on → 1

then the relation r is a function since each element in M is mapped to a single element

in N.

Example 5.7 If P = {0, 1} and Q = {high} and we de�ne a relation r by

r : P → Q

r : 1 → high

then r is not a function since each element in P is not mapped to an element in Q.

All of the functions described in Chapter 2 have domains which are subsets of the real

numbers R. The input to each function is the particular value of the independent variable

chosen from the domain and the output is the value of the dependent variable. When

dealing with continuous domains the graphs we have already considered replace the

mapping diagrams.

Example 5.8 Find the domain, D, of the rational function f : D → R given by

f : x →
3x

x− 2

Solution Since no domain is given, we choose it to be the largest set possible. This is the set

of all real numbers except the value x = 2 at which point f is not de�ned. We have

D = {x : x ∈ R, x 6= 2}.

EXERCISES 5.2

1 Use set notation to describe the intervals on the x axis

given by

(a) (−3, 2) (b) [0, 2] (c) [−2, −1)

(d) (3, 6] (e) |x| < 1

2 Sketch the following sets. [Hint: see Section 2.2 on

open and closed intervals.]

(a) {x : x ∈ R and 2 < x 6 4}

(b) {x : x ∈ R and −1 6 x 6 0}
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(c) {x : x ∈ R and 0 6 x < 2}

(d) {x : x ∈ R and 1 < x < 3}

3 Using the de�nitions given in Section 5.2, state

whether each of the following is true or false:

(a) 7 ∈ Z (b) R− ∩ Q = ◦/

(c) 0.7 /∈ Q (d) N+ ∪ Q = R+

(e) R− ∩ N = ◦/ (f) R ∩ Z = Z

(g) 5 ∈ Q (h) N ⊂ Q

4 If A = {1, 3, 5, 7, 9, 11} and B = {3, 4, 5, 6} �nd

(a) A ∩ B (b) A ∪ B

5 Given A = {1, 2, 3, 4, 5, 6}, B = {2, 4, 6, 8, 10} and

C = {3, 6, 9} state the elements of each of the

following:

(a) A ∩ B (b) B ∩C

(c) A ∩C (d) A ∩ B ∩C

(e) A ∩ (B ∪C) (f) B ∪ (A ∩C)

6 Write out all the members of the following sets:

(a) A = {x : x ∈ N and x < 10}

(b) B = {x : x ∈ R and 0 6 x 6 10 and x is divisible

by 3}

7 The sets A, B and C are given by A = {1, 3, 5, 7, 9},

B = {0, 2, 4, 6} andC = {1, 5, 9} and the universal

set, E = {0, 1, 2, . . . , 9}.

(a) Represent the sets on a Venn diagram.

(b) State A ∪ B.

(c) State B ∩C.

(d) State E ∩C.

(e) State A.

(f) State B ∩C.

(g) State B ∪C.

8 Use Venn diagrams to illustrate the following for

general setsC and D:

(a) C ∩ D (b) C ∪ D (c) C ∩ D

(d) C ∪ D (e) C ∩ D.

9 By drawing Venn diagrams verify De Morgan’s laws

A ∩ B = A ∪ B and A ∪ B = A ∩ B

10 For sets A = {0, 1, 2} and B = {3, 4}, draw a mapping

diagram to illustrate the following relations.

Determine which relations are functions. For those

that are not functions, give reasons for your decision.

(a) r : A → B, r : 0 → 3, r : 1 → 4, r : 2 → 4

(b) s : A → B, s : 0 → 3, s : 0 → 4, s : 1 → 3,

s : 2 → 3

(c) t : A → B, t : 0 → 3, t : 1 → 4

11 If A = {1, 3, 5, 7} and B = {1, 2, 3, 4}, draw a

mapping diagram to illustrate the relation r : A → B,

where r is the relation ‘is bigger than’. Is r a function?

Solutions

1 (a) {x : x ∈ R and −3 < x < 2}

(b) {x : x ∈ R and 0 6 x 6 2}

(c) {x : x ∈ R and −2 6 x < −1}

(d) {x : x ∈ R and 3 < x 6 6}

(e) {x : x ∈ R and −1 < x < 1}

2 See Figure S.11.

0 1 2 3 4 5

0 1 2 3  x

x

0 1 2 3 4 x

–1 0 1 x
(a)

(c)

(b)

(d)

Figure S.11

3 (a) T (b) F (c) F (d) F

(e) T (f ) T (g) T (h) T

4 (a) {3, 5} (b) {1, 3, 4, 5, 6, 7, 9, 11}

5 (a) {2, 4, 6} (b) {6} (c) {3, 6} (d) {6}

(e) {2, 3, 4, 6} (f) {2, 3, 4, 6, 8, 10}

6 (a) {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

(b) {0, 3, 6, 9}

7 (a) See Figure S.12.

7

1
5
9

8

0
2 4

6

C

B

A
3

Figure S.12

(b) {0, 1, 2, 3, 4, 5, 6, 7, 9} (c) ◦/

(d) {1, 5, 9} (e) {0, 2, 4, 6, 8}

(f) {3, 7, 8} (g) {3, 7, 8}
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C D

(a)

C D

(b)

C D

(d)

C D

(e)

C D

(c)

Figure S.13

8 See Figure S.13.

10 (a) Function

(b)Not a function since 0 is mapped to two elements

(c) Not a function since 2 is not mapped to anything

11 r is not a function because 1 is not mapped to

anything.

5.3 LOGIC

In Section 5.4 we will examine Boolean algebra. This concerns itself with the manip-

ulation of logic statements and so is suitable for analysing digital logic circuits. In this

section we introduce the basic concepts of logic by means of logic gates as these form

the usual starting point for engineers studying this topic.

5.3.1 The OR gate

The OR gate is an electronic device which receives two inputs each in the form of a

binary digit, that is 0 or 1, and produces a binary digit as output, depending upon the

values of the two inputs. It is represented by the symbol shown in Figure 5.5.

A and B are the two inputs, and F is the single output. As high (1) or low (0) voltages

are applied to A and B various possible outputs are achieved, these being de�ned by

means of a truth table as shown in Table 5.3. So, for example, if a low (0) voltage is

applied to A and a high (1) voltage is applied to B, the output is a high (1) voltage at

F . We note that a ‘1’ appears in the right-hand column of the truth table whenever A

or B takes the value 1, hence the name OR gate. We use the symbol + to represent OR.

Because it connects the variablesA and B, OR is known as a logical connective. We shall

meet other logical connectives shortly. This connective is also known as a disjunction,

so that A+ B is said to be the disjunction of A and B.

A 

B
F = A + B

Figure5.5

Symbol for an OR gate.

Table 5.3

The truth table for an OR gate

with inputs A and B.

A B F = A+ B

1 1 1

1 0 1

0 1 1

0 0 0
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A 

B
F = A . B

Figure5.6

Symbol for an AND gate.

Table 5.4

The truth table for an AND gate

with inputs A and B.

A B F = A · B

1 1 1

1 0 0

0 1 0

0 0 0

A F = A

Figure 5.7

Symbol for an inverter.

Table 5.5

The truth table for

a NOT gate.

A F = A

1 0

0 1

5.3.2 The AND gate

It is possible to construct another electronic device called an AND gate which works

in a similar way except that the output only takes the value 1 when both inputs are 1.

The symbol for this gate is shown in Figure 5.6 and the complete truth table is shown in

Table 5.4. The logical connective AND is given the symbol · and is known as a con-

junction so that A·B is said to be the conjunction of A and B.

5.3.3 The inverter or NOT gate

The inverter is a device with one input and one output and has the symbol shown in

Figure 5.7. It has a truth table de�ned by Table 5.5. If the input is A, then the output is

represented by the symbol A, known as the complement of A.

5.3.4 The NOR gate

This gate is logically equivalent to a NOT gate in series with an OR gate as shown in

Figure 5.8. It is represented by the symbol shown in Figure 5.9 and has its truth table

de�ned in Table 5.6.

A 

B
F = A + B

A + B

Figure5.8

A NOT gate in series with an OR gate.

A 

B
F = A + B

Figure5.9

Symbol for a NOR gate.

Table 5.6

The truth table for a NOR gate.

A B F = A+ B

1 1 0

1 0 0

0 1 0

0 0 1
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A 

B
F = A . B

A . B

Figure5.10

A NOT gate in series with an AND gate.

A 

B
F = A . B

Figure5.11

Symbol for a NAND gate.

Table 5.7

The truth table for a NAND gate.

A B F = A · B

1 1 0

1 0 1

0 1 1

0 0 1

5.3.5 The NAND gate

This gate is logically equivalent to a NOT gate in series with an AND gate as shown in

Figure 5.10. It is represented by the symbol shown in Figure 5.11 and has the truth table

de�ned by Table 5.7.

Although we have only examined gates with two inputs it is possible for a gate to have

more than two. For example, the Boolean expression for a four-input NAND gate would

be F = A ·B ·C ·D while that of a four-input OR gate would be F = A + B +C + D,

where A, B, C and D are the inputs, and F is the output. Logic gates form the building

blocks for more complicated digital electronic circuits.

5.4 BOOLEAN ALGEBRA

Suppose A and B are binary digits, that is 1 or 0. These, together with the logical connec-

tives + and · and also the complement NOT, form what is known as a Boolean algebra.

The quantities A and B are known as Boolean variables. Expressions such as A + B,

A ·B and A are known as Boolean expressions. More complex Boolean expressions can

be built up using more Boolean variables together with combinations of +, · and NOT;

for example, we can draw up a truth table for expressions such as (A ·B) + (C ·D).

We shall restrict our attention to the logic gates described in the last section although

the techniques of Boolean algebra are more widely applicable. A Boolean variable can

only take the values 0 or 1. For our purposes a Boolean algebra is a set of Boolean

variables with the two operations · and +, together with the operation of taking the

complement, for which certain laws hold.

5.4.1 Laws of Boolean algebra

For any Boolean variablesA,B,C, we have the laws in Table 5.8. From these it is possible

to prove the laws given in Table 5.9. Youwill notice that these laws are analogous to those

of set algebra if we interpret + as ∪, · as ∩, 1 as the universal set E, and 0 as the empty

set ◦/. In ordinary algebra, multiplication takes precedence over addition. In Boolean

algebra · takes precedence over +. So, for example, we can write the �rst absorption

law without brackets, that is

A+ A ·B = A

Similarly, the �rst minimization law becomes

A ·B+ A ·B = A

We shall follow this rule of precedence from now on.
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Table 5.8

Laws of Boolean algebra.

A+ B = B+ A

A ·B = B ·A

}
Commutative laws

A+ (B+C) = (A+ B) +C

A · (B ·C) = (A ·B) ·C

}
Associative laws

A · (B+C) = (A ·B) + (A ·C)

A+ (B ·C) = (A+ B) · (A+C)

}
Distributive laws

A+ 0 = A

A · 1 = A

}
Identity laws

A+ A = 1

A ·A = 0

A = A





Complement laws

Table 5.9

Laws derived from the laws of Table 5.8.

A+ (A ·B) = A

A · (A+ B) = A

}
Absorption laws

(A ·B) + (A ·B) = A

(A+ B) · (A+ B) = A

}
Minimization laws

A+ B = A ·B

A ·B = A+ B

}
De Morgan’s laws

A+ 1 = 1

A · 0 = 0

Example 5.9 Find the truth table for the Boolean expression A+ B ·C.

Solution We construct the table by noting that A, B andC are Boolean variables; that is, they can

take the values 0 or 1. The �rst stage in the process is to form all possible combinations of

A, B andC, as shown in Table 5.10. Then we complete the table by formingC, then B ·C

and �nally A + B ·C, using the truth tables de�ned earlier. So, for example, whenever

C = 1, C = 0. The complete process is shown in Table 5.11. Work through the table to

ensure you understand how it was constructed.

Table 5.10

The possible

combinations for three

variables, A, B andC.

A B C

1 1 1

1 1 0

1 0 1

1 0 0

0 1 1

0 1 0

0 0 1

0 0 0

Table 5.11

The truth table for A+ B ·C.

A B C C B ·C A+ B ·C

1 1 1 0 0 1

1 1 0 1 1 1

1 0 1 0 0 1

1 0 0 1 0 1

0 1 1 0 0 0

0 1 0 1 1 1

0 0 1 0 0 0

0 0 0 1 0 0
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Table 5.12

Truth table for (A+ B) · (A+C).

A B C C A+ B A+C (A+ B) · (A+C)

1 1 1 0 1 1 1

1 1 0 1 1 1 1

1 0 1 0 1 1 1

1 0 0 1 1 1 1

0 1 1 0 1 0 0

0 1 0 1 1 1 1

0 0 1 0 0 0 0

0 0 0 1 0 1 0

5.4.2 Logical equivalence

We know from the distributive laws of Boolean algebra that

A+ (B ·C) = (A+ B) · (A+C)

Let us construct the truth table for the r.h.s. of this expression (Table 5.12). If we now

observe the �nal column of Table 5.12 we see it is the same as that of Table 5.11. We say

that A+ (B ·C) is logically equivalent to (A+B) · (A+C). Figures 5.12 and 5.13 show

the two ways in which these logically equivalent circuits could be constructed using OR

gates, AND gates and inverters. Clearly different electronic circuits can be constructed

to perform the same logical task. We shall shortly explore a way of simplifying circuits

to reduce the number of components required.

B . C
A + (B . C)

C

A 

C

B

Figure 5.12

Circuit to implement A+ (B ·C).

(A + B) . (A + C)

A

A 

C

B

A + B

A + C
C

Figure 5.13

Circuit to implement (A+ B) · (A+C).

Engineering application 5.1

Boolean expression and truth table for an electronic circuit

Find the Boolean expression and truth table for the electronic circuit shown in Fig-

ure 5.14.

➔
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Solution

By labelling intermediate points in the circuit we see that X = A ·B+C. In order to

obtain the truth table we form all possible combinations of A, B and C, followed by

A ·B,C and �nally X = A ·B+C. The complete calculation is shown in Table 5.13.

A

C

B

X

Figure5.14

Circuit for Engineering application 5.1.

Table 5.13

The truth table for Figure 5.14.

A B C A ·B C X = A ·B+C

1 1 1 1 0 1

1 1 0 1 1 1

1 0 1 0 0 0

1 0 0 0 1 1

0 1 1 0 0 0

0 1 0 0 1 1

0 0 1 0 0 0

0 0 0 0 1 1

What wewould now like to be able to do is carry out the reverse process: that is, start with

a truth table and �nd an appropriate Boolean expression so that the required electronic

device can be constructed.

Example 5.10 Given inputs A, B and C, �nd a Boolean expression for X as given by the truth table in

Table 5.14.

Solution To �nd an equivalent Boolean expression the procedure is as follows. Look down the

rows of the truth table and select those with an r.h.s. equal to 1. In this example, there

are �ve such rows: 1, 2, 4, 6 and 8. Each of these rows gives rise to a term in the required

Boolean expression. Each term is constructed so that it has a value 1 for the input values

of that row. For example, for the input values of row 1, that is 1, 1, 1, we �nd A ·B ·C

has the value 1, whereas for the input values of row 2, that is 1, 1, 0, we �nd A ·B ·C

has the value 1. Carrying out this process for the other rows we �nd that the required

expression is

X = A ·B ·C + A ·B ·C + A ·B ·C + A ·B ·C + A ·B ·C (5.1)

that is, a disjunction of terms, each term corresponding to one of the selected rows. This

important expression is known as a disjunctive normal form (d.n.f.). We note that the

truth table is the same as that of Engineering application 5.1 which had Boolean expres-

sion (A ·B)+C. The d.n.f. we have just calculated, while correct, is not the simplest.

Table 5.14

The truth table for a

system with inputs A, B

andC and an output X .

A B C X

1 1 1 1

1 1 0 1

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 0

0 0 0 1

More generally, to �nd the required d.n.f. from a truth table we write down an expression

of the form

( ) + ( ) + · · · + ( )

where each term has the value 1 for the input values of that row. We could now construct

an electronic circuit corresponding to Equation (5.1) using a number of AND and OR

gates together with inverters, and it would do the required job in the sense that the desired

truth table would be achieved.
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However, we know from Engineering application 5.1 that the much simpler expres-

sion (A ·B) +C has the same truth table and if a circuit were to be built corresponding

to this it would require fewer components. Clearly what we need is a technique for �nd-

ing the simplest expression which does the desired job since the d.n.f. is not in general

the simplest. It is not obvious what is meant by ‘simplest expression’. In what follows

we shall be concerned with �nding the simplest d.n.f. It is nevertheless possible that a

logically equivalent statement exists which would give a simpler circuit. Simpli�cation

can be achieved using the laws of Boolean algebra as we shall see in Example 5.11 and

Engineering application 5.3.

Engineering application 5.2

The exclusive OR gate

We have already looked at the OR gate in Section 5.3. The full name for this type of

OR gate is the inclusive OR gate. It is so called because it gives an output of 1 when

either or both inputs are 1. The exclusive OR gate only gives an output of 1 when

either but not both inputs are 1. The truth table for this gate is given in Table 5.15 and

its symbol is shown in Figure 5.15. Using the truth table, the d.n.f. for the gate is

F = A ·B+ A ·B

The exclusive OR often arises in the design of digital logic circuits. In fact, it is

possible to buy integrated circuits that contain exclusive OR gates as basic units.

Table 5.15

The truth table for an

exclusive OR gate.

A B F

1 1 0

1 0 1

0 1 1

0 0 0

A 

B
F = A . B + A . B

Figure5.15

Symbol for an exclusive OR gate.

Example 5.11 Use the laws of Boolean algebra given in Table 5.8 to simplify the following expressions.

(a) A ·B+ A ·B

(b) A+ A ·B

(c) A+ A ·B ·C

(d) A ·B ·C + A ·B ·C + A ·B ·C + A ·B ·C + A ·B ·C

Solution (a) Using the distributive law we can write

A ·B+ A ·B = A · (B+ B)

Using the complement law, B+ B = 1 and hence

A ·B+ A ·B = A · 1

= A using the identity law



190 Chapter 5 Discrete mathematics

Hence A ·B+A ·B simpli�es to A. Note that this is the �rst minimization law given

in Table 5.9.

(b) A+ A ·B= (A+ A) · (A+ B) by the distributive law

= 1 · (A+ B) by the complement law

= A+ B using the identity law

(c) Note that A+ A ·B ·C can be written as A+ (A ·B) ·C using the associative laws.

Then

A+ (A ·B) ·C = (A+ A ·B) · (A+C) by the distributive law

= (A+ B) · (A+C) using part (b)

= A+ B ·C by the distributive law

(d) A ·B ·C + A ·B ·C + A ·B ·C + A ·B ·C + A ·B ·C

can be rearranged using the commutative law to give

A ·B ·C + A ·B ·C + A ·B ·C + A ·B ·C + A ·B ·C

This equals

A ·B · (C +C) + A ·B · (C +C) + A ·B ·C by the distributive law

= A ·B · 1 + A ·B · 1 + A ·B ·C using the complement law

= A ·B+ A ·B+ A ·B ·C using the identity law

= A · (B+ B) + A ·B ·C using the distributive law

= A+ A ·B ·C using the complement and

identity laws

Using the result of part (c) this can be further simpli�ed to A+ B ·C.

Engineering application 5.3

Design of a binary full-adder circuit

The binary adder circuit is a common type of digital logic circuit. For example, the

accumulator of a microprocessor is essentially a binary adder. The term full-adder

is used to describe a circuit which can add together two binary digits and also add

the carry-out digit from a previous stage. The outputs from the full-adder consist of

the sum value and the carry-out value. By connecting together a series of full-adders

it is possible to add together two binary words. (A binary word is a group of binary

digits, such as 0111 1010.) For example, adding together two 4-bit binary words

would require four full-adder circuits. This is shown in Figure 5.16.

The inputs A0--A3 and B0--B3 hold the two binary words that are to be added.

The outputs S0--S3 hold the result of carrying out the addition. The linesC0--C3 hold

the carry-out values from each of the stages. Sometimes there will be a carry-in to

stage 0 as a result of a previous calculation. Let us consider the design of stage 2 in

more detail. The design of the other stages will be identical. First of all a truth table

for the circuit is derived. This is shown in Table 5.16.
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S0

A0 B0

C0Stage 

0

S1

A1 B1

C1Stage 

1

S2

A2 B2

C2Stage 

2

S3

A3 B3

C3Stage 

3

Figure5.16

Four full-adders connected to allow two 4-bit binary words to

be added.

Table 5.16

Truth table for a full-adder.

C1 A2 B2 S2 C2

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Notice that there are three inputs to the circuit, C1, A2 and B2. There are also

two outputs from the circuit, S2 andC2. Writing expressions for the outputs in d.n.f.

yields

S2 = C1 ·A2 ·B2 +C1 ·A2 ·B2 +C1 ·A2 ·B2 +C1 ·A2 ·B2

C2 = C1 ·A2 ·B2 +C1 ·A2 ·B2 +C1 ·A2 ·B2 +C1 ·A2 ·B2

It is important to reduce these expressions to as simple a form as possible in order to

minimize the number of electronic gates needed to implement the expressions. So,

starting with S2,

S2 = C1 ·A2 ·B2 +C1 ·A2 ·B2 +C1 ·A2 ·B2 +C1 ·A2 ·B2

= C1 · (A2 ·B2 + A2 ·B2) +C1 · (A2 ·B2 + A2 ·B2)

by the distributive law (5.2)

Let

X = A2 ·B2 + A2 ·B2 (5.3)

Notice this is an equation for an exclusive OR gate with inputs A2 and B2.

Using Equation (5.3) we have

X = A2 ·B2 + A2 ·B2

= (A2 ·B2) · (A2 ·B2) by De Morgan’s law

= (A2 + B2) · (A2 + B2) by De Morgan’s law

= (A2 + B2) · (A2 + B2) by the complement law

= A2 ·A2 + A2 ·B2 + B2 ·A2 + B2 ·B2 by the distributive law

= 0 + A2 ·B2 + B2 ·A2 + 0 by the complement law

= A2 ·B2 + B2 ·A2 by the identity law

= A2 ·B2 + A2 ·B2 by the commutative law

It is now possible to write Equation (5.2) as

S2 = C1 ·X +C1 ·X

➔
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This is the expression for an exclusive OR gate with inputs C1 and X . It is there-

fore possible to obtain S2 with two exclusive OR gates which are usually available

as a basic building block on an integrated circuit. The circuit for S2 is shown in Fig-

ure 5.17. Turning toC2, we have

C2 = C1 ·A2 ·B2 +C1 ·A2 ·B2 +C1 ·A2 ·B2 +C1 ·A2 ·B2

= A2 ·B2 · (C1 +C1) +C1 · (A2 ·B2 + A2 ·B2) by the distributive law

= A2 ·B2 +C1 ·X by the complement law

since C1 +C1 = 1, where X is given by Equation (5.3). The output, X , has already

been generated to produce S2 but can be used again provided the exclusive OR gate

can stand feeding two inputs. Assuming this is so then the �nal circuit for the full-

adder is shown in Figure 5.18.

A2 

B2

X 

C1
S2

Figure 5.17

Circuit to implement S2 = C1 ·X +C1 ·X ,

where X = A2 ·B2 + A2 ·B2.

A2 

B2

X

S2
C1

C1 . X

A2 . B2
C2

Figure 5.18

Circuit to implement the stage 2 full-adder.

Engineering application 5.4

Realization of logic gates

Logic gates are usually constructed from one or more transistors. The most com-

mon technology used is CMOS (complementary metal-oxide semiconductor) logic,

which was invented by Frank Wanlass and was perfected whilst he was working

at Fairchild Semiconductor in the 1960s. CMOS logic makes use of two different

types of transistor known as PMOS (p-type metal-oxide semiconductor) andNMOS

(n-type metal-oxide semiconductor) transistors. Both types can be readily manufac-

tured in vast numbers on a single silicon wafer along with their associated wiring.

This principle is the constructional basis of modern microprocessors which may con-

tain billions of individual transistors. The term very-large-scale integration (VLSI)

was coined to refer to the practice of assembling such a large number of transistor

devices on a single silicon wafer.

Figure 5.19 shows the construction of a single NAND gate made from its individ-

ual transistors.
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A

PMOS 
Q1

PMOS 
Q2

NMOS 
Q3

NMOS 
Q4

VDD

0 V

B

Y

D

D

D

D

G

G

G

G

S

S

S

S

Figure 5.19

Internal construction of a single

CMOS NAND gate.

The diagram shows two PMOS transistors, labelled Q1 and Q2, connected in par-

allel. These are connected in series with two NMOS transistors, Q3 and Q4. There

are four source terminals all labelled S, together with four drain terminals labelled D.

The voltageVDD is the positive voltage supply which is connected to the drain on the

�eld effect transistors. The labellingVDD is a convention often adopted in this type of

circuit. Logic levels in a circuit like this are represented by taking a low voltage, close

to 0V, to be a logic 0 and a high voltage, close to VDD, to be a logic 1. The PMOS

transistors Q1 and Q2 each carry current between their source and drain terminals

only when a low voltage (logic 0) is connected at their gate terminal (labelled G).

The NMOS transistors Q3 and Q4 are a complementary type where current flows,

which only occurs when a high voltage, corresponding to logic 1, is presented at their

gates. Thus when both A and B are at logic 0, Q1 and Q2 are switched on and Q3 and

Q4 are switched off, hence the output is VDD, which represents logic 1. This output

is still the same if either A or B, but not both, are at logic 1 because although Q3 or

Q4 will be turned on they are connected in series and individually have no effect. If

both A and B are at logic 1, then Q1 and Q2 are switched off, and Q3 and Q4 are

switched on, hence the output will be approximately 0V, which represents logic 0.

This behaviour is consistent with the truth table given in Table 5.7.

All modern VLSI chips are designed using high-level design languages such as

VHDL (a specialized computer language for hardware) and the transistor design and

layout is fully automated. It is now rarely necessary for the microprocessor designer

to consider individual transistors or even individual gates.

EXERCISES 5.4

1 Write Boolean expressions for the output, F , from the

electronic devices shown in Figure 5.20.

2 Write Boolean expressions for the output from the

devices shown in Figure 5.21.

3 Design electronic devices which produce the

following outputs:

(a) A+ B (b) A · (B ·C) (c) (C + D) · (A+ B)

(d) A+ B (e) A ·B+ A ·B+ B ·C
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A 

B

A 

B

A

A

B

B

F

F

F

F

(a)

(b)

(c)

(d)

C

C

Figure 5.20

A(a)

(b)

B 

A

B

C

F

F

Figure 5.21

4 Draw up the truth tables for the expressions given in

Question 3.

5 Use truth tables to verify that the following pairs of

expressions are logically equivalent:

(a) p+ p · q · r + p · q and p+ q

(b) (A+ B) · (A+C) and A+ B ·C

(c) p · q · r + p · q · r + p · q · r and p · (r + q)

6 Simplify the following Boolean expressions using the

laws of Boolean algebra:

(a) A ·A ·A

(b) A ·A ·A

(c) A ·A ·A

(d) (A+ A) · (A+ A)

(e) A+ 0

(f) (A+ 1) · (A+ 1)

(g) A+ 1

7 Simplify the following Boolean expressions using the

laws of Boolean algebra:

(a) (A+ A) · (B+ B)

(b) A · (A+ B+ A ·B)

(c) (A+ A) · (A+C)
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(d) A ·B · (A+ B)

(e) A · (A+ B) ·B

(f) A ·B ·C + A ·B ·C

(g) A ·B ·C + A+ B+C

8 Construct a truth table showing A ·B and A+ B in

order to verify the logical equivalence expressed in

De Morgan’s law A ·B = A+ B. Carry out a similar

exercise to verify A+ B = A ·B.

9 Let B = 1 and then B = 0 in the absorption laws, and

use the identity laws to obtain (a) A+ A = A and

(b) A ·A = A. Verify your results using truth tables.

10 Derive Boolean expressions and truth tables for the

circuits shown in Figure 5.22.

11 Simplify the following Boolean expressions using

Boolean algebra:

(a) A ·B+ A ·B+ B ·C + A ·B ·C

(b) A · (C + A) +C ·B+ D+C + B ·C +C ·A

(c) A ·B ·C ·D+ A ·B ·C + A ·B ·C ·D+

A ·B ·C ·D+ A ·B ·C ·D

12 The truth values of the Boolean expression, X , are

given in the following tables. Write X in disjunctive

A 

B

C 

D 

E

A 

B

C 

D

E 

F

X

X

(b)

(a)

Figure 5.22

normal form. Use the laws of Boolean algebra to

simplify your expressions.

(a)
A B X

0 0 1

0 1 0

1 0 1

1 1 1

(b)

A B X

0 0 1

0 1 1

1 0 0

1 1 0

(c)
A B C X

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

(d)
A B C X

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

13 Express A ·B+ A ·B using only conjunction (AND

gate) and negation (NOT gate).

Solutions

1 (a) (A+ B) ·C (b) (A ·B) ·B

(c) (A ·B) + B+C (d) A+ B

2 (a) A ·B+ A ·B which is the same as A ·B+ A ·B

(b) (A ·B+A ·B) · (B+C) + (A ·B+ A ·B) · (B+C)

3 See Figure S.14.



196 Chapter 5 Discrete mathematics

A 

B

A 
B 
C

A
B

C

C 
D

B 

A

A 

B

(a)

(b) (d)

(c)

(e)

Figure S.14

4 (a)

A B A+ B

1 1 0

1 0 0

0 1 1

0 0 0

(b)

A B C A · (B ·C)

1 1 1 0

1 1 0 1

1 0 1 1

1 0 0 1

0 1 1 1

0 1 0 1

0 0 1 1

0 0 0 1

(c)

A B C D (C + D) · (A+ B)

1 1 1 1 1

1 1 1 0 1

1 1 0 1 1

1 1 0 0 0

1 0 1 1 1

1 0 1 0 1

1 0 0 1 1

1 0 0 0 0

0 1 1 1 0

0 1 1 0 0

0 1 0 1 0

0 1 0 0 0

0 0 1 1 1

0 0 1 0 1

0 0 0 1 1

0 0 0 0 0

(d)

A B A+ B

1 1 1

1 0 0

0 1 0

0 0 0

(e)
A B C A ·B+ A ·B+ B ·C

1 1 1 1

1 1 0 1

1 0 1 0

1 0 0 0

0 1 1 0

0 1 0 1

0 0 1 1

0 0 0 1

6 (a) A (b) 0 (c) 0 (d) A

(e) A (f) 1 (g) 0

7 (a) A · B (b) A (c) A

(d) 0 (e) 0 (f) A ·B

(g) A ·B ·C

10 (a) X = (A ·B) · (C + D+ E )

(b) X = A ·B+ A ·B+C ·D+ E + F

11 (a) A+ B ·C

(b) A+ B+C + D

(c) (A ·B) + (A ·B ·D) which can be further

simpli�ed to A · (B+ D)
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12 (a) A ·B+ A ·B+ A ·B

(b) A ·B+ A ·B

(c) A ·B ·C + A ·B ·C + A ·B ·C + A ·B ·C

(d) A ·B ·C + A ·B ·C + A ·B ·C

13 (A ·B) · (A ·B)

REVIEW EXERCISES 5

1 Classify the following as true or false:

(a) R+ ⊂ R (b) 0.667 ∈ R−

(c) 0.667 ∈ Q (d) N ∪ Z = R

(e) −6 ∈ Q (f) 9 /∈ R

(g) N ∩ Q = N (h) R− ∩ Q = ◦/

2 Use set notation to describe the following intervals on

the x axis.

(a) [−6, 9] (b) (−1, 1) (c) |x| < 1.7

(d) (0, 2] (e) |x| > 1 (f) |x| > 2

3 The sets A, B and C are given by

A = {1, 2, 6, 7, 10, 11, 12, 13}, B = {3, 4, 7, 8, 11},

C = {4, 5, 6, 7, 9, 13} and the universal set

E = {x : x ∈ N+, 1 6 x 6 13}. List the elements of

the following sets:

(a) A ∪ B (b) B ∪C (c) A ∩ B

(d) A ∩ (B ∪C) (e) A ∩ B ∩C

(f) A ∪ (B ∩C) (g) C ∪ (B ∩ A)

4 Represent the sets A, B and C described in Question 3

on a Venn diagram.

5 List all the elements of the following sets:

(a) S = {n : n ∈ Z, 5 6 n2 6 50}

(b) S = {m : m ∈ N, 5 6 m2
6 50}

(c) S = {m : m ∈ N,m2 + 2m− 15 = 0}

6 If A = {n : n ∈ Z, −10 6 n 6 20},

B = {m : m ∈ N,m > 15} list the members of A ∩ B

and write down an expression for A ∪ B.

7 Write Boolean expressions for the output, F , from the

electronic devices shown in Figure 5.23.

8 Simplify the following Boolean expressions using the

laws of Boolean algebra:

(a) A ·B · 1 (b) A+ A ·B+ B

(c) 1 + 0 (d) D · (C + B) +C ·D

(e) (A+C) · (C + A)

(f) A ·B+ A+ B (g) A ·B

(h) A+ B (i) A · (B+C) ·C

(j) (C + A+ D) · (C ·D+ A)

9 Draw up truth tables to verify that A ·B+ B and

A ·B+ A are logically equivalent.

A

(a)

(b)

(c)

B

A 

B

A 

B

C 

D

F

F

F

C

Figure 5.23
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10 Express A+ B+C + D using the Boolean

connectives AND ( · ) and negation.

11 Simplify the following expressions using the laws of

Boolean algebra:

(a) (A+ A) · (B+ B) (b) A ·B ·A

(c) (A+ B) · (A+ B) (d) A ·A

(e) A ·B ·C ·D · 1 · 0 (f) A ·B ·C ·B

(g) B ·C · 1

12 Reduce the following expressions using Boolean

algebra:

(a) A+C + A ·B · (B+C)

(b) (A+ B) ·B ·C + (A+C) · (B+ A ·C)

(c) (A+ B) · (A+C)

13 The truth tables of the Boolean expression, X , are

given in the following tables. Write the disjunctive

normal form of X in each case.

(a)
A B X

0 0 0

0 1 1

1 0 0

1 1 0

(b)
A B X

0 0 0

0 1 0

1 0 1

1 1 0

(c)
A B C X

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

(d)
A B C X

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

Solutions

1 (a) T (b) F (c) T (d) F

(e) T (f) F (g) T (h) F

2 (a) {x : x ∈ R,−6 6 x 6 9}

(b) {x : x ∈ R,−1 < x < 1}

(c) {x : x ∈ R,−1.7 < x < 1.7}

(d) {x : x ∈ R, 0 < x 6 2}

(e) {x : x ∈ R, x > 1 or x < −1}

(f) {x : x ∈ R, x > 2 or x 6 −2}

3 (a) {1, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13}

(b) {3, 4, 5, 6, 7, 8, 9, 11, 13}

(c) {7, 11}

(d) {6, 7, 11, 13}

(e) {7}

(f) {1, 2, 4, 6, 7, 10, 11, 12, 13}

(g) {4, 5, 6, 7, 9, 11, 13}

4 See Figure S.15.

A 2
1 

10

12
13

6
7

11 3

8

B

4

9
5

C

Figure S.15

5 (a) S = {−7, −6, −5, −4, −3, 3, 4, 5, 6, 7}

(b) S = {3, 4, 5, 6, 7}

(c) S = {3}

6 A ∩ B = {16, 17, 18, 19, 20}

A ∪ B = {m : m ∈ Z,m > −10}
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7 (a) (A ·B) ·C + (A ·B) ·C

(b) (A+ B) ·B

(c) (A ·B) + (C + D)

8 (a) A ·B (b) A+ B (c) 1

(d) D · (C + B) (e) C (f) A ·B

(g) A+ B (h) A ·B (i) A ·C

(j) A

10 A ·B ·C ·D

11 (a) 1 (b) 0 (c) A+ B (d) A

(e) 0 (f) 0 (g) B ·C

12 (a) A+ B ·C

(b) A ·B+ A ·C + B ·C

(c) A · (B+C)

13 (a) A ·B

(b) A ·B

(c) A ·B ·C + A ·B ·C + A ·B ·C + A ·B ·C

(d) A ·B ·C + A ·B ·C + A ·B ·C + A ·B ·C
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6.1 INTRODUCTION

Much of the material in this chapter is of a fundamental nature and is applicable to many

different areas of engineering. For example, if continuous signals or waveforms, such as

those described in Chapter 2, are sampled at periodic intervals we obtain a sequence of

measured values. Sequences also arise when we attempt to obtain approximate solutions

of equations which model physical phenomena. Such approximations are necessary if

a solution is to be obtained using a digital computer. For many problems of practical

interest to engineers a computer solution is the only possibility. The z transform is an

example of an in�nite series which is particularly important in the �eld of digital signal

processing. Signal processing is concerned with modifying signals in order to improve

them in some way. For example, the signals received from space satellites have to un-

dergo extensive processing in order to counteract the effects of noise, and to �lter out

unwanted frequencies, before they can provide, say, acceptable visual images. Digital

signal processing is signal processing carried out using a computer. So, skill in manip-

ulating sequences and series is crucial. Later chapters will develop these concepts and

show examples of their use in solving real engineering problems.
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6.2 SEQUENCES

A sequence is a set of numbers or terms, not necessarily distinct, written down in a

de�nite order.

For example,

1, 3, 5, 7, 9 and 1,
1

2
,
1

4
,
1

8
,
1

16

are both sequences. Sometimes we use the notation ‘. . .’ to indicate that the sequence

continues. For example, the sequence 1, 2, 3, . . . , 20 is the sequence of integers from 1

to 20 inclusive. These sequences have a �nite number of terms but we shall frequently

deal with ones involving an in�nite number of terms. To indicate that a sequence might

go on for ever we can use the . . . notation. Thus

2, 4, 6, 8, . . .

and

1,−1, 1,−1, . . .

can be assumed to continue inde�nitely.

In general situations we shall write a sequence as

x[1], x[2], x[3], . . .

or more compactly,

x[k] k = 1, 2, 3, . . .

An alternative notation is

x1, x2, x3, . . .

The former notation is usually used in signal processing where the terms in the sequence

represent the values of the signal. The latter notation arises in the numerical solution of

equations. Hence both forms will be required. Often x[1] will be the �rst term of the

sequence although this is not always the case. The sequence

. . . , x[−3], x[−2], x[−1], x[0], x[1], x[2], x[3], . . .

is usually written as

x[k] k = . . . ,−3,−2,−1, 0, 1, 2, 3, . . .

A complete sequence, as opposed to a speci�c term of a sequence, is often written using

braces, for example

{x[k]} = x[1], x[2], . . .

although it is common to write x[k] for both the complete sequence and a general term

in the sequence when there is no confusion, and this is the convention we shall adopt in

this book.

A sequence can also be regarded as a function whose domain is a subset of the set of

integers. For example, the function de�ned by

x: N → R x: k →
3k

2
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is the sequence

x[0] = 0 x[1] =
3

2
x[2] = 3 x[3] =

9

2
. . .

The values in the range of the function are the terms of the sequence. The independent

variable is k. Functions of this sort differ from those described in Chapter 2 because the

independent variable is not selected from a continuous interval but rather is discrete. It

is, nevertheless, possible to represent x[k] graphically as illustrated in Examples 6.1--6.3,

but instead of a piecewise continuous curve, we now have a collection of isolated points.

Example 6.1 Graph the sequences given by

(a) x[k] =

{
0 k< 0

1 k > 0
k = . . . ,−3,−2,−1, 0, 1, 2, . . . , that is k ∈ Z

(b) x[k] =

{
1 k even

−1 k odd
k ∈ Z

Solution (a) From the de�nition of this sequence, the term x[k] is zero if k< 0 and 1 if k > 0. The

graph is obtained by plotting the terms of the sequence against k (see Figure 6.1).

This sequence is known as the unit step sequence. We shall denote this by u[k].

(b) The sequence x[k] is shown in Figure 6.2.

Example 6.2 Graph the sequence de�ned by

x[k] =

{
1 k = 0

0 k 6= 0
k = . . . ,−3,−2,−1, 0, 1, 2, 3, . . .

Solution From the de�nition, if k = 0 then x[k] = 1. If k is not equal to zero the corresponding

term in the sequence equals zero. Figure 6.3 shows the graph of this sequence which is

commonly called the Kronecker delta sequence.

Example 6.3 The sequence x[k] is obtained bymeasuring or sampling the continuous function f (t) =

sin t, t ∈ R, at t = −2π, −3π/2, −π, −π/2, 0, π/2, π, 3π/2 and 2π. Write down the

terms of this sequence and show them on a graph.

–4 –3 –2 –1 1

1

x[k]

k2 3 4 5

Figure 6.1

The unit step sequence.

–4 –3 –2 –1 1

1

–1

x[k]

k2 3 4 5

Figure 6.2

The sequence x[k] =

{
1 k even

−1 k odd.
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–4 –3 –2 –1 1

1

x[k]

k2 3 4 5

Figure 6.3

The Kronecker delta sequence.

1

–1

2pp–p –––2p 0

sin t

t
p–
2

p–
2

3p–
2

3p–
2

Figure 6.4

The function f (t) = sin t with sampled points

shown.

1–1

–1

1

x[k]

–2–3–4 2 3 4 k Figure 6.5

Sequence formed from sampling

f (t) = sin t.

Solution The function f (t) = sin t, for −2π 6 t 6 2π, is shown in Figure 6.4. We sample the

continuous function at the required points. The sample values are shown as •. From the

graph we see that

x[k] = 0, 1, 0,−1, 0, 1, 0,−1, 0 k = −4,−3, . . . , 3, 4

The graph of x[k] is shown in Figure 6.5.

Sometimes it is possible to describe a sequence by a rule giving the kth term. For ex-

ample, the sequence for which x[k] = 2k, k = 0, 1, 2, . . . , is given by 1, 2, 4, 8 . . . . On

occasions, a rule gives x[k] in terms of earlier members of the sequence. For example, the

previous sequence could have been de�ned by x[k] = 2x[k−1], x[0] = 1. The sequence

is then said to be de�ned recursively and the de�ning formula is called a recurrence re-

lation or difference equation. Difference equations are particularly important in digital

signal processing and are dealt with in Chapter 22.

Example 6.4 Write down the terms x[k] for k = 0, . . . , 7 of the sequence de�ned recursively as

x[k] = x[k − 2] + x[k − 1]

where x[0] = 1 and x[1] = 1.

Solution The values of x[0] and x[1] are given. Using the given recurrence relation we �nd

x[2] = x[0] + x[1] = 2

x[3] = x[1] + x[2] = 3

Continuing in this fashion we �nd the �rst eight terms of the sequence are

1, 1, 2, 3, 5, 8, 13, 21

This sequence is known as the Fibonacci sequence.
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6.2.1 Arithmetic progressions

An arithmetic progression is a sequence where each term is found by adding a �xed

quantity, called the common difference, to the previous term.

Example 6.5 Write down the �rst �ve terms of the arithmetic progression where the �rst term is 1 and

the common difference is 3.

Solution The second term is found by adding the common difference, 3, to the �rst term, 1, and

so the second term is 4. Continuing in this way we can construct the sequence

1, 4, 7, 10, 13, . . .

A more general arithmetic progression has �rst term a and common difference d,

that is

a, a+ d, a+ 2d, a+ 3d, . . .

It is easy to see that the kth term is

a+ (k − 1)d

All arithmetic progressions can be written recursively as x[k] = x[k − 1] + d.

Arithmetic progression: a, a+ d, a+ 2d, . . .

a = �rst term, d = common difference, kth term = a+ (k − 1)d

Example 6.6 Find the 10th and 20th terms of the arithmetic progressionwith a �rst term 5 and common

difference −4.

Solution Here a = 5 and d = −4. The kth term is 5 − 4(k − 1). Therefore the 10th term is

5 − 4(9) = −31 and the 20th term is 5 − 4(19) = −71.

6.2.2 Geometric progressions

A geometric progression is a sequence where each term is found by multiplying the

previous term by a �xed quantity called the common ratio.

Example 6.7 Write down the geometric progression whose �rst term is 1 and whose common ratio

is
1

2
.

Solution The second term is found bymultiplying the �rst by the common ratio,
1

2
, that is

1

2
×1 =

1

2
. Continuing in this way we obtain the sequence

1,
1

2
,
1

4
,
1

8
, . . .
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Ageneral geometric progression has �rst term a and common ratio r and can therefore

be written as

a, ar, ar 2, ar 3, . . .

and it is easy to see that the kth term is ar k−1. All geometric progressions can be written

recursively as x[k] = rx[k − 1].

Geometric progression: a, ar, ar 2, . . .

a = �rst term, r = common ratio, kth term = ar k−1

6.2.3 More general sequences

We have already met a number of in�nite sequences. For example,

(1) x[k] = 2, 4, 6, 8, . . .

(2) x[k] = 1,
1

2
,
1

4
, . . .

In case (1) the terms of the sequence go on increasing without bound. We say the se-

quence is unbounded. On the other hand, in case (2) it is clear that successive terms get

smaller and smaller and as k → ∞, x[k] → 0. The notion of getting closer and closer to

a �xed value is very important in mathematics and gives rise to the concept of a limit. In

case (2) we say ‘the limit of x[k] as k tends to in�nity is 0’ and we write this concisely as

lim
k→∞

x[k] = 0

We say that the sequence converges to 0, and because its terms do not increase without

bound we say it is bounded.

More formally, we say that a sequence x[k] converges to a limit l if, by proceeding

far enough along the sequence, all subsequent terms can be made to lie as close to l as

we wish. Whenever a sequence is not convergent it is said to be divergent.

It is possible to have sequences which are bounded but nevertheless do not converge

to a limit. The sequence

x[k] = −1, 1,−1, 1,−1, 1, . . .

clearly fails to have a limit as k → ∞ although it is bounded, that is its values all lie

within a given range. This particular sequence is said to oscillate.

It is possible to evaluate the limit of a sequence, when such a limit exists, from knowl-

edge of its general term. To be able to do this we can make use of certain rules, the proofs

of which are beyond the scope of this book, but which we now state:

If x[k] and y[k] are two sequences such that limk→∞ x[k] = l1, and limk→∞ y[k] = l2,

where l1 and l2 are �nite, then:

(1) The sequence given by x[k] ± y[k] has limit l1 ± l2.

(2) The sequence given by cx[k], where c is a constant, has limit cl1.

(3) The sequence x[k]y[k] has limit l1l2.

(4) The sequence
x[k]

y[k]
has limit

l1

l2
provided l2 6= 0.
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Furthermore, we can always assume that

lim
k→∞

1

km
= 0 for any constant m > 0

Example 6.8 Find, if possible, the limit of each of the following sequences, x[k].

(a) x[k] =
1

k
k = 1, 2, 3, 4, . . .

(b) x[k] = 5 k = 1, 2, 3, 4, . . .

(c) x[k] = 3 +
1

k
k = 1, 2, 3, 4, . . .

(d) x[k] =
1

k + 1
k = 1, 2, 3, 4, . . .

(e) x[k] = k2 k = 1, 2, 3, 4, . . .

Solution (a) The sequence x[k] is given by

1,
1

2
,
1

3
,
1

4
, . . .

Successive terms get smaller and smaller, and as k → ∞, x[k] → 0. By proceeding

far enough along the sequence we can get as close to the limit 0 as we wish. Hence

lim
k→∞

x[k] = lim
k→∞

1

k
= 0

(b) The sequence x[k] is given by 5, 5, 5, 5, . . . . This sequence has limit 5.

(c) The sequence 3, 3, 3, 3, . . . has limit 3. The sequence 1,
1

2
,
1

3
, . . . has limit 0. There-

fore, using rule (1) we have

lim
k→∞

3 +
1

k
= 3 + 0 = 3

The terms of the sequence x[k] = 3 +
1

k
are given by 4, 3

1

2
, 3

1

3
, . . . , and by

proceeding far enough along we can make all subsequent terms lie as close to the

limit 3 as we wish.

(d) The sequence x[k] =
1

k + 1
, k = 1, 2, 3, 4, . . . , is given by

1

2
,
1

3
,
1

4
, . . .

and has limit 0.

(e) The sequence x[k] = k2, k = 1, 2, 3, 4, . . . , is given by 1, 4, 9, 16, . . . , and

increases without bound. This sequence has no limit -- it is divergent.

Example 6.9 Given a sequence with general term x[k] =
k − 1

k + 1
, �nd limk→∞ x[k].

Solution It is meaningless simply to write k = ∞ to obtain limk→∞ x[k] =
∞ − 1

∞ + 1
, since such

a quantity is unde�ned. What we should do is try to rewrite x[k] in a form in which we
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can sensibly let k → ∞. Dividing both numerator and denominator by k, we write

k − 1

k + 1
=

1 − (1/k)

1 + (1/k)

Then, as k → ∞, 1/k → 0 so that

lim
k→∞

(
1 − (1/k)

1 + (1/k)

)
=

limk→∞(1 − (1/k))

limk→∞(1 + (1/k))
by rule (4)

=
1

1

= 1

Example 6.10 Given a sequence with general term

x[k] =
3k2 − 5k + 6

k2 + 2k + 1

�nd limk→∞ x[k].

Solution Dividing the numerator and denominator by k2 introduces terms which tend to zero as

k → ∞, that is

3k2 − 5k + 6

k2 + 2k + 1
=

3 − (5/k)+ (6/k2)

1 + (2/k)+ (1/k2)

Then as k → ∞, we �nd

lim
k→∞

x[k] =
3

1
= 3

Example 6.11 Examine the behaviour of
k2

3k + 1
as k → ∞.

Solution k2

3k + 1
=

k

3 + (1/k)

As k → ∞, 1/k → 0 so that the denominator approaches 3. On the other hand, as

k → ∞ the numerator tends to in�nity so that this sequence diverges to in�nity.

EXERCISES 6.2

1 Graph the sequences given by

(a) x[k] = k, k = 0, 1, 2, 3, . . .

(b) x[k] =

{
3 k = 2

0 otherwise
k = 0, 1, 2, 3, . . .

(c) x[k] = e−k, k = 0, 1, 2, 3, . . .

2 The sequence x[k] is obtained by sampling

f (t) = cos(t + 2), t ∈ R. The sampling begins at

t = 0 and thereafter at t = 1, 2, 3, . . . . Write down

the �rst six terms of the sequence.

3 A sequence, x[k], is de�ned by

x[k] =
k2

2
+ k, k = 0, 1, 2, 3, . . .

State the �rst �ve terms of the sequence.

4 Write down the �rst �ve terms, and plot graphs, of the

sequences given recursively by

(a) x[k] =
x[k − 1]

2
, x[0] = 1
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(b) x[k] = 3x[k − 1] − 2x[k − 2],

x[0] = 2, x[1] = 1

5 A recurrence relation is de�ned by

x[n+ 1] = x[n] + 10, x[0] = 1,

n = 0, 1, 2, 3, . . .

Find x[1], x[2], x[3] and x[4].

6 A sequence is de�ned by means of the recurrence

relation

x[n+ 1] = x[n] + n2, x[0] = 1,

n = 0, 1, 2, 3, . . .

Write down the �rst �ve terms.

7 Consider the difference equation

x[n+ 2] − x[n+ 1] = 3x[n],

n = 0, 1, 2, 3, . . .

If x[0] = 1 and x[1] = 2, �nd the terms

x[2], x[3], . . . , x[6].

8 Write down the 10th and 19th terms of the arithmetic

progressions

(a) 8, 11, 14, . . .

(b) 8, 5, 2, . . .

9 An arithmetic progression is given by

b,
2b

3
,
b

3
, 0, . . .

(a) State the sixth term.

(b) State the kth term.

(c) If the 20th term has a value of 15, �nd b.

10 Write down the 5th and 10th terms of the geometric

progression 8, 4, 2, . . . .

11 Find the 10th and 20th terms of the geometric

progression with �rst term 3 and common ratio 2.

12 A geometric progression is given by

a, ar, ar2, ar3, . . .

If |(k+ 1)th term | > |kth term | and (k+ 1)th term ×

kth term < 0, which of the following, if any, must be

true?

(a) r > 1 (b) a > 1

(c) r < −1 (d) a is negative

(e) −1 < r < 1

13 A geometric progression has �rst term a = 1. The

ninth term exceeds the �fth term by 240. Find

possible values for the eighth term.

14 If x[k] =
3k + 2

k
�nd limk→∞ x[k].

15 Find limk→∞

3k + 2

k2 + 7
.

16 Find the limits as k tends to in�nity, if they exist, of

the following sequences:

(a) x[k] = k3

(b) x[k] =
2k + 3

4k + 2

(c) x[k] =
k2 + k

k2 + k + 1

17 Find limk→∞

(
6k + 7

3k − 2

)4

.

18 Find limk→∞ x[k], if it exists, when

(a) x[k] = (−1)k

(b) x[k] = 2 −
k

10

(c) x[k] =

(
1

3

)k

(d) x[k] =
3k3 − 2k2 + 4

5k3 + 2k2 + 4

(e) x[k] =

(
1

5

)2k

Solutions

2 cos 2, cos 3, cos 4, cos 5, cos 6, cos 7

3 0,
3

2
, 4,

15

2
, 12

4 (a) 1,
1

2
,
1

4
,
1

8
,
1

16
(b) 2, 1,−1,−5,−13

5 11, 21, 31, 41

6 1, 1, 2, 6, 15

7 5, 11, 26, 59, 137

8 (a) 10th term = 35, 19th term = 62

(b) 10th term = −19, 19th term = −46

9 (a) −
2b

3
(b)

b(4 − k)

3
(c) −

45

16

10
1

2
,
1

64

11 1536, 1 572 864

12 Only (c) must be true
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13 ±128

14 3

15 0

16 (a) Limit does not exist (b)
1

2
(c) 1

17 16

18 (a) Limit does not exist

(b) Limit does not exist

(c) 0 (d)
3

5
(e) 0

6.3 SERIES

Whenever the terms of a sequence are added together we obtain what is known as a

series. For example, if we add the terms of the sequence 1,
1

2
,
1

4
,
1

8
, we obtain the series

S, where

S = 1 +
1

2
+

1

4
+

1

8

This series ends after the fourth term and is said to be a �nite series. Other series we

shall meet continue inde�nitely and are said to be in�nite series.

Given an arbitrary sequence x[k], we use the sigma notation

Sn =

n∑

k=1

x[k]

to mean the sum x[1] + x[2] + · · · + x[n], the �rst and last values of k being shown

below and above the Greek letter 6, which is pronounced ‘sigma’. If the �rst term of

the sequence is x[0] rather than x[1] we would write
∑n

k=0 x[k].

6.3.1 Sum of a finite arithmetic series

An arithmetic series is the sum of an arithmetic progression. Consider the sum

S = 1 + 2 + 3 + 4 + 5

Clearly this sums to 15. When there are many more terms it is necessary to �nd a more

ef�cient way of adding them up. The equation for S can be written in two ways:

S = 1 + 2 + 3 + 4 + 5

and

S = 5 + 4 + 3 + 2 + 1

If we add these two equations together we get

2S = 6 + 6 + 6 + 6 + 6

There are �ve terms so that

2S = 5 × 6 = 30

that is

S = 15

Now a general arithmetic series with k terms can be written as

Sk = a+ (a+ d)+ (a+ 2d)+ · · · + (a+ (k − 1)d)

but rewriting this back to front, we have

Sk = (a+ (k − 1)d)+ (a+ (k − 2)d)+ · · · + (a+ d)+ a
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Adding together the �rst term in each series produces 2a+ (k−1)d. Adding the second

terms together produces 2a + (k − 1)d. Indeed adding together the ith terms yields

2a+ (k − 1)d. Hence,

2Sk = (2a+ (k − 1)d)+ (2a+ (k − 1)d)+ · · · + (2a+ (k − 1)d)︸ ︷︷ ︸
k times

that is

2Sk = k(2a+ (k − 1)d)

so that

Sk =
k

2
(2a+ (k − 1)d)

This formula tells us the sum to k terms of the arithmetic series with �rst term a and

common difference d.

Sum of an arithmetic series: Sk =
k

2
(2a+ (k − 1)d)

Example 6.12 Find the sum of the arithmetic series containing 30 terms, with �rst term 1 and common

difference 4.

Solution We wish to �nd Sk:

Sk = 1 + 5 + 9 + · · ·︸ ︷︷ ︸
30 terms

Using Sk =
k

2
(2a+ (k − 1)d) we �nd S30 =

30

2
(2 + 29 × 4) = 1770.

Example 6.13 Find the sum of the arithmetic series with �rst term 1, common difference 3 and with

last term 100.

Solution We already know that the kth term of an arithmetic progression is given by a+ (k−1)d.

In this case the last term is 100. We can use this fact to �nd the number of terms. Thus,

100 = 1 + 3(k − 1)

that is

3(k − 1) = 99

k − 1 = 33

k = 34

So there are 34 terms in this series. Therefore the sum, S34, is given by

S34 =
34

2
{2(1)+ (33)(3)}

= 17(101)

= 1717



6.3 Series 211

6.3.2 Sum of a finite geometric series

A geometric series is the sum of the terms of a geometric progression. If we sum the

geometric progression 1,
1

2
,
1

4
,
1

8
,
1

16
we �nd

S = 1 +
1

2
+

1

4
+

1

8
+

1

16
(6.1)

If there had been a large number of terms it would have been impractical to add them all

directly. However, let us multiply Equation (6.1) by the common ratio,
1

2
:

1

2
S =

1

2
+

1

4
+

1

8
+

1

16
+

1

32
(6.2)

so that, subtracting Equation (6.2) from Equation (6.1), we �nd

S−
1

2
S = 1 −

1

32

since most terms cancel out. Therefore
1

2
S =

31

32
and so S =

31

16
= 1

15

16
.

We can apply this approach more generally: when we have a geometric progression

with �rst term a and common ratio r, the sum to k terms is

Sk = a+ ar + ar 2 + ar 3 + · · · + ar k−1

Multiplying by r gives

rSk = ar + ar 2 + ar 3 + · · · + ar k−1 + ar k

Subtraction gives Sk − rSk = a− ar k, so that

Sk =
a(1 − r k)

1 − r
provided r 6= 1

This formula gives the sum to k terms of the geometric series with �rst term a and

common ratio r.

Sum of a geometric series: Sk =
a(1 − r k)

1 − r
r 6= 1

6.3.3 Sum of an infinite series

When dealing with in�nite series the situation is more complicated. Nevertheless, it is

frequently the case that the answer to many problems can be expressed as an in�nite

series. In certain circumstances, the sum of a series tends to a �nite answer as more and

more terms are included and we say the series has converged. To illustrate this idea,

consider the graphical interpretation of the series 1 +
1

2
+

1

4
+

1

8
+ · · · , as given in

Figure 6.6.

Start at 0 and move a length 1: total distance moved = 1

Move further, a length
1

2
: total distance moved = 1

1

2

Move further, a length
1

4
: total distance moved = 1

3

4
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1–
2

3–
4

7–
8

0 1 21 1 1
Figure 6.6

Graphical interpretation of the series

1 +
1

2
+

1

4
+

1

8
+ · · ·.

At each stage the extra distance moved is half the distance remaining up to the point

x = 2. It is obvious that the total distance we move cannot exceed 2 although we

can get as close to 2 as we like by adding on more and more terms. We say that the

series 1 +
1

2
+

1

4
+ · · · converges to 2. The sequence of total distances moved, given

previously,

1, 1
1

2
, 1

3

4
, 1

7

8
, . . .

is called the sequence of partial sums of the series.

For any given in�nite series
∑∞

k=1 x[k], we can form the sequence of partial sums,

S1 =

1∑

k=1

x[k] = x[1]

S2 =

2∑

k=1

x[k] = x[1] + x[2]

S3 =

3∑

k=1

x[k] = x[1] + x[2] + x[3]

...

If the sequence {Sn} converges to a limit S, we say that the in�nite series has a sum S

or that it has converged to S. Clearly not all in�nite series will converge. For example,

consider the series

1 + 2 + 3 + 4 + 5 + · · ·

The sequence of partial sums is 1, 3, 6, 10, 15, . . . . This sequence diverges to in�nity

and so the series 1 + 2 + 3 + 4 + 5 + · · · is divergent.

It is possible to establish tests or convergence criteria to help us to decide whether

or not a given series converges or diverges, but for these you must refer to a more

advanced text.

6.3.4 Sum of an infinite geometric series

In the case of an in�nite geometric series, it is possible to derive a simple formula for

its sum when convergence takes place. We have already seen that the sum to k terms is

given by

Sk =
a(1 − r k)

1 − r
r 6= 1

What we must do is allow k to become large so that more and more terms are included

in the sum. Provided that −1 < r < 1, then r k → 0 as k → ∞. Then Sk →
a

1 − r
.

When this happens we write

S∞ =
a

1 − r
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where S∞ is known as the ‘sum to in�nity’. If r > 1 or r < −1, r k fails to approach a

�nite limit as k → ∞ and the geometric series diverges.

Sum of an in�nite geometric series: S∞ =
a

1 − r
− 1 < r < 1

Example 6.14 Find the sum to k terms of the following series and deduce their sums to in�nity:

(a) 1 +
1

3
+

1

9
+

1

27
+ · · · (b) 12 + 6 + 3 + 1

1

2
+ · · ·

Solution (a) This is a geometric series with �rst term 1 and common ratio 1/3. Therefore,

Sk =
a(1 − r k)

1 − r
=

1(1 − (1/3)k)

2/3
=

3

2

(
1 −

(
1

3

)k)

As k → ∞, (1/3)k → 0 so that S∞ = 3/2.

(b) This is a geometric series with �rst term 12 and common ratio
1

2
. Therefore,

Sk = 24(1 − (1/2)k)

As k → ∞, (1/2)k → 0 so that S∞ = 24. This could, of course, have been obtained

directly from the formula for the sum to in�nity.

EXERCISES 6.3

1 An arithmetic series has a �rst term of 4 and its 30th

term is 1000. Find the sum to 30 terms.

2 Find the sum to 20 terms of the arithmetic series with

�rst term a, and common difference d, given by

(a) a = 4, d = 3 (b) a = 4, d = −3

3 If the sum to 10 terms of an arithmetic series is 100

and its common difference, d, is −3, �nd its �rst term.

4 The sum to 20 terms of an arithmetic series is

identical to the sum to 22 terms. If the common

difference is −2, �nd the �rst term.

5 Find the sum to �ve terms of the geometric series

with �rst term 1 and common ratio 1/3. Find the sum

to in�nity.

6 Find the sum of the �rst 20 terms of the geometric

series with �rst term 3 and common ratio 1.5.

7 Find the sum of the arithmetic series with �rst term 2,

common difference 2, and last term 50.

8 The sum to in�nity of a geometric series is four times

the �rst term. Find the common ratio.

9 The sum to in�nity of a geometric series is twice the

sum of the �rst two terms. Find possible values of the

common ratio.

10 Express the alternating harmonic series

1 −
1

2
+

1

3
−

1

4
+ · · · in sigma notation.

11 Write down the �rst six terms of the series
∑∞

k=0 z
−k.

12 Explain why
∑∞

k=1 x[k] is the same as
∑∞

n=1 x[n].

Further, explain why both can be written as∑∞
k=0 x[k + 1].

Solutions

1 15 060

2 (a) 650 (b) −490

3 23.5

4 41
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5 1.494, S∞ = 3
2

6 19 946

7 650

8 3
4

9 ±
1

√
2

10
∞∑
1

(−1)n+1

n

11 1 +
1

z
+

1

z2
+

1

z3
+

1

z4
+

1

z5

Technical Computing Exercises 6.3

Most technical computing languages have built-in

functions for generating geometric series. MATLAB®

has the function cumprod which calculates the

cumulative product of the numbers passed to its

input. It takes the �rst term and then successively

multiplies the succeeding arguments in turn by the

result.

For example, in MATLAB® we could type:

S=cumprod([1 0.5 0.5 0.5 0.5])

to produce the geometric series and store it in a row

vector S.

1.000000 0.500000 0.250000

0.125000 0.062500

1 Calculate the sum of all of the elements in the �nite

series given above.

2 Increase the number of elements in the series to 10

and note the difference in your answer.

3 Compare the answers to the previous two exercises to

the exact equation given at the end of Section 6.3.2

with a = 1 and r = 0.5. What would you expect to

happen if there were 100 elements in the series?

6.4 THE BINOMIAL THEOREM

It is straightforward to show that the expression (a + b)2 can be written as a2 +

2ab + b2. It is slightly more complicated to expand the expression (a + b)3 to a3 +

3a2b+ 3ab2 + b3. However, it is often necessary to expand quantities such as (a+ b)6

or (a + b)10, say, and then the algebra becomes extremely lengthy. A simple technique

for expanding expressions of the form (a+b)n, where n is a positive integer, is given by

Pascal’s triangle.

Pascal’s triangle is the triangle of numbers shown in Figure 6.7, where it is observed

that every entry is obtained by adding the two entries on either side in the preceding

row, always starting and �nishing a row with a ‘1’. You will note that the third row

down, 1 2 1, gives the coef�cients in the expansion of (a+ b)2 = 1a2 + 2ab+ 1b2,

while the fourth row, 1 3 3 1, gives the coef�cients in the expansion of (a+ b)3 =

1a3 + 3a2b+ 3ab2 + 1b3. Furthermore, the terms in these expansions are composed of

decreasing powers of a and increasing powers of b. When we come to expand the quan-

tity (a+ b)4 the row beginning ‘1 4’ in the triangle will provide us with the necessary

coef�cients in the expansion and wemust simply take care to put in place the appropriate

powers of a and b. Thus (a+ b)4 = 1a4 + 4a3b+ 6a2b2 + 4ab3 + 1b4.

1 6 15 20 15 6 1

1 5 10

+

10 5 1

1 3 3 1

1 1

1 4 6 4 1

1 2 1

1

Figure 6.7

Pascal’s triangle.
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Example 6.15 Use Pascal’s triangle to expand (a+ b)6.

Solution We look to the row commencing ‘1 6’, that is 1 6 15 20 15 6 1, because

a+ b is raised to the power 6. This row provides the necessary coef�cients. Thus,

(a+ b)6 = a6 + 6a5b+ 15a4b2 + 20a3b3 + 15a2b4 + 6ab5 + b6

Example 6.16 Expand (1 + x)7 using Pascal’s triangle.

Solution Forming the row commencing ‘1 7’ we select the coef�cients

1 7 21 35 35 21 7 1

In this example, a = 1 and b = x so that

(1 + x)7 = 1 + 7x+ 21x2 + 35x3 + 35x4 + 21x5 + 7x6 + x7

When it is necessary to expand the quantity (a + b)n for large n, it is clearly in-

appropriate to use Pascal’s triangle since an extremely large triangle would have to be

constructed. However, it is frequently the case that in such situations only the �rst few

terms in the expansion are required. This is where the binomial theorem is useful.

The binomial theorem states that when n is a positive integer

(a+ b)n = an + na n−1b+
n(n− 1)

2!
a n−2b2 +

n(n− 1)(n− 2)

3!
an−3b3

+ · · · + bn

It is also frequently quoted for the case when a = 1 and b = x, so that

(1 + x)n = 1 + nx+
n(n− 1)

2!
x2 +

n(n− 1)(n− 2)

3!
x3 + · · · + xn (6.3)

Example 6.17 Expand (1 + x)10 up to the term in x3.

Solution We could use Pascal’s triangle to answer this question and look to the row commencing

‘1 10’ but to �nd this row considerable calculations would be needed. We shall use the

binomial theorem in the form of Equation (6.3). Taking n = 10, we �nd

(1 + x)10 = 1 + 10x+
10(9)

2!
x 2 +

(10)(9)(8)

3!
x 3 + · · ·

= 1 + 10x+ 45x2 + 120x3 + · · ·

so that, up to and including x3, the expansion is

1 + 10x+ 45x 2 + 120x 3
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We have assumed in the foregoing discussion that n is a positive integer in which case

the expansion given by Equation (6.3) will eventually terminate. In Example 6.17 this

would occur when we reached the term in x10. It can be shown, however, that when n is

not a positive integer the function (1 + x)n and the expansion given by

(1 + x)n = 1 + nx+
n(n− 1)

2!
x2 +

n(n− 1)(n− 2)

3!
x3 + · · · (6.4)

have the same value provided−1 < x < 1. However, when n is not a positive integer the

series does not terminate and we must deal with an in�nite series. This series converges

when −1 < x < 1 and the expansion is then said to be valid. When x lies outside this

interval the in�nite series diverges and so bears no relation to the value of (1+ x)n. The

expansion is then said to be invalid.

The binomial theorem:

(1 + x)n = 1 + nx+
n(n− 1)

2!
x2 +

n(n− 1)(n− 2)

3!
x3 + · · · − 1 < x < 1

Example 6.18 Use the binomial theorem to expand
1

1 + x
in ascending powers of x up to and including

the term in x3.

Solution
1

1 + x
can be written as (1+ x)−1. Using the binomial theorem given by Equation (6.4)

with n = −1, we �nd

(1 + x)−1 = 1 + (−1)x+
(−1)(−2)

2!
x2 +

(−1)(−2)(−3)

3!
x3 + · · ·

= 1 − x+ x2 − x3 + · · ·

provided −1 < x < 1. Consequently, if in future applications we come across the series

1 − x + x2 − x3 + . . . , we shall be able to write it in the form (1 + x)−1. This closed

form avoids the use of an in�nite series and so it is easier to handle. We shall make use

of this technique in Chapter 22 when we meet the z transform.

Example 6.19 Obtain a quadratic approximation to (1 − 2x)1/2 using the binomial theorem.

Solution Using Equation (6.4) with x replaced by −2x and n =
1

2
we have

(1 − 2x)1/2 = 1 +

(
1

2

)
(−2x)+

(1/2)(−1/2)

2!
(−2x)2 + · · ·

= 1 − x−
1

2
x2 + · · ·

provided that −1 < −2x < 1, that is −
1

2
< x <

1

2
. A quadratic approximation is

therefore 1 − x−
1

2
x2.
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EXERCISES 6.4

1 Use the binomial theorem to expand

(a) (1 + x)3 (b) (1 + x)4 (c)

(
1 +

x

3

)4

(d)

(
1 −

x

2

)5

(e)

(
2 +

x

2

)5

(f)

(
3 −

x

4

)4

2 Use Pascal’s triangle to expand (a+ b)8.

3 Use Pascal’s triangle to expand (2x+ 3y)4.

4 Expand (a− 2b)5.

5 Use the binomial theorem to �nd the expansion of

(3 − 2x)6 up to and including the term in x3.

6 Obtain the �rst four terms in the expansion of(
1 +

1

2
x

)10

.

7 Obtain the �rst �ve terms in the expansion of

(1 + 2x)1/2. State the range of values of x for which

the expansion is valid. Choose a value of x within the

range of validity and compute values of your

expansion for comparison with the true function

values.

8 Expand

(
1 +

1

2
x

)−4

in ascending powers of x up to

the term in x4, stating the range of values of x for

which the expansion is valid.

9 Expand

(
1 +

1

x

)−1/2

in descending powers up to the

fourth term.

10 (a) Expand (1 + x2)4.

(b) Expand (1 + 1/x2)4.

11 A function, f (x), is given by

f (x) =

(
1 +

1

x

)1/2

(a) Obtain the �rst four terms in the expansion of

f (x) in descending powers of x. State the range

of values of x for which the expansion is valid.

(b) By writing f (x) in the form

f (x) = x−1/2(1 + x)1/2

obtain the �rst four terms in the expansion of

f (x) in ascending powers of x. State the range of

values of x for which the expansion is valid.

12 The function, g(x), is de�ned by

g(x) =
1

(1 + x2)4

(a) Obtain the �rst four terms in the expansion of

g(x) in ascending powers of x. State the range of

values of x for which the expansion is valid.

(b) By rewriting g(x) in an appropriate form, obtain

the �rst four terms in the expansion of g(x) in

descending powers of x. State the range of values

of x for which the expansion is valid.

Solutions

1 (a) 1 + 3x+ 3x2 + x3

(b) 1 + 4x+ 6x2 + 4x3 + x4

(c) 1 +
4x

3
+

2x2

3
+

4x3

27
+
x4

81

(d) 1 −
5x

2
+

5x2

2
−

5x3

4
+

5x4

16
−
x5

32

(e) 32 + 40x+ 20x2 + 5x3 +
5x4

8
+
x5

32

(f) 81 − 27x+
27x2

8
−

3x3

16
+

x4

256

2 a8 + 8a7b+ 28a6b2 + 56a5b3 + 70a4b4 + 56a3b5 +

28a2b6 + 8ab7 + b8

3 16x4 + 96x3y+ 216x2y2 + 216xy3 + 81y4

4 a5 − 10a4b+ 40a3b2 − 80a2b3 + 80ab4 − 32b5

5 729 − 2916x+ 4860x2 − 4320x3

6 1 + 5x+
45x2

4
+ 15x3

7 1 + x−
x2

2
+
x3

2
−

5x4

8
valid for −

1

2
< x <

1

2

8 1 − 2x+
5x2

2
−

5x3

2
+

35x4

16
valid for −2 < x < 2

9 1 −
1

2x
+

3

8x2
−

5

16x3
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10 (a) 1 + 4x2 + 6x4 + 4x6 + x8

(b) 1 +
4

x2
+

6

x4
+

4

x6
+

1

x8

11 (a) 1 +
1

2x
−

1

8x2
+

1

16x3
valid for |x| > 1

(b) x−1/2

(
1 +

x

2
−
x2

8
+
x3

16

)
valid for |x| < 1

12 (a) 1 − 4x2 + 10x4 − 20x6 valid for |x| < 1

(b) x−8

(
1 −

4

x2
+

10

x4
−

20

x6
· · ·

)
valid for |x| > 1

6.5 POWER SERIES

A particularly important class of series are known as power series and these are in�nite

series involving integer powers of the variable x. For example,

1 + x+ x2 + x3 + · · ·

and

1 + x+
x2

2
+
x3

6
+ · · ·

are both power series. Note that a power series can be regarded as an in�nite polynomial.

Many common functions can be expressed in terms of a power series, for example

sin x = x−
x3

3!
+
x5

5!
− · · · x in radians

which converges for any value of x. For example,

sin(0.5) = 0.5 −
(0.5)3

6
+
(0.5)5

120
− · · ·

Taking just the �rst three terms, we �nd

sin(0.5) ≈ 0.5 − 0.020 833 3 + 0.000 260 4 = 0.479 427 1

as compared with the true value, sin 0.5 = 0.479 425 5.

More generally, a power series is only meaningful if the series converges for the

particular value of x chosen. We de�ne an important quantity known as the radius of

convergence, R, as the largest value for which an x chosen in the interval −R < x < R

causes the series to converge.

The open interval (−R,R) is known as the interval of convergence. Tests for conver-

gence of a power series are the subject of more advanced texts. Further consideration will

be given to power series in Chapter 18, but for future reference we give some common

expansions now:

sin x = x−
x3

3!
+
x5

5!
− · · · x in radians

cos x = 1 −
x2

2!
+
x4

4!
− · · · x in radians

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+ · · ·

all of which converge for any value of x.
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Each of these series converges rapidly when x is small, and so can be used to obtain

useful approximations. In particular, we note that

If x is small and measured in radians

sin x ≈ x and cos x ≈ 1 −
x2

2!

These formulae are known as the small-angle approximations.

EXERCISES 6.5

1 The power series expansion of ex is given by

ex = 1 + x+
x2

2!
+
x3

3!
+ · · ·

and is valid for any x. Take four terms of the series

when x = 0, 0.1, 0.5 and 1, to compare the sum to four

terms with the value of ex obtained from your

calculator. Comment upon the result.

2 Using the power series expansion for cos x:

(a) Write down the power series expansion for

cos 2x.

(b) Write down the power series expansion for

cos(x/2).

By considering the power series expansion for

cos(−x) show that cos x = cos(−x).

3 By considering the power series expansion of ex �nd∑∞
k=0 1/k!.

4 Obtain a cubic approximation to ex sin x.

5 (a) State the power series expansion for e−x.

(b) By using your solution to (a) and the expansion

for ex, deduce the power series expansions of

cosh x and sinh x.

Solutions

1

x ex Sum to 4 terms

0 1 1

0.1 1.1052 1.1052

0.5 1.6487 1.6458

1 2.7183 2.6667

Values are in close agreement when x is small.

2 (a) 1 − 2x2 +
2x4

3
− · · · (b) 1 −

x2

8
+

x4

384
− · · ·

3 e

4 x+ x2 +
x3

3

5 (a) 1 − x+
x2

2!
−
x3

3!
+ · · ·

(b) cosh x = 1 +
x2

2!
+
x4

4!
+ · · · ,

sinh x = x+
x3

3!
+
x5

5!
+ · · ·

6.6 SEQUENCES ARISING FROM THE ITERATIVE SOLUTION
OF NON-LINEAR EQUATIONS

It is often necessary to solve equations of the form f (x) = 0. For example,

f (x) = x 3 − 3x 2 + 7 = 0, f (x) = ln x−
1

x
= 0

To solve means to �nd values of x which satisfy the given equation. These values are

known as roots. For example, the roots of x2 − 3x+ 2 = 0 are x = 1 and x = 2 because
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when these values are substituted into the equation both sides are equal. Equations where

the unknown quantity, x, occurs only to the �rst power are called linear equations.

Otherwise an equation is non-linear. A simple way of �nding the roots of an equation

f (x) = 0 is to sketch a graph of y = f (x) as shown in Figure 6.8.

The roots are those values of x where the graph cuts or touches the x axis.

Generally, there is no analytical way of solving the equation f (x) = 0 and so it is often

necessary to resort to approximate or numerical techniques of solution. An iterative

technique is one which produces a sequence of approximate solutions which may con-

verge to a root. Iterative techniques can fail in that the sequence produced can diverge.

Whether or not this happens depends upon the equation to be solved and the availability

of a good estimate of the root. Such an estimate could be obtained by sketching a graph.

The technique we shall describe here is known as simple iteration. It requires that the

equation be rewritten in the form x = g(x). An estimate of the root is made, say x0, and

this value is substituted into the r.h.s. of x = g(x). This yields another estimate, x1. The

process is then repeated. Formally we express this as

xn+1 = g(xn)

This is a recurrence relation which produces a sequence of estimates x0, x1, x2, . . . .

Under certain circumstances the sequence will converge to a root of the equation. It

is particularly simple to program this technique on a computer. A check would be built

into the program to test whether or not successive estimates are converging.

Example 6.20 Solve the equation f (x) = e−x − x = 0 by simple iteration.

Solution The equation must �rst be arranged into the form x = g(x), and so we write e−x − x = 0

as

x = e−x

In this example we see that g(x) = e−x. The recurrence relation which will produce

estimates of the root is

xn+1 = e−x
n

x

f (x)

Figure6.8

A root of f (x) = 0 occurs where the

graph touches or crosses the x axis.

Table 6.1

Iterative solution of

e−x − x = 0.

n xn

0 0

1 1

2 0.368

3 0.692

4 0.501

5 0.606

6 0.546
.
.
.

.

.

.

.

.

. 0.567
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Suppose we estimate x0 = 0. Then

x1 = e−x
0 = e−0 = 1

Then

x2 = e−x
1 = e−1 = 0.368

The process is continued. The calculation is shown in Table 6.1 from which we see that

the sequence eventually converges to 0.567 (3 d.p.). We conclude that x = 0.567 is a

root of e−x − x = 0.

Note that if the equation to be solved involves trigonometric functions, angles will usu-

ally be measured in radians and not degrees.

It is possible to devise a test to check whether any given rearrangement will converge.

For details of this you should refer to a textbook on numerical analysis. There are other

more sophisticated iterative methods for the solution of non-linear equations. One such

method, the Newton--Raphson method, is discussed in Chapter 12.

EXERCISES 6.6

1 Show that the quadratic equation x2 − 5x− 7 = 0 can

be written in the form x =
√
7 + 5x. With x0 = 6

locate a root of this equation.

2 For the quadratic equation of Question 1 show that an

alternative rearrangement is

x =
x2 − 7

5
. With x0 = 0.6 �nd the second

solution of this equation.

3 For the quadratic equation of Question 1 show that

another rearrangement is x =
7

x
+ 5. Try to

solve the equation using various initial estimates.

Investigate further alternative arrangements of the

original equation.

4 Show that one recurrence relation for the solution of

the equation

ex + 10x− 3 = 0

is

xn+1 =
3 − exn

10

With x0 = 0 locate a root of the given equation.

5 (a) Show that the cubic equation x3 + 3x− 5 = 0

can be written as

(i) x =
5 − x3

3
,

(ii) x =
5

x2 + 3
.

(b) By sketching a graph for values of x between 0

and 3 obtain a rough estimate of the root of the

equation given in part (a).

(c) Determine which, if either, of the arrangements

in part (a) converges more rapidly to the root.

Solutions

1 6.14

2 −1.14

4 0.18

5 (b) 1.15

(c) Arrangement (ii) converges more rapidly
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Technical Computing Exercises 6.6

Write a computer program to implement the simple

iteration method. By comparing successive estimates

the program should check whether convergence is

taking place.

REVIEW EXERCISES 6

1 Write down and graph the �rst �ve terms of the

sequences x[k] de�ned by

(a) x[k] = (−1)k, k = 0, 1, 2, 3, . . .

(b) x[k] =
(−1)k

2k + 1
, k = 0, 1, 2, 3, . . .

2 Find expressions for the kth terms of the sequences

whose �rst �ve terms are

(a) 1, 9, 17, 25, 33

(b) −1, 1, −1, 1, −1

3 For the Fibonacci sequence

1, 1, 2, 3, 5, 8, . . .

show that

lim
k→∞

x[k + 1]

x[k]
=

1

2

(
1 +

√
5
)

[Hint: write x[k + 1] = x[k] + x[k − 1], form

x[k + 1]/x[k] and take limits.]

4 Use the binomial theorem to expand (1 + x+ x2)5 as

far as the term in x3.

5 Use the binomial theorem to expand
1

(3 + x)3

in ascending powers of x as far as the term in x3.

6 The power series expansion for ln(1 + x) is given by

ln(1 + x) = x−
x2

2
+
x3

3
−
x4

4
+ · · ·

and is valid for −1< x 6 1. Take a number of values

of x in this interval and obtain an approximate value

of ln(1 + x) by means of this series. Compare your

answers with the values obtained from your calculator.

7 By multiplying both numerator and denominator of
√
k + 1 −

√
k

2
by

√
k + 1 +

√
k �nd

lim
k→∞

√
k + 1 −

√
k

2

8 Find lim
k→∞

(
3k − 1

2k + 7

)3

.

9 Find lim
k→∞

2k5 − 3k2

7k7 + 2k
.

10 Write down the �rst eight terms of the series
∑n

k=1 k.

By noting that this is an arithmetic series show that

n∑

k=1

k =
n(n+ 1)

2

11 Write down the �rst six terms of the sequence de�ned

by the recurrence relation

x[n+ 3] = x[n+ 2] − 2x[n]

x[0] = 0 x[1] = 2 x[2] = 3

12 Find the limit, if it exists, as k → ∞ of the geometric

progression

a, ar, ar2, . . . , ar k−1, . . .

when

(a) −1 < r < 1

(b) r > 1

(c) r < −1

(d) r = 1

(e) r = −1

13 An arithmetic series has a �rst term of 4 and the 10th

term is 0.

(a) Find S20.

(b) If Sn = 0, �nd n.

14 A geometric series has

S3 =
37

8
S6 =

3367

512

Find the �rst term and the common ratio.
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15 (a) Write down the series given by
∑5

r=1 r
2.

(b) The sum of the squares of the �rst n whole

numbers can be found from the formula
n∑

r=1

r2 =
n(n+ 1)(2n+ 1)

6

Use this formula to �nd

(i)
∑5

r=1 r
2, (ii)

∑10
r=1 r

2, (iii)
∑10

r=6 r
2.

16 (a) Write down the series given by
∑6

r=1 r
3.

(b) The sum of the cubes of the �rst n whole

numbers can be found from the formula

n∑

r=1

r3 =

(
n(n+ 1)

2

)2

Use this formula to �nd

(i)
∑6

r=1 r
3, (ii)

∑12
r=1 r

3, (iii)
∑12

r=7 r
3.

17 The third term of an arithmetic progression is 18. The

�fth term is 28. Find the sum of 20 terms.

18 (a) Find an expression for the general term in the

sequence

2, 5, 10, 17, . . .

(b) De�ne the sequence in terms of a recurrence

relation.

19 (a) Show that the equation x3 + 2x− 14 = 0 can be

rearranged into the form x =
3
√
14 − 2x. With

x0 = 2 use simple iteration to �nd a root of the

equation.

(b) Rearrange the equation 0.8 sin x− 0.5x = 0 into

the form x = g(x). With x0 = 2 use simple

iteration to �nd a root of the equation.

(c) Rearrange the equation x3 = 2e−x into the form

x = g(x). With x0 = 0 use simple iteration to �nd

a root of the equation.

20 Write out explicitly the �rst four terms of the series

∞∑

m=0

(−1)mx2m

22m(m!)2
.

21 Write out explicitly the �rst four terms of the series

∞∑

m=0

(−1)mx2m+1

22m+1m!(m+ 1)!
.

Solutions

1 (a) 1,−1, 1,−1, 1 (b) 1,−
1

3
,
1

5
,−

1

7
,
1

9

2 (a) 8k − 7 k > 1 (b) (−1)k k > 1

4 1 + 5x+ 15x2 + 30x3

5
1

27

(
1 − x+

2x2

3
−

10x3

27
+ · · ·

)

7 0

8
27

8

9 0

11 0, 2, 3, 3, −1,−7

12 (a) 0 (b) no limit (c) no limit

(d) a (e) no limit

13 (a) −
40

9
(b) 19

14 2,
3

4

15 (a) 1 + 4 + 9 + 16 + 25

(b) (i) 55 (ii) 385 (iii) 330

16 (a) 1 + 8 + 27 + 64 + 125 + 216

(b) (i) 441 (ii) 6084 (iii) 5643

17 1110

18 (a) x[k] = k2 + 1, k = 1, 2, 3, . . .

(b) x[k + 1] = x[k] + 2k + 1

19 (a) 2.13

(b) x = 1.6 sin x, 1.6

(c) x =
3
√
2e−x, 0.93

20 1 −
1

4
x2 +

1

64
x4 −

1

2304
x6 + · · ·

21
1

2
x−

1

16
x3 +

1

384
x5 −

1

18432
x7 + · · ·
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7.1 INTRODUCTION

Certain physical quantities are fully described by a single number: for example, the mass

of a stone, the speed of a car. Such quantities are called scalars. On the other hand,

some quantities are not fully described until a direction is speci�ed in addition to the

number. For example, a velocity of 30 metres per second due east is different from a

velocity of 30 metres per second due north. These quantities are called vectors and it is

important to distinguish them from scalars. There are many engineering applications in

which vector and scalar quantities play important roles. For example, speed, potential,

work and energy are scalar quantities, while velocity, electric and magnetic forces, the

position of a robot and the state-space representation of a system can all be described

by vectors. A variety of mathematical techniques have been developed to enable useful

calculations to be carried out using vectors and in this chapter these will be discussed.

7.2 VECTORS AND SCALARS: BASIC CONCEPTS

Scalars are the simplest quantities with which to deal; the speci�cation of a single num-

ber is all that is required. Vectors also have a direction and it is useful to consider a graph-

ical representation. Thus the line segment AB of length 4 in Figure 7.1 can represent
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A

B

a

Figure 7.1

A vector,
→

AB, of length 4.

A
AB

B

C

D
CD

Figure 7.2

Two equal vectors.

a vector in the direction shown by the arrow on AB. This vector is denoted by
→

AB.

Note that
→

AB 6=
→

BA. The vector
→

AB is directed from A to B, but
→

BA is directed from

B to A.

An alternative notation is frequently used: we denote
→

AB by a. This bold notation

is commonly used in textbooks but the notation a is preferable for handwritten work.

We now need to refer to the diagram to appreciate the intended direction. The length of

the line segment represents the magnitude, or modulus, of the vector and we use the

notation |
→

AB|, |a| or simply a to denote this. Note that whereas a is a vector, |a| is a

scalar.

7.2.1 Negative vectors

The vector −a is a vector in the opposite direction to, but with the same magnitude as,

a. Geometrically it will be
→

BA. Thus −a is the same as
→

BA.

7.2.2 Equal vectors

Two vectors are equal if they have the same magnitude and direction. In Figure 7.2 vec-

tors
→

CD and
→

AB are equal even though their locations differ. This is a useful property of

vectors: a vector can be translated, maintaining its length and direction without changing

the vector itself. There are exceptions to this property. For example, we shall soon meet

position vectors which are used to locate speci�c �xed points in space. They clearly

cannot be moved around freely. Nevertheless most of the vectors we shall meet can be

translated freely, and as such are often called free vectors.

7.2.3 Vector addition

It is frequently useful to add two or more vectors together and the addition of vectors is

de�ned by the triangle law. Referring to Figure 7.3, if we wish to add
→

AB to
→

CD,
→

CD is

translated until C and B coincide. As mentioned earlier, this translation does not change

the vector
→

CD. Then the sum,
→

AB+
→

CD, is de�ned by the vector represented by the third

side of the completed triangle, that is
→

AD (Figure 7.4). Thus,

→

AB+
→

CD =
→

AD

Similarly, if
→

AB is denoted by a,
→

CD is denoted by b,
→

AD is denoted by c, then we have

c = a + b

We note that to add a and b a triangle is formed using a and b as two of the sides in such

a way that the head of one vector touches the tail of the other as shown in Figure 7.4.

The sum a + b is then represented by the third side.
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D

C

b

B

A

a

Figure 7.3

Two vectors,
→

AB and
→

CD.

AB

D

CB

A

a

c
b

AD

CD

Figure 7.4

Addition of the two vectors of Figure 7.3 using

the triangle law.

It is possible to prove the following rules:

a + b = b + a vector addition is commutative

a + (b + c) = (a + b)+ c vector addition is associative

To see why it is appropriate to add vectors using the triangle law consider Examples 7.1

and 7.2.

Engineering application 7.1

Routing of an automated vehicle

Automated vehicles are a common feature of the modern warehouse. Sometimes they

are guided by tracks set into the factory floor. Consider the case of an automated

vehicle carrying electrical components from stores at A to workers at C as illustrated

in Figure 7.5.

The vehicle may arrive at C either directly, or via point B. The movement from A

to B can be represented by a vector
→

AB known as a displacement vector, whose mag-

nitude is the distance between points A and B. Similarly, movement from B to C is

represented by
→

BC, andmovement directly fromA to C is represented by
→

AC. Clearly,

since A, B and C are �xed points, these displacement vectors are �xed too. Since the

head of the vector
→

AB touches the tail of the vector
→

BCwe are ready to use the triangle

law of vector addition to �nd the combined effect of the two displacements:
→

AB+
→

BC =
→

AC

This means that the combined effect of displacements
→

AB and
→

BC is the displacement
→

AC. We say that
→

AC is the resultant of
→

AB and
→

BC.

AB

C

B

A

AC
BC

Figure 7.5

Routing of an automated vehicle from stores at

A to workers at C.
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In considering motion from point A to point B, the vector
→

AB is called a displace-

ment vector.

Engineering application 7.2

Resultant of two forces acting on a body

Sometimes it is useful to be able to calculate the resultant force when several different

forces act on a body. Consider the simplest case when there are two forces.

A forceF1 of 2N acts vertically downwards, and a forceF2 of 3N acts horizontally

to the right, upon the body shown in Figure 7.6. Translating F1 until its tail touches

the head of F2 we can apply the triangle law to �nd the combined effect of the two

forces. This is a single force R known as the resultant of F2 and F1. We write

R = F2 + F1

and say that R is the vector sum of F2 and F1. The resultant force, R, acts at an angle

of θ to the vertical, where tan θ = 3/2, and has a magnitude given by Pythagoras’s

theorem as
√
22 + 32 =

√
13 N.

F2

R

u

u
F1 Figure 7.6

Resultant force, R, produced by a vertical force, F1, and a

horizontal force, F2.

Engineering application 7.3

Resolving a force into two perpendicular directions

In the previous example we saw that two forces acting upon a body can be replaced by

a single force which has the same effect. Equivalently we can consider a single force

as two forces acting at right angles to each other. Consider the force F in Figure 7.7.

It can be replaced by two forces, one of magnitude |F| cos θ and one of magnitude

|F| sin θ as shown.We say that the forceF has been resolved into two perpendicular

components.

For example, Figure 7.8 shows a force of 5 N acting at an angle of 30◦ to the x

axis. It can be resolved into two components. The �rst component is directed along

the x axis and has magnitude 5 cos 30◦ N. The second component is perpendicular

to the �rst and has magnitude 5 sin 30◦ N. These two components combine to have

the same effect as the original 5 N force.

➔
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F

F cos u

u

F sin u

Figure 7.7

A force F can be resolved into two

perpendicular components.

5 sin 30°

30°

x
5 cos 30°

5

Figure 7.8

The 5 N force can be resolved into two

perpendicular components.

Example 7.1 Vectors p,q, r and s form the sides of the square shown in Figure 7.9. Express

(a) p in terms of r

(b) s in terms of q

(c) diagonal
→

BD in terms of q and r

Solution (a) The vector p has the same length as r but has the opposite direction. Therefore

p = −r.

(b) Vector s has the same length as q but has the opposite direction. Therefore s = −q.

(c) The head of
→

BC coincides with the tail of
→

CD. Therefore, by the triangle law of

addition, the third side of triangle BCD represents the sum of
→

BC and
→

CD, that is
→

BD =
→

BC+
→

CD

= q + r

7.2.4 Vector subtraction

Subtraction of one vector from another is performed by adding the corresponding neg-

ative vector; that is, if we seek a − b, we form a + (−b).

Example 7.2 Consider the rectangle illustrated in Figure 7.10 with a and b as shown. Express in terms

of A, B, C or D the vectors a − b and b − a.

B
q

rp

s

C

DA

Figure 7.9

The vectors p,q, r and s form the sides

of a square.

B

a

b

C

DA

Figure 7.10

The rectangle ABCD.
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B

DA

AB

DA

DB

Figure 7.11

The vectors
→

AB and
→

DA.

B

DA

BA

AD

BD

Figure 7.12

The vectors
→

BA and
→

AD.

Solution We have

b =
→

AD

hence

−b =
→

DA

Then

a − b = a + (−b)

=
→

AB+
→

DA

=
→

DA+
→

AB by commutativity

→

DA and
→

AB are shown in Figure 7.11. Their sum is given by the triangle law, that is

a − b =
→

DA+
→

AB =
→

DB

Similarly,

a =
→

AB

hence

−a =
→

BA

Then

b − a = b + (−a)

=
→

AD+
→

BA

=
→

BA+
→

AD

→

BA and
→

AD are shown in Figure 7.12. Again their sum is given by the triangle law, that is

b − a =
→

BA+
→

AD =
→

BD

Example 7.3 Referring to Figure 7.13, if r1 and r2 are as shown, �nd the vector b =
→

QP represented

by the third side of the triangle OPQ.

Solution From Figure 7.13 we note from the triangle law that

→

QP =
→

QO+
→

OP =
→

OP+
→

QO by commutativity.

But
→

QO = −r2 and
→

QP = b, and so

b = r1 − r2



230 Chapter 7 Vectors

O

Q

P

b

r2

r1

Figure 7.13

The two vectors r1 and r2.

O

Q

R

P

p

q

r

Figure 7.14

The tetrahedron OPQR.

P

Q

O

p q

PQ

Figure 7.15

The triangle OPQ.

Vectors do not necessarily lie in a two-dimensional plane. Three-dimensional vectors

are commonly used as is illustrated in the following example.

Example 7.4 OPQR is the tetrahedron shown in Figure 7.14. Let
→

OP = p,
→

OQ = q and
→

OR = r.

Express
→

PQ,
→

QR and
→

RP in terms of p, q and r.

Solution Consider the triangle OPQ shown in Figure 7.15. We note that
→

OQ represents the third

side of the triangle formed when p and
→

PQ are placed head to tail. Using the triangle law

we �nd
→

OP+
→

PQ =
→

OQ

Therefore,

→

PQ =
→

OQ−
→

OP

= q − p

Similarly,
→

QR = r − q and
→

RP = p − r.

7.2.5 Multiplication of a vector by a scalar

If k is any positive scalar and a is a vector then ka is a vector in the same direction as a

but k times as long. If k is any negative scalar, ka is a vector in the opposite direction to

a, and k times as long. By way of example, study the vectors in Figure 7.16. Clearly 2a

is twice as long as a but has the same direction. The vector
1

2
b is half as long as b but

has the same direction as b. It is possible to prove the following rules.

For any scalars k and l, and any vectors a and b:

k(a + b) = ka + kb

(k + l)a = ka + la

k(la) = (kl)a

The vector ka is said to be a scalar multiple of a.
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2a b

b
a 1–

2

Figure 7.16

Scalar multiplication of a vector.

A

B

C

M

ab

Figure 7.17

The triangle ABC, with midpoint M

of side AB.

Example 7.5 In a triangle ABC, M is the midpoint of AB. Let
→

AB be denoted by a, and
→

BC by b.

Express
→

AC,
→

CA and
→

CM in terms of a and b.

Solution The situation is sketched in Figure 7.17. Using the triangle rule for addition we �nd

→

AB+
→

BC =
→

AC

Therefore,

→

AC = a + b

It follows that
→

CA = −
→

AC = −(a + b).

Again by the triangle rule applied to triangle CMB we �nd

→

CM =
→

CB+
→

BM

Now
→

BM =
1

2

→

BA = −
1

2
a and so

→

CM = −b +

(
−

1

2
a

)

= −

(
b +

1

2
a

)

7.2.6 Unit vectors

Vectors which have length 1 are called unit vectors. If a has length 3, for example,

then a unit vector in the direction of a is clearly
1

3
a. More generally we denote the unit

vector in the direction a by â. Recall that the length or modulus of a is |a| and so we can

write

â =
a

|a|

Note that |a| and hence
1

|a|
are scalars.
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7.2.7 Orthogonal vectors

If the angle between two vectors a and b is 90◦, that is a and b are perpendicular, then a

and b are said to be orthogonal.

EXERCISES 7.2

1 For the arbitrary points A, B, C, D and E, �nd a single

vector which is equivalent to

(a)
→

DC+
→

CB (b)
→

CE+
→

DC

2 Figure 7.18 shows a cube. Let p =
→

AB, q =
→

AD and

r =
→

AE. Express the vectors representing
→

BD,
→

AC and
→

AG in terms of p, q and r.

F G

H

D

C

A

B

E
r

q

p

Figure 7.18

3 In a triangle ABC, M is the midpoint of BC, and N is

the midpoint of AC. Show that
→

NM = 1
2

→

AB.

4 Consider a rectangle with vertices at E, F, G and H.

Suppose
→

EF = p and
→

FG = q. Express each of the

vectors
→

EH,
→

GH,
→

FH and
→

GE in terms of p and q.

5 If a is an arbitrary vector, represent on a diagram the

vectors a,
1

2
a, −

a

4
, 3a, −3a and â.

6 A particle is positioned at the origin. Two forces act

on the particle. The �rst force has magnitude 7 N

and acts in the negative x direction. The second force

has magnitude 12 N and acts in the y direction.

Calculate the magnitude and direction of the resultant

force.

7 A force of 15 N acts at an angle of 65◦ to the x axis.

Resolve this force into two forces, one directed along

the x axis and the other directed along the

y axis.

Solutions

1 (a)
→

DB (b)
→

DE

2 q − p, q + p,q + r + p

4 q,−p, q − p,−p − q

5 See Figure S.16.

6 13.9 N at an angle of 59.7◦ to the negative x axis

7 6.34 N, 13.59 N

3a 

–3a

a

a1–
2

a ––
4

–

Figure S.16

7.3 CARTESIAN COMPONENTS

Consider the x--y plane in Figure 7.19. The general point P has coordinates (x, y). We

can join the origin to P by a vector
→

OP, which is called the position vector of P, which

we often denote by r. The modulus of r is |r| = r, and is the length of
→

OP. It is possible
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to express r in terms of the numbers of x and y. If we denote a unit vector along the x

axis by i, and a unit vector along the y axis by j (we usually omit the ˆ here), then it is

clear from the de�nition of scalar multiplication that
→

OM = xi, and
→

MP = yj. It follows

from the triangle law of addition that

r =
→

OP =
→

OM+
→

MP = xi + yj

y

x

P(x, y)

Mi

j

r

O

Figure 7.19

The x--y plane with

point P.

Clearly the vectors i and j are orthogonal. The numbers x and y are the i and j compo-

nents of r. Furthermore, using Pythagoras’s theorem we can deduce that

r =
√
x2 + y2

Alternative notations which are sometimes useful are

r =
→

OP =

(
x

y

)

and

r =
→

OP = (x, y)

When written in these forms

(
x

y

)
is called a column vector and (x, y) is called a row

vector. To avoid confusion with the coordinates (x, y) we shall not use row vectors here

but they will be needed in Chapter 26. We will also use the column vector notation for

more general vectors, thus,

ai + bj =

(a
b

)

We said earlier that a vector can be translated, maintaining its length and direction with-

out changing the vector itself. While this is true generally, position vectors form an im-

portant exception. Position vectors are constrained to their speci�c position and must

always remain tied to the origin.

Example 7.6 If A is the point with coordinates (5, 4) and B is the point with coordinates (−3, 2) �nd

the position vectors of A and B, and the vector
→

AB. Further, �nd |
→

AB|.

Solution The position vector of A is 5i + 4j =

(
5

4

)
, which we shall denote by a. The position

vector of B is −3i + 2j =

(
−3

2

)
, which we shall denote by b. Application of the

triangle law to triangle OAB (Figure 7.20) gives

→

OA+
→

AB =
→

OB

that is

a +
→

AB = b
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–6 –5 –4 –3 –2 –1 0

ab

1 2 3 4

A(5, 4)

B(–3, 2)

5  6   x

y

5 

4 

3 

2 

1

Figure 7.20

Points A and B in the x--y plane.

Therefore,

→

AB = b − a

= (−3i + 2j)− (5i + 4j)

= −8i − 2j

Alternatively, in terms of column vectors

b − a =

(
−3

2

)
−

(
5

4

)

=

(
−8

−2

)

We note that subtraction (and likewise addition) of column vectors is carried out compo-

nent by component. To �nd |
→

AB| we must obtain the length of the vector
→

AB. Referring

to Figure 7.20, we note that this quantity is the length of the hypotenuse of a right-angled

triangle with perpendicular sides 8 and 2. That is, |
→

AB| =
√
82 + 22 =

√
68 = 8.25.

More generally we have the following result:

Given vectors a =
→

OA = a1i + a2j and b =
→

OB = b1i + b2j (Figure 7.21), then

→

AB = b − a = (b1 − a1)i + (b2 − a2)j

and

|
→

AB| = |b − a| = |(b1 − a1)i + (b2 − a2)j|

=

√
(b1 − a1)

2 + (b2 − a2)
2

Example 7.7 If a =

(
7

3

)
and b =

(
−2

5

)
,

(a) �nd a + b, a − b, b + a and b − a, commenting upon the results

(b) �nd 2a − 3b

(c) �nd |a − b|.
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B

x

y

b1a1

a2

b2

A

O

b

a

b – a

Figure 7.21

The quantity

|b − a| =

√
(b1 − a1)

2 + (b2 − a2)
2.

} }
{ P

B

A

z

z

O

r

y

yx

x

Figure 7.22

The quantity |r| =
√
x2 + y2 + z2.

Solution (a) a + b =

(
7

3

)
+

(
−2

5

)
=

(
5

8

)

a − b =

(
7

3

)
−

(
−2

5

)
=

(
9

−2

)

b + a =

(
−2

5

)
+

(
7

3

)
=

(
5

8

)

b − a =

(
−2

5

)
−

(
7

3

)
=

(
−9

2

)

We note that addition is commutative whereas subtraction is not.

(b) 2a − 3b = 2

(
7

3

)
− 3

(
−2

5

)
=

(
14

6

)
−

(
−6

15

)
=

(
20

−9

)

(c) |a − b| = |9i − 2j| =
√
92 + (−2)2 =

√
85

The previous development readily generalizes to the three-dimensional case. Taking

Cartesian axes x, y and z, any point in three-dimensional space can be represented by

giving x, y and z coordinates (Figure 7.22). Denoting unit vectors along these axes by i,

j and k, respectively, we can write the vector from O to P(x, y, z) as

→

OP = r = xi + yj + zk =



x

y

z




The vectors i, j and k are orthogonal.

Example 7.8 If r = xi + yj + zk show that the modulus of r is r =
√
x2 + y2 + z2.

Solution Recalling Figure 7.22 we �rst calculate the length of OB. Now OAB is a right-angled

triangle with perpendicular sides OA = x and AB = y. Therefore by Pythagoras’s
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theorem OB has length
√
x2 + y2. Then, applying Pythagoras’s theorem to right-angled

triangle OBP which has perpendicular sides OB and BP = z, we �nd

|r| = OP =
√
OB2 + BP2

=
√
(x2 + y2)+ z2

=
√
x2 + y2 + z2

as required.

If r = xi + yj + zk then |r| =
√
x2 + y2 + z2

In three dimensions we have the following general result:

Given vectors a =
→

OA = a1i + a2j + a3k and b =
→

OB = b1i + b2j + b3k, then

→

AB = b − a = (b1 − a1)i + (b2 − a2)j + (b3 − a3)k

and

|
→

AB| = |b − a| = |(b1 − a1)i + (b2 − a2)j + (b3 − a3)k|

=

√
(b1 − a1)

2 + (b2 − a2)
2 + (b3 − a3)

2

Example 7.9 If a = 3i − 2j + k and b = −2i + j − 5k, �nd

(a) |a| (b) â (c) |b| (d) b̂ (e) b − a (f) |b − a|

Solution (a) |a| =
√
32 + (−2)2 + 12 =

√
14

(b) â =
a

|a|
=

1
√
14
(3i − 2j + k) =

3
√
14

i −
2

√
14

j +
1

√
14

k

(c) |b| =
√
(−2)2 + 12 + (−5)2 =

√
30

(d) b̂ =
b

|b|
=

1
√
30
(−2i + j − 5k) =

−2
√
30

i +
1

√
30

j −
5

√
30

k

(e) b − a = −5i + 3j − 6k

(f) |b − a| =
√
(−5)2 + 32 + (−6)2 =

√
70

7.3.1 The zero vector

A vector, all the components of which are zero, is called a zero vector and is denoted

by 0 to distinguish it from the scalar 0. Clearly the zero vector has a length of 0; it is

unusual in that it has arbitrary direction.
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Engineering application 7.4

Robot positions

Position vectors provide a useful means of determining the position of a robot. There

are many different types of robot but a common type uses a series of rigid links con-

nected together by flexible joints. Usually the mechanism is anchored at one point.

A typical example is illustrated in Figure 7.23.

X

Y

pa

b

c
d

Figure 7.23

A typical robot con�guration with vectors representing

the robot links.

The anchor point is X and the tip of the robot is situated at point Y. The �nal link

is sometimes called the hand of the robot. The hand often has rotating and gripping

facilities and its size relative to the rest of the robot is usually quite small. Each of the

robot links can be represented by a vector (see Figure 7.23). The vector d corresponds

to the hand. A common requirement in robotics is to be able to calculate the position

of the tip of the hand to ensure it does not collide with other objects. This can be

achieved by de�ning a set of Cartesian coordinates with origin at the anchor point

of the robot, X. Each of the link vectors can then be represented in terms of these

coordinates. For example, in the case of the robot in Figure 7.23:

a= a1i + a2j + a3k c= c1i + c2j + c3k

b= b1i + b2j + b3k d= d1i + d2j + d3k

The position of the tip of the hand can be calculated by adding together these vectors.

So,

p = a + b + c + d

= (a1 + b1 + c1 + d1)i + (a2 + b2 + c2 + d2)j + (a3 + b3 + c3 + d3)k

7.3.2 Linear combinations, dependence and independence

Suppose we have two vectors a and b. If we form arbitrary scalar multiples of these, that

is k1a and k2b, and add these together, we obtain a new vector c where c = k1a+ k2b.

The vector c is said to be a linear combination of a and b. Note that scalar multipli-

cation and addition of vectors are the only operations allowed when forming a linear

combination. Vector c is said to depend linearly on a and b. Of course we could also

write

a =
1

k1
c −

k2

k1
b provided k1 6= 0
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so that a depends linearly on c and b. Provided k2 6= 0, then

b =
1

k2
c −

k1

k2
a

so that b depends linearly on c and a. The set of vectors {a,b, c} is said to be linearly

dependent and any one of the set can be written as a linear combination of the other

two. In general, we have the following de�nition:

A set of n vectors {a1, a2, . . . , an} is linearly dependent if the expression

k1a1 + k2a2 + · · · + knan = 0

can be satis�ed by �nding scalar constants k1, k2, . . . , kn, not all of which are zero.

If the only way we can make the combination zero is by choosing all the kis to be

zero, then the given set of vectors is said to be linearly independent.

Example 7.10 Show that the vectors i and j are linearly independent.

Solution We form the expression k1i+ k2j = 0 and try to choose k1 and k2 so that the equation is

satis�ed. Using column vectors we have

k1

(
1

0

)
+ k2

(
0

1

)
=

(
0

0

)

that is(
k1
0

)
+

(
0

k2

)
=

(
k1
k2

)
=

(
0

0

)

The only way we can satisfy the equation is by choosing k1 = 0 and k2 = 0 and hence

we conclude that the vectors i and j are linearly independent. Geometrically, we note

that since they are perpendicular, no scalar multiple of i can give j and vice versa.

Example 7.11 The vectors

1

2

3






5

1

9







13

−1

21




are linearly dependent because, for example

3



5

1

9


− 2



1

2

3


− 1




13

−1

21


 =



0

0

0




EXERCISES 7.3

1 P and Q lie in the x--y plane. Find
→

PQ, where P is the

point with coordinates (5, 1) and Q is the point with

coordinates (−1, 4). Find |
→

PQ|.

2 A and B lie in the x--y plane. If A is the point (3, 4)

and B is the point (1,−5) write down the vectors
→

OA,
→

OB and
→

AB. Find a unit vector in the direction

of
→

AB.
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3 If a = 4i − j + 3k and b = −2i + 2j − k, �nd unit

vectors in the directions of a,b and b − a.

4 If a = 5i− 2j, b = 3i− 7j and c = −3i+ 4j, express,

in terms of i and j,

a + b a + c c − b 3c − 4b

Draw diagrams to illustrate your results. Repeat the

calculations using column vector notation.

5 Write down a unit vector which is parallel to the line

y = 7x− 3.

6 Find
→

PQ where P is the point in three-dimensional

space with coordinates (4, 1, 3) and Q is the point

with coordinates (1, 2, 4). Find the distance between

P and Q. Further, �nd the position vector of the point

dividing PQ in the ratio 1:3.

7 If P, Q and R have coordinates (3, 2, 1), (2, 1, 2) and

(1, 3, 3), respectively, use vectors to determine which

pair of points are closest to each other.

8 Consider the robot of Example 7.4. The link vectors

have the following values:

a = 12i + 18j + k

b = 6i − 3j + 8k

c = 3i + 2j − 4k

d = 0.5i − 0.2j + 0.6k

Calculate the length of each of the links and the

position vector of the tip of the robot.

9 Show that the vectors a = i + j and b = −i + j are

linearly independent.

10 Show that the vectors i, j and k are linearly

independent.

Solutions

1
→

PQ = −6i + 3j |
→

PQ| = 6.71

2 3i + 4j, i − 5j,−2i − 9j

unit vector:
−1
√
85
(2i + 9j)

3
1

√
26
(4i − j + 3k),

1

3
(−2i + 2j − k),

1
√
61
(−6i + 3j − 4k)

4 8i − 9j, 2i + 2j, −6i + 11j ,−21i + 40j

5
1

√
50
(i + 7j)

6
→

PQ = −3i + j + k, distance from P to Q = 3.32,
1

4
(13i + 5j + 13k)

7 P and Q

8 21.66, 10.44, 5.39, 0.81, 21.5i + 16.8j + 5.6k

Technical Computing Exercises 7.3

To plot a displacement vector between points (1,2) and

(3,4) in MATLAB® we could type:

X=[1 3];

Y=[2 4];

plot(X,Y)

which would result in a plot containing a single line

between the two points. Notice the order in which the

coordinates are passed to the plot function. The �rst

entry in X and the �rst entry in Y are for the �rst

location and so on. If we wanted to plot a second

displacement vector from (3, 4) to (5, 6) we would

type:

X=[1 3 5];

Y=[2 4 6];

plot(X,Y)

Now consider the problem of routing an automated

vehicle between the following positions on a factory

	oor:

Doorway: A = (0,0)

Resistor bin: B = (1, 1)

Capacitor bin: C = (1, -0.5)

PCB rack: D = (2,0)

Assembly line: E = (2.5, 0)

For simplicity you may assume that the robot will

not collide with any objects if it travels directly

between any of those two points.

1 Plot the displacement vectors for the robot if it

enters through the doorway and visits the resistor

bin, the PCB rack and then the assembly line. How

would this action be written in vector notation?
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2 Calculate the distance travelled by the robot.

3 Now consider the problem of visiting all of the

positions A, B, C, D and E one time only, with the

robot travelling the least distance. The robot must

enter through the doorway and �nish at the

assembly line. By trial and error produce a solution

to the problem, using the computer to plot each

trial. Express your �nal calculated solution in

vector notation.

7.4 SCALAR FIELDS AND VECTOR FIELDS

Imagine a large room �lled with air. At any point, P, we can measure the temperature, φ,

say. The temperature will depend upon whereabouts in the room we take the measure-

ment. Perhaps, close to a radiator the temperature will be higher than near to an open

window. Clearly the temperature φ is a function of the position of the point. If we label

the point by its Cartesian coordinates (x, y, z), then φ will be a function of x, y and z,

that is

φ = φ(x, y, z)

Additionally, φ may be a function of time but for now we will leave this additional

complication aside. Since temperature is a scalar what we have done is de�ne a scalar

at each point P(x, y, z) in a region. This is an example of a scalar �eld.

Alternatively, suppose we consider the motion of a large body of fluid. At each point,

fluid will be moving with a certain speed in a certain direction; that is, each small fluid

element has a particular velocity, v, depending upon whereabouts in the fluid it is. Since

velocity is a vector, what we have done is de�ne a vector at each point P(x, y, z). We

now have a vector function of x, y and z, known as a vector �eld. Let us write

v = (vx, vy, vz)

so that vx, vy and vz are the i, j and k components respectively of v, that is

v = vxi + vyj + vzk

We note that vx, vy and vz will each be scalar functions of x, y and z.

Engineering application 7.5

Electric field strength E and electric displacement D

Electrostatics is the study of the forces which stationary positive and negative electric

charges exert upon one another. Consider Figure 7.24 which shows a single positive

charge placed at O. The presence of this charge gives rise to an electric force �eld

around it. Faraday introduced the idea of lines of force to help visualize the �eld.

At any point, P, there exists a vector which gives the direction and magnitude of

the electrostatic force at P. Because all the lines of force emerge radially from O,

the direction of the electrostatic force is radially outwards. It can be shown that the

magnitude of the force is inversely proportional to the square of the distance from O.
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O

E

Figure 7.24

A charge at O gives rise to an electric �eld E.

If a second charge is placed in this �eld it experiences a force. An important quan-

tity is the electric �eld strength, E. This is a vector �eld which describes the force

experienced by a unit charge.

A related quantity is the electric displacement, D, also called the electric flux

density, de�ned as D = εE, where ε is called the permittivity of the medium in

which the �eld is located. Note that D is a scalar multiple of E.

Engineering application 7.6

Electrostatic potential V

An important electrostatic �eld is the electrostatic potential V . This is an example

of a scalar �eld. The difference between the potential measured at any two points in

the �eld is equal to the work which needs to be done to move a unit charge from one

point to the other. Later, in Chapter 26, we will see that the scalar �eld V is closely

related to the vector �eld E.

7.5 THE SCALAR PRODUCT

Given any two vectors a and b, there are two ways in which we can de�ne their product.

These are known as the scalar product and the vector product. As the names suggest, the

result of �nding a scalar product is a scalar whereas the result of �nding a vector product

is a vector. The scalar product of a and b is written as

a · b

b

a

u

Figure 7.25

Two vectors a and b

separated by

angle θ .

This notation gives rise to the alternative name dot product. It is de�ned by the formula

a · b = |a‖b| cos θ

where θ is the angle between the two vectors as shown in Figure 7.25.
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From the de�nition of the scalar product, it is possible to show that the following

rules hold:

a · b = b · a the scalar product is commutative

k(a · b) = (ka · b) where k is a scalar

(a + b) · c = (a · c)+ (b · c) the distributive rule

It is important at this stage to realize that notation is very important in vector work. You

should not use a× to denote the scalar product because this is the symbol we shall use

for the vector product.

Example 7.12 If a and b are parallel vectors, show that a · b = |a‖b|. If a and b are orthogonal show

that their scalar product is zero.

Solution If a and b are parallel then the angle between them is zero. Therefore a · b =

|a‖b| cos 0◦ = |a||b|. If a and b are orthogonal, then the angle between them is 90◦

and a · b = |a||b| cos 90◦ = 0.

Similarly we can show that if a and b are two non-zero vectors for which a · b = 0,

then a and b must be orthogonal.

If a and b are parallel vectors, a · b = |a‖b|.

If a and b are orthogonal vectors, a · b = 0.

An immediate consequence of the previous result is the following useful set of formulae:

i · i = j · j = k · k = 1

i · j = j · k = k · i = 0

Example 7.13 If a = a1i + a2j + a3k and b = b1i + b2j + b3k show that a · b = a1b1 + a2b2 + a3b3.

Solution We have

a · b = (a1i + a2j + a3k) · (b1i + b2j + b3k)

= a1i · (b1i + b2j + b3k)+ a2j · (b1i + b2j + b3k)

+ a3k · (b1i + b2j + b3k)

= a1b1i · i + a1b2i · j + a1b3i · k + a2b1j · i + a2b2j · j + a2b3j · k

+ a3b1k · i + a3b2k · j + a3b3k · k

= a1b1 + a2b2 + a3b3

as required. Thus, given two vectors in component form their scalar product is the sum

of the products of corresponding components.

The result developed in Example 7.13 is important and should be memorized:

If a = a1i + a2j + a3k and b = b1i + b2j + b3k,

then a · b = a1b1 + a2b2 + a3b3.
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Example 7.14 If a = 5i − 3j + 2k and b = −2i + 4j + k �nd the scalar product a · b.

Solution Using the previous result we �nd

a · b = (5i − 3j + 2k) · (−2i + 4j + k)

= (5)(−2)+ (−3)(4)+ (2)(1)

= −10 − 12 + 2

= −20

Example 7.15 If a = a1i + a2j + a3k, �nd

(a) a · a (b) |a|2

Solution (a) Using the previous result we �nd

a · a = (a1i + a2j + a3k) · (a1i + a2j + a3k)

= a21 + a22 + a23

(b) From Example 7.8 we know that the modulus of r = xi + yj + zk is
√
x2 + y2 + z2

and therefore

|a| =

√
a21 + a22 + a23

so that

|a|2 = a21 + a22 + a23

We note the general result that

a · a = |a|2

Example 7.16 If a = 3i + j − k and b = 2i + j + 2k �nd a · b and the angle between a and b.

Solution We have

a · b = (3)(2)+ (1)(1)+ (−1)(2)

= 6 + 1 − 2

= 5

Furthermore, from the de�nition of the scalar product a · b = |a||b| cos θ . Now,

|a| =
√
9 + 1 + 1 =

√
11 and |b| =

√
4 + 1 + 4 = 3

Therefore,

cos θ =
a · b

|a‖b|
=

5

3
√
11

from which we deduce that θ = 59.8◦ or 1.04 radians.
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Engineering application 7.7

Work done by a force

If a force is applied to an object and the object moves, then work is done by the force.

It is possible to use vectors to calculate the work done. Suppose a constant force F

is applied and as a consequence the object moves from A to B, represented by the

displacement vector s, as shown in Figure 7.26.

We can resolve the force into two perpendicular components, one parallel to s and

one perpendicular to s. The work done by each component is equal to the product of

its magnitude and the distance moved in its direction. The component perpendicular

to s will not do any work because there is no movement in this direction. For the

component along s, that is |F| cos θ , we �nd

work done = |F| cos θ |s|

From the de�nition of the scalar product we see that the r.h.s. of this expression is

the scalar product of F and s.

AB = s
BA

F

F sin u

F cos u

u Figure 7.26

The component of F in the direction of s

is F cos θ .

The work done by a constant force F which moves an object along the vector s is

equal to the scalar product F · s.

Example 7.17 A force F = 3i + 2j − k is applied to an object which moves through a displacement

s = 2i + 2j + k. Find the work done by the force.

Solution The work done is equal to

F · s = (3i + 2j − k) · (2i + 2j + k)

= 6 + 4 − 1

= 9 joules

Engineering application 7.8

Movement of a charged particle in an electric field

Figure 7.27 shows two charged plates situated in a vacuum. Plate A has an excess of

positive charge, while plate B has an excess of negative charge. Such an arrangement

gives rise to an electric �eld. An electric �eld is an example of a vector �eld.
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+
+
+
+
+
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+
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–
–
–
–
–
–
–
–
–
–

X
A B

E

ds

E

E
Figure 7.27

Two charged plates situated in a vacuum.

In Figure 7.27 the electric �eld vectorE in the region of space between the charged

plates has a direction perpendicular to the plates pointing fromA to B. Themagnitude

of the electric �eld vector is constant in this region if end effects are ignored. If

a charged particle is required to move against an electric �eld, then work must be

done to achieve this. For example, to transport a positively charged particle from the

surface of plate B to the surface of plate Awould require work to be done. This would

lead to an increase in potential of the charged particle.

If s represents the displacement and V the potential it is conventional to write δs

to represent a very small change in displacement, and δV to represent a very small

change in potential.

If a unit positive charge is moved a small displacement δs in an electric �eld (Fig-

ure 7.27) then the change in potential δV is given by

δV = −E · δs (7.1)

This is an example of the use of a scalar product. Notice that although E and δs are

vector quantities the change in potential, δV , is a scalar.

Consider again the charged plates of Figure 7.27. If a unit charge is moved a small

displacement along the plane X, then δs is perpendicular to E. So,

δV = −E · δs = −|E‖δs| cos θ

With θ = 90◦, we �nd δV = 0. The surface X is known as an equipotential surface

because movement of a charged particle along this surface does not give rise to a

change in its potential. Movement of a charge in a direction parallel to the electric

�eld gives rise to the maximum change in potential, as for this case θ = 0◦.

EXERCISES 7.5

1 If a = 3i − 7j and b = 2i + 4j �nd a · b, b · a, a · a

and b ·b.

2 If a = 4i + 2j − k,b = 3i − 3j + 3k and

c = 2i − j − k, �nd

(a) a · a (b) a ·b

(c) a · c (d) b · c

3 Evaluate (−13i − 5j) · (−3i + 4j).

4 Find the angle between the vectors p = 7i + 3j + 2k

and q = 2i − j + k.

5 Find the angle between the vectors 7i + j and 4j − k.

6 Find the angle between the vectors 4i− 2j and 3i− 3j.

7 If a = 7i + 8j and b = 5i �nd a · b̂.

8 If r1 =



3

1

2


 and r2 =



5

1

0


 �nd r1 · r1, r1 · r2

and r2 · r2.

9 Given that p = 2q simplify p · q, (p + 5q) ·q and

(q − p) · p.
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10 Find the modulus of a = i − j − k, the modulus of

b = 2i + j + 2k and the scalar product a ·b. Deduce

the angle between a and b.

11 If a = 2i + 2j − k and b = 3i − 6j + 2k, �nd

|a|, |b|, a ·b and the angle between a and b.

12 Use a vector method to show that the diagonals of the

rhombus shown in Figure 7.28 intersect at 90◦.

B

D

CA

Figure 7.28

The rhombus ABCD.

13 Use the scalar product to �nd a two-dimensional

vector a = a1i + a2j perpendicular to the vector

4i − 2j.

14 If a = 3i − 2j, b = 7i + 5j and c = 9i − j, show that

a · (b − c) = (a ·b)− (a · c).

15 Find the work done by the force F = 3i − j + k

in moving an object through a displacement

s = 3i + 5j.

16 A force of magnitude 14 N acts in the direction

i + j + k upon an object. It causes the object to move

from point A(2, 1, 0) to point B(3, 3, 3). Find the

work done by the force.

17 (a) Use the scalar product to show that the

component of a in the direction of b is a · b̂,

where b̂ is a unit vector in the direction of b.

(b) Find the component of 2i + 3j in the direction of

i + 5j.

Solutions

1 −22, −22, 58, 20

2 (a) 21 (b) 3 (c) 7 (d) 6

3 19

4 47.62◦

5 82.11◦

6 18.4◦

7 7

8 14, 16, 26

9 2|q|2, 7|q|2,−2|q|2

10
√
3, 3,−1, 101.1◦

11 3, 7, −8, 112.4◦

13 c(i + 2j), c constant

15 4 J

16 48.5 J

17 17/
√
26

7.6 THE VECTOR PRODUCT

The result of �nding the vector product of a and b is a vector of length |a||b| sin θ ,

where θ is the angle between a and b. The direction of this vector is such that it is

perpendicular to a and to b, and so it is perpendicular to the plane containing a and

b (Figure 7.29). There are, however, two possible directions for this vector, but it is

conventional to choose the one associated with the application of the right-handed screw

rule. Imagine turning a right-handed screw in the sense from a towards b as shown. A

right-handed screw is one which, when turned clockwise, enters the material into which

it is being screwed. The direction in which the screw advances is the direction of the

required vector product. The symbol we shall use to denote the vector product is ×.

Formally, we write

a × b = |a‖b| sin θ ê
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Plane containing 

a and b

b

a 3 b

a

u

Figure 7.29

a × b is perpendicular to the plane containing

a and b. The right-handed screw rule allows

the direction of a × b to be found.

b

a

Figure 7.30

Right-handed screw rule allows the

direction of b × a to be found.

where ê is the unit vector required to de�ne the appropriate direction, that is ê is a unit

vector perpendicular to a and to b in a sense de�ned by the right-handed screw rule. To

evaluate b × a we must imagine turning the screw from the direction of b towards that

of a. The screw will advance as shown in Figure 7.30.

We notice immediately that a × b 6= b × a since their directions are different. From

the de�nition of the vector product, it is possible to show that the following rules hold:

a × b = −(b × a) the vector product is not commutative

a × (b + c) = (a × b)+ (a × c) the distributive rule

k(a × b) = (ka)× b = a × (kb) where k is a scalar

Example 7.18 If a and b are parallel show that a × b = 0.

Solution If a and b are parallel then the angle between a and b is zero. Therefore, a × b =

|a‖b| sin 0 ê= 0. Note that the answer is still a vector, and that we denote the zero vector

0i + 0j + 0k by 0, to distinguish it from the scalar 0. In particular, we note that

i × i = j × j = k × k = 0

If a and b are parallel, then a × b = 0.

In particular:

i × i = j × j = k × k = 0

Example 7.19 Show that i × j = k and �nd expressions for j × k and k × i.

Solution We note that i and j are perpendicular so that |i × j| = |i‖j| sin 90◦ = 1. Furthermore,

the unit vector perpendicular to i and to j in the sense de�ned by the right-handed screw

rule is k. Therefore, i × j = k as required. Similarly you should be able to show that

j × k = i and k × i = j.

i × j = k j × k = i k × i = j

j × i = −k k × j = −i i × k = −j
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Example 7.20 Simplify (a × b)− (b × a).

Solution Use the result a × b = −(b × a) to obtain

(a × b)− (b × a) = (a × b)− (−(a × b))

= (a × b)+ (a × b)

= 2(a × b)

Example 7.21 (a) If a = a1i + a2j + a3k and b = b1i + b2j + b3k, show that

a × b = (a2b3 − a3b2)i − (a1b3 − a3b1)j + (a1b2 − a2b1)k

(b) If a = 2i + j + 3k and b = 3i + 2j + k �nd a × b.

Solution (a) a × b= (a1i + a2j + a3k)× (b1i + b2j + b3k)

= a1i × (b1i + b2j + b3k)+ a2j × (b1i + b2j + b3k)

+ a3k × (b1i + b2j + b3k)

= a1b1(i × i)+ a1b2(i × j)+ a1b3(i × k)+ a2b1(j × i)+ a2b2(j × j)

+ a2b3(j × k)+ a3b1(k × i)+ a3b2(k × j)+ a3b3(k × k)

Using the results of Examples 7.18 and 7.19, we �nd that the expression for a × b

simpli�es to

a × b = (a2b3 − a3b2)i − (a1b3 − a3b1)j + (a1b2 − a2b1)k

(b) Using the result of part (a) we have

a × b = ((1)(1)− (3)(2))i − ((2)(1)− (3)(3))j + ((2)(2)− (1)(3))k

= −5i + 7j + k

Verify for yourself that b × a = 5i − 7j − k.

7.6.1 Using determinants to evaluate vector products

Evaluation of a vector product using the previous formula is very cumbersome. A more

convenient and easily remembered method is now described. The vectors a and b are

written in the following pattern:
∣∣∣∣∣∣

i j k

a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣

This quantity is called a determinant. A more thorough treatment of determinants is

given in Section 8.7. To �nd the i component of the vector product, imagine crossing

out the row and column containing i and performing the following calculation on what

is left, that is

a2b3 − a3b2

The resulting number is the i component of the vector product. The j component is found

by crossing out the row and column containing j, performing a similar calculation, but

now changing the sign of the result. Thus the j component equals

−(a1b3 − a3b1)
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The k component is found by crossing out the row and column containing k and per-

forming the calculation

a1b2 − a2b1

We have

If a = a1i + a2j + a3k and b = b1i + b2j + b3k, then

a × b =

∣∣∣∣∣∣

i j k

a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣

= (a2b3 − a3b2)i − (a1b3 − a3b1)j + (a1b2 − a2b1)k

Example 7.22 Find the vector product of a = 2i + 3j + 7k and b = i + 2j + k.

Solution The two given vectors are represented in the following determinant:
∣∣∣∣∣∣

i j k

2 3 7

1 2 1

∣∣∣∣∣∣

Evaluating this determinant we obtain

a × b = (3 − 14)i − (2 − 7)j + (4 − 3)k = −11i + 5j + k

You will �nd that, with practice, this method of evaluating a vector product is simple to

apply.

7.6.2 Applications of the vector product

The following three examples illustrate applications of the vector product.

Engineering application 7.9

Magnetic flux density B and magnetic field strength H

It is possible to model the effect of magnetism by means of a vector �eld. A magnetic

�eld with magnetic flux density B is a vector �eld which is de�ned in relation to the

force it exerts on a moving charged particle placed in the �eld. Consider Figure 7.31.

If a charge q moves with velocity v in a magnetic �eld B it experiences a force F

given by

F = qv × B

Note that this force is de�ned using a vector product. The unit of magnetic flux den-

sity is the weber per square metre (Wb m−2), or tesla (T). The direction of this force

is at right angles to both v and B, in a sense de�ned by the right-handed screw rule.

Its magnitude, or modulus, is

F = qvB sin θ

➔
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F

B
q

v

Figure 7.31

Force, F, exerted on a particle with charge, q, when moving with

velocity, v, in a magnetic �eld, B.

where θ is the angle between v and B, v is the modulus of v and B is the modulus

of B.

Note that if θ = 90◦, sin θ = 1, then B =
F

qv
.

These formulae are useful because they can be used to calculate the forces exerted

on a conductor in an electric motor. They are also used to analyse electricity gener-

ators in which the motion of a conductor in a magnetic �eld leads to movement of

charges within the conductor, thus generating electricity.

A related quantity is themagnetic �eld strength, or themagnetic �eld intensity,

H, de�ned from

B = µH

µ is called the permeability of a material and has units of webers per ampere per

metre (Wb A−1m−1). The units of H are amperes per metre (A m−1). Con�rm for

yourself that the units match on both sides of the equation.

Engineering application 7.10

Magnetic field due to a moving charge

A charge q moving with velocity v gives rise to a magnetic �eld with magnetic flux

density B in its vicinity. As a result of this, another moving charge placed in this �eld

will experience a magnetic force. The magnetic flux density is given by

B =
qµ0

4πr2
(v × r̂)

where r is a vector from the charge to the point at which B is measured, and µ0 is a

constant called the permeability of free space.

This equation can be used to �nd the magnetic �eld due to a current in a wire. Sup-

pose a small portion of wire has length δs and contains a current I. By writing δs as a

vector of length δs in the direction of the wire, it can be shown that the corresponding

contribution to the magnetic flux density is given by

δB =
µ0I

4πr2
(δs × r̂)

This is the Biot--Savart law. Techniques of integration are required in order to com-

plete the calculation, but using this it is possible to show, for example, that the mag-

netic flux density a distance r from a long straight wire has magnitude B =
µ0I

2πr
.
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Engineering application 7.11

The Hall e�ect in a semiconductor

A frequent requirement in the semiconductor industry is to be able to measure the

density of holes in a p-type semiconductor and the density of electrons in an n-type

semiconductor. This can be achieved by using the Hall effect. We will consider the

case of a p-type semiconductor but the derivation for an n-type semiconductor is

similar.

+ 

–

V

L

I

EH

B

+ –

z

y
x

B p-type 
semiconductor

Meter 

VH

hole

area, A

Figure 7.32

Hall effect in a p-type semiconductor.

Consider the piece of semiconductor shown in Figure 7.32. A d.c. voltage, V , is

applied to the ends of the semiconductor. This gives rise to a flow of current com-

posed mainly of holes as they are the majority carriers for a p-type semiconductor.

This current can be represented by a vector pointing in the x direction and denoted

by I. A magnetic �eld, B, is applied to the semiconductor in the y direction. The

moving holes experience a force, FB, per unit volume, caused by the magnetic �eld

given by

FB =
1

A
I × B

where A is the cross-sectional area of the semiconductor. This causes the holes to

drift in the z direction and so causes an excess of positive charge to appear on one

side of the semiconductor. This gives rise to a voltage known as the Hall voltage,

VH. As this excess charge builds up it creates an electric �eld, EH, in the negative z

direction, which in turn exerts an opposing force on the holes. This force is given by

FE = qp0EH where q = elementary charge = 1.60 × 10−19 C, and p0 = density of

holes (holes per cubic metre). Equilibrium is reached when the two forces are equal

in magnitude, that is |FB| = |FE|. Now,

|FE| = qp0|EH| |FB| =
|I × B|

A
=
IB

A

➔



252 Chapter 7 Vectors

In equilibrium the magnitude of the electric �eld, |EH|, is constant and so we can

write |EH| =
VH

L
, where L is the width of the semiconductor. Hence,

IB

A
= qp0

VH

L

so that

p0 =
BIL

VHqA

So, by measuring the value of the Hall voltage, it is possible to calculate the density

of the holes, p0, in the semiconductor.

EXERCISES 7.6

1 Evaluate

(a)

∣∣∣∣∣∣

i j k

3 1 2

2 1 4

∣∣∣∣∣∣
(b)

∣∣∣∣∣∣

i j k

−1 2 −3

−4 0 1

∣∣∣∣∣∣

(c)

∣∣∣∣∣∣

i j k

0 1 0

1 0 4

∣∣∣∣∣∣
(d)

∣∣∣∣∣∣

i j k

3 5 2

−3 −1 4

∣∣∣∣∣∣

2 If a = i − 2j + 3k and b = 2i − j − k, �nd

(a) a × b

(b) b × a

3 If a = i − 2j and b = 5i + 5k �nd a × b.

4 If a = i + j − k, b = i − j and c = 2i + k �nd

(a) (a × b)× c

(b) a × (b × c)

5 If p = 6i + 7j − 2k and q = 3i − j + 4k �nd |p|, |q|

and |p × q|. Deduce the sine of the angle between p

and q.

6 For arbitrary vectors p and q simplify

(a) (p + q)× p

(b) (p + q)× (p − q)

7 If c = i + j and d = 2i + k, �nd a unit vector

perpendicular to both c and d. Further, �nd the sine of

the angle between c and d.

8 A, B, C are points with coordinates (1, 2, 3), (3, 2, 1)

and (−1, 1, 0), respectively. Find a unit vector

perpendicular to the plane containing A, B and C.

9 If a = 7i − 2j − 5k and b = 5i + j + 3k, �nd a vector

perpendicular to a and b.

10 If a = 7i − j + k,b = 3i − j − 2k and

c = 9i + j − 3k, show that

a × (b + c) = (a × b)+ (a × c)

11 (a) The area, A, of a parallelogram with base b

and perpendicular height h is given by A = bh.

Show that if the two non-parallel sides of the

parallelogram are represented by the vectors a

and b, then the area is also given by

A = |a × b|.

(b) Find the area of the parallelogram with sides

represented by 2i + 3j + k and 3i + j − k.

12 The volume, V , of a parallelepiped with sides a,b and

c is given by V = |a · (b × c)|. Find the volume of the

parallelepiped with sides 3i + 2j + k, 2i + j + k and

i + 2j + 4k.

13 Suppose a force F acts through the point P with

position vector r. Themoment about the origin, M,

of the force is a measure of the turning effect of the

force and is given by M = r × F. A force of 4 N acts

in the direction i + j + k, and through the point with

coordinates (7, 1, 3). Find the moment of the force

about the origin.

14 In the theory of electromagnetic waves an important

quantity associated with the flow of electromagnetic

energy is the Poynting vector S. This is de�ned as

S = E × H where E is the electric �eld strength and

H the magnetic �eld strength. Suppose that in a plane

electromagnetic wave

E = E0 cos

(
2πz

λ
− ωt

)
j
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and

H = −
2πE0
λωµ0

cos

(
2πz

λ
− ωt

)
i

where λ, ω,µ0 and E0 are constants. Find the

Poynting vector and con�rm that the direction of

energy flow is the z direction.

Solutions

1 (a) 2i − 8j + k (b) 2i + 13j + 8k

(c) 4i − k (d) 22i − 18j + 12k

2 (a) 5i + 7j + 3k (b) −5i − 7j − 3k

3 −10i − 5j + 10k

4 (a) −i − 3j + 2k (b) i − j

5
√
89,

√
26, 48.01, 0.9980

6 (a) q × p (b) 2q × p

7
1

√
6
(i − j − 2k), 0.775

8
1

√
27
(i − 5j + k)

9 −i − 46j + 17k

11 (b)
√
90 = 9.49

12 5

13
4

√
3
(−2i − 4j + 6k)

14
2πE2

0

λωµ0

cos2

(
2πz

λ
− ωt

)
k,

which is a vector in the z direction.

Technical Computing Exercises 7.6

Vector and scalar products are readily calculated in most

technical computing languages. For example in

MATLAB® we could calculate the scalar product of

a = i − 2j + 3 k and b = 2 i − j − k by typing:

a=[1 -2 3];

b=[2 -1 -1];

dot(a,b)

producing the answer:

ans = 1

and the vector product by then typing:

cross(a,b)

producing the answer:

ans =

5 7 3

1 Con�rm using MATLAB®, or a similar language, that

i × j = k.

2 (a) Select two different vectors a and b and

calculate |a × b|2 + (a.b)2.

(b) Calculate |a|2|b|2

(c) What are your observations about the results

from (a) and (b)? Verify your conclusions by

changing the vectors a and b and repeating

the calculations.

7.7 VECTORS OF n DIMENSIONS

The examples we have discussed have all concerned two- and three-dimensional vec-

tors. Our understanding has been helped by the fact that two-dimensional vectors can

be drawn in the plane of the paper and three-dimensional vectors can be visualized in

the three-dimensional space in which we live. However, there are some situations when
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the generalization to higher dimensions is appropriate, but no convenient geometrical

interpretation is available. Nevertheless, many of the concepts we have discussed are

still applicable. For example, we can introduce the four-dimensional vectors

a =




3

1

2

4


 and b =




1

0

3

1




It is natural to de�ne the magnitude, or norm, of a as
√
32 + 12 + 22 + 42 =

√
30 and

the scalar product of a and b as a · b = (3)(1) + (1)(0) + (2)(3) + (4)(1) = 13. An

n-dimensional vector will have n components. Operations such as addition, subtraction

and scalar multiplication are de�ned in an obvious way.

It is also possible to de�ne a set of variables as a vector. This turns out to be a use-

ful way of modelling a physical system. The system is described by means of a vector

which consists of an ordered set of variables suf�cient to describe the state of the sys-

tem. Such a vector is called a state vector. This concept is explored in more detail in

Chapter 20.

Engineering application 7.12

Mesh current vector

When analysing a complex circuit it can be convenient to assign a current to each

small independent loop within the circuit. Each of these currents is known as amesh

current. It is possible to collect these individual currents together to form a vector

quantity. Consider the following example.

A circuit as shown in Figure 7.33 has a set of mesh currents {I1, I2, I3, I4} from

which we can form a current vector

I =




I1
I2
I3
I4




No geometrical interpretation is possible but nevertheless this vector provides a use-

ful mathematical way of handling the mesh currents. We shall see how vectors such

as these can be manipulated in Section 8.12.

I1 I2 I3 I4

Figure 7.33

A circuit with mesh currents

shown.
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EXERCISES 7.7

1 If

a =




1

1

0

1

1




and b =




3

2

1

0

1




�nd the norm of a, the norm of b and a · b. Further,

�nd the norm of a − b.

2 Two non-zero vectors are mutually orthogonal if their

scalar product is zero. Determine which of the

following are mutually orthogonal.

a =




1

2

4

−1


 b =




2

1

0

0


 c =




3

0

1

0




d =




0

0

7

2


 e =




3

0

−2

−5




Solutions

1 2,
√
15, 6,

√
7 2 a and e, b and d

REVIEW EXERCISES 7

1 Find a ·b and a × b when

(a) a = 7i − j + k, b = 3i + 2j + 5k

(b) a = 6i − 6j − 6k, b = i − j − k.

2 For a triangle ABC, express as simply as possible the

vector
→

AB+
→

BC+
→

CA.

3 If a = 7i− j+ 2k and b = 8i+ j+ k, �nd |a|, |b| and

a ·b. Deduce the cosine of the angle between a and b.

4 If a = 6i − j + 2k and b = 3i − j + 3k, �nd

|a|, |b|, |a × b|. Deduce the sine of the angle between

a and b.

5 If a = 7i + 9j − 3k and b = 2i − 4j, �nd â, b̂, ̂a × b.

6 By combining the scalar and vector products other

types of products can be de�ned. The triple scalar

product for three vectors is de�ned as (a × b) · c

which is a scalar. If a = 3i − j + 2k, b = 2i − 2j − k,

c = 3i + j, �nd a × b and (a × b) · c. Show that

(a × b) · c = a · (b × c).

7 The triple vector product is de�ned by (a × b)× c.

Find the triple vector product of the vectors given in

Question 6. Also �nd a · c,b · c and verify that

(a · c)b − (b · c)a = (a × b)× c

Further, �nd a × (b × c) and con�rm that

a × (b × c) 6= (a × b)× c.

8 Show that the vectors p = 3i − 2j + k,

q = 2i + j − 4k and r = i − 3j + 5k form the three

sides of a right-angled triangle.

9 Find a unit vector parallel to the line y = 7x− 3. Find

a unit vector parallel to y = 2x+ 7. Use the scalar

product to �nd the angle between these two lines.

10 An electric charge q which moves with a velocity v

produces a magnetic �eld B given by

B =
µq

4π

v × r̂

|r|2
where µ = constant

Find B if r = 3i + j − 2k and v = i − 2j + 3k.

11 In a triangle ABC, denote
→

AB by c,
→

AC by b and
→

CB

by a. Use the scalar product to prove the cosine rule:

a2 = b2 + c2 − 2bc cosA.

12 Evaluate

(a)

∣∣∣∣∣∣

i j k

−4 0 −3

7 1 4

∣∣∣∣∣∣
(b)

∣∣∣∣∣∣

i j k

8 2 5

1 0 0

∣∣∣∣∣∣

13 Find the area of the parallelogram with sides

represented by 3i + 5j − k and i + 3j − k.

14 Find the angle between the vectors 7i + 2j and i − 3j.

15 Find a unit vector in the direction of the line joining

the points (2, 3, 4) and (7, 17, 1).
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16 Show that the vectors i − j and −3i − 3j are

perpendicular.

17 Find the norm of each of the vectors



7

2

−1

2


 and




2

1

0

−4




18 (a) Use the scalar product to �nd the value of the

scalar µ so that i + j + µk is perpendicular to the

vector i + j + k.

(b) Use the vector product and the results from part (a)

to �nd a mutually perpendicular set of unit vectors

v̂1, v̂2 and v̂3, where v̂1 is inclined equally to the

vectors i, j and k.

19 The points A, B and C have coordinates (2,−1,−2),

(4,−1,−3) and (1, 3,−1).

(a) Write down the vectors
→

AB and
→

AC.

(b) Using the vector product �nd a unit vector

which is perpendicular to the plane containing

A, B and C.

(c) If D is the point with coordinates (3, 0, 1), use

the scalar product to �nd the perpendicular

distance from D to the plane ABC.

20 The condition for vectors a, b and c to be coplanar

(i.e. they lie in the same plane) is a · (b × c) = 0.

(a) Show that the vectors a = 4i + 5j + 6k,

b = 6i − 3j − 3k and c = −i + 2j + 2k are

not coplanar.

(b) Given d = −i + 2j + λk, �nd the value of λ so

that a, b and d are coplanar.

21 Points A and B have position vectors a and b

respectively. Show that the position vector of an

arbitrary point on the line AB is given by

r = a + λ (b − a) for some scalar λ. This is the

vector equation of the line.

22 Use vector methods to show that the three medians of

any triangle intersect at a common point (called the

centroid).

23 Use the vector product to �nd the area of a triangle

with vertices at the points with coordinates (1, 2, 3),

(4,−3, 2), and (8, 1, 1).

Solutions

1 (a) 24,−7i − 32j + 17k (b) 18, 0

2 0

3
√
54,

√
66, 57, 0.9548

4
√
41,

√
19,

√
154, 0.4446

5
1

√
139

a,
1

√
20

b,
1

√
2296

(−12i − 6j − 46k)

6 5i + 7j − 4k, 22

7 (a × b)× c = 4i − 12j − 16k

a · c = 8, b · c = 4

a × (b × c) = −2i − 22j − 8k

9
1

√
50
(i + 7j),

1
√
5
(i + 2j), 18.4◦

10
µq

56
√
14π

(i + 11j + 7k)

12 (a) 3i − 5j − 4k

(b) 5j − 2k

13
√
24 = 4.90

14 87.5◦

15
1

√
230

(5i + 14j − 3k)

17
√
58,

√
21

18 (a) µ = −2

(b) v̂1 =
1

√
3
(1, 1, 1), v̂2 =

1
√
6
(1, 1,−2),

v̂3 =
1

√
2
(−1, 1, 0)

19 (a) (2, 0,−1), (−1, 4, 1) (b)
1

9
(4,−1, 8) (c) 3

20 (a) a · (b × c) = 9 6= 0 and hence the vectors are not

coplanar

(b) λ = 31/14

23
1

2

√
1106
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8.1 INTRODUCTION

Matrices provide a means of storing large quantities of information in such a way that

each piece can be easily identi�ed and manipulated. They permit the solution of large

systems of linear equations to be carried out in a logical and formal way so that computer

implementation follows naturally. Applications of matrices extend over many areas of

engineering including electrical network analysis and robotics.
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An example of an extremely large electrical network is the national grid in Britain.

The equations governing this network are expressed in matrix form for analysis by com-

puter because solutions are required at regular intervals throughout the day and night in

order to make decisions such as whether or not a power station should be connected to,

or removed from, the grid.

To obtain the trajectory of a robot it is necessary to performmatrix calculations to �nd

the speed at which various motors within the robot should operate. This is a complicated

problem as it is necessary to ensure that a robot reaches its required destination and does

not collide with another object during its movement.

8.2 BASIC DEFINITIONS

A matrix is a rectangular pattern or array of numbers.

For example,

A =




1 2 3

4 5 6

−1 2 4


 B =

(
1 2 −2

3 4 0.5

)
C =

(
1 −1 1

)

are all matrices. Note that we usually use a capital letter to denote a matrix, and enclose

the array of numbers in brackets. To describe the size of a matrix we quote its number

of rows and columns in that order so, for example, an r × s matrix has r rows and s

columns. We say the matrix has order r × s.

An r × s matrix has r rows and s columns.

Example 8.1 Describe the sizes of thematricesA,B andC at the start of this section, and give examples

of matrices of order 3 × 1, 3 × 2 and 4 × 2.

Solution A has order 3 × 3, B has order 2 × 3 andC has order 1 × 3.



−1

−2

3


 is a 3 × 1 matrix



1 2

3 4

5 6


 is a 3 × 2 matrix

and



−1 −1

−1 2

2 − 0.5

1 0


 is a 4 × 2 matrix

More generally, if the matrix A has m rows and n columns we can write

A =




a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn
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where ai j represents the number or element in the ith row and jth column. Amatrix with

a single column can also be regarded as a column vector.

The operations of addition, subtraction and multiplication are de�ned upon matrices

and these are explained in Section 8.3.

8.3 ADDITION, SUBTRACTION AND MULTIPLICATION

8.3.1 Matrix addition and subtraction

Twomatrices can be added (or subtracted) if they have the same shape and size, that is the

same order. Their sum (or difference) is found by adding (or subtracting) corresponding

elements as the following example shows.

Example 8.2 If

A =

(
1 5 −2

3 1 1

)
and B =

(
1 2 0

−1 1 4

)

�nd A+ B and A− B.

Solution A+ B=

(
1 5 −2

3 1 1

)
+

(
1 2 0

−1 1 4

)
=

(
2 7 −2

2 2 5

)

A− B=

(
1 5 −2

3 1 1

)
−

(
1 2 0

−1 1 4

)
=

(
0 3 −2

4 0 −3

)

On the other hand, the matrices

(
1 2

0 1

)
and

(
3

1

)
cannot be added or subtracted because

they have different orders.

Example 8.3 If C =

(
a b

c d

)
and D =

(
e f

g h

)
show that C + D = D+C.

Solution C + D =

(
a b

c d

)
+

(
e f

g h

)
=

(
a+ e b+ f

c+ g d + h

)

D+C =

(
e f

g h

)
+

(
a b

c d

)
=

(
e+ a f + b

g+ c h+ d

)

Now a + e is exactly the same as e + a because addition of numbers is commutative.

The same observation can be made of b+ f , c+ g and d + h. Hence C + D = D+C.

The addition of these matrices is therefore commutative. This may seem an obvious

statement but we shall shortly meet matrix multiplication which is not commutative, so

in general commutativity should not be simply assumed.
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The result obtained in Example 8.3 is true more generally:

Matrix addition is commutative, that is

A+ B = B+ A

It is also easy to show that

Matrix addition is associative, that is

A+ (B+C) = (A+ B)+C

8.3.2 Scalar multiplication

Given any matrix A, we can multiply it by a number, that is a scalar, to form a newmatrix

of the same order as A. This multiplication is performed by multiplying every element

of A by the number.

Example 8.4 If

A =




1 3

−2 1

0 1




�nd 2A, −3A and
1

2
A.

Solution 2A= 2




1 3

−2 1

0 1


 =




2 6

−4 2

0 2




−3A= −3




1 3

−2 1

0 1


 =




−3 −9

6 −3

0 −3




and

1

2
A =

1

2




1 3

−2 1

0 1


 =




1

2

3

2

−1
1

2

0
1

2
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In general we have

If A =




a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn


 then kA =




ka11 ka12 . . . ka1n
ka21 ka22 . . . ka2n
...

...
. . .

...

kam1 kam2 . . . kamn




8.3.3 Matrix multiplication

Matrix multiplication is de�ned in a special way which at �rst seems strange but is in

fact very useful. If A is a p× q matrix and B is an r× s matrix we can form the product

AB only if q = r; that is, only if the number of columns in A is the same as the number

of rows in B. The product is then a p× s matrix C, that is

C = AB where A is p× q

B is q× s

C is p× s

Example 8.5 Given A =
(
4 2

)
and B =

(
3 7 6

5 2 −1

)
can the product AB be formed?

Solution A has size 1 × 2

B has size 2 × 3

Because the number of columns in A is the same as the number of rows in B, we can

form the product AB. The resulting matrix will have size 1× 3 because there is one row

in A and three columns in B.

Suppose we wish to �nd AB when A =
(
4 2

)
and B =

(
3

7

)
. A has size 1× 2 and B has

size 2 × 1 and so we can form the product AB. The result will be a 1 × 1 matrix, that is

a single number. We perform the calculation as follows:

AB =
(
4 2

) (3
7

)
= 4 × 3 + 2 × 7 = 12 + 14 = 26

Note that we have multiplied elements in the row of A with corresponding elements in

the column of B, and added the results together.

Example 8.6 Find CD whenC =
(
1 9 2

)
and D =



2

6

8


.

Solution CD =
(
1 9 2

)


2

6

8


 = 1 × 2 + 9 × 6 + 2 × 8 = 2 + 54 + 16 = 72

Let us now extend this idea to general matrices A and B. Suppose we wish to �nd C

whereC = AB. The element c11 is found by pairing each element in row 1 of A with the
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corresponding element in column 1 of B. The pairs are multiplied together and then the

results are added to give c11. Similarly, to �nd the element c12, each element in row 1 of

A is paired with the corresponding element in column 2 of B. Again, the paired elements

are multiplied together and the results are added to form c12. Other elements of C are

found in a similar way. In general the element ci j is found by pairing elements in the ith

row of A with those in the jth column of B. These are multiplied together and the results

are added to give ci j. Consider the following example.

Example 8.7 If A =

(
1 2

4 3

)
and B =

(
5

−3

)
�nd, if possible, the matrixC where C = AB.

Solution We can form the product

C = AB =

(
1 2

4 3

)(
5

−3

)

↑ ↑

2 × 2 2 × 1

because the number of columns in A, that is 2, is the same as the number of rows in B.

The size of the product is found by inspecting the number of rows in the �rst matrix,

which is 2, and the number of columns in the second, which is 1. These numbers give

the number of rows and columns respectively inC. Therefore C will be a 2 × 1 matrix.

To �nd the element c11 we pair the elements in the �rst row of A with those in the

�rst column of B, multiply and then add these together. Thus

c11 = 1 × 5 + 2 × −3 = 5 − 6 = −1

Similarly, to �nd the element c21 we pair the elements in the second row of A with those

in the �rst column of B, multiply and then add these together. Thus

c21 = 4 × 5 + 3 × −3 = 20 − 9 = 11

The complete calculation is written as

AB =

(
1 2

4 3

)(
5

−3

)
=

(
1 × 5 + 2 × −3

4 × 5 + 3 × −3

)

=

(
5 − 6

20 − 9

)

=

(
−1

11

)

If A is a p× q matrix and B is a q × s matrix, then the product C = AB will be a

p× s matrix. To �nd ci j we take the ith row of A and pair its elements with the jth

column of B. The paired elements are multiplied together and added to form ci j.
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Example 8.8 If B =

(
1 2 3

4 5 6

)
and C =



1

2

4


 �nd BC.

Solution B has order 2 × 3 and C has order 3 × 1 so clearly the product BC exists and will have

order 2 × 1. BC is formed as follows:

BC =

(
1 2 3

4 5 6

)

1

2

4


 =

(
1 × 1 + 2 × 2 + 3 × 4

4 × 1 + 5 × 2 + 6 × 4

)
=

(
17

38

)

Note that the order of the product, 2 × 1, can be determined at the start by considering

the orders of B andC.

Example 8.9 Find AB where

A =




1 2

3 4

−1 0


 and B =




−1

2

−1




Solution A and B have orders 3 × 2 and 3 × 1, respectively, and consequently the product, AB,

cannot be formed.

Example 8.10 Given

A =



1 1 1

2 1 0

3 −1 2


 and B =



0 3 1

4 −1 0

2 2 1




�nd, if possible, AB and BA, and comment upon the result.

Solution A and B both have order 3 × 3 and the products AB and BA can both be formed. Both

will have order 3 × 3.

AB =



1 1 1

2 1 0

3 −1 2





0 3 1

4 −1 0

2 2 1


 =



6 4 2

4 5 2

0 14 5




BA =



0 3 1

4 −1 0

2 2 1





1 1 1

2 1 0

3 −1 2


 =



9 2 2

2 3 4

9 3 4




Clearly AB and BA are not the same. Matrix multiplication is not usually commutative

and we must pay particular attention to this detail when we are working with matrices.

In general AB 6= BA and so matrix multiplication is not commutative.

In the product AB we say that B has been premultiplied by A, or alternatively A has

been postmultiplied by B.
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Example 8.11 Given

A =




1 −1 2

3 0 2

−1 3 5


 B =




−1 2 9

1 0 0

3 −2 1


 C =



4 1 5

2 3 1

0 1 5




�nd BC, A(BC), AB and (AB)C, commenting upon the result.

Solution BC=




−1 2 9

1 0 0

3 −2 1





4 1 5

2 3 1

0 1 5


 =



0 14 42

4 1 5

8 −2 18




A(BC)=




1 −1 2

3 0 2

−1 3 5





0 14 42

4 1 5

8 −2 18


 =



12 9 73

16 38 162

52 −21 63




AB=




1 −1 2

3 0 2

−1 3 5






−1 2 9

1 0 0

3 −2 1


 =




4 −2 11

3 2 29

19 −12 −4




(AB)C=




4 −2 11

3 2 29

19 −12 −4





4 1 5

2 3 1

0 1 5


 =



12 9 73

16 38 162

52 −21 63




We note that A(BC) = (AB)C so that in this case matrix multiplication is associative.

The result obtained in Example 8.11 is also true in general:

Matrix multiplication is associative:

(AB)C = A(BC)

EXERCISES 8.3

1 Evaluate

(a)
(
1 4

) (−1

4

)

(b)
(
3 7

) ( 3

−4

)

(c)

(
5 2

1 3

) (
9

1

)

(d)

(
1 4

−1 3

) (
5 2

−3 4

)

(e)

(
5 1

29 6

) (
6 −1

−29 5

)

(f)
(
1 2 4

)


1

3

2




(g)
(
5 −1 3

)


3 3

2 6

4 1




(h)
(
1 9

) (1 1 1

2 2 2

)

(i)

(
1 3

−1 0

) (
2 1

5 0

)

(j)

(
3 0

0 1

) (
0 3

9 0

)

2 If A =

(
1 1

3 4

)
, B =

(
2

1

)
,C =

(
−7 1

0 4

)
,

D =
(
3 2 1

)
and E =

(
2 3 4

1 2 −1

)
�nd, if possible,

(a) A+ D, C − A and D− E

(b) AB, BA, CA, AC, DA, DB, BD, EB, BE and AE

(c) 7C, −3D and kE, where k is a scalar.
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3 Plot the points A, B,C with position vectors given by

v1 =

(
1

0

)
v2 =

(
2

0

)
v3 =

(
2

3

)

respectively. Treating these vectors as matrices of

order 2 × 1 �nd the productsMv1, Mv2,Mv3 when

(a) M =

(
1 0

0 −1

)

(b) M =

(
0 1

1 0

)

(c) M =

(
0 −1

1 0

)

In each case draw a diagram to illustrate the effect

upon the vectors of multiplication by the matrix.

4 Find AB and BA where

A =




1 3 2

−1 0 4

5 1 −1




B =



5 2 1

0 3 4

1 3 5




5 Given that A2 means the product of a matrix A with

itself, �nd A2 when A =

(
4 2

1 3

)
. Find A3.

6 If A =

(
1 3

−2 4

)
, B =

(
2 1

−4 5

)
�nd AB, BA, A+ B

and (A+ B)2. Show that

(A+ B)2 = A2 + AB+ BA+ B2

Why is (A+ B)2 not equal to A2 + 2AB+ B2?

7 Find, if possible,

(a)




1 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 1







1

1

2

1




(b)




0 0 1 0

0 1 0 0

−1 0 0 0

0 0 0 1







2

5

5

1




8 Find

(
1 3 6

2 −5 7

)

1 2

3 −5

6 7


.

9 Given the vector v =



1

2

3


 calculate the vectors

obtained when v is premultiplied by the following

matrices:

(a)




6 2 9

1 3 2

−1 2 −3


 (b)




−1 0 3

7 1 9

1 3 4




(c)



1 3 1

9 2 6

2 8 0


 (d)

(
3 1 2

6 5 4

)

(e)




6 8 3

9 6 4

5 3 9

2 5 2




Solutions

1 (a) 15 (b) −19

(c)

(
47

12

)
(d)

(
−7 18

−14 10

)

(e)

(
1 0

0 1

)
(f) 15

(g) (25 12) (h) (19 19 19)

(i)

(
17 1

−2 −1

)
(j)

(
0 9

9 0

)

2 (a) A+ D does not exist,

(
−8 0

−3 0

)
,

D− E does not exist

(b)

(
3

10

)
, BA does not exist,

(
−4 −3

12 16

)
,

(
−7 5

−21 19

)
,

DA does not exist, DB does not exist,
(
6 4 2

3 2 1

)
,

EB does not exist, BE does not exist,
(

3 5 3

10 17 8

)

(c)

(
−49 7

0 28

)
, (−9 − 6 − 3),

(
2k 3k 4k

k 2k −k

)

3 (a)

(
1

0

)
,

(
2

0

)
,

(
2

−3

)
(b)

(
0

1

)
,

(
0

2

)
,

(
3

2

)

(c)

(
0

1

)
,

(
0

2

)
,

(
−3

2

)
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4




7 17 23

−1 10 19

24 10 4


,




8 16 17

17 4 8

23 8 9




5

(
18 14

7 11

)
,

(
86 78

39 47

)

6

(
−10 16

−20 18

)
,

(
0 10

−14 8

)
,

(
3 4

−6 9

)
,

(
−15 48

−72 57

)

7 (a)




1

−2

1

1


 (b)




5

5

−2

1




8

(
46 29

29 78

)

9 (a)




37

13

−6


 (b)




8

36

19


 (c)



10

31

18




(d)

(
11

28

)
(e)




31

33

38

18




Technical Computing Exercises 8.3

Technical computing languages such as MATLAB® are

usually designed to perform operations on scalars,

vector and matrices. However, as has been demonstrated

in this chapter, different mathematical rules apply when

working with vectors and matrices. Consider the

following quantities:

a = −2 (a scalar quantity)

b = 7 (a scalar quantity)

c =

(
1 3

2 4

)
, (a 2 by 2 matrix)

d =

(
5 7

6 8

)
, (a 2 by 2 matrix)

e =



1 4

2 5

3 6


, (a 3 by 2 matrix)

f =

(
1 3 5

2 4 6

)
, (a 2 by 3 matrix)

Load these as variables in a technical computing

language and then attempt to perform the following

calculations and answer the questions.

1. Find the product of the scalars a and b. Is this a

valid calculation?

2. Find the product of the scalar a and the matrix c. Is

this calculation valid? Similarly �nd the product of

the matrix c and scalar a. Do these calculations

produce the same result?

3. Find the products of the matrices c and d, that is cd

and dc. Are these calculations valid and do they

produce the same result?

4. Find the products of the matrices e and f , that is ef

and fe. Are these calculations valid and do they

produce the same result?

5. Find the products of the matrices d and e, that is de

and ed. Are these calculations valid and do they

produce the same result?

6. Find c2. Is this calculation valid?

7. Find e2. Is this calculation valid?

Solutions

1 Yes, the calculation is valid. It is a scalar multiplied

by a scalar. In MATLAB®:

a*b

ans = -14

2 Yes, the calculations are valid and produce the same

result.

a*c

ans =

-2 -6

-4 -8
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c*a

ans =

-2 -6

-4 -8

Multiplication of a scalar by a matrix is

commutative. It does not matter in which order the

calculation is performed. Each element in the matrix

is multiplied by the scalar value.

3 The calculations are valid but they do not produce the

same result because matrix multiplication is not

commutative.

c*d

ans =

23 31

34 46

>> d*c

ans =

19 43

22 50

This result emphasizes the need for care when

manipulating matrix equations.

4 Both calculations are valid but the results are not the

same.

e*f

ans =

9 19 29

12 26 40

15 33 51

f*e

ans =

22 49

28 64

5 de is not valid as there are 2 columns in d and 3 rows

in e. It should generate an error in a technical

computing language. It is worth observing the error

message and understanding why this happens for

future reference.

ed is valid,

e*d

ans =

29 39

40 54

51 69

6 It is valid. We take this to mean the matrix

multiplication of c by itself:

c*c

ans =

7 15

10 22

Notice that this is different to taking the square of

each element within c. If we wanted to do that it

would be necessary to use the ‘dot’ notation:

c.^2

ans =

1 9

4 16

The command c.ˆ2 means ‘take each element of c and

raise it to the power of 2. There is a set of operators

within MATLAB® which allow multiplication of

matrices on an element by element basis. Care has to

be taken as (for example) c ∗ d and c. ∗ d are both

valid operations which generate a 3 by 3 result but the

elements of the matrix are different. In other words, it

could give an incorrect result but MATLAB® would

not give any error messages.

7 It is not valid. It is only possible to multiply a matrix

by itself if there are the same number of columns as

rows.

8.4 USING MATRICES IN THE TRANSLATION AND ROTATION
OF VECTORS

There are many applications in engineering that require vectors to be manipulated into

new con�gurations. One mechanism for achieving this is by the use of matrices. We will

introduce this topic through the example of robotics. However, it is important to note

that the ideas are more generally applicable in engineering.
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Engineering application 8.1

Robot coordinate frames

In Chapter 7 we saw that vectors provide a useful tool for the analysis of the position

of robots. By assigning a vector to each of the links the position vector corresponding

to the tip of the robot can be calculated (Figure 8.1). In practice the inverse problem

is more likely: calculate the link vectors to achieve a particular position vector. Usu-

ally a desired position for the tip of the robot is known and link positions to achieve

this are required. The problem is made more complicated because the position of a

link depends upon the movements of all the joints between it and the anchor point.

The solution of this problem can be quite complicated, especially when the robot has

several links. One way forward is to de�ne the position of a link by its own local

set of coordinates. This is usually termed a coordinate frame because it provides a

frame of reference for the link. Matrix operations can then be used to relate the coor-

dinate frames, thus allowing a link position to be de�ned with respect to a convenient

coordinate frame. A common requirement is to be able to relate the link positions to

a world coordinate frame. If a robot is being used in conjunction with other ma-

chines then the world coordinate frame may have an origin some distance away from

the robot. The advantage of de�ning link coordinate frames is that the position of a

link is easily de�ned within its own coordinate frame and themovement of coordinate

frames relative to each other can be expressed by means of matrix equations.

a

b
c

d

p

p = a + b + c + d

Figure 8.1

A robot with links represented by vectors

a, b, c and d.

8.4.1 Translation and rotation of vectors

An introduction to the mathematics involved in analysing the movement of robots can

be obtained by examining the way in which vectors can be translated and rotated using

matrix operations.

Consider the point P with position vector given by

r =



x

y

z




In order to translate and rotate this vector it is useful to introduce an augmented vector

V given by

V =




x

y

z

1


 (8.1)
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It is then possible to de�ne several matrices:

Rot(x, θ ) =




1 0 0 0

0 cos θ − sin θ 0

0 sin θ cos θ 0

0 0 0 1


 (8.2)

Rot(y, θ ) =




cos θ 0 sin θ 0

0 1 0 0

− sin θ 0 cos θ 0

0 0 0 1


 (8.3)

Rot(z, θ ) =




cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 1 0

0 0 0 1


 (8.4)

Trans(a, b, c) =




1 0 0 a

0 1 0 b

0 0 1 c

0 0 0 1


 (8.5)

Matrices (8.2) to (8.4) allow vectors to be rotated by an angle θ around axes x, y and z,

respectively. For example, the product Rot(x, θ )V has the effect of rotating r through

an angle θ about the x axis. Matrix (8.5) allows a vector to be translated a units in the x

direction, b units in the y direction and c units in the z direction.

It is possible to combine these matrices to calculate the effect of several operations

on a vector. In doing so, it is important to maintain the correct order of operations as

matrix multiplication is non-commutative.

For example, the position of a vector that has �rst been translated and then rotated

about the x axis can be de�ned by

Vnew = Rot(x, θ ) Trans(a, b, c)Vold

A few examples will help to clarify these ideas.

Example 8.12 Rotate the vector

r =



1

1

2




through 90◦ about the x axis.

Solution rold =



1

1

2


 Vold =




1

1

2

1




Rot(x, 90◦) =




1 0 0 0

0 cos 90◦ − sin 90◦ 0

0 sin 90◦ cos 90◦ 0

0 0 0 1


 =




1 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 1
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Vnew =




1 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 1







1

1

2

1


 =




1

−2

1

1




So,

rnew =




1

−2

1




Example 8.13 Translate the vector

r =



1

3

2




by


1

2

3




and then rotate by 90◦ about the y axis.

Solution rold =



1

3

2


 Vold =




1

3

2

1




To translate rold, we form

Trans(1, 2, 3) =




1 0 0 1

0 1 0 2

0 0 1 3

0 0 0 1




Then

Trans(1, 2, 3)Vold =




1 0 0 1

0 1 0 2

0 0 1 3

0 0 0 1







1

3

2

1


 =




2

5

5

1




To rotate by 90◦ about the y axis we require

Rot(y, 90◦) =




cos 90◦ 0 sin 90◦ 0

0 1 0 0

− sin 90◦ 0 cos 90◦ 0

0 0 0 1


 =




0 0 1 0

0 1 0 0

−1 0 0 0

0 0 0 1




The vector




2

5

5

1


 is premultiplied by this matrix to give
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Vnew = Rot(y, 90◦)Trans(1, 2, 3)Vold

=




0 0 1 0

0 1 0 0

−1 0 0 0

0 0 0 1







2

5

5

1


 =




5

5

−2

1




Hence

rnew =




5

5

−2




8.5 SOME SPECIAL MATRICES

8.5.1 Square matrices

Amatrix which has the same number of rows as columns is called a squarematrix. Thus



1 2 3

−1 0 1

3 2 1


 is a square matrix, while

(
−1 3 0

2 4 1

)
is not

8.5.2 Diagonal matrices

Some square matrices have elements which are zero everywhere except on the leading

diagonal (top-left to bottom-right). Such matrices are said to be diagonal. Thus



1 0 0

0 2 0

0 0 −1




(
1 0

0 b

)



3 0 0 0

0 2 0 0

0 0 1 0

0 0 0 0




are all diagonal matrices, whereas


1 2 4

0 1 0

3 0 1




is not.

8.5.3 Identity matrices

Diagonal matrices which have only ones on their leading diagonals, for example

(
1 0

0 1

)
and



1 0 0

0 1 0

0 0 1




are called identity matrices and are denoted by the letter I.

Example 8.14 Find IA where I =

(
1 0

0 1

)
and A =

(
2 4 4

3 −1 0

)
and comment upon the result.

Solution IA =

(
1 0

0 1

)(
2 4 4

3 −1 0

)
=

(
2 4 4

3 −1 0

)
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The effect of premultiplyingA by I has been to leaveA unaltered. The product is identical

to the original matrix A, and this is why I is called an identity matrix.

In general, if A is an arbitrary matrix and I is an identity matrix of the appropriate

size, then

IA = A

If A is a square matrix then IA = AI = A.

8.5.4 The transpose of a matrix

If A is an arbitrarym×nmatrix, a related matrix is the transpose of A, written AT , found

by interchanging the rows and columns of A. Thus the �rst row of A becomes the �rst

column of AT and so on. AT is an n× m matrix.

Example 8.15 If A =

(
1 −1

2 4

)
�nd AT .

Solution AT =

(
1 2

−1 4

)

Example 8.16 If A =

(
4 2 6

1 8 7

)
�nd AT and evaluate AAT .

Solution AT =



4 1

2 8

6 7


 AAT =

(
4 2 6

1 8 7

)

4 1

2 8

6 7


 =

(
56 62

62 114

)

8.5.5 Symmetric matrices

If a square matrix A and its transpose AT are identical, then A is said to be a symmetric

matrix.

Example 8.17 If A =




5 −4 2

−4 6 9

2 9 13


 �nd AT .

Solution AT =




5 −4 2

−4 6 9

2 9 13




which is clearly equal to A. Hence A is a symmetric matrix. Note that a symmetric matrix

is symmetrical about its leading diagonal.

8.5.6 Skew symmetric matrices

If a square matrix A is such that AT = −A then A is said to be skew symmetric.
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Example 8.18 If A =

(
0 5

−5 0

)
, �nd AT and deduce that A is skew symmetric.

Solution We have AT =

(
0 −5

5 0

)
which is clearly equal to −A. Hence A is skew symmetric.

EXERCISES 8.5

1 If A =

(
3 1

2 6

)
and B =

(
−1 4

3 8

)

(a) �nd AT ,

(b) �nd BT ,

(c) �nd AB,

(d) �nd (AB)T ,

(e) deduce that (AB)T = BTAT .

2 Treating the column vector x =



x

y

z


 as a 3 × 1

matrix, �nd Ix where I is the 3 × 3 identity matrix.

3 If A =

(
a b

c d

)
show that AAT is a symmetric

matrix.

4 If A =




2 1 3

4 2 1

−1 3 2


 and B =



1 −7 0

0 2 5

3 4 5




�nd AT , BT , AB and (AB)T .

Deduce that (AB)T = BTAT .

5 Determine the type of matrix obtained when two

diagonal matrices are multiplied together.

6 If A =

(
a b

c d

)
is skew symmetric, show that

a = d = 0, that is the diagonal elements are zero.

7 If A =

(
1 13

15 7

)

(a) �nd AT ,

(b) �nd (AT )T ,

(c) deduce that (AT )T is equal to A.

8 If A =

(
9 4

3 2

)

(a) �nd A+ AT and show that this is a symmetric

matrix,

(b) �nd A− AT and show that this is a skew

symmetric matrix.

9 The sum of the elements on the leading diagonal

of a square matrix is known as its trace. Find the

trace of

(a)

(
7 2

−1 5

)
(b)

(
0 9

−1 0

)

(c)



1 0 0

0 1 0

0 0 1


 (d)



7 2 1

8 2 3

9 −1 −4




Solutions

1 (a)

(
3 2

1 6

)
(b)

(
−1 3

4 8

)

(c)

(
0 20

16 56

)
(d)

(
0 16

20 56

)

2



x

y

z




4



2 4 −1

1 2 3

3 1 2


,




1 0 3

−7 2 4

0 5 5


,



11 0 20

7 −20 15

5 21 25


,



11 7 5

0 −20 21

20 15 25




5 Diagonal matrix

7 (a)

(
1 15

13 7

)
(b)

(
1 13

15 7

)

8 (a)

(
18 7

7 4

)
(b)

(
0 1

−1 0

)

9 (a) 12 (b) 0 (c) 3 (d) 5
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8.6 THE INVERSE OF A 2 × 2 MATRIX

When we are dealing with ordinary numbers it is often necessary to carry out the opera-

tion of division. Thus, for example, if we know that 3x = 4, then clearly x = 4/3. If we

are given matrices A andC and know that

AB = C

how do we �nd B? It might be tempting to write

B =
C

A

Unfortunately, this would be entirely wrong since division of matrices is not de�ned.

However, given expressions like AB = C it is often necessary to be able to �nd the

appropriate expression forB. This is wherewe need to introduce the concept of an inverse

matrix.

If A is a square matrix and we can �nd another matrix B with the property that

AB = BA = I

then B is said to be the inverse of A and is written A−1, that is

AA−1 = A−1A = I

If B is the inverse of A, then A is also the inverse of B. Note that A−1 does not mean a

reciprocal; there is no such thing as matrix division. A−1 is the notation we use for the

inverse of A.

Multiplying a matrix by its inverse yields the identity matrix I, that is

AA−1 = A−1A = I

Since A is a square matrix, A−1 is also square and of the same order, so that the products

AA−1 and A−1A can be formed. The term ‘inverse’ cannot be applied to a matrix which

is not square.

Example 8.19 If A =

(
2 1

3 2

)
show that the matrix

(
2 −1

−3 2

)
is the inverse of A.

Solution Forming the products

(
2 1

3 2

)(
2 −1

−3 2

)
=

(
1 0

0 1

)

(
2 −1

−3 2

)(
2 1

3 2

)
=

(
1 0

0 1

)

we see that

(
2 −1

−3 2

)
is the inverse of A.
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8.6.1 Finding the inverse of a matrix

For 2 × 2 matrices a simple formula exists to �nd the inverse of

A =

(
a b

c d

)

This formula states

If A =

(
a b

c d

)
then A−1 =

1

ad − bc

(
d −b

−c a

)
.

Example 8.20 If A =

(
3 5

1 2

)
�nd A−1.

Solution Clearly ad − bc = 6 − 5 = 1, so that

A−1 =
1

1

(
2 −5

−1 3

)
=

(
2 −5

−1 3

)

The solution should always be checked by forming AA−1.

Example 8.21 If A =

(
1 5

2 4

)
�nd A−1.

Solution Here we have ad − bc = 4 − 10 = −6. Therefore

A−1 =
1

−6

(
4 −5

−2 1

)
=




−
2

3

5

6
1

3
−
1

6




Example 8.22 If A =

(
2 4

1 2

)
�nd A−1.

Solution This time, ad − bc = 4 − 4 = 0, so when we come to form
1

ad − bc
we �nd 1/0 which

is not de�ned. We cannot form the inverse of A in this case; it does not exist.

Clearly not all square matrices have inverses. The quantity ad − bc is obviously the

important determining factor since only if ad − bc 6= 0 can we �nd A−1. This quan-

tity is therefore given a special name: the determinant of A, denoted by |A|, or detA.

Given any 2 × 2 matrix A, its determinant, |A|, is the scalar ad − bc. This is easily

remembered as

[product of ց diagonal] − [product of ւ diagonal]
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If A is the matrix

(
a b

c d

)
, we write its determinant as

∣∣∣∣
a b

c d

∣∣∣∣. Note that the straight

lines || indicate that we are discussing the determinant, which is a scalar, rather than

the matrix itself. If the matrix A is such that |A| = 0, then it has no inverse and is said

to be singular. If |A| 6= 0 then A−1 exists and A is said to be non-singular.

A singular matrix A has |A| = 0.

A non-singular matrix A has |A| 6= 0.

Example 8.23 If A =

(
1 2

5 0

)
and B =

(
−1 2

−3 1

)
�nd |A|, |B| and |AB|.

Solution |A| =

∣∣∣∣
1 2

5 0

∣∣∣∣ = (1)(0)− (2)(5) = −10

|B| =

∣∣∣∣
−1 2

−3 1

∣∣∣∣ = (−1)(1)− (2)(−3) = 5

AB =

(
1 2

5 0

)(
−1 2

−3 1

)
=

(
−7 4

−5 10

)

|AB| = (−7)(10)− (4)(−5) = −50

We note that |A||B| = |AB|.

The result obtained in Example 8.23 is true more generally:

If A and B are square matrices of the same order, |A||B| = |AB|.

8.6.2 Orthogonal matrices

A non-singular square matrix A such that AT = A−1 is said to be orthogonal. Conse-

quently, if A is orthogonal AAT = ATA = I.

Example 8.24 Find the inverse of A =

(
0 −1

1 0

)
. Deduce that A is an orthogonal matrix.

Solution From the formula for the inverse of a 2 × 2 matrix we �nd

A−1 =
1

1

(
0 1

−1 0

)
=

(
0 1

−1 0

)

This is clearly equal to the transpose of A. Hence A is an orthogonal matrix.

To �nd the inverses of larger matrices we shall need to study determinants further. This

is done in Section 8.7.
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EXERCISES 8.6

1 If A =

(
5 6

−4 8

)
�nd A−1.

2 Find the inverse, if it exists, of each of the following

matrices:

(a)

(
1 0

0 1

)
(b)

(
−1 0

0 −1

)
(c)

(
2 3

4 1

)

(d)

(
−1 0

−1 7

)
(e)

(
6 2

9 3

)
(f)

(
−6 2

9 3

)

(g)




1

2

1

2

0
1

2




3 If A =

(
3 0

−1 4

)
and B =

(
7 8

4 3

)

�nd |AB|, |BA|.

4 If A =

(
a b

c d

)
, B =

(
e f

g h

)

�nd AB, |A|, |B|, |AB|.

Verify that |AB| = |A||B|.

5 If A =

(
1 2

3 4

)
�nd A−1.

Find values of the constants a and b

such that A+ aA−1 = bI.

6 If A =

(
1 1

0 3

)
and B =

(
2 1

−1 3

)

�nd AB, (AB)−1, B−1, A−1 and B−1A−1.

Deduce that (AB)−1 = B−1A−1.

7 Given that the matrix

M =



cosωt − sinωt 0

sinωt cosωt 0

0 0 1




is orthogonal, �nd M−1.

8 (a) If A =

(
a b

c d

)
and k is a scalar constant,

show that the inverse of the matrix kA

is
1

k
A−1.

(b) Find the inverse of

(
1 1

1 0

)
and hence write

down the inverse of




1

3

1

3

1

3
0


.

Solutions

1
1

64

(
8 −6

4 5

)

2 (a)

(
1 0

0 1

)
(b)

(
−1 0

0 −1

)
(c)




−
1

10

3

10

2

5
−
1

5




(d)

(
−1 0

−
1

7

1

7

)
(e) No inverse (f)




−
1

12

1

18

1

4

1

6




(g)

(
2 −2

0 2

)

3 −132,−132

4

(
ae+ bg a f + bh

ce+ dg c f + dh

)
,

ad − bc, eh− f g,

(ad − bc)(eh− f g)

5

(
−2 1
3

2
−
1

2

)
a = −2, b = 5

6 AB =

(
1 4

−3 9

)
, (AB)−1 =

1

21

(
9 −4

3 1

)
,

B−1 =
1

7

(
3 −1

1 2

)
, A−1 =

1

3

(
3 −1

0 1

)

7




cosωt sinωt 0

− sinωt cosωt 0

0 0 1




8 (b)

(
0 1

1 −1

)
,

(
0 3

3 −3

)
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8.7 DETERMINANTS

If A =



a11 a12 a13
a21 a22 a23
a31 a32 a33


, the value of its determinant, |A|, is given by

|A| = a11

∣∣∣∣
a22 a23
a32 a33

∣∣∣∣− a12

∣∣∣∣
a21 a23
a31 a33

∣∣∣∣+ a13

∣∣∣∣
a21 a22
a31 a32

∣∣∣∣

If we choose an element of A, ai j say, and cross out its row and column and form the

determinant of the four remaining elements, this determinant is known as theminor of

the element ai j.

A moment’s study will therefore reveal that the determinant of A is given by

|A| = (a11 × its minor)− (a12 × its minor)+ (a13 × its minor)

This method of evaluating a determinant is known as expansion along the �rst row.

Example 8.25 Find the determinant of the matrix

A =




1 2 1

−1 3 4

5 1 2




Solution The determinant of A, written as
∣∣∣∣∣∣

1 2 1

−1 3 4

5 1 2

∣∣∣∣∣∣

is found by expanding along its �rst row:

|A| = 1

∣∣∣∣
3 4

1 2

∣∣∣∣− 2

∣∣∣∣
−1 4

5 2

∣∣∣∣+ 1

∣∣∣∣
−1 3

5 1

∣∣∣∣

= 1(2)− 2(−22)+ 1(−16)

= 2 + 44 − 16

= 30

Example 8.26 Find the minors of the elements 1 and 4 in the matrix

B =



7 2 3

1 0 3

0 4 2




Solution To �nd the minor of 1 delete its row and column to form the determinant

∣∣∣∣
2 3

4 2

∣∣∣∣. The
required minor is therefore 4 − 12 = −8.

Similarly, the minor of 4 is

∣∣∣∣
7 3

1 3

∣∣∣∣ = 21 − 3 = 18.
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In addition to �nding the minor of each element in a matrix, it is often useful to �nd a

related quantity -- the cofactor of each element. The cofactor is found by imposing on

the minor a positive or negative sign depending upon its position, that is a place sign,

according to the following rule:

+ − +

− + −

+ − +

Example 8.27 If

A =



3 2 7

9 1 0

3 −1 2




�nd the cofactors of 9 and 7.

Solution The minor of 9 is

∣∣∣∣
2 7

−1 2

∣∣∣∣ = 4 − (−7) = 11, but since its place sign is negative, the

required cofactor is −11.

The minor of 7 is

∣∣∣∣
9 1

3 −1

∣∣∣∣ = −9 − 3 = −12. Its place sign is positive, so that the

required cofactor is simply −12.

8.7.1 Using determinants to find vector products

Determinants can also be used to evaluate the vector product of two vectors. If a =

a1i + a2j + a3k and b = b1i + b2j + b3k, we showed in Section 7.6 that a × b is the

vector de�ned by

a × b = (a2b3 − a3b2)i + (a3b1 − a1b3)j + (a1b2 − a2b1)k

If we consider the expansion of the determinant given by

∣∣∣∣∣∣

i j k

a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣

we �nd the same result. This de�nition is therefore a convenient mechanism for evalu-

ating a vector product.

If a = a1i + a2j + a3k and b = b1i + b2j + b3k, then

a × b =

∣∣∣∣∣∣

i j k

a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣
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Example 8.28 If a = 3i + j − 2k and b = 4i + 5k �nd a × b.

Solution We have

a × b =

∣∣∣∣∣∣

i j k

3 1 −2

4 0 5

∣∣∣∣∣∣

= 5i − 23j − 4k

8.7.2 Cramer’s rule

A useful application of determinants is to the solution of simultaneous equations. Con-

sider the case of three simultaneous equations in three unknowns:

a11x+ a12y+ a13z = b1

a21x+ a22y+ a23z = b2

a31x+ a32y+ a33z = b3

Cramer’s rule states that x, y and z are given by the following ratios of determinants.

Cramer’s rule:

x =

∣∣∣∣∣∣

b1 a12 a13
b2 a22 a23
b3 a32 a33

∣∣∣∣∣∣
∣∣∣∣∣∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣

y =

∣∣∣∣∣∣

a11 b1 a13
a21 b2 a23
a31 b3 a33

∣∣∣∣∣∣
∣∣∣∣∣∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣

z =

∣∣∣∣∣∣

a11 a12 b1
a21 a22 b2
a31 a32 b3

∣∣∣∣∣∣
∣∣∣∣∣∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣

Note that in all cases the determinant in the denominator is identical and its elements

are the coef�cients on the l.h.s. of the simultaneous equations. When this determinant is

zero, Cramer’s method will clearly fail.

Example 8.29 Solve

3x+ 2y− z = 4

2x− y+ 2z = 10

x− 3y− 4z = 5

Solution We �nd

x =

∣∣∣∣∣∣

4 2 −1

10 −1 2

5 −3 −4

∣∣∣∣∣∣
∣∣∣∣∣∣

3 2 −1

2 −1 2

1 −3 −4

∣∣∣∣∣∣

=
165

55
= 3

Verify for yourself that y = −2 and z = 1.
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EXERCISES 8.7

1 Find

∣∣∣∣
4 6

2 8

∣∣∣∣,

∣∣∣∣∣∣

1 3 4

2 1 0

3 5 −1

∣∣∣∣∣∣
and

∣∣∣∣∣∣

6 7 2

1 4 3

−1 1 4

∣∣∣∣∣∣
.

2 Find

∣∣∣∣
cosωt sinωt

− sinωt cosωt

∣∣∣∣.

3 Evaluate

∣∣∣∣∣∣

5 0 0

6 3 2

4 5 7

∣∣∣∣∣∣
and

∣∣∣∣∣∣

9 0 0

0 7 0

0 0 8

∣∣∣∣∣∣
.

4 If A =



2 −1 7

0 8 4

3 6 4


, �nd |A| and |AT |.

Comment upon your result.

5 Use Cramer’s rule to solve

(a) 2x− 3y+ z = 0

5x+ 4y+ z = 10

2x− 2y− z = −1

(b) 3x+ y = −1

2x− y+ z = −1

5x+ 5y− 7z = −16

(c) 4x+ y+ z = 13

2x− y = 4

x+ y− z = −3

(d) 3x+ 2y = 1

x+ y− z = 1

2x+ 3z = −1

6 Given

A =




3 7 6

−2 1 0

4 2 −5




(a) �nd |A|

(b) �nd the cofactors of the elements of row 2, that is

−2, 1, 0

(c) calculate

−2 × (cofactor of −2)

+1 × (cofactor of 1)

+0 × (cofactor of 0).

What do you deduce?

7 If a = 7i + 11j − 2k and b = 6i − 3j + k �nd a × b.

8 Find a × b when

(a) a = 3i − j, b = i + j + k

(b) a = 2i + j + k, b = 7k

(c) a = −7j − k, b = −3i + j

Solutions

1 20, 33, 39

2 1

3 55, 504

4 −164,−164 Note |A| = |AT |

5 (a) x = y = z = 1

(b) x = −1, y = 2, z = 3

(c) x = 2, y = 0, z = 5

(d) x = 1, y = −1, z = −1

6 (a) −133 (b) 47,−39, 22 (c) −133

7 5i − 19j − 87k

8 (a) −i − 3j + 4k

(b) 7i − 14j

(c) i + 3j − 21k

8.8 THE INVERSE OF A 3 × 3 MATRIX

Given a 3×3 matrix, A, its inverse is found as follows:

(1) Find the transpose of A, by interchanging the rows and columns of A.

(2) Replace each element of AT by its cofactor; by its minor together with its associated

place sign. The resulting matrix is known as the adjoint of A, denoted adj(A).
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(3) Finally, the inverse of A is given by

A−1 =
adj(A)

|A|

Example 8.30 Find the inverse of

A =




1 −2 0

3 1 5

−1 2 3




Solution AT =




1 3 −1

−2 1 2

0 5 3




Replacing each element of AT by its cofactor, we �nd

adj(A) =




−7 6 −10

−14 3 −5

7 0 7




The determinant of A is given by

|A| = 1

∣∣∣∣
1 5

2 3

∣∣∣∣− (−2)

∣∣∣∣
3 5

−1 3

∣∣∣∣+ 0

∣∣∣∣
3 1

−1 2

∣∣∣∣

= (1)(−7)+ (2)(14)

= 21

Therefore,

A−1 =
adj(A)

|A|
=

1

21




−7 6 −10

−14 3 −5

7 0 7




Note that this solution should be checked by forming AA−1 to give I.

It is clear that should |A| = 0 then no inverse will exist since then the quantity 1/|A| is

unde�ned. Recall that such a matrix is said to be singular.

For any square matrix A, the following statements are equivalent:

|A| = 0

A is singular

A has no inverse
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EXERCISES 8.8

1 Find adj(A), |A| and, if it exists, A−1, if

(a) A =



2 −3 1

5 4 1

2 −2 −1




(b) A =



3 1 0

2 −1 1

5 5 −7




(c) A =



2 −1 4

5 −2 9

3 2 −1




2 If P =




10 −5 −4

−5 10 −3

−4 −3 8


, �nd adj(P) and |P|.

Deduce P−1.

Solutions

1 (a) |A| = −43

adj(A) =




−2 −5 −7

7 −4 3

−18 −2 23


 ,

A−1 =
1

43




2 5 7

−7 4 −3

18 2 −23




(b) |A| = 25

adj(A) =




2 7 1

19 −21 −3

15 −10 −5


,

A−1 =
1

25




2 7 1

19 −21 −3

15 −10 −5




(c) |A| = 0

adj(A) =




−16 7 −1

32 −14 2

16 −7 1




A−1 does not exist.

2 |P| = 230

adj(P) =



71 52 55

52 64 50

55 50 75




P−1 =
1

230



71 52 55

52 64 50

55 50 75




8.9 APPLICATION TO THE SOLUTION OF SIMULTANEOUS
EQUATIONS

The matrix techniques we have developed allow the solution of simultaneous equations

to be found in a systematic way.

Example 8.31 Use a matrix method to solve the simultaneous equations

2x+ 4y = 14

x− 3y = −8
(8.6)

Solution We �rst note that the system of equations can be written in matrix form as follows:

(
2 4

1 −3

)(
x

y

)
=

(
14

−8

)
(8.7)
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To understand this expression it is necessary that matrix multiplication has been fully

mastered, for, by multiplying out the l.h.s., we �nd

(
2 4

1 −3

)(
x

y

)
=

(
2x+ 4y

1x− 3y

)

and the form (8.7) follows immediately.

We can write Equation (8.7) as

AX = B (8.8)

where A is the matrix

(
2 4

1 −3

)
, X is the matrix

(
x

y

)
and B is the matrix

(
14

−8

)
.

In order to �nd X =

(
x

y

)
it is now necessary to make X the subject of the equation

AX = B. We can premultiply Equation (8.8) by A−1, the inverse of A, provided such an

inverse exists, to give

A−1AX = A−1B

Then, noting that A−1A = I, we �nd

IX = A−1B

that is

X = A−1B

using the properties of the identity matrix. We have now made X the subject of the equa-

tion as required and we see that to �nd X wemust premultiply the r.h.s. of Equation (8.8)

by the inverse of A.

In this case

A−1 =
1

−10

(
−3 −4

−1 2

)

=

(
3/10 2/5

1/10 −1/5

)

and

A−1B =

(
3/10 2/5

1/10 −1/5

)(
14

−8

)

=

(
1

3

)

that is, X =

(
x

y

)
=

(
1

3

)
, so that x = 1 and y = 3 is the required solution.

If AX = B then X = A−1B provided A−1 exists.

This technique can be applied to three equations in three unknowns in an analogous way.
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Example 8.32 Express the following equations in the form AX = B and hence solve them:

3x+ 2y− z = 4

2x− y+ 2z = 10

x− 3y− 4z = 5

Solution Using the rules of matrix multiplication, we �nd



3 2 −1

2 −1 2

1 −3 −4





x

y

z


 =




4

10

5




which is in the form AX = B. The matrix A is called the coef�cient matrix and is simply

the coef�cients of x, y and z in the equations. As before,

AX = B

A−1AX = A−1B

IX = X = A−1B

We must therefore �nd the inverse of A in order to solve the equations.

To invert A we use the adjoint. If

A =



3 2 −1

2 −1 2

1 −3 −4




then

AT =




3 2 1

2 −1 −3

−1 2 −4




and you should verify that adj(A) is given by

adj(A) =




10 11 3

10 −11 −8

−5 11 −7




The determinant of A is found by expanding along the �rst row:

|A| = 3

∣∣∣∣
−1 2

−3 −4

∣∣∣∣− 2

∣∣∣∣
2 2

1 −4

∣∣∣∣− 1

∣∣∣∣
2 −1

1 −3

∣∣∣∣

= (3)(10)− (2)(−10)− (1)(−5)

= 30 + 20 + 5

= 55

Therefore,

A−1 =
adj(A)

|A|
=

1

55




10 11 3

10 −11 −8

−5 11 −7
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Finally, the solution X is given by

X =



x

y

z


 = A−1B =

1

55



10 11 3

10 −11 −8

−5 11 −7






4

10

5




=




3

−2

1




that is, the solution is x = 3, y = −2 and z = 1.

EXERCISES 8.9

1 By expressing the following equations in matrix form

and �nding an inverse matrix, solve

(a) 4x− 2y = 14

2x+ y = 5

(b) 2x− 2y = 0

x+ 3y = −8

(c) 8x+ 3y = 59

−2x+ y = −13

2 Solve the following equations AX = B by �nding

A−1, if it exists.

(a)

(
6 3

5 2

)(
x

y

)
=

(
12

9

)

(b)

(
4 4

1 3

)(
x

y

)
=

(
20

11

)

(c)

(
2 −1

3 2

)(
x

y

)
=

(
−4

1

)

(d)



4 1 3

2 −1 4

0 1 5





x

y

z


 =



20

20

20




(e)



4 1 3

2 −1 4

0 1 5





x

y

z


 =



15

12

17




(f)



4 1 3

2 −1 4

0 1 5





x

y

z


 =



0

0

0




Solutions

1 (a) x = 3, y = −1

(b) x = −2, y = −2

(c) x = 7, y = 1

2 (a) x = 1, y = 2 (b) x = 2, y = 3

(c) x = −1, y = 2 (d) x = 2, y = 0, z = 4

(e) x = 1, y = 2, z = 3 (f) x = y = z = 0

8.10 GAUSSIAN ELIMINATION

An alternative technique for the solution of simultaneous equations is that of Gaussian

elimination which we introduce by means of the following trivial example.

Example 8.33 Use Gaussian elimination to solve

2x+ 3y = 1

x+ y = 3
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Solution First consider the equations with a step pattern imposed as follows:

2x + 3y = 1 (1)

x + y = 3 (2)

Our aim will be to perform various operations on these equations to remove or eliminate

all the values underneath the step. You will probably remember from your early work

on simultaneous equations that in order to eliminate a variable from an equation, that

equation can be multiplied by any suitable number and then added to or subtracted from

another equation. In this example we can eliminate the x term from below the step by

multiplying the second equation by 2 and subtracting the �rst equation. Since the �rst

equation is entirely above the step we shall leave it as it stands. This whole process will

be written as follows:

R1

R2 → 2R2 − R1

2x + 3y = 1

0x − y = 5
(8.9)

where the symbol R1 means that Equation (1) is unaltered, and R2 → 2R2 − R1 means

that Equation (2) has been replaced by 2 × Equation (2) -- Equation (1). All this may

seem to be overcomplicating a simple problem but a moment’s study of Equation (8.9)

will reveal why this ‘stepped’ form is useful. Because the value under the step is zero

we can read off y from the last line, that is −y = 5, so that

y = −5

Knowing y we can then move up to the �rst equation and substitute for y to �nd x.

2x+ 3(−5) = 1

x = 8

This last stage is known as back substitution.

Before we consider another example, let us note some important points:

(1) It is necessary to write down the operations used as indicated previously. This aids

checking and provides a record of the working used.

(2) The operations allowed to eliminate unwanted variables are:

(a) any equation can be multiplied by any non-zero constant;

(b) any equation can be added to or subtracted from any other equation;

(c) equations can be interchanged.

It is often convenient to use matrices to carry out this method, in which case the opera-

tions allowed are referred to as row operations. The advantage of using matrices is that

it is unnecessary to write down x, y (and later z) each time. To do this, we �rst form the

augmented matrix:
(
2 3 1

1 1 3

)

so called because the coef�cient matrix

(
2 3

1 1

)
is augmented by the r.h.s. matrix

(
1

3

)
.

It is to be understood that this notationmeans 2x+3y = 1, and so on, so that we no longer

write down x and y. Each row of the augmented matrix corresponds to one equation.
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The aim, as before, is to carry out row operations on the stepped form
(

2 3 1

1 1 3

)

in order to obtain values of zero under the step. Clearly to achieve the required form, the

row operations we performed earlier are required, that is

R1

R2 → 2R2 − R1

(
2 3 1

0 −1 5

)

The last line means 0x− 1y = 5, that is y = −5, and �nally back substitution yields x,

as before.

This technique has other advantages in that it allows us to observe other forms of

behaviour. We shall see that some equations have a unique solution, some have no solu-

tions, while others have an in�nite number.

Example 8.34 Use Gaussian elimination to solve

2x+ 3y = 4

4x+ 6y = 7

Solution In augmented matrix form we have
(

2 3 4

4 6 7

)

We proceed to eliminate entries under the step:

R1

R2 → R2 − 2R1

(
2 3 4

0 0 −1

)

Study of the last line seems to imply that 0x + 0y = −1, which is clearly nonsense.

When this happens the equations have no solutions and we say that the simultaneous

equations are inconsistent.

Example 8.35 Use Gaussian elimination to solve

x+ y = 0

2x+ 2y = 0

Solution In augmented matrix form we have
(

1 1 0

2 2 0

)

Eliminating entries under the step we �nd

R1

R2 → R2 − 2R1

(
1 1 0

0 0 0

)

This last line implies that 0x + 0y = 0. This is not an inconsistency, but we are now

observing a third type of behaviour. Whenever this happens we need to introduce what

are called free variables. The �rst row starts off with a non-zero x. There is now no

row which starts off with a non-zero y. We therefore say y is free and choose it to be



8.10 Gaussian elimination 289

anything we please, that is

y = λ λ is our free choice

Then back substitution occurs as before:

x+ λ = 0

x = −λ

The solution is therefore x = −λ, y = λ, where λ is any number. There are thus an

in�nite number of solutions, for example

x = −1 y = 1

or

x =
1

2
y = −

1

2

and so on.

Observation of the coef�cient matrices in the last two examples shows that they have a

determinant of zero. Whenever this happens we shall �nd the equations either are incon-

sistent or have an in�nite number of solutions. We shall next consider the generalization

of this method to three equations in three unknowns.

Example 8.36 Solve by Gaussian elimination

x− 4y− 2z = 21

2x+ y+ 2z = 3

3x+ 2y− z = −2

Solution We �rst form the augmented matrix and add the stepped pattern as indicated:



1 −4 −2 21

2 1 2 3

3 2 −1 −2




The aim is to eliminate all numbers underneath the steps by carrying out appropriate

row operations. This should be carried out by eliminating unwanted numbers in the �rst

column �rst. We �nd

R1

R2 → R2 − 2R1

R3 → R3 − 3R1




1 −4 −2 21

0 9 6 −39

0 14 5 −65




We have combined the elimination of unwanted numbers in the �rst column into one

stage. We now remove unwanted numbers in the second column:

R1

R2

R3 → R3 −
14

9
R2




1 −4 −2 21

0 9 6 −39

0 0 −
13

3
−
13

3




and the elimination is complete. Although R3 → R3 +
14

4
R1 would eliminate the 14, it

would reintroduce a non-zero term into the �rst column. It is therefore essential to use

the second row and not the �rst to eliminate this element. We can now read off z since
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the last equation states 0x+ 0y−
13

3
z = −

13

3
, that is z = 1. Back substitution of z = 1

in the second equation gives y = −5 and, �nally, substitution of z and y into the �rst

equation gives x = 3.

Example 8.37 Solve the following equations by Gaussian elimination:

x− y+ z = 3

x+ 5y− 5z = 2

2x+ y− z = 1

Solution Forming the augmented matrix, we �nd



1 −1 1 3

1 5 −5 2

2 1 −1 1




Then, as before, we aim to eliminate all non-zero entries under the step. Starting with

those in the �rst column, we �nd

R1

R2 → R2 −R1

R3 → R3 −2R1




1 −1 1 3

0 6 −6 −1

0 3 −3 −5




Then,

R1

R2

R3 → 2R3 − R2




1 −1 1 3

0 6 −6 −1

0 0 0 −9




This last line implies that 0x+0y+0z = −9, which is clearly inconsistent. We conclude

that there are no solutions.

You will see from Examples 8.36 and 8.37 that not only have all entries under the step

been reduced to zero, but also each successive row contains more leading zeros than the

previous one. We say the system has been reduced to echelon form. More generally the

system has been reduced to echelon form if for i < j the number of leading zeros in row

j is larger than the number in row i. Consider Example 8.38.

Example 8.38 Solve the following equations by Gaussian elimination:

2x− y+ z = 2

−2x+ y+ z = 4

6x− 3y− 2z = −9

Solution Forming the augmented matrix, we have



2 −1 1 2

−2 1 1 4

6 −3 −2 −9
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Eliminating the unwanted values in the �rst column, we �nd

R1

R2 → R2 + R1

R3 → R3 − 3R1




2 −1 1 2

0 0 2 6

0 0 −5 −15




Entries under the step are now zero. To reduce thematrix to echelon formwemust ensure

each successive row has more leading zeros than the row before. We continue:

R1

R2

R3 → 2R3 + 5R2




2 −1 1 2

0 0 2 6

0 0 0 0




which is now in echelon form.

In this form there is a row which starts off with a non-zero x value, that is the �rst

row, there is a row which starts off with a non-zero z value, but no row which starts off

with a non-zero y value. Therefore, we choose y to be the free variable, y = λ say. From

the second row we have z = 3 and from the �rst 2x− y+ z = 2, so that 2x = λ− 1, that

is x = (λ− 1)/2.

Engineering application 8.2

The Vandermonde Matrix

Many data storage devices, for example the Blu-ray disc™, and data transmission

standards, for example WiMAX®, have built-in techniques to reduce the effects of

errors which occur during normal use. These errors originate from noise and inter-

ference and they can result in the loss of data. One such technique is the use of an

error-correcting code to provide a measure of protection against data errors. Error-

correcting codes are used to encode the data when it is stored or transmitted. The

data is then decoded when it is read or received. In the case of a transmission line,

the error-correcting code makes it possible to detect errors in the received signal and

to make corrections, so that the errors are not subsequently retransmitted.

One important class of error-correcting codes are based onReed-Solomon codes,

details of which are beyond the scope of this text. However an important mathemat-

ical concept used in Reed-Solomon codes is that of a Vandermonde matrix.

The Vandermonde matrix can be illustrated by considering the problem of rep-

resenting a signal by a polynomial. For example, to approximate a signal f (t) by a

second-degree polynomial we write

f (t) ≈ a0 + a1t + a2t
2

where a0, a1 and a2 are coef�cients of the polynomial which must be found. These

are found by forcing the original signal f (t) and its polynomial approximation to

agree at three different values of t, say t0, t1 and t2. This gives rise to the following

system of equations:


1 t0 t20

1 t1 t21

1 t2 t22






a0
a1
a2


 =



f (t0)

f (t1)

f (t2)




➔
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The coef�cient matrix is known as aVandermonde matrix. Suppose we wish to �nd

a second-degree polynomial approximation to the signal f (t) = cos
πt

2
for values of

t between −1 and 1. We can do this by making the approximating polynomial and

the original signal equal at three points, say t = −1, t = 0 and t = 1. The equations

to be solved are then


1 −1 1

1 0 0

1 1 1





a0
a1
a2


 =



f (−1)

f (0)

f (1)


 =



0

1

0




It is straightforward to solve this system of equations by Gaussian elimination and

obtain a0 = 1, a1 = 0 and a2 = −1. Therefore the second-degree polynomial which

approximates f (t) = cos
πt

2
is 1 − t2.

8.10.1 Finding the inverse matrix using row operations

A similar technique can be used to �nd the inverse of a square matrix Awhere this exists.

Suppose we are given the matrix A and wish to �nd its inverse B. Then we know

AB = I

that is,


a11 a12 a13
a21 a22 a23
a31 a32 a33





b11 b12 b13
b21 b22 b23
b31 b32 b33


 =



1 0 0

0 1 0

0 0 1




We form the augmented matrix


a11 a12 a13 1 0 0

a21 a22 a23 0 1 0

a31 a32 a33 0 0 1




Now carry out row operations on this matrix in such a way that the l.h.s. is reduced to a

3× 3 identity matrix. The matrix which then remains on the r.h.s. is the required inverse.

Example 8.39 Find the inverse of

A =




−1 8 −2

−6 49 −10

−4 34 −5




by row reduction to the identity.

Solution We form the augmented matrix



−1 8 −2 1 0 0

−6 49 −10 0 1 0

−4 34 −5 0 0 1




We now carry out row operations on the whole matrix to reduce the l.h.s. to an identity

matrix. This means we must eliminate all the elements off the diagonal. Work through

the following calculation yourself:
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R1

R2 → R2 − 6R1

R3 → R3 − 4R1




−1 8 −2 1 0 0

0 1 2 −6 1 0

0 2 3 −4 0 1




This has removed all the off-diagonal entries in column 1. To remove those in column 2:

R1 → R1 − 8R2

R2

R3 → R3 − 2R2




−1 0 −18 49 −8 0

0 1 2 −6 1 0

0 0 −1 8 −2 1




To remove those in column 3:

R1 → R1 − 18R3

R2 → R2 + 2R3

R3




−1 0 0 −95 28 −18

0 1 0 10 −3 2

0 0 −1 8 −2 1




We must now adjust the ‘−1’ entries to obtain the identity matrix:

R1 → −R1

R2

R3 → −R3




1 0 0 95 −28 18

0 1 0 10 −3 2

0 0 1 −8 2 −1




Finally, the required inverse is the matrix remaining on the r.h.s.:




95 −28 18

10 −3 2

−8 2 −1




You should check this result by evaluating AA−1.

EXERCISES 8.10

1 Solve the following equations by Gaussian

elimination:

(a) 2x− 3y = 32

3x+ 7y = −21

(b) 2x+ y− 3z = −5

x− y+ 2z = 12

7x− 2y+ 3z = 37

(c) x+ y− z = 1

3x− y+ 5z = 3

7x+ 2y+ 3z = 7

(d) 2x+ y− z = −9

3x− 2y+ 4z = 5

−2x− y+ 7z = 33

(e) 4x+ 7y+ 8z = 2

5x+ 8y+ 13z = 0

3x+ 5y+ 7z = 1

2 Use Gaussian elimination to solve

x+ y+ z = 7

x− y+ 2z = 9

2x+ y− z = 1

3 Find the inverses of the following matrices using the

technique of Example 8.39:

(a)

(
4 1

3 2

)

(b)




4 2 1

0 3 4

−1 1 3




(c)




1 0 3

2 1 5

−7 2 1






294 Chapter 8 Matrix algebra

Solutions

1 (a) x = 7, y = −6

(b) x = 3, y = −5, z = 2

(c) x = 1 − µ, y = 2µ, z = µ

(d) x = −3, y = 1, z = 4

(e) Inconsistent

2 x = 2, y = 1, z = 4

3 (a)
1

5

(
2 −1

−3 4

)

(b)
1

15




5 −5 5

−4 13 −16

3 −6 12




(c)
1

24




−9 6 −3

−37 22 1

11 −2 1




8.11 EIGENVALUES AND EIGENVECTORS

We are now in a position to examine the meaning and calculation of eigenvalues and

their corresponding eigenvectors.

8.11.1 Solution to systems of linear homogeneous equations

Recall that an equation is linear when the variables occur only to the �rst power. For

example,

2x+ 3y = 1 (1)

is a linear equation but

2x2 + 3y = 1 (2)

is a non-linear equation due to the term 2x2.

Equation (1) is called inhomogeneous. When the r.h.s. of a linear equation is 0 then

the equation is homogeneous. For example,

2x+ 3y = 0 and 7x− 3y = 0

are both homogeneous. This section looks at the solution of systems of linear homoge-

neous equations.

Consider the simultaneous linear homogeneous equations

ax+ by = 0

cx+ dy = 0

where a, b, c and d are constants. Clearly x = 0, y = 0 is a solution. It is called the

trivial solution. Non-trivial solutions are solutions other than x = 0, y = 0. We now

study the system to �nd conditions on a, b, c and d under which non-trivial solutions

exist.

For de�niteness we consider two cases with values of a, b, c and d given.

Case 1

3x− 5y = 0

6x− 7y = 0
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Solving Case 1, for example by Gaussian elimination, leads to x = 0, y = 0 as the only

possible solution. Thus, the only solution is the trivial solution.

Case 2

x+ y = 0

2x+ 2y = 0

This system was solved in Example 8.35 using Gaussian elimination to yield

x = −λ, y = λ

where λ is any number and y is a free variable. Thus there are an in�nite number of

solutions. Note that in this system the second equation, 2x+ 2y = 0, is a multiple of the

�rst equation, x+ y = 0. The second equation is twice the �rst equation.

We now return to the system

ax+ by = 0

cx+ dy = 0

As seen, depending upon the values of a, b, c and d the system has either only the trivial

solution or an in�nite number of non-trivial solutions. For there to be non-trivial solu-

tions the second equation must be a multiple of the �rst. When this is the case, then c is

a multiple of a and d is the same multiple of b, that is

c = αa, d = αb for some value of α

In this case, consider the quantity ad − bc:

ad − bc = a(αb)− b(αa)

= αab− αab

= 0

Hence the condition for non-trivial solutions to exist is that ad − bc = 0. Writing the

system in matrix form gives

(
a b

c d

)(
x

y

)
=

(
0

0

)

or

AX = 0

where

A =

(
a b

c d

)
, X =

(
x

y

)
, 0 =

(
0

0

)

We note that ad − bc is the determinant of A, so non-trivial solutions exist when the

determinant of A is zero; that is, when A is a singular matrix.

In summary:
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Consider the system

AX = 0

If |A| = 0, the system has non-trivial solutions.

If |A| 6= 0, the system has only the trivial solution.

Example 8.40 Decide which of the following systems of equations has non-trivial solutions:

(a) 3x+ 7y = 0

2x− y = 0

(b) 2x+ y = 0

6x+ 3y = 0

Solution (a) We write the system as
(
3 7

2 −1

)(
x

y

)
=

(
0

0

)

Let

A =

(
3 7

2 −1

)

Then

|A| = 3(−1)− 2(7) = −17

Since the determinant of A is non-zero, the system has only the trivial solution.

(b) We write the system as
(
2 1

6 3

)(
x

y

)
=

(
0

0

)

Let

A =

(
2 1

6 3

)

from which |A| = 2(3)− 1(6) = 0. Since the determinant of A is 0, the system has

non-trivial solutions.

Example 8.41 Determine which of the following systems of equations has non-trivial solutions:

(a) 2x+ y− 3z = 0

x− 3y+ 2z = 0

5x− 8y+ 3z = 0

(b) 2x+ y− 3z = 0

x− 3y+ 2z = 0

5x− 7y+ 3z = 0
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Solution (a) We have

AX = 0

where

A =



2 1 −3

1 −3 2

5 −8 3


 X =



x

y

z




Evaluation of |A| shows that |A| = 0 and so the system has non-trivial solutions.

(b) Here

A =



2 1 −3

1 −3 2

5 −7 3




from which |A| = −7. Since |A| 6= 0 the system has only the trivial solution.

EXERCISES 8.11.1

1 Explain what is meant by the trivial solution of a

system of linear equations and what is meant by a

non-trivial solution.

2 Determine which of the following systems has

non-trivial solutions:

(a) x− 2y = 0

3x− 6y = 0

(b) 3x+ y = 0

9x+ 2y = 0

(c) 4x− 3y = 0

−4x+ 3y = 0

(d) 6x− 2y = 0

2x−
2

3
y = 0

(e) y = 2x

x = 3y

3 Determine which of the following systems have

non-trivial solutions:

(a) x+ 2y− z= 0

3x+ y+ 2z= 0

x+ y = 0

(b) 2x− 3y− 2z= 0

3x+ y− 3z= 0

x− 7y− z= 0

(c) x+ 2y+ 3z= 0

4x− 3y− z= 0

6x+ y+ 3z= 0

(d) x+ 3z = 0

x− y = 0

y+ 2z = 0

Solutions

2 (a), (c) and (d) have non-trivial solutions. 3 (a) and (b) have non-trivial solutions.

8.11.2 Eigenvalues

We will explain the meaning of the term eigenvalue by means of an example. Consider

the system

2x+ y = λx

3x+ 4y = λy
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where λ is some unknown constant. Clearly these equations have the trivial solution

x = 0, y = 0. The equations may be written in matrix form as
(
2 1

3 4

)(
x

y

)
= λ

(
x

y

)

or, using the usual notation,

AX = λX

We now seek values of λ so that the system has non-trivial solutions. Although it is

tempting to write (A − λ)X = 0 this would be incorrect since A − λ is not de�ned: A

is a matrix and λ is constant. Hence to progress we need to write the r.h.s. in a slightly

different way. To help us do this we use the 2× 2 identity matrix, I. Now λ

(
x

y

)
may be

expressed as

λ

(
1 0

0 1

)(
x

y

)

since multiplying

(
x

y

)
by the identity matrix leaves it unaltered. So λX may be written

as λIX . Hence we have

AX = λIX

which can be written as

AX − λIX = 0

(A− λI)X = 0

Note that the expression (A− λI) is de�ned since both A and λI are square matrices

of the same size.

We have seen in Section 8.11.1 that for AX = 0 to have non-trivial solutions requires

|A| = 0. Hence for

(A− λI)X = 0

to have non-trivial solutions requires

|A− λI| = 0

Now

A− λI =

(
2 1

3 4

)
− λ

(
1 0

0 1

)

=

(
2 1

3 4

)
−

(
λ 0

0 λ

)

=

(
2 − λ 1

3 4 − λ

)

So the condition |A− λI| = 0 gives
∣∣∣∣
2 − λ 1

3 4 − λ

∣∣∣∣ = 0
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It follows that

(2 − λ)(4 − λ)− 3 = 0

λ2 − 6λ+ 5 = 0

(λ− 1)(λ− 5) = 0

so that

λ = 1 or 5

These are the values of λwhich cause the system AX = λX to have non-trivial solutions.

They are called eigenvalues.

The equation

|A− λI| = 0

which when written out explicitly is the quadratic equation in λ, is called the charac-

teristic equation.

Example 8.42 Find values of λ for which

x+ 4y = λx

2x+ 3y = λy

has non-trivial solutions.

Solution We write the system as

AX = λX

where

A =

(
1 4

2 3

)
, X =

(
x

y

)

To have non-trivial solutions we require

|A− λI| = 0

Now

A− λI =

(
1 4

2 3

)
− λ

(
1 0

0 1

)

=

(
1 4

2 3

)
−

(
λ 0

0 λ

)

=

(
1 − λ 4

2 3 − λ

)

Hence

|A− λI| = (1 − λ)(3 − λ)− 8

= λ2 − 4λ− 5

To have non-trivial solutions we require

λ2 − 4λ− 5 = 0

(λ+ 1)(λ− 5) = 0
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which yields

λ = −1 or 5

The given system has non-trivial solutions when λ = −1 and λ = 5. These are the

eigenvalues.

If A is a 2 × 2 matrix, the characteristic equation will be a polynomial of degree 2,

that is a quadratic equation in λ, leading to two eigenvalues. If A is a 3 × 3 matrix, the

characteristic equation will be a polynomial of degree 3, that is a cubic, leading to three

eigenvalues. In general an n× n matrix gives rise to a characteristic equation of degree

n and hence to n eigenvalues.

The characteristic equation of a square matrix A is given by

|A− λI| = 0

Solutions of this equation are the eigenvalues of A. These are the values of λ for

which AX = λX has non-trivial solutions.

Example 8.43 Determine the characteristic equation and eigenvalues, λ, in the system

(
3 1

−1 5

)(
x

y

)
= λ

(
x

y

)

Solution In this example the equations have been written in matrix form with A =

(
3 1

−1 5

)
. The

characteristic equation is given by

|A− λI| = 0∣∣∣∣
(

3 1

−1 5

)
− λ

(
1 0

0 1

)∣∣∣∣ = 0

∣∣∣∣
3 − λ 1

−1 5 − λ

∣∣∣∣ = 0

(3 − λ)(5 − λ)+ 1 = 0

λ2 − 8λ+ 16 = 0

The characteristic equation is λ2 − 8λ + 16 = 0. Solving the characteristic equation

gives

λ2 − 8λ+ 16 = 0

(λ− 4)(λ− 4) = 0

λ = 4 (twice)

There is one repeated eigenvalue, λ = 4.
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Example 8.44 Find the eigenvalues λ in the system
(
4 1

3 2

)(
x

y

)
= λ

(
x

y

)

Solution We form the characteristic equation, |A− λI| = 0. Now

A− λI =

(
4 − λ 1

3 2 − λ

)

Then

|A− λI| = (4 − λ)(2 − λ)− 3 = λ2 − 6λ+ 5

Solving the characteristic equation, λ2 − 6λ+ 5 = 0, gives

λ = 1 or 5

There are two eigenvalues, λ = 1, λ = 5.

The process of �nding the characteristic equation and eigenvalues of a matrix has

been illustrated using 2 × 2 matrices. This same process can be applied to a square

matrix of any size.

Example 8.45 Find (a) the characteristic equation (b) the eigenvalues of A where

A =




1 2 0

−1 −1 1

3 2 −2




Solution (a) We need to calculate |A− λI|. Now

A− λI =



1 − λ 2 0

−1 −1 − λ 1

3 2 −2 − λ




and ∣∣∣∣∣∣

1 − λ 2 0

−1 −1 − λ 1

3 2 −2 − λ

∣∣∣∣∣∣
= (1 − λ)

∣∣∣∣
−1 − λ 1

2 −2 − λ

∣∣∣∣− 2

∣∣∣∣
−1 1

3 −2 − λ

∣∣∣∣

= (1 − λ)[(−1 − λ)(−2 − λ)− 2]

−2[−1(−2 − λ)− 3]

Upon simpli�cation this reduces to −λ3 − 2λ2 + λ+ 2. Hence

|A− λI| = 0

yields

−λ3 − 2λ2 + λ+ 2 = 0

which may be written as

λ3 + 2λ2 − λ− 2 = 0

The characteristic equation is λ3 + 2λ2 − λ− 2 = 0.
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(b) The characteristic equation is solved to yield the eigenvalues:

λ3 + 2λ2 − λ− 2 = 0

Factorizing yields

(λ+ 2)(λ+ 1)(λ− 1) = 0

from which λ = −2,−1, 1.

The eigenvalues are λ = −2,−1, 1.

EXERCISES 8.11.2

1 Calculate (i) the characteristic equation (ii) the

eigenvalues of the system AX = λX ,

where A is given by

(a)

(
5 6

2 1

)
(b)

(
−3 4

−4 5

)

(c)

(
7 −2

1 4

)
(d)

(
1 3

4 −1

)

2 Calculate (i) the characteristic equation (ii) the

eigenvalues of the following 3 × 3 matrices:

(a)




1 −1 2

−3 −2 3

2 −1 1




(b)



1 0 −1

3 1 4

0 2 2




(c)




2 1 2

−1 1 −1

8 3 0




(d)




−2 6 2

0 3 4

3 −3 5




(e)




3 −2 1

2 −4 3

16 −4 1




Solutions

1 (a) (i) λ2 − 6λ− 7 = 0

(ii) λ = −1, 7

(b) (i) λ2 − 2λ+ 1 = 0

(ii) λ = 1 (twice)

(c) (i) λ2 − 11λ+ 30 = 0

(ii) λ = 5, 6

(d) (i) λ2 − 13 = 0

(ii) λ = −
√
13,

√
13

2 (a) (i) −λ3 + 7λ+ 6 = 0

(ii) λ = −2,−1, 3

(b) (i) λ3 − 4λ2 − 3λ+ 12 = 0

(ii) λ = −
√
3,

√
3, 4

(c) (i) λ3 − 3λ2 − 10λ+ 24 = 0

(ii) λ = −3, 2, 4

(d) (i) λ3 − 6λ2 + 5λ = 0

(ii) λ = 0, 1, 5

(e) (i) λ3 − 13λ+ 12 = 0

(ii) λ = −4, 1, 3

Technical Computing Exercises 8.11.2

The calculation of eigenvalues and eigenvectors is

usually performed by a built-in function. For example,

in MATLAB® the function eig can used to calculate

the eigenvalues.

To produce a solution to question 1. (a) in the previous

exercise we would type:

A = [5 6 ; 2 1];

eig(A)
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which produces:

ans =

7

-1

which is a vector containing the eigenvalues.

Use MATLAB® or a similar language to con�rm the

rest of the eigenvalues given in Exercises 8.11.2.

8.11.3 Eigenvectors

We have studied the system

AX = λX

and determined the values of λ for which non-trivial solutions exist. These values of λ are

called eigenvalues of the system, or, more simply, eigenvalues of A. For each eigenvalue

there is a non-trivial solution of the system. This solution is called an eigenvector.

Example 8.46 Find the eigenvectors of

AX = λX

where

A =

(
4 1

3 2

)
and X =

(
x

y

)

Solution We seek solutions of AX = λX which may be written as

(A− λI)X = 0

The eigenvalues were found in Example 8.44 to be λ = 1, 5.

Firstly we consider λ = 1. The system equation becomes

(A− λI)X = 0

(A− I)X = 0[(
4 1

3 2

)
−

(
1 0

0 1

)](
x

y

)
=

(
0

0

)

(
3 1

3 1

)(
x

y

)
=

(
0

0

)

Written as individual equations we have

3x+ y = 0

3x+ y = 0

Clearly there is only one equation which is repeated. As long as y = −3x the equation is

satis�ed. Thus there are an in�nite number of solutions such as x = 1, y = −3; x = −5,

y = 15; and so on. Generally we write

x = t, y = −3t

for any number t. Thus the eigenvector corresponding to λ = 1 is

X =

(
x

y

)
=

(
t

−3t

)
= t

(
1

−3

)
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Note that the eigenvector has been determined to within an arbitrary scalar, t. Thus there

is an in�nity of solutions corresponding to λ = 1.

We now consider λ = 5 and seek solutions of the system equation:

(A− λI)X = 0
[(

4 1

3 2

)
− 5

(
1 0

0 1

)](
x

y

)
=

(
0

0

)

(
−1 1

3 −3

)(
x

y

)
=

(
0

0

)

Written as individual equations we have

−x+ y = 0

3x− 3y = 0

We note that the second equation is simply a multiple of the �rst so that in essence there

is only one equation. Solving−x+y = 0 gives y = x for any x. So we write x = t, y = t.

Hence the eigenvector corresponding to λ = 5 is X = t

(
1

1

)
. Again the eigenvector has

been determined to within an arbitrary scaling constant.

Sometimes the arbitrary scaling constants are not written down; it is understood that

they are there. In such a case we say the eigenvectors of the system are

X =

(
1

−3

)
and X =

(
1

1

)

Example 8.47 Determine the eigenvectors of

(
3 1

−1 5

)(
x

y

)
= λ

(
x

y

)

Solution In Example 8.43 we found that there is only one eigenvalue, λ = 4. We seek the solution

of (A− λI)X = 0. With λ = 4 we have

A− λI =

(
3 1

−1 5

)
− 4

(
1 0

0 1

)
=

(
−1 1

−1 1

)

Hence (A− λI)X = 0 is the same as

(
−1 1

−1 1

)(
x

y

)
=

(
0

0

)

Thus there is only one equation, namely

−x+ y = 0

which has an in�nity of solutions: x = t, y = t. Hence there is one eigenvector:

X = t

(
1

1

)
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The concept of eigenvectors is easily extended to matrices of higher order.

Example 8.48 Determine the eigenvectors of



1 2 0

−1 −1 1

3 2 −2





x

y

z


 = λ



x

y

z




The eigenvalues were found in Example 8.45.

Solution From Example 8.45 the eigenvalues are λ = −2,−1, 1. We consider each eigenvalue in

turn.

λ = −2



1 2 0

−1 −1 1

3 2 −2





x

y

z


 = −2



x

y

z









1 2 0

−1 −1 1

3 2 −2


+ 2



1 0 0

0 1 0

0 0 1







x

y

z


 =



0

0

0







3 2 0

−1 1 1

3 2 0





x

y

z


 =



0

0

0




We note that the �rst and last rows are identical. So we have

3x + 2y = 0

−x + y + z = 0

Solving these equations gives

x = t, y = −
3

2
t, z =

5

2
t

Hence the corresponding eigenvector is

X = t




1

−
3

2
5

2




λ = −1

We have





1 2 0

−1 −1 1

3 2 −2


+



1 0 0

0 1 0

0 0 1







x

y

z


 =



0

0

0







2 2 0

−1 0 1

3 2 −1





x

y

z


 =



0

0

0
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Thus we have

2x+ 2y = 0

−x + z= 0

3x+ 2y − z= 0

We note that the third equation can be derived from the �rst two equations, by subtracting

the second equation from the �rst. If you cannot spot this the equations should be solved

by Gaussian elimination. In effect we have only two equations:

2x + 2y = 0

−x + z = 0

Solving these gives x = t, y = −t, z = t. The eigenvector is

X = t




1

−1

1




λ = 1

We have





1 2 0

−1 −1 1

3 2 −2


−



1 0 0

0 1 0

0 0 1







x

y

z


 =



0

0

0







0 2 0

−1 −2 1

3 2 −3





x

y

z


 =



0

0

0




Thus we have

2y = 0

−x − 2y + z = 0

3x + 2y − 3z = 0

From the �rst equation, y = 0; putting y = 0 into the other equations yields

−x+ z = 0

3x− 3z = 0

Here the second equation can be derived from the �rst by multiplying the �rst by −3.

Solving, we have x = t, z = t. So the eigenvector is

X = t



1

0

1




EXERCISES 8.11.3

1 Calculate the eigenvectors of the matrices given in

Question 1 of Exercises 8.11.2.

2 Calculate the eigenvectors of the matrices given in

Question 2 of Exercises 8.11.2.
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Solutions

1 (a) t

(
1

−1

)
, t

(
1
1

3

)
(b) t

(
1

1

)

(c) t

(
1

1

)
, t

(
1
1

2

)

(d) t

(
1

−

(
1 +

√
13
)
/3

)
, t

(
1(√

13 − 1
)
/3

)

2 (a) t



1

5

1


, t




1

12

5


, t



1

0

1




(b) t




1

−5.0981

2.7321


, t




1

0.0981

−0.7321


, t




1

−3

−3




(c) t




1

−
1

3

−
7

3


, t




1

−2

1


, t




1

−0.8

1.4




(d) t




1
4

9

−
1

3


, t




1

0.6

−0.3


, t




1

1

0.5




(e) t




1
19

6

−
2

3


, t



1

4

6


, t



1

2

4




8.12 ANALYSIS OF ELECTRICAL NETWORKS

Matrix algebra is very useful for the analysis of certain types of electrical network. For

such networks it is possible to produce a mathematical model consisting of simultaneous

equations which can be solved using Gaussian elimination. We will consider the case

when the network consists of resistors and voltage sources. The technique is similar for

other types of network.

In order to develop this approach, it is necessary to develop a systematic method

for writing the circuit equations. The method adopted depends on what the unknown

variables are. A common problem is that the voltage sources and the resistor values are

known and it is desired to know the current values in each part of the network. This can

be formulated as a matrix equation. Given

V = RI′

where

V = voltage vector for the network

I′ = current vector for the network

R = matrix of resistor values

the problem is to calculate I′ whenV and R are known. I′ is used to avoid confusion with

the identity matrix.

Any size of electrical network can be analysed using this approach. We will limit the

discussion to the case where I′ has three components, for simplicity. The extension to

larger networks is straightforward. Consider the electrical network of Figure 8.2. Mesh

currents have been drawn for each of the loops in the circuit. Amesh is de�ned as a loop

that cannot contain a smaller closed current path. For convenience, each mesh current

is drawn in a clockwise direction even though it may turn out to be in the opposite

direction when the calculations have been performed. The net current in each branch of

the circuit can be obtained by combining themesh currents. These are termed the branch
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I1

I2 I3

R1 R2

R3

R6
R7

R8

E1

E2 E3

R5

R4

+

–

+

–+

–

Figure 8.2

An electrical network with mesh currents

shown.

currents. The concept of a mesh current may appear slightly abstract but it does provide

a convenient mechanism for analysing electrical networks.Wewill examine an approach

that avoids the use of mesh currents later in this section.

The next stage is to make use of Kirchhoff’s voltage law for each of the meshes in the

network. This states that the algebraic sum of the voltages around any closed loop in an

electrical network is zero. Therefore the sum of the voltage rises must equal the sum of

voltage drops. When applying Kirchhoff’s voltage law it is important to use the correct

sign for a voltage source depending on whether or not it is ‘aiding’ a mesh current.

For mesh 1

E1 = I1R1 + I1R2 + (I1 − I3)R4 + (I1 − I2)R3

E1 = I1(R1 + R2 + R4 + R3)+ I2(−R3)+ I3(−R4)

For mesh 2

−E2 − E3 = I2R5 + (I2 − I1)R3 + (I2 − I3)R6 + I2R8

−E2 − E3 = I1(−R3)+ I2(R5 + R3 + R6 + R8)+ I3(−R6)

For mesh 3

E3 = (I3 − I2)R6 + (I3 − I1)R4 + I3R7

E3 = I1(−R4)+ I2(−R6)+ I3(R6 + R4 + R7)

These equations can be written in matrix form as



E1
−E2 − E3

E3


 =



R1 + R2 + R4 + R3 −R3 −R4

−R3 R5 + R3 + R6 + R8 −R6
−R4 −R6 R6 + R4 + R7





I1
I2
I3




Engineering application 8.3

Calculation of mesh and branch currents in a network

Consider the electrical network of Figure 8.3. It has the same structure as that of

Figure 8.2 but with actual values for the voltage sources and resistors. Branch currents

as well as mesh currents have been shown. Calculate the mesh currents and hence the

branch currents for the network.
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I1

Ia

Ib Ic

Ie
Id If

I2 I3

+

–

+

–+

–

2 V 4 V

3 V

3 V5 V 2 V

4 V

1 V

3 V

2 V 4 V

Figure 8.3

The electrical network of Figure 8.2

with values for the source voltages and

resistors added.

Solution

We have already obtained the equations for this network. Substituting actual values

for the resistors and voltage sources gives



3

−2 − 4

4


 =



10 −3 −1

−3 14 −2

−1 −2 6





I1
I2
I3




This is now in the form V = RI′. We shall solve these equations by Gaussian elimi-

nation. Forming the augmented matrix, we have


10 −3 −1 3

−3 14 −2 −6

−1 −2 6 4




Then

R1

R2 → 10R2 + 3R1

R3 → 10R3 + R1



10 −3 −1 3

0 131 −23 −51

0 −23 59 43




and

R1

R2

R3 → 131R3 + 23R2



10 −3 −1 3

0 131 −23 −51

0 0 7200 4460




Hence,

I3 =
4460

7200
= 0.619 A

Similarly,

I2 =
−51 + 23(0.619)

131
= −0.281 A

Finally,

I1 =
3 + 0.619 + 3(−0.281)

10
= 0.278 A

➔
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The branch currents are then

Ia = I1 = 278 mA

Ib = I2 − I1 = −281 − 278 = −559 mA

Ic = I3 − I1 = 619 − 278 = 341 mA

Id = −I2 = 281 mA

Ie = I2 − I3 = −281 − 619 = −900 mA

If = I3 = 619 mA

An alternative approach to analysing an electrical network is to use the node voltage

method which is often simply called nodal analysis. This technique is fundamental to

many computer programs which are used to simulate electrical circuits, such as SPICE.

We introduce this technique by means of an example.

Engineering application 8.4

Analysing an electrical network using the node voltage method

The node voltage method utilises the notion that ‘islands’ of equal potential lie be-

tween electrical components and sources. The procedure is as follows:

(1) Pick a reference node. In order to simplify the equations this is usually chosen

to be the node which is common to the largest number of voltage sources and/or

the largest number of branches.

(2) Assign a node voltage variable to all of the other nodes. If two nodes are separated

solely by a voltage source then only one of the nodes need be assigned a voltage

variable. The node voltages are all measured with respect to the reference node.

(3) At each node, write Kirchhoff’s current law in terms of the node voltages. Note

that once the node voltages have been calculated it is easy to obtain the branch

currents.

We will again examine the network of Figure 8.2, but this time use the node voltage

method. The network is shown in Figure 8.4 with node voltages assigned and branch

currents labelled. The reference node is indicated by using the earth symbol. Writing

Kirchhoff’s current law for each node, we obtain:

node a

Ia = Ia
Vb + E1 −Va

R1

=
Va −Vd

R2

VbR2 + E1R2 −VaR2 = VaR1 −VdR1

Va(R1 + R2)−VbR2 −VdR1 = E1R2

node b

Ia + Ib + Id = 0

Vb + E1 −Va

R1

+
Vb −Vc

R3

+
Vb + E2 −Ve

R5

= 0
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R1 R2

R3

R6 R7

R8

E1

E2 E3

Ia

Ib Ic

Id Ie If

Vc

Va

Vd
Vb

Ve

R5

R4

+

–

+

–

+

–

a

b  c  d

e Figure 8.4

The network of Figure 8.2 with node

voltages labelled.

Rearrangement yields

VbR3R5 + E1R3R5 −VaR3R5 +VbR1R5 −VcR1R5 +VbR1R3

+ E2R1R3 −VeR1R3 = 0

that is,

VaR3R5 − Vb(R1R3 + R1R5 + R3R5)+VcR1R5 +VeR1R3

= E1R3R5 + E2R1R3

node c

Ib = Ic + Ie
Vb −Vc

R3

=
Vc −Vd

R4

+
Vc − E3

R6

so that

VbR4R6 −VcR4R6 = VcR3R6 −VdR3R6 +VcR3R4 − E3R3R4

that is,

VbR4R6 −Vc(R4R6 + R3R6 + R3R4)+VdR3R6 = −E3R3R4

node d

Ia + Ic = If
Va −Vd

R2

+
Vc −Vd

R4

=
Vd

R7

VaR4R7 −VdR4R7 +VcR2R7 −VdR2R7 = VdR2R4

VaR4R7 +VcR2R7 −Vd(R4R7 + R2R7 + R2R4) = 0

node e

Id = Id
Vb + E2 −Ve

R5

=
Ve

R8

VbR8 −Ve(R5 + R8) = −E2R8

➔
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These equations can be written in the matrix form AV = B, where A is the matrix



R1 + R2 −R2 0 −R1 0

R3R5 −R1R3 − R1R5 − R3R5 R1R5 0 R1R3
0 R4R6 −R4R6 − R3R6 − R3R4 R3R6 0

R4R7 0 R2R7 −R4R7 − R2R7 − R2R4 0

0 R8 0 0 −R5 − R8




and

V =




Va
Vb
Vc
Vd
Ve




and B =




E1R2

E1R3R5 + E2R1R3

−E3R3R4

0

−E2R8




The equations would generally be solved by Gaussian elimination to obtain the node

voltages and hence the branch currents.

Using the component values from Engineering application 8.3, these equations

become


6 −4 0 − 2 0

15 −31 10 0 6

0 2 −11 6 0

3 0 12 −19 0

0 4 0 0 −9







Va
Vb
Vc
Vd
Ve




=




12

57

−12

0

− 8




Use of a computer package avoids the tedious arithmetic associated with Gaussian

elimination and yields

Va = 2.969 Vb = 0.5250 Vc = 2.200 Vd = 1.858 Ve = 1.122

It is then straightforward to calculate the branch currents:

Ia =
Va −Vd

R2

= 278 mA Ib =
Vb −Vc

R3

= −558 mA

Ic =
Vc −Vd

R4

= 342 mA Id =
Ve

R8

= 281 mA

Ie =
Vc − E3

R6

= −900 mA If =
Vd

R7

= 619 mA

Compare these answers with those of Engineering application 8.3.

It is possible to analyse electrical networks containing more complex elements

such as capacitors, inductors, active devices, etc., using the same approach. The equa-

tions are more complicated but the technique is the same. Often it is necessary to use

iterative techniques in view of the size and complexity of the problem. These are

examined in the following section.

8.13 ITERATIVE TECHNIQUES FOR THE SOLUTION
OF SIMULTANEOUS EQUATIONS

The techniques met so far for the solution of simultaneous equations are known as di-

rect methods, which generally lead to the solution after a �nite number of stages in

the calculation process have been carried out. An alternative collection of techniques is
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available and these are known as iterative methods. They generate a sequence of ap-

proximate solutions which may converge to the required solution, and are particularly

advantageous when large systems of equations are to be solved by computer. We shall

study two such techniques here: Jacobi’s method and Gauss--Seidel iteration.

Example 8.49 Solve the equations

2x+ y = 4

x− 3y = −5

using Jacobi’s iterative method.

Solution We �rst rewrite the equations as

2x = −y+ 4

−3y = −x− 5

and then as

x = −
1

2
y+ 2

y =
1

3
x+

5

3

(8.10)

Jacobi’s method involves ‘guessing’ a solution and substituting the guess in the r.h.s. of

the equations in (8.10). Suppose we guess x = 0, y = 0. Substitution then gives

x = 2

y =
5

3

We now use these values as estimates of the solution and resubstitute into the r.h.s. of

Equation (8.10). This time we �nd

x = −
1

2

(
5

3

)
+ 2 = 1.1667 (to four decimal places)

y =
1

3
(2)+

5

3
= 2.3333 (to four decimal places)

The whole process is repeated in the hope that each successive application or iteration

will give an answer close to the required solution, that is successive iterates will con-

verge. In order to keep track of the calculations, we label the initial guess x(0), y(0), the

result of the �rst iteration x(1), y(1) and so on. Generally, we �nd

x(n+1) = −
1

2
y(n) + 2

y(n+1) =
1

3
x(n) +

5

3
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Table 8.1

Iterates produced by Jacobi’s method.

Iteration no. (n) x(n) y(n)

0 0 0

1 2.0000 1.6667

2 1.1667 2.3333

3 0.8333 2.0556

4 0.9722 1.9444

5 1.0278 1.9907

6 1.0047 2.0093

7 0.9954 2.0016

8 0.9992 1.9985

9 1.0008 1.9997

10 1.0002 2.0003

The results of successively applying these formulae are shown in Table 8.1. The sequence

of values of x(n) seems to converge to 1 while that of y(n) seems to converge to 2.

Clearly this sort of approach is simple to program and iterative techniques such as

Jacobi’s method are best implemented on a computer. When writing the program a test

should be incorporated so that after each iteration a check for convergence is made by

comparing successive iterates. In many cases, even when convergence does occur, it is

slow and so other techniques are used which converge more rapidly. The Gauss--Seidel

method is attractive for this reason. It uses the most recent approximation to x when

calculating y leading to improved rates of convergence as the following example shows.

Example 8.50 Use the Gauss--Seidel method to solve the equations of Example 8.49.

Solution As before we write the equations in the form

x = −
1

2
y+ 2

y =
1

3
x+

5

3

With x(0) = 0, y(0) = 0 as our initial guess, we �nd

x(1) = −
1

2
(0)+ 2 = 2

To �nd y(1) we use the most recent approximation to x available, that is x(1):

y(1) =
1

3
(2)+

5

3
= 2.3333

Generally, we �nd

x(n+1) = −
1

2
y(n) + 2

y(n+1) =
1

3
x(n+1) +

5

3
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Table 8.2

Iterates produced by the Gauss--Seidel

method.

Iteration no. (n) x(n) y(n)

0 0 0

1 2.0000 2.3333

2 0.8334 1.9445

3 1.0278 2.0093

4 0.9954 1.9985

5 1.0008 2.0003

6 0.9999 2.0000

and the results of successively applying these formulae are shown in Table 8.2. As before,

we see that the sequence x(n) seems to converge to 1 and y(n) seems to converge to 2,

although more rapidly than before.

Both of these techniques generalize to larger systems of equations.

Example 8.51 Perform three iterations of Jacobi’s method and three iterations of the Gauss--Seidel

method to �nd an approximate solution of

−8x+ y+ z = 1

x− 5y+ z = 16

x+ y− 4z = 7

with an initial guess of x = y = z = 0.

Solution We rewrite the system tomake x, y and z the subject of the �rst, second and third equation,

respectively:

x =
1

8
y+

1

8
z−

1

8

y =
1

5
x+

1

5
z−

16

5
(8.11)

z =
1

4
x+

1

4
y−

7

4

To apply Jacobi’s method we substitute the initial guess x(0) = y(0) = z(0) = 0 into

the r.h.s. of Equation (8.11) to obtain x(1), y(1) and z(1), and then repeat the process. In

general,

x(n+1) =
1

8
y(n) +

1

8
z(n) −

1

8

y(n+1) =
1

5
x(n) +

1

5
z(n) −

16

5

z(n+1) =
1

4
x(n) +

1

4
y(n) −

7

4
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We �nd

x(1) = −
1

8
= −0.1250

y(1) = −
16

5
= −3.2000

z(1) = −
7

4
= −1.7500

Then,

x(2) =
1

8
(−3.2000)+

1

8
(−1.7500)−

1

8
= −0.7438

y(2) =
1

5
(−0.1250)+

1

5
(−1.7500)−

16

5
= −3.5750

z(2) =
1

4
(−0.1250)+

1

4
(−3.2000)−

7

4
= −2.5813

Finally,

x(3) =
1

8
(−3.5750)+

1

8
(−2.5813)−

1

8
= −0.8945

y(3) =
1

5
(−0.7438)+

1

5
(−2.5813)−

16

5
= −3.8650

z(3) =
1

4
(−0.7438)+

1

4
(−3.5750)−

7

4
= −2.8297

To apply the Gauss--Seidel iteration to Equation (8.11), the most recent approxima-

tion is used at each stage leading to

x(n+1) =
1

8
y(n) +

1

8
z(n) −

1

8

y(n+1) =
1

5
x(n+1) +

1

5
z(n) −

16

5

z(n+1) =
1

4
x(n+1) +

1

4
y(n+1) −

7

4

Starting from x(0) = y(0) = z(0) = 0, we �nd

x(1) = −
1

8
= −0.1250

y(1) =
1

5
(−0.1250)+

1

5
(0)−

16

5
= −3.2250

z(1) =
1

4
(−0.1250)+

1

4
(−3.2250)−

7

4
= −2.5875
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Table 8.3

Comparison of the Jacobi and Gauss--Seidel methods.

Jacobi’s method Gauss--Seidel

x(n) y(n) z(n) x(n) y(n) z(n)
Iteration

no. (n)

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 −0.1250 −3.2000 −1.7500 −0.1250 −3.2250 −2.5875

2 −0.7438 −3.5750 −2.5813 −0.8516 −3.8878 −2.9348

3 −0.8945 −3.8650 −2.8297 −0.9778 −3.9825 −2.9901

4 −0.9618 −3.9448 −2.9399 −0.9966 −3.9973 −2.9985

5 −0.9856 −3.9803 −2.9767 −0.9995 −3.9996 −2.9998

6 −0.9946 −3.9924 −2.9915 −0.9999 −3.9999 −3.0000

7 −0.9980 −3.9972 −2.9968

8 −0.9992 −3.9990 −2.9988

9 −0.9997 −3.9996 −2.9996

Then,

x(2) =
1

8
(−3.2250)+

1

8
(−2.5875)−

1

8
= −0.8516

y(2) =
1

5
(−0.8516)+

1

5
(−2.5875)−

16

5
= −3.8878

z(2) =
1

4
(−0.8516)+

1

4
(−3.8878)−

7

4
= −2.9348

Finally,

x(3) =
1

8
(−3.8878)+

1

8
(−2.9348)−

1

8
= −0.9778

y(3) =
1

5
(−0.9778)+

1

5
(−2.9348)−

16

5
= −3.9825

z(3) =
1

4
(−0.9778)+

1

4
(−3.9825)−

7

4
= −2.9901

For completeness, further iterations are shown in Table 8.3.

As expected the Gauss--Seidel method converges more rapidly than Jacobi’s. This is

generally the case because it uses the most recently calculated values at each stage.

Unfortunately, as with all iterative methods, convergence is not guaranteed. However,

it can be shown that if the matrix of coef�cients is diagonally dominant, that is each

diagonal element is larger in modulus than the sum of the moduli of the other elements

in its row, then the Gauss--Seidel method will converge.

Engineering application 8.5

Finding approximate solutions for the node voltages of an
electrical network

When trying to analyse complicated electrical networks it is frequently necessary

to resort to computer-based methods in order to �nd the voltages and currents. For ➔
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example, large networks for the distribution of electricity from power stations to

points of consumption can be very complicated to analyse due to the large number

of loops involved. This example illustrates the method by making use of the circuit

given in Engineering application 8.3. However, it should be borne in mind that this

approach is of most value when analysing much larger networks.

Use Jacobi’s method and the Gauss--Seidel method to obtain approximate so-

lutions for the node voltages of the electrical network examined in Engineering

application 8.3.

Solution

The node voltage equations are

6Va − 4Vb − 2Vd = 12 3Va + 12Vc − 19Vd = 0

15Va − 31Vb + 10Vc + 6Ve = 57 4Vb − 9Ve = −8

2Vb − 11Vc + 6Vd = −12

These can be rearranged to give

Va =
2Vb +Vd + 6

3
Vd =

3Va + 12Vc
19

Vb =
15Va + 10Vc + 6Ve − 57

31
Ve =

4Vb + 8

9

Vc =
2Vb + 6Vd + 12

11

The results of applying Jacobi’s method with an initial guess of

V (0)
a = V

(0)
b = V (0)

c = V
(0)
d = V (0)

e = 0

are shown in Table 8.4. Convergence was achieved to within 0.001 after 44 itera-

tions. The results of applying the Gauss--Seidel method are shown in Table 8.5. Con-

vergence was achieved to within 0.001 after 21 iterations. Clearly the Gauss--Seidel

method converges more rapidly than Jacobi’s method.

Table 8.4

Node voltages derived from Jacobi’s method.

Iteration no.(n) V
(n)
a V

(n)
b

V
(n)
c V

(n)
d

V
(n)
e

0 0.0000 0.0000 0.0000 0.0000 0.0000

1 2.0000 −1.8387 1.0909 0.0000 0.8889
.
.
.

20 2.8710 0.4802 2.1379 1.8265 1.0738
.
.
.

44 2.9679 0.5243 2.1990 1.8578 1.1215
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Table 8.5

Node voltages derived from the Gauss--Seidel method.

Iteration no.(n) V
(n)
a V

(n)
b

V
(n)
c V

(n)
d

V
(n)
e

0 0.0000 0.0000 0.0000 0.0000 0.0000

1 2.0000 −0.8710 0.9326 0.9048 0.5018
.
.
.

20 2.9665 0.5226 2.1985 1.8569 1.1212

21 2.9674 0.5233 2.1989 1.8573 1.1215

EXERCISES 8.13

1 Perform three iterations of the methods of Jacobi and

Gauss--Seidel to obtain approximate solutions of the

following. In each case, use an initial guess of

x(0) = y(0) = z(0) = 0

(a) 4x+ y+ z = −1

x+ 6y+ 2z = 0

x+ 2y+ 4z = 1

(b) 5x+ y− z = 4

x− 4y+ z = −4

2x+ 2y− 4z = −6

(c) 4x+ y+ z = 17

x+ 3y− z = 9

2x− y+ 5z = 1

Solutions

1 (a) Jacobi

x1 = −0.2500, y1 = 0, z1 = 0.2500

x2 = −0.3125, y2 = −0.0417, z2 = 0.3125

x3 = −0.3177, y3 = −0.0521, z3 = 0.3490

Gauss--Seidel

x1 = −0.2500, y1 = 0.0417, z1 = 0.2917

x2 = −0.3333, y2 = −0.0417, z2 = 0.3542

x3 = −0.3281, y3 = −0.0634, z3 = 0.3637

(b) Jacobi

x1 = 0.8000, y1 = 1, z1 = 1.5000

x2 = 0.9000, y2 = 1.5750, z2 = 2.4000

x3 = 0.9650, y3 = 1.8250, z3 = 2.7375

Gauss--Seidel

x1 = 0.8000, y1 = 1.2000, z1 = 2.5000

x2 = 1.0600, y2 = 1.8900, z2 = 2.9750

x3 = 1.0170, y3 = 1.9980, z3 = 3.0075

(c) Jacobi

x1 = 4.2500, y1 = 3, z1 = 0.2000

x2 = 3.4500, y2 = 1.6500, z2 = −0.9000

x3 = 4.0625, y3 = 1.5500, z3 = −0.8500

Gauss--Seidel

x1 = 4.2500, y1 = 1.5833, z1 = −1.1833

x2 = 4.1500, y2 = 1.2222, z2 = −1.2156

x3 = 4.2484, y3 = 1.1787, z3 = −1.2636

8.14 COMPUTER SOLUTIONS OF MATRIX PROBLEMS

The use of technical computing languages has vastly improved the ability of engineers to

calculate the solutions to complex engineering problems. As has been demonstrated by

the examples given in previous chapters, high level mathematical functions are provided

such as the ability to calculate the roots of an equation and the eigenvalues of a matrix.

In electrical engineering problems it is frequently necessary to solve matrix equations.

Consider again Example 8.32. The equations are of the form

AX = B
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where

A =



3 2 −1

2 −1 2

1 −3 −4


 B =




4

10

5


 X =



x

y

z




In order to solve these equations in a technical computing language the matrices need to

be loaded into memory. In MATLAB® we would type

A = [3, 2,−1; 2,−1, 2; 1,−3,−4]

B = [4; 10; 5]

We note that commas are used to separate entries on the same row and semicolons are

used to separate different rows.

The value of X can be obtained by the method of matrix inversion. The code for this is

X = inv(A) ∗ B

Alternatively, X can be obtained by Gaussian elimination. The code for this is

X = A\B

Gaussian elimination is the usual method of solving systems of linear equations in

MATLAB® because it is computationally ef�cient. If we run this three-line program

using MATLAB® then we obtain

A = [3, 2,−1; 2,−1, 2; 1,−3,−4]

B = [4; 10; 5]

X = A\B

X = 3.0000

−2.0000

1.0000

and so x = 3.0000, y = −2.0000, z = 1.0000.

We see that MATLAB® is a powerful tool for carrying out matrix calculations. Part

of its power derives from the extremely high-level nature of its commands. A command

such as inv(A)would require typically 50 lines if written in a normal high-level language

such as C or FORTRAN.

Engineering application 8.6

Solution of an electrical network using MATLAB®

Consider again the electrical network of Engineering application 8.3. Write the

MATLAB® code to solve this network.

Solution

The equations are of the form V = RI′ where V is the voltage vector of the network,

R is the matrix of resistor values and I′ is the current vector of the network. We know

V and R and we wish to obtain I′. Using the values of Engineering application 8.3

we can write

➔
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V = [3;−6; 4]

R = [10,−3,−1;−3, 14,−2;−1,−2, 6]

IPRIME = inv(R) ∗ V

Running this program gives

IPRIME = 0.2778

−0.2806

0.6194

REVIEW EXERCISES 8

1 Evaluate the following products:

(a)
(
−4 1

) (2
7

)
(b)

(
−4 1

) (3
6

)

(c)
(
−4 1

) (2 3

7 6

)
(d)

(
2 −3

4 5

)(
−1

1

)

(e)
(
2 −1 0

)


1 3 1

2 4 0

1 0 7


 (f) 5

(
2 1

3 6

)

(g)
1

2

(
7 3 2

1 0 1

)

2 Simplify

∣∣∣∣
cosh θ sinh θ

sinh θ cosh θ

∣∣∣∣.

3 Given that A =



0 2 3

2 0 0

1 −1 0


 �nd A−1 and A2. Show

that A2 + 6A−1 − 7I = 0, where I denotes the 3 × 3

identity matrix.

4 If A =



2 −1 4

1 0 0

1 −2 0


 �nd

(a) |A|

(b) adj(A)

(c) A−1

5 Find the inverse of the matrix




1 −2 0

3 1 5

−1 2 3




Hence solve the equations

x− 2y = 3

3x+ y+ 5z = 12

−x+ 2y+ 3z = 3

6 Use Gaussian elimination to solve

x+ 2y− 3z+ 2w = 2

2x+ 5y− 8z+ 6w = 5

3x+ 4y− 5z+ 2w = 4

7 Use Jacobi’s method to obtain a solution of AX = B

to three decimal places where

A =



10 1 0

1 10 1

0 1 10


 and B =



1

2

1




8 Use a matrix method to solve

2x+ y− z = 3

x− y+ 2z = 1

3x+ 4y+ 3z = 2

9 Consider the Vandermonde matrix

V =



1 a a2

1 b b2

1 c c2




(a) Find det V and show that it can be written as

(a− c)(a− b)(c− b).

(b) Show that if a, b and c are all different, then the

Vandermonde matrix is non-singular.

10 (a) The signal f (t) = sin
πt

2
is to be approximated

by a third-degree polynomial for values of t

between −1 and 2. By forcing the original signal

and its approximating polynomial to agree at

t = −1, t = 0, t = 1 and t = 2, �nd this

approximation. [Hint: see Engineering

application 8.2.]

(b) Use a graphics calculator or graph plotting

package to compare the graphs of f (t) and its

approximating polynomial.
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11 Suppose A =

(
1 −2

1 4

)
.

(a) Find Av when v =

(
−2

2

)
.

(b) Find 3v when v =

(
−2

2

)
. Deduce that Av = 3v.

(c) Find Av when v =

(
−µ

µ

)
for any constant µ.

Deduce that Av = 3v.

12 Use the Gauss--Seidel method to �nd an approximate

solution of

(a) 5x+ 3y = −34

2x− 7y = 93

(b) 3x+ y+ z = 6

2x+ 5y− z = 5

x− 3y+ 8z = 14

13 Determine which of the following systems have

non-trivial solutions.

(a) 2x− y = 0

3x− 1.5y = 0

(b) 6x+ 5y = 0

5x+ 6y = 0

(c) −x− 4y = 0

2x+ 8y = 0

(d) 7x− 3y = 0

1.4x− 0.6y = 0

(e) −4x+ 5y = 0

3x− 4y = 0

14 Determine which of the following systems have

non-trivial solutions.

(a) 3x− 2y+ 2z = 0

x− y+ z = 0

2x+ 2y− z = 0

(b) x+ 3y− z = 0

4x− y+ 2z = 0

6x+ 5y = 0

(c) x+ 2y− z = 0

x− 3z = 0

5x+ 6y− 9z = 0

15 The matrix A is de�ned by

A =

(
3 2

−3 −4

)

(a) Determine the characteristic equation of A.

(b) Determine the eigenvalues of A.

(c) Determine the eigenvectors of A.

(d) Form a new matrixM whose columns are the two

eigenvectors of A. M is called amodal matrix.

(e) Show thatM−1AM is a diagonal matrix, D, with

the eigenvalues of A on its leading diagonal. D is

called the spectral matrix corresponding to the

modal matrixM.

16 (a) Show that the matrix

A =

(
5 2

−2 1

)

has only one eigenvalue and determine it.

(b) Calculate the eigenvector of A.

17 The matrix H is given by

H =




4 −1 1

−2 4 0

−4 3 1




(a) Find the eigenvalues of H.

(b) Determine the eigenvectors of H.

(c) Form a new matrixM whose columns are the

three eigenvectors of H.M is called a modal

matrix.

(d) Show that M−1HM is a diagonal matrix, D, with

the eigenvalues of H on its leading diagonal. D is

called the spectral matrix corresponding to the

modal matrix M.

Solutions

1 (a) −1 (b) −6

(c) (−1 − 6) (d)

(
−5

1

)

(e) (0 2 2) (f)

(
10 5

15 30

)

(g)




7

2

3

2
1

1

2
0

1

2




2 1

3 A−1 =
1

6



0 3 0

0 3 −6

2 −2 4




A2 =




7 −3 0

0 4 6

−2 2 3
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4 (a) −8 (b)




0 −8 0

0 −4 4

−2 3 1




(c)
1

8



0 8 0

0 4 −4

2 −3 −1




5
1

21




−7 6 −10

−14 3 −5

7 0 7




x = 1, y = −1, z = 2

6 x = 2µ− λ, y = 1 + 2λ− 2µ, z = λ,w = µ

7 x = 0.082, y = 0.184, z = 0.082

8 x = 1.462, y = −0.308, z = −0.385

10 (a) f (t) =
4

3
t −

1

3
t3

11 (a)

(
−6

6

)
(b)

(
−6

6

)
(c)

(
−3µ

3µ

)

12 (a) x = 1, y = −13

(b) x = 1, y = 1, z = 2

13 (a), (c) and (d) have non-trivial solutions.

14 (b) and (c) have non-trivial solutions.

15 (a) λ2 + λ− 6 = 0

(b) λ = −3, 2

(c)

(
1

−3

)
,

(
1

−0.5

)

16 (a) λ = 3 (b)

(
1

−1

)

17 (a) λ = 2, 3, 4 (b)




1

1

−1


,



1

2

1


,



0

1

1
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9.1 INTRODUCTION

Complex numbers often seem strange when �rst encountered but it is worth persever-

ing with them because they provide a powerful mathematical tool for solving several

engineering problems. One of the main applications is to the analysis of alternating cur-

rent (a.c.) circuits. Engineers are very interested in these because the mains supply is

itself a.c., and electricity generation and transportation are dominated by a.c. voltages

and currents.

A great deal of signal analysis and processing uses mathematical models based on

complex numbers because they allow the manipulation of sinusoidal quantities to be

undertaken more easily. Furthermore, the design of �lters to be used in communications

equipment relies heavily on their use.

One area of particular relevance is control engineering -- so much so that control

engineers often prefer to think of a control system in terms of a ‘complex plane’ repre-

sentation rather than a ‘time domain’ representation. We will develop these concepts in

this and subsequent chapters.
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9.2 COMPLEX NUMBERS

We have already examined quadratic equations such as

x2 − x− 6 = 0 (9.1)

and have met techniques for �nding the roots of such equations. The formula for obtain-

ing the roots of a quadratic equation ax2 + bx+ c = 0 is

x =
−b±

√
b2 − 4ac

2a
(9.2)

Applying this formula to Equation (9.1), we �nd

x =
+1 ±

√
(−1)2 − 4(1)(−6)

2

=
1 ±

√
25

2

=
1 ± 5

2

so that x = 3 and x = −2 are the two roots. However, if we try to apply the formula to

the equation

2x2 + 2x+ 5 = 0

we �nd

x =
−2 ±

√
−36

4

A problem now arises in that we need to �nd the square root of a negative number. We

know from experience that squaring both positive and negative numbers yields a positive

result; thus,

62 = 36 and (−6)2 = 36

so that there is no real number whose square is −36. In the general case, if

ax2 + bx+c = 0, we see by examining the square root in Equation (9.2) that this prob-

lem will always arise whenever b2−4ac < 0. Nevertheless, it turns out to be very useful

to invent a technique for dealing with such situations, leading to the theory of complex

numbers.

To make progress we introduce a number, denoted j, with the property that

j2 = −1

We have already seen that using the real number system we cannot obtain a negative

number by squaring a real number so the number j is not real -- we say it is imaginary.

This imaginary number has a very useful role to play in engineering mathematics. Using

it we can now formally write down an expression for the square root of any negative

number. Thus,
√

−36 =
√
36 × (−1)

=
√
36 × j2

= 6j



326 Chapter 9 Complex numbers

Returning to the solution of the quadratic equation 2x2 + 2x+ 5 = 0, we �nd

x =
−2 ±

√
−36

4

=
−2 ± 6j

4

=
−1 ± 3j

2

We have found two roots, namely x = −
1

2
+

3

2
j and x = −

1

2
−

3

2
j. These numbers are

called complex numbers and we see that they are made up of two parts -- a real part and

an imaginary part. For the �rst complex number the real part is −
1

2
and the imaginary

part is
3

2
. For the second complex number the real part is −

1

2
and the imaginary part is

−
3

2
. In a more general case we usually use the letter z to denote a complex number with

real part a and imaginary part b, so z = a+ bj. We write a = Re(z) and b = Im(z), and

denote the set of all complex numbers by C. Note that a, b ∈ R whereas z ∈ C.

z = a+ bj, z is a member of the set of complex numbers, that is z ∈ C

a = Re(z) b = Im(z)

Complex numbers which have a zero imaginary part are purely real and hence all real

numbers are also complex numbers, that is R ⊂ C.

Example 9.1 Solve the quadratic equation 2s2 − 3s+ 7 = 0.

Solution Using the formula for solving a quadratic equation we �nd

s =
−(−3)±

√
(−3)2 − 4(2)(7)

2(2)

=
3 ±

√
−47

4

=
3 ±

√
47j

4
= 0.75 ± 1.71j

Using the fact that j2 = −1 we can develop other quantities.

Example 9.2 Simplify the expression j3.

Solution We have

j3 = j2 × j

= (−1)× j

= −j
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9.2.1 The complex conjugate

If z = a+ bj, we de�ne its complex conjugate to be the number z = a− bj; that is, we

change the sign of the imaginary part.

Example 9.3 Write down the complex conjugates of

(a) −7 + j (b) 6 − 5j (c) 6 (d) j

Solution To �nd the complex conjugates of the given numbers we change the sign of the imaginary

parts. A purely real number has an imaginary part 0. We �nd

(a) −7 − j (b) 6 + 5j (c) 6, there is no imaginary part to alter (d) − j

We recall that the solution of the quadratic equation 2x2 + 2x + 5 = 0 yielded the two

complex numbers −
1

2
+

3

2
j and −

1

2
−

3

2
j, and note that these form a complex conjugate

pair. This illustrates a more general result:

When the polynomial equation P(x) = 0 has real coef�cients, any complex roots

will always occur in complex conjugate pairs.

Consider the following example.

Example 9.4 Show that the equation x3 − 7x2 + 19x − 13 = 0 has a root at x = 1 and �nd the other

roots.

Solution If we let P(x) = x3 − 7x2 + 19x− 13, then P(1) = 1 − 7 + 19 − 13 = 0 so that x = 1

is a root. This means that x− 1 must be a factor of P(x) and so we can express P(x) in

the form

P(x) = x3 − 7x2 + 19x− 13 = (x− 1)(αx2 + βx+ γ )

= αx3 + (β − α)x2 + (γ − β)x− γ

where α, β and γ are coef�cients to be determined. Comparing the coef�cients of x3 we

�nd α = 1. Comparing the constant coef�cients we �nd γ = 13. Finally, comparing

coef�cients of x we �nd β = −6, and hence

P(x) = x3 − 7x2 + 19x− 13 = (x− 1)(x2 − 6x+ 13)

The other two roots of P(x) = 0 are found by solving the quadratic equation

x2 − 6x+ 13 = 0, that is

x =
6 ±

√
36 − 52

2
=

6 ±
√

−16

2
= 3 ± 2j

and again we note that the complex roots occur as a complex conjugate pair. This illus-

trates the general result given in Section 1.4 that an nth-degree polynomial has n roots.
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EXERCISES 9.2

1 Solve the following equations:

(a) x2 + 1 = 0 (b) x2 + 4 = 0

(c) 3x2 + 7 = 0 (d) x2 + x+ 1 = 0

(e)
x2

2
− x+ 2 = 0

(f) −x2 − 3x− 4 = 0

(g) 2x2 + 3x+ 3 = 0

(h) x2 + 3x+ 4 = 0

2 Solve the cubic equation

3x3 − 11x2 + 16x− 12 = 0

given that one of the roots is x = 2.

3 Write down the complex conjugates of the following

complex numbers.

(a) −11 − 8j (b) 5 + 3j (c)
1

2
j (d) −17

(e) cosωt + j sinωt (f) cosωt − j sinωt

(g) −0.333j + 1

4 Recall from Chapter 2 that the poles of a rational

function R(x) = P(x)/Q(x) are those values of x for

which Q(x) = 0. Find any poles of

(a)
x

x− 3
(b)

3x

x2 + 1
(c)

3

x2 + x+ 1

5 Solve the equation s2 + 2s+ 5 = 0.

6 Express as a complex number

(a) j4 (b) j5 (c) j6

7 State Re(z) and Im(z) where

(a) z = 7 + 11j (b) z = −6 + j

(c) z = 0 (d) z =
1 + j

2

(f) z = j (e) z = j2

Solutions

1 (a) ±j (b) ±2j

(c) ±
√
7/3j (d) −1/2 ± (

√
3/2)j

(e) 1 ±
√
3j (f) −3/2 ± (

√
7/2)j

(g) −3/4 ± (
√
15/4)j (h) −3/2 ± (

√
7/2)j

2 2, 5/6 ± (
√
47/6)j

3 (a) −11 + 8j (b) 5 − 3j (c) −
1

2
j

(d) −17 (e) cos ωt − j sin ωt

(f) cos ωt + j sin ωt (g) 0.333j + 1

4 (a) x = 3 (b) x = ±j

(c) x = −1/2 ± (
√
3/2)j

5 s = −1 ± 2j

6 (a) 1 (b) j (c) −1

7 (a) 7, 11 (b) −6, 1 (c) 0, 0

(d)
1

2
,
1

2
(e) 0, 1 (f) −1, 0

9.3 OPERATIONS WITH COMPLEX NUMBERS

Two complex numbers are equal if and only if their real parts are equal and their imagi-

nary parts are equal.

Example 9.5 Find x and y so that x+ 6j and 3 − yj represent the same complex number.

Solution If both quantities represent the same complex number we have

x+ 6j = 3 − yj

Since the real parts must be equal we can equate them, that is

x = 3
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Similarly, we �nd, by equating imaginary parts

6 = −y

so that y = −6.

The operations of addition, subtraction, multiplication and division can all be performed

on complex numbers.

9.3.1 Addition and subtraction

To add two complex numbers we simply add the real parts and add the imaginary parts;

to subtract a complex number from another we subtract the corresponding real parts and

subtract the corresponding imaginary parts as shown in Example 9.6.

Example 9.6 If z1 = 3 − 4j and z2 = 4 + 2j �nd z1 + z2 and z1 − z2.

Solution z1 + z2 = (3 − 4j)+ (4 + 2j)

= (3 + 4)+ (−4 + 2)j

= 7 − 2j

z1 − z2 = (3 − 4j)− (4 + 2j)

= (3 − 4)+ (−4 − 2)j

= −1 − 6j

9.3.2 Multiplication

We can multiply a complex number by a real number. Both the real and imaginary parts

of the complex number are multiplied by the real number. Thus 3(4 − 6j) = 12 − 18j.

To multiply two complex numbers we use the fact that j2 = −1.

Example 9.7 If z1 = 2 − 2j and z2 = 3 + 4j, �nd z1z2.

Solution z1z2 = (2 − 2j)(3 + 4j)

Removing brackets we �nd

z1z2 = 6 − 6j + 8j − 8j2

= 6 − 6j + 8j + 8 using j2 = −1

= 14 + 2j

Example 9.8 If z = 3 − 2j �nd zz.

Solution If z = 3 − 2j then its conjugate is z = 3 + 2j. Therefore,

zz = (3 − 2j)(3 + 2j)

= 9 − 6j + 6j − 4j2

= 9 − 4j2

= 13

We see that the answer is a real number.
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Whenever we multiply a complex number by its conjugate the answer is a real number.

Thus if z = a+ bj

zz = (a+ bj)(a− bj)

= a2 + baj − abj − b2j2

= a2 + b2

If z = a+ bj then zz = a2 + b2

9.3.3 Division

To divide two complex numbers it is necessary to make use of the complex conjugate.

We multiply both the numerator and denominator by the conjugate of the denominator

and then simplify the result.

Example 9.9 If z1 = 2 + 9j and z2 = 5 − 2j �nd
z1

z2
.

Solution We seek
2 + 9j

5 − 2j
. The complex conjugate of the denominator is 5 + 2j, so we multiply

both numerator and denominator by this quantity. The effect of this is to leave the value

of
z1

z2
unaltered since we have only multiplied by 1. Therefore,

z1

z2
=

2 + 9j

5 − 2j
=
(2 + 9j)

(5 − 2j)

(5 + 2j)

(5 + 2j)

=
10 + 45j + 4j + 18j2

25 + 4
=

−8 + 49j

29

= −
8

29
+

49

29
j

The multiplication of two conjugates in the denominator allows a useful simpli�cation.

We see that the effect of multiplying by the conjugate of the denominator is to make the

denominator of the solution purely real.

If z1 = x1 + jy1 and z2 = x2 + jy2 then the quotient
z1

z2
is found by multiplying both

numerator and denominator by the conjugate of the denominator, that is

z1

z2
=
x1 + jy1
x2 + jy2

=
x1 + jy1
x2 + jy2

×
x2 − jy2
x2 − jy2

=
x1x2 + y1y2 + j(x2y1 − x1y2)

x22 + y22
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EXERCISES 9.3

1 If z1 = 3 + 2j and z2 = 4 − 8j �nd

(a) z1 + z2 (b) z1 − z2 (c) z2 − z1

2 Express the following in the form a+ bj:

(a)
1

1 + j
(b)

−2

j

(c)
1

j
+

1

2 − j
(d)

j

1 + j

(e)
3

3 + 2j
+

1

5 − j

3 Express the following in the form a+ bj:

(a)
2

1 − j
(b)

−2 + 3j

j

(c) 3j(4 − 2j) (b) (7 − 2j)(5 + 6j)

(e)
5 + 3j

2 + 2j

4 Find a quadratic equation whose roots are 1 − 3j and

1 + 3j.

5 If (x+ jy)2 = 3 + 4j, �nd x and y, where x, y ∈ R.

6 Find the real and imaginary parts of

(a)
2

4 + j
−

3

2 − j
(b) j4 − j5

(c)
1

j
+ j (d)

1

j3 − 3j

Solutions

1 (a) 7 − 6j (b) −1 + 10j (c) 1 − 10j

2 (a)
1

2
−

1

2
j (b) 2j (c)

2

5
−

4

5
j

(d)
1

2
+

1

2
j (e)

23 − 11j

26

3 (a) 1 + j (b) 3 + 2j (c) 6 + 12j

(d) 47 + 32j (e) 2 −
1

2
j

4 x2 − 2x+ 10 = 0

5 x = 2, y = 1; x = −2, y = −1

6 (a) −
62

85
, −

61

85
(b) 1,−1

(c) 0, 0

(d) 0,
1

4

Technical Computing Exercises 9.3

1 Many technical computing languages allow the user

to input and manipulate complex numbers. Investigate

how the complex number a+ bj is input to the

software to which you have access.

2 Use technical computing software to simplify the

following complex numbers:

(a) (1 + j)5 (b)
3j

(1 − 2j)7

(c)
4

(3 + j)3
−

7

(2 − 3j)2

3 Solve the polynomial equations

(a) x3 + 7x2 + 9x+ 63 = 0

(b) x4 + 15x2 − 16 = 0

You may recall from Chapter 1 that in MATLAB® the

roots function can be used to solve polynomial

equations with real roots. This function can also

calculate complex roots.

4 Use a package to �nd the real and imaginary parts of

15 + j

7 − 5j
.

5 A common requirement in control theory is to �nd the

poles of a rational function. Use a package to �nd the

poles of the function

G(s) =
0.5

s3 + 2s2 + 0.2s+ 0.0556

To solve this problem automatically may require the

use of specialist toolboxes in MATLAB® or GNU

Octave which are not part of the core program. For

example, the Signal Processing toolbox in

MATLAB® has the function tf2zp which converts a

transfer function expressed as a ratio of polynomials

to pole/zero form.
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Figure 9.1

Argand diagram.
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z2 = –3+5j

z1 = 7+2j

z4 = –4j

z3 = –1–2j

Figure 9.2

Argand diagram for Example 9.10.

9.4 GRAPHICAL REPRESENTATION OF COMPLEX NUMBERS

Given a complex number z = a + bj we can obtain a useful graphical interpretation of

it by plotting the real part on the horizontal axis and the imaginary part on the vertical

axis and obtain a unique point in the x--y plane (Figure 9.1). We call the x axis the real

axis and the y axis the imaginary axis, and the whole picture an Argand diagram. In

this context, the x--y plane is often referred to as the complex plane.

Example 9.10 Plot the complex numbers z1 = 7+ 2j, z2 = −3+ 5j, z3 = −1− 2j and z4 = −4j on an

Argand diagram.

Solution The Argand diagram is shown in Figure 9.2.

EXERCISES 9.4

1 Plot the following complex numbers on an Argand

diagram:

(a) z1 = −3 − 3j

(b) z2 = 7 + 2j

(c) z3 = 3

(d) z4 = −0.5j

(e) z5 = −2

2 (a) Plot the complex number z = 1 + j on an Argand

diagram.

(b) Simplify the complex number j(1 + j) and plot

the result on your Argand diagram. Observe that

the effect of multiplying the complex number by j

is to rotate the complex number through an angle

of π/2 radians anticlockwise about the origin.
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Solutions

1 See Figure S.17.

Imaginary

Real

7+2j

–3–3j

3

–2 

–0.5j

Figure S.17

2 (a) See Figure S.18. (b) j(1 + j) = −1 + j

Imaginary

Real

1+j–1+j 1

1–1

Figure S.18

9.5 POLAR FORM OF A COMPLEX NUMBER

It is often useful to exchange Cartesian coordinates (a, b) for polar coordinates r and

θ as depicted in Figure 9.3.

From Figure 9.3 we note that

cos θ =
a

r
sin θ =

b

r

and so,

a = r cos θ b = r sin θ

Furthermore,

tan θ =
b

a

Using Pythagoras’s theoremwe obtain r =
√
a2 + b2. By �nding r and θ we can express

the complex number z = a+ bj in polar form as

z = r cos θ + jr sin θ = r(cos θ + j sin θ )

which we often abbreviate to z = r 6 θ . Clearly, r is the ‘distance’ of the point (a, b) from

the origin and is called the modulus of the complex number z. The modulus is always

a non-negative number and is denoted |z|. The angle is conventionally measured from

the positive x axis. Angles measured in an anticlockwise sense are regarded as positive

while those measured in a clockwise sense are regarded as negative. The angle θ is called

the argument of z, denoted arg(z). Since adding or subtracting multiples of 2π from θ

will result in the ‘arm’ in Figure 9.3 being in the same position, the argument can have

many values. Usually we shall choose θ to satisfy −π < θ 6 π.

Cartesian form: z = a+ bj

Polar form: z = r(cos θ + j sin θ ) = r 6 θ

|z| = r =
√
a2 + b2

a = r cos θ b = r sin θ tan θ =
b

a
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y

b
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r

(a, b)

x

u

Figure 9.3

Polar and Cartesian forms of a complex

number.

7

1

–1 (1, –1)

x

y

p–
4

p–
4

–

2

Figure 9.4

Argand diagram depicting z = 1 − j in

Example 9.11.

Note that

r 6 (−θ ) = r(cos(−θ )+ j sin(−θ ))

= r(cos θ − j sin θ )

= z

If z = a+ bj then z = a− bj and z = r 6 (−θ ).

Example 9.11 Depict the complex number z = 1 − j on an Argand diagram and convert it into polar

form.

Solution The real part of z is 1 and the imaginary part is −1. We therefore plot a point in the x--y

plane with x = 1 and y = −1 as shown in Figure 9.4.

From Figure 9.4 we see that r =
√
12 + (−1)2 =

√
2 and θ = −45◦ or−π/4 radians.

Therefore z = 1 − j =
√
2 6 (−π/4).

To express a complex number in polar form it is essential to draw an Argand diagram

and not simply quote formulae, as the following example will show.

Example 9.12 Express z = −1 − j in polar form.

Solution If we use the formula |z| = r =
√
a2 + b2, we �nd that r =

√
2. Using tan θ = b/a, we

�nd that tan θ = −1/− 1 = 1 so that you may be tempted to take θ = π/4. Figure 9.5

shows the Argand diagram and it is clear that θ = −3π/4. Therefore, z = −1 − j =√
26 −3π/4, and we see the importance of drawing an Argand diagram.

–1

–1

x

y

5p—
4

3p—
4

–

2

Figure 9.5

Argand diagram depicting z = −1 − j in Example 9.12.
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9.5.1 Multiplication and division in polar form

The polar form may seem more complicated than the Cartesian form but it is often more

useful. For example, suppose we want to multiply the complex numbers

z1 = r1(cos θ1 + j sin θ1) and z2 = r2(cos θ2 + j sin θ2)

We �nd

z1z2 = r1(cos θ1 + j sin θ1)r2(cos θ2 + j sin θ2)

= r1r2{(cos θ1 cos θ2 − sin θ1 sin θ2)+ j(sin θ1 cos θ2 + sin θ2 cos θ1)}

which can be written as

r1r2{cos(θ1 + θ2)+ j sin(θ1 + θ2)}

using the trigonometric identities of Section 3.6. This is a new complex number which,

if we compare with the general form r(cos θ + j sin θ ), we see has a modulus of r1r2 and

an argument of θ1 + θ2. To summarize: to multiply two complex numbers we multiply

their moduli and add their arguments, that is

z1z2 = r1r2 6 (θ1 + θ2)

Example 9.13 If z1 = 36 π/3 and z2 = 46 π/6 �nd z1z2.

Solution Multiplying the moduli we �nd r1r2 = 12, and adding the arguments we �nd θ1 + θ2 =

π/2. Therefore z1z2 = 126 π/2.

A similar development shows that to divide two complex numbers we divide their moduli

and subtract their arguments, that is

z1

z2
=
r1

r2
6 (θ1 − θ2)

Example 9.14 If z1 = 36 π/3 and z2 = 46 π/6 �nd z1/z2.

Solution Dividing the respective moduli, we �nd r1/r2 = 3/4 and subtracting the arguments,

π/3 − π/6 = π/6. Hence z1/z2 = 0.756 π/6.

EXERCISES 9.5

1 Mark on an Argand diagram points representing

z1 = 3 − 2j, z2 = −j, z3 = j2, z4 = −2 − 4j and

z5 = 3. Find the modulus and argument of each

complex number.

2 Express the following complex numbers in polar

form:

(a) 3 − j (b) 2 (c) −j (d) −5 + 12j

3 Find the modulus and argument of (a) z1 = −
√
3 + j

and (b) z2 = 4 + 4j. Hence express z1z2 and z1/z2 in

polar form.

4 Express
√
2 6 π/4, 26 π/6 and 2 6 −π/6 in Cartesian

form a+ bj.

5 Prove the result
z1
z2

=
r1
r2

6 θ1 − θ2.
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6 Express z =
1

jωC
, where ω andC are real constants,

in the form a+ bj. Plot z on an Argand diagram.

7 If z1 = 4(cos 40◦ + j sin 40◦) and z2 = 3(cos 70◦+

j sin 70◦), express z1z2 and z1/z2 in polar form.

8 Simplify

(
√
26 (5π/4))2(26 (−π/3))2

26 (−π/6)

Solutions

1 |z1| =
√
13, arg(z1) = −0.5880

|z2| = 1, arg(z2) = −π/2

|z3| = 1, arg(z3) = π

|z4| =
√
20, arg(z4) = −2.0344

|z5| = 3, arg(z5) = 0

2 (a)
√
106 −0.3218 (b) 2 6 0

(c) 16 −π/2 (d) 136 1.9656

3 (a) 2, 5π/6

(b) 4
√
2,π/4

z1z2 = 8
√
26 13π/12

z1/z2 =

√
2

4
6 7π/12

4 1 + j,
√
3 + j,

√
3 − j

6 −
j

ωC

7 z1z2 = 12(cos 110◦ + j sin 110◦)

z1/z2 =
4

3
(cos 30◦ − j sin 30◦)

8 4

9.6 VECTORS AND COMPLEX NUMBERS

It is often convenient to represent complex numbers by vectors in the x--y plane. Fig-

ure 9.6(a) shows the complex number z = a + jb. Figure 9.6(b) shows the equivalent

vector. Figure 9.7 shows the complex numbers z1 = 2 + j and z2 = 1 + 3j.

If we now evaluate z3 = z1 + z2 we �nd z3 = 3 + 4j which is also shown. If we

form a parallelogram, two sides of which are the representations of z1 and z2, we �nd

that z3 is the diagonal of the parallelogram. If we regard z1 and z2 as vectors in the plane

we see that there is a direct analogy between the triangle law of vector addition (see

Section 7.2.3) and the addition of complex numbers.

a  x  x

b

y

z = a + jb

a

b

y

a

b( (

(a) (b)

Figure 9.6

The complex number z = a+ jb and its equivalent vector.

z2
z3

z1

y

x0 1 2 3 4

4 

3

2 

1

Figure 9.7

Vector addition in the complex plane.
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O
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BA
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x

Figure 9.8

Vector addition and subtraction.

z2

z1 + z2

z1 – z2

z1

O 1

5 

4 

3 

2 

1

2 3 4 5 6 7 8 9 10

B

C

A

y

x

Figure 9.9

Diagram for Example 9.15.

More generally, if z1 and z2 are any complex numbers represented on an Argand

diagram by the vectors ~OA and ~OB (Figure 9.8) then upon completing the parallel-

ogram OBCA, the sum z1 + z2 is represented by the vector ~OC. We can also obtain

a representation of the difference of two complex numbers in the following way. If

we write

z3 = z1 − z2

= z1 + (−z2)

and note that if z2 is represented by the vector
~OB, then −z2 is represented by the vector

− ~OB = ~BO = ~CA. The complex number z1 is represented by ~OA = ~BC, so that

z1 + (−z2) = ~BC + ~CA = ~BA. Thus the difference z1 − z2 is represented by the

diagonal BA. To summarize, the sum and difference of z1 and z2 are represented by

the two diagonals of the parallelogram OBCA.

Example 9.15 Represent z1 = 6 + j and z2 = 3 + 4j, and their sum and difference, on an Argand

diagram.

Solution We draw vectors ~OA and ~OB representing z1 and z2, respectively (Figure 9.9). Then we

complete the parallelogram OACB as shown. The sum z1 + z2 is then represented by
~OC

and the difference z1 − z2 by
~BA. It is easy to see that the vector ~BA =

(
3

−3

)
, that is it

represents the complex number 3− 3j, while ~OC =

(
9

5

)
, that is it represents 9+ 5j, so

that z1 + z2 = 9 + 5j and z1 − z2 = 3 − 3j.

9.7 THE EXPONENTIAL FORM OF A COMPLEX NUMBER

You will recall from Chapter 6 that many functions possess a power series expansion,

that is the function can be expressed as the sum of a sequence of terms involving integer

powers of x. For example,

ex = 1 + x+
x2

2!
+
x3

3!
+ · · ·
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and this representation is valid for any real value of x. The expression on the r.h.s. is, of

course, an in�nite sum but its terms get smaller and smaller, and as more are included,

the sum we obtain approaches ex. Other examples of power series include

sin x = x−
x3

3!
+
x5

5!
− · · · (9.3)

and

cos x = 1 −
x2

2!
+
x4

4!
− · · · (9.4)

which are also valid for any real value of x. It is useful to extend the range of applicability

of these power series by allowing x to be a complex number. That is, we de�ne the

function ez to be

ez = 1 + z+
z2

2!
+
z3

3!
+ · · ·

and theory beyond the scope of this book can be used to show that this representation is

valid for all complex numbers z.

We have already seen that we can express a complex number in polar form:

z = r(cos θ + j sin θ )

Using Equations (9.3) and (9.4) we can write

z = r

{(
1 −

θ2

2!
+
θ4

4!
− · · ·

)
+ j

(
θ −

θ3

3!
+
θ5

5!
− · · ·

)}

= r

(
1 + jθ −

θ2

2!
− j
θ3

3!
+
θ4

4!
+ j
θ5

5!
· · ·

)

Furthermore, we note that e jθ can be written as

e jθ = 1 + jθ +
j2θ2

2!
+

j3θ3

3!
+ · · ·

= 1 + jθ −
θ2

2!
− j
θ3

3!
+ · · ·

so that

z = r(cos θ + j sin θ ) = re jθ

This is yet another form of the same complex number which we call the exponential

form. We see that

e jθ = cos θ + j sin θ (9.5)

It is straightforward to show that

e−jθ = cos θ − j sin θ
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Therefore, if z = r(cos θ − j sin θ ) we can equivalently write z = re−jθ . The two expres-

sions for e jθ and e−jθ are known as Euler’s relations. From these it is easy to obtain the

following useful results:

cos θ =
e jθ + e−jθ

2
sin θ =

e jθ − e−jθ

2j

Example 9.16 We saw in Section 3.7 that a waveform can be written in the form f (t) = A cos(ωt+φ).

Consider the complex number ej(ωt+φ). We can use Euler’s relations to write

ej(ωt+φ) = cos(ωt + φ)+ j sin(ωt + φ)

and hence,

f (t) = A Re(ej(ωt+φ))

EXERCISES 9.7

1 Find the modulus and argument of

(a) 3e jπ/4 (b) 2e−jπ/6 (c) 7e jπ/3

2 Find the real and imaginary parts of

(a) 5e jπ/3 (b) ej2π/3

(c) 11e jπ (d) 2e−jπ

3 Express z = 6(cos 30◦ + j sin 30◦) in exponential

form. Plot z on an Argand diagram and �nd its real

and imaginary parts.

4 If σ , ω, T ∈ R, �nd the real and imaginary parts of

e(σ+jω)T .

5 Express z = e1+jπ/2 in the form a+ bj.

6 Express −1 − j in the form re jθ .

7 Express

(a) 7 + 5j and

(b)
1

2
−

1

3
j in exponential form.

8 Express z1 = 1 − j and

z2 =
1 + j

√
3 − j

in the form re jθ .

Solutions

1 (a) 3,π/4 (b) 2,−π/6 (c) 7,π/3

2 (a) 2.5, 4.3301 (b) −0.5, 0.8660 (c) −11, 0

(d) −2, 0

3 6e(π/6)j, Re(z) = 5.1962, Im(z) = 3

4 Real part: eσT cos ωT , imaginary part: eσT sin ωT

5 ej

6
√
2e(−3π/4)j

7 (a)
√
74e0.62j (b) 0.60 e−0.59j

8
√
2e(−π/4)j,

1
√
2
e(5π/12)j
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9.8 PHASORS

Electrical engineers are often interested in analysing circuits in which there is an a.c.

power supply. Almost invariably the supply waveform is sinusoidal and the resulting

currents and voltages within the circuit are also sinusoidal. For example, a typical voltage

is of the form

v(t) = V cos(ωt + φ) = V cos(2π f t + φ) (9.6)

where V is the maximum or peak value, ω is the angular frequency, f is the frequency,

and φ is the phase relative to some reference waveform. This is known as the time

domain representation. Each of the voltages and currents in the circuit has the same

frequency as the supply but differs in magnitude and phase.

In order to analyse such circuits it is necessary to add, subtract, multiply and di-

vide these waveforms. If the time domain representation is used then the mathematics

becomes extremely tedious. An alternative approach is to introduce a waveform repre-

sentation known as a phasor. A phasor is an entity consisting of two distinct parts: a

magnitude and an angle. It is possible to represent a phasor by a complex number in

polar form. The �xed magnitude of this complex number corresponds to the magnitude

of the phasor and hence the amplitude of the waveform. The argument of this complex

number, φ, corresponds to the angle of the phasor and hence the phase angle of the

waveform. Figure 9.10 shows a phasor for the sinusoidal waveform of Equation (9.6).

The time dependency of the waveform is catered for by rotating the phasor anti-

clockwise at an angular frequency, ω. The projection of the phasor onto the real axis

gives the instantaneous value of the waveform. However, the main interest of an engi-

neer is in the phase relationships between the various sinusoids. Therefore the phasors

are ‘frozen’ at a certain point in time. This may be chosen so that t = 0 or it may be cho-

sen so that a convenient phasor, known as the reference phasor, aligns with the positive

real axis. This approach is valid because the phase and magnitude relationships between

the various phasors remain the same at all points in time once a circuit has recovered

from any initial transients caused by switching.

Some textbooks refer to phasors as vectors. This can lead to confusion as it is possible

to divide phasors whereas division of vectors by other vectors is not de�ned. In practice

this is not a problem as phasors, although thought of as vectors, are manipulated as

complex numbers, which can be divided. We will avoid these conceptual dif�culties by

introducing a different notation. We will denote a phasor by Ṽ , which corresponds to

V 6 φ in complex number notation (see Figure 9.10). Thus, for example, a current i(t) =
I cos(ωt+φ)would bewritten Ĩ in phasor notation and I 6 φ in complex number notation.

Many engineers use the root mean square (r.m.s.) value of a sinusoid as the mag-

nitude of a phasor. The justi�cation for this is that it represents the value of a d.c. sig-

nal that would dissipate the same amount of power in a resistor as the sinusoid. For

x

V
V

y

~

f

v

Figure 9.10

Illustration of the phasor Ṽ = V 6 φ where ω = angular

frequency with which the phasor rotates.
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example, in the case of a current signal, I2rmsR is the average power dissipated by the

sinusoid I cos(ωt+φ) in a resistor R. For the case of a sinusoidal signal the r.m.s. value

of the signal is 1/
√
2 times the peak value of the signal (see Section 15.3, Example 15.4,

for a proof of this). We will not adopt this approach but it is a common one.

We start by examining the phasor representation of individual circuit elements. In

order to do this we need a phasor form of Ohm’s law. This is

Ṽ = ĨZ (9.7)

where Ṽ is the voltage phasor, Ĩ is the current phasor and Z is the impedance of an

element or group of elements and may be a complex quantity. Note that phasors and

complex numbers are mixed together in the same equation. This is a common practice

because phasors are usually manipulated as complex numbers.

9.8.1 Resistor

Experimentally it can be shown that if an a.c. voltage is applied to a resistor then the

current is in phase with the voltage. The ratio of the magnitude of the two waveforms is

equal to the resistance, R. So, given Ĩ = I 6 0, Z = R6 0, using Equation (9.7) we have

Ṽ = IR6 0. This is illustrated in Figure 9.11.

9.8.2 Inductor

For an inductor we know from experiment that the voltage leads the current by a phase of

π/2, and so the phase angle of the impedance is π/2. We also know that the magnitude

of the impedance is given byωL. So, given Ĩ = I 6 0, Z = ωL 6 π/2, using Equation (9.7)

we have Ṽ = IωL 6 π/2. An alternative way of representing Z for an inductor is to use

the Cartesian form, that is

Z = ωLe jπ/2 = ωL

(
cos

π

2
+ j sin

π

2

)

= jωL

This is useful when phasors need to be added and subtracted. The phasor diagram for an

inductor is illustrated in Figure 9.12.

9.8.3 Capacitor

For a capacitor it is known that the voltage lags the current by a phase of π/2 and the

magnitude of the impedance is given by
1

ωC
. So given Ĩ = I 6 0, Z =

1

ωC
6 −π/2, we

V
~

I x

y

~

Figure 9.11

Phasor diagram for a resistor.

V
~

I x

y

~

p–
2

Figure 9.12

Phasor diagram for an inductor.
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have, using Equation (9.7), Ṽ =
I

ωC
6 −π/2. Alternatively,

Z =
e−jπ/2

ωC
=

1

ωC

(
cos

π

2
− j sin

π

2

)

= −
j

ωC

Engineers often prefer to rewrite this last expression as

1

jωC

The phasor diagram for the capacitor is illustrated in Figure 9.13.

We have shown how phasors can be multiplied by a complex number; division is very

similar. Addition of phasors will now be illustrated; subtraction is similar. Consider the

circuit shown in Figure 9.14 in which a resistor, capacitor and inductor are connected

in series and fed by an a.c. source. As this is a series circuit, the current through each

element, Ĩ, is the same byKirchhoff’s current law. ByKirchhoff’s voltage law the voltage

rise produced by the supply, Ṽ S, must equal the sum of the voltage drops across the

elements. Therefore,

Ṽ S = ṼR + ṼC + Ṽ L

Note that this is an addition of phasors so that the voltage drops across the elements

do not necessarily have the same phase. The phasor diagram for the circuit is shown in

Figure 9.15, in this case with |Ṽ L| > |ṼC|; Ĩ is the reference phasor.

Note that the phasor addition of the element voltages gives the overall supply voltage

for a particular supply current. If the magnitude of these element voltage phasors is

known then it is possible to calculate the supply voltage graphically. In practice it is

easier to convert the polar form of the phasors into Cartesian form and use algebra to

analyse the circuit.

Now,

ṼR = ĨR6 0 = ĨR

Ṽ L = ĨωL 6 π/2 = ĨjωL

ṼC =
Ĩ

ωC
6 −π/2 =

Ĩ

jωC

V
~

I
~

x

y

p–
2

–

Figure 9.13

Phasor diagram for a capacitor.
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~~ VC

~

VR
~

I

R 

C

L

~

v

Figure 9.14

RLC circuit.

I
~ x

y

VR
~

VS
~VL

~

VC
~

Figure 9.15

Phasor diagram for the circuit in

Figure 9.14.
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Therefore,

Ṽ S = ṼR + ṼC + Ṽ L

= ĨR+ ĨjωL+
Ĩ

jωC

= Ĩ

(
R+ jωL+

1

jωC

)

Therefore the impedance of the circuit is Z = R + jωL +
1

jωC
. We can calculate the

frequency for which the impedance of the circuit has minimum magnitude:

Z = R+ jωL+
1

jωC

= R+ jωL−
j

ωC

= R+ j

(
ωL−

1

ωC

)

Now

|Z| =

√
R2 +

(
ωL−

1

ωC

)2

and so, as ω varies |Z| is a minimum when

ωL−
1

ωC
= 0

ω2 =
1

LC

ω =

√
1

LC

This minimum value is |Z| = R. Examining Figure 9.15 it is clear that the minimum

impedance occurs when Ṽ L and ṼC have the same magnitude, in which case Ṽ S has no

imaginary component. The frequency at which this occurs is known as the resonant

frequency of the circuit.

Engineering application 9.1

The Poynting vector

An electromagnetic wave freely travelling in space has electric and magnetic �eld

components which oscillate at right angles to each other and to the direction of prop-

agation. This type of wave is known as a transverse wave. Figure 9.16 illustrates

an electromagnetic wave travelling in free space. The Poynting vector is used to de-

scribe the energy flux associated with an electromagnetic wave. It has units ofWm−2

and is a power per unit area, that is a power density. If the total power associated with

an electromagnetic wave front is required then the Poynting vector can be integrated

over an area of interest.

The Poynting vector, S, for electric �eld, E, and magnetic �eld, H, is de�ned as

S = E × H

➔
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z
y

x

Electric �eld

Magnetic �eld

Figure 9.16

An electromagnetic wave travelling in free space.

where E and H are vector quantities. Note that S is also a vector quantity as this

expression is a vector product.

It is possible to specify magnitude and phase of the �eld quantities using com-

plex numbers; that is, in terms of phasors. Consider the case when E and H are the

following:

E = (2 + j0.5)i + 0j + 0k

H = 0i + (3.5 + j0.25)j + 0k

Here Cartesian coordinates have been used to de�ne the two �eld quantities and i is a

unit vector in the x direction, j is a unit vector in the y direction and k is a unit vector

in the z direction. Examining these two terms we note that the electric �eld is aligned

in the x direction and the magnetic �eld is aligned in the y direction.

Calculating the Poynting vector we obtain

S=E×H =

∣∣∣∣∣∣

i j k

2 + j0.5 0 0

0 3.5 + j0.25 0

∣∣∣∣∣∣
= 0i − 0j + (2 + j0.5)(3.5 + j0.25)k = (6.875 + j2.25)k

We see that the only non-zero component is aligned in the z direction. This is consis-

tent with our understanding of a transverse wave in that the direction of propagation

is at right angles to the two �eld components. This implies that the energy flow of

the electromagnetic wave is in the z direction.

9.9 DE MOIVRE’S THEOREM

A very important result in complex number theory is De Moivre’s theorem which states

that if n ∈ N,

(cos θ + j sin θ )n = cos nθ + j sin nθ (9.8)

Example 9.17 Verify De Moivre’s theorem when n = 1 and n = 2.

Solution When n = 1, the theorem states:

(cos θ + j sin θ )1 = cos 1θ + j sin 1θ



9.9 De Moivre’s theorem 345

which is clearly true, and the theorem holds. When n = 2, we �nd

(cos θ + j sin θ )2 = (cos θ + j sin θ )(cos θ + j sin θ )

= cos2 θ + j sin θ cos θ + j cos θ sin θ + j2 sin2 θ

= cos2 θ − sin2 θ + j(2 sin θ cos θ )

Recalling the trigonometric identities cos 2θ = cos2 θ − sin2 θ and sin 2θ = 2 sin θ cos θ ,

we can write the previous expression as

cos 2θ + j sin 2θ

Therefore,

(cos θ + j sin θ )2 = cos 2θ + j sin 2θ

and De Moivre’s theorem has been veri�ed when n = 2.

The theorem also holds when n is a rational number, that is n = p/q where p and q are

integers. Thus we have

(cos θ + j sin θ )p/q = cos
p

q
θ + j sin

p

q
θ

In this form it can be used to obtain roots of complex numbers. For example,

3
√
cos θ + j sin θ = (cos θ + j sin θ )1/3 = cos

1

3
θ + j sin

1

3
θ

In such a case the expression obtained is only one of the possible roots. Additional roots

can be found as illustrated in Example 9.18.

De Moivre’s theorem is particularly important for the solution of certain types of

equation.

Example 9.18 Find all complex numbers z which satisfy

z3 = 1 (9.9)

Solution The solution of this equation is equivalent to �nding the solutions of z = 11/3; that is,

�nding the cube roots of 1. Since we are allowing z to be complex, that is z ∈ C, we can

write

z = r(cos θ + j sin θ )

Then, using De Moivre’s theorem,

z3 = r3(cos θ + j sin θ )3

= r3(cos 3θ + j sin 3θ )

Wenext convert the expression on the r.h.s. of Equation (9.9) into polar form. Figure 9.17

shows the number 1 = 1 + 0j on an Argand diagram.

From the Argand diagram we see that its modulus is 1 and its argument is 0, or pos-

sibly ±2π, ±4π, . . ., that is 2nπ where n ∈ Z. Consequently, we can write

1 = 1(cos 2nπ + j sin 2nπ) n ∈ Z
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1 x

y

Figure 9.17

The complex number z = 1 + 0j.

1

1

1

x

yz2

z3

z1

4p—
3

2p—
3

Figure 9.18

Solutions of z3 = 1.

Using the polar form, Equation (9.9) becomes

r3(cos 3θ + j sin 3θ ) = 1(cos 2nπ + j sin 2nπ)

Comparing both sides of this equation we see that

r3 = 1 that is r = 1 since r ∈ R

and

3θ = 2nπ that is θ = 2nπ/3 n ∈ Z

Apparently θ can take in�nitely many values, but, as we shall see, the corresponding

complex numbers are simply repetitions. When n = 0, we �nd θ = 0, so that

z = z1 = 1(cos 0 + j sin 0) = 1

is the �rst solution. When n = 1 we �nd θ = 2π/3, so that

z = z2 = 1

(
cos

2π

3
+ j sin

2π

3

)
= −

1

2
+ j

√
3

2

is the second solution. When n = 2 we �nd θ = 4π/3, so that

z = z3 = 1

(
cos

4π

3
+ j sin

4π

3

)
= −

1

2
− j

√
3

2

is the third solution. If we continue searching for solutions using larger values of n we

�nd that we only repeat solutions already obtained. It is often useful to plot solutions

on an Argand diagram and this is easily done directly from the polar form, as shown in

Figure 9.18. We note that the solutions are equally spaced at angles of 2π/3.

Example 9.19 Find the complex numbers z which satisfy z2 = 4j.

Solution Since z ∈ C we write z = r(cos θ + j sin θ ). Therefore,

z2 = r2(cos θ + j sin θ )2

= r2(cos 2θ + j sin 2θ )
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5p—
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Figure 9.19

Solution of z2 = 4j.

by De Moivre’s theorem. Furthermore, 4j has modulus 4 and argument π/2 + 2nπ,

n ∈ Z, that is

4j = 4{cos(π/2 + 2nπ)+ j sin(π/2 + 2nπ)} n ∈ Z

Therefore,

r2(cos 2θ + j sin 2θ ) = 4{cos(π/2 + 2nπ)+ j sin(π/2 + 2nπ)}

Comparing both sides of this equation, we see that

r2 = 4 and so r = 2

and

2θ = π/2 + 2nπ and so θ = π/4 + nπ

When n = 0 we �nd θ = π/4, and when n = 1 we �nd θ = 5π/4. Using larger values of

n simply repeats solutions already obtained. These solutions are shown in Figure 9.19.

We note that in this example the solutions are equally spaced at intervals of 2π/2 = π.

In Cartesian form,

z1 =
2

√
2

+ j
2

√
2

=
√
2(1 + j) and z2 = −

2
√
2

− j
2

√
2

= −
√
2(1 + j)

In general, the n roots of zn = a+ jb are equally spaced at angles 2π/n.

Once the technique for solving equations like those in Examples 9.18 and 9.19 has

been mastered, engineers �nd it simpler to work with the abbreviated form r 6 θ . Exam-

ple 9.19 reworked in this fashion becomes

Let z = r 6 θ, then z2 = r2 6 2θ

Furthermore, 4j = 46 π/2 + 2nπ, and hence if z2 = 4j, we have

r2 6 2θ = 46

(
π

2
+ 2nπ

)

from which

r2 = 4 and 2θ =
π

2
+ 2nπ

as before. Rework Example 9.18 for yourself using this approach.
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Engineering application 9.2

Characteristic impedance

In a later application we shall explain the concept of the characteristic impedance

of an electrical transmission line in more detail. For now, we can assume that it is an

important electrical parameter represented by the equation

Z0 =

√
R+ jωL

G+ jωC

where R, L, G andC are transmission line parameters and ω is the angular frequency,

all of which are real numbers. If R and G are zero, as they would be for an ideal

transmission line, then Z0 is wholly real because:

Z0 =

√
jωL

jωC
=

√
L

C

Alternatively, if G or R is included then the equation involves taking the square root

of a complex number.

Given values of R, G, L, C and ω we can write

R+ jωL

G+ jωC

in Cartesian form (see Example 9.9) and hence in polar form (see Section 9.5).

Application of De Moivre’s Theorem will then allow us to calculate the required

square roots to �nd Z0 .

Another application of De Moivre’s theorem is the derivation of trigonometric

identities.

Example 9.20 Use De Moivre’s theorem to show that

cos 3θ = 4 cos3 θ − 3 cos θ

and

sin 3θ = 3 sin θ − 4 sin3 θ

Solution We know that

(cos θ + j sin θ )3 = cos 3θ + j sin 3θ

Expanding the l.h.s. we �nd

cos3 θ + 3j cos2 θ sin θ − 3 cos θ sin2 θ − j sin3 θ = cos 3θ + j sin 3θ

Equating the real parts gives

cos3 θ − 3 cos θ sin2 θ = cos 3θ (9.10)

and equating the imaginary parts gives

3 cos2 θ sin θ − sin3 θ = sin 3θ (9.11)
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Now, writing sin2 θ = 1 − cos2 θ in Equation (9.10) and cos2 θ = 1 − sin2 θ in Equa-

tion (9.11), we �nd

cos 3θ = cos3 θ − 3 cos θ (1 − cos2 θ )

= cos3 θ + 3 cos3 θ − 3 cos θ

= 4 cos3 θ − 3 cos θ

sin 3θ = 3(1 − sin2 θ ) sin θ − sin3 θ

= 3 sin θ − 4 sin3 θ

as required.

This technique allows trigonometric functions of multiples of angles to be expressed

in terms of powers. Sometimes we want to carry out the reverse process and express a

power in terms of multiple angles. Consider Example 9.21.

Example 9.21 If z = cos θ + j sin θ show that

z+
1

z
= 2 cos θ z−

1

z
= 2j sin θ

and �nd similar expressions for zn +
1

zn
and zn −

1

zn
.

Solution Consider the complex number

z = cos θ + j sin θ

Using De Moivre’s theorem,

1

z
= z−1 = (cos θ + j sin θ )−1 = cos(−θ )+ j sin(−θ )

But cos(−θ ) = cos θ and sin(−θ ) = − sin θ , so that if z = cos θ + j sin θ

1

z
= cos θ − j sin θ

Consequently,

z+
1

z
= 2 cos θ and z−

1

z
= 2j sin θ

Moreover,

zn = cos nθ + j sin nθ and z−n = cos nθ − j sin nθ

so that

zn +
1

zn
= 2 cos nθ and zn −

1

zn
= 2j sin nθ

zn +
1

zn
= 2 cos nθ and zn −

1

zn
= 2j sin nθ
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Example 9.22 Show that cos2 θ =
1

2
(cos 2θ + 1).

Solution The formulae obtained in Example 9.21 allow us to obtain expressions for powers of

cos θ and sin θ . Since 2 cos θ = z+
1

z
, squaring both sides we have

22 cos2 θ =

(
z+

1

z

)2

= z2 + 2 +
1

z2

=

(
z2 +

1

z2

)
+ 2

But z2 +
1

z2
= 2 cos 2θ , so

22 cos2 θ = 2 cos 2θ + 2

and therefore,

cos2 θ =
1

2
cos 2θ +

1

2

=
1

2
(cos 2θ + 1)

as required.

EXERCISES 9.9

1 Express (cos θ + j sin θ )9 and (cos θ + j sin θ )1/2 in

the form cos nθ + j sin nθ .

2 Use De Moivre’s theorem to simplify

(a) (cos 3θ + j sin 3θ )(cos 4θ + j sin 4θ )

(b)
cos 8θ + j sin 8θ

cos 2θ − j sin 2θ

3 Solve the equations

(a) z3 + 1 = 0

(b) z4 = 1 + j

4 Find 3
√
2 + 2j and display your solutions on an

Argand diagram.

5 Prove the following trigonometric identities:

(a) cos 4θ = 8 cos4 θ − 8 cos2 θ + 1

(b) 32 sin6 θ = 10 − 15 cos 2θ + 6 cos 4θ − cos 6θ

6 Solve the equation z4 + 25 = 0.

7 Find the �fth roots of j and depict your solutions on

an Argand diagram.

8 Show that cos3 θ =
1

4
(cos 3θ + 3 cos θ ).

9 Show that sin4 θ =
1

8
(cos 4θ − 4 cos 2θ + 3).

10 Express cos 5θ in terms of powers of cos θ .

11 Express sin 5θ in terms of powers of sin θ .

12 Given ejθ = cos θ + j sin θ , prove De Moivre’s

theorem in the form

(e jθ )n = cos nθ + j sin nθ

Solutions

1 cos 9θ + j sin 9θ , cos(θ/2)+ j sin(θ/2)

2 (a) cos 7θ + j sin 7θ

(b) cos 10θ + j sin 10θ

3 (a) 16 π/3 + 2nπ/3 n = 0, 1, 2

(b) 21/8 6 π/16 + nπ/2 n = 0, 1, 2, 3

4 81/6 6 π/12 + 2nπ/3 n = 0, 1, 2
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6
√
56 π/4 + nπ/2 n = 0, 1, 2, 3

7 16 π/10 + 2nπ/5 n = 0, 1, 2, 3, 4

10 16 cos5 θ − 20 cos3 θ + 5 cos θ

11 16 sin5 θ − 20 sin3 θ + 5 sin θ

9.10 LOCI AND REGIONS OF THE COMPLEX PLANE

Regions of the complex plane can often be conveniently described by means of complex

numbers. For example, the points that lie on a circle of radius 2 centred at the origin

(Figure 9.20) represent complex numbers all of which have a modulus of 2. The argu-

ments are any value of θ , −π < θ 6 π. We can describe all the points on this circle by

the simple expression

|z| = 2

that is, all complex numbers with modulus 2. We say that the locus (or path) of the point

z is a circle, radius 2, centred at the origin. The interior of the circle is described by

|z| < 2 while its exterior is described by |z| > 2.

Similarly all points lying in the �rst quadrant (shaded in Figure 9.21) have arguments

between 0 and π/2. This quadrant is therefore described by the expression:

0 < arg(z) < π/2

y

x

z
2

2

Figure 9.20

A circle, radius 2, centred at the

origin.

y

x

Figure 9.21

First quadrant of the x--y plane.

y

x

arg z = p–
4

p–
4

Figure 9.22

Locus of points satisfying

arg(z) = π/4.

Example 9.23 Sketch the locus of the point satisfying arg(z) = π/4.

Solution The set of points with arg(z) = π/4 comprises complex numbers whose argument is

π/4. All these complex numbers lie on the line shown in Figure 9.22.

Example 9.24 Sketch the locus of the point satisfying |z− 2| = 3.

Solution First mark the �xed point 2 on the Argand diagram labelling it ‘A’ (Figure 9.23). Con-

sider the complex number z represented by the point P. From the vector triangle law of

addition

~OA + ~AP = ~OP

~AP = ~OP− ~OA
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y
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A

P

Figure 9.23

Points z and 2 + 0j.

y

x1 2 3 4 5

z such that |z – 2| = 3

Figure 9.24

Locus of points satisfying |z− 2| = 3.

Recall from Section 9.6 that the graphical representation of the sum and difference of

vectors in the plane, and the sum and difference of complex numbers, are equivalent.

Since vector ~OP represents the complex number z, and vector ~OA represents the complex

number 2, ~AP = ~OP− ~OA will represent z−2. Therefore |z−2| represents the distance

between A and P. We are given that |z−2| = 3, which therefore means that P can be any

point such that its distance from A is 3. This means that P can be any point on a circle

of radius 3 centred at A(2, 0). The locus is shown in Figure 9.24. |z− 2| < 3 represents

the interior of the circle while |z − 2| > 3 represents the exterior. Alternatively we can

obtain the same result algebraically: given |z− 2| = 3 and also that z = x+ jy, we can

write

|z− 2| = |(x− 2)+ jy| = 3

that is
√
(x− 2)2 + y2 = 3

or

(x− 2)2 + y2 = 9

Generally, the equation (x−a)2 + (y−b)2 = r2 represents a circle of radius r centred at

(a, b), so we see that (x− 2)2 + y2 = 9 represents a circle of radius 3 centred at (2, 0),

as before.

Example 9.25 Use the algebraic approach to �nd the locus of the point z which satis�es

|z− 1| =
1

2
|z− j|

Solution If z = x+ jy, then we have

|(x− 1)+ jy| =
1

2
|x+ j(y− 1)|

Therefore,

(x− 1)2 + y2 =
1

4
{x2 + (y− 1)2}



9.10 Loci and regions of the complex plane 353

and so

4(x− 1)2 + 4y2 = x2 + (y− 1)2

that is

3x2 − 8x+ 3y2 + 2y+ 3 = 0

By completing the square this may be written in the form

3

(
x−

4

3

)2

+ 3

(
y+

1

3

)2

=
8

3

that is

(
x−

4

3

)2

+

(
y+

1

3

)2

=
8

9

which represents a circle of radius
√
8/3 centred at

(
4

3
,−

1

3

)
.

EXERCISES 9.10

1 Sketch the loci de�ned by

(a) arg(z) = 0

(b) arg(z) = π/2

(c) arg(z− 4) = π/4

(d) |2z| = |z− 1|

2 Sketch the regions de�ned by

(a) Re(z) > 0

(b) Im(z) < 3

(c) |z| > 3

(d) 0 6 arg(z) 6 π/2

(e) |z+ 2| 6 3

(f) |z+ j| > 3

(g) |z− 1| < |z− 2|

3 If s = σ + jω sketch the regions de�ned by

(a) σ 6 0

(b) σ > 0

(c) −2 6 ω 6 2

Solutions

1 See Figure S.19.

(a)

arg(z) = 0

(b) (d)

arg(z) = p/2

(c)

arg(z – 4) = p/4

2|z| = |z – 1|

4

–

2_
3

1_
3

1_
3

Figure S.19
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2 See Figure S.20.

Re(z)    0

Im(z) , 3

3

3

3

–2
–1

2

1 2

|z+2|     3

|z+j| . 3

|z| . 3

|z –1| , |z –2|

y

x

y

x

y

x

y

x

3

y

x

y

x

(a) (b)

0     arg(z)    p/2

y

x

(d)(c)

(f) (g)(e)

Figure S.20

3 See Figure S.21.

–2 < v < 2

2

–2

(a) (b) (c)

s < 0

v v v

s s s

s > 0

Figure S.21

REVIEW EXERCISES 9

1 Show that
1

cos θ − j sin θ
= cos θ + j sin θ .

2 Express in Cartesian form

(a)
5 + 4j

5 − 4j
(b)

1

2 + 3j

(c)
1

2 + 3j
+

1

2 − 3j
(d)

1

x− jy

3 Find the modulus and argument of −j, −3, 1 + j,

cos θ + j sin θ .

4 Mark on an Argand diagram vectors corresponding to

the following complex numbers: −3 + 2j, −3 − 2j,

cosπ + j sinπ.

5 Express in the form a+ bj:

(a) (cos θ + j sin θ )6 (b)
1

(cos θ + j sin θ )3

(c)
cos θ + j sin θ

cosφ + j sinφ

6 If z ∈ C, show that

(a) z+ z = 2Re(z) (b) z− z = 2j Im(z)

(c) zz = |z|2

7 Show that ejωt + e−jωt = 2 cosωt and �nd an

expression for ejωt − e−jωt .

8 Express 1 + e2jωt in the form a+ bj.
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9 Sketch the region in the complex plane described by

|z+ 2j| < 1.

10 Express e(1/2−6j) in the form a+ bj.

11 Solve the equation z4 + 1 = j
√
3.

12 Express s2 + 6s+ 13 in the form (s− a)(s− b)

where a, b ∈ C.

13 Express 2s2 + 8s+ 11 in the form 2(s− a)(s− b)

where a, b ∈ C.

Solutions

2 (a)
9

41
+

40

41
j (b)

2

13
−

3

13
j (c)

4

13

(d)
x

x2 + y2
+

y

x2 + y2
j

3 | − j| = 1, arg(−j) = −π/2; |−3| = 3, arg(−3) = π;

|1 + j| =
√
2, arg(1 + j) = π/4, | cos θ + j sin θ | = 1,

arg(cos θ + j sin θ ) = θ

5 (a) cos 6θ + j sin 6θ (b) cos 3θ − j sin 3θ

(c) cos(θ − φ)+ j sin(θ − φ)

7 ejωt − e−jωt = 2j sin ωt

8 1 + cos 2ωt + j sin 2ωt

10 1.5831 + 0.4607j

11 21/4 6 π/6 + nπ/2 n = 0, 1, 2, 3

12 [s− (−3 + 2j)][s− (−3 − 2j)]

13 2

[
s−

(
−2 +

√
6

2
j

)][
s−

(
−2 −

√
6

2
j

)]
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10.1 INTRODUCTION

Differentiation is a mathematical technique for analysing the way in which functions

change. In particular, it determines how rapidly a function is changing at any speci�c

point. As the function in questionmay represent themagnetic �eld of amotor, the voltage

across a capacitor, the temperature of a chemical mix, etc., it is often important to know

how quickly these quantities change. For example, if the voltage on an electrical supply

network is falling rapidly because of a short circuit, then it is necessary to detect this

in order to switch out that part of the network where the fault has occurred. However,

the system should not take action for normal voltage fluctuations and so it is important

to distinguish different types and rates of change. Another example would be detecting

a sudden rise in the pressure of a fermentation vessel and taking appropriate action to

stabilize the pressure.

Differentiation will be introduced in this chapter. We shall derive a formula which can

be used to �nd the rate of change of a function. To avoid always having to resort to the

formula engineers often use a table of derivatives; such a table is given in Section 10.7.

The chapter closes with a discussion of an important property of differentiation -- that

of linearity.



10.2 Graphical approach to di�erentiation 357

1 2 3 4 5 6 7 8 9 10 11 12 t

y (t)

Figure 10.1

The function y(t) has different rates of

change over different regions of t.

10.2 GRAPHICAL APPROACH TO DIFFERENTIATION

Differentiation is concerned with the rate at which a function is changing, rather than

the actual change itself. We can explore the rate of change of a function by examining

Figure 10.1. There are several regions to this curve corresponding to different intervals

of t. In the interval [0, 5] the function does not change at all. The rate of change of y

is zero. From t = 5 to t = 7 the function increases slightly. Thus the rate of change of

y as t increases is small. Since y is increasing, the rate of change of y is positive. From

t = 7 to t = 8 there is a rapid rise in the value of the function. The rate of change of y

is large and positive. From t = 8 to t = 9 the value of y decreases very rapidly. The rate

of change of y is large and negative. Finally from t = 9 to t = 12 the function decreases

slightly. Thus the rate of change of y is small and negative.

The aim of differential calculus is to specify the rate of change of a function pre-

cisely. It is not suf�cient to say ‘the rate of change of a function is large’. We require an

exact value or expression for the rate of change. Before being able to do this we need to

introduce two concepts concerning the rate of change of a function.

10.2.1 Average rate of change of a function across an interval

Consider Figure 10.2. When t = t1, the function has a value y(t1). This is denoted by A

on the curve. When t = t2, the function has a value of y(t2). This point is denoted by B

on the curve. The function changes by an amount y(t2)− y(t1) over the interval [t1, t2].

Thus the average rate of change of the function over the interval is

change in y

change in t
=
y(t2)− y(t1)

t2 − t1

The straight line joining A and B is known as a chord. Graphically, y(t2)− y(t1) is the

vertical distance and t2 − t1 the horizontal distance between A and B, so that the gradient

of the chord AB is given by

BC

AC
=
y(t2)− y(t1)

t2 − t1

The gradient or slope of a line is a measure of its steepness and lines may have positive,

negative or zero gradients as shown in Figure 10.3.

Thus the gradient of the chord AB corresponds to the average rate of change of the

function between A and B. To summarize:

The average rate of change of a function between two points A and B is the gradient

of the chord AB.
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t

y (t) 

y (t2) 

y (t1)

y (t2) – y (t1)

(t2 – t1)

t1

A

B

C
u

t2

Figure 10.2

Average rate of change across an interval.

t

y 
Positive 

gradient

Zero 

gradient

Negative 

gradient

Figure 10.3

Lines can have different gradients.

y (t)

t

Chord AB1

B1

B2

A

Chord AB2

Tangent at A

Figure 10.4

Point B is moved nearer to A to improve

accuracy.

10.2.2 Rate of change of a function at a point

Consider again Figure 10.2. Suppose we require the rate of change of the function at

point A. We can use the gradient of the chord AB as an approximation to this value. If B

is close to A then the approximation is better than if B is not so close to A. Therefore by

moving B nearer to A it is possible to improve the accuracy of this approximation (see

Figure 10.4).

Suppose the chord AB is extended as a straight line on both sides of AB, and B is

moved closer and closer to A until both points eventually coincide. The straight line

becomes a tangent to the curve at A. This is the straight line that just touches the curve

at A. However, the rate of change of this tangent, that is its gradient, still corresponds to

the rate of change of the function, but now it is the rate of change of the function at the

point A. To summarize:

The rate of change of a function at a point A on the curve is the gradient of the

tangent to the curve at point A.

We have still to address the question of how the gradients of chords and tangents are

found. This requires a knowledge of limits which is the topic of the next section.

10.3 LIMITS AND CONTINUITY

The concept of a limit is crucial to the development of differentiation. We write

t → c to denote that t approaches, or tends to, the value of c. Note carefully that this is

distinct from stating t = c. As t tends to c we consider the value to which the function

approaches and call this value the limit of the function as t → c.
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5

f (t)

2–3                                                     t

Figure 10.5

The curve f (t) = t2 + 2t − 3.

0

1

2

3

4

y

3 x

y = x +1

y = 1 – x

–1

Figure 10.6

As x → 0, y → 1, even though

y(0) = 3.

Example 10.1 If t → 2, what value does

f (t) = t2 + 2t − 3

approach?

Solution Figure 10.5 shows a graph of f (t). Clearly, whether t = 2 is approached from the l.h.s.

or the r.h.s. the function tends to 5. That is, if t → 2, then f (t) → 5. We note that this is

the value of f (2). Informally we are saying that as t gets nearer and nearer to the value 2,

so f (t) gets nearer and nearer to 5. This is usually written as

lim
t→2
(t2 + 2t − 3) = 5

where ‘lim’ is an abbreviation of limit. In this example, the limit of f (t) as t → 2 is

simply f (2), but this is not true for all functions.

Example 10.2 Figure 10.6 illustrates y(x) de�ned by

y(x) =




1 − x x < 0

3 x = 0

x+ 1 x > 0

Evaluate:

(a) limx→3 y (b) limx→−1 y (c) limx→0 y

Solution We note that this function is piecewise continuous. It has a discontinuity at x = 0.

(a) We seek the limit of y as x approaches 3. As x approaches 3, we will be on that part

of the function de�ned by x > 0, that is y(x) = x+ 1. As x → 3, then y → 3 + 1,

that is y → 4. So

lim
x→3

y = 4

(b) When x approaches −1, we will be on that part of the function de�ned by x < 0,

that is y(x) = 1 − x. So as x → −1, then y → 1 − (−1), that is y → 2. Hence

lim
x→−1

y = 2

(c) As x approaches 0 what value does y approach? Note that we are not evaluating y(0)

which actually has a value of 3. We simply ask the question ‘What value is y near
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when x is near, but distinct from, 0?’ From Figure 10.6 we see y is near to 1, that is

lim
x→0

y = 1

Example 10.3 The function y(x) is de�ned by

y(x) =




0 x 6 0

x 0 < x 6 2

x− 2 x > 2

(a) Sketch the function.

(b) State the limit of y as x approaches (i) 3, (ii) 2, (iii) 0.

Solution (a) The function is shown in Figure 10.7. Note that the �gure has three parts; each part

corresponds to a part in the algebraic de�nition.

(b) (i) As x → 3, the relevant part of the function is y(x) = x− 2. Hence

lim
x→3

y = 1

(ii) Suppose x < 2 and gradually increases, approaching the value 2. Then, from

the graph, we see that y approaches 2. Now, suppose x > 2 and gradually

decreases, tending to 2. In this case y approaches 0. Hence, we cannot �nd the

limit of y as x tends to 2. The limx→2 y does not exist.

(iii) As x tends to 0, y tends to 0. This is true whether x approaches 0 from below,

that is from the left, or from above, that is from the right. So,

lim
x→0

y = 0

y

y = 0

y = x

y = x – 2

x2

Figure 10.7

The function y has different limits as x → 2

from the left and the right.

It is appropriate at this stage to introduce the concept of left-hand and right-hand limits.

Referring to Example 10.3, we see that as x approaches 2 from the left, that is from below,

then y approaches 2. We say that the left-hand limit of y as x tends to 2 is 2. This is

written as

lim
x→2−

y = 2

Similarly, the right-hand limit of y is obtained by letting x tend to 2 from above. In this

case, y approaches 0. This is written as

lim
x→2+

y = 0

Consider a point at which the left-hand and right-hand limits are equal. At such a point

we say ‘the limit exists at that point’.
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The limit of a function, at a point x = a, exists only if the left-hand and right-hand

limits are equal there.

10.3.1 Continuous and discontinuous functions

A function f is continuous at the point where x = a, if

lim
x→a

f = f (a)

that is, the limit value matches the function value at a point of continuity. A function

which is not continuous is discontinuous. In Example 10.3, the function is continuous

at x = 0 because

lim
x→0

y = 0 = f (0)

but discontinuous at x = 2 because limx→2 y does not exist. In Example 10.2, the function

is discontinuous at x = 0 because limx→0 y = 1 but y(0) = 3. The concept of continuity

corresponds to our natural understanding of a break in the graph of the function, as

discussed in Chapter 2.

A function f is continuous at a point x = a if and only if

limx→a f = f (a)

that is, the limit of f exists at x = a and is equal to f (a).

EXERCISES 10.3

1 The function, f (t), is de�ned by

f (t) =




1 0 6 t 6 2

2 2< t 6 3

3 t > 3

Sketch a graph of f (t) and state the following limits if

they exist:

(a) limt→1.5 f

(b) limt→2+ f

(c) limt→3 f

(d) limt→0+ f

(e) limt→3− f

2 The function g(t) is de�ned by

g(t) =





0 t < 0

t2 0 6 t 6 3

2t + 3 3< t 6 4

12 t > 4

(a) Sketch g.

(b) State any points of discontinuity.

(c) Find, if they exist,

(i) limt→3 g

(ii) limt→4 g

(iii) limt→4− g

Solutions

1 (a) 1 (b) 2 (c) not de�ned

(d) 1 (e) 2

2 (b) t = 4

(c) (i) 9 (ii) not de�ned (iii) 11
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10.4 RATE OF CHANGE AT A SPECIFIC POINT

We saw in Section 10.2 that the rate of change of a function at a point is the gradient of

the tangent to the curve at that point. Also, we can think of a tangent at A as the limit of

an extended chord AB as B → A. We now put these two ideas together to �nd the rate

of change of a function at a point.

Example 10.4 Given y = f (x) = 3x2 + 2, obtain estimates of the rate of change of y at x = 3 by

considering the intervals

(a) [3, 4] (b) [3, 3.1] (c) [3, 3.01]

Solution (a) Consider Figure 10.8.

y(3) = 3(3)2 + 2 = 29

y(4) = 3(4)2 + 2 = 50

Let A be the point (3, 29) on the curve. Let B be the point (4, 50). Then

average rate of change over the interval [3, 4] =
change in y

change in x

=
y(4)− y(3)

4 − 3

=
50 − 29

4 − 3
= 21

This is the gradient of the chord AB and is an estimate of the gradient of the tangent

at A. That is, the rate of change at A is approximately 21.

(b) y(3.1) = 30.83 and so,

average rate of change over the interval [3, 3.1] =
30.83 − 29

3.1 − 3
= 18.3

This is a more accurate estimate of the rate of change at A.

(c) y(3.01) = 29.1803 and so,

average rate of change over the interval [3, 3.01] =
29.1803 − 29

3.01 − 3

= 18.03

50 

29

y

3 4

A

B

x
Figure 10.8

The function: y = 3x2 + 2.
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This is an even better estimate of the rate of change at A. Hence at A, if x increases

by 1 unit then y increases by approximately 18 units. This corresponds to a steep

upward slope at A.

Example 10.4 illustrates the approach of estimating the rate of change at a point by using

the ‘shrinking interval’ method. By taking smaller and smaller intervals, better and better

estimates of the rate of change of the function at x = 3 can be obtained. However, we

eventually want the interval to ‘shrink’ to the point x = 3. We introduce a small change

or increment of x denoted by δx and consider the interval [3, 3+ δx]. By letting δx tend

to zero, the interval [3, 3 + δx] effectively shrinks to the point x = 3.

Example 10.5 Find the rate of change of y = 3x2 + 2 at x = 3 by considering the interval [3, 3 + δx]

and letting δx tend to 0.

Solution When x = 3, y(3) = 29. When x = 3 + δx then

y(3 + δx) = 3(3 + δx)2 + 2

= 3(9 + 6δx+ (δx)2)+ 2

= 3(δx)2 + 18δx+ 29

So,

average rate of change of y across [3, 3 + δx] =
change in y

change in x

=
(3(δx)2 + 18δx+ 29)− 29

δx

=
3(δx)2 + 18δx

δx

=
δx(3δx+ 18)

δx

= 3δx+ 18

We now let δx tend to 0, so that the interval shrinks to a point:

rate of change of y when x is 3 = lim
δx→0

(3δx+ 18) = 18

We have found the rate of change of y at a particular value of x, rather than across an

interval. We usually write

rate of change of y when x is 3 = lim
δx→0

(
y(3 + δx)− y(3)

δx

)

= lim
δx→0

(
3(δx)2 + 18δx

δx

)
= lim

δx→0
(3δx+ 18)

= 18
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EXERCISES 10.4

1 Find the rate of change of y = 3x2 + 2 at

(a) x = 4 by considering the interval [4, 4 + δx]

(b) x = −2 by considering the interval [−2,−2+ δx]

(c) x = 1 by considering the interval [1 − δx, 1 + δx]

2 Find the rate of change of y = 1/x at x = 2.

3 To determine the rate of change of y = x2 − x

at x = 1 the interval [1, 1 + δx] could be used.

Equally the intervals [1 − δx, 1] or

[1 − δx, 1 + δx] could be used. Show that the

same answer results regardless of which interval is

used.

4 Find the rate of change of y(x) = 2 − x2 at

(a) x = 3, by considering the interval [3, 3 + δx]

(b) x = −5, by considering the interval

[−5,−5 + δx]

(c) x = 1, by considering the interval

[1 − δx, 1 + δx].

5 Find the rate of change of y(x) =
x

x+ 3
at x = 3 by

considering the interval [3, 3 + δx].

Solutions

1 (a) 24 (b) −12 (c) 6

2 −0.25

3 1

4 (a) −6 (b) 10 (c) −2

5 1
12

10.5 RATE OF CHANGE AT A GENERAL POINT

Example 10.5 shows that the rate of change of a function at a particular point can be

found. We will now develop a general terminology for the method. Suppose we have a

function of x, y(x). We wish to �nd the rate of change of y at a general value of x. We

begin by �nding the average rate of change of y(x) across an interval and then allow the

interval to shrink to a single point. Consider the interval [x, x+ δx]. At the beginning of

the interval y has a value of y(x). At the end of the interval y has a value of y(x+ δx) so

that the change in y is y(x+ δx)− y(x), which we denote by δy (see Figure 10.9). So,

average rate of change of y =
change in y

change in x

=
y(x+ δx)− y(x)

δx
=
δy

δx

Now let δx tend to 0, so that the interval shrinks to a point. Then

rate of change of y = lim
δx→0

(
y(x+ δx)− y(x)

δx

)
= lim

δx→0

(
δy

δx

)

To see how we proceed to evaluate this limit consider Example 10.6.
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x x

y

x + dx

y(x + dx)

y(x)

dx

dy = y(x + dx) – y(x)

Figure 10.9

The rate of change of y at a point is found by letting δx → 0.

Example 10.6 Find the rate of change of y(x) = 2x2 +3x. Calculate the rate of change of ywhen x = 2

and when x = −3.

Solution Given y(x) = 2x2 + 3x

then

y(x+ δx) = 2(x+ δx)2 + 3(x+ δx)

= 2x2 + 4xδx+ 2(δx)2 + 3x+ 3δx

Hence

y(x+ δx)− y(x) = 2(δx)2 + 4xδx+ 3δx

So,

rate of change of y = lim
δx→0

(
y(x+ δx)− y(x)

δx

)

= lim
δx→0

(
2(δx)2 + 4xδx+ 3δx

δx

)

= lim
δx→0

(2δx+ 4x+ 3) = 4x+ 3

When x = 2, the rate of change of y is 4(2)+ 3 = 11. When x = −3, the rate of change

of y is 4(−3)+ 3 = −9. A positive rate of change shows that the function is increasing

at that particular point. A negative rate of change shows that the function is decreasing

at that particular point.

The rate of change of y is called the derivative of y. We denote lim
δx→0

(
δy

δx

)
by

dy

dx
. This

is pronounced ‘dee y by dee x’.

rate of change of y(x) =
dy

dx
= lim

δx→0

(
y(x+ δx)− y(x)

δx

)

Note that the notation
dy

dx
means lim

δx→0

δy

δx
.
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Using the previous example, if

y(x) = 2x2 + 3x

then

dy

dx
= 4x+ 3

dy

dx
is often abbreviated to y′

y′ is pronounced ‘y dash’ or ‘y prime’. To stress that y is the dependent variable and x

the independent variable we often talk of ‘the rate of change of y with respect to x’, or,

more compactly, ‘the rate of change of y w.r.t. x’. The process of �nding y′ from y is

called differentiation. This shrinking interval method of �nding the derivative is called

differentiation from �rst principles. We know that the derivative
dy

dx
is the gradient

of the tangent to the function at a point. It is also the rate of change of the function. In

many examples, the independent variable is t and we need to �nd the rate of change of y

with respect to t; that is, �nd
dy

dt
. This is also often written as y′ although ẏ, pronounced

‘y dot’, is also common. The reader should be aware of both notations. Finally, y′ is used

to denote the derivative of y whatever the independent variable may be. So
dy

dz
,
dy

dr
and

dy

dw
could all be represented by y′.

Example 10.7 Find the gradient of the tangent to y = x2 at A(1, 1), B(−1, 1) and C(2, 4).

Solution We have y = x2 and so

y(x+ δx) = (x+ δx)2

= x2 + 2xδx+ (δx)2

and hence

y(x+ δx)− y(x) = x2 + 2xδx+ (δx)2 − x2

= 2xδx+ (δx)2

Then

dy

dx
= gradient of a tangent to curve

= lim
δx→0

(
y(x+ δx)− y(x)

δx

)

= lim
δx→0

(
(x+ δx)2 − x2

δx

)
= lim

δx→0

(
2xδx+ (δx)2

δx

)

= lim
δx→0

(2x+ δx) = 2x
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At (1, 1),
dy

dx
= 2 = gradient of tangent at A. At (−1, 1),

dy

dx
= −2 = gradient of

tangent at B. At (2, 4),
dy

dx
= 4 = gradient of tangent atC.

Suppose we wish to evaluate the derivative,
dy

dx
, at a speci�c value of x, say x0. This is

denoted by

dy

dx
(x = x0) or more compactly by

dy

dx
(x0) or y′(x0)

An alternative notation is

dy

dx

∣∣∣∣
x=x

0

or
dy

dx

∣∣∣∣
x
0

So, for Example 10.7 we could have written

dy

dx
(1) = 2

dy

dx
(x = −1) = −2

dy

dx

∣∣∣∣
x=2

= 4 y′(2) = 4

Example 10.8 Refer to Figure 10.10. By considering the gradient of the tangent at the points A, B, C,

D and E state whether
dy

dx
is positive, negative or zero at these points.

Solution At A and C the tangent is parallel to the x axis and so
dy

dx
is zero. At B and E the tangent

has a positive gradient and so
dy

dx
is positive. At D the tangent has a negative gradient

and thus
dy

dx
is negative.

B
A

D

C

E

x

y

Figure 10.10

Graph for Example 10.8.

As we saw in Chapter 3, functions are used to represent physically important quantities

such as voltage and current. When the current through certain devices changes, this can

give rise to voltages, the magnitudes of which are proportional to the rate of change of

the current. Consequently differentiation is needed to model these effects as illustrated

in Engineering applications 10.1 and 10.2
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Engineering application 10.1

Voltage across an inductor

The voltage, v, across an inductor with inductance, L, is related to the current, i,

through the inductor by

v = L
di

dt

Figure 10.11 shows the relationship between magnetic 	ux lines passing through the

coils of an inductor and the current 	owing through the inductor.

i

Figure 10.11

Schematic diagram of an

inductor showing the

relationship between magnetic

	ux lines and current.

This relationship is a quanti�cation of Faraday’s law which states that the voltage

induced in a coil is proportional to the rate of change of magnetic flux through it. If

the current in a coil is changing then this corresponds to a change in the magnetic

flux through the coil. Note that if
di

dt
is large then v is large. This is why care has

to be taken when abruptly switching off the current to an inductor because it causes

high voltages to be generated.

Engineering application 10.2

Current through a capacitor

The current, i, through a capacitor with capacitance, C, is related to the voltage, v,

across the capacitor by

i = C
dv

dt

i

Displacement current iD

Conduction current i

Figure 10.12

Schematic diagram of a capacitor

showing the conduction current and

the displacement current.

It may appear confusing to talk of a current flow through a capacitor as no actual

charge flows through the capacitor apart from that caused by any leakage current.

Instead there is a build-up of charge on the plates of the capacitor. This in turn gives

rise to a voltage across the capacitor. If the current flow is large then the rate of change

of this voltage will be large. The current flow through the capacitor wires is termed a
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conduction currentwhile that between the capacitor plates is called a displacement

current (see Figure 10.12).

The displacement current can be thought of as a virtual current that 	ows between

the plates due to the build-up of positive charge on one plate and negative charge

on the other plate. It doesn’t correspond to a real current 	owing between the plates

as they are separated by an insulating material.

We can relate the small changes δx and δy to the derivative
dy

dx
.

If δx is very small yet still �nite we can state that

dy

dx
≈
δy

δx
(10.1)

This result allows an important approximation to be made. From Equation (10.1) we see

that if a small change, δx, is made to the independent variable, the corresponding change

in the dependent variable is given by the following formula:

δy ≈
dy

dx
δx

Example 10.9 If y = x2 estimate the change in y caused by changing x from 3 to 3.1.

Solution If y = x2 then
dy

dx
= 2x. The approximate change in the dependent variable is given by

δy ≈
dy

dx
δx = 2xδx

Taking x = 3 and δx = 0.1 we have

δy ≈ (2)(3)(0.1) = 0.6

We conclude that at the point where x = 3 a change in x to 3.1 causes an approximate

change of 0.6 in the value of y.

EXERCISES 10.5

1 Calculate the gradient of the functions at the speci�ed

points.

(a) y = 2x2 at (1, 2)

(b) y = 2x− x2 at (0, 0)

(c) y = 1 + x+ x2 at (2, 7)

(d) y = 2x2 + 1 at (2, 9)

2 A function, y, is such that
dy

dx
is constant.

What can you say about the function, y?

3 For which graphs in Figure 10.13 is the derivative

always (a) positive or (b) negative?

4 Find the derivative of y(x) where y is

(a) x2 (b) −x2 + 2x

5 Differentiate y = 2x2 + 9; that is, �nd
dy

dx
.

What is the rate of change of y when x = 3,−2, 1, 0?

6 Find the rate of change of y = 4t − t2. What is the

value of
dy

dt
when t = 2?

7 If y = x3 − 3x2 + x then

dy

dx
= 3x2 − 6x+ 1

Estimate the change in y as x changes from

(a) 2 to 2.05

(b) 0 to 0.025

(c) −1 to −1.05
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y

x

y

x

y

x

y

x

(i) (ii) (iii) (iv)

Figure 10.13

Solutions

1 (a) 4 (b) 2 (c) 5 (d) 8

2 y is linear in x, that is y = ax+ b

3 (i) always negative (ii) always positive

(iii) always positive (iv) always negative

4 (a) 2x (b) −2x+ 2

5 4x, 12,−8, 4, 0

6 4 − 2t, 0

7 (a) 0.05 (b) 0.025 (c) −0.5

10.6 EXISTENCE OF DERIVATIVES

So far we have seen that the derivative,
dy

dx
, of a function, y(x), may be viewed either

algebraically or geometrically.

dy

dx
= lim

δx→0

(
y(x+ δx)− y(x)

δx

)

dy

dx
= rate of change of y

= gradient of the graph of y

We now discuss briefly the existence of
dy

dx
. For some functions the derivative does not

exist at certain points and we need to be able to recognize such points. Consider the

graphs shown in Figure 10.14. Figure 10.14(a) shows a function with a discontinuity at

a x

y

a x

y

(a) (b)

Figure 10.14

(a) The graph has a discontinuity at x = a. (b) The graph has a cusp at

x = a.
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x = a. The function shown in Figure 10.14(b) is continuous but has a cusp or corner

at x = a. In both cases it is impossible to draw a tangent at x = a, and so
dy

dx
does not

exist at x = a. It is impossible to draw a tangent to a curve at a point where the curve is

not smooth. Note from Figure 10.14(b) that continuity is not suf�cient to guarantee the

existence of a derivative.

Example 10.10 Sketch the following functions. State the values of t for which the derivative does not

exist.

(a) y = |t| (b) y = tan t (c) y = 1/t

Solution (a) The graph of y = |t| is shown in Figure 10.15(a). A corner exists at t = 0 and so the

derivative does not exist here.

(b) A graph of y = tan t is shown in Figure 10.15(b). There is a discontinuity in tan t

when t = . . . −3π/2,−π/2,π/2, 3π/2, . . . . No derivative exists at these

points.

(c) Figure 10.15(c) shows a graph of y = 1/t. The function has one discontinuity at

t = 0, and so the derivative does not exist here.

y
y = |t|

t

y = 1_
t

y y = tan t

t

(a) (b)

y

t

(c)

p p
–
2

– –
2

Figure 10.15

(a) There is a corner at t = 0; (b) tan t has discontinuities; (c) y = 1/t has a discontinuity at t = 0.

EXERCISES 10.6

1 Sketch the functions and determine any points where

a derivative does not exist.

(a) y =
1

t − 1
(b) y = | sin t|

(c) y = et

(d) y = |1/t|

(e) The unit step function u(t) =

{
1 t > 0

0 t < 0

(f) The ramp function f (t) =

{
ct t > 0

0 t < 0
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Solutions

1 See Figure S.22.

y

t1

(a) No derivative exists for t = 1

|sin t|

t0 π 2π 3π–2π–π

(b) No derivative exists for t = nπ

et

t0

(c) Derivative exists for all values of t

0 t

(d) No derivative exists for t = 0

u(t)

t

1

(e) No derivative exists for t = 0

f(t)

t

(f) No derivative exists for t = 0, although 

      the function is continuous here

–
t
1

Figure S.22

10.7 COMMON DERIVATIVES

It is time consuming to �nd the derivative of y(x) using the ‘shrinking interval’ method

(often referred to as differentiation from �rst principles). Consequently the deriva-

tives of commonly used functions are listed for reference in Table 10.1. It will be help-

ful to memorize the most common derivatives. Note that a, b and n are constants. In

the trigonometric functions, the quantity ax+ b, being an angle, must be measured in

radians.

A shorter table of the more common derivatives is given on the inside back cover of

this book for easy reference.

Example 10.11 Use Table 10.1 to �nd y′ when

(a) y = e−7x

(b) y = x5

(c) y = tan(3x− 2)

(d) y = sin(ωx+ φ)

(e) y =
1

√
x

(f) y =
1

x5

(g) y = cosh−1 5x
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Table 10.1

Derivatives of commonly used functions.

Function, y(x) Derivative, y′

constant 0

xn nxn−1

ex ex

e−x −e−x

eax aeax

ln x
1

x

sin x cos x

cos x −sinx

sin(ax+ b) a cos(ax+ b)

cos(ax+ b) −a sin(ax+ b)

tan(ax+ b) a sec2(ax+ b)

cosec(ax+ b) −a cosec(ax+ b) cot(ax+ b)

sec(ax+ b) a sec(ax+ b) tan(ax+ b)

cot(ax+ b) −a cosec2(ax+ b)

sin−1(ax+ b)
a√

1 − (ax+ b)2

Function, y(x) Derivative, y′

cos−1(ax+ b)
−a√

1 − (ax+ b)2

tan−1(ax+ b)
a

1 + (ax+ b)2

sinh(ax+ b) a cosh(ax+ b)

cosh(ax+ b) a sinh(ax+ b)

tanh(ax+ b) a sech2(ax+ b)

cosech(ax+ b) −a cosech(ax+ b)×

coth(ax+ b)

sech(ax+ b) −a sech(ax+ b)×

tanh(ax+ b)

coth(ax+ b) −a cosech2(ax+ b)

sinh−1(ax+ b)
a√

(ax+ b)2 + 1

cosh−1(ax+ b)
a√

(ax+ b)2 − 1

tanh−1(ax+ b)
a

1 − (ax+ b)2

Solution (a) From Table 10.1, we �nd that if

y = eax then y′ = a eax

In this case, a = −7 and so if

y = e−7x then y′ = −7 e−7x

(b) From Table 10.1, we �nd that if

y = xn then y′ = nxn−1

In this case, n = 5 and so if

y = x5 then y′ = 5x4

(c) If y = tan(ax+b) then y′ = a sec2(ax+b). In this case, a = 3 and b = −2. Hence if

y = tan(3x− 2) then y′ = 3 sec2(3x− 2)

(d) If y = sin(ax+ b) then y′ = a cos(ax+ b). Here a = ω and b = φ, and so if

y = sin(ωx+ φ) then y′ = ω cos(ωx+ φ)

(e) Note that
1

√
x

= x−1/2. From Table 10.1 we �nd that if y = xn then y′ = nxn−1. In

this case, n = −1/2 and so if

y =
1

√
x

then y′ = −
1

2
x−3/2
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(f) Note that
1

x5
= x−5. Using Table 10.1, we �nd that if y = x−5 then y′ = −5x−6.

(g) From Table 10.1, if y = cosh−1(ax+ b) then

y′ =
a√

(ax+ b)2 − 1

In this case, a = 5 and b = 0. Hence, if

y = cosh−1 5x then y′ =
5

√
25x2 − 1

Example 10.12 Differentiate y(t) = et .

Solution We note that the independent variable is t. However, Table 10.1 can still be used. From

Table 10.1, we �nd

dy

dt
= et = y

We note that the derivative of et is again et . This is the only function which reproduces

itself upon differentiation.

EXERCISES 10.7

1 Use Table 10.1 to �nd y′ given:

(a) y = t2 (b) y = t9

(c) y = t−3 (d) y = t

(e) y =
1

t
(f) y =

1

t2

(g) y = e3t (h) y = e−3t

(i) y =
1

e5t
(j) y = t1/2

(k) y = sin(2t + 3) (l) y = cos(4 − t)

(m) y = tan

(
t

2
+ 1

)
(n) y = cosec(3t + 7)

(o) y = cot(1 − t) (p) y = sec(2t − π)

(q) y = sin−1(t + π) (r) y = π

(s) y = tan−1(−2t − 1) (t) y = cos−1(4t − 3)

(u) y = tanh(6t) (v) y = cosh(2t + 5)

(w) y = sinh

(
t + 3

2

)
(x) y = sech(−t)

(y) y = coth

(
2t

3
−

1

2

)
(z) y = cosh−1(t + 3)

2 Find
dy

dx
when

(a) y =
1

√
x

(b) y = e2x/3

(c) y = e−x/2 (d) y = ln x

(e) y = cosec

(
2x− 1

3

)

(f) y = tan−1(πx+ 3)

(g) y = tanh(2x+ 1)

(h) y = sinh−1(−3x)

(i) y = cot(ωx+ π) ω constant

(j) y =
1

sin(5x+ 3)
(k) y = cos 3x

(l) y =
1

cos 3x
(m) y = tan(2x+ π)

(n) y = cosech

(
x− 1

2

)

(o) y = tanh−1

(
2x+ 3

7

)
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Solutions

1 (a) 2t (b) 9t8

(c) −3t−4 (d) 1

(e) −t−2 (f) −2t−3

(g) 3 e3t (h) −3 e−3t

(i) −5 e−5t (j) 0.5t−1/2

(k) 2 cos(2t + 3) (l) sin(4 − t)

(m) 0.5 sec2(t/2 + 1)

(n) −3 cosec(3t + 7) cot(3t + 7)

(o) cosec2(1 − t)

(p) 2 sec(2t − π) tan(2t − π)

(q)
1√

1 − (t + π)2
(r) 0

(s) −
2

1 + (−2t − 1)2
(t) −

4√
1 − (4t − 3)2

(u) 6 sech2 6t (v) 2 sinh(2t + 5)

(w) 0.5 cosh

(
t + 3

2

)
(x) sech(−t) tanh(−t)

(y) −
2

3
cosech2

(
2t

3
−

1

2

)
(z)

1√
(t + 3)2 − 1

2 (a) −0.5x−3/2 (b)
2

3
e2x/3

(c) −0.5 e−x/2 (d) 1/x

(e) −
2

3
cosec

(
2x− 1

3

)
cot

(
2x− 1

3

)

(f)
π

1 + (πx+ 3)2
(g) 2 sech2(2x+ 1)

(h) −
3√

9x2 + 1
(i) −ω cosec2(ωx+ π)

(j) −5 cosec(5x+ 3) cot(5x+ 3)

(k) −3 sin 3x

(l) 3 sec 3x tan 3x (m) 2 sec2(2x+ π)

(n) −0.5 cosech

(
x− 1

2

)
coth

(
x− 1

2

)

(o)
2

7

[
1 −

(
2x+ 3

7

)2]

10.8 DIFFERENTIATION AS A LINEAR OPERATOR

Inmathematical language differentiation is a linear operator. Thismeans that if wewish

to differentiate the sum of two functions we can differentiate each function separately

and then simply add the two derivatives, that is

derivative of ( f + g) = derivative of f + derivative of g

This is expressed mathematically as

d

dx
( f + g) =

d f

dx
+

dg

dx

We can regard
d

dx
as the operation of differentiation being applied to the expression

which follows it. The properties of a linear operator also make the handling of constant

factors easy. To differentiate k f , where k is a constant, we take k times the derivative of

f , that is

derivative of (k f ) = k × derivative of f

Mathematically, we would state:

d

dx
(k f ) = k

d f

dx
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Table 10.1 together with these two linearity properties allow us to differentiate some

quite complicated functions.

Example 10.13 Differentiate

(a) 3x2 (b) 9x (c) 7 (d) 3x2 + 9x+ 7

Solution (a) Let y = 3x2, then

dy

dx
=

d

dx
(3x2)

= 3
d

dx
(x2) using linearity

= 3(2x) from the table

= 6x

(b) Let y = 9x, then

dy

dx
=

d

dx
(9x)

= 9
d

dx
(x) using linearity

= 9

(c) Let y = 7, then y′ = 0.

(d) Let y = 3x2 + 9x+ 7

dy

dx
=

d

dx
(3x2 + 9x+ 7)

dy

dx
= 3

d

dx
(x2)+ 9

d

dx
(x)+

d

dx
(7) using linearity

= 6x+ 9

Engineering application 10.3

Fluid flow into a tank

If fluid is being poured into a tank at a rate of q m3 s−1, then this will result in an

increase in volume, V , of fluid in the tank. The arrangement is illustrated in Fig-

ure 10.16. The rate of increase in volume,
dV

dt
m3 s−1, is given by

dV

dt
= q

This relationship follows from the principle of conservation of mass. If q is large,

then
dV

dt
is large, which corresponds to the fluid volume in the tank increasing at a
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fast rate. Consequently, the height of the fluid, h, also increases at a fast rate. If the

cross-sectional area of the tank, A, is constant, then V = Ah. Therefore,

dV

dt
=

d

dt
(Ah) = A

dh

dt

because differentiation is a linear operator. So,

A
dh

dt
= q

h V

q

Figure 10.16

A closed tank containing a volume of 	uid V .

Example 10.14 Use Table 10.1 and the linearity properties of differentiation to �nd y′ where

(a) y = 3 e2x

(b) y = 1/x

(c) y = 3 sin 4x

(d) y = sin 2x− cos 5x

(e) y = 3 ln x

(f) y = ln 2x

(g) y = 3x2 + 7x− 5

Solution (a) If y = 3 e2x, then

dy

dx
=

d

dx
(3e2x) = 3

d

dx
(e2x) using linearity

= 3(2e2x) using Table 10.1

= 6 e2x

(b) If y = x−1, then

y′ = −1x−2 from Table 10.1

= −
1

x2

(c) If y = 3 sin 4x, then

dy

dx
=

d

dx
(3 sin 4x) = 3

d

dx
(sin 4x) using linearity

= 3(4 cos 4x) using Table 10.1

= 12 cos 4x
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(d) The linearity properties allow us to differentiate each term individually. If

y = sin 2x− cos 5x then
dy

dx
=

d

dx
(sin 2x)−

d

dx
(cos 5x)

= 2 cos 2x+ 5 sin 5x

(e) If y = 3 ln x, then

dy

dx
=

d

dx
(3 ln x) = 3

d

dx
(ln x) using linearity

=
3

x
using Table 10.1

(f) If y = ln 2x, then

y = ln 2 + ln x using laws of logarithms

and so

dy

dx
= 0 +

1

x
=

1

x
since ln 2 is constant

(g) Each term is differentiated:

y′ = 6x+ 7 − 0 = 6x+ 7

Engineering application 10.4

Dynamic resistance of a semiconductor diode

Recall from Engineering application 2.9 that a semiconductor diode can be modelled

by the equation

I = IS(e
qV
nkT − 1)

where V is the applied voltage, I is the diode current, IS is the reverse saturation

current, k is the Boltzmann constant, q is the charge on the electron, and T is the

temperature of the diode junction in Kelvin. The parameter n is the ideality factor

which is usually considered to be a constant for a given type of semiconductor junc-

tion, dependent primarily on the design and manufacture of the diode.

Examining the diode electrical characteristics, shown in Figure 2.31, we note that

there are two main electrical regimes. The �rst occurs when the applied voltage, V ,

is negative and the current, I, is limited to a negative saturation current, Is, apart from

a small region around the origin. The second occurs when the applied voltage, V , is

positive and the current, I, takes on the shape of an exponential curve, apart from a

small region around the origin.

We will concentrate on the second case and furthermore we will assume that e
qV
nkT

is very much greater than 1. This is written concisely as e
qV
nkT >> 1. This is a good

approximation apart from the small region close to the origin. The original expression

for I can then be written as

I ≈ ISe
qV
nkT

where the symbol ≈ means ‘is approximately equal to’.
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For a �xed temperature the only variables in this equation are I and V . We can

differentiate this equation to give

dI

dV
≈ IS

q

nkT
e

qV
nkT

Back substituting the approximate expression I ≈ ISe
qV
nkT into this equation yields

dI

dV
≈ IS

q

nkT
e

qV
nkT ≈

q

nkT
I

Inverting this equation gives

dV

dI
≈
nkT

qI

It is constructive at this stage to compare this result with the static equivalent,V = IR,

from which

V

I
= R

The quantity
dV

dI
can be thought of as a dynamic value of the diode resistance, rd ,

which varies depending on the value of the current in the diode. It is valid for a

positive voltage V that is suf�ciently large to ensure the diode is in the exponential

portion of the electrical characteristic.

Engineering application 10.5

Operating point for an ideal semiconductor diode

In Engineering application 2.18 we examined the mathematical model of a semi-

conductor diode and then considered the specialised case of an ideal diode. At room

temperature the equation describing the behaviour of its electrical characteristics was

I = Is(e
40V − 1)

where I is the diode current, V is the applied voltage and Is is the constant reverse

saturation current. Sometimes when a diode is used in a circuit it may be biased

to operate in a certain region of its I--V characteristic. This means that its use is

restricted to a certain voltage range. The point around which it operates is known as

its operating point. This is illustrated in Figure 10.17.

Deviations from this operating point may be small in certain cases. If so, they are

known as small-signal variations and are caused by small a.c. voltages being super-

imposed on the main d.c. bias voltage. In calculating how the diode will react to such

small-signal voltages, the slope of the diode characteristic around the operating point

is more relevant than the overall ratio of current to voltage. Provided the deviations

from the operating point are not large, the tangent to the I--V curve at the operating

point provides an adequate model for how the diode will behave. The slope of the

curve can be obtained by differentiating the diode equation. If

I = Is(e
40V − 1) = Is e

40V − Is

then
dI

dV
= 40Is e

40V

➔
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V

I

Bias 
voltage 

Bias current

Operating 

point
Tangent 

approximation

dV

dI

Figure 10.17

Diode characteristic showing

operating point and tangent

approximation.

since Is is constant.

It is usual to write small changes in current and voltage as δI and δV . Therefore,

since

δI

δV
≈

dI

dV

δI ≈ 40Is e
40V δV

This expression allows the change in diode current, δI, to be estimated given a change

in diode voltage, δV , provided the operating point is known and the changes are small.

Example 10.15 Find the derivative of y = e−t + t2, when

(a) t = 1

(b) t = 0

Solution
y= e−t + t2

y′ = −e−t + 2t

(a) When t = 1, y′ = −e−1 + 2 = 1.632, that is y′(1) = 1.632.

(b) When t = 0, y′ = −1, that is y′(0) = −1.

Engineering application 10.6

Obtaining a linear model for a simple fluid system

Consider the fluid system illustrated in Figure 10.18. The pump is driven by a d.c.

motor. The pump/motor can be modelled by a linear relationship in which the fluid

flow rate, qi, is proportional to the control voltage, vin, that is

qi = kpvin
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qo

h

qi

vin

Tank Valve

p

Pump/motor

Figure 10.18

A fluid system comprising pump, tank

and valve.

where kp = pump/motor constant, vin = control voltage (V), qi = flow rate into

the tank (m3 s−1). The valve has a non-linear characteristic given by the quadratic

polynomial

p = 20 000q2o

where p = pressure at the base of the tank (N m−2), qo = flow out of the tank

(m3 s−1). The fluid being used is water which has a density ρ = 998 kg m−3. Assume

g= 9.81 m s−2 and that kp = 0.03 m3 s−1V−1. Carry out the following:

(a) Calculate the flow rate out of the tank, qo, and the control voltage, vin, when the

system is in equilibrium and the height of the water in the tank, h, is 0.25 m.

(b) Obtain a linear model for the system, valid for small changes about a water height

of 0.25 m. Use this model to calculate the new water height and flow rate out of

the tank when the control voltage is increased by 0.4 V.

Solution

(a) The pressure at the bottom of the tank is given by

p = ρgh = 998 × 9.81 × 0.25 = 2448

The flow rate through the valve is given by

q2o =
p

20 000

qo =

√
p

20 000
=

√
2448

20 000
= 0.350 m3 s−1

Now if the system is in equilibrium, then the height of the water in the tank must

have stabilized to a constant value. Therefore,

qi = qo = 0.350

and so

vin =
qi

kp
=

0.350

0.03
= 11.7 V

(b) Before answering this part it is worth examining what is meant by a linear

model. Figure 10.19 shows the valve characteristic together with a linear ap-

proximation around an output flow rate of qo = 0.350 m3 s−1. This corresponds

to a water height of 0.25 m.

➔
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0.35

2448

p (N m–2)

qo (m
3 s–1)

Figure 10.19

Relationship between pressure across

valve (p) and flow through valve (qo).

A linear model for the valve is one in which the relationship between p and

qo is approximated by the straight line which forms a tangent to the curve at the

operating point. The operating point is the point around which the model is valid.

It is clear that if the straight line approximation is used for points that are a large

distance from the operating point, then the linear model will not be very accu-

rate. However, for small changes around the operating point the approximation

is reasonably accurate. Clearly a different operating point will require a different

linear approximation. In order to obtain the gradient of this line it is necessary to

differentiate the function relating valve pressure to valve flow. So,

p = 20 000q2o

dp

dqo
= 40 000q0

At the operating point qo = 0.350. Therefore,

dp

dqo

∣∣∣∣
q
o
=0.350

= 40 000 × 0.350 = 14 000

This value is the gradient of the tangent to the curve at the operating point.

Small changes around an operating point are usually indicated by the notation δ.

Therefore,

δp

δqo
≈

dp

dqo

∣∣∣∣
q
o
=0.350

= 14 000

δp = 14 000δqo (10.2)

Note that equality has been assumed for the purposes of the linear model. It is

easy to relate a change in pump flow to a change in control voltage because the

relationship is linear and so a linear approximation is not required. So,

qi = kpvin

Differentiating this equation w.r.t. vin yields

dqi
dvin

= kp

In this case

δqi

δvin
=

dqi
dvin

= kp
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and has a constant value independent of the operating point:

δqi = kp δvin (10.3)

The relationship between pressure at the bottom of the tank and the water height

is also linear.

Since p = ρgh we have
dp

dh
= ρg. Because

dp

dh
is a constant we can write

δp

δh
=

dp

dh
= ρg

δp = ρgδh (10.4)

The change in control voltage, δvin, is given as 0.4. We also know that kp = 0.03.

Therefore, using Equation (10.3), we have

δqi = 0.03 × 0.4 = 0.012

Now if time is allowed for the system to reach equilibrium with this increased

input flow, then δqo = δqi. In other words, the output flow increases by the same

amount as the input flow and the water height once again stabilizes to a �xed

value. Therefore,

δqo = δqi = 0.012

Using Equation (10.2), we �nd

δp = 14 000 δqo = 14 000 × 0.012 = 168

Using Equation (10.4), we get

δh =
δp

ρg
=

168

998 × 9.81
= 0.0172

Therefore the new water height is 0.25 + 0.0172 = 0.267 m to three signi�cant

�gures. The new water flow rate is 0.35 + 0.012 = 0.362 m3 s−1.

To recap, all the elements of the fluid system were linear apart from the valve.

By obtaining a linear model for the valve, valid for values close to the operating

point, it was possible to calculate the effect of changing the control voltage to

the motor. It is important to stress that the linear model for the valve is only good

for small changes around the operating point. In this case the increase in control

voltage was approximately 3%. The model would not have been very good for

predicting the effect of a 50% increase in control voltage. Linear models of non-

linear systems are particularly useful when several components are non-linear,

as they are much easier to analyse. We examine these concepts in more detail in

Chapter 18.

EXERCISES 10.8

1 Differentiate the following functions:

(a) y = 4x3 − 5x2

(b) y = 3 sin(5t)+ 2 e4t

(c) y = sin(4t)+ 3 cos(2t)− t

(d) y = tan(3z)

(e) y = 2 e3t + 17 − 4 sin(2t)

(f) y =
1

t3
+

cos 5t

2
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(g) y =
2w3

3
+

e4w

2

(h) y =
√
x+ ln

(√
x
)
. [Hint:

√
x = x1/2, and use the

laws of logarithms.]

2 Evaluate the derivatives of the functions at the given

value:

(a) y = 2t + 9 + et/2 t = 1

(b) y =
t2 − 4t + 6

3
t = 2

(c) y = sin t + cos t t = 1

(d) y = 3 e2t − 2 sin

(
t

2

)
t = 0

(e) y = 5 tan(2x)+
1

e2x
x = 0.5

(f) y = 3 ln t + sin(3t) t = 0.25

3 Find
dx

dt
, if

(a) x = eωt (b) x = e−ωt

where ω is a constant.

4 Find the derivative of

(a) y = 3 sin−1(2t)− 5 cos−1(3t)

(b) y =
1

2
tan−1(t + 2)+ 4 cos−1(2t − 1)

(c) y = 2 sinh(3t − 1)− 4 cosh

(
t − 3

2

)

(d) y =
cosech(4t)+ 3 sech(6t)

2

(e) y = 2 sinh−1

(
t + 1

2

)
− 3 cosh−1

(
1 − t

2

)

(f) y = 3 tanh−1(2t + 3)− 2 tanh−1(3t + 2)

5 A function, y(t), is given by

y(t) =
t3

3
−

5t2

2
+ 4t + 1

(a) Find
dy

dt
.

(b) For which values of t is the derivative zero?

6 Find the equation of the tangent to the curve

y(x) = x3 + 7x2 − 9

at the point (2, 27).

7 Find values of t in the interval [0,π] for which the

tangent to x(t) = sin 2t has zero gradient.

8 Find the rate of change of

z(t) = 2 et/2 − t2

when

(a) t = 0

(b) t = 3

Solutions

1 (a) 12x2 − 10x (b) 15 cos 5t + 8 e4t

(c) 4 cos 4t − 6 sin 2t − 1 (d) 3 sec2 3z

(e) 6 e3t − 8 cos 2t (f) −
3

t4
− 2.5 sin 5t

(g) 2w2 + 2 e4w (h) 0.5x−1/2 +
1

2x

2 (a) 2.8244 (b) 0 (c) −0.3012

(d) 5 (e) 33.5194 (f) 14.195

3 (a) ω eωt (b) −ω e−ωt

4 (a)
6√

1 − 4t2
+

15√
1 − 9t2

(b)
1

2[1 + (t + 2)2]
−

4
√
t(1 − t)

(c) 6 cosh(3t − 1)− 2 sinh
t − 3

2
(d) −2 cosech 4t coth 4t − 9 sech 6t tanh 6t

(e)
1√(

1

2
(t + 1)

)2

+ 1

+
3

2

√(
1

2
(1 − t)

)2

− 1

(f)
6

1 − (2t + 3)2
−

6

1 − (3t + 2)2

5 (a) t2 − 5t + 4 (b) 1, 4

6 y = 40x− 53

7 π/4, 3π/4

8 (a) 1 (b) −1.5183
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REVIEW EXERCISES 10

1 Find the rate of change of f (x) = 5 + 3x2 at x = 2 by

considering each of the intervals [2 − δx, 2],

[2, 2 + δx], [2 − δx, 2 + δx]. Show that the same

result is obtained in each case.

2 Use a table of derivatives and the linearity rules to

differentiate the following:

(a) y = 4x2 + 6x− 11

(b) y = −x2 + 2x− 10

(c) y = x1/3 − x1/4

(d) y = 5 cos 4x− 3 cos 2x

(e) y = sin−1(4x+ 3)

(f) y =
√
2x4 −

5

3x2

(g) y = t3/2 + cos t

(h) y = t2 − 14t + 8

(i) y = 5 ln t + sin 4t

(j) y =
1

2
x−

1

3
x2

(k) y =
2t2

3
+ e2t

3 Find the equation of the tangent to y = x2 + 7x− 4 at

the point on the graph where x = 2.

4 Find the rate of change of f (t) = 2 cos t + 3 sin t at

t = 1.

5 At any time t, the voltage, v, across an inductor of

inductance L is related to the current, i, through the

inductor by v = L
di

dt
.

(a) Find an expression for the voltage when

i = 5 cosωt where ω is the constant angular

frequency.

(b) Find an expression for the voltage when the

current takes the form of a sine wave with

amplitude 10 and period 0.01 seconds.

6 Use the shrinking interval method to �nd the rate of

change of f (t) = sin t at t = 0 by considering the

interval [0, δt]. [Hint: use the trigonometric identities

in Section 3.6 and the small-angle approximation in

Section 6.5.] Use the shrinking interval method to �nd

the rate of change of f (t) = sin t at a general point.

7 Given y(t) = 3 + sin 2t, �nd the average rate of

change of y as t varies from 0 to 2.

8 Explain the essential difference between
δy

δx
and

dy

dx
.

9 Find y′ for the following functions:

(a) y = 2 e−t + 6 cos(t/2)

(b) y = (−t + 2)2

10 Using derivatives, estimate the change in y as x

changes from 1.5 to 1.55 where y = 2 e2x + x3.

Solutions

1 12

2 (a) 8x+ 6

(b) −2x+ 2

(c) 1
3x

−2/3 − 1
4 x

−3/4

(d) −20 sin 4x+ 6 sin 2x

(e)
4√

1 − (4x+ 3)2

(f) 2
√
2x+

10

3x3

(g) 3
2 t

1/2 − sin t

(h) 2t − 14

(i)
5

t
+ 4 cos 4t

(j)
1

2
−

2

3
x

(k)
4

3
t + 2 e2t

3 y = 11x− 8

4 −0.062

5 (a) −5ωL sinωt (b) 2000π L cos 200π t

7 −0.3784

9 (a) −2 e−t − 3 sin

(
t

2

)
(b) 2t − 4

10 4.355
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11.1 INTRODUCTION

In this chapter we develop the techniques of differentiation introduced in Chapter 10 so

that rates of change of more complicated functions can be found. We introduce rules for

differentiating products and quotients of functions. The chain rule is used for differenti-

ating functions of functions. We explain what is meant by de�ning functions implicitly

and parametrically and show how these can be differentiated. The technique of logarith-

mic differentiation allows complicated products of functions to be simpli�ed and then

differentiated. Finally derivatives of functions can themselves be differentiated. This in-

volves the use of higher derivatives which are explained towards the end of the chapter.

11.2 RULES OF DIFFERENTIATION

There are three rules which enable us to differentiate more complicated functions. They

are (a) the product rule, (b) the quotient rule, (c) the chain rule. Traditionally they are

written with x as the independent variable but apply in an analogous way for other in-

dependent variables.

11.2.1 The product rule

As the name suggests, this rule allows us to differentiate a product of functions, such as

x sin x, t2 cos 2t and ez ln z.
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The product rule states: if

y(x) = u(x) v(x)

then
dy

dx
=

du

dx
v + u

dv

dx
= u′v + uv′

To apply this rule one of the functions in the product must be chosen to be u, and the

other, v. Before we can apply the rule we need to calculate u′ and v′.

Example 11.1 Find y′ given

(a) y = x sin x

(b) y = t2et

Solution (a) y = x sin x = uv. Choose u = x and v = sin x. Then u′ = 1, v′ = cos x. Applying

the product rule to y yields

y′ = sin x+ x cos x

(b) y = t2et = uv. Choose u = t2 and v = et . Then u′ = 2t and v′ = et . Applying the

product rule to y yields

y′ = 2tet + t2et

Engineering application 11.1

Damped sinusoidal signal

A common function found in engineering is the damped sinusoidal signal. This con-

sists of a negative exponential function multiplied by a sinusoid. A typical example

is

f (t) = e−0.1t cos t

The graph of this function is shown in Figure 11.1. This function approximates the

way a car body reacts when the car drives over a large bump in the road. Fortunately,

the car shock absorbers ensure that the oscillations reduce in amplitude quite quickly.

When sketching such a function it can be useful to think of the exponential term,

and its mirror image around the time axis, providing an envelope that contains the

signal. When values of the sinusoid are 1 then the signal touches the positive part

of the envelope and when values of the sinusoid are −1 then the signal touches the

negative part of the envelope.

The rate of change of this signal with respect to time can be found by differentiat-

ing f (t) using the product rule. To do so we note that f (t) is a product of u(t) = e−0.1t

and v(t) = cos t. Recasting the formula for differentiating a product in terms of t we

have

f (t) = u(t)v(t)

➔
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d f

dt
=

du

dt
v + u

dv

dt

Now we have

du

dt
= −0.1e−0.1t

dv

dt
= − sin t

So

d f

dt
=

du

dt
v + u

dv

dt

d f

dt
= −0.1e−0.1t cos t + e−0.1t (− sin t)

Rearranging gives

d f

dt
= −e−0.1t (0.1 cos t + sin t)

t

1

–1

–0.8

–0.6

–0.4

–0.2

0.2

0.4

0.6

f (t)

0.8

p 2p 3p 4p 5p 6p 7p 8p 9p 10p 11p 12p 13p 14p 15p

Figure 11.1

A damped sinusoidal signal.

11.2.2 The quotient rule

This rule allows us to differentiate a quotient of functions, such as
x

sin x
,
t2 − t + 3

t + 2

and
e−3z

z2 − 1
.
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The quotient rule states: when

y(x) =
u(x)

v(x)

then

y′ =

v

(
du

dx

)
− u

(
dv

dx

)

v2
=
vu′ − uv′

v2

Example 11.2 Find y′ given

(a) y =
sin x

x
(b) y =

t2

2t + 1
(c) y =

e2t

t2 + 1

Solution (a) y =
sin x

x
=
u

v
. So u = sin x, v = x and u′ = cos x, v′ = 1. Using the quotient rule

the derivative of y is found:

y′ =
x cos x− sin x

x2

(b) y =
t2

2t + 1
=
u

v
. So u = t2, v = 2t + 1 and u′ = 2t, v′ = 2. Hence,

y′ =
(2t + 1)2t − (t2)(2)

(2t + 1)2
=

2t(t + 1)

(2t + 1)2

(c) y =
e2t

t2 + 1
. So u = e2t , v = t2 + 1 and u′ = 2e2t , v′ = 2t. Application of the

quotient rule yields

y′ =
(t2 + 1)2e2t − e2t2t

(t2 + 1)2
=

2e2t (t2 − t + 1)

(t2 + 1)2

11.2.3 The chain rule

This rule helps us to differentiate complicated functions, where a substitution can be used

to simplify the function. Suppose y = y(z) and z = z(x). Then y may be considered as

a function of x. For example, if y = z3 − z and z = sin 3x, then y = (sin 3x)3 − sin(3x).

Suppose we seek the derivative,
dy

dx
. Note that the derivative w.r.t. x is sought.

The chain rule states:

dy

dx
=

dy

dz
×

dz

dx
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Example 11.3 Given y = z6 where z = x2 + 1 �nd
dy

dx
.

Solution If y = z6 and z = x2 + 1, then y = (x2 + 1)6. We recognize this as the composition

y(z(x)) (see Section 2.3.6). Now y = z6 and so
dy

dz
= 6z5. Also z = x2 + 1 and so

dz

dx
= 2x. Using the chain rule,

dy

dx
=

dy

dz
×

dz

dx
= 6z52x = 12x(x2 + 1)5

Example 11.4 If y = ln(3x2 + 5x+ 7), �nd
dy

dx
.

Solution We use a substitution to simplify the given function: let z = 3x2+5x+7 so that y = ln z.

Since

y = ln z then
dy

dz
=

1

z

Also

z = 3x2 + 5x+ 7 and so
dz

dx
= 6x+ 5

Using the chain rule we �nd

dy

dx
=

dy

dz
×

dz

dx

=
1

z
× (6x+ 5)

=
6x+ 5

3x2 + 5x+ 7

Note that in the previous answer the numerator is the derivative of the denominator.

This result is true more generally and can be applied when differentiating the natural

logarithm of any function:

When y = ln f (x) then
dy

dx
=

f ′(x)

f (x)

Example 11.5 Find y′ when

(a) y = ln(x5 + 8) (b) y = ln(1 − t) (c) y = 8 ln(2 − 3t)

(d) y = ln(1 + x) (e) y = ln(1 + cos x)

Solution In each case we apply the previous rule.

(a) If y = ln(x5 + 8), then y′ =
5x4

x5 + 8
.
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(b) If y = ln(1 − t), then y′ =
−1

1 − t
= −

1

1 − t
=

1

t − 1
.

(c) If y = 8 ln(2 − 3t), then y′ = 8
−3

2 − 3t
= −

24

2 − 3t
=

24

3t − 2
.

(d) If y = ln(1 + x) then y′ =
1

1 + x
.

(e) If y = ln(1 + cos x) then y′ =
− sin x

1 + cos x
= −

sin x

1 + cos x
.

Example 11.6 Differentiate

(a) y = 3esin x

(b) y = (3t2 + 2t − 9)10

(c) y =
√
1 + t2

Solution In these examples we must formulate the function z ourselves.

(a) Let z(x) = sin x. Then y(z) = 3ez so
dy

dz
= 3ez; z(x) = sin x and so

dz

dx
= cos x.

The chain rule is used to �nd
dy

dx
.

dy

dx
=

dy

dz
×

dz

dx
= 3ez cos x = 3esin x cos x

(b) Let z(t) = 3t2 + 2t − 9. Then y(z) = z10,
dy

dz
= 10z9,

dz

dt
= 6t + 2. Using the chain

rule
dy

dt
is found:

dy

dt
=

dy

dz
×

dz

dt
= 10z9(6t + 2) = 20(3t + 1)(3t2 + 2t − 9)9

(c) Let z(t) = 1 + t2. Then y =
√
z = z1/2,

dy

dz
=

1

2
z−1/2 and

dz

dt
= 2t. Using the chain

rule, we obtain

dy

dt
=

dy

dz
×

dz

dt
=

1

2
z−1/22t =

t
√
z

=
t

√
1 + t2

EXERCISES 11.2

1 Use the product rule to differentiate the following

functions:

(a) y = sin x cos x

(b) y = ln t tan t

(c) y = (t3 + 1)e2t

(d) y =
√
xex

(e) y = et sin t cos t

(f) y = 3 sinh 2t cosh 3t

(g) y = (1 + sin t) tan t

(h) y = 4 sinh(t + 1) cosh(1 − t)
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2 Use the quotient rule to �nd the derivatives of the

following:

(a)
cos x

sin x
(b)

tan t

ln t

(c)
e2t

t3 + 1
(d)

3x2 + 2x− 9

x3 + 1

(e)
x2 + x+ 1

1 + ex
(f)

sinh 2t

cosh 3t

(g)
1 + et

1 + e2t

3 Use the chain rule to differentiate the following:

(a) (t3 + 1)100 (b) sin3(3t + 2)

(c) ln(x2 + 1) (d) (2t + 1)1/2

(e) 3
√
cos(2x− 1) (f)

1

t + 1

(g) (at + b)n, a and b constants

4 Differentiate each of the following functions:

(a) y = 5 sin x (b) y = 5ex sin x

(c) y = 5esin x (d) y =
5 sin x

e−x

(e) y = (t3 + 4t)15 (f) y = 7e−3t2

(g) y =
sin x

4 cos x+ 1

5 For which values of t is the derivative of y(t) = e−t t2

zero?

6 Find the rate of change of y at the speci�ed values of t.

(a) y = sin
1

t
t = 1

(b) y = (t2 − 1)17 t = 1

(c) y = sinh(t2) t = 2

(d) y =
1 + t + t2

1 − t
t = 2

(e) y =
et

t sin t
t = 1

7 Find the equation of the tangent to

y(x) = e3x(1 − x) at the point (0, 1)

8 Differentiate

(a) y = ln x

(b) y = ln 2x

(c) y = ln kx, k constant

(d) y = ln(1 + t)

(e) y = ln(3 + 4t)

(f) y = ln(5 + 7 sin x)

Solutions

1 (a) cos2 x− sin2 x (b)
1

t
tan t + ln t sec2 t

(c) e2t (2t3 + 3t2 + 2) (d) ex

(
√
x+

1

2
√
x

)

(e) et (2 cos2 t + sin t cos t − 1)

(f) 3[2 cosh 2t cosh 3t + 3 sinh 2t sinh 3t]

(g) (1 + sin t) sec2 t + sin t

(h) 4[cosh(t + 1) cosh(1 − t)

− sinh(t + 1) sinh(1 − t)]

2 (a) − cosec2 x

(b)
ln t sec2 t − (tan t)/t

(ln t)2

(c)
e2t (2t3 − 3t2 + 2)

(t3 + 1)2

(d)
−3x4 − 4x3 + 27x2 + 6x+ 2

(x3 + 1)2

(e)
ex(−x2 + x)+ 2x+ 1

(ex + 1)2

(f)
2 cosh 2t cosh 3t − 3 sinh 2t sinh 3t

(cosh 3t)2

(g)
−e3t − 2e2t + et

(e2t + 1)2

3 (a) 300t2(t3 + 1)99

(b) 9 sin2(3t + 2) cos(3t + 2)

(c)
2x

x2 + 1

(d) (2t + 1)−1/2

(e)
−3 sin(2x− 1)
√
cos(2x− 1)

(f) −(t + 1)−2

(g) an(at + b)n−1
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4 (a) 5 cos x

(b) 5ex(cos x+ sin x)

(c) 5esin x cos x

(d) 5ex(cos x+ sin x)

(e) 15(t3 + 4t)14(3t2 + 4)

(f) −42te−3t2

(g)
4 + cos x

(4 cos x+ 1)2

5 0, 2

6 (a) −0.5403 (b) 0 (c) 109.2

(d) 2 (e) −2.0742

7 y = 2x+ 1

8 (a)
1

x
(b)

1

x
(c)

1

x

(d)
1

1 + t
(e)

4

3 + 4t
(f)

7 cos x

5 + 7 sin x

11.3 PARAMETRIC, IMPLICIT AND LOGARITHMIC
DIFFERENTIATION

11.3.1 Parametric di�erentiation

In some circumstances both y and x depend upon a third variable, t. This third variable

is often called a parameter. By eliminating t, y can be found as a function of x. For

example, if y = (1 + t)2 and x = 2t then, eliminating t, we can write y = (1 + x/2)2.

Hence, y may be considered as a function of x, and so the derivative
dy

dx
can be found.

However, sometimes the elimination of t is dif�cult or even impossible. Consider the

example y = sin t + t, x = t2 + et . In this case, it is impossible to obtain y in terms of x.

The derivative
dy

dx
can still be found using the chain rule.

dy

dx
=

dy

dt
×

dt

dx
=

dy

dt

/
dx

dt

Finding
dy

dx
by this method is known as parametric differentiation.

Example 11.7 Given y = (1 + t)2, x = 2t �nd
dy

dx
.

Solution By eliminating t, we see

y =

(
1 +

x

2

)2

= 1 + x+
x2

4

and so

dy

dx
= 1 +

x

2

Parametric differentiation is an alternative method of �nding
dy

dx
which does not require

the elimination of t.

dy

dt
= 2(1 + t)

dx

dt
= 2
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Using the chain rule, we obtain

dy

dx
=

dy

dt

/
dx

dt
=

2(1 + t)

2
= 1 + t = 1 +

x

2

Example 11.8 Given y = et + t, x = t2 + 1, �nd
dy

dx
using parametric differentiation.

Solution
dy

dt
= et + 1

dx

dt
= 2t

Hence,

dy

dx
=

dy

dt

/
dx

dt
=

et + 1

2t

In this example, the derivative is expressed in terms of t. This will always be the case

when t has not been eliminated between x and y.

Example 11.9 If x = sin t + cos t and y = t2 − t + 1 �nd
dy

dx
(t = 0).

Solution
dy

dt
= 2t − 1

dx

dt
= cos t − sin t

Hence,

dy

dx
=

2t − 1

cos t − sin t

When t = 0,
dy

dx
=

−1

1
= −1.

11.3.2 Implicit di�erentiation

Suppose we are told that

y3 + x3 = 5 sin x+ 10 cos y

Although y depends upon x, it is impossible to write the equation in the form y = f (x).

We say y is expressed implicitly in terms of x. The form y = f (x) is an explicit

expression for y in terms of x. However, given an implicit expression for y it is still

possible to �nd
dy

dx
. Usually

dy

dx
will be expressed in terms of both x and y. Essentially,

the chain rule is used when differentiating implicit expressions.

When calculating
dy

dx
we need to differentiate a function of y, as opposed to a function

of x. For example, we may need to �nd
d

dx
(y4).

Example 11.10 Find

(a)
d

dx
(y4) (b)

d

dx
(y−3)
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Solution (a) We make a substitution and let z = y4 so that the problem becomes that of �nding
dz

dx
. Now, using the chain rule,

dz

dx
=

dz

dy
×

dy

dx

If z = y4 then
dz

dy
= 4y3 and so

dz

dx
= 4y3

dy

dx

We conclude that

d

dx
(y4) = 4y3

dy

dx

(b) We make a substitution and let z = y−3 so that the problem becomes that of �nding
dz

dx
.

If z = y−3 then
dz

dy
= −3y−4 and so

d

dx
(y−3) =

dz

dx
=

dz

dy
×

dy

dx
= −3y−4 dy

dx

Example 11.11 Find
d

dt
(ln y).

Solution We let z = ln y so that the problem becomes that of �nding
dz

dt
. If z = ln y then

dz

dy
=

1

y
and so using the chain rule

dz

dt
=

dz

dy
×

dy

dt
=

1

y

dy

dt

we conclude that

d

dt
(ln y) =

1

y

dy

dt

Examples 11.10 and 11.11 illustrate the general formula:

d

dx
( f (y)) =

d f

dy
×

dy

dx
.

This is simply the chain rule expressed in a slightly different form.
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Example 11.12 Find
d

dx
(y).

Solution We have

d

dx
(y) =

dy

dy
×

dy

dx
=

dy

dx

Example 11.13 Given

x3 + y = 1 + y3

�nd
dy

dx
.

Solution Consider differentiation of the l.h.s. w.r.t. x.

d

dx
(x3 + y) =

d

dx
(x3)+

dy

dx
= 3x2 +

dy

dx

Now consider differentiation of the r.h.s. w.r.t. x.

d

dx
(1 + y3) =

d

dx
(1)+

d

dx
(y3) =

d

dx
(y3)

We note from the formula following Example 11.11 that
d

dx
(y3) = 3y2

dy

dx
. So �nally,

3x2 +
dy

dx
= 3y2

dy

dx

from which

dy

dx
=

3x2

3y2 − 1

Note that
dy

dx
is expressed in terms of x and y.

Example 11.14 Find
dy

dx
given

(a) ln y = y− x2

(b) x2y3 − ey = e2x

Solution (a) Differentiating the given equation w.r.t. x yields

1

y

dy

dx
=

dy

dx
− 2x

from which

dy

dx
=

2xy

y− 1
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(b) Consider
d

dx
(x2y3). Using the product rule we �nd

d

dx
(x2y3) =

d

dx
(x2)y3 + x2

d

dx
(y3) = 2xy3 + x23y2

dy

dx

Consider
d

dx
(ey). Let z = ey so

dz

dy
= ey. Hence,

d

dx
(ey) =

dz

dx
=

dz

dy

dy

dx
= ey

dy

dx

So, upon differentiating, the equation becomes

2xy3 + x23y2
dy

dx
− ey

dy

dx
= 2e2x

So,

dy

dx
(3x2y2 − ey) = 2e2x − 2xy3

from which

dy

dx
=

2e2x − 2xy3

3x2y2 − ey

11.3.3 Logarithmic di�erentiation

The technique of logarithmic differentiation is useful when we need to differentiate a

cumbersome product. The method involves taking the natural logarithm of the function

to be differentiated. This is illustrated in the following examples.

Example 11.15 Given that y = t2(1 − t)8 �nd
dy

dt
.

Solution The product rule could be used but we will demonstrate an alternative technique. Taking

the natural logarithm of both sides of the given equation yields

ln y = ln(t2(1 − t)8)

Using the laws of logarithms we can write this as

ln y = ln t2 + ln(1 − t)8

= 2 ln t + 8 ln(1 − t)

Both sides of this equation are now differentiated w.r.t. t to give

d

dt
(ln y) =

d

dt
(2 ln t)+

d

dt
(8 ln(1 − t))

The evaluation of
d

dt
(ln y) has already been found in Example 11.11, and so

1

y

dy

dt
=

2

t
−

8

1 − t
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Hence

dy

dt
= y

(
2

t
−

8

1 − t

)

Finally, replacing y by t2(1 − t)8 we have

dy

dt
= t2(1 − t)8

(
2

t
−

8

1 − t

)

Example 11.16 Given

y = x3(1 + x)9e6x

�nd
dy

dx
.

Solution The product rule could be used. However, we will use logarithmic differentiation. Taking

the natural logarithm of the equation and applying the laws of logarithms produces

ln y = ln(x3(1 + x)9e6x) = ln x3 + ln(1 + x)9 + ln e6x

ln y = 3 ln x+ 9 ln(1 + x)+ 6x

This equation is now differentiated:

1

y

dy

dx
=

3

x
+

9

1 + x
+ 6

and so

dy

dx
= y

(
3

x
+

9

1 + x
+ 6

)

= 3x2(1 + x)9e6x + 9x3(1 + x)8e6x + 6x3(1 + x)9e6x

Example 11.17 If y =
√
1 + t2 sin2 t �nd y′.

Solution Taking logarithms we �nd

ln y = ln(
√
1 + t2 sin2 t)

= ln
√
1 + t2 + ln(sin2 t)

=
1

2
ln(1 + t2)+ 2 ln(sin t)

Differentiation yields

1

y
y′ =

1

2

2t

1 + t2
+ 2

cos t

sin t

y′ = y

(
t

1 + t2
+ 2 cot t

)
=
√
1 + t2 sin2 t

(
t

1 + t2
+ 2 cot t

)
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EXERCISES 11.3

1 Find each of the following:

(a)
d

dx
(x5) (b)

d

dx
(y5) (c)

d

dt
(y5)

(d)
d

dx
(y2) (e)

d

dx
(5y) (f)

d

dx
(y)

(g)
d

dx
(y2 + y3)

2 Find each of the following:

(a)
d

dx
(ey) (b)

d

dx
(sin y)

(c)
d

dx
(cos 2y) (d)

d

dx
(e−3y)

(e)
d

dx
(
√
y) (f)

d

dx
(x+ y)

(g)
d

dx
(cos(x+ y)) (h)

d

dx
(ln y)

(i)
d

dx
(ln 7y)

3 Find
dy

dx
given

(a) 2y2 − 3x3 = x+ y

(b)
√
y+

√
x = x2 + y3

(c)
√
2x+ 3y = 1 + ex

(d) y =
ex

√
1 + x

x2

(e) 2xy4 = x3 + 3xy2

(f) sin(x+ y) = 1 + y

(g) ln(x2 + y2) = 2x− 3y

(h) ye2y = x2ex/2

4 Find
dy

dx
, given

(a) x = t2 y = 1 + t3

(b) x = sin t y = et

(c) x = (1 + t)3 y = 1 + t3

(d) x = cos 2t y = 3t

(e) x =
3

t
y = e2t

(f) x = et − e−t y = et + e−t

5 Use logarithmic differentiation to �nd the derivatives

of the following functions:

(a) y = x4ex (b) y =
1

x
e−x

(c) z = t3(1 + t)9 (d) y = ex sin x

(e) y = x7 sin4 x

6 Use logarithmic differentiation to �nd the derivatives

of the following functions:

(a) z = t4(1 − t)6(2 + t)4

(b) y =
(1 + x2)3e7x

(2 + x)6

(c) x = (1 + t)3(2 + t)4(3 + t)5

(d) y =
(sin4 t)(2 − t2)4

(1 + et )6

(e) y = x3ex sin x

7 If x = t + t2 + t3 and y = sin 2t, �nd
dy

dx
when t = 1.

8 Given x = 1 + t6 and y = 1 − t2, �nd:

(a) the rate of change of x w.r.t. t when t = 2

(b) the rate of change of y w.r.t. t when t = 1

(c) the rate of change of y w.r.t. x when t = 1

(d) the rate of change of x w.r.t. y when t = 2

9 Find the equations of the tangents to

y2 = x2 + 6y

when x = 4.

10 Given the implicit function 3x2 + y3 = y �nd an

expression for
dy

dx
.

Solutions

1 (a) 5x4 (b) 5y4
dy

dx

(c) 5y4
dy

dt
(d) 2y

dy

dx

(e) 5
dy

dx
(f)

dy

dx

(g) (2y+ 3y2)
dy

dx
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2 (a) ey
dy

dx
(b) cos y

dy

dx

(c) −2 sin 2y
dy

dx
(d) −3e−3y dy

dx

(e)
1

2
y−1/2 dy

dx
(f) 1 +

dy

dx

(g) − sin(x+ y)

(
1 +

dy

dx

)

(h)
1

y

dy

dx
(i)

1

y

dy

dx

3 (a)
1 + 9x2

4y− 1

(b)
(4x

√
x− 1)

√
y

(1 − 6y2
√
y)

√
x

(c)
2

3
(ex
√
2x+ 3y− 1)

(d) y

(
1

2(1 + x)
+ 1 −

2

x

)

(e)
3x2 + 3y2 − 2y4

2xy(4y2 − 3)

(f)
cos(x+ y)

1 − cos(x+ y)

(g)
2(x2 + y2 − x)

3x2 + 3y2 + 2y

(h)
e(x/2−2y)x(x+ 4)

2(1 + 2y)

4 (a) 3t/2 (b)
et

cos t
(c)

(
t

1 + t

)2

(d)
−3

2 sin 2t
(e) −2e2t t2/3 (f)

et − e−t

et + e−t

5 (a) (4x3 + x4)ex

(b) −e−x

(
1

x2
+

1

x

)

(c) t3(1 + t)9

(
3

t
+

9

1 + t

)

(d) ex sin x(1 + cot x)

(e) x7 sin4 x

(
7

x
+ 4 cot x

)

6 (a) z

(
4

t
−

6

1 − t
+

4

2 + t

)

(b) y

(
6x

1 + x2
+ 7 −

6

2 + x

)

(c) x

(
3

1 + t
+

4

2 + t
+

5

3 + t

)

(d) y

(
4 cot t −

8t

2 − t2
−

6et

1 + et

)

(e) x3ex sin x

(
3

x
+ 1 + cot x

)

7 −0.1387

8 (a) 192 (b) −2 (c) −
1

3

(d)
dx

dy
= −3t4; when t = 2,

dx

dy
= −48

9 y =
−4x+ 6

5
, y =

4x+ 24

5

10 y′ =
6x

1 − 3y2

11.4 HIGHER DERIVATIVES

The derivative, y′, of a function y(x) is more correctly called the �rst derivative of y

w.r.t. x. Since y′ itself is a function of x, then it is often possible to differentiate this too.

The derivative of y′ is called the second derivative of y:

second derivative of y =
d

dx

(
dy

dx

)

which is written as
d2y

dx2
or more compactly as y′′.
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Example 11.18 If y(x) = 3x2 + 8x+ 9, �nd y′ and y′′.

Solution y′ = 6x+ 8 y′′ =
d

dx
(6x+ 8) = 6

Example 11.19 If y(t) = 2 sin 3t, �nd y′ and y′′.

Solution y′ = 6 cos 3t y′′ = −18 sin 3t

The �rst and second derivatives w.r.t. time, t, are also denoted by ẏ and ÿ.

Example 11.20 Find y′′ given

1 + xy = x2 + y2

Solution The equation is differentiated implicitly to obtain
dy

dx
:

0 + y+ xy′ = 2x+ 2yy′

y′ =
2x− y

x− 2y

The quotient rule is now used with u = 2x− y and v = x− 2y. The derivatives of u and

v are

du

dx
= u′ = 2 − y′

dv

dx
= v′ = 1 − 2y′

Then,

y′′ =
(x− 2y)(2 − y′)− (2x− y)(1 − 2y′)

(x− 2y)2

This is simpli�ed to

y′′ =
3xy′ − 3y

(x− 2y)2

Replacing y′ by
2x− y

x− 2y
and simplifying yields

y′′ =
6(x2 − xy+ y2)

(x− 2y)3

Note that it is possible to simplify this further by observing that x2 + y2 = 1 + xy as

given. Therefore,

y′′ =
6(1 + xy− xy)

(x− 2y)3
=

6

(x− 2y)3

Just as the �rst derivative may be differentiated to obtain the second derivative, so the

second derivative may be differentiated to �nd the third derivative and so on. A similar
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notation is used. The third derivative is written
d3y

dx3
or y′′′ or y(3). The fourth derivative

is written
d4y

dx4
or yiv or y(4). The �fth derivative is written

d5y

dx5
or yv or y(5).

Example 11.21 Find the �rst �ve derivatives of z(t) = 2t3 + sin t.

Solution z′ = 6t2 + cos t ziv = sin t

z′′ = 12t − sin t zv = cos t

z′′′ = 12 − cos t

Example 11.22 Calculate the values of x for which y′′ = 0, given y = x4 − x3.

Solution y = x4 − x3 y′ = 4x3 − 3x2 y′′ = 12x2 − 6x

Putting y′′ = 0 gives

12x2 − 6x = 0 and so 6x(2x− 1) = 0

Hence

x = 0,
1

2

The �rst and second derivatives can be used to describe the nature of increasing and

decreasing functions. In Figure 11.2(a, b) the tangents to the curves have positive gra-

dients, that is y′ > 0. As can be seen, as x increases the value of the function increases.

Conversely, in Figure 11.2(c, d) the tangents have negative gradients (y′ < 0) and as

x increases the value of the function decreases. The sign of the �rst derivative tells us

whether y is increasing or decreasing. However, the curves in (a) and (b) both show y

increasing but, clearly, there is a difference in the way y changes.

Consider again Figure 11.2(a). The tangents at A, B and C are shown. As x increases

the gradient of the tangent increases, that is y′ increases as x increases. Since y′ increases

as x increases then the derivative of y′ is positive, that is y′′ > 0. (Compare with: y

increases when its derivative is positive.) So for the curve shown in Figure 11.2(a), y′ > 0

and y′′ > 0.

For that shown in Figure 11.2(b) the situation is different. The value of y′ decreases

as x increases, as can be seen by considering the gradients of the tangents at A, B and

C, that is the derivative of y′ must be negative. For this curve y′ > 0 and y′′ < 0.

A function is concave down when y′ decreases and concave up when y′ increases.

Hence Figure 11.2(a) illustrates a concave up function; Figure 11.2(b) illustrates a con-

cave down function. The sign of the second derivative can be used to distinguish between

concave up and concave down functions.

Consider now the functions shown in Figure 11.2(c) and Figure 11.2(d). In both (c)

and (d), y is decreasing and so y′ < 0. In (c) the gradient of the tangent becomes increas-

ingly negative; that is, it is decreasing. Hence, for the function in (c) y′′ < 0. Conversely,

for the function in (d) the gradient of the tangent is increasing as x increases, although

it is always negative, that is y′′ > 0. So for the function in (c) y′ < 0 and y′′ < 0; that
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y

x x(a)

A

A

A

AB
B

BB
C

C

C

C

y

(b)

y

x(d)

y

x(c)

Figure 11.2

(a) y is concave up (y′ > 0, y′′ > 0); (b) y is concave down (y′ > 0, y′′ < 0); (c) y is concave down (y′ < 0, y′′ < 0); (d) y

is concave up (y′ < 0, y′′ > 0).

is, the function is concave down. For the function in (d) y′ < 0 and y′′ > 0; that is, the

function is concave up. In summary, we can state:

When y′ > 0, y is increasing. When y′ < 0, y is decreasing.

When y′ is increasing the function is concave up. In this case y′′ > 0.

When y′ is decreasing the function is concave down. In this case y′′ < 0.

An easy way of determining the concavity of a curve is to note that as the curve is

traced from left to right, an anticlockwise motion reveals that the curve is concave up.

A clockwise motion means that the curve is concave down.

As will be seen in the next chapter, higher derivatives are used to determine the loca-

tion and nature of important points called maximum points, minimum points and points

of inflexion.

EXERCISES 11.4

1 Calculate
dy

dt
and

d2y

dt2
given

(a) y = t2 + t

(b) y = 2t3 − t2 + 1

(c) y = sin 2t

(d) y = sin kt k constant

(e) y = 2e3t − t2 + 1

(f) y =
t

t + 1

(g) y = 4 cos
t

2
(h) y = et t

(i) y = sinh 4t

(j) y = sin2 t

2 If

y = 2x3 + 3x2 − 12x+ 1

�nd values of x for which y′′ = 0.

3 If
dy

dt
= 3t2 + t, �nd

(a)
d2y

dt2
(b)

d3y

dt3

4 Find values of t at which y′′ = 0, where

y =
t3

3
−

7t2

2
+ 12t − 1

5 Determine whether the following functions are

concave up or concave down.

(a) y = et (b) y = t2 (c) y = 1 + t − t2

6 Determine the interval on which y = t3 is

(a) concave up,

(b) concave down.

7 Evaluate y′′ at the speci�ed value of t.

(a) y = 2 cos t − t2 t = 1

(b) y =
sin t + cos t

2
t = π/2

(c) y = (1 + t)et t = 0

8 Find
d2y

dx2
given xy+ x2 = y2.

9 Find
dx

dt
when x3 +

x

t
= t2 + x2t.
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Solutions

1 (a) 2t + 1, 2

(b) 6t2 − 2t, 12t − 2

(c) 2 cos 2t,−4 sin 2t

(d) k cos kt,−k2 sin kt

(e) 6e3t − 2t, 18e3t − 2

(f)
1

(t + 1)2
,−

2

(t + 1)3

(g) −2 sin(t/2),− cos(t/2)

(h) et (t + 1), et (t + 2)

(i) 4 cosh 4t, 16 sinh 4t

(j) 2 sin t cos t, 2 cos 2t

2 −
1

2

3 (a) 6t + 1 (b) 6

4
7

2

5 (a) concave up

(b) concave up

(c) concave down

6 (a) concave up on (0,∞)

(b) concave down on (−∞, 0)

7 (a) −3.08 (b) −
1

2
(c) 3

8
10y2 − 10x2 − 10yx

(2y− x)3

9
x+ 2t3 + x2t2

3x2t2 + t − 2xt3

REVIEW EXERCISES 11

1 Differentiate each of the following functions:

(a) y = sin(5 + x)2

(b) y = e2 sin x

(c) y = (4x+ 7)5

(d) y = x4 sin 3x

(e) y =
e4x

x3 + 11

(f) y = x2 tan x

(g) y =
cos 3x

x2

(h) y = e−x cos 5x

(i) y = ln cos 4x

(j) y = sin 2t cos 2t

(k) y =
1

x2 + 1

2 Find
dy

dx
in each of the following cases:

(a) y =
x3 sin 2x

cos x

(b) y = x3e−x tan x

(c) y =
xe5x

sin x

(d) x2 + 3xy+ y2 = 5

(e) 9 = 3x3 + 2xy2 − y

3 If x =
5 + 3t

1 − t
and y =

2 − t

1 − t
�nd

dy

dx
and

d2y

dx2
.

4 If x = 4(1 + cos θ ) and y = 3(θ − sin θ ) �nd
dy

dx
.

5 If x = 3 cos2 θ and y = 2 sin2 θ �nd
dy

dx
and

d2y

dx2
.

6 Show that y = e−4x sin 8x satis�es the equation

y′′ + 8y′ + 80y = 0.

7 Differentiate y = xx.

8 Given y = x3e2x �nd

(a)
dy

dx
(b)

d2y

dx2
(c)

d3y

dx3

9 Use logarithmic differentiation to �nd
dx

dt
given

(a) x = tet sin t

(b) x = t2e−t cos 3t

(c) x = t2e3t sin 4t cos 3t

10 Show that if y(t) = A sinωt + B cosωt, where ω is a

constant, then

y′′ + ω2y = 0
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Solutions

1 (a) 2(5 + x) cos(5 + x)2

(b) 2 cos xe2 sin x

(c) 20(4x+ 7)4

(d) 3x4 cos 3x+ 4x3 sin 3x

(e)
e4x(4x3 − 3x2 + 44)

(x3 + 11)2

(f) x2 sec2 x+ 2x tan x

(g)
−3x sin 3x− 2 cos 3x

x3

(h) −e−x(5 sin 5x+ cos 5x)

(i) −4 tan 4x

(j) 2 cos 4t

(k)
−2x

(x2 + 1)2

2 (a)
cos x(2x3 cos 2x+ 3x2 sin 2x)+ x3 sin 2x sin x

cos2 x

which simpli�es to 2x3 cos x+ 6x2 sin x

(b) e−x(x3 sec2 x− x3 tan x+ 3x2 tan x)

(c)
e5x(5x sin x+ sin x− x cos x)

sin2 x

(d) −
2x+ 3y

3x+ 2y

(e)
9x2 + 2y2

1 − 4xy

3
1

8
, 0

4 −
3(1 − cos θ )

4 sin θ

5 −
2

3
, 0

7 xx(ln x+ 1)

8 (a) e2x(2x3 + 3x2)

(b) 2xe2x(2x2 + 6x+ 3)

(c) 2e2x(4x3 + 18x2 + 18x+ 3)

9 (a) et (t cos t + (t + 1) sin t)

(b) −e−t ((t2 − 2t) cos 3t + 3t2 sin 3t)

(c) t2e3t sin 4t cos 3t

(
2

t
+ 3 +

4 cos 4t

sin 4t
−

3 sin 3t

cos 3t

)
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12.1 INTRODUCTION

In this chapter the techniques of differentiation are used to solve a variety of problems.

It is possible to use differentiation to �nd the maximum or minimum values of a func-

tion. For example, it is possible to �nd the maximum power transferred from a voltage

source to a load resistor, as we shall show later in the chapter. Differentiation is also

used in the Newton--Raphson method of solving non-linear equations. Such an equation

needs to be solved to calculate the steady-state values of current and voltage in a series

diode--resistor circuit.

Finally we show how vectors can be differentiated. This forms an introduction to the

important topic of vector calculus which is discussed in Chapter 26.

12.2 MAXIMUM POINTS AND MINIMUM POINTS

Consider Figure 12.1. A and B are important points on the curve. At A the function

stops increasing and starts to decrease. At B it stops decreasing and starts to increase.

A is a local maximum, B is a local minimum. Note that A is not the highest point on

the curve, nor B the lowest point. However, for that part of the curve near to A, A is

the highest point. The word ‘local’ is used to stress that A is maximum in its locality.

Similarly, B is the lowest point in its locality.
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y

x

y

x

A A

B
B

(a)                                                                      (b)

Figure 12.1

The function y has a local maximum at A and a local minimum at B.

In Figure 12.1(a) tangents drawn at A and B would be parallel to the x axis and so

at these points
dy

dx
is zero. However, in Figure 12.1(b) there are corners at A and B. It is

impossible to draw tangents at these points and so
dy

dx
does not exist at these points.

Hence, when searching for maximum and minimum points we need only examine

those points at which
dy

dx
is zero, or

dy

dx
does not exist.

Points at which
dy

dx
is zero are known as turning points or stationary values of the

function.

At maximum and minimum points either:

(i)
dy

dx
does not exist, or

(ii)
dy

dx
= 0

To distinguish between maximum and minimum points we can study the sign of
dy

dx
on

either side of the point. At maximum points such as A, y is increasing immediately to the

left of the point, and decreasing immediately to the right. That is,
dy

dx
is positive immedi-

ately to the left, and
dy

dx
is negative immediately to the right. At minimum points such as

B, y is decreasing immediately to the left of the point, and increasing immediately to the

right. That is,
dy

dx
is negative immediately to the left, and

dy

dx
is positive immediately to the

right. This so-called �rst-derivative test enables us to distinguish maxima from minima.

This test can be used even when the derivative does not exist at the point in question.

The �rst-derivative test to distinguish maxima from minima:

To the left of a maximum point,
dy

dx
is positive; to the right,

dy

dx
is negative.

To the left of a minimum point,
dy

dx
is negative; to the right,

dy

dx
is positive.
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Example 12.1 Determine the position and nature of all maximum and minimum points of the following

functions:

(a) y = x2

(b) y = −t2 + t + 1

(c) y =
x3

3
+
x2

2
− 2x+ 1

(d) y = |t|

Solution (a) If y = x2, then by differentiation
dy

dx
= 2x.

Recall that at maximum and minimum points either

(i)
dy

dx
does not exist, or

(ii)
dy

dx
= 0. We must check both of these conditions.

The function 2x exists for all values of x, and so we move to examine any points

where
dy

dx
= 0. So, we have

dy

dx
= 2x = 0

The equation 2x = 0 has one solution, x = 0.We conclude that a turning point exists

at x = 0. Furthermore, from the given function y = x2, we see that when x = 0 the

value of y is also 0, so a turning point exists at the point with coordinates (0, 0). To

determine whether this point is a maximum or minimum we use the �rst-derivative

test and examine the sign of
dy

dx
on either side of x = 0. To the left of x = 0, x is

clearly negative and so 2x is also negative. To the right of x = 0, x is positive and

so 2x is also positive. Hence y has a minimum at x = 0. A graph of y = x2 showing

this minimum is given in Figure 12.2.

(b) If y = −t2 + t + 1, then y′ = −2t + 1 and this function exists for all values of t.

Solving y′ = 0 we have

−2t + 1 = 0 and so t =
1

2

We conclude that there is a turning point at t =
1

2
. The y coordinate here is−

(
1

2

)2

+

1

2
+ 1 = 1

1

4
. We now inspect the sign of y′ to the left and to the right of t =

1

2
. A

little to the left, say at t = 0, we see that y′ = −2(0) + 1 = 1 which is positive. A

little to the right, say at t = 1, we see that y′ = −2(1)+ 1 = −1 which is negative.

Hence there is a maximum at the point

(
1

2
, 1

1

4

)
.

A graph of the function is shown in Figure 12.3.
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y

x

y = x2

Figure 12.2

The function y has a minimum at x = 0.

y

t

y = –t2 + t + 1

1–
2

Figure 12.3

The function y has a maximum at t =
1

2
.

(c) If y =
x3

3
+
x2

2
− 2x+ 1, then y′ = x2 + x− 2 and this function exists for all values

of x. Solving y′ = 0 we �nd

x2 + x− 2 = 0

(x− 1)(x+ 2) = 0

x = 1,−2

There are therefore two turning points, one at x = 1 and one at x = −2. We consider

each in turn.

At x = 1, we examine the sign of y′ to the left and to the right of x = 1. A little way

to the left, say at x = 0, we see that y′ = −2 which is negative. A little to the right,

say at x = 2, we see that y′ = 22 + 2 − 2 = 4 which is positive. So the point where

x = 1 is a minimum.

At x = −2, we examine the sign of y′ to the left and to the right of x = −2. A little

way to the left, say at x = −3, we see that y′ = (−3)2 + (−3) − 2 = 4 which is

positive. A little to the right, say at x = −1, we see that y′ = (−1)2+(−1)−2 = −2

which is negative. So the point where x = −2 is a maximum.

A graph of the function is shown in Figure 12.4.

(d) Recall that the modulus function y = |t| is de�ned as follows:

y = |t| =

{
−t t 6 0

t t > 0

A graph of this function was given in Figure 10.13(a) and this should be looked at

before continuing. Note that
dy

dt
= −1 for t negative, and

dy

dt
= +1 for t positive.

The derivative is not de�ned at t = 0 because of the corner there. There are no points

when
dy

dt
= 0. Because the derivative is not de�ned at t = 0 this point requires

further scrutiny. To the left of t = 0,
dy

dt
< 0; to the right,

dy

dt
> 0 and so t = 0 is a

minimum point.

y

x–2

1

x2
—
2

x3
—
3

y =      + – 2x + 1

Figure 12.4

The function y has a maximum at x = −2

and a minimum at x = 1.
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y

x

dy 
—
dx

> 0

dy 
—
dx

= 0

dy 
—
dx

< 0

Figure 12.5

The derivative
dy

dx
decreases on

passing through a maximum point.

y

x

dy 
—
dx

> 0

dy 
—
dx

= 0

dy 
—
dx

< 0

Figure 12.6

The derivative
dy

dx
increases on passing

through a minimum point.

Rather than examine the sign of y′ on both sides of the point, a second-derivative

test may be used. On passing through a maximum point y′ changes from positive to 0

to negative, as shown in Figure 12.5. Hence, y′ is decreasing. If y′′ is negative then this

indicates y′ is decreasing and the point is therefore a maximum point. Conversely, on

passing through a minimum point, y′ increases, going from negative to 0 to positive (see

Figure 12.6). If y′′ is positive then y′ is increasing and this indicates a minimum point.

So, having located the points where y′ = 0, we look at the second derivative, y′′. Thus

y′′ > 0 implies a minimum point; y′′ < 0 implies a maximum point. If y′′ = 0, then we

must return to the earlier, more basic test of examining y′ on both sides of the point. In

summary:

The second-derivative test to distinguish maxima from minima:

If y′ = 0 and y′′ < 0 at a point, then this indicates that the point is a maximum

turning point.

If y′ = 0 and y′′ > 0 at a point, then this indicates that the point is a minimum

turning point.

If y′ = 0 and y′′ = 0 at a point, the second-derivative test fails and you must

use the �rst-derivative test.

Example 12.2 Use the second-derivative test to �nd all maximum and minimum points of the functions

in Example 12.1.

Solution (a) Given y = x2 then y′ = 2x and y′′ = 2. We locate the position of maximum and

minimum points by solving y′ = 0 and so such a point exists at x = 0. Evaluating

y′′ at this point we see that y′′(0) = 2 which is positive. Using the second-derivative

test we conclude that the point is a minimum.

(b) Given y = −t2 + t + 1 then y′ = −2t + 1 and y′′ = −2. Solving y′ = 0 we �nd

t =
1

2
. Evaluating y′′ at this point we �nd y′′

(
1

2

)
= −2 which is negative. Using

the second-derivative test we conclude that t =
1

2
is a maximum point.

(c) Given y =
x3

3
+
x2

2
− 2x + 1, then y′ = x2 + x − 2 and y′′ = 2x + 1. y′ = 0

at x = 1 and x = −2. At x = 1, y′′ = 3 which is positive and so the point
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is a minimum. At x = −2, y′′ = −3 which is negative and so the point is a

maximum.

(d) y′ =





−1 t < 0

1 t > 0

unde�ned at t = 0

Since y′(0) is unde�ned, we use the �rst-derivative test. This was employed in

Example 12.1.

Engineering application 12.1

Risetime for a second-order electrical system

Consider the electrical system illustrated in Figure 12.7. The input voltage, vi, is

applied to terminals a--b. The output from the system is a voltage, vo, measured across

the terminals c--d. The easiest way to determine the time response of this system to

a particular input is to use the technique of Laplace transforms (see Chapter 21).

When a step input is applied to the system, the general form of the response de-

pends on whether a quantity called the damping ratio, ζ , is such that ζ > 1, ζ = 1 or

ζ < 1. The quantity ζ itself depends upon the values of L,C and R. This is illustrated

in Figure 12.8. If the damping ratio, ζ < 1, then vo overshoots its �nal value and the

system is said to be underdamped. For this case it can be shown that

vo = U −Ue−αt

(
cos(βt)+

α sin(βt)

β

)
for t > 0 (12.1)

whereU is the height of a step input applied at t = 0, and

α =
R

2L
(12.2)

ωr =
1

√
LC

resonant frequency (12.3)

β =

√
ω2
r − α2 natural frequency (12.4)

Engineers are often interested in knowing how quickly a system will respond to a

particular input. For many systems this is an important design criterion. One way of

characterizing the speed of response of the system is the time taken for the output to

reach a certain level in response to a step input. This is known as the rise time and

is often de�ned as the time taken for the output to rise from 10% to 90% of its �nal

value. However, by looking at the underdamped response illustrated in Figure 12.8 it

is clear that the time, tm, required for the output to reach its maximum value would

also provide an indicator of system response time. As the derivative of a function is

zero at a maximum point it is possible to calculate this time.

Differentiating Equation (12.1) and using the product rule,

dvo
dt

=
d

dt

(
U −Ue−αt

(
cos(βt)+

α sin(βt)

β

))
t > 0

= 0 −U
d

dt
(e−αt cos(βt))−U

d

dt

(
e−αtα sin(βt)

β

)

➔
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= −U (−αe−αt cos(βt)− e−αtβ sin(βt))

−U

(
−αe−αtα sin(βt)

β
+

e−αtαβ cos(βt)

β

)

= −Ue−αt

(
−α cos(βt)− β sin(βt)−

α2 sin(βt)

β
+ α cos(βt)

)

= Ue−αt

(
β +

α2

β

)
sin(βt)

At a turning point
dvo
dt

= 0. Hence

Ue−αt

(
β2 + α2

β

)
sin(βt) = 0

a c

b

R L

C yoyi

d

Figure 12.7

A second-order electrical system.

z < 1

z = 1

z > 1

yo(t)

U

tm                                                                     t

Figure 12.8

Response of a second-order system to a step

input.

This occurs when sin(βt) = 0, which corresponds to t = kπ/β, k = 0, 1, 2 . . . .

It is now straightforward to calculate tm, once β has been calculated, using Equa-

tions (12.2), (12.3) and (12.4) for particular values of R,L and C. You may like to

show that the turning point corresponding to k = 1 is a maximum by calculating
d2vo
dt2

and carrying out the second-derivative test.

It is possible to check whether or not a system is underdamped using the following

formulae:

ζ =
R

Rc

damping ratio (12.5)

Rc = 2

√
L

C
critical resistance (12.6)

Let us look at a speci�c case with typical values L = 40 mH,C = 1 µF, R = 200�.

Using Equations (12.5) and (12.6), we �nd

Rc = 2

√
L

C
= 2

√
4 × 10−2

1 × 10−6
= 400

ζ =
R

Rc

=
200

400
= 0.5
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and therefore the system is underdamped because ζ < 1.

Also,

ωr =
1

√
LC

= 5000

α =
R

2L
=

200

2 × 4 × 10−2
= 2500

β =

√
ω2
r − α2 =

√
50002 − 25002 = 4330

Finally,

tm =
π

4330
= 7.26 × 10−4 = 726 µs

We conclude for this case that the risetime is 726 µs.

Engineering application 12.2

Maximum power transfer

Consider the circuit of Figure 12.9 in which a non-ideal voltage source is connected

to a variable load resistor with resistance RL. The source voltage isV and its internal

resistance is RS. Calculate the value of RL which results in the maximum power being

transferred from the voltage source to the load resistor. This is an essential piece of

information for engineers involved in the design of power systems. Often an impor-

tant design consideration is to transfer the maximum amount from the power source

to the point where the power is being consumed.

RS

RL

i

V

+

–

Non-ideal 

voltage 

source

Figure 12.9

Maximum power transfer occurs when RL = RS.

Solution

Let i be the current flowing in the circuit. Using Kirchhoff’s voltage law and Ohm’s

law gives

V = i(RS + RL)

Let P be the power developed in the load resistor. Then,

P = i2RL =
V 2RL

(RS + RL)
2

➔
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Clearly P depends on the value of RL. Differentiating w.r.t. RL and using the quotient

rule, we obtain

dP

dRL

= V 2 1(RS + RL)
2 − RL2(RS + RL)

(RS + RL)
4

= V 2 (RS + RL)− 2RL

(RS + RL)
3

= V 2 RS − RL

(RS + RL)
3

Equating
dP

dRL

to zero to obtain the turning point gives

V 2 RS − RL

(RS + RL)
3

= 0

that is,

RL = RS

So a turning point occurs when the load resistance equals the source resistance. We

need to check if this is a maximum turning point, so

dP

dRL

= V 2 RS − RL

(RS + RL)
3

d2P

dR2
L

= V 2 −1(RS + RL)
3 − (RS − RL)3(RS + RL)

2

(RS + RL)
6

= V 2 −(RS + RL)− 3(RS − RL)

(RS + RL)
4

= V 2 2RL − 4RS

(RS + RL)
4

= 2V 2 (RL − 2RS)

(RS + RL)
4

When RL = RS, this expression is negative and so the turning point is a maximum.

Therefore, maximum power transfer occurs when the load resistance equals the

source resistance.

EXERCISES 12.2

1 Locate the position of any turning points of the

following functions and determine whether they are

maxima or minima.

(a) y = x2 − x+ 6 (b) y = 2x2 + 3x+ 1

(c) y = x− 1 (d) y = 1 + x− 2x2

(e) y = x3 − 12x (f) y = 7 + 3x

2 Locate and identify all turning points of

(a) y =
x3

3
− 3x2 + 8x+ 1

(b) y = te−t

(c) y = x4 − 2x2
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Solutions

1 (a)

(
1

2
, 5

3

4

)
, minimum

(b) (−0.75,−0.125), minimum

(c) none

(d) (0.25, 1.125), maximum

(e) (2,−16) minimum, (−2, 16) maximum

(f) none

2 (a)

(
2,

23

3

)
maximum,

(
4,

19

3

)
minimum

(b) (1, 0.368), maximum

(c) (0, 0) maximum, (1,−1) minimum, (−1,−1)

minimum

Technical Computing Exercises 12.2

Computer languages such as MATLAB® are matrix

orientated and do not always provide the ability to

differentiate functions. Others such as Wolfram

Mathematica and Maplesoft Maple have this capability by

default. If you are attempting the following exercises in

MATLAB® you may require the Symbolic Math Toolbox

which is an add-on for the main program.

(a) Use a technical computing language to �nd y′ and

y′′ when y = e−0.2t cos t.

(b) Solve y′ = 0 and hence locate any turning points

in the interval [0, 6] and determine their type.

(c) Plot a graph of y and check the position of

the turning points with the results obtained in

part (b).

12.3 POINTS OF INFLEXION

Recall from Section 11.4 that when the gradient of a curve, that is y′, is increasing,

the second derivative y′′ is positive and the curve is said to be concave up. When the

gradient is decreasing the second derivative y′′ is negative and the curve is said to be

concave down. A point at which the concavity of a curve changes from concave up to

concave down or vice versa is called a point of inflexion.

A point of inflexion is a point on a curve where the concavity changes from concave

up to concave down or vice versa. It follows that y′′ = 0 at such a point or, in

exceptional cases, y′′ does not exist.

Figure 12.10(a) shows a graph for which a point of inflexion occurs at the point

marked A. Note that at this point the gradient of the graph is zero. Figure 12.10(b) shows

a graph with points of inflexion occurring at A and B. Note that at these points the

gradient of the graph is not zero.

To locate a point of inflexion we must look for a point where y′′ = 0 or does not exist.

We must then examine the concavity of the curve on either side of such a point.
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A

A
B

(a)
x

y

(b)
x

y

Figure 12.10

(a) There is a point of inflexion at A; (b) there are points of inflexion at A

and B.

y = x3

y'' > 0

x

y

y'' = 0

y'' < 0

Figure 12.11

The second derivative, y′′, changes

sign at x = 0.

y = x4

x

y

y' < 0, y'' > 0                                   y' > 0, y'' > 0

Figure 12.12

The derivative, y′, changes sign at x = 0, but

y′′ remains positive.

Example 12.3 Locate any points of inflexion of the curve y = x3.

Solution Given y = x3, then y′ = 3x2 and y′′ = 6x. Points of inflexion can only occur where

y′′ = 0 or does not exist. Clearly y′′ exists for all x and is zero when x = 0. It is possi-

ble that a point of inflexion occurs when x = 0 but we must examine the concavity of

the curve on either side. To the left of x = 0, x is negative and so y′′ is negative. Hence

to the left, the curve is concave down. To the right of x = 0, x is positive and so y′′

is positive. Hence to the right, the curve is concave up. Thus the concavity changes at

x = 0. We conclude that x = 0 is a point of inflexion. A graph is shown in Figure 12.11.

Note that at this point of inflexion y′ = 0 too.

A common error is to state that if y′ = y′′ = 0 then there is a point of inflexion. This

is not always true; consider the next example.

Example 12.4 Locate all maximum points, minimum points and points of inflexion of y = x4.

Solution y′ = 4x3 y′′ = 12x2
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y′ = 0 at x = 0. Also y′′ = 0 at x = 0 and so the second-derivative test is of no help

in determining the position of maximum and minimum points. We return to examine y′

on both sides of x = 0. To the left of x = 0, y′ < 0; to the right y′ > 0 and so x = 0 is

a minimum point. Figure 12.12 illustrates this. Note that at the point x = 0, the second

derivative y′′ is zero. However, y′′ is positive both to the left and to the right of x = 0;

thus x = 0 is not a point of inflexion.

Example 12.5 Find any maximum points, minimum points and points of inflexion of y = x3 + 2x2.

Solution Given y = x3 + 2x2 then y′ = 3x2 + 4x and y′′ = 6x+ 4. Let us �rst �nd any maximum

and minimum points. The �rst derivative y′ is zero when 3x2 +4x = x(3x+4) = 0, that

is when x = 0 or x = −
4

3
. Using the second-derivative test we �nd y′′(0) = 4 which

corresponds to a minimum point. Similarly, y′′

(
−

4

3

)
= −4 which corresponds to a

maximum point.

We seek points of inflexion by looking for points where y′′ = 0 and then examining

the concavity on either side. y′′ = 0 when x = −
2

3
.

Since y′′ is negative when x < −
2

3
, then y′ is decreasing there, that is the function is

concave down. Also, y′′ is positive when x > −
2

3
and so y′ is then increasing, that is the

function is concave up. Hence there is a point of inflexion when x = −
2

3
. The graph of

y = x3 + 2x2 is shown in Figure 12.13.

4–
3

2–
3

––

y

x

Figure 12.13

There is a maximum at x = −
4

3
, a minimum at

x = 0 and a point of inflexion at x = −
2

3
.

From Examples 12.4 and 12.5 we note that:

(1) The condition y′′ = 0 is not suf�cient to ensure a point is a point of inflexion.

The concavity of the function on either side of the point where y′′ = 0 must be

considered.

(2) At a point of inflexion it is not necessary to have y′ = 0.

(3) At a point of inflexion y′′ = 0 or y′′ does not exist.
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EXERCISES 12.3

1 Locate the maximum points, minimum points and

points of inflexion of

(a) y = 3t2 + 6t − 1

(b) y = 4 − t − t2

(c) y =
x3

3
−
x2

2
+ 10

(d) y =
x3

3
+
x2

2
− 20x+ 7

(e) y = t5

(f) y = t6

(g) y = x4 − 2x2

(h) z = t +
1

t

(i) y = x5 −
5x3

3

(j) y = t1/3

Solutions

1 (a) (−1,−4) minimum

(b) (−0.5, 4.25) maximum

(c) (0, 10) maximum,

(
1,

59

6

)
minimum,

(
1

2
,
119

12

)
point of inflexion

(d)

(
4,−

131

3

)
minimum, (−5, 77.83) maximum,

(
−
1

2
, 17.08

)
point of inflexion

(e) (0, 0) point of inflexion

(f) (0, 0) minimum

(g) (0, 0) maximum, (1,−1) minimum,

(−1,−1) minimum,

(
1

√
3
,−

5

9

)
,

(
−

1
√
3
,−

5

9

)

points of inflexion

(h) (1, 2) minimum, (−1,−2) maximum

(i)

(
1,−

2

3

)
minimum,

(
−1,

2

3

)
maximum,

(0, 0),

(
1

√
2
,−

7

12
√
2

)
,

(
−

1
√
2
,

7

12
√
2

)
are

also points of inflexion

(j) (0, 0) point of inflexion

Technical Computing Exercises 12.3

(a) Use a technical computing language such as

MATLAB® to produce a graph of y = 3t1/5.

(b) From your graph �nd the position of any maxima,

minima or points of inflexion.

12.4 THE NEWTON--RAPHSON METHOD FOR SOLVING
EQUATIONS

We often need to solve equations such as

f (x) = 2x4 − x3 + x2 − 10 = 0

f (t) = 2e−3t − t2 = 0

f (t) = t − sin t = 0

The Newton--Raphson technique is a method of obtaining an approximate solution, or

root, of such equations. It involves the use of differentiation.
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y = f (x)

B

AC

x x

f (x)

^ x2              x1

Figure 12.14

The tangent at B intersects the x axis at C.

Suppose we wish to �nd a root of f (x) = 0. Figure 12.14 illustrates the curve y =

f (x). Roots of the equation f (x) = 0 correspond to where the curve cuts the x axis.

One such root is illustrated and is labelled x = x̂. Suppose we know that x = x1 is an

approximate solution. Let A be the point on the x axis where x = x1 and let B be the

point on the curve where x = x1. The tangent at B is drawn and cuts the x axis at C where

x = x2. Clearly x = x2 is a better approximation to x̂ than x1. We now �nd x2 in terms of

the known value, x1.

AB = distance of B above the x axis = f (x1)

CA = x1 − x2

Hence,

gradient of line CB =
AB

CA
=

f (x1)

x1 − x2

But CB is a tangent to the curve at x = x1 and so has gradient f ′(x1). Hence,

f ′(x1) =
f (x1)

x1 − x2

x1 − x2 =
f (x1)

f ′(x1)

and therefore,

x2 = x1 −
f (x1)

f ′(x1)
(12.7)

Equation (12.7) is known as the Newton--Raphson formula. Knowing an approximate

root of f (x) = 0, that is x1, the Newton--Raphson formula enables us to calculate an

improved approximate root, x2.

Example 12.6 Given that x1 = 7.5 is an approximate root of ex − 6x3 = 0, use the Newton--Raphson

technique to �nd an improved value.

Solution x1 = 7.5

f (x)= ex − 6x3 f (x1)= −723

f ′(x)= ex − 18x2 f ′(x1)= 796
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Using the Newton--Raphson technique the value of x2 is found:

x2 = x1 −
f (x1)

f ′(x1)
= 7.5 −

(−723)

796
= 8.41

An improved estimate of the root of ex − 6x3 = 0 is x = 8.41. To two decimal places

the true answer is x = 8.05.

The Newton--Raphson technique can be used repeatedly as illustrated in

Example 12.7. This generates a sequence of approximate solutions which may converge

to the required root. Each application of the method is known as an iteration.

Example 12.7 A root of 3 sin x = x is near to x = 2.5. Use two iterations of the Newton--Raphson

technique to �nd a more accurate approximation.

Solution The equation must �rst be written in the form f (x) = 0, that is

f (x) = 3 sin x− x = 0

Then

x1 = 2.5

f (x) = 3 sin x− x f (x1) = −0.705

f ′(x) = 3 cos x− 1 f ′(x1) = −3.403

Then

x2 = 2.5 −
(−0.705)

(−3.403)
= 2.293

The process is repeated with x1 = 2.293 as the initial approximation:

x1 = 2.293 f (x1) = −0.042 f ′(x1) = −2.983

Then

x2 = 2.293 −
(−0.042)

(−2.983)
= 2.279

Using two iterations of the Newton--Raphson technique, we obtain x = 2.28 as an im-

proved estimate of the root.

Example 12.8 An approximate root of

x3 − 2x2 − 5 = 0

is x = 3. By using the Newton--Raphson technique repeatedly, determine the value of

the root correct to two decimal places.

Solution We have

x1 = 3

f (x) = x3 − 2x2 − 5 f (x1) = 4

f ′(x) = 3x2 − 4x f ′(x1) = 15

Hence

x2 = 3 −
4

15
= 2.733
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An improved estimate of the value of the root is 2.73 (2 d.p.). The method is used again,

taking x1 = 2.73 as the initial approximation:

x1 = 2.73 f (x1) = 0.441 f ′(x1) = 11.439

x2 = 2.73 −
0.441

11.439
= 2.691

An improved estimate is x = 2.69 (2 d.p.). The method is used again:

x1 = 2.69 f (x1) = −0.007 f ′(x1) = 10.948

So

x2 = 2.69 −
(−0.007)

10.948
= 2.691

There is no change in the value of the approximate root and so to two decimal places the

root of f (x) = 0 is x = 2.69.

The calculation can be performed in MATLAB® using the roots function:

roots([1 -2 0 -5])

which will produce the real root of 2.69, agreeing with our numerical calculation using

the Newton–Raphson method. The two complex roots of the equation will also be re-

turned. Technical computing languages make use of a variety of numerical methods and

to some extent the user has to take it on trust that they are correctly implemented and

tested so that they always produce the correct result.

The previous examples illustrate the general Newton--Raphson formula.

If x = xn is an approximate root of f (x) = 0, then an improved estimate, xn+1, is

given by

xn+1 = xn −
f (xn)

f ′(xn)

The Newton--Raphson formula is easy to program in a loop structure. Exit from the loop

is usually conditional upon |xn+1 − xn| being smaller than some prescribed very small

value. This condition shows that successive approximate roots are very close to each

other.

Engineering application 12.3

Series diode--resistor circuit

Consider the circuit of Figure 12.15(a). A diode is in series with a resistor with re-

sistance R. The voltage across the diode is denoted by V and the current through the

diode is denoted by I. The I--V relationship for the diode is non-linear and is given

by

I = Is(e
40V − 1)

where Is is the reverse saturation current of the diode. Given that the supply volt-

age,Vs, is 2 V, Is is 10
−14 AandR is 22 k�, calculate the steady-state values of I andV .

➔
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I I

Vs

Vs V

R

V

+

–

Point at which both 

the diode and the 

resistor equations 

are satisfied

Vs—
R

(a) (b)

Figure 12.15

A simple non-linear circuit: (a) series diode--resistor circuit; (b) resistor load line

superimposed on diode characteristic.

Solution

There are several ways to solve this problem. A dif�culty exists because the diode

I--V relationship is non-linear. One possibility is to draw a load line for the resistor

superimposed on the diode I--V characteristic, as shown in Figure 12.15(b). The load

line is an equation for the resistor characteristic written in terms of the voltage across

the diode, V , and the current through the diode, I. It is given by

Vs −V = IR

I = −
1

R
V +

Vs

R

This is a straight line with slope −
1

R
and vertical intercept

Vs

R
. When V = 0, I =

Vs

R
. This corresponds to all of the supply voltage being dropped across the resistor.

When V = Vs, I = 0. This corresponds to all of the supply voltage being dropped

across the diode. Therefore, these two limits correspond to the points within which

the circuit must operate. The solution to the circuit can be obtained by determining

the intercept of the diode characteristic and the load line. This is possible because

both the resistor characteristic and diode characteristic are formulated in terms of V

and I, and so any solution must have the same values of I andV for both components.

If an accurate graph is used, it is possible to obtain a reasonably good solution. An

alternative approach is to use the Newton--Raphson technique. Combining the two

component equations gives

−V +Vs = RIs(e
40V − 1)

Now R = 2.2 × 104, Is = 10−14,Vs = 2 and so

−V + 2 = 2.2 × 104 × 10−14(e40V − 1)

Now, de�ne f (V ) by

f (V ) = 2.2 × 10−10(e40V − 1)+V − 2

We wish to solve f (V ) = 0. We have

f ′(V ) = 2.2 × 10−10 × 40e40V + 1 = 8.8 × 10−9e40V + 1

Choose an initial guess of V1 = 0.5:

V2 = V1 −
f (V1)

f ′(V1)
= 0.5 −

2.2 × 10−10(e20 − 1)+ 0.5 − 2

8.8 × 10−9e20 + 1
= 0.7644
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With an equation of this complexity, it is better to use a computer or a programmable

calculator. Doing so gives

V5 = 0.6895, . . . ,V10 = 0.5770, . . . ,V14 = 0.5650

which is accurate to four decimal places.

It is useful to check the solution by independently calculating the current through

the diode using the two different expressions. So,

I = 10−14(e40×0.5650 − 1) = 6.53 × 10−5 A

I = −
0.5650

2.2 × 104
+

2

2.2 × 104
= 6.53 × 10−5 A

and therefore the solution is correct.

EXERCISES 12.4

1 Use the Newton--Raphson technique to �nd the value

of a root of the following equations correct to two

decimal places. An approximate root, x1, is given in

each case.

(a) 2 cos x = x2 x1 = 0.8

(b) 3x3 − 4x2 + 2x− 9 = 0 x1 = 2

(c) ex/2 − 5x = 0 x1 = 6

(d) ln x =
1

x
x1 = 1.6

(e) sin x+
2x

π
= 1 x1 = 0.6

2 Explain circumstances in which the Newton--Raphson

technique may fail to converge to a root of f (x) = 0.

Solutions

1 (a) 1.02 (b) 1.85 (c) 7.15 (d) 1.76 (e) 0.64

12.5 DIFFERENTIATION OF VECTORS

Consider Figure 12.16. If r represents the position vector of an object and that object

moves along a curve C, then the position vector will be dependent upon the time, t. We

write r = r(t) to show the dependence upon time. Suppose that the object is at the point

P with position vector r at time t and at the point Q with position vector r(t + δt) at

the later time t + δt as shown in Figure 12.17. Then ~PQ represents the displacement

vector of the object during the interval of time δt. The length of the displacement vector

represents the distance travelled while its direction gives the direction of motion. The

average velocity during the time from t to t + δt is the displacement vector divided by

the time interval δt, that is

average velocity =
~PQ

δt
=

r(t + δt)− r(t)

δt

The instantaneous velocity, v, is given by

v = lim
δt→0

r(t + δt)− r(t)

δt
=

dr

dt
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y

P
C

r

x

Figure 12.16

Position vector of a point P on a

curve C.

P

Q

r(t + dt)

r(t)
PQ

Figure 12.17

Vector ~PQ represents the displacement of

the object during the time interval δt.

Now, since the x and y coordinates of the object depend upon the time, we can write the

position vector r as

r(t) = x(t)i + y(t)j

Therefore,

r(t + δt) = x(t + δt)i + y(t + δt)j

so that

v(t) = lim
δt→0

x(t + δt)i + y(t + δt)j − x(t)i − y(t)j

δt

= lim
δt→0

{
x(t + δt)− x(t)

δt
i +

y(t + δt)− y(t)

δt
j

}

=
dx

dt
i +

dy

dt
j

often abbreviated to v = ṙ = ẋ i + ẏ j. Recall the dot notation for derivatives w.r.t.

time which is commonly used when differentiating vectors. So the velocity vector is

the derivative of the position vector with respect to time. This result generalizes in an

obvious way to three dimensions. If

r(t) = x(t)i + y(t)j + z(t)k

then

ṙ(t) = ẋ(t)i + ẏ(t)j + ż(t)k

The magnitude of the velocity vector gives the speed of the object. We can de�ne the

acceleration in a similar way:

a =
dv

dt
=

d2r

dt2
= r̈ = ẍ i + ÿj + z̈k

Inmore general situations, wewill not be dealing with position vectors but other physical

quantities such as time-dependent electric or magnetic �elds.

Example 12.9 If a = 3t2i + cos 2tj, �nd

(a)
da

dt
(b)

∣∣∣∣
da

dt

∣∣∣∣ (c)
d2a

dt2
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Solution (a) If a = 3t2i + cos 2tj, then differentiation with respect to t yields

da

dt
= 6ti − 2 sin 2tj

(b)

∣∣∣∣
da

dt

∣∣∣∣ =
√
(6t)2 + (−2 sin 2t)2 =

√
36t2 + 4 sin2 2t

(c)
d2a

dt2
= 6i − 4 cos 2tj

It is possible to differentiate more complicated expressions involving vectors pro-

vided certain rules are adhered to. If a and b are vectors and c is a scalar, all functions

of time t, then

d

dt
(ca) = c

da

dt
+

dc

dt
a

d

dt
(a · b) = a ·

db

dt
+

da

dt
·b

d

dt
(a + b) =

da

dt
+

db

dt

d

dt
(a × b) = a ×

db

dt
+

da

dt
× b

Example 12.10 If a = 3ti − t2j and b = 2t2i + 3j, verify

(a)
d

dt
(a · b) = a ·

db

dt
+

da

dt
· b (b)

d

dt
(a × b) = a ×

db

dt
+

da

dt
× b

Solution (a) a · b = (3ti − t2j) · (2t2i + 3j) = 6t3 − 3t2

d

dt
(a · b) = 18t2 − 6t

Also

da

dt
= 3i − 2tj

db

dt
= 4ti

So,

a ·
db

dt
+ b ·

da

dt
= (3ti − t2j) · (4ti)+ (2t2i + 3j) · (3i − 2tj)

= 12t2 + 6t2 − 6t = 18t2 − 6t

We have veri�ed
d

dt
(a · b) = a ·

db

dt
+

da

dt
· b.

(b) a × b=

∣∣∣∣∣∣

i j k

3t −t2 0

2t2 3 0

∣∣∣∣∣∣

= (9t + 2t4)k

d

dt
(a × b) = (9 + 8t3)k
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Also,

a ×
db

dt
=

∣∣∣∣∣∣

i j k

3t −t2 0

4t 0 0

∣∣∣∣∣∣

= 4t3k

da

dt
× b =

∣∣∣∣∣∣

i j k

3 −2t 0

2t2 3 0

∣∣∣∣∣∣

= (9 + 4t3)k

and so

a ×
db

dt
+

da

dt
× b = 4t3k + (9 + 4t3)k = (9 + 8t3)k =

d

dt
(a × b)

as required.

EXERCISES 12.5

1 If r = 3ti + 2t2j + t3k, �nd

(a)
dr

dt
(b)

d2r

dt2

2 Given B = te−t i + cos tj �nd

(a)
dB

dt
(b)

d2B

dt2

3 If r = 4t2i + 2tj − 7k evaluate r and
dr

dt
when t = 1.

4 If a = t3i − 7tk, and b = (2 + t)i + t2j − 2k,

(a) �nd a · b (b) �nd
da

dt
(c) �nd

db

dt

(d) show that
d

dt
(a ·b) = a ·

db

dt
+

da

dt
· b.

5 Given r = sin ti + cos tj, �nd

(a)r (b) r (c) |r|

Show that the position vector and velocity vector are

perpendicular.

6 Show r = 3e−t i + (2 + t)j satis�es

r̈ + ṙ =j

7 Given a = t2i − (4 − t)j,b = i + tj show

(a)
d

dt
(a × b) =

(
a ×

db

dt

)
+

(
da

dt
× b

)

(b)
d

dt
(a ·b) = a ·

db

dt
+ b ·

da

dt

Solutions

1 (a) 3i + 4tj + 3t2k

(b) 4j + 6tk

2 (a) (−te−t + e−t )i − sin tj

(b) e−t (t − 2)i − cos tj

3 4i + 2j − 7k, 8i + 2j

4 (a) t(t3 + 2t2 + 14) (b) 3t2i − 7k

(c) i + 2tj

5 (a) cos ti − sin tj (b) − sin ti− cos tj (c) 1
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REVIEW EXERCISES 12

1 Determine the position of all maximum points,

minimum points and points of inflexion of

(a) y = 2t3 − 21t2 + 60t + 9

(b) y = t(t2 − 1)

2 In Section 9.8 we showed that the impedance of an

LCR circuit can be written as

Z = R+ j

(
ωL−

1

ωC

)

(a) Find |Z|.

(b) For a given circuit, R, L andC are constants, and

ω can be varied. Find
d|Z|

dω
.

(c) For what value of ω will |Z| have a maximum or

minimum value? Does this value give a

maximum or minimum value of |Z|?

3 Use two iterations of the Newton--Raphson technique

to �nd an improved estimate of the root of

t3 = et

given t = 1.8 is an approximate root.

4 Given

a = (t2 + 1)i − j + tk

b = 2tj − k

�nd

(a)
da

dt
(b)

db

dt

(c)
d

dt
(a · b) (d)

d

dt
(a × b)

5 Use two iterations of the Newton--Raphson method

to �nd an improved estimate of the root of

sin t = 1 −
t

2
, 0 6 t 6 π, given t = 0.7 is an

approximate root.

6 Determine the position of all maximum points,

minimum points and points of inflexion of

(a) y = e−x
2

(b) y = t3e−t

(c) y = x3 − 3x2 + 3x− 1

(d) y = ex + e−x

(e) y = |t| − t2

Solutions

1 (a) (2, 61) maximum, (5, 34) minimum,

(
7

2
,
95

2

)

point of inflexion

(b)

(
1

√
3
,−

2

3
√
3

)
minimum,

(
−

1
√
3
,

2

3
√
3

)

maximum, (0, 0) point of inflexion

2 (a)

√
R2 + ω2L2 −

2L

C
+

1

ω2C2

(b)
ωL2 − 1/ω3C2

√
R2 + ω2L2 − 2L/C + 1/(ω2C2)

(c) ω =
1

√
LC

produces a minimum value of Z

3 1.859, 1.857

4 (a) 2ti + k

(b) 2j

(c) −3

(d) −4ti + 2tj + (6t2 + 2)k

5 0.705, 0.705

6 (a) (0, 1) is a maximum

Points of inflexion when x = ±

√
2

2
(b) (0, 0) point of inflexion, (3, 1.34) maximum.

Further points of inflexion when t = 4.73, 1.27

(c) (1, 0) point of inflexion

(d) (0, 2) minimum

(e) (0.5, 0.25) maximum, (−0.5, 0.25) maximum,

minimum at (0, 0) (y′ does not exist here)
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13.1 INTRODUCTION

When a function, f (x), is known we can differentiate it to obtain the derivative,
d f

dx
.

The reverse process is to obtain the function f (x) from knowledge of its derivative. This

process is called integration. Thus, integration is the reverse of differentiation.

A problem related to integration is to �nd the area between a curve and the x axis.

At �rst sight it may not be clear that the calculation of area is connected to integration.

This chapter aims to explain the connection. An area can have various interpretations.

For example, the area under a graph of power used by a motor plotted against time

represents the total energy used by the motor in a particular time period. The area under

a graph of current flow into a capacitor against time represents the total charge stored

by the capacitor.

Circuits to carry out integration are used extensively in electronics. For example, a

circuit to display the total distance travelled by a car may have a speed signal as input and

may integrate this signal to give the distance travelled as output. Integrator circuits are

widely used in analogue computers. These computers can be used to model a physical

system and observe its response to a range of inputs. The advantage of this approach is

that the system parameters can be varied in order to see what effect they have on system

performance. This avoids the need to build the actual system and allows design ideas to

be explored relatively quickly and cheaply by an engineer.
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13.2 ELEMENTARY INTEGRATION

Consider the following problem: given
dy

dx
= 2x, �nd y(x). Differentiation of the func-

tion y(x) = x2 + c, where c is a constant, yields
dy

dx
= 2x for any c. Therefore y(x) =

x2 +c is a solution to the problem. As c can be any constant, there are an in�nite number

of different solutions. The constant c is known as a constant of integration. In this ex-

ample, the function y has been found from a knowledge of its derivative. We say 2x has

been integrated, yielding x2+c. To indicate the process of integration the symbols
∫
and

dx are used. The
∫
sign denotes that integration is to be performed and the dx indicates

that x is the independent variable. Returning to the previous problem, we write

dy

dx
= 2x

y =

∫
2x dx = x2 + c

↑ ↑ ↑

symbols for constant of integration

integration

In general, if

dy

dx
= f (x)

then

y =

∫
f (x) dx

Consider a simple example.

Example 13.1 Given
dy

dx
= cos x− x, �nd y.

Solution We need to �nd a function which, when differentiated, yields cos x− x. Differentiating

sin x yields cos x, while differentiating −x2/2 yields −x. Hence,

y =

∫
(cos x− x) dx = sin x−

x2

2
+ c

where c is the constant of integration. Usually brackets are not used and the integral is

written simply as
∫
cos x− x dx.

The function to be integrated is known as the integrand. In Example 13.1 the integrand

is cos x− x.
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Example 13.2 Find
d

dx

(
xn+1

n+ 1
+ c

)
and hence deduce that

∫
xn dx =

xn+1

n+ 1
+ c.

Solution From Table 10.1 we �nd

d

dx

(
xn+1

n+ 1
+ c

)
=

d

dx

(
xn+1

n+ 1

)
+

d

dx
(c)

using the linearity

of differentiation

=
1

n+ 1

d

dx
(xn+1)+

d

dx
(c)

again using the

linearity of differentiation

=
1

n+ 1
{(n+ 1)xn} + 0 using Table 10.1

= xn

Consequently, reversing the process we �nd

∫
xn dx =

xn+1

n+ 1
+ c

as required. Note that this result is invalid if n = −1 and so this result could not be

applied to the integral
∫
(1/x) dx.

Table 13.1 lists several common functions and their integrals. Although the variable

x is used throughout Table 13.1, we can use this table to integrate functions of other

variables, for example t and z.

Example 13.3 Use Table 13.1 to integrate the following functions:

(a) x4

(b) cos kx, where k is a constant

(c) sin(3x+ 2)

(d) 5.9

(e) tan(6t − 4)

(f) e−3z

(g)
1

x2

(h) cos 100nπt, where n is a constant

Solution (a) From Table 13.1, we �nd
∫
xn dx =

xn+1

n+ 1
+ c, n 6= −1. To �nd

∫
x4 dx let n = 4;

we obtain
∫
x4 dx =

x5

5
+ c

(b) From Table 13.1, we �nd
∫
cos(ax) dx =

sin(ax)

a
+ c. In this case a = k and so

∫
cos kx dx =

sin kx

k
+ c
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Table 13.1

The integrals of some common functions.

f (x)
∫
f (x) dx

k, constant kx+ c

xn
xn+1

n+ 1
+ c n 6= −1

x−1 =
1

x
ln |x| + c

ex ex + c

e−x −e−x + c

eax
eax

a
+ c

sin x − cos x+ c

sin ax
− cos ax

a
+ c

sin(ax+ b)
− cos(ax+ b)

a
+ c

cos x sin x+ c

cos ax
sin ax

a
+ c

f (x)
∫
f (x) dx

cos(ax+ b)
sin(ax+ b)

a
+ c

tan x ln | sec x| + c

tan ax
ln | sec ax|

a
+ c

tan(ax+ b)
ln | sec(ax+ b)|

a
+ c

cosec(ax+ b)
1

a
{ln | cosec(ax+ b)

− cot(ax+ b)|} + c

sec(ax+ b)
1

a
{ln | sec(ax+ b)

+ tan(ax+ b)|} + c

cot(ax+ b)
1

a
{ln | sin(ax+ b)|} + c

1
√
a2 − x2

sin−1 x

a
+ c

1

a2 + x2
1

a
tan−1 x

a
+ c

Note that a, b, n and c are constants.When integrating trigonometric functions,

angles must be in radians.

(c) From Table 13.1, we �nd
∫
sin(ax+ b) dx =

− cos(ax+ b)

a
+ c. In this case a = 3

and b = 2, and so

∫
sin(3x+ 2) dx =

− cos(3x+ 2)

3
+ c

(d) From Table 13.1, we �nd that if k is a constant then
∫
k dx = kx+ c. Hence,

∫
5.9 dx = 5.9x+ c

(e) In this example, the independent variable is t but nevertheless from Table 13.1 we

can deduce
∫

tan(at + b) dt =
ln | sec(at + b)|

a
+ c

Hence with a = 6 and b = −4, we obtain

∫
tan(6t − 4) dt =

ln | sec(6t − 4)|

6
+ c
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(f) The independent variable is z but from Table 13.1 we can deduce
∫
eaz dz =

eaz

a
+c.

Hence, taking a = −3 we obtain
∫

e−3z dz =
e−3z

−3
+ c = −

e−3z

3
+ c

(g) Since
1

x2
= x−2, we �nd

∫
1

x2
dx =

∫
x−2 dx =

x−1

−1
+ c = −

1

x
+ c

(h) When integrating cos 100nπt with respect to t, note that 100nπ is a constant. Hence,

using part (b) we �nd
∫

cos 100nπt dt =
sin 100nπt

100nπ
+ c

13.2.1 Integration as a linear operator

Integration, like differentiation, is a linear operator. If f and g are two functions of x,

then

∫
f + g dx =

∫
f dx+

∫
g dx

This states that the integral of a sum of functions is the sum of the integrals of the indi-

vidual functions. If A is a constant and f a function of x, then

∫
A f dx = A

∫
f dx

Thus, constant factors can be taken through the integral sign.

If A and B are constants, and f and g are functions of x, then

∫
A f + Bg dx = A

∫
f dx+ B

∫
g dx

These three properties are all consequences of the fact that integration is a linear op-

erator. Note that the �rst two are special cases of the third. The properties are used in

Example 13.4.

Example 13.4 Use Table 13.1 and the properties of a linear operator to integrate the following

expressions:

(a) x2 + 9 (d) (t + 2)2 (g) 3 sin 4t

(b) 3t4 −
√
t (e)

1

z
+ z (h) 4 cos(9x+ 2)

(c)
1

x
(f) 4e2z (i) 3e2z
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(j)
sin x+ cos x

2
(l) tan

(
z− 1

2

)
(n) 3 sec(4x− 1)

(k) 2t − et (o) 2 cot 9x(m) et + e−t

(p) 7 cosec(π/3)

Solution (a)

∫
x2 + 9 dx=

∫
x2 dx+

∫
9 dx using linearity

=
x3

3
+ 9x+ c using Table 13.1

Note that only a single constant of integration is required.

(b)

∫
3t4 −

√
t dt = 3

∫
t4 dt −

∫
t1/2 dt using linearity

= 3

(
t5

5

)
−
t3/2

3/2
+ c using Table 13.1

=
3t5

5
−

2t3/2

3
+ c

(c)

∫
1

x
dx = ln |x| + c using Table 13.1.

Sometimes it is convenient to use the laws of logarithms to rewrite answers involving

logarithms. For example, we can write ln |x| + c as ln |x| + ln |A| where c = ln |A|.

This enables us to write the integral as

∫
1

x
dx = ln |Ax|

(d)

∫
(t + 2)2 dt =

∫
t2 + 4t + 4 dt =

t3

3
+ 2t2 + 4t + c

(e)

∫
1

z
+ z dz = ln |z| +

z2

2
+ c

(f)

∫
4e2z dz =

4e2z

2
+ c = 2e2z + c

(g)

∫
3 sin(4t) dt = −

3 cos 4t

4
+ c

(h)

∫
4 cos(9x+ 2) dx =

4 sin(9x+ 2)

9
+ c

(i)

∫
3e2z dz =

3e2z

2
+ c

(j)

∫
sin x+ cos x

2
dx =

− cos x+ sin x

2
+ c

(k)

∫
2t − et dt = t2 − et + c

(l)

∫
tan

(
z− 1

2

)
dz = 2 ln

∣∣∣∣sec
(
z− 1

2

)∣∣∣∣+ c
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(m)

∫
et + e−t dt = et − e−t + c

(n)

∫
3 sec(4x− 1) dx =

3

4
ln | sec(4x− 1)+ tan(4x− 1)| + c

(o)

∫
2 cot 9x dx =

2

9
ln | sin 9x| + c

(p)

∫
7 cosec(π/3) dx = {7 cosec(π/3)}x+ c as cosec(π/3) is a constant

Engineering application 13.1

Distance travelled by a particle

The speed, v, of a particle is the rate of change of distance, s, with respect to time t,

that is v =
ds

dt
. The speed at time t is given by 3+2t. This is illustrated in Figure 13.1.

Note that the speed of the particle is increasing linearly with time. Find the distance

in terms of t.

Solution

We are given that

v =
ds

dt
= 3 + 2t

and are required to �nd s. Therefore,

s =

∫
3 + 2t dt = 3t + t2 + c

Note that the speed of the particle is modelled by a linear expression in t. This means

that the speed increases by the same amount in each subsequent second. On the other

hand, the distance, s, is modelled by a quadratic in t. Therefore, the distance travelled

in each subsequent second increases. Figure 13.1 illustrates the speed-time graph and

Figure 13.2 illustrates the distance-time graph.

y

3

tO

Figure 13.1

Graph of speed of the particle, v, against

time, t.

s

c

tO

Figure 13.2

Graph of distance travelled by the

particle, s, against time, t.
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Engineering application 13.2

Voltage across a capacitor

Recall from Engineering application 10.2 that the current, i, through a capacitor

depends upon time, t, and is given by

i = C
dv

dt

where v is the voltage across the capacitor andC is the capacitance of the capacitor.

Derive an expression for v.

Solution

If

i = C
dv

dt
then

dv

dt
=

i

C

Therefore,

v =

∫
i

C
dt =

1

C

∫
i dt using linearity

Note that whereas the capacitance,C, is constant, the current, i, is not and so it cannot

be taken through the integral sign. In order to perform the integrationwe need to know

i as a function of t.

13.2.2 Electronic integrators

Often there is a requirement in engineering to integrate electronic signals. Various cir-

cuits are available to carry out this task. One of the simplest circuits is shown in

Figure 13.3. The input voltage is vi, the output voltage is vo, the voltage drop across

the resistor is vR and the current flowing in the circuit is i. Applying Kirchhoff’s voltage

law yields

vi = vR + vo (13.1)

For the resistor with resistance, R,

vR = i R (13.2)

For the capacitor with capacitance,C,

i = C
dvo
dt

(13.3)

Combining Equations (13.1) to (13.3) yields

vi = RC
dvo
dt

+ vo (13.4)

In general, vi will be a time-varying signal consisting of a range of frequencies. For

the case where vi is sinusoidal we can specify a property of the capacitor known as the

capacitive reactance, Xc, given by

Xc =
1

2π fC
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yoyi

yR

R i

C

Figure 13.3

Simple integrator.

–

R1

C

R2 

R3

i1 if

iA

i2y2 

y3

y1

i3
X

yo

+

Figure 13.4

Summing integrator using an operational

ampli�er (op amp).

where f = frequency of the signal (Hz). It can be seen that Xc decreases with increasing

frequency, f . For frequencies where Xc is small compared with R, most of the voltage

drop takes place across the resistor. In other words, vo is small compared with vR. Exam-

ining Equation (13.1) for the case when Xc is very much less than R (written as Xc ≪ R),

and vo ≪ vR, it can be seen that Equation (13.4) simpli�es to

vi = RC
dvo
dt

(13.5)

This equation is only valid for the range of frequencies for which Xc ≪ R. Rearranging

Equation (13.5) yields

dvo
dt

=
vi

RC

vo =
1

RC

∫
vi dt

The output voltage from the circuit is an integrated version of the input voltage with a

scaling factor
1

RC
.

An electronic integrator which performs better can be made from an operational am-

pli�er. The circuit for an operational ampli�er integrator is given in Figure 13.4. The

main advantage of this circuit is the low output impedance and high input impedance,

making it useful for electronic control applications and analogue signal processing. The

function of the operational ampli�er is to amplify the potential difference between the

inverting and non-inverting inputs. These are labelled− and+ respectively in the circuit

diagram. Usually the gain of the ampli�er is extremely high, so even a small voltage dif-

ference between the two inputs will give a very large output voltage, which is limited by

the voltage supply attached to the device. Notice in this circuit that there is a capacitor

connected from the output back to the input. This capacitor provides negative feedback.

This means that a proportion of the output voltage is fed back to the input and this in

turn serves to reduce the output. As a consequence of this the overall gain of the circuit

is limited and the ampli�er reaches an equilibrium state where the voltage at point X is

the same as at the non-inverting input, which is connected to earth. For this reason the

point X in the circuit is sometimes referred to as a virtual earth.

Assuming point X is at zero volts, and using Ohm’s law, gives

i1 =
v1

R1

i2 =
v2

R2

i3 =
v3

R3

(13.6)
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3.00
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Figure 13.5

Output from an operational

ampli�er integrator circuit with

v1 being a square wave input

and v2 = v3 = 0.

Assuming iA is negligible, then

if = i1 + i2 + i3 (13.7)

For the capacitor,

if = −C
dvo
dt

(13.8)

The negative sign is a result of the direction chosen for if . Combining Equations (13.6)--

(13.8) yields

v1

R1

+
v2

R2

+
v3

R3

= −C
dvo
dt

vo = −

∫
v1

R1C
+

v2

R2C
+

v3

R3C
dt

The circuit therefore acts as an integrator. The minus sign in the integration is a result

of the circuit design which is known as an inverting circuit. A typical output from this

circuit is given in Figure 13.5.

13.2.3 Integration of trigonometric functions

The trigonometric identities given in Table 3.1 together with Table 13.1 allow us to

integrate a number of trigonometric functions.

Example 13.5 Evaluate

(a)
∫
cos2 t dt

(b)
∫
sin2 t dt
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Solution Powers of trigonometric functions, for example sin2 t, do not appear in the table of stan-

dard integrals. What we must attempt to do is rewrite the integrand to obtain a standard

form.

(a) From Table 3.1

cos2 t =
1 + cos 2t

2

and so
∫

cos2 t dt =

∫
1 + cos 2t

2
dt

=

∫
1

2
dt +

∫
cos 2t

2
dt

=
t

2
+

sin 2t

4
+ c

(b)

∫
sin2 t dt =

∫
1 − cos2 t dt using the trigonometric identities

=

∫
1 dt −

∫
cos2 t dt using linearity

= t −

(
t

2
+

sin 2t

4
+ c

)
using part (a)

=
t

2
−

sin 2t

4
+ k

Example 13.6 Find

(a)
∫
sin 2t cos t dt

(b)
∫
sinmt sin nt dt, where m and n are constants with m 6= n

Solution (a) Using the identities in Table 3.1 we �nd

2 sinA cosB = sin(A+ B)+ sin(A− B)

hence sin 2t cos t can be written
1

2
(sin 3t + sin t). Therefore,

∫
sin 2t cos t dt =

∫
1

2
(sin 3t + sin t) dt

=
1

2

(
− cos 3t

3
− cos t

)
+ c

= −
1

6
cos 3t −

1

2
cos t + c

(b) Using the identity 2 sinA sinB = cos(A− B)− cos(A+ B), we �nd

sinmt sin nt =
1

2
{cos(m− n)t − cos(m+ n)t}
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Therefore,∫
sinmt sin nt dt =

∫
1

2
{cos(m− n)t − cos(m+ n)t} dt

=
1

2

{
sin(m− n)t

m− n
−

sin(m+ n)t

m+ n

}
+ c

EXERCISES 13.2

1 Integrate the following expressions using Table 13.1:

(a) x10 (b) 9 (c) x1.5

(d)
√
t (e)

1

z
(f) −3.2

(g)
1

x3
(h)

1
√
t

(i) (x2)3

(j) x−2 (k) t1/3

2 Integrate the following expressions using Table 13.1:

(a) e5x (b) e6x (c) e−3t

(d)
1

ex
(e) e0.5t (f) ez/3

(g)
1

e4t
(h) e−2.5x

3 Integrate the following expressions using Table 13.1:

(a) sin 4x (b) sin 9t

(c) sin

(
x

2

)
(d) sin

(
2t

5

)

(e) cos 7x (f) cos(−3x)

(g) cos

(
5t

3

)
(h) tan 9x

(i) cosec 2x (j) sec 5t

(k) cot 8y (l) cos(5t + 1)

(m) tan(3x+ 4) (n) sin(3t − π)

(o) cosec(5z+ 2) (p) sec

(
x

2
+ 1

)

(q) sin

(
2t

3
− 1

)
(r) cot(5 − x)

(s) cosec(π − 2x)

4 Use Table 13.1 to integrate the following expressions:

(a)
1

1 + x2
(b)

1√
1 − x2

(c)
1√

4 − x2
(d)

1

9 + z2

(e)
1√

0.25 − x2
(f)

1

0.01 + v2

(g)
1

106 + r2
(h)

1

10 + t2

(i)
1√

2 − x2
(j)

1

1

9
+ x2

5 Integrate the following expressions:

(a) 3 + x+
1

x

(b) e2x − e−2x

(c) 2 sin 3x+ cos 3x

(d) sec(2t + π)+ cot

(
t

2
− π

)

(e) tan

(
t

2

)
+ cosec(3t − π)

(f) sin x+
x

3
+

1

ex

(g)
1

cos(3x)

(h)

(
t +

1

t

)2

(i)
1

3e2x

(j) tan(4t − 3)+ 2 sin(−t − 1)

(k) 1 + 2 cot 3x

(l) sin

(
t

2

)
− 3 cos

(
t

2

)

(m)(t − 2)2

(n) 3e−t − e−t/2

(o) 7 − 7x6 + e−x

(p) (k + t)2 k constant

(q) k sin t − cos kt k constant
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(r)
1

25 + t2

(s)
1√

25 − t2

(t)
6

1 + x2
+

1 + x2

6

6 The acceleration, a, of a particle is the rate of change

of speed, v, with respect to time t, that is a =
dv

dt
. The

speed of the particle is the rate of change of

distance, s, that is v =
ds

dt
. If the acceleration is given

by 1 +
t

2
, �nd expressions for speed and distance.

7 The speed, v, of a particle varies with time according

to

v(t) = 2 − e−t

(a) Obtain an expression for the distance travelled by

the particle.

(b) Calculate the distance travelled by the particle

between t = 0 and t = 3.

8 By writing sinh ax and cosh ax in terms of the

exponential function �nd

(a)
∫
sinh ax dx

(b)
∫
cosh ax dx

(c) Use your results from (a) and (b) to �nd∫
3 sinh 2x+ cosh 4x dx.

9 A capacitor of capacitance 10−2 F has a current i(t)

through it where

i(t) = 10 − e−t

Find an expression for the voltage across the

capacitor.

10 Integrate the following:

(a)
1

x2 + 4
(b)

1

2x2 + 4

(c)
3

2x2 + 1
(d)

1√
9 − x2

(e)
2√

4 − x2
(f)

−7√
2 − 3x2

(g)
1√

1 − (x2/2)

11 By writing
3 + x

x
in the form

3

x
+ 1,

�nd

∫
3 + x

x
dx.

12 (a) Express

x2 + 2x+ 1

x(x2 + 1)

as its partial fractions.

(b) Hence �nd

∫
x2 + 2x+ 1

x(x2 + 1)
dx.

13 The velocity, v, of a particle is given by

v = 2 + e−t/2

(a) Given distance, s, and v are related by
ds

dt
= v

�nd an expression for distance.

(b) Acceleration is the rate of change of velocity

with respect to t. Determine the acceleration.

14 (a) Use the product rule of differentiation to verify

d

dx
(x e2x) = e2x + 2xe2x

(b) Hence show
∫
xe2x dx =

xe2x

2
−

e2x

4
+ c

15 Integrate

(a)
2 − t2

t3
(b)

4 + e2t

e3t

(c)
cos 4x

sin 4x
(d)

1

2 sin 3x

(e)
2 + x2

1 + x2
(f) sin2 t + cos2 t

Solutions

1 (a)
x11

11
+ c (b) 9x+ c

(c)
2

5
x2.5 + c (d)

2

3
t1.5 + c

(e) ln |z| + c (f) −3.2x+ c

(g) −
1

2x2
+ c (h) 2

√
t + c

(i)
x7

7
+ c (j) −

1

x
+ c

(k)
3

4
t4/3 + c
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2 (a)
e5x

5
+ c (b)

e6x

6
+ c

(c) −
e−3t

3
+ c (d) −e−x + c

(e) 2e0.5t + c (f) 3ez/3 + c

(g) −
e−4t

4
+ c (h) −

2e−2.5x

5
+ c

3 (a) −
cos 4x

4
+ c

(b) −
cos 9t

9
+ c

(c) −2 cos

(
x

2

)
+ c

(d) −
5

2
cos

(
2t

5

)
+ c

(e)
sin 7x

7
+ c

(f) −
1

3
sin(−3x)+ c

(g)
3

5
sin

(
5t

3

)
+ c

(h)
ln | sec 9x|

9
+ c

(i)
1

2
(ln | cosec 2x− cot 2x|)+ c

(j)
1

5
(ln | sec 5t + tan 5t|)+ c

(k)
1

8
ln | sin 8y| + c

(l)
1

5
sin(5t + 1)+ c

(m)
1

3
ln | sec(3x+ 4)| + c

(n) −
1

3
cos(3t − π)+ c

(o)
1

5
ln | cosec(5z+ 2)− cot(5z+ 2)| + c

(p) 2 ln

∣∣∣∣∣sec
(
x

2
+ 1

)
+ tan

(
x

2
+ 1

)∣∣∣∣∣+ c

(q) −
3

2
cos

(
2t

3
− 1

)
+ c

(r) − ln | sin(5 − x)| + c

(s) −
1

2
ln | cosec(π − 2x)− cot(π − 2x)| + c

4 (a) tan−1 x+ c

(b) sin−1 x+ c

(c) sin−1

(
x

2

)
+ c

(d)
1

3
tan−1

(
z

3

)
+ c

(e) sin−1(2x)+ c

(f) 10 tan−1(10v)+ c

(g) 10−3 tan−1

(
x

103

)
+ c

(h)
1

√
10

tan−1

(
t

√
10

)
+ c

(i) sin−1

(
x

√
2

)
+ c

(j) 3 tan−1(3x)+ c

5 (a) 3x+
x2

2
+ ln |x| + c

(b)
e2x

2
+

e−2x

2
+ c

(c) −
2

3
cos(3x)+

sin 3x

3
+ c

(d) 0.5 ln | sec(2t + π)+ tan(2t + π)|

+ 2 ln

∣∣∣∣∣sin
(
t

2
− π

)∣∣∣∣∣+ c

(e) 2 ln

∣∣∣∣∣sec
(
t

2

)∣∣∣∣∣+
1

3
ln | cosec(3t − π)

− cot(3t − π)| + c

(f) − cos x+
x2

6
− e−x + c

(g)
1

3
ln | sec 3x+ tan 3x| + c

(h)
t3

3
+ 2t −

1

t
+ c

(i) −
e−2x

6
+ c

(j)
1

4
ln | sec(4t − 3)| + 2 cos(−t − 1)+ c

(k) x+
2

3
ln | sin 3x| + c

(l) −2 cos

(
t

2

)
− 6 sin

(
t

2

)
+ c

(m)
t3

3
− 2t2 + 4t + c

(n) −3e−t + 2e−t/2 + c

(o) 7x− x7 − e−x + c

(p) k2t + kt2 +
t3

3
+ c

(q) −k cos t −
sin kt

k
+ c
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(r)
1

5
tan−1

(
t

5

)
+ c

(s) sin−1

(
t

5

)
+ c

(t) 6 tan−1 x+
x

6
+
x3

18
+ c

6 Speed: t +
t2

4
+ c, distance:

t2

2
+

t3

12
+ ct + d

7 (a) 2t + e−t + c (b) 5.0498

8 (a)
cosh ax

a
+ c

(b)
sinh ax

a
+ c

(c)
3

2
cosh 2x+

1

4
sinh 4x+ c

9 100(10t + e−t )+ c

10 (a)
1

2
tan−1

(
x

2

)
+ c

(b)
1

2
√
2
tan−1

(
x

√
2

)
+ c

(c)
3

√
2
tan−1(

√
2x)+ c

(d) sin−1

(
x

3

)
+ c

(e) 2 sin−1

(
x

2

)
+ c

(f)
−7
√
3
sin−1

(√
3

√
2
x

)
+ c

(g)
√
2 sin−1

(
x

√
2

)
+ c

11 3 ln |x| + x+ c

12 (a)
1

x
+

2

x2 + 1
(b) ln |x| + 2 tan−1 x+ c

13 (a) 2t − 2e−t/2 + c (b) −
1

2
e−t/2

15 (a) −t−2 − ln |t| + c

(b) −
4

3
e−3t − e−t + c

(c)
1

4
ln | sin 4x| + c

(d)
1

6
ln | cosec 3x− cot 3x| + c

(e) x+ tan−1 x+ c

(f) t + c

13.3 DEFINITE AND INDEFINITE INTEGRALS

All the integration solutions so far encountered have contained a constant of integration.

Such integrals are known as inde�nite integrals. Integration can be used to determine

the area under curves and this gives rise to de�nite integrals.

To estimate the area under y(x), it is divided into thin rectangles. The sum of the

rectangular areas is an approximation to the area under the curve. Several thin rectangles

will give a better approximation than a few wide ones.

Consider Figure 13.6 where the area is approximated by a large number of rectangles.

Suppose each rectangle has width δx. The area of rectangle 1 is y(x2)δx, the area of

rectangle 2 is y(x3)δx and so on. Let A(xn) denote the total area under the curve from x1
to xn. Then,

A(xn) ≈ sum of the rectangular areas =

n∑

i=2

y(xi)δx

Let the area be increased by extending the base from xn to x. Then A(x) is the total area

under the curve from x1 to x (see Figure 13.7). Then,

increase in area = δA = A(x)− A(xn) ≈ y(x)δx
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xx1 x2

dx

x3 x4 x5 xn

y

1 2 3 4 n–1

Figure 13.6

The area is approximated by (n− 1) rectangles.

xx

n 

dx

x1 xn

y

Figure 13.7

The area is extended by adding an extra rectangle.

So,

δA

δx
≈ y(x)

In the limit as δx → 0, we get

lim
δx→0

(
δA

δx

)
=

dA

dx
= y(x)

Since differentiation is the reverse of integration, we can write

A =

∫
y(x) dx

To denote the limits of the area being considered we place values on the integral sign.

The area under the curve, y(x), between x = a and x = b is denoted as
∫ x=b

x=a

y dx

or more compactly by
∫ b

a

y dx

The constants a and b are known as the limits of the integral: lower and upper, respec-

tively. Since an area has a speci�c value, such an integral is called a de�nite integral. The

area under the curve up to the vertical line x = b is A(b) (see Figure 13.8). Similarly

A(a) is the area up to the vertical line x = a. So the area between x = a and x = b is

A(b)− A(a), as shown in Figure 13.9.

The area between x = a and x = b is given by

Area =

∫ b

a

y dx = A(b)− A(a)

The integral is evaluated at the upper limit, b, and at the lower limit, a, and the

difference between these gives the required area.
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y

xa b
A(a)

A(b)

y

x

Figure 13.8

The area depends on the limits a and b.

y

xa b

Figure 13.9

The area between x = a and x = b is

A(b)− A(a).

The expression A(b)− A(a) is often written as [A(x)]ba. Similarly [x2 + 1]32 is the value

of x2 + 1 at x = 3 less the value of x2 + 1 at x = 2. Thus

[x2 + 1]32 = (32 + 1)− (22 + 1) = 5

In general

[ f (x)]ba = f (b)− f (a)

Note that since
∫ b

a

y dx = A(b)− A(a)

then, interchanging upper and lower limits,
∫ a

b

y dx = A(a)− A(b) = −{A(b)− A(a)}

that is,

∫ b

a

y dx = −

∫ a

b

y dx

Interchanging the limits changes the sign of the integral.

The evaluation of de�nite integrals is illustrated in the following examples.

Example 13.7 Evaluate

(a)

∫ 2

1

x2 + 1 dx (b)

∫ 1

2

x2 + 1 dx (c)

∫
π

0

sin x dx

Solution (a) Let I stand for

∫ 2

1

x2 + 1 dx.

I =

∫ 2

1

x2 + 1 dx =

[
x3

3
+ x

]2

1

The integral is now evaluated at the upper and lower limits. The difference gives the

value required.

I =

(
23

3
+ 2

)
−

(
13

3
+ 1

)
=

8

3
+ 2 −

4

3
=

10

3
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(b) Because interchanging the limits of integration changes the sign of the integral, we

�nd
∫ 1

2

x2 + 1 dx = −

∫ 2

1

x2 + 1 dx = −
10

3

(c)

∫
π

0

sin x dx = [− cos x]π0 = (− cosπ)− (− cos 0) = 1 − (−1) = 2

Figure 13.10 illustrates this area.

sin x

x0                      p
Figure 13.10

The area is given by a de�nite integral.

Note that:

(1) The integrated function is evaluated at the upper and lower limits, and the difference

found.

(2) No constant of integration is needed.

(3) Any angles are measured in radians.

Example 13.8 Find the area under z(t) = e2t from t = 1 to t = 3.

Solution Area=

∫ 3

1

z dt =

∫ 3

1

e2t dt =

[
e2t

2

]3

1

=

[
e6

2

]
−

[
e2

2

]
= 198

If the evaluation of an area by integration yields a negative quantity this means that

some or all of the corresponding area is below the horizontal axis. This is illustrated in

Example 13.9.

Example 13.9 Find the area bounded by y = x3 and the x axis from x = −3 to x = −2.

Solution Figure 13.11 illustrates the required area.

∫ −2

−3

x3 dx =

[
x4

4

]−2

−3

=

{
(−2)4

4

}
−

{
(−3)4

4

}
= −

65

4

The area is 65/4 square units; the negative sign indicates that it is below the x axis.
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–2

0 x

y

y = x3

–3

Figure 13.11

Areas below the x axis are classed as negative.

y = sin x

x

y

p

–p

Figure 13.12

The positive and negative areas cancel

each other out.

Example 13.10 (a) Sketch y = sin x for x = −π to x = π.

(b) Calculate

∫
π

−π

sin x dx and comment on your �ndings.

(c) Calculate the area enclosed by y = sin x and the x axis between x = −π and x = π.

Solution (a) A graph of y = sin x between x = −π and x = π is shown in Figure 13.12.

(b)

∫
π

−π

sin x dx = [− cos x]π−π
= − cos(π)+ cos(−π) = 0

Examining Figure 13.12 we see that the positive and negative contributions have

cancelled each other out; that is, the area above the x axis is equal in size to the area

below the x axis.

(c) From (b) the area above the x axis is equal in size to the area below the x axis. From

Example 13.7(c) the area above the x axis is 2. Hence the total area enclosed by

y = sin x and the x axis from x = −π to x = π is 4.

If an area contains parts both above and below the horizontal axis then calculating an

integral will give the net area. If the total area is required, then the relevant limits must

�rst be found. A sketch of the function often clari�es the situation.

Example 13.11 Find the area contained by y = sin x from x = 0 to x = 3π/2.

Solution Figure 13.13 illustrates the required area. From this we see that there are parts both above

and below the x axis and the crossover point occurs when x = π.

∫
π

0

sin x dx = [− cos x]π0

= − cosπ + cos 0 = 2∫ 3π/2

π

sin x dx = [− cos x]3π/2
π

= − cos

(
3π

2

)
+ cosπ = −1
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y = sin x

x

y

p0

3p––
2

Figure 13.13

The positive and negative areas are calculated

separately.

The total area is 3 square units. Note, however, that the single integral over 0 to 3π/2

evaluates to 1; that is, it gives the net value of 2 and −1.

∫ 3π/2

0

sin x dx = [− cos x]
3π/2

0 = − cos

(
3π

2

)
+ cos 0 = 1

The need to evaluate the area under a curve is a common requirement in engineering.

Often the rate of change of an engineering variable with time is known and it is required

to calculate the value of the engineering variable. This corresponds to calculating the

area under a curve.

Engineering application 13.3

Energy used by an electric motor

Consider a small d.c. electric motor being used to drive an electric screwdriver. The

amount of power that is supplied to the motor by the battery depends on the load on

the screwdriver. Therefore the power supplied to the screwdriver is a function that

varies with time. Figure 13.14 shows a typical curve of power versus time. Now,

P =
dE

dt

where P = power (W), E = energy (J). Therefore, to calculate the energy used by

the motor between times t1 and t2, we can write

E =

∫ t
2

t
1

P dt

This is equivalent to evaluating the area under the curve, P(t), between t1 and t2,

which is shown as the shaded region in Figure 13.14.

Time (s)

P
o
w

er
 (

w
at

ts
)

t2t1

Figure 13.14

Shaded area represents the energy used to

drive the motor during the time interval

t1 6 t 6 t2.
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Engineering application 13.4

Capacitance of a coaxial cable

A coaxial cable has an inner conductor with a diameter of 1.02 mm and an outer

conductor with an internal diameter of 3 mm, as shown in Figure 13.15. The insulator

separating the two conductors has a relative permittivity of 1.55. Let us calculate the

capacitance of the cable per metre length.

r
a

b

Outer conductor

Cable sheath

Insulator

Inner conductor

1.02 mm 3 mm

Figure 13.15

Cross-section of a coaxial

cable.

Before solving this problem it is instructive to derive the formula for the capac-

itance of a coaxial cable. Imagine that the inner conductor has a charge of +Q per

metre length and that the outer conductor has a charge of −Q per metre length. Fur-

ther assume the cable is long and a central section is being analysed in order that end

effects can be ignored.

Consider an imaginary cylindrical surface, radius r and length l, within the insula-

tor (or dielectric). Gauss’s theorem states that the electric flux out of any closed sur-

face is equal to the charge enclosed by the surface. In this case, because of symmetry,

the electric flux points radially outwards and so no flux is directed through the ends

of the imaginary cylinder; that is, end effects can be neglected. The curved surface

area of the cylinder is 2πrl. Therefore, using Gauss’s theorem

D× 2πrl = Ql

where D = electric flux density.

When an insulator or dielectric is present then D = εrε0E, where E is the electric

�eld strength, εr is the relative permittivity, ε0 is the permittivity of free space and

has a value of 8.85 × 10−12 F m−1. Therefore,

εrε0E2πrl = Ql

that is,

E =
Q

2πεrε0r
(13.9)

This equation gives a value for the electric �eld within the dielectric. In order to

calculate the capacitance of the cable it is necessary to calculate the voltage difference

between the two conductors. Let Va represent the voltage of the inner conductor and

Vb the voltage of the outer conductor.
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The electric �eld is a measure of the rate of change of the voltage with position.

In other words, if the voltage is changing rapidly with position then this corresponds

to a large magnitude of the electric �eld. This is illustrated in Figure 13.16. The

magnitude of the electric �eld at point A is larger than at point B. As a positive

electric �eld,E, corresponds to a decrease in voltage,V , with position the relationship

between E and V , in general, is

E = −
dV

dr
(13.10)

This expression can be used to calculate the voltage difference arising as a result of

an electric �eld. In practice, this is a simpli�ed equation and is only valid provided

r is in the same direction as the electric �eld. If this is not the case, then a modi�ed

vector form of Equation (13.10) is needed.

r

V

A B

Figure 13.16

The gradient of the curve,
dV

dr
, is proportional to the

magnitude of the electric �eld.

In the case of the coaxial cable, E is in the same direction as r and so

Equation (13.10) can be used to calculate the voltage difference between the two

conductors. From Equation (13.10)

dV

dr
= −E

Therefore the voltage at an arbitrary point, r, is given by

V = −

∫
E dr

Consequently, the voltage difference between points r = b and r = a is given by

Vb −Va = −

∫ b

a

E dr

= −
Q

2πεrε0

∫ b

a

1

r
dr using Equation (13.9)

= −
Q

2πεrε0
[ln r]ba

= −
Q

2πεrε0
ln

(
b

a

)

This gives the voltage of the outer conductor relative to the inner one. Thus the voltage

of the inner conductor relative to the outer one is

Va −Vb =
Q

2πεrε0
ln

(
b

a

)

➔
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More generally, capacitance is de�ned as C = Q/V , where V is the voltage differ-

ence. Therefore

C =
Q

Va −Vb
=

2πεrε0

ln

(
b

a

)

Note that this is the capacitance per unit length of cable. Using εr = 1.55, a =

5.1 × 10−4 m, b = 1.5 × 10−3 m, we get

C =
2π × 1.55 × 8.85 × 10−12

ln

(
1.5 × 10−3

5.1 × 10−4

) = 7.99 × 10−11 ≈ 80 pF m−1

Engineering application 13.5

Characteristic impedance of a coaxial cable

Acommonly quoted parameter of a coaxial cable is its characteristic impedance, Z0.

The characteristic impedance is the ratio of the voltage to the current for a propagat-

ing wave travelling on an electrical transmission line in the absence of reflections.

The value of Z0 is easy to select at the design stage by carefully choosing the dimen-

sions a and b together with the type of insulating material within the cable. The two

most common characteristic impedances for flexible cables are approximately 50 �

and 75 �. The main reason for selecting 50 � is that it represents a good compro-

mise between the ability to handle high power and the minimization of losses that

occur in thermoplastic dielectrics. The value of 75 � is mainly considered optimal

for situations of low power transmission and where losses are the most important

consideration. Often these 75 � cables are of the air-dielectric type where the inner

conductor is supported by a spacer rather than a solid plastic dielectric. An example

of an application for a 75 � cable is the connection from a rooftop TV antenna to a

TV set.

It can be shown from fundamental transmission line theory that the characteristic

impedance of a loss-free cable is

Z0 =

√
L

C

It can be shown that the expression for the inductance of a coaxial cable is given by

L =
µ0

2π
ln

(
b

a

)

As shown in Engineering application 13.4, the expression for the capacitance is

C =
2πεrε0

ln

(
b

a

)
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Substituting for L andC in the equation for Z0

Z0 =

√√√√√√√√

µ0

2π
ln

(
b

a

)

2πεrε0

/
ln

(
b

a

) =
1

2π

√
µ0

εrε0
ln

(
b

a

)

For the cable de�ned in Engineering application 13.4, and substituting for the per-

meability of free space, µ0 = 4π × 10−7,

Z0 =
1

2π

√
µ0

1.55 × 8.85 × 10−12
ln

(
1.5 × 10−3

0.51 × 10−3

)
= 52 �

13.3.1 Use of a dummy variable

Consider the following integrals, I1 and I2:

I1 =

∫ 1

0

t2 dt I2 =

∫ 1

0

x2 dx

Then,

I1 =

[
t3

3

]1

0

=

(
1

3

)
− (0) =

1

3

I2 =

[
x3

3

]1

0

=

(
1

3

)
− (0) =

1

3

So clearly I1 = I2. The value of I1 does not depend upon t, and the value of I2 does not

depend upon x. In general,

I =

∫ b

a

f (t) dt =

∫ b

a

f (x) dx

Because the value of I is the same, regardless of what the integrating variable may be,

we say x and t are dummy variables. Indeed we could write

I =

∫ b

a

f (z) dz =

∫ b

a

f (r) dr =

∫ b

a

f (y) dy

Then z, r and y are dummy variables.

EXERCISES 13.3

1 Evaluate the following integrals:

(a)

∫ 3

1

x3 dx (b)

∫ 4

1

1

x
dx

(c)

∫ 1

0

2 dx (d)

∫ 1

−1

ex dx

(e)

∫
π/3

0

sin t dt (f)

∫
π

0

sin(t + 3) dt

(g)

∫
π/2

0

cos 3t dt (h)

∫ 2

1

cosπt dt

(i)

∫ 1.2

1

tan x dx
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2 Evaluate the following integrals:

(a)

∫ 1

0

t2 + 1 dt

(b)

∫ 1

0

1

1 + t2
dt

(c)

∫ 2

1

3e2x − 2e3x dx

(d)

∫ 2

1

(x+ 1)(x+ 2) dx

(e)

∫ 2

0

2 sin 4t dt

(f)

∫
π

0

4 cos

(
t

2

)
dt

3 Evaluate the following integrals:

(a)

∫ 1

0

t2 + 0.5t − 6 dt

(b)

∫ 3

2

3

2x
+

2x

3
dx

(c)

∫ 2

1

e−2x − 3e−x dx

(d)

∫ 2

0

3 sin(4t − π)+ 5 cos(3t + π/2) dt

(e)

∫ 1

0

2 tan t dt

(f)

∫ 1.5

0

2

1 + x2
−

1√
4 − x2

dx

4 Calculate the area between f (t) = cos t and the t axis

as t varies from

(a) 0 to
π

4
(b) 0 to

π

2

(c)
3π

4
to π (d) 0 to π

5 Calculate the total area between f (t) = cos 2t and the

t axis as t varies from

(a) 0 to
π

4
(b)

π

4
to

π

2
(c) 0 to

π

2

6 Calculate the area enclosed by the curves y = x2 and

y = x.

7 Calculate the area enclosed by the graphs of the

functions y = t2 + 5 and y = 6.

8 Evaluate the following de�nite integrals:

(a)

∫ 1.5

1

1

t
+

1

et
+

1

sin t
dt

(b)

∫ 4

1

5

8 + 3x2
dx

(c)

∫ 1

−1

sinhx dx

(d)

∫ 1

−1

coshx dx

9 Calculate the area between y = 2 tan t and the t axis

for −1 6 t 6 1.4.

10 Find the area between y = sin t, y = cos t and the y

axis, for t > 0.

11 The velocity, v, of a particle is given by

v = (1 + t)2

Find the distance travelled by the particle from t = 1

to t = 4; that is, evaluate
∫ 4
1 v dt.

12 Evaluate the area under the function x = 1/t for

1 6 t 6 10.

13 Evaluate

(a)

∫ 2

3

x1.4 dx (b)

∫ 1

0

(et )2 dt

(c)

∫
π

0

sin x cos x dx (d)

∫ 2

1

sinh2x dx

Solutions

1 (a) 20 (b) 1.3863 (c) 2

(d) 2.3504 (e) 0.5 (f) −1.9800

(g) −
1

3
(h) 0 (i) 0.3995

2 (a)
4

3
(b)

π

4
(c) −184.75

(d)
53

6
(e) 0.5728 (f) 8

3 (a) −
65

12
(b) 2.275 (c) −0.639

(d) −0.9255 (e) 1.2313 (f) 1.1175

4 (a) 0.7071 (b) 1

(c) 0.7071 (d) 2

5 (a)
1

2
(b)

1

2
(c) 1
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6
1

6

7
4

3

8 (a) 1.0839 (b) 0.6468

(c) 0 (d) 2.3504

9 4.7756

10 0.4142

11 39

12 2.3026

13 (a) −3.6202 (b) 3.1945

(c) 0 (d) 5.4158

REVIEW EXERCISES 13

1 Find the following integrals:

(a)

∫
3x2 + x dx (b)

∫
2

t
+ 2t + 2 dt

(c)

∫
(1 + z)(1 − z) dz (d)

∫
√
t −

1
√
t
dt

(e)

∫
x2/3 + 4x3 dx

2 Given

dy

dx
= x2 + sin x+ cos 2x+ 1

�nd an expression for y(x).

3 Find the following integrals:

(a)

∫
3ex +

3

ex
dx

(b)

∫
(1 + ex)(1 − e−x) dx

(c)

∫
2e4t + 1 dt

(d)

∫
ex(1 + ex) dx

(e)

∫
4e−t − e−2t dt

4 Find the integrals

(a)

∫
sin 2x+ cos 2x dx

(b)

∫
2 sin t − cos t dt

(c)

∫
4 tan

(
t

2

)
dt

(d)

∫
sin(π − z)+ cos(π − 2z) dz

(e)

∫
tan(t + π) dt

(f)

∫
2 sin 3t + 2 sin

(
t

3

)
dt

5 Find the following integrals:

(a)

∫
cosec(3t + π) dt

(b)

∫
sec

(
x

2
+ 1

)
dx

(c)

∫
cot

(
π + t

2

)
dt

(d)

∫
3 cosec

(
y

3
− 2

)
dy

(e)

∫
1

2
cot(π − 2z) dz

(f)

∫
2

3
sec(2t − π) dt

6 Find the following integrals:

(a)

∫
4√

1 − v2
dv (b)

∫
1

2
√
1 − v2

dv

(c)

∫
1

49 + t2
dt (d)

∫
1

50 + 2t2
dt

(e)

∫
2√

1 − 4t2
dt (f)

∫
1√

36 − 9x2
dx

(g)

∫
3

x2 + 3
dx

7 The speed, v(t), of a particle is given by

v(t) = t + e−t

(a) Find the distance travelled by the particle.

(b) Calculate the distance travelled between t = 1

and t = 3.

8 The capacitance of a capacitor is 0.1 F. The current,

i(t), through the capacitor is given by

i(t) = 50 sinπt

Derive an expression for the voltage across the

capacitor.
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9 By using suitable trigonometric identities �nd

(a)

∫
sin2 2t + cos2 2t dt

(b)

∫
sin 2t cos 2t dt

(c)

∫
1

sin 2t
dt

(d)

∫
cos 2t

sin 2t
dt

(e)

∫
sin 2t

cos 2t
dt

10 By expressing

2x2 + x+ 2

x3 + x

as its partial fractions, �nd
∫

2x2 + x+ 2

x3 + x
dx

11 Evaluate the following de�nite integrals:

(a)

∫ 1

0

2t2 + t3 dt

(b)

∫ 3

1

2

x
−
x

2
dx

(c)

∫ 1

0

7 − t + 7t2 dt

(d)

∫ 2

0

(z+ 1)(z+ 2) dz

(e)

∫ 4

1

√
x dx

(f)

∫ −1

−2

x− 2

x
dx

12 Evaluate the following de�nite integrals:

(a)

∫ 1

0

e3x+1 dx (b)

∫ 1

−1

e2t − et + 1 dt

(c)

∫ 2

1

(ez − 1)2 dz (d)

∫ 1

0

e−2x + e2x dx

(e)

∫ 0

−1

x+ ex dx

13 Evaluate the following integrals:

(a)

∫
π/2

0

2 sin 3t dt

(b)

∫
π

π/2

sin 2t − cos 2t dt

(c)

∫
π/4

0

tan t + t dt

(d)

∫
π/4

0

sin

(
t

2

)
+ cos

(
t

2

)
dt

(e)

∫ 0.1

0

tan 3t dt

14 Evaluate the following de�nite integrals:

(a)

∫ 2π/k

0

sin kt dt

(b)

∫ 2π/k

0

cos kt dt

where k is a constant.

15 Evaluate the following de�nite integrals:

(a)

∫ 0.5

0

cosec(2x+ 1) dx

(b)

∫ 0.1

0

sec 3t dt

(c)

∫
π/4

−π/4

tan(x+ π) dx

16 Evaluate the following de�nite integrals:

(a)

∫ 2

0

3√
9 − x2

dx

(b)

∫ 1

−1

2

9 + x2
dx

(c)

∫ 1

0

1√
8 − 2x2

dx

(d)

∫ 3

1

1

10 + 4t2
dt

17 (a) Calculate the area enclosed by the curve y = x3,

the x axis and x = 2.

(b) Calculate the area enclosed by the curve y = x3,

the y axis and y = 8.

18 Find the total area between f (t) = t2 − 4 and the t

axis on the following intervals:

(a) [−4,−3] (b) [−3,−1]

(c) [0, 3] (d) [−3, 3]

19 Calculate the area enclosed by the curve

y = x2 − x− 6 and the x axis.

20 Calculate the total area between y = x2 − 3x− 4 and

the x axis on the following intervals:

(a) [−2,−1] (b) [−2, 1]

(c) [2, 4] (d) [2, 5]

21 Calculate the area enclosed by the curve y = x3 and

the line y = x.
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22 Calculate the area enclosed by y = x2 + 4 and

y = 12 − x2.
23 Calculate the area enclosed by y = sin x and y =

2x

π
.

Solutions

1 (a) x3 +
x2

2
+ c

(b) 2 ln |t| + t2 + 2t + c

(c) z−
z3

3
+ c

(d)
2

3
t3/2 − 2t1/2 + c

(e)
3

5
x5/3 + x4 + c

2
x3

3
− cos x+

1

2
sin 2x+ x+ c

3 (a) 3ex − 3e−x + c

(b) ex + e−x + c

(c)
e4t

2
+ t + c

(d) ex +
e2x

2
+ c

(e) −4e−t +
e−2t

2
+ c

4 (a) −
1

2
cos 2x+

1

2
sin 2x+ c

(b) −2 cos t − sin t + c

(c) 8 ln

∣∣∣∣∣sec
(
t

2

)∣∣∣∣∣+ c

(d) cos(π − z)−
1

2
sin(π − 2z)+ c

(e) ln | sec(t + π)| + c

(f) −
2

3
cos 3t − 6 cos

(
t

3

)
+ c

5 (a)
1

3
ln | cosec(3t + π)− cot(3t + π)| + c

(b) 2 ln

∣∣∣∣∣sec
(
x

2
+ 1

)
+ tan

(
x

2
+ 1

)∣∣∣∣∣+ c

(c) 2 ln

∣∣∣∣∣sin
(

π + t

2

)∣∣∣∣∣+ c

(d) 9 ln

∣∣∣∣∣cosec
(
y

3
− 2

)
− cot

(
y

3
− 2

)∣∣∣∣∣+ c

(e) −
1

4
ln | sin(π − 2z)| + c

(f)
1

3
ln | sec(2t − π)+ tan(2t − π)| + c

6 (a) 4 sin−1 v + c

(b)
1

2
sin−1 v + c

(c)
1

7
tan−1

(
t

7

)
+ c

(d)
1

10
tan−1

(
t

5

)
+ c

(e) sin−1(2t)+ c

(f)
1

3
sin−1

(
x

2

)
+ c

(g)
√
3 tan−1

(
x

√
3

)
+ c

7 (a)
t2

2
− e−t + c (b) 4.3181

8 −
500

π
cosπt + c

9 (a) t + c

(b) −
cos 4t

8
+ c

(c)
1

2
ln | cosec 2t − cot 2t| + c

(d)
1

2
ln | sin 2t| + c

(e)
1

2
ln | sec 2t| + c

10 2 ln |x| + tan−1 x+ c

11 (a)
11

12
(b) 0.1972 (c)

53

6

(d)
38

3
(e)

14

3
(f) 2.3863

12 (a) 17.2933 (b) 3.2765 (c) 15.2630

(d) 3.6269 (e) 0.1321

13 (a)
2

3
(b) −1 (c) 0.6550

(d) 0.9176 (e) 0.0152

14 (a) 0 (b) 0
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15 (a) 0.5238 (b) 0.1015 (c) 0

16 (a) 2.1892 (b) 0.4290

(c) 0.3702 (d) 0.0825

17 (a) 4 (b) 12

18 (a)
25

3
(b) 4 (c)

23

3
(d)

46

3

19
125

6

20 (a)
17

6
(b)

61

6
(c)

22

3
(d)

61

6

21 0.5

22
64

3

23 0.4292
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14.1 INTRODUCTION

The previous chapter showed us how to integrate functions which matched the list of

standard integrals given in Table 13.1. Clearly, it is impossible to list all possible func-

tions in the table and so some general techniques are required. Integration techniques

may be classi�ed as analytical, that is exact, or numerical, that is approximate. We will

now study three analytical techniques:

(1) integration by parts;

(2) integration by substitution;

(3) integration using partial fractions.

14.2 INTEGRATION BY PARTS

This technique is used to integrate a product, and is derived from the product rule for

differentiation. Let u and v be functions of x. Then the product rule of differentiation

states:

d

dx
(uv) =

du

dx
v + u

dv

dx

Rearranging we have

u
dv

dx
=

d

dx
(uv)− v

du

dx
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Integrating this equation yields
∫
u
dv

dx
dx =

∫
d

dx
(uv) dx−

∫
v
du

dx
dx

Recognizing that integration and differentiation are inverse processes allows
∫

d(uv)

dx
dx

to be simpli�ed to uv. Hence,

∫
u

(
dv

dx

)
dx = uv −

∫
v

(
du

dx

)
dx

This is the formula for integration by parts.

Example 14.1 Find

∫
x sin x dx.

Solution We recognize the integrand as a product of the functions x and sin x. Let u = x,
dv

dx
= sin x. Then

du

dx
= 1, v= − cos x. Using the integration by parts formula we get

∫
x sin x dx = x(− cos x)−

∫
(− cos x)1 dx

= −x cos x+ sin x+ c

When dealing with de�nite integrals the corresponding formula for integration by parts

is

∫ b

a

u

(
dv

dx

)
dx = [uv]ba −

∫ b

a

v

(
du

dx

)
dx

Example 14.2 Evaluate

∫ 2

0

xex dx

Solution We let

u = x and
dv

dx
= ex

Then

du

dx
= 1 and v = ex
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Using the integration by parts formula for de�nite integrals we have

∫ 2

0

xex dx = [xex]20 −

∫ 2

0

ex · 1 dx

= 2e2 − [ex]20

= 2e2 − [e2 − 1]

= e2 + 1

Sometimes integration by parts needs to be used twice, as the next example illustrates.

Example 14.3 Evaluate

∫ 2

0

x2ex dx

Solution We let

u = x2 and
dv

dx
= ex

Then

du

dx
= 2x and v = ex

Using the integration by parts formula we have

∫ 2

0

x2ex dx = [x2ex]20 −

∫ 2

0

2xex dx

= 4e2 − 2

∫ 2

0

xex dx

Now

∫ 2

0

xex dx has been evaluated using integration by parts in Example 14.2. So

∫ 2

0

x2ex dx = 4e2 − 2[e2 + 1] = 2e2 − 2 = 12.78

The next example illustrates a case in which the integral to be found reappears after

repeated application of integration by parts.

Example 14.4 Find

∫
et sin t dt
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Solution We let

u = et and
dv

dt
= sin t

and so

du

dt
= et and v = − cos t

Applying integration by parts yields
∫

et sin t dt = −et cos t −

∫
(− cos t)et dt + c

= −et cos t +

∫
et cos t dt + c (14.1)

We now apply integration by parts to
∫
et cos t dt. We let

u = et and
dv

dt
= cos t

Then

du

dt
= et and v = sin t

So
∫

et cos t dt = et sin t −

∫
et sin t dt (14.2)

Substituting Equation (14.2) into Equation (14.1) yields
∫

et sin t dt = −et cos t + et sin t −

∫
et sin t dt + c

Rearranging the equation gives

2

∫
et sin t dt = −et cos t + et sin t + c

from which we see that
∫

et sin t dt =
−et cos t + et sin t + c

2

Example 14.5 Evaluate

∫ 2

0

xnex dx

for n = 3, 4, 5.

Solution The integral may be evaluated by using integration by parts repeatedly. However, this

is slow and cumbersome. Instead it is useful to develop a reduction formula as is now

illustrated.

Let u = xn and
dv

dx
= ex. Then

du

dx
= nxn−1 and v = ex.
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Using integration by parts we have
∫ 2

0

xnex dx = [xnex]20 −

∫ 2

0

nxn−1ex dx

= 2ne2 − n

∫ 2

0

xn−1ex dx

Writing

In =

∫ 2

0

xnex dx

we see that

In−1 =

∫ 2

0

xn−1ex dx

Hence

In = 2ne2 − nIn−1 (14.3)

Equation (14.3) is called a reduction formula.

We have already evaluated I1, that is

∫ 2

0

xex dx in Example 14.2, and found

I1 = e2 + 1

Using the reduction formula with n = 2 gives
∫ 2

0

x2ex dx = I2 = 22e2 − 2I1

= 4e2 − 2(e2 + 1)

= 2e2 − 2

Note that this is in agreement with Example 14.3.

With n = 3 the reduction formula yields
∫ 2

0

x3ex dx = I3 = 23e2 − 3I2

= 8e2 − 3(2e2 − 2)

= 2e2 + 6

With n = 4 we have
∫ 2

0

x4ex dx = I4 = 24e2 − 4I3

= 16e2 − 4(2e2 + 6)

= 8e2 − 24

With n = 5 we have
∫ 2

0

x5ex dx = I5 = 25e2 − 5I4

= 32e2 − 5(8e2 − 24)

= 120 − 8e2
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EXERCISES 14.2

1 Use integration by parts to �nd the following:

(a)

∫
x sin(2x) dx (b)

∫
te3t dt

(c)

∫
x cos x dx (d)

∫
2v sin

(
v

2

)
dv

(e)

∫
x

ex
dx

2 Use integration by parts to �nd

(a)

∫
t ln t dt

(b)

∫
ln t dt

(c)

∫
tn ln t dt (n 6= −1)

(d)

∫
t sin(at + b) dt a, b constants

(e)

∫
teat+b dt a, b constants

3 Evaluate the following de�nite integrals:

(a)

∫ 1

0

x cos 2x dx (b)

∫
π/2

0

x sin 2x dx

(c)

∫ 1

−1

te2t dt (d)

∫ 3

1

t2 ln t dt

(e)

∫ 2

0

2x

e2x
dx

4 Find

(a)

∫
t2e2t dt

(b)

∫
t2 cos 3t dt

(c)

∫
t2 sin

(
t

2

)
dt

5 Evaluate the following de�nite integrals:

(a)

∫ 2

0

t2et dt

(b)

∫ 1

−1

t2 sin t dt

(c)

∫ 1

0

t2 cos 3t dt

6 Obtain a reduction formula for

In =

∫
tnekt dt n, k constants

Hence �nd

∫
t2e3t dt,

∫
t3e3t dt and

∫
t4e3t dt.

7 Use integration by parts twice to obtain a reduction

formula for

In =

∫
π/2

0

tn sin t dt

Hence �nd

∫
π/2

0

t3 sin t dt,

∫
π/2

0

t5 sin t dt

and

∫
π/2

0

t7 sin t dt.

8 Use integration by parts to �nd

∫
π/2

0

e2x cos x dx

Solutions

1 (a)
sin 2x

4
−
x cos 2x

2
+ c

(b) e3t

(
t

3
−

1

9

)
+ c

(c) cos x+ x sin x+ c

(d) 8 sin

(
v

2

)
− 4v cos

(
v

2

)
+ c

(e) −e−x(x+ 1)+ c

2 (a)
t2 ln t

2
−
t2

4
+ c

(b) t ln t − t + c

(c)
(ln t)tn+1

n+ 1
−

tn+1

(n+ 1)2
+ c

(d)
sin(at + b)

a2
−
t cos(at + b)

a
+ c

(e) eat+b

(
t

a
−

1

a2

)
+ c
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3 (a) 0.1006 (b) 0.7854 (c) 1.9488

(d) 6.9986 (e) 0.4542

4 (a)
e2t (2t2 − 2t + 1)

4
+ c

(b)
2

9
t cos 3t +

(
t2

3
−

2

27

)
sin 3t + c

(c) 8t sin

(
t

2

)
− 2(t2 − 8) cos

(
t

2

)
+ c

5 (a) 12.7781 (b) 0 (c) −0.1834

6 In =
tnekt

k
−
n

k
In−1,

e3t (9t2 − 6t + 2)

27
,

e3t (9t3 − 9t2 + 6t − 2)

27
,

e3t (27t4 − 36t3 + 36t2 − 24t + 8)

81

7 In = n

{(
π

2

)n−1

− (n− 1)In−2

}

1.4022, 2.3963, 4.5084

8 4.2281

14.3 INTEGRATION BY SUBSTITUTION

This technique is the integral equivalent of the chain rule. It is best illustrated by

examples.

Example 14.6 Find

∫
(3x+ 1)2.7 dx.

Solution Let z = 3x + 1, so that
dz

dx
= 3, that is dx =

dz

3
. Writing the integral in terms of z, it

becomes

∫
z2.7

1

3
dz =

1

3

∫
z2.7dz =

1

3

(
z3.7

3.7

)
+ c =

1

3

(3x+ 1)3.7

3.7
+ c

Example 14.7 Evaluate

∫ 3

2

t sin(t2) dt.

Solution Let v = t2 so
dv

dt
= 2t, that is

dt =
1

2t
dv

When changing the integral from one in terms of t to one in terms of v, the limits must

also be changed. When t = 2, v = 4; when t = 3, v = 9. Hence, the integral becomes

∫ 9

4

sin v

2
dv =

1

2
[− cos v]94 =

1

2
[− cos 9 + cos 4] = 0.129

Sometimes the substitution can involve a trigonometric function.
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Example 14.8 Evaluate

∫ 2

1

sin t cos2 t dt.

Solution Put z = cos t so that
dz

dt
= − sin t, that is sin t dt = −dz. When t = 1, z = cos 1; when

t = 2, z = cos 2. Hence

∫ 2

1

sin t cos2 t dt = −

∫ cos 2

cos 1

z2 dz = −

[
z3

3

]cos 2

cos 1

=
cos3 1 − cos3 2

3
= 0.0766

Example 14.9 Find

∫
etan x

cos2 x
dx.

Solution Put z = tan x. Then
dz

dx
= sec2 x, dz =

dx

cos2 x
. Hence,

∫
etan x

cos2 x
dx =

∫
ez dz = ez + c = etan x + c

Integration by substitution allows functions of the form
d f /dx

f
to be integrated.

Example 14.10 Find

∫
3x2 + 1

x3 + x+ 2
dx.

Solution Put z = x3 + x+ 2, then
dz

dx
= 3x2 + 1, that is dz = (3x2 + 1) dx. Hence,

∫
3x2 + 1

x3 + x+ 2
dx =

∫
dz

z
= ln |z| + c = ln |x3 + x+ 2| + c

Example 14.11 Find

∫
d f /dx

f
dx.

Solution Put z = f . Then
dz

dx
=

d f

dx
, that is

dz =
d f

dx
dx.

Hence,
∫

d f /dx

f
dx =

∫
dz

z
= ln |z| + c = ln | f | + c

and so
∫

d f /dx

f
dx = ln | f | + c
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The result of Example 14.11 is particularly important.

∫
d f /dx

f
dx = ln | f | + c

Example 14.12 Evaluate

∫ 4

2

3t2 + 2t

t3 + t2 + 1
dt.

Solution The numerator is the derivative of the denominator and so
∫ 4

2

3t2 + 2t

t3 + t2 + 1
dt = [ln |t3 + t2 + 1|]42 = ln 81 − ln 13 = 1.83

Example 14.13 Find

(a)

∫
4

5x− 7
dx

(b)

∫
t

t2 + 1
dt

(c)

∫
et/2

et/2 + 1
dt

Solution The integrands are rewritten so that the numerator is the derivative of the denominator.

(a)

∫
4

5x− 7
dx =

4

5

∫
5

5x− 7
dx =

4

5
ln |5x− 7| + c

(b)

∫
t

t2 + 1
dt =

1

2

∫
2t

t2 + 1
dt

=
1

2
ln |t2 + 1| + c

(c)

∫
et/2

et/2 + 1
dt = 2

∫ 1
2
et/2

et/2 + 1
dt = 2 ln |et/2 + 1| + c

EXERCISES 14.3

1 Use the given substitutions to �nd the following

integrals:

(a)

∫
(4x+ 1)7 dx, z = 4x+ 1

(b)

∫
t2 sin(t3 + 1) dt, z = t3 + 1

(c)

∫
4te−t

2

dt, z = t2

(d)

∫
(1 − z)1/3 dz, t = 1 − z

(e)

∫
cos t(sin5 t) dt, z = sin t

2 Evaluate the following de�nite integrals:

(a)

∫ 2

1

(2t + 3)7 dt (b)

∫
π/2

0

sin 2t cos4 2t dt

(c)

∫ 1

0

3t2et
3

dt (d)

∫ 2

0

√
4 + 3x dx

(e)

∫ 2

1

sin
(√

x
)

√
x

dx

3 Find the area between y = x(3x2 + 2)4 and the x axis

from x = 0 to x = 1.
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4 Find

(a)

∫
4x+ 1

2x2 + x+ 3
dx (b)

∫
2 sin 2x

cos 2x+ 7
dx

(c)

∫
3

9 − 2x
dx (d)

∫
t

t2 + 1
dt

(e)

∫
1

t ln t
dt

5 Evaluate the following:

(a)

∫ 1

0

2

(1 + 3x)2
dx (b)

∫
π/2

0

sin t
√
cos t dt

(c)

∫ 2

1

3 + x

x2 + 6x+ 1
dx (d)

∫ 2

1

e
√
t

√
t
dt

(e)

∫ 2

0

x sin(π − x2) dx

Solutions

1 (a)
(4x+ 1)8

32
+ c (b) −

cos(t3 + 1)

3
+ c

(c) −2e−t
2

+ c (d) −
3

4
(1 − z)4/3 + c

(e)
1

6
sin6 t + c

2 (a) 3.3588 × 105 (b) 0.2 (c) 1.7183

(d) 5.2495 (e) 0.7687

3 103.098

4 (a) ln(2x2 + x+ 3)+ c

(b) − ln(cos 2x+ 7)+ c

(c) −
3

2
ln(9 − 2x)+ c

(d)
1

2
ln(t2 + 1)+ c

(e) ln(ln t)+ c

5 (a) 0.5 (b) 0.6667 (c) 0.3769

(d) 2.7899 (e) 0.8268

14.4 INTEGRATION USING PARTIAL FRACTIONS

The technique of expressing a rational function as the sum of its partial fractions has

been covered in Section 1.7. Some expressions which at �rst sight look impossible to

integrate may in fact be integrated when expressed as their partial fractions.

Example 14.14 Find

(a)

∫
1

x3 + x
dx

(b)

∫
13x− 4

6x2 − x− 2
dx

Solution (a) First express the integrand in partial fractions:

1

x3 + x
=

1

x(x2 + 1)
=
A

x
+
Bx+C

x2 + 1

Then,

1 = A(x2 + 1)+ x(Bx+C)

Equating the constant terms: 1 = A so that A = 1.

Equating the coef�cients of x: 0 = C so that C = 0.

Equating the coef�cients of x2: 0 = A+ B and hence B = −1.
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Then,∫
1

x3 + x
dx =

∫
1

x
−

x

x2 + 1
dx

= ln |x| −
1

2
ln |x2 + 1| + c = ln

∣∣∣∣
x

√
x2 + 1

∣∣∣∣+ c

(b)

∫
13x− 4

6x2 − x− 2
dx=

∫
13x− 4

(2x+ 1)(3x− 2)
dx

=

∫
3

2x+ 1
+

2

3x− 2
dx using partial fractions

=
3

2

∫
2

2x+ 1
dx+

2

3

∫
3

3x− 2
dx

=
3

2
ln |2x+ 1| +

2

3
ln |3x− 2| + c

Example 14.15 Evaluate

∫ 1

0

4t3 − 2t2 + 3t − 1

2t2 + 1
dt.

Solution Using partial fractions we may write

4t3 − 2t2 + 3t − 1

2t2 + 1
= 2t − 1 +

t

2t2 + 1

Hence,
∫ 1

0

4t3 − 2t2 + 3t − 1

2t2 + 1
dt =

∫ 1

0

2t − 1 +
t

2t2 + 1
dt =

[
t2 − t +

1

4
ln |2t2 + 1|

]1

0

=

[
1 − 1 +

1

4
ln 3

]
−

[
0 − 0 +

1

4
ln 1

]
= 0.275

EXERCISES 14.4

1 By writing the integrand as its partial fractions �nd

(a)

∫
x+ 3

x2 + x
dx

(b)

∫
t − 3

t2 − 1
dt

(c)

∫
8x+ 10

4x2 + 8x+ 3
dx

(d)

∫
2t2 + 3t + 3

2(t + 1)
dt

(e)

∫
2x2 + x+ 1

x3 + x2
dx

2 Evaluate the following integrals:

(a)

∫ 3

1

5x+ 6

2x2 + 4x
dx

(b)

∫ 1

0

3x+ 5

(x+ 1)(x+ 2)
dx

(c)

∫ 2

1

3 − 3x

2x2 + 6x
dx

(d)

∫ 0

−1

4x+ 1

2x2 + x− 6
dx

(e)

∫ 3

2

x2 + 2x− 1

(x2 + 1)(x− 1)
dx
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3 Find the area between y =
4x+ 7

4x2 + 8x+ 3
and the x

axis from x = 0 to x = 1.

4 Use partial fractions to �nd

(a)

∫ 3

2

3x+ 2

x2 − 1
dx

(b)

∫
t + 3

t2 + 2t + 1
dt

(c)

∫
2t2 + 3t + 1

t3 + t
dt

(d)

∫
6t + 3

2t2 − 5t + 2
dt

Solutions

1 (a) 3 ln x− 2 ln(x+ 1)+ c

(b) 2 ln(t + 1)− ln(t − 1)+ c

(c)
1

2
ln(2x+ 3)+

3

2
ln(2x+ 1)+ c

(d) ln(t + 1)+
t(t + 1)

2
+ c

(e) 2 ln(x+ 1)−
1

x
+ c

2 (a) 2.1587

(b) 1.7918

(c) −0.09971

(d) 0.1823

(e) 0.9769

3 1.2456

4 (a) 1.8767

(b) ln(t + 1)−
2

t + 1
+ c

(c) 3 tan−1 t +
1

2
ln(t2 + 1)+ ln t + c

(d) 5 ln(t − 2)− 2 ln(2t − 1)+ c

REVIEW EXERCISES 14

1 Use the given substitution to �nd the following

integrals:

(a)

∫ 1

0

(9t + 2)10 dt z = 9t + 2

(b)

∫ 5

3

(−t + 1)6 dt z = −t + 1

(c)

∫ 3

6

(4x− 1)27 dx z = 4x− 1

(d)

∫
√
3t + 1 dt z = 3t + 1

(e)

∫
(9y− 2)17 dy z = 9y− 2

(f)

∫ 2

0

3

(2z+ 5)6
dz y = 2z+ 5

(g)

∫
t2 sin(t3) dt z = t3

(h)

∫
x2ex

3+1 dx z = x3 + 1

(i)

∫ 0.5

0

sin(2t)ecos(2t) dt z = cos(2t)

(j)

∫
π

0

sin t cos2 t dt z = cos t

(k)

∫
cos t

√
sin t dt z = sin t

2 Use integration by parts to �nd

(a)

∫
π/2

0

e2x cos x dx (b)

∫
π/2

0

e2x sin x dx

3 Find
∫

ln t

t
dt

using

(a) integration by parts

(b) the substitution z = ln t.

4 The integral In is given by

In =

∫
π/2

0

sinn θ dθ

(a) State In−2.

(b) Show

In =
n− 1

n
In−2

(c) Evaluate I0, I1, I2 and I3.

5 Evaluate

(a)

∫
t2

t3 + 1
dt
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(b)

∫
π/3

0

sin t cos t dt

(c)

∫ 3

1

4

e2t
dt

(d)

∫
3x− 7

(x− 2)(x− 3)(x− 4)
dx

(e)

∫
ex

ex + 1
dx

6 Evaluate

(a)

∫ 1

0

3

(et )2
+ sin t cos2 t dt

(b)

∫ 1

0

4t2et
3

+ t(1 + t2)12 dt

(c)

∫
π

0

sin2 ωt + cos2 ωt + ω dt

ω constant

(d)

∫ 2

1

1 + t + t2

t(1 + t2)
dt

(e)

∫ 1

0

(t + et ) sin t dt

(f)

∫ 3

1

1 + 4x

2x+ 4x2
dx

7 Calculate the area under y(x) =
1 + 2e2x

x+ e2x
from x = 1

to x = 3.

8 Evaluate the following integrals:

(a)

∫
(−2t + 0.1)4 dt

(b)

∫
(1 + x) sin x dx

(c)

∫ 2

1

x sin(1 + x) dx

(d)

∫ 6

3

t√
t2 + 1

dt

(e)

∫
1

t3 + 2t2 + t
dt

(f)

∫ 5

1

1

1 + et
dt

9 Find

(a)

∫
cos t

10 + sin t
dt (b)

∫
2 sin t cos t

1 + sin2 t
dt

(c)

∫
1

t(1 + ln t)
dt (d)

∫
1

et (1 + e−t )
dt

(e)

∫
1 + ln x

x ln x
dx

10 Find

∫
x3ex

2

dx.

Solutions

1 (a) 2.8819 × 109

(b) 2322

(c) −1.2 × 1036

(d)
2

9
(3t + 1)3/2 + c

(e)
(9y− 2)18

162
+ c

(f) 9.092 × 10−5

(g) −
1

3
cos(t3)+ c

(h)
ex

3+1

3
+ c

(i) 0.5009

(j)
2

3

(k)
2

3
(sin t)3/2 + c

2 (a) 4.2281 (b) 9.4563

3
(ln t)2

2
+ c

4 (a) In−2 =

∫
π/2

0

sinn−2 θ dθ

(c)
π

2
, 1, 0.7854, 0.6667

5 (a)
1

3
ln |t3 + 1| + c

(b)
3

8
(c) 0.2657

(d) −
1

2
ln |x− 2| − 2 ln |x− 3| +

5

2
ln |x− 4| + c

(e) ln |ex + 1| + c

6 (a) 1.5778 (b) 317.3 (c) π(1 + ω)

(d) 1.0149 (e) 1.2105 (f) 0.9730

7 3.8805

8 (a) −
(−2t + 0.1)5

10
+ c

(b) −(1 + x) cos x+ sin x+ c

(c) 0.7957
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(d) 2.9205

(e) ln |t| − ln |t + 1| +
1

t + 1
+ c

(f) 0.3066

9 (a) ln(sin t + 10)+ c

(b) ln(sin2 t + 1)+ c

(c) ln(1 + ln t)+ c

(d) − ln(1 + e−t )+ c

(e) ln(x ln x)+ c

10
ex

2

(x2 − 1)

2
+ c
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15.1 INTRODUCTION

Currents and voltages often vary with time. Engineers may wish to know the average

value of such a current or voltage over some particular time interval. The average value

of a time-varying function is de�ned in terms of an integral. An associated quantity is

the root mean square (r.m.s.) value of a function. The r.m.s. value of a current is used in

the calculation of the power dissipated by a resistor.

15.2 AVERAGE VALUE OF A FUNCTION

Suppose f (t) is a function de�ned on a 6 t 6 b. The area, A, under f is given by

A =

∫ b

a

f dt

A rectangle with base spanning the interval [a, b] and height h has an area of h(b− a).

Suppose the height, h, is chosen so that the area under f and the area of the rectangle are

equal. This means

h(b− a) =

∫ b

a

f dt

h =

∫ b
a
f dt

b− a

Then h is called the average value of the function across the interval [a, b] and is illus-

trated in Figure 15.1:

average value =

∫ b
a
f dt

b− a
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a b t

h

f (t)

Figure 15.1

The area under the curve from t = a to t = b and the

area of the rectangle are equal.

Example 15.1 Find the average value of f (t) = t2 across

(a) [1, 3]

(b) [2, 5]

Solution (a) average value =

∫ 3

1
t2 dt

3 − 1
=

1

2

[
t3

3

]3

1

=
13

3

(b) average value =

∫ 5

2
t2 dt

5 − 2
=

1

3

[
t3

3

]5

2

= 13

Example 15.1 shows that if the interval of integration changes then the average value of

a function can change.

Engineering application 15.1

Saw-tooth waveform

Recall from Engineering application 2.2 that engineers frequently make use of the

saw-tooth waveform. Consider the saw-tooth waveform shown in Figure 15.2.

–2 0 2

5

4 6 8 t

y

Figure 15.2

A saw-tooth waveform.

Calculate the average value of this waveform over a complete period.
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Solution

We �rst need to obtain an equation for the waveform. We choose the interval

0 6 t < 2.

The general equation for a straight line is

v = mt + c

When t = 0 then v = 0. So

0 = 0 + c

c = 0

When t = 2 then v = 5. So

5 = m(2)

m = 2.5

Hence

v = 2.5t

The average value is given by

vav =
1

2

∫ 2

0

2.5t dt =
1

2

[
2.5t2

2

]2

0

vav =
1

2

(
2.5 × 4

2
− 0

)
=

10

4
= 2.5 V

Engineering application 15.2

A thyristor firing circuit

Figure 15.3 shows a simple circuit to control the voltage across a load resistor, RL.

This circuit has many uses, one of which is to adjust the level of lighting in a room.

The circuit has an a.c. power supply with peak voltage,VS. The main control element

is the thyristor. This device is similar in many ways to a diode. It has a very high

resistance when it is reverse biased and a low resistance when it is forward biased.

However, unlike a diode, this low resistance depends on the thyristor being ‘switched

on’ by the application of a gate current. The point at which the thyristor is switched

on can be varied by varying the resistor, RG. Figure 15.4 shows a typical waveform

of the voltage, vL, across the load resistor.

The point at which the thyristor is turned on in each cycle is characterized by

the quantity αT , where 0 6 α 6 0.25 and T is the period of the waveform. This

restriction on α reflects the fact that if the thyristor has not turned on when the supply

voltage has peaked in the forward direction then it will never turn on.

Calculate the average value of the waveform over a period and comment on the

result.

➔
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~
Thyristor Gate RG

VS

yL RL

Figure 15.3

A thyristor �ring circuit.

aT aT aT t

VS

yL

Figure 15.4

Load voltage waveform.

Solution

The average value of load voltage is

1

T

∫ T

0

vL dt =
1

T

∫ T/2

αT

VS sin

(
2π t

T

)
dt

=
VS

T

T

2π

[
− cos

(
2π t

T

)]T/2

αT

=
VS

2π
(1 + cos 2πα)

If α = 0, then the average value is VS/π, the maximum value for this circuit. If

α = 0.25, then the average value isVS/2π which illustrates that delaying the turning

on of the thyristor reduces the average value of the load voltage.

EXERCISES 15.2

1 Calculate the average value of the given functions

across the speci�ed interval:

(a) f (t) = 1 + t across [0, 2]

(b) f (x) = 2x− 1 across [−1, 1]

(c) f (t) = t2 across [0, 1]

(d) f (t) = t2 across [0, 2]

(e) f (z) = z2 + z across [1, 3]

2 Calculate the average value of the given functions

over the speci�ed interval:

(a) f (x) = x3 across [1, 3]

(b) f (x) =
1

x
across [1, 2]

(c) f (t) =
√
t across [0, 2]

(d) f (z) = z3 − 1 across [−1, 1]

(e) f (t) =
1

t2
across [−3,−2]

3 Calculate the average value of the following:

(a) f (t) = sin t across

[
0,

π

2

]

(b) f (t) = sin t across [0,π]

(c) f (t) = sinωt across [0,π]

(d) f (t) = cos t across

[
0,

π

2

]

(e) f (t) = cos t across [0,π]

(f) f (t) = cosωt across [0,π]

(g) f (t) = sinωt + cosωt across [0, 1]

4 Calculate the average value of the following

functions:

(a) f (t) =
√
t + 1 across [0, 3]

(b) f (t) = et across [−1, 1]

(c) f (t) = 1 + et across [−1, 1]
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Solutions

1 (a) 2 (b) −1 (c)
1

3
(d)

4

3
(e)

19

3

2 (a) 10 (b) 0.6931 (c) 0.9428

(d) −1 (e)
1

6

3 (a)
2

π
(b)

2

π

(c)
1

πω
[1 − cos(πω)] (d)

2

π

(e) 0 (f)
sin(πω)

πω

(g)
1 + sinω − cosω

ω

4 (a)
14

9
(b) 1.1752 (c) 2.1752

15.3 ROOT MEAN SQUARE VALUE OF A FUNCTION

If f (t) is de�ned on [a, b], the root mean square (r.m.s.) value is

r.m.s. =

√∫ b
a
( f (t))2 dt

b− a

Example 15.2 Find the r.m.s. value of f (t) = t2 across [1, 3].

Solution r.m.s. =

√∫ 3

1
(t2)2 dt

3 − 1
=

√∫ 3

1
t4 dt

2
=

√
[t5/5]31

2
=

√
242

10
= 4.92

Example 15.3 Calculate the r.m.s. value of f (t) = A sin t across [0, 2π].

Solution r.m.s.=

√∫ 2π

0
A2 sin2 t dt

2π

=

√
A2
∫ 2π

0
(1 − cos 2t)/2 dt

2π

=

√
A2

4π

[
t −

sin 2t

2

]2π

0

=

√
A22π

4π
=

A
√
2

= 0.707A

Thus the r.m.s. value is 0.707 × the amplitude.
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Example 15.4 Calculate the r.m.s. value of f (t) = A sin(ωt + φ) across [0, 2π/ω].

Solution r.m.s.=

√∫ 2π/ω

0
A2 sin2(ωt + φ) dt

2π/ω

=

√
A2ω

4π

∫ 2π/ω

0

1 − cos 2(ωt + φ) dt

=

√
A2ω

4π

[
t −

sin 2(ωt + φ)

2ω

]2π/ω

0

=

√
A2ω

4π

(
2π

ω
−

sin 2(2π + φ)

2ω
+

sin 2φ

2ω

)

Now sin 2(2π + φ) = sin(4π + 2φ) and since sin(t + φ) has period 2π we see that

sin(4π + 2φ) = sin 2φ. Hence,

r.m.s. =

√
A2ω

4π

2π

ω
=

√
A2

2
=

A
√
2

= 0.707A

Note that sin(ωt + φ) has period 2π/ω. The result of Example 15.4 illustrates a general

result:

The r.m.s. value of any sinusoidal waveform taken across an interval of length one

period is

0.707 × amplitude of the waveform

Root mean square value is an effective measure of the energy transfer capability of a

time-varying electrical current. To see why this is so, consider the following Engineering

application.

Engineering application 15.3

Average power developed across a resistor by a time-varying
current

Consider a current i(t) which develops a power p(t) in a load resistor R. This current

flows from time t = t1 to time t = t2. Let Pav be the average power dissipated by the

resistor during the time interval
[
t1, t2

]
. We require that total energy transfer, E, be

the same in both cases. So we have

E = Pav(t2 − t1) =

∫ t
2

t
1

p(t) dt
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Now

p(t) = (i(t))2R

and so

Pav(t2 − t1) =

∫ t
2

t
1

i2R dt

If we now consider the average power dissipated by the resistor to be the result of an

effective current Ieff then we have

I2effR(t2 − t1) =

∫ t
2

t
1

i2R dt

I2eff(t2 − t1) =

∫ t
2

t
1

i2 dt

I2eff =

∫ t
2

t
1

i2 dt

t2 − t1

Ieff =

√√√√
∫ t

2

t
1

i2 dt

t2 − t1

We see that the equivalent direct current is the r.m.s. value of the time-varying

current.

Engineering application 15.4

Average value and r.m.s. value of a periodic waveform

Consider the periodic waveform shown in Figure 15.5.

The current i(t) is

i(t) = 20 e−t 0 6 t < 10, period T = 10

(a) Calculate the average value of the current over a complete period.

(b) Calculate the r.m.s. value of the current over a complete period.

100 20

20
i(t)

30 t

Figure 15.5

Waveform for Engineering application

15.4.

➔
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Solution

(a) As the waveform is periodic, we need only consider the interval 0 6 t < 10.

Iav =
1

T

∫ T

0

i(t) dt =
1

10

∫ 10

0

20 e−t dt

=
1

10
[−20 e−t]100

=
1

10
(−20 e−10 + 20 e0)

=
20

10
(1 − e−10) = 2 × 0.999 95 = 2.000 A

(b) Ieff =

√√√√
∫ t

2

t
1

i2dt

t2 − t1
Here

t1 = 0 t2 = 10 i(t) = 20 e−t

First we evaluate
∫ t

2

t
1

i2 dt =

∫ 10

0

400 e−2t dt

= 400

[
e−2t

−2

]10

0

=
400

−2
(e−20 − e0)

= 200(1 − e−20) = 200.00

So

Ieff =

√
200.00

10 − 0

= 4.4721 A

EXERCISES 15.3

1 Calculate the r.m.s. values of the functions in

Question 1 in Exercises 15.2.

2 Calculate the r.m.s. values of the functions in

Question 2 in Exercises 15.2.

3 Calculate the r.m.s. values of the functions in

Question 3 in Exercises 15.2.

4 Calculate the r.m.s. values of the functions in

Question 4 in Exercises 15.2.

Solutions

1 (a) 2.0817 (b) 1.5275 (c) 0.4472

(d) 1.7889 (e) 6.9666

2 (a) 12.4957 (b) 0.7071 (c) 1

(d) 1.0690 (e) 0.1712

3 (a) 0.7071

(b) 0.7071

(c)

√
1

2
−

sinπω cosπω

2πω
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(d) 0.7071

(e) 0.7071

(f)

√
1

2
+

sinπω cosπω

2πω

(g)

√

1 +
sin2 ω

ω

4 (a) 1.5811 (b) 1.3466 (c) 2.2724

REVIEW EXERCISES 15

1 Find the average value of the following functions

across the speci�ed interval:

(a) f (t) = 3 − t across [0, 4]

(b) f (t) = t2 − 2 across [1, 3]

(c) f (t) = t +
1

t
across [1, 4]

(d) f (t) =
√
t + 1 across [0, 4]

(e) f (t) = t2/3 across [0, 1]

2 Calculate the average value of the following:

(a) f (t) = 2 sin 2t across

[
0,

π

2

]

(b) f (t) = A sin 4t across

[
0,

π

2

]

(c) f (t) = sin t + cos t across [0,π]

(d) f (t) = cos

(
t

2

)
across

[
0,

π

2

]

(e) f (t) = sin t cos t across [0,π]

3 Calculate the average value of the following

functions:

(a) f (t) = A ekt across [0, 1]

(b) f (t) =
1

e3t
across [0, 2]

(c) f (t) = 3 − e−t across [1, 3]

(d) f (t) = et + e−t across [0, 2]

(e) f (t) = t + et across [0, 2]

4 Find the average and r.m.s. values of

A cos t + B sin t across

(a) [0, 2π]

(b) [0,π]

5 Find the r.m.s. values of the functions

in Question 1.

6 Find the r.m.s. values of the functions in

Question 2.

7 Find the r.m.s. values of the functions

in Question 3.

Solutions

1 (a) 1 (b)
7

3
(c) 2.9621

(d)
7

3
(e)

3

5

2 (a)
4

π
(b) 0 (c)

2

π

(d) 0.9003 (e) 0

3 (a) A

(
ek − 1

k

)
(b) 0.1663

(c) 2.8410 (d) 3.6269

(e) 4.1945

4 (a) average = 0, r.m.s. =

√
A2 + B2

2

(b) average =
2B

π
, r.m.s. =

√
A2 + B2

2

5 (a) 1.5275 (b) 3.2965 (c) 3.0414

(d) 2.3805 (e) 0.6547

6 (a) 1.4142 (b)
A

√
2

(c) 1

(d) 0.9046 (e) 0.3536

7 (a) A

√
e2k − 1

2k
(b) 0.2887

(c) 2.8423 (d) 3.9554

(e) 4.8085



16 Further topics in
integration

Contents 16.1 Introduction 480

16.2 Orthogonal functions 480

16.3 Improper integrals 483

16.4 Integral properties of the delta function 489

16.5 Integration of piecewise continuous functions 491

16.6 Integration of vectors 493

Review exercises 16 494

16.1 INTRODUCTION

This chapter examines some further topics in integration. Orthogonal functions are intro-

duced in Section 16.2. These functions are used extensively in Fourier analysis

(see Chapter 23). Some integrals have one or two in�nite limits of integration, or have

an integrand which becomes in�nite at particular points in the interval of integration.

Such integrals are termed ‘improper’ and require special treatment. They are used ex-

tensively in the theory of Laplace and Fourier transforms. The Dirac delta function, δ(t),

has been introduced in Chapter 2. The integral properties are examined in Section 16.4.

The chapter concludes with the integration of piecewise continuous functions and the

integration of vectors.

16.2 ORTHOGONAL FUNCTIONS

Two functions f (x) and g(x) are said to be orthogonal over the interval [a, b] if
∫ b

a

f (x)g(x) dx = 0

To show that two functions are orthogonal we must demonstrate that the integral of their

product over the interval of interest is zero.
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Example 16.1 Show that f (x) = x and g(x) = x− 1 are orthogonal on

[
0,

3

2

]
.

Solution

∫ 3/2

0

x(x− 1) dx =

∫ 3/2

0

x2 − x dx =

[
x3

3
−
x2

2

]3/2

0

=
9

8
−

9

8
= 0

Hence f and g are orthogonal over the interval

[
0,

3

2

]
.

Clearly functions may be orthogonal over one interval but not orthogonal over others.

For example,

∫ 1

0

x(x− 1) dx 6= 0

and so x and x− 1 are not orthogonal over [0, 1].

Example 16.2 Show f (t) = 1, g(t) = sin t and h(t) = cos t are mutually orthogonal over [−π,π].

Solution We are required to show that any pair of functions is orthogonal over [−π,π].

∫
π

−π

1 sin t dt = [− cos t]π−π
= − cosπ + cos(−π)

= −(−1)+ (−1) = 0∫
π

−π

1 cos t dt = [sin t]π−π
= sinπ − sin(−π) = 0

Using the trigonometric identity sin 2A = 2 sinA cosA, we can write

∫
π

−π

sin t cos t dt =

∫
π

−π

1

2
sin(2t) dt = −

[
cos(2t)

4

]
π

−π

= −
cos(2π)− cos(−2π)

4
= 0

Hence the functions 1, sin t, cos t form an orthogonal set over [−π,π].

The set of Example 16.2 may be extended to

{1, sin t, cos t, sin(2t), cos(2t), sin(3t), cos(3t), . . . , sin(nt), cos(nt)} n ∈ N

Example 16.3 Verify that {1, sin t, cos t, sin(2t), cos(2t), . . .} forms an orthogonal set over [−π,π].

Solution Suppose n,m ∈ N. We must show that all combinations of 1, sin nt, sinmt, cos nt and

cosmt are orthogonal.

∫
π

−π

1 sin(nt) dt =

[
− cos(nt)

n

]
π

−π

=
− cos(nπ)+ cos(−nπ)

n
= 0
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In a similar manner, it is easy to show

∫
π

−π

1 cos(nt) dt = 0

Also, using the trigonometric identities in Section 3.6

∫
π

−π

cos(nt) sin(mt) dt =
1

2

∫
π

−π

sin(n+ m)t − sin(n− m)t dt

We have seen that
∫

π

−π
sin nt dt = 0 for any n ∈ N. Noting that (n + m) ∈ N and

(n− m) ∈ N, we see that

∫
π

−π

sin(n+ m)t − sin(n− m)t dt = 0

It is left as an exercise for the reader to show that
∫

π

−π

sin nt sinmt dt = 0 n 6= m

∫
π

−π

cos nt cosmt dt = 0 n 6= m

The functions thus form an orthogonal set across [−π,π].

The result of Example 16.3 can be extended:

{1, sin t, cos t, sin 2t, cos 2t, . . .} is an orthogonal set over any interval of length 2π.

More generally:

{
1, sin

(
2π t

T

)
, cos

(
2π t

T

)
, sin

(
4π t

T

)
, cos

(
4π t

T

)
, . . .

}

is an orthogonal set over any interval of length T . In particular, the set is orthogonal

over [0,T ] and

[
−
T

2
,
T

2

]
.

These results are used extensively in Fourier analysis.

Example 16.4 Find

(a)

∫
π

−π

sin2(nt) dt n ∈ Z n 6= 0

(b)

∫
π

−π

cos2(nt) dt n ∈ Z n 6= 0
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Solution (a) We use the trigonometric identity

sin2 nt =
1 − cos 2nt

2
to get

∫
π

−π

sin2(nt) dt =

∫
π

−π

1 − cos 2nt

2
dt =

∫
π

−π

1

2
dt = π

using the orthogonal properties of cos(nt).

(b)

∫
π

−π

cos2(nt) dt =

∫
π

−π

1 − sin2(nt) dt

= 2π − π = π

It is a simple extension to show that integrating sin2(nt) or cos2(nt) over any interval

of length 2π yields the same result, namely π. It is also possible to extend the result of

Example 16.4 to show

∫ T/2

−T/2

sin2
(
2nπ t

T

)
dt =

∫ T/2

−T/2

cos2
(
2nπ t

T

)
dt =

T

2
n ∈ Z n 6= 0

Finally, integrating sin2
(
2nπ t

T

)
and cos2

(
2nπ t

T

)
over any interval of length T gives

the same result, that is
T

2
.

EXERCISES 16.2

1 Show f (x) = x2 and g(x) = 1 − x are orthogonal

across

[
0,

4

3

]
.

2 Show f (x) =
1

x
and g(x) = x2 are orthogonal over

[−k, k].

3 (a) Show f (t) = 1 − t and g(t) = 1 + t are

orthogonal over [0,
√
3].

(b) Find another interval over which f (t) and g(t) are

orthogonal.

4 Show f (t) = et and g(t) = 1 − e−2t are orthogonal

across [−1, 1].

5 Show f (x) =
√
x and g(x) = 1 −

√
x are orthogonal

on

[
0,

16

9

]
.

Solutions

3 (b) [−
√
3, 0]

16.3 IMPROPER INTEGRALS

There are two cases when evaluation of an integral needs special care:

(1) one, or both, of the limits of an integral are in�nite;

(2) the integrand becomes in�nite at one, or more, points of the interval of integration.
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If either (1) or (2) is true the integral is called an improper integral. Evaluation of

improper integrals involves the use of limits.

Example 16.5 Evaluate

∫ ∞

2

1

t2
dt.

Solution

∫ ∞

2

1

t2
dt =

[
−
1

t

]∞

2

To evaluate −
1

t
at the upper limit we consider lim

t→∞
−
1

t
. Clearly the limit is 0. Hence,

∫ ∞

2

1

t2
dt = 0 −

(
−
1

2

)
=

1

2

Example 16.6 Evaluate

∫ 1

−∞

e2x dx.

Solution

∫ 1

−∞

e2x dx =

[
e2x

2

]1

−∞

We need to evaluate lim
x→−∞

e2x

2
. This limit is 0. So,

∫ 1

−∞

e2x dx =

[
e2x

2

]1

−∞

=
e2

2
− 0 = 3.69

Engineering application 16.1

Capacitors in series

Engineers are often called upon to simplify an electronic circuit in order to make

it easier to analyse. One of the arrangements frequently met is that of two or more

capacitors connected together in series. It is useful to be able to replace this con-

�guration by a single capacitor with a capacitance value equivalent to that of the

original capacitors in series. Derive an expression for the equivalent capacitance of

two capacitors connected together in series (see Figure 16.1).

Solution

In Engineering application 13.2 we obtained an expression for the voltage across a

capacitor. This was

v =
1

C

∫
i dt



16.3 Improper integrals 485

y1

y

i

y2

C1 C2

Figure 16.1

Two capacitors

connected in series.

This can be written as a de�nite integral to give the voltage expression across the

capacitor at a general point in time, t. The expression is

v =
1

C

∫ t

−∞

i dt

Now consider the situation depicted in Figure 16.1. Writing an equation for each of

the capacitors gives

v1 =
1

C1

∫ t

−∞

i dt v2 =
1

C2

∫ t

−∞

i dt

By Kirchhoff’s voltage law, v = v1 + v2 and so

v =
1

C1

∫ t

−∞

i dt +
1

C2

∫ t

−∞

i dt =

(
1

C1

+
1

C2

)∫ t

−∞

i dt

Therefore, the two capacitors can be replaced by an equivalent capacitance,C, given

by

1

C
=

1

C1

+
1

C2

=
C1 +C2

C1C2

so that

C =
C1C2

C1 +C2

The result is easily generalised for more than two capacitors. For example, for three

capacitors we have

1

C
=

1

C1

+
1

C2

+
1

C3

so that

C =
C1C2C3

C2C3 +C1C3 +C1C2

You may wish to prove this result.

Example 16.7 Evaluate

∫ ∞

3

2

2t + 1
−

1

t
dt.

Solution

∫ ∞

3

2

2t + 1
−

1

t
dt = [ln |2t + 1| − ln |t|]∞3

=

[
ln

∣∣∣∣
2t + 1

t

∣∣∣∣
]∞

3

=

[
ln

∣∣∣∣2 +
1

t

∣∣∣∣
]∞

3

= lim
t→∞

[
ln

(
2 +

1

t

)]
− ln

7

3

= ln 2 − ln
7

3
= ln

6

7
= −0.1542
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Example 16.8 Evaluate

∫ ∞

1

sin t dt.

Solution

∫ ∞

1

sin t dt = [− cos t]∞1

Now limt→∞(− cos t) does not exist, that is the function cos t does not approach a limit

as t → ∞, and so the integral cannot be evaluated. We say the integral diverges.

Example 16.9 Evaluate

∫ 1

0

1
√
x
dx.

Solution The integrand,
1

√
x
, becomes in�nite when x = 0, which is in the interval of integration.

The point x = 0 is ‘removed’ from the interval. We consider

∫ 1

b

1
√
x
dx where b is

slightly greater than 0, and then let b → 0+. Now,

∫ 1

b

1
√
x
dx = [2

√
x]1b = 2 − 2

√
b

Then,
∫ 1

0

1
√
x
dx = lim

b→0+

∫ 1

b

1
√
x
dx = lim

b→0+
(2 − 2

√
b) = 2

The improper integral exists and has value 2.

Example 16.10 Determine whether the integral

∫ 2

0

1

x
dx exists or not.

Solution As in Example 16.9 the integrand is not de�ned at x = 0, so we consider

∫ 2

b

1

x
dx for

b > 0 and then let b → 0+.
∫ 2

b

1

x
dx = [ln |x|]2b = ln 2 − ln b

So,

lim
b→0

(∫ 2

b

1

x
dx

)
= lim

b→0
(ln 2 − ln b)

Since limb→0 ln b does not exist the integral diverges.

Example 16.11 Evaluate

∫ 2

−1

1

x
dx if possible.

Solution We ‘remove’ the point x = 0 where the integrand becomes in�nite and consider two

integrals:

∫ b

−1

1

x
dx where b is slightly smaller than 0, and

∫ 2

c

1

x
dx where c is slightly

larger than 0. If these integrals exist as b → 0− and c → 0+ then

∫ 2

−1

1

x
dx converges. If
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either of the integrals fails to converge then

∫ 2

−1

1

x
dx diverges. Now,

∫ b

−1

1

x
dx = ln |b| − ln |−1| = ln |b|

lim
b→0−

∫ b

−1

1

x
dx = lim

b→0−
(ln |b|)

This limit fails to exist and so

∫ 2

−1

1

x
dx diverges.

Engineering application 16.2

Energy stored in a capacitor

A capacitor provides a useful means of storing energy. This energy can be discharged

by connecting the capacitor in series with a load resistor and closing a switch. The

stored electrical energy is converted into heat energy as a result of electrical cur-

rent 	owing through the resistor. Consider the circuit shown in Figure 16.2 which

consists of a capacitor, C F, connected in series with a resistor with value R � and

isolated by means of a switch, S. We wish to calculate the amount of energy stored in

the capacitor. The switch is closed at t = 0 and a current, i, flows in the circuit. We

have already seen in Chapter 2 that for such a case the time-varying voltage across

the capacitor decays exponentially and is given by

v = Ve−t/RC

So, using Ohm’s law

i =
v

R
=
Ve−t/RC

R

iS

RC

Figure 16.2

The capacitor is discharged by closing the switch.

Now the effect of closing the switch is to allow the energy stored in the capacitor to

be dissipated in the resistor. Therefore, if the total energy dissipated in the resistor

is calculated then this will allow the energy stored in the capacitor to be obtained.

However, the energy dissipation rate, that is power dissipated, is not a constant for

the resistor but depends on the current flowing through it. The total energy dissipated,

E, is given by

E =

∫ ∞

0

P(t) dt

where P(t) is the power dissipated in the resistor at time t. This equation has been

discussed in Engineering application 13.3. Now,

P = i2R =
RV 2 e−2t/RC

R2
=
V 2 e−2t/RC

R

➔
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E =

∫ ∞

0

V 2 e−2t/RC

R
dt =

V 2

R

∫ ∞

0

e−2t/RC dt

=
V 2RC

−2R

[
e−2t/RC

]∞
0

Now

lim
t→∞

e−2t/RC = 0

and so the energy stored in the capacitor is given by

E =
CV 2

2

Example 16.12 Find
∫ ∞

0

e−st sin t dt s > 0

Solution Using integration by parts, with u = e−st and
dv

dt
= sin t, we have

∫ ∞

0

e−st sin t dt =
[
−e−st cos t

]∞
0

− s

∫ ∞

0

e−st cos t dt

Consider the �rst term on the r.h.s.We need to evaluate
[
−e−st cos t

]
as t → ∞ andwhen

t = 0. Note that−e−st cos t → 0 as t → ∞ because we are given that s is positive.When

t = 0, −e−st cos t evaluates to −1, and so
∫ ∞

0

e−st sin t dt = 1 − s

∫ ∞

0

e−st cos t dt

Integrating by parts for a second time yields

∫ ∞

0

e−st sin t dt = 1 − s

{[
e−st sin t

]∞
0

+ s

∫ ∞

0

e−st sin t dt

}

= 1 − s2
∫ ∞

0

e−st sin t dt

because
[
e−st sin t

]∞
0
evaluates to zero at both limits. At this stage the reader might sus-

pect that we have gone around in a circle and still need to evaluate the original integral.

However, some algebraic manipulation yields the required result. We have
∫ ∞

0

e−st sin t dt + s2
∫ ∞

0

e−st sin t dt = 1

(1 + s2)

∫ ∞

0

e−st sin t dt = 1

∫ ∞

0

e−st sin t dt =
1

1 + s2
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EXERCISES 16.3

1 Evaluate, if possible,

(a)

∫ ∞

0

e−t dt

(b)

∫ ∞

0

e−kt dt k is a constant, k > 0

(c)

∫ ∞

1

1

x
dx

(d)

∫ ∞

1

1

x2
dx

(e)

∫ 3

1

1

x− 2
dx

2 Evaluate the following integrals where possible:

(a)

∫ 4

0

3

x− 2
dx (b)

∫ 3

0

1

x− 1
+

1

x− 2
dx

(c)

∫ 2

0

1

x2 − 1
dx (d)

∫ ∞

0

sin 3t dt

(e)

∫ 3

−∞

xex dx

3 Find

∫ ∞

0

e−st cos t dt s > 0

Solutions

1 (a) 1 (b)
1

k
(c) does not exist

(d) 1 (e) does not exist

2 (a) does not exist (b) does not exist

(c) does not exist (d) does not exist

(e) 2e3

3
s

s2 + 1

16.4 INTEGRAL PROPERTIES OF THE DELTA FUNCTION

The delta function, δ(t−d), was introduced in Chapter 2. The function is de�ned to be a

rectangle whose area is 1 in the limit as the base length tends to 0 and as the height tends

to in�nity. Sometimes we need to integrate the delta function. In particular, we consider

the improper integral

∫ ∞

−∞

δ(t − d) dt

The integral gives the area under the function and this is de�ned to be 1. Hence,

∫ ∞

−∞

δ(t − d) dt = 1

In Chapter 21 we need to consider the improper integral

∫ ∞

−∞

f (t)δ(t − d) dt

where f (t) is some known function of time. The delta function δ(t − d) is zero every-

where except at t = d. When t = d, then f (t) has a value f (d). Hence,

∫ ∞

−∞

f (t)δ(t − d) dt =

∫ ∞

−∞

f (d)δ(t − d) dt = f (d)

∫ ∞

−∞

δ(t − d) dt
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since f (d) is a constant. But

∫ ∞

−∞

δ(t − d) dt = 1 and hence

∫ ∞

−∞

f (t)δ(t − d) dt = f (d)

∫ ∞

−∞

δ(t − d) dt = 1

∫ ∞

−∞

f (t)δ(t − d) dt = f (d)

The result∫ ∞

−∞

f (t)δ(t − d) dt = f (d)

is known as the sifting property of the delta function. By multiplying a function, f (t),

by δ(t − d) and integrating from −∞ to ∞ we sift from the function the value f (d).

Example 16.13 Evaluate the following integrals:

(a)

∫ ∞

−∞

t2δ(t − 2) dt (b)

∫ ∞

0

etδ(t − 1) dt

Solution (a) We use∫ ∞

−∞

f (t)δ(t − d) dt = f (d)

with f (t) = t2 and d = 2. Hence
∫ ∞

−∞

t2δ(t − 2) dt = f (2) = 22 = 4

(b) We note that the expression etδ(t − 1) is 0 everywhere except at t = 1. Hence
∫ ∞

0

etδ(t − 1) dt =

∫ ∞

−∞

etδ(t − 1) dt

Using
∫ ∞

−∞

f (t)δ(t − d) dt = f (d)

with f (t) = et and d = 1 gives
∫ ∞

0

etδ(t − 1) dt = f (1) = e1 = e

EXERCISES 16.4

1 Evaluate

(a)

∫ ∞

−∞

etδ(t) dt

(b)

∫ ∞

−∞

etδ(t − 4) dt

(c)

∫ ∞

−∞

etδ(t + 3) dt

(d) 4

∫ ∞

−∞

t2δ(t − 3) dt
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(e)

∫ ∞

−∞

(1 + t)δ(t − 1)

2
dt

(f)

∫ ∞

−∞

e−ktδ(t) dt

(g)

∫ ∞

−∞

e−ktδ(t − a) dt

(h)

∫ ∞

−∞

e−k(t−a)δ(t − a) dt

2 Evaluate the following integrals:

(a)

∫ ∞

−∞

(sin t)δ(t − 2) dt

(b)

∫ ∞

−∞

e−tδ(t + 1) dt

(c)

∫ 0

−∞

e−tδ(t + 3) dt

(d)

∫ 10

0

x3δ(x− 2) dx

(e)

∫ 1

−1

x2δ(x+ 2) dx

3 Evaluate the following:

(a)

∫ ∞

−∞

t(sin 2t)δ(t − 3) dt

(b)

∫ ∞

0

δ(t + 1)− δ(t − 1) dt

(c)

∫ ∞

0

δ(t − d) dt

(d)

∫ a

−a

δ(t − d) dt

Solutions

1 (a) 1 (b) 54.5982

(c) 4.9787 × 10−2 (d) 36

(e) 1 (f) 1

(g) e−ak (h) 1

2 (a) 0.9093

(b) 2.7183

(c) 20.0855

(d) 8

(e) 0

3 (a) −0.8382

(b) −1

(c) 1 if d > 0, 0 otherwise

(d) 1 if −a 6 d 6 a, 0 otherwise

16.5 INTEGRATION OF PIECEWISE CONTINUOUS FUNCTIONS

Integration of piecewise continuous functions is illustrated in Example 16.14. If a dis-

continuity occurs within the limits of integration then the interval is divided into sub-

intervals so that the integrand is continuous on each sub-interval.

Example 16.14 Given

f (t) =

{
2 0 6 t < 1

t2 1< t 6 3

evaluate
∫ 3

0
f (t) dt.

Solution The function, f (t), is piecewise continuous with a discontinuity at t = 1. The function

is illustrated in Figure 16.3. The discontinuity occurs within the limits of integration.

We split the interval of integration at the discontinuity thus:
∫ 3

0

f (t) dt =

∫ 1

0

f (t) dt +

∫ 3

1

f (t) dt
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2

f (t)

31 t

Figure 16.3

The function f (t) =

{
2 0 6 t < 1

t2 1< t 6 3.

On the intervals (0, 1) and (1, 3), f (t) is continuous, so

∫ 3

0

f dt =

∫ 1

0

2 dt +

∫ 3

1

t2 dt

=

[
2t

]1

0

+

[
t3

3

]3

1

= 2 +

[
9 −

1

3

]
=

32

3

EXERCISES 16.5

1 Given

f (t) =





3 −1 6 t < 1

2t 1 6 t 6 2

t2 2 < t 6 3

evaluate

(a)

∫ 1

−1

f dt (b)

∫ 1.5

−0.5

f dt

(c)

∫ 2.5

0

f dt (d)

∫ 3

−1

f dt

2 Given

g(t) =




3t 0 6 t < 3

15 − 2t 3 6 t < 4

6 4 6 t 6 6

evaluate

(a)

∫ 2

0

g(t) dt (b)

∫ 4

2

g(t) dt

(c)

∫ 5

3

g(t) dt (d)

∫ 6

0

g(t) dt

(e)

∫ 4.5

3.5

g(t) dt

3 Given u(t) is the unit step function, evaluate

(a)

∫ 4

0

u(t) dt

(b)

∫ 2

−3

u(t) dt

(c)

∫ 4

−2

2u(t + 1) dt

(d)

∫ 2

−1

t u(t) dt

(e)

∫ 4

0

ektu(t − 3) dt k constant

Solutions

1 (a) 6 (b) 5.75

(c) 8.5417 (d) 15.3333

2 (a) 6 (b) 15.5 (c) 14

(d) 33.5 (e) 6.75

3 (a) 4 (b) 2

(c) 10 (d) 2

(e)
e4k − e3k

k
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16.6 INTEGRATION OF VECTORS

If a vector depends upon time t, it is often necessary to integrate it with respect to time.

Recall that i, j and k are constant vectors and are treated thus in any integration. Hence

the integral

I =

∫
( f (t)i + g(t)j + h(t)k) dt

is simply evaluated as three scalar integrals, and so

I =

(∫
f (t) dt

)
i +

(∫
g(t) dt

)
j +

(∫
h(t) dt

)
k

Example 16.15 If r = 3ti + t2j + (1 + 2t)k, evaluate
∫ 1

0
r dt.

Solution

∫ 1

0

r dt =

(∫ 1

0

3t dt

)
i +

(∫ 1

0

t2 dt

)
j +

(∫ 1

0

1 + 2t dt

)
k

=

[
3t2

2

]1

0

i +

[
t3

3

]1

0

j +

[
t + t2

]1

0

k =
3

2
i +

1

3
j + 2k

EXERCISES 16.6

1 Given r = 3 sin ti− cos tj+ (2− t)k, evaluate
∫

π

0 r dt.

2 Given v = i − 3j + k, evaluate

(a)

∫ 1

0

v dt (b)

∫ 2

0

v dt

3 The vector, a, is de�ned by

a = t2i + e−t j + tk

Evaluate

(a)

∫ 1

0

a dt (b)

∫ 3

2

a dt (c)

∫ 4

1

a dt

4 Let a and b be two three-dimensional vectors. Is the

following true?
∫ t

2

t
1

a dt ×

∫ t
2

t
1

b dt =

∫ t
2

t
1

a × b dt

Recall that × denotes the vector product.

Solutions

1 6i + 1.348k

2 (a) i − 3j + k (b) 2i − 6j + 2k

3 (a) 0.333i + 0.632j + 0.5k

(b) 6.333i + 0.0855j + 2.5k

(c) 21i + 0.3496j + 7.5k

4 no
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REVIEW EXERCISES 16

1 Show f (x) = xn and g(x) = xm are orthogonal on

[−k, k] if n+ m is an odd number.

2 Show f (t) = sin t and g(t) = cos t are orthogonal on

[a, a+ nπ].

3 Show f (t) = sinh t and g(t) = cosh t are orthogonal

over [−k, k].

4 Determine the values of k for which
∫∞

0 tk dt exists.

5 Evaluate if possible

(a)

∫ ∞

0

u(t) dt

(b)

∫ ∞

−∞

e−1000t dt

(c)

∫ 0

−2

1

x+ 1
dx

(d)

∫ ∞

−∞

u(t)e−t dt

(e)

∫ 2

−2

1

x2 − 1
dx

(Note that u(t) is the unit step function.)

6 Find the values of k for which
∫∞

0 ekt dt exists.

7 Evaluate

(a)

∫ ∞

−∞

(t2 + 1)δ(t − 1) dt

(b)

∫ ∞

−∞

tetδ(t − 2) dt

(c)

∫ ∞

−∞

(t2 + t + 2)δ(t − 1) dt

(d)

∫ ∞

−∞

δ(t + 2)

t2 + 1
dt

(e)

∫ ∞

−∞

δ(t + 1)δ(t + 2) dt

8 (a) Evaluate
∫ ∞

−∞

(t2 + 1)δ(2t) dt

[Hint: substitute z = 2t.]

(b) Show∫ ∞

−∞

f (t)δ(nt) dt =
1

n
f (0), n > 0

9 Evaluate

(a)

∫ ∞

0

(1 + t)δ(t − 2) dt

(b)

∫ ∞

−∞

tδ(1 + t) dt

(c)

∫ ∞

−∞

(1 + t)δ(−t) dt

(d)

∫ 0

−∞

δ(t − 6)+ δ(t + 6) dt

(e)

∫ 4k

−2k

δ(t + k)+ δ(t + 3k)+ δ(t + 5k) dt

k > 0

10 The function g(t) is piecewise continuous and

de�ned by

g(t) =

{
2t 0 6 t 6 1

3 1 < t 6 2

Evaluate

(a)

∫ 1

0

g(t) dt

(b)

∫ 1.5

0

g(t) dt

(c)

∫ 1.7

0.5

g(t) dt

(d)

∫ 2

1

g(t) dt

(e)

∫ 1.5

1.3

g(t) dt

11 Given

f (t) =




1 + t −1 6 t < 3

t − 1 3 6 t 6 4

0 otherwise

evaluate

(a)

∫ 2

−1

f (t) dt

(b)

∫ 4

−1

f (t) dt

(c)

∫ 5

0

f (t) dt

(d)

∫ ∞

−∞

f (t)δ(t − 2) dt

(e)

∫ ∞

−∞

f (t)u(t) dt
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12 Given

h(t) =




t2 −2 6 t 6 2

t3 2 < t 6 3

4 3 < t 6 5

evaluate

(a)

∫ 2

−1

h(t) dt

(b)

∫ 2.5

0

h(t) dt

(c)

∫ 4

2

h(t)+ 1 dt

(d)

∫ 4

0

h(t + 1) dt

(e)

∫ 2

−1

h(2t) dt

13 If a = ti − 2tj + 3tk, �nd
∫ 1
0 a dt.

14 Given

v(t) = 2ti + (3 − t2)j + t3k

�nd

(a)

∫ 1

0

v dt

(b)

∫ 2

1

v dt

(c)

∫ 2

0

v dt

15 Evaluate the following integrals:

(a)

∫ 3

−1

|t| dt

(b)

∫ 2

−3

|t + 2| dt

(c)

∫ 2

0

|3t − 1| dt

Solutions

4 k < −1

5 (a) does not exist

(b) does not exist

(c) does not exist

(d) 1

(e) does not exist

6 k < 0

7 (a) 2 (b) 14.7781 (c) 4

(d) 0.2 (e) 0

8 (a)
1

2

9 (a) 3 (b) −1 (c) 1

(d) 1 (e) 1

10 (a) 1 (b)
5

2
(c) 2.85

(d) 3 (e) 0.6

11 (a) 4.5 (b) 10.5 (c) 10

(d) 3 (e) 10

12 (a) 3

(b) 8.4323

(c) 22.25

(d) 26.5833

(e) 12.7917

13 0.5i − j + 1.5k

14 (a) i +
8

3
j +

1

4
k

(b) 3i +
2

3
j +

15

4
k

(c) 4i +
10

3
j + 4k

15 (a) 5 (b) 8.5 (c)
13

3
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17.1 INTRODUCTION

Many functions, for example sin x2 and
ex

x
, cannot be integrated analytically. Integra-

tion of such functions must be performed numerically. This section outlines two simple

numerical techniques -- the trapezium rule and Simpson’s rule. More sophisticated ones

exist and there are many excellent software packages available which implement these

methods.

17.2 TRAPEZIUM RULE

We wish to �nd the area under y(x), from x = a to x = b, that is we wish to evaluate∫ b
a
y dx. The required area is divided into n strips, each of width h. Note that the width,

h, of each strip is given by h =
b− a

n
. Each strip is then approximated by a trapezium.

A typical trapezium is shown in Figure 17.1. The area of the trapezium is
1

2
h[yi + yi+1].

Summing the areas of all the trapezia will yield an approximation to the total area:

area of trapezia =
h

2
(y0 + y1)+

h

2
(y1 + y2)+ · · · +

h

2
(yn−1 + yn)

=
h

2
(y0 + 2y1 + 2y2 + 2y3 + · · · + 2yn−1 + yn)
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{ { { {y0
yi

xi

yn

y

xb

h

a

yi +1

xi +1 Figure 17.1

Each strip is approximated by a trapezium.

If the number of strips is increased, that is h is decreased, then the accuracy of the ap-

proximation is increased.

Example 17.1 Use the trapezium rule to estimate

∫ 1.3

0.5

e(x
2 ) dx using

(a) a strip width of 0.2 (b) a strip width of 0.1.

Solution (a) Table 17.1 lists values of x and corresponding values of e(x
2 ).

We note that h = 0.2. Using the trapezium rule we �nd

sum of areas of trapezia =
0.2

2
{1.2840 + 2(1.6323)+ 2(2.2479)

+ 2(3.3535)+ 5.4195}

= 2.117

Hence
∫ 1.3

0.5

e(x
2 ) dx ≈ 2.117

Table 17.1

x y= e(x
2 )

0.5 1.2840 = y0
0.7 1.6323 = y1
0.9 2.2479 = y2
1.1 3.3535 = y3
1.3 5.4195 = y4

Table 17.2

x y= e(x2 )

x0 = 0.5 1.2840 = y0
x1 = 0.6 1.4333 = y1
x2 = 0.7 1.6323 = y2
x3 = 0.8 1.8965 = y3
x4 = 0.9 2.2479 = y4
x5 = 1.0 2.7183 = y5
x6 = 1.1 3.3535 = y6
x7 = 1.2 4.2207 = y7
x8 = 1.3 5.4195 = y8

(b) Table 17.2 lists x values and corresponding values of e(x
2 ).

Using Table 17.2, we �nd

sum of areas of trapezia =
0.1

2
{1.2840 + 2(1.4333)+ 2(1.6323)+ · · ·

+2(4.2207)+ 5.4195}

= 2.085

Hence

∫ 1.3

0.5

e(x
2 ) dx ≈ 2.085.

Dividing the interval [0.5, 1.3] into strips of width 0.1 results in a more accurate estimate

than using strips of width 0.2.
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Engineering application 17.1

Distance travelled by a rocket

A rocket is released and travels at a variable speed v. A motion sensor on the rocket

measures this speed and the value is sampled by an onboard computer at 1 second

intervals. The computer is required to calculate the distance travelled by the rocket

and relay the value to a ground station at regular intervals. Table 17.3 records values

of the measurements taken by the computer during the �rst 10 seconds of flight.

Assuming that the computer uses the trapezium rule to estimate the distance travelled

by the rocket, calculate the value that the computer will relay to the ground station

after 10 seconds.

Table 17.3

Time (s) Speed (m s−1)

0 10.1

1 17.2

2 24.4

3 29.2

4 34.6

5 41.2

6 50.9

7 57.8

8 60.3

9 61.2

10 62.1

Solution

We know that v =
ds

dt
where v = speed and s = distance travelled in time t. So

s =

∫ t

0

v dt

We estimate the value of this integral using the trapezium rule. We choose a strip of

width h = 1 as this is the time interval at which data is collected by the computer.

Therefore

s =

∫ 10

0

v dt ≈
1

2
{10.1 + 2(17.2 + 24.4 + 29.2 + 34.6

+ 41.2 + 50.9 + 57.8 + 60.3 + 61.2)+ 62.1}

=
1

2
(825.8)

= 412.9

The distance travelled after 10 seconds is approximately 412.9 m.

17.2.1 Error due to the trapezium rule

Suppose we wish to estimate
∫ b
a
f dx using the trapezium rule. The interval [a, b] is

divided into n equal strips, each of width h =
b− a

n
.
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The difference between the estimated value of the integral and the true value of the

integral is the error. So

error = estimated value − true value

We are able to �nd the maximum value of |error|. Firstly we calculate the second deriva-

tive of f , that is f ′′. Suppose that | f ′′| is never greater than some value, M, throughout

the interval [a, b], that is

| f ′′| 6 M for all x values on [a, b]

We say thatM is an upper bound for | f ′′| on [a, b]. Then the error due to the trapezium

rule is such that

| error | 6
(b− a)

12
h2M

The expression
(b− a)

12
h2M is an upper bound for the error. Note that the error

depends upon h2: if the strip width, h, is halved the error reduces by a factor of 4; if

h is divided by 10 the error is divided by 100.

Example 17.2 Find an upper bound for the error in the estimates calculated in Example 17.1. Hence

�nd upper and lower bounds for the true value of
∫ 1.3

0.5
e(x

2 ) dx.

Solution We have f = e(x
2 ). Then

f ′ = 2xe(x
2 ) and f ′′ = 2e(x

2 )(1 + 2x2)

We note that f ′′ is increasing on [0.5, 1.3] and so its maximum value is obtained at

x = 1.3. Thus the maximum value of f ′′ on [0.5, 1.3] is 2e(1.3)
2

[1 + 2(1.3)2]. Noting

that 2e(1.3)
2

[1 + 2(1.3)2] = 47.47 we see that 48 is an upper bound for f ′′ on [0.5, 1.3],

that isM = 48.

We note that a = 0.5, b = 1.3. Thus

| error | 6
(0.8)h2(48)

12
= 3.2h2

(a) In Example 17.1(a), h = 0.2 and so

| error | 6 3.2(0.2)2 = 0.128

Thus an upper bound for the error is 0.128. We have

−0.128 6 error 6 0.128

The estimated value of the integral is 2.117 and so

2.117 − 0.128 6 true value of integral 6 2.117 + 0.128

that is

1.989 6

∫ 1.3

0.5

e(x
2 ) dx 6 2.245

An upper bound for
∫ 1.3

0.5
e(x

2 ) dx is 2.245 and a lower bound is 1.989.



500 Chapter 17 Numerical integration

(b) In Example 17.1(b), h = 0.1 and so

| error | 6 3.2(0.1)2 = 0.032

Hence an upper bound for the error is 0.032. Now

−0.032 6 error 6 0.032

The estimated value of the integral is 2.085 and so

2.085 − 0.032 6

∫ 1.3

0.5

e(x
2 ) dx 6 2.085 + 0.032

that is

2.053 6

∫ 1.3

0.5

e(x
2 ) dx 6 2.117

EXERCISES 17.2

1 Estimate the following de�nite integrals using the

trapezium rule:

(a)

∫ 1

0

sin(t2) dt use h = 0.2 (b)

∫ 1.2

1

ex

x
dx use �ve strips

Solutions

1 (a) 0.3139 (b) 0.5467

Technical Computing Exercises 17.2

1 (a) Plot the second derivative of f (t) = sin(t2) for

0 6 t 6 1. Use your graph to �nd an upper bound

for f ′′(t) for 0 6 t 6 1. Hence �nd an upper

bound for the error in Question 1(a) in

Exercises 17.2. State upper and lower bounds for

the integral given in the question.

(b) Repeat (a) with f (x) =
ex

x
for 1 6 x 6 1.2.

Hence �nd an upper bound for the error in

Question 1(b) in Exercises 17.2. State upper and

lower bounds for the integral given in the

question.

17.3 SIMPSON’S RULE

In the trapezium rule the curve y(x) is approximated by a series of straight line segments.

In Simpson’s rule the curve is approximated by a series of quadratic curves as shown in

Figure 17.2. The area is divided into an even number of strips of equal width. Consider

the �rst pair of strips. A quadratic curve is �tted through the points A, B and C. Another
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quadratic curve is �tted through the points C, D and E. After some analysis an expression

for approximating the area is found.

A

B

C
D

E

x

y

Figure 17.2

In Simpson’s rule an

even number of strips

is used. The curve is

approximated by

quadratic curves.

Simpson’s rule states:

area ≈
h

3
(y0 + 4y1 + 2y2 + 4y3 + 2y4 + · · · + 2yn−2 + 4yn−1 + yn)

=
h

3
{y0 + 4(y1 + y3 + · · ·)+ 2(y2 + y4 + · · ·)+ yn}

where n is an even number.

Example 17.3 Estimate
∫ 1.3

0.5
e(x

2 ) dx using Simpson’s rule with (a) four strips, (b) eight strips.

Solution (a) We use Table 17.1 and note that h = 0.2. Using Simpson’s rule we have

estimated value =
0.2

3
{1.2840+4(1.6323+3.3535)+2(2.2479)+5.4195}

= 2.0762

Using Simpson’s rule we have found
∫ 1.3

0.5
e(x

2 ) dx ≈ 2.0762.

(b) We use Table 17.2 and note that h = 0.1:

estimated value =
0.1

3
{1.2840 + 4(1.4333 + 1.8965 + 2.7183 + 4.2207)

+ 2(1.6323 + 2.2479 + 3.3535)+ 5.4195}

= 2.0749

Using Simpson’s rule we have found
∫ 1.3

0.5
e(x

2 ) dx ≈ 2.0749.

Example 17.4 Estimate
∫ 2

1

√
1 + x3 dx using Simpson’s rule with 10 strips.

Solution With 10 strips h = 0.1. Using Table 17.4, we �nd

estimated value ≈
0.1

3
{1.4142+4(1.5268+1.7880+2.0917+2.4317+2.8034)

+ 2(1.6517 + 1.9349 + 2.2574 + 2.6138)+ 3.000}

= 2.130

In some cases the numerical values are not derived from a function but from actual

measurements. Numerical methods can still be applied in an identical manner.
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Table 17.4

Using Simpson’s rule to estimate∫ 2
1

√
1 + x3 dx.

x y =
√
1 + x3

x0 = 1.0 1.4142 = y0
x1 = 1.1 1.5268 = y1
x2 = 1.2 1.6517 = y2
x3 = 1.3 1.7880 = y3
x4 = 1.4 1.9349 = y4
x5 = 1.5 2.0917 = y5
x6 = 1.6 2.2574 = y6
x7 = 1.7 2.4317 = y7
x8 = 1.8 2.6138 = y8
x9 = 1.9 2.8034 = y9
x10 = 2.0 3.0000 = y10

Table 17.5

Measurements used to

estimate the integral.

t Measurement ( f )

0 4

1 4.7

2 4.9

3 5.3

4 6.0

5 5.3

6 5.9

Example 17.5 Measurements of a variable, f , were made at 1 second intervals and are given in

Table 17.5. Estimate
∫ 6

0
f dt using

(a) the trapezium rule

(b) Simpson’s rule.

Solution (a) The sum of the areas of the trapezia is

1

2
[4 + 2(4.7 + 4.9 + 5.3 + 6.0 + 5.3)+ 5.9] = 31.2

(b) The area has been divided into six strips and so Simpson’s rule can be applied:

approximate value of integral =
1

3
[4 + 4(4.7 + 5.3 + 5.3)

+ 2(4.9 + 6.0)+ 5.9] = 31.0

Engineering application 17.2

Energy dissipation in a resistor

A resistor is being used to dissipate energy from a variable d.c. supply. A calculation

is needed of how much energy has been dissipated over a period of time. Table 17.6

contains values of current, I, through the resistor, and voltage, V , across the resistor

for the �rst 100 seconds since electrical power was �rst applied. Calculate the energy

dissipation during this time period using Simpson’s rule with a step interval of 10

seconds.

Solution

The energy dissipated, E, is given by

E =

∫ t

0

P dt



17.3 Simpson’s rule 503

Table 17.6

Time (s) Voltage (V) Current (A)

0 50.5 10.1

10 101.0 20.2

20 67.5 13.5

30 80.5 16.1

40 92.0 18.4

50 96.0 19.2

60 78.5 15.7

70 82.0 16.4

80 90.5 18.1

90 107.0 21.4

100 86.0 17.2

Table 17.7

Time (s) Voltage (V) Current (A) Power (W)

0 50.5 10.1 510.05

10 101.0 20.2 2040.20

20 67.5 13.5 911.25

30 80.5 16.1 1296.05

40 92.0 18.4 1692.80

50 96.0 19.2 1843.20

60 78.5 15.7 1232.45

70 82.0 16.4 1344.80

80 90.5 18.1 1638.05

90 107.0 21.4 2289.80

100 86.0 17.2 1479.20

where P is the power. Also P = IV , and so

E =

∫ t

0

IV dt

We �rst need to evaluate P as shown in Table 17.7.

Then using Simpson’s rule with h = 10 we have

E =

∫ 100

0

IV dt ≈
10

3
{510.05 + 4(2040.20 + 1296.05 + 1843.20 + 1344.80

+ 2289.80)+ 2(911.25 + 1692.80 + 1232.45 + 1638.05)

+ 1479.20}

= 160 648.5 J

= 160.649 kJ

The energy dissipated is therefore approximately 160.6 kJ.

17.3.1 Error due to Simpson’s rule

Simpson’s rule provides an estimated value of a de�nite integral. The difference between

the estimated value and the true (exact) value is the error. Just as with the trapezium rule,

we can calculate an upper bound for this error.

We need to calculate the fourth derivative of f , that is f (4). Suppose | f (4)| is never

greater than some value, M, throughout the interval [a, b], that is

| f (4)| 6 M for all x values on [a, b]

ClearlyM is an upper bound for | f (4)| on [a, b]. The error due to Simpson’s rule is such

that

| error | 6
(b− a)h4M

180

Note that the error is proportional to h4.
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Example 17.6 Find an upper bound for the error in the estimates calculated in Example 17.3. Hence

�nd upper and lower bounds for
∫ 1.3

0.5
e(x

2 ) dx.

Solution Here we have f = e(x
2 ). Calculating the fourth derivative gives

f (4) = 4e(x
2 )(4x4 + 12x2 + 3)

We seek an upper bound for | f (4)| on [0.5, 1.3]. We note that f (4) increases as x increases

and so its maximum value in the interval occurs when x = 1.3:

f (4)(1.3) = 752.319 < 753

Hence 753 is an upper bound for | f (4)|.

In this example a = 0.5 and b = 1.3 and so

| error | 6
(0.8)h4(753)

180
= 3.347h4

(a) Here h = 0.2 and so

| error | 6 3.347(0.2)4 = 0.0054

An upper bound for the error is 0.0054. Now

−0.0054 6 error 6 0.0054

The estimated value of the integral is 2.0762 and so

2.0762 − 0.0054 6

∫ 1.3

0.5

e(x
2 ) dx 6 2.0762 + 0.0054

that is

2.0708 6

∫ 1.3

0.5

e(x
2 ) dx 6 2.0816

(b) Here h = 0.1 and so

| error | 6 3.347(0.1)4 = 3.347 × 10−4

An upper bound for the error is 3.347 × 10−4. Now

−3.347 × 10−4
6 error 6 3.347 × 10−4

Noting that the estimated value of the integral is 2.0749 we have

2.0749 − 3.347 × 10−4
6

∫ 1.3

0.5

e(x
2 ) dx 6 2.0749 + 3.347 × 10−4

that is

2.0746 6

∫ 1.3

0.5

e(x
2 ) dx 6 2.0752



Review Exercises 17 505

EXERCISES 17.3

1 Estimate the values of the following integrals using

Simpson’s rule:

(a)

∫ 3

2

ln(x3 + 1) dx use 10 strips

(b)

∫ 2.6

1

√
tet dt use eight strips

2 Evaluate, using the trapezium rule and Simpson’s

rule,

(a)

∫ 1

0

(x2 + 1)3/2 dx use four strips

(b)

∫ 1.6

1

sin 2t

t
dt use six strips

Solutions

1 (a) 2.7955 (b) 15.1164

2 (a) trapezium rule: 1.5900, Simpson’s rule: 1.5681

(b) trapezium rule: 0.2464, Simpson’s rule:

0.2460

Technical Computing Exercises 17.3

1 (a) Plot the fourth derivative of f (x) =

ln(x3 + 1) for 2 6 x 6 3. Use your graph

to �nd an upper bound for f (4)(x) for 2 6 x 6 3.

Hence �nd an upper bound for the error in

Question 1(a) in Exercises 17.3. State upper and

lower bounds for the integral given in the

question.

(b) Repeat (a) with f (t) =
√
tet for 1 6 t 6 2.6.

Hence �nd an upper bound for the error in Ques-

tion 1(b) in Exercises 17.3. State lower and upper

bounds for the integral given in the question.

2 Use MATLAB® or a similar technical computing

language to �nd upper and lower bounds for the

integrals in Question 2 in Exercises 17.3.

REVIEW EXERCISES 17

1 If f (t) =
√
t2 + 1 �nd

∫ 2
1 f (t) dt using

(a) the trapezium rule with h = 0.25

(b) Simpson’s rule using eight strips.

2 Estimate the following de�nite integrals using the

trapezium rule with six strips:

(a)

∫ 4

1

√
x3 + 1 dx (b)

∫ 0.6

0

sin(t2) dt

(c)

∫ 0.8

0.2

e(t
2 ) dt (d)

∫ 0.3

0

3

x3 + 2
dx

(e)

∫ 2.5

1

et

t
dt

3 Estimate the de�nite integrals in Question 2 using

Simpson’s rule with six strips.

4 Estimate the following de�nite integrals using the

trapezium rule with eight strips:

(a)

∫ 4

0

cos(
√
t) dt

(b)

∫ 6

−2

(t2 + 1)3/2 dt

(c)

∫ 3

1

e
√
x dx

(d)

∫ 0.8

0

tan(t2) dt

(e)

∫ 5

3

ln(x2 + 1) dx
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Solutions

1 (a) 1.8111

(b) 1.8101

2 (a) 12.9113

(b) 0.072 27

(c) 0.808 60

(d) 0.448 45

(e) 5.193 84

3 (a) 12.871 81

(b) 0.071 334

(c) 0.806 43

(d) 0.448 49

(e) 5.178 79

4 (a) 0.810 58

(b) 370.25

(c) 8.276 86

(d) 0.183 90

(e) 5.630 32

Technical Computing Exercises 17

1 Use MATLAB® or a similar technical computing

language to �nd upper bounds for the errors in

Questions 1 to 4 in Review exercises 17. Hence �nd

upper and lower bounds for the integrals given in

these questions.
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18.1 INTRODUCTION

Often the value of a function and the values of its derivatives are known at a particular

point and from this information it is desired to obtain values of the function around that

point. The Taylor polynomials and Taylor series allow engineers to make such estimates.

One application of this is in obtaining linearized models of non-linear systems. The great

advantage of a linear model is that it is much easier to analyse than a non-linear one. It is

possible to make use of the principle of superposition: this allows the effects of multiple

inputs to a system to be considered separately, and the resultant output to be obtained by

summing the individual outputs.

Often a systemmay contain only a few components that are non-linear. By linearizing

these it is then possible to produce a linear model for the system. We saw an example of

this when we analysed a fluid system in Engineering application 10.6. Although electri-

cal systems are often linear, mechanical, thermal and fluid systems, or systems contain-

ing a mixture of these, are likely to contain some non-linear components. Unfortunately

it may not be possible to obtain a suf�ciently accurate linear model for every non-linear

system as we shall see in this chapter.

Taylor polynomials of higher degree can be found which approximate to a given func-

tion. This is dealt with in Sections 18.3 and 18.4. The difference between a given function

and the corresponding Taylor polynomial is covered in Section 18.5. The chapter closes

with a treatment of Taylor and Maclaurin series.
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18.2 LINEARIZATION USING FIRST-ORDER TAYLOR
POLYNOMIALS

Suppose we know that y is a function of x and we know the values of y and y′ when

x = a, that is y(a) and y′(a) are known. We can use y(a) and y′(a) to determine a linear

polynomial which approximates to y(x). Let this polynomial be

p1(x) = c0 + c1x

We choose the constants c0 and c1 so that

p1(a) = y(a)

p′
1(a) = y′(a)

that is, the values of p1 and its �rst derivative evaluated at x = a match the values of y

and its �rst derivative evaluated at x = a. Then,

p1(a) = y(a) = c0 + c1a

p′
1(a) = y′(a) = c1

Solving for c0 and c1 yields

c0 = y(a)− ay′(a) c1 = y′(a)

Thus,

p1(x) = y(a)− ay′(a)+ y′(a)x

p1(x) = y(a)+ y′(a)(x− a)

p1(x) is the �rst-order Taylor polynomial generated by y at x = a.

The function, y(x), is often referred to as the generating function. Note that p1(x) and

its �rst derivative evaluated at x = a agree with y(x) and its �rst derivative evaluated at

x = a.Q

a x

y

O

Figure 18.1

Graphical representation

of a �rst-order Taylor

polynomial.

First-order Taylor polynomials can also be viewed from a graphical perspective.

Figure 18.1 shows the function, y(x), and a tangent at Q where x = a. Let the equa-

tion of the tangent at x = a be

p(x) = mx+ c

The gradient of the tangent is, by de�nition, the derivative of y at x = a, that is y′(a).

So,

p(x) = y′(a)x+ c

The tangent passes through the point (a, y(a)), and so

y(a) = y′(a)a+ c

that is c = y(a)− y′(a)a. The equation of the tangent is thus

p(x) = y′(a)x+ y(a)− y′(a)a

p(x) = y(a)+ y′(a)(x− a)
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This is the �rst-order Taylor polynomial. We see that the �rst-order Taylor polynomial

is simply the equation of the tangent to y(x) where x = a.

Clearly, for values of x near to x = a the value of p1(x)will be near to y(x); p1(x) is a

linear approximation to y(x). In the neighbourhood of x = a, p1(x) closely approximates

y(x), but being linear is a much easier function to deal with.

Example 18.1 A function, y, and its �rst derivative are evaluated at x = 2.

y(2) = 1 y′(2) = 3

(a) State the �rst-order Taylor polynomial generated by y at x = 2.

(b) Estimate y(2.5).

Solution (a) p1(x) = y(2)+ y′(2)(x− 2) = 1 + 3(x− 2) = −5 + 3x

(b) We use the �rst-order Taylor polynomial to estimate y(2.5):

p1(2.5) = −5 + 3(2.5) = 2.5

Hence, y(2.5) ≈ 2.5.

Example 18.2 Find a linear approximation to y(t) = t2 near t = 3.

Solution We require the equation of the tangent to y = t2 at t = 3, that is the �rst-order Taylor

polynomial about t = 3. Note that y(3) = 9 and y′(3) = 6.

p1(t) = y(a)+ y′(a)(t − a) = y(3)+ y′(3)(t − 3)

= 9 + 6(t − 3)

= 6t − 9

At t = 3, p1(t) and y(t) have an identical value. Near to t = 3, p1(t) and y(t) have

similar values, for example p1(2.8) = 7.8, y(2.8) = 7.84.

18.2.1 Linearization

It is a frequent requirement in engineering to obtain a linear mathematical model of a

systemwhich is basically non-linear. Mathematically and computationally linear models

are far easier to deal with than non-linear models. The main reason for this is that linear

models obey the principle of superposition. It follows that if the application, separately,

of inputs u1(t) and u2(t) to the system produces outputs y1(t) and y2(t), respectively,

then the application of an input u1(t)+ u2(t) will produce an output y1(t)+ y2(t). This

is only true for linear systems.

The value of this principle is that the effect of several inputs to a system can be cal-

culated merely by adding together the effects of the individual inputs. This allows the

effect of simple individual inputs to the system to be analysed and then combined to

evaluate the effect of more complicated combinations of inputs. A few examples will

help clarify these points.
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Engineering application 18.1

A d.c. electrical network

Consider the d.c. network of Figure 18.2. This network is a linear system. This is

because the voltage/current characteristic of a resistor is linear provided a certain

voltage is not exceeded. Recall Ohm’s law which is given by

V = IR

where V is the voltage across the resistor, I is the current through the resistor and R

is the resistance. This makes the analysis of the network relatively easy. The voltage

sources, V1,V2,V3,V4, can be thought of as the inputs to the system. It is possible to

analyse the effect of each of these sources separately, for example the voltage drop

across the resistor, R5, resulting from the voltage source V1, and then combine these

effects to obtain the total effect on the system. The voltage drop across R5 when all

sources are considered would be the sum of each of the voltage drops due to the

individual sources V1,V2,V3 and V4.

R1

R6 R7

R2 R3 R4V4

V1

V2 V3

R5

+ –

+ –

+

+

–

–

Figure 18.2

A d.c. electrical network.

Engineering application 18.2

A gravity feed water supply

Consider the water supply network of Figure 18.3. The network consists of three

source reservoirs and a series of connecting pipes. Water is taken from the network at

two points, S1 and S2. In a practical network, reservoirs are usually several kilometres

away from the points at which water is taken from the network and so the effect of

pressure drops along the pipes is signi�cant. For this reason many networks require

pumps to boost the pressure.

The main problem with analysing this network is that it is non-linear. This is be-

cause the relationship between pressure drop along a pipe and water flow through a

pipe is not linear: a doubling of pressure does not lead to a doubling of flow. For this

R1

P1 P2

P3 P4 P5 P6

S1 S2

R2 R3

Figure 18.3

A water supply network.
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reason, it is not possible to use the principle of superposition when analysing the

network. For example, if the effect of the pressure at S1 for a given flow rate was

calculated separately for each of the inputs to the system -- the reservoirs R1,R2,R3 --

then the effect of all the reservoirs could not be obtained by adding the individual

effects. It is not possible to obtain a linear model for this system except under very

restrictive conditions and so the analysis of water networks is very complicated.

Having demonstrated the value of linear models it is worth analysing how and when

a non-linear system can be linearized. The �rst thing to note is that many systems may

contain a mixture of linear and non-linear components and so it is only necessary to lin-

earize certain parts of the system. A system of this type has been studied in Engineering

application 10.6. Therefore linearization involves deciding which components of a sys-

tem are non-linear, deciding whether it would be valid to linearize the components and,

if so, then obtaining linearized models of the components.

Consider again Figure 18.1. Imagine it illustrates a component characteristic. The

actual component characteristic is unimportant for the purposes of this discussion. For

instance, it could be the pressure/flow relationship of a valve or the voltage/current

relationship of an electronic device. The main factor in deciding whether a valid linear

model can be obtained is the range of values over which the component is required to

operate. If an operating point Q were chosen and deviations from this operating point

were small then it is clear from Figure 18.1 that a linear model -- corresponding to the

tangent to the curve at point Q -- would be an appropriate model.

Obtaining a linear model is relatively straightforward. It consists of calculating the

�rst-order Taylor polynomial centred around the operating point Q. This is given by

p1(x) = y(a)+ y′(a)(x− a)

Then p1(x) is used as the linearized model of the component with characteristic y(x). It

is valid provided that it is only used for values of x such that |x− a| is suf�ciently small.

As stated, p1(x) is also the equation of the tangent to the curve at point Q. The range of

values for which the model is valid depends on the curvature of the characteristic and

the accuracy required.

Engineering application 18.3

Power dissipation in a resistor

The power dissipated in a resistor varies with the current. Derive a linear model for

this power variation valid for an operating point of 0.5 A. The resistor has a resistance

of 10 �.

Solution

For a resistor

P = I2R

where

P = power dissipated (W)

I = current (A)

R = resistance (�). ➔
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The �rst-order polynomial, valid around an operating point I = 0.5, is

p1(I) = P(0.5)+ P′(0.5)(I − 0.5)

Now P(0.5) = (0.5)210 = 2.5,P′(0.5) = 2(0.5)(10) = 10, and so

p1(I) = 2.5 + 10(I − 0.5) = 10I − 2.5

It is interesting to compare this linear approximation with the true curve for values

of I around the operating point. Table 18.1 shows some typical values. Figure 18.4

shows a graph of the power dissipated in the resistor, P, against the current 	owing

in the resistor, I. Notice that the linear approximation is quite good when close to the

operating point but deteriorates further away.

Table 18.1

A comparison of linear approximations with true values.

I (A) True value of P (W ) Approximate value of P (W )

0.5 2.5 2.5

0.499 2.490 01 2.49

0.501 2.510 01 2.51

0.49 2.401 2.4

0.51 2.601 2.6

0.4 1.6 1.5

0.6 3.6 3.5

1.0 10 7.5

10

8 

6

4 

2

0
0.2 0.4 0.6 0.8 1

Operating point

I

P

P = 10 I2

p1 (I) = 10 I – 2.5

Figure 18.4

We see that the tangential approximation is

good when close to the operating point.

EXERCISES 18.2

1 Calculate the �rst-order Taylor polynomial generated

by y(x) = ex about

(a) x = 0 (b) x = 2 (c) x = −3

2 Calculate the �rst-order Taylor polynomial generated

by y(x) = sin x about

(a) x = 0 (b) x = 1 (c) x = −0.5

3 Calculate the �rst-order Taylor polynomial generated

by y(x) = cos x about

(a) x = 0

(b) x = 1

(c) x = −0.5
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4 (a) Find a linear approximation, p1(t), to h(t) = t3

about t = 2.

(b) Evaluate h(2.3) and p1(2.3).

5 (a) Find a linear approximation, p1(t), to R(t) =
1

t
about t = 0.5.

(b) Evaluate R(0.7) and p1(0.7).

Solutions

1 (a) p1(x) = x+ 1

(b) p1(x) = e2(x− 1)

(c) p1(x) = e−3(x+ 4)

2 (a) p1(x) = x

(b) p1(x) = 0.5403x+ 0.3012

(c) p1(x) = 0.8776x− 0.0406

3 (a) p1(x) = 1

(b) p1(x) = −0.8415x+ 1.3818

(c) p1(x) = 0.4794x+ 1.1173

4 (a) p1(t) = 12t − 16

(b) h(2.3) = 12.167, p1(2.3) = 11.6

5 (a) p1(t) = −4t + 4

(b) R(0.7) = 1.4286, p1(0.7) = 1.2

18.3 SECOND-ORDER TAYLOR POLYNOMIALS

Suppose that in addition to y(a) and y′(a), we also have a value of y′′(a). With this

information a second-order Taylor polynomial can be found, which provides a quadratic

approximation to y(x). Let

p2(x) = c0 + c1x+ c2x
2

We require

p2(a) = y(a)

p′
2(a) = y′(a)

p′′
2(a) = y′′(a)

that is, the polynomial and its �rst two derivatives evaluated at x = amatch the function

and its �rst two derivatives evaluated at x = a. Hence

p2(a) = c0 + c1a+ c2a
2 = y(a) (18.1)

p′
2(a) = c1 + 2c2a = y′(a) (18.2)

p′′
2(a) = 2c2 = y′′(a) (18.3)

Solving for c0, c1 and c2 yields

c2 =
y′′(a)

2
from Equation (18.3)

c1 = y′(a)− ay′′(a) from Equation (18.2)

c0 = y(a)− ay′(a)+
a2

2
y′′(a) from Equation (18.1)
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Hence,

p2(x) = y(a)− ay′(a)+
a2

2
y′′(a)

+{y′(a)− ay′′(a)}x+
y′′(a)

2
x2

Finally,

p2(x) = y(a)+ y′(a)(x− a)+ y′′(a)
(x− a)2

2

p2(x) is the second-order Taylor polynomial generated by y about x = a.

Example 18.3 Given y(1) = 0, y′(1) = 1, y′′(1) = −2, estimate

(a) y(1.5)

(b) y(2)

(c) y(0.5)

using the second-order Taylor polynomial.

Solution The second-order Taylor polynomial is p2(x):

p2(x) = y(1)+ y′(1)(x− 1)+ y′′(1)
(x− 1)2

2

= x− 1 − 2
(x− 1)2

2
= x− 1 − (x− 1)2 = −x2 + 3x− 2

We use p2(x) as an approximation to y(x).

(a) The value of y(1.5) is approximated by p2(1.5):

y(1.5) ≈ p2(1.5) = 0.25

(b) The value of y(2) is approximated by p2(2):

y(2) ≈ p2(2) = 0

(c) The value of y(0.5) is approximated by p2(0.5):

y(0.5) ≈ p2(0.5) = −0.75

Example 18.4 (a) Calculate the second-order Taylor polynomial, p2(x), generated by

y(x) = x3 + x2 − 6 about x = 2.

(b) Verify that y(2) = p2(2), y
′(2) = p′

2(2) and y
′′(2) = p′′

2(2).

(c) Compare y(2.1) and p2(2.1).

Solution (a) We need to calculate y(2), y′(2) and y′′(2). Now

y(x) = x3 + x2 − 6, y′(x) = 3x2 + 2x, y′′(x) = 6x+ 2

and so

y(2) = 6, y′(2) = 16, y′′(2) = 14
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The required second-order Taylor polynomial, p2(x), is thus given by

p2(x) = y(2)+ y′(2)(x− 2)+ y′′(2)
(x− 2)2

2

= 6 + 16(x− 2)+ 14
(x− 2)2

2

= 6 + 16x− 32 + 7(x2 − 4x+ 4)

= 7x2 − 12x+ 2

(b) Using (a) we can see that

p2(x) = 7x2 − 12x+ 2, p′
2(x) = 14x− 12, p′′

2(x) = 14

and so

p2(2) = 6, p′
2(2) = 16, p′′

2(2) = 14

Hence

y(2) = p2(2), y
′(2) = p′

2(2), y
′′(2) = p′′

2(2)

(c) We have

y(2.1) = (2.1)3 + (2.1)2 − 6 = 7.671

p2(2.1) = 7(2.1)2 − 12(2.1)+ 2 = 7.67

Clearly there is a very close agreement between values of y(x) and p2(x) near to

x = 2.

Engineering application 18.4

Quadratic approximation to a diode characteristic

In Engineering application 10.5 we derived a linear approximation to a diode char-

acteristic suitable for small signal variations around an operating point. Sometimes

it is not possible to use a linear approximation because the variations are too large

to maintain suf�cient accuracy. Even so, an approximate model may be desirable.

In general, a higher order Taylor polynomial will give a more accurate model than

that of a lower order polynomial. We will consider a quadratic model for a diode

characteristic. The V − I characteristic of typical diode at room temperature can be

modelled by the equation

I = I(V ) = Is(e
40V − 1)

Given an operating point, Va, the second-order Taylor polynomial is

p2(V ) = I(Va)+ I′(Va)(V −Va)+ I′′(Va)
(V −Va)

2

2

Now

I′(V ) = 40Is e
40V I′′(V ) = 1600Is e

40V

➔
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so

p2(V ) = Is(e
40V

a − 1)+ 40Is e
40V

a (V −Va)+ 1600Is e
40V

a
(V −Va)

2

2

The coef�cients need to be calculated only once. After that the calculation of a current

value only involves evaluating a quadratic.

EXERCISES 18.3

1 (a) Obtain the second-order Taylor polynomial,

p2(x), generated by y(x) = 3x4 + 1 about x = 2.

(b) Verify that y(2) = p2(2), y
′(2) = p′2(2) and

y′′(2) = p′′2(2).

(c) Evaluate p2(1.8) and y(1.8).

2 (a) Calculate the second-order Taylor polynomial,

p2(x), generated by y(x) = sin x about x = 0.

(b) Calculate the second-order Taylor polynomial,

p2(x), generated by y(x) = cos x about x = 0.

(c) Compare your results from (a) and (b) with the

small-angle approximations given in Section 6.5.

3 A function, y(x), is such that y(−1) = 3, y′(−1) = 2

and y′′(−1) = −2.

(a) State the second-order Taylor polynomial

generated by y about x = −1.

(b) Estimate y(−0.9).

4 A function, y(x), satis�es the equation

y′ = y2 + x y(1) = 2

(a) Estimate y(1.3) using a �rst-order Taylor

polynomial.

(b) By differentiating the equation with respect to x,

obtain an expression for y′′. Hence evaluate

y′′(1).

(c) Estimate y(1.3) using a second-order Taylor

polynomial.

5 A function, x(t), satis�es the equation

ẋ = x+
√
t + 1 x(0) = 2

(a) Estimate x(0.2) using a �rst-order Taylor

polynomial.

(b) Differentiate the equation w.r.t. t and hence

obtain an expression for ẍ.

(c) Estimate x(0.2) using a second-order Taylor

polynomial.

6 A function, h(t), is de�ned by

h(t) = sin 2t + cos 3t

Obtain the second-order Taylor polynomial generated

by h(t) about t = 0.

7 The functions y1(x), y2(x) and y3(x) are de�ned by

y1(x) = Aex, y2(x) = Bx3 +Cx,

y3(x) = y1(x)+ y2(x)

(a) Obtain a second-order Taylor polynomial for

y1(x) about x = 0.

(b) Obtain a second-order Taylor polynomial for

y2(x) about x = 0.

(c) Obtain a second-order Taylor polynomial for

y3(x) about x = 0.

(d) Can you draw any conclusions from your

answers to (a), (b) and (c)?

Solutions

1 (a) p2(x) = 72x2 − 192x+ 145

(c) p2(1.8) = 32.68, y(1.8) = 32.4928

2 (a) p2(x) = x (b) p2(x) = 1 −
x2

2

3 (a) p2(x) = −x2 + 4

(b) p2(−0.9) = 3.19. This is an approximation to

y(−0.9).

4 (a) 3.5

(b) y′′ = 2yy′ + 1, y′′(1) = 21

(c) 4.445

5 (a) 2.6

(b) ẍ= ẋ+
1

2
√
t + 1

(c) 2.67
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6 p2(t) = 1 + 2t − 4.5t2

7 (a) A

(
1 + x+

x2

2

)
(b) Cx

(c) A+ (A+C)x+
Ax2

2

Technical Computing Exercises 18.3

Many technical computing languages have the

capability of producing a Taylor polynomial of a

function. In some languages this is available as a

default whereas in others, such as MATLAB®, this is

offered via a toolbox function which may need to be

loaded or purchased separately. If the software you

are using does not have the capability to produce the

Taylor series automatically you may choose to do this

part manually and then plot the results using the

technical computing language.

1 (a) Calculate the second-order Taylor polynomial,

p2(x), generated by y(x) = x3 about x = 0.

(b) Draw y(x) and p2(x) for −2 6 x 6 2.

2 (a) Calculate the second-order Taylor polynomial,

p2(x), generated by y(x) = sin x about x = 0.

(b) Draw y(x) and p2(x) for −2 6 x 6 2.

3 (a) Calculate the second-order Taylor polynomial,

p2(x), generated by y(x) = sin

(
1

x

)
about x = 3.

(b) Draw y(x) and p2(x) for 1 6 x 6 5.

4 (a) Calculate the second-order Taylor polynomial,

p2(x), generated by y(x) = ecos x about x = 0.

(b) Draw y(x) and p2(x) for −2 6 x 6 2.

18.4 TAYLOR POLYNOMIALS OF THE nTH ORDER

If we know y and its �rst n derivatives evaluated at x = a, that is y(a), y′(a),

y′′(a), . . . , y(n)(a), then the nth-order Taylor polynomial, pn(x), may be written as

pn(x)= y(a)+ y′(a)(x− a)+ y′′(a)
(x− a)2

2!
+ y(3)(a)

(x− a)3

3!

+ · · · + y(n)(a)
(x− a)n

n!

This provides an approximation to y(x). The polynomial and its �rst n derivatives eval-

uated at x = a match the values of y(x) and its �rst n derivatives evaluated at x = a,

that is

pn(a) = y(a)

p′
n(a) = y′(a)

p′′
n(a) = y′′(a)

...

p(n)n (a) = y(n)(a)
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Example 18.5 Given y(0) = 1, y′(0) = 1, y′′(0) = 1, y(3)(0) = −1, y(4)(0) = 2, obtain a fourth-order

Taylor polynomial generated by y about x = 0. Estimate y(0.2).

Solution In this example a = 0 and hence

p4(x) = y(0)+ y′(0)x+ y′′(0)
x2

2!
+ y(3)(0)

x3

3!
+ y(4)(0)

x4

4!

= 1 + x+
x2

2
−
x3

6
+
x4

12

The Taylor polynomial can be used to estimate y(0.2):

p4(0.2) = 1 + 0.2 +
(0.2)2

2
−
(0.2)3

6
+
(0.2)4

12
= 1.2188

y(0.2) ≈ 1.2188

Example 18.6 (a) Calculate the �rst-, second-, third- and fourth-order Taylor polynomials generated

by y(x) = ex about x = 0.

(b) Plot y = ex and the Taylor polynomials for −2 6 x 6 2.

Solution (a) We have

y(x) = y′(x) = y′′(x) = y(3)(x) = y(4)(x) = ex

and

y(0) = y′(0) = y′′(0) = y(3)(0) = y(4)(0) = 1

Thus the Taylor polynomials, p1(x), p2(x), p3(x) and p4(x), are given by

p1(x) = y(0)+ y′(0)x = 1 + x

p2(x) = y(0)+ y′(0)x+ y′′(0)
x2

2
= 1 + x+

x2

2

p3(x) = y(0)+ y′(0)x+ y′′(0)
x2

2
+ y(3)(0)

x3

3!
= 1 + x+

x2

2
+
x3

6

p4(x) = y(0)+ y′(0)x+ y′′(0)
x2

2
+ y(3)(0)

x3

3!
+ y(4)(0)

x4

4!

= 1 + x+
x2

2
+
x3

6
+
x4

24

(b) The graphs of y = ex and the Taylor polynomials are shown in Figure 18.5. Note

that the Taylor polynomials become better and better approximations to ex as the

order of the polynomial increases.

Example 18.7 Given that y satis�es the equation

y′′ − (y′)2 + 2y = x2 (18.4)

and also the conditions

y(0) = 1 y′(0) = 2
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Figure 18.5

A graph of y = ex and four Taylor polynomials.

use a third-order Taylor polynomial to estimate y(0.5).

Solution To write down the third-order Taylor polynomial about x = 0 we require y(0), y′(0),

y′′(0) and y(3)(0). From Equation (18.4),

y′′(x) = x2 + {y′(x)}2 − 2y(x) (18.5)

So,

y′′(0) = 0 + {y′(0)}2 − 2y(0) = 2

To �nd y(3)(0), Equation (18.5) is differentiated w.r.t. x:

y(3)(x) = 2x+ 2y′(x)y′′(x)− 2y′(x)

y(3)(0) = 2y′(0)y′′(0)− 2y′(0) = 4

The Taylor polynomial may now be written as

p3(x) = y(0)+ y′(0)x+ y′′(0)
x2

2
+ y(3)(0)

x3

6

= 1 + 2x+ x2 +
2x3

3

We use p3(x) as an approximation to y(x):

p3(0.5) = 1 + 1 + 0.25 + 0.0833 = 2.333

that is,

y(0.5) ≈ 2.333

EXERCISES 18.4

1 A function, y(x), has y(0) = 3, y′(0) = 1,

y′′(0) = −1 and y(3)(0) = 2.

(a) Obtain a third-order Taylor polynomial, p3(x),

generated by y(x) about x = 0.

(b) Estimate y(0.2).

2 A function, h(t), has h(2) = 1, h′(2) = 4,

h′′(2) = −2, h(3)(2) = 1 and h(4)(2) = 3.

(a) Obtain a fourth-order Taylor polynomial, p4(t),

generated by h(t) about t = 2.

(b) Estimate h(1.8).
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3 Given y(x) = sin x, obtain the third-, fourth- and

�fth-order Taylor polynomials generated by y(x)

about x = 0.

4 Given y(x) = cos x, obtain the third-, fourth- and

�fth-order Taylor polynomials generated by y(x)

about x = 0.

5 (a) Given y(x) = sin(kx), k a constant, obtain the

third-, fourth- and �fth-order Taylor polynomials

generated by y(x) about x = 0.

(b) Write down the third-, fourth- and �fth-order

Taylor polynomials generated by y = sin(−x)

about x = 0.

6 (a) Given y(x) = cos(kx), k a constant, obtain the

third-, fourth- and �fth-order Taylor polynomials

generated by y(x) about x = 0.

(b) Write down the third-, fourth- and �fth-order

Taylor polynomials generated by y = cos(2x)

about x = 0.

7 If pn(x) is the nth-order Taylor polynomial generated

by y(x) about x = 0, show that pn(kx) is the nth-order

Taylor polynomial generated by y(kx) about x = 0.

8 The function, y(x), satis�es the equation

y′′ = y+ 3x2 y(1) = 1, y′(1) = 2

(a) Obtain a third-order Taylor polynomial generated

by y about x = 1.

(b) Estimate y(1.3) using (a).

(c) Obtain a fourth-order Taylor polynomial

generated by y about x = 1.

(d) Estimate y(1.3) using (c).

9 A function, y(x), satis�es the equation

y′′ + y2 = x3 y(0) = 1, y′(0) = −1

(a) Estimate y(0.25) using a third-order Taylor

polynomial.

(b) Estimate y(0.25) using a fourth-order Taylor

polynomial.

10 A function, y(x), has y(1) = 3, y′(1) = 6, y′′(1) = 1

and y(3)(1) = −1.

(a) Estimate y(1.2) using a third-order Taylor

polynomial.

(b) Estimate y′(1.2) using an appropriate

second-order Taylor polynomial.

[Hint: de�ne a new variable, z, given by z = y′.]

Solutions

1 (a) 3 + x−
x2

2
+
x3

3
(b) 3.1827

2 (a)
t4

8
−

5t3

6
+ t2 + 6t −

31

3

(b) 0.1589

3 p3(x) = x−
x3

3!
,

p4(x) = x−
x3

3!
,

p5(x) = x−
x3

3!
+
x5

5!

4 p3(x) = 1 −
x2

2!
,

p4(x) = 1 −
x2

2!
+
x4

4!
,

p5(x) = 1 −
x2

2!
+
x4

4!

5 (a) p3(x) = kx−
k3x3

3!
,

p4(x) = kx−
k3x3

3!
,

p5(x) = kx−
k3x3

3!
+
k5x5

5!

(b) p3(x) = −x+
x3

3!
,

p4(x) = −x+
x3

3!
,

p5(x) = −x+
x3

3!
−
x5

5!

6 (a) p3(x) = 1 −
k2x2

2!
,

p4(x) = 1 −
k2x2

2!
+
k4x4

4!
,

p5(x) = 1 −
k2x2

2!
+
k4x4

4!
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(b) p3(x) = 1 − 2x2,

p4(x) = 1 − 2x2 +
2x4

3
,

p5(x) = 1 − 2x2 +
2x4

3

8 (a)
4x3

3
− 2x2 + 2x−

1

3

(b) 1.816

(c)
5x4

12
−
x3

3
+
x2

2
+
x

3
+

1

12

(d) 1.8194

9 (a) 0.7240 (b) 0.7240

10 (a) 4.2187 (b) 6.18

Technical Computing Exercises 18.4

1 Draw y(x) =
1

x
for 1 6 x 6 8. On the same axes draw

the fourth-order Taylor polynomial generated by y(x)

about x = 3.

2 Draw y = tan x for −1 6 x 6 1. Using the same axes,

draw the �fth-order Taylor polynomial generated by

y(x) about x = 0.

3 Draw y(x) = ln x for 0.5 6 x 6 10. On the same axes,

draw the third-, fourth- and �fth-order Taylor

polynomials generated by y(x) about x = 1.

18.5 TAYLOR’S FORMULA AND THE REMAINDER TERM

So far we have found Taylor polynomials of orders 1, 2, 3, 4 and so on. Example 18.6

suggests that the generating function, y(x), and the Taylor polynomials are in close agree-

ment for values of x near to the point where x = a. It is reasonable to ask:

‘How accurately do Taylor polynomials generated by y(x) at x = a approximate to

y at values of x other than a?’

‘If more and more terms are used in the Taylor polynomial will this produce a better

and better approximation to y?’

To answer these questions we introduce Taylor’s formula and the remainder term.

Suppose pn(x) is an nth-order Taylor polynomial generated by y(x) about x = a.

Then Taylor’s formula states:

y(x) = pn(x)+ Rn(x)

where Rn(x) is called the remainder of order n and is given by

remainder of order n = Rn(x) =
y(n+1)(c)(x− a)n+1

(n+ 1)!

for some number c between a and x.

The remainder of order n is also called the error term. The error term in effect gives

the difference between the function, y(x), and the Taylor polynomial generated by y(x).

For a Taylor polynomial to be a close approximation to the generating function requires

the error term to be small.
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Example 18.8 Calculate the error term of order 5 due to y(x) = ex generating a Taylor polynomial

about x = 0.

Solution Here n = 5 and so n+ 1 = 6. In this example a = 0. We see that y = ex and so

y′(x) = y′′(x) = · · · = y(5)(x) = y(6)(x) = ex

and so y(6)(c) = ec. The remainder term of order 5, R5(x), is given by

R5(x) =
ecx6

6!
for some number c between 0 and x

Example 18.9 (a) Calculate the fourth-order Taylor polynomial, p4(x), generated by y(x) = sin 2x

about x = 0.

(b) State the fourth-order error term, R4(x).

(c) Calculate an upper bound for this error term given |x| < 1.

(d) Compare y(0.5) and p4(0.5).

Solution (a) y(x)= sin 2x, y(0) = 0

y′(x)= 2 cos 2x, y′(0) = 2

y′′(x)= −4 sin 2x, y′′(0) = 0

y(3)(x)= −8 cos 2x, y(3)(0) = −8

y(4)(x)= 16 sin 2x, y(4)(0) = 0

The fourth-order Taylor polynomial, p4(x), is

p4(x) = y(0)+ y′(0)x+ y′′(0)
x2

2!
+ y(3)(0)

x3

3!
+ y(4)(0)

x4

4!

= 0 + 2x+ 0 −
8x3

6
+ 0

= 2x−
4x3

3

(b) We note that y(5)(x) = 32 cos 2x and so y(5)(c) = 32 cos(2c). The error term, R4(x),

is given by

R4(x) = y(5)(c)
x5

5!

=
32 cos(2c)x5

120

=
4

15
cos(2c)x5 where c is a number between 0 and x

(c) In order to calculate an upper bound for this error term we note that | cos(2c)| 6 1

for any value of c. Hence an upper bound for R4(x) is given by

|R4(x)| 6

∣∣∣∣
4x5

15

∣∣∣∣
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We know |x| < 1, and so
4x5

15
is never greater than

4

15
. Hence an upper bound for

the error term is
4

15
. If we use p4(x) to approximate y = sin 2x the error will be no

greater than
4

15
provided |x| < 1.

(d) We let x = 0.5.

y(0.5) = sin 1 = 0.8415

p4(0.5) = 2(0.5)−
4

3
(0.5)3 = 0.8333

The difference between y(0.5) and p4(0.5) can never be greater than an upper bound

of the error term evaluated at x = 0.5. This is veri�ed numerically.

y(0.5)− p4(0.5) = 0.8415 − 0.8333 = 0.0082

and

|R4(0.5)| 6
4

15
(0.5)5 = 0.0083

EXERCISES 18.5

1 The function, y(x), is given by y(x) = sin x.

(a) Calculate the �fth-order Taylor polynomial

generated by y about x = 0.

(b) Find an expression for the remainder term of

order 5.

(c) State an upper bound for your expression in (b).

2 Repeat Question 1 with y(x) = cos x.

3 The function y(x) = ex may be approximated by the

quadratic expression 1+ x+
x2

2
. Find an upper bound

for the error term given |x| < 0.5.

4 (a) Find the third-order Taylor polynomial generated

by h(t) =
1

t
about t = 2.

(b) State the error term.

(c) Find an upper bound for the error term given

1 6 t 6 4.

5 The function y(x) = x5 + x6 is approximated by a

third-order Taylor polynomial about x = 1.

(a) Find an expression for the third-order error term.

(b) Find an upper bound for the error term given

0 6 x 6 2.

Solutions

1 (a) x−
x3

3!
+
x5

5!

(b) R5 = −
(sin c)x6

6!

where c lies between 0 and x

(c)

∣∣∣∣∣
x6

6!

∣∣∣∣∣

2 (a) 1 −
x2

2!
+
x4

4!

(b) R5 = −
(cos c)x6

6!

where c lies between 0 and x

(c)

∣∣∣∣∣
x6

6!

∣∣∣∣∣
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3 3.435 × 10−2

4 (a) −
t3

16
+
t2

2
−

3t

2
+ 2

(b)
(t − 2)4

c5
where c lies between 2 and t

(c) 0.5

5 (a) 5c(1 + 3c)(x− 1)4 for c between 1 and x

(b) 70

18.6 TAYLOR AND MACLAURIN SERIES

We have seen that y and its �rst n derivatives evaluated at x = a match pn(x) and its

�rst n derivatives evaluated at x = a. We have studied the difference between y(x) and

pn(x), that is the error term, Rn(x).

As more and more terms are included in the Taylor polynomial, we obtain an in�nite

series, called a Taylor series. We denote this in�nite series by p(x).

Taylor series:

p(x) = y(a)+ y′(a)(x− a)+ y′′(a)
(x− a)2

2!
+ y(3)(a)

(x− a)3

3!

+ · · · + y(n)(a)
(x− a)n

n!
+ · · ·

For some Taylor series, the value of the series equals the value of the generating func-

tion for every value of x. For example, the Taylor series for ex, sin x and cos x equal the

values of ex, sin x and cos x for every value of x. However, some functions have a Taylor

series which equals the function only for a limited range of x values. Example 18.14

gives a case of a function which equals its Taylor series only when −1 < x < 1.

To determine whether a Taylor series, p(x), is equal to its generating function, y(x),

we need to examine the error term of order n, that is Rn(x). We examine this error term

as more and more terms are included in the Taylor polynomial, that is as n tends to

in�nity. If this error term approaches 0 as n increases, then the Taylor series equates to

the generating function, y(x). Sometimes the error term approaches 0 as n increases for

all values of x, sometimes it approaches 0 only when x lies in some speci�ed interval,

say, for example, (−1, 1). Hence we have:

If Rn(x) → 0 as n → ∞ for all values of x, then the Taylor series, p(x), and the

generating function, y(x), are equal for all values of x.

If Rn(x) → 0 as n → ∞ for values of x in the interval (α, β), then the Taylor

series, p(x), and the generating function, y(x), are equal for x values on the interval

(α, β). For values of x outside the interval (α, β), the values of p(x) and y(x) are

different.

By examining the error terms associated with y = ex, y = sin x and y = cos x it is

possible to show that these errors all approach 0 as n → ∞ for all values of x. Hence

the functions y = ex, y = sin x and y = cos x are all equal to their corresponding Taylor

series for all values of x.
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A special, commonly used, case of a Taylor series occurs when a = 0. This is known

as theMaclaurin series.

Maclaurin series:

p(x) = y(0)+ y′(0)x+ y′′(0)
x2

2!
+ y(3)(0)

x3

3!
+ · · · + y(n)(0)

xn

n!
+ · · ·

Example 18.10 Determine the Maclaurin series for y = ex.

Solution In this example y(x) = ex and clearly y′(x) = ex too. Similarly,

y′′(x) = y(3)(x) = · · · = y(n)(x) = ex

for all values of n. Evaluating at x = 0 yields

y(0) = y′(0) = y′′(0) = · · · = y(n)(0) = 1

and so

p(x) = 1 + x+
x2

2!
+
x3

3!
+ · · · +

xn

n!
+ · · ·

As mentioned earlier, the series and the generating function are equal for all values of x.

Hence,

ex = 1 + x+
x2

2!
+
x3

3!
+ · · ·

for all values of x, that is

ex =

∞∑

n=0

xn

n!

Example 18.11 Obtain the Maclaurin series for y(x) = sin x.

Solution y(x)= sin x, y(0)= 0

y′(x)= cos x, y′(0)= 1

y′′(x)= − sin x, y′′(0)= 0

y(3)(x)= − cos x, y(3)(0)= −1

y(4)(x)= sin x, y(4)(0)= 0

p(x) = y(0)+ y′(0)x+
y′′(0)x2

2!
+
y(3)(0)x3

3!
+ · · ·

= x−
x3

3!
+
x5

5!
−
x7

7!
+ · · ·

=

∞∑

i=0

(−1)ix2i+1

(2i+ 1)!
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Since the generating function and series are equal for all values of x we have

sin x =

∞∑

i=0

(−1)ix2i+1

(2i+ 1)!
= x−

x3

3!
+
x5

5!
−
x7

7!
+ · · ·

Example 18.12 Obtain the Maclaurin series for y(x) = cos x.

Solution y(x)= cos x, y(0)= 1

y′(x)= − sin x, y′(0)= 0

y′′(x)= − cos x, y′′(0)= −1

y(3)(x)= sin x, y(3)(0)= 0

y(4)(x)= cos x, y(4)(0)= 1

and so on. Therefore

p(x) = y(0)+ y′(0)x+ y′′(0)
x2

2!
+ y(3)(0)

x3

3!
+ y(4)(0)

x4

4!
+ · · ·

= 1 −
x2

2!
+
x4

4!
− · · ·

=

∞∑

i=0

(−1)ix2i

(2i)!

Since the series and the generating function are equal for all values of x then

cos x =

∞∑

i=0

(−1)ix2i

(2i)!
= 1 −

x2

2!
+
x4

4!
−
x6

6!
+ · · ·

From Examples 18.10, 18.11 and 18.12 we note three important Maclaurin series:

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+ · · · for all values of x

sin x = x−
x3

3!
+
x5

5!
−
x7

7!
+ · · · for all values of x

cos x = 1 −
x2

2!
+
x4

4!
−
x6

6!
+ · · · for all values of x

Example 18.13 Find the Maclaurin series for the following functions:

(a) y = e2x (b) y = sin 3x (c) y = cos
( x
2

)

Solution We use the previously stated series.

(a) We note that

ez = 1 + z+
z2

2!
+
z3

3!
+
z4

4!
+ · · ·
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Substituting z = 2x we obtain

e2x = 1 + 2x+
(2x)2

2!
+
(2x)3

3!
+
(2x)4

4!
+ · · ·

= 1 + 2x+ 2x2 +
4x3

3
+

2x4

3
+ · · ·

(b) We note that

sin z = z−
z3

3!
+
z5

5!
−
z7

7!
+ · · ·

By putting z = 3x we obtain

sin 3x = 3x−
(3x)3

3!
+
(3x)5

5!
−
(3x)7

7!
+ · · ·

= 3x−
9

2
x3 +

81

40
x5 −

243

560
x7 + · · ·

(c) We note that

cos z = 1 −
z2

2!
+
z4

4!
−
z6

6!
+ · · ·

Putting z =
x

2
we obtain

cos
( x
2

)
= 1 −

(x/2)2

2!
+
(x/2)4

4!
−
(x/2)6

6!
+ · · ·

= 1 −
x2

8
+

x4

384
−

x6

46 080
+ · · ·

Example 18.14 Determine the Maclaurin series for y(x) =
1

1 + x
.

Solution The value of y and its derivatives at x = 0 are found.

y(x) =
1

1 + x
, y(0) = 1

y′(x) =
−1

(1 + x)2
, y′(0) = −1

y′′(x) =
2!

(1 + x)3
, y′′(0) = 2!

y′′′(x) =
−3!

(1 + x)4
, y′′′(0) = −3!

...
...

y(n)(x) =
(−1)nn!

(1 + x)n+1
, y(n)(0) = (−1)nn!

Hence using the formula for the Maclaurin series we �nd

p(x) = 1 − 1(x)+ 2!
x2

2!
− 3!

x3

3!
+ · · · + (−1)nn!

xn

n!
+ · · ·

= 1 − x+ x2 − x3 + x4 − · · · + (−1)nxn + · · ·
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It can be shown that this series converges to
1

1 + x
for |x| < 1. Hence,

1

1 + x
= 1 − x+ x2 − x3 + · · · =

∞∑

0

(−1)nxn for |x| < 1

For values of x outside (−1, 1) the values of
1

1 + x
and

∑
(−1)nxn are simply not equal;

try evaluating the l.h.s. and r.h.s. with, say, x = −2.

Example 18.15 Find the Taylor series for y(x) = e−x about x = 1.

Solution y= e−x, y(1)= e−1

y′ = −e−x, y′(1)= −e−1

y′′ = e−x, y′′(1)= e−1

and so on. Hence,

e−x = e−1 − (e−1)(x− 1)+ e−1 (x− 1)2

2!
− e−1 (x− 1)3

3!
+ · · ·

= e−1

{
1 − (x− 1)+

(x− 1)2

2!
−
(x− 1)3

3!
+ · · ·

}

e−x = e−1

∞∑

0

(−1)n
(x− 1)n

n!

Example 18.16 Find the Maclaurin series for y(x) = x cos x.

Solution The Maclaurin series, p(x), for cos x is

cos x = p(x) = 1 −
x2

2!
+
x4

4!
−
x6

6!
+ · · ·

So the Maclaurin series for x cos x is xp(x), that is

x cos x = xp(x) = x−
x3

2!
+
x5

4!
−
x7

6!
+ · · ·

An alternative form of Taylor series is often used in numerical analysis. We know

that the Taylor series for y(x) generated about x = a is given by

y(x) = y(a)+ y′(a)(x− a)+ y′′(a)
(x− a)2

2!
+ y(3)(a)

(x− a)3

3!
+ · · ·

Replacing a by x0 we obtain

y(x) = y(x0)+ y′(x0)(x− x0)+ y′′(x0)
(x− x0)

2

2!
+ y(3)(x0)

(x− x0)
3

3!
+ · · ·

If we now let x− x0 = h, we see that

y(x0 + h) = y(x0)+ y′(x0)h+ y′′(x0)
h2

2!
+ y(3)(x0)

h3

3!
+ · · ·

To interpret this form of Taylor series we refer to Figure 18.6.
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x

y(x)
y

x0   x0+h

Figure 18.6

The value y(x0 + h) can be estimated using values of y

and its derivatives at x = x0.

If y and its derivatives are known when x = x0, then the Taylor series can be used to

�nd y at a nearby point, where x = x0+h. This form of Taylor series is used in numerical

methods of solving differential equations.

Engineering application 18.5

Electric field of an electrostatic dipole

Engineers often need to calculate the electrical �eld due to several stationary electric

charges. These are known as electrostatic problems. One of the simplest electrostatic

con�gurations is that of two charges of opposite polarity separated by a distance, d.

This arrangement is known as an electrostatic dipole. It is illustrated in Figure 18.7

for charges +Q and −Q.

The origin of the x axis is located midway between the two charges so that the

charge −Q has coordinate −d/2 and the charge +Q has coordinate d/2.

x

d 

0–Q                     +Q

Figure 18.7

Electrostatic dipole with two point charges of −Q

and +Q coulombs respectively.

We wish to calculate the combined electric �eld of the two charges as a function

of the distance along the x axis.

The electric �eld, E, of a single charge is given by

E =
q

4πε0r
2

where q is the charge in coulombs, ε0 is the permittivity of free space (a constant

of approximately 8.85 × 10−12 F m−1), and r is the distance from the charge to the

measuring point.

The electric �eld at point x due to the left-hand charge is

ELEFT =
−Q

4πε0

(
x+

d

2

)2

and for the right-hand charge the electric �eld at point x is

ERIGHT =
+Q

4πε0

(
x−

d

2

)2

➔
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The total electric �eld, ET, can be obtained by adding the two contributions together:

ET = ELEFT + ERIGHT =
−Q

4πε0

(
x+

d

2

)2 +
Q

4πε0

(
x−

d

2

)2

=
Q

4πε0




1
(
x−

d

2

)2 −
1

(
x+

d

2

)2



It is possible to gain further insight into the properties of the electrostatic dipole by

carrying out a power series expansion. To prepare the equation we take a factor of

1/x2 outside of the brackets

ET =
Q

4πε0x
2




1
(
1 −

d

2x

)2 −
1

(
1 +

d

2x

)2



Now consider the Maclaurin series of
1

(1 − α)2
. Following the process explained in

the previous examples, the �rst �ve terms are calculated:

y(α) =
1

(1 − α)2
, y(0) = 1

y′(α) =
2!

(1 − α)3
, y′(0) = 2!

y′′(α) =
3!

(1 − α)4
, y′′(0) = 3!

y(3)(α) =
4!

(1 − α)5
, y(3)(0) = 4!

y(4)(α) =
5!

(1 − α)6
, y(4)(0) = 5!

So,
1

(1 − α)2
= 1+ 2!α+ 3!

α2

2!
+ 4!

α3

3!
+ 5!

α4

4!
+ · · · = 1+ 2α+ 3α2 + 4α3 +

5α4 + · · · .

Following a similar process for the Maclaurin series of 1/(1 + α)2,

y(α) =
1

(1 + α)2
, y(0) = 1

y′(α) =
−2!

(1 + α)3
, y′(0) = −2!

y′′(α) =
3!

(1 + α)4
, y′′(0) = 3!

y(3)(α) =
−4!

(1 + α)5
, y(3)(0) = −4!

y(4)(α) =
5!

(1 + α)6
, y(4)(0) = 5!

we obtain
1

(1 + α)2
= 1 + (−2!)α + 3!

α2

2!
+ (−4!)

α3

3!
+ 5!

α4

4!
+ · · ·

= 1 − 2α + 3α2 − 4α3 + 5α4 + · · · .

These two expansions may be used to approximate the total electric �eld by sub-

stituting α = d/(2x).
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The total electric �eld is thus

ET =
Q

4πε0x
2
[(1 + 2α + 3α2 + 4α3 + 5α4 + · · ·)

− (1 − 2α + 3α2 − 4α3 + 5α4 + · · ·)]

ET =
Q

4πε0x
2
[4α + 8α3 + · · ·]

Providing x is much larger than d, then d/(2x), that is α is small, and the higher

order terms in the series become increasingly small. Thus we can approximate the

�eld using only the �rst term,

ET
∼=

Q

4πε0x
2
[4α] =

Q

4πε0x
2
4
d

2x
=

Qd

2πε0x
3

It can now be seen that the total electric �eld of the dipole decays as x−3 rather than

x−2, as would be the case for a single point charge.

EXERCISES 18.6

1 Use the Maclaurin series for sin x to write down the

Maclaurin series for sin 5x.

2 Use the Maclaurin series for cos x to write down the

Maclaurin series for cos 3x.

3 Use the Maclaurin series for ex to write down the

Maclaurin series for
1

ex
.

4 Find the Taylor series for y(x) =
√
x about x = 1.

5 (a) Find the Maclaurin series for

y(x) = x2 + sin x.

(b) Deduce the Maclaurin series for

y(x) = xn + sin x for any positive integer n.

6 (a) Obtain the Maclaurin series for y(x) = xex.

(b) State the range of values of x for which y(x)

equals its Maclaurin series.

7 Find the Taylor series for y(x) = x+ ex about x = 1.

8 Find the Maclaurin series for y(x) = ln(1 + x).

Solutions

1 5x−
(5x)3

3!
+
(5x)5

5!
− · · ·

2 1 −
(3x)2

2!
+
(3x)4

4!
−
(3x)6

6!
+ · · ·

3 1 − x+
x2

2!
−
x3

3!
+
x4

4!
− · · ·

4 1 +
x− 1

2
−
(x− 1)2

8
+
(x− 1)3

16

−
5(x− 1)4

128
+ · · ·

5 (a) x+ x2 −
x3

3!
+
x5

5!
−
x7

7!
+ · · ·

(b) xn + x−
x3

3!
+
x5

5!
−
x7

7!
+ · · ·

6 (a) x+ x2 +
x3

2!
+
x4

3!
+
x5

4!
+ · · ·

(b) For all values of x

7 p(x) = (1 + e)x

+ e

{
(x− 1)2

2!
+
(x− 1)3

3!
+
(x− 1)4

4!
+ · · ·

}

8 x−
x2

2
+
x3

3
−
x4

4
+
x5

5
− · · ·
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REVIEW EXERCISES 18

1 A function, f (t), and its �rst and second derivatives

are evaluated at t = 3. Find the second-order Taylor

polynomial generated by f about t = 3.

f (3) = 2 f ′(3) = −1 f ′′(3) = 1

2 A function, s(t), and its �rst derivative are evaluated

at t = 3; s(3) = 4, s′(3) = −1.

(a) Find the �rst-order Taylor polynomial generated

by s at t = 3.

(b) Estimate s(2.9) and s(3.2).

(c) If additionally we know s′′(3) = 1, use a

second-order Taylor polynomial to estimate

s(2.9) and s(3.2).

3 Obtain a linear approximation to

y(t) = at4 + bt3 + ct2 + dt + e around t = 1.

4 Find a quadratic approximation to y = x3 near x = 2.

5 Find linear approximations to

(a) z(t) = et near t = 1

(b) w(t) = sin 3t near t = 1

(c) v(t) = et + sin 3t near t = 1

6 The function, y(x), satis�es the equation

y′′ + xy′ − 3y = x2 + 1

y(0) = 1 y′(0) = 2

(a) Evaluate y′′(0).

(b) Differentiate the equation.

(c) Evaluate y(3)(0).

(d) Write down a cubic approximation for y(x).

(e) Estimate y(0.5).

7 Given that y satis�es the equation

dy

dx
+
y2

2
= xy y(1) = 2

(a) Calculate y′(1), y′′(1) and y(3)(1).

(b) State the third-order Taylor polynomial generated

by y(x) about x = 1.

(c) Estimate y(1.25).

8 (a) Find the third-order Taylor polynomial generated

by y(x) = e−x about x = 1.

(b) State the third-order error term.

(c) Find an upper bound for the error term given

|x| < 1.

9 (a) Find a quadratic approximation to y(x) = sin2 x

about x = 0.

(b) State the remainder term of order 2.

(c) State an upper bound for the remainder term

given |x| < 0.5.

10 (a) Find a cubic approximation to y(x) = x cos x

about x = 0.

(b) State the error term of order 3.

(c) State an upper bound for the error term given

|x| < 0.25.

11 Given that y(x) = x2,

(a) Calculate the Taylor series of y(x) about x = a.

(b) Calculate the Maclaurin series of y(x).

12 Find the Maclaurin expansion of y(x) = ln(2 + x) up

to and including the term in x4.

13 By considering the Maclaurin expansions of sin(kx)

and cos(kx), k constant, evaluate if possible

(a) lim
x→0

sin(kx)

x

(b) lim
x→0

cos(kx)− 1

x

(c) lim
x→0

sin(kx)

1 − cos(kx)

Solutions

1
t2

2
− 4t +

19

2

2 (a) −t + 7 (b) 4.1, 3.8 (c) 4.105, 3.82

3 (4a+ 3b+ 2c+ d)t − 3a− 2b− c+ e

4 6x2 − 12x+ 8

5 (a) et (b) −2.97t + 3.11

(c) −0.25t + 3.11

6 (a) 4 (b) y′′′ + xy′′ − 2y′ = 2x

(c) 4 (d) 1 + 2x+ 2x2 +
2

3
x3

(e) 2.5833
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7 (a) 0, 2, −2 (b) −
x3

3
+ 2x2 − 3x+

10

3
(c) 2.0573

8 (a) e−1

{
−
x3

6
+ x2 −

5x

2
+

8

3

}

(b)
e−c(x− 1)4

4!
where c lies between 1 and x

(c)
2e

3

9 (a) x2

(b) −
2 sin(2c)x3

3
for c between 0 and x

(c) 0.07

10 (a) x−
x3

2!

(b) (4 sin c+ c cos c)
x4

4!
for c between 0 and x

(c) 2 × 10−4

11 (a) x2 (b) x2

12 ln 2 +
x

2
−
x2

8
+
x3

24
−
x4

64
+ · · ·

13 (a) k (b) 0 (c) not de�ned
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19.1 INTRODUCTION

The solution of problems concerning themotion of objects, the flow of charged particles,

heat transport, etc., often involves discussion of relations of the form

d2x

dt2
+ 6

dx

dt
+ 2x = 3t or

dq

dt
+ 8q = sin t

In the �rst equation, x might represent distance. For this case
dx

dt
is the rate of change

of distance with respect to time t, that is speed, and
d2x

dt2
represents acceleration. In the

second equation, q might be charge and
dq

dt
the rate of flow of charge, that is current.

These are examples of differential equations, so called because they are equations in-

volving the derivatives of various quantities. Such equations arise out of situations in

which change is occurring. To solve such a differential equation means to �nd the func-

tion x(t) or q(t)when we are given the differential equation. Solutions to these equations

may be analytical in that we can write down an answer in terms of common elementary

functions such as et , sin t and so on. Alternatively, the problem may be so dif�cult that

only numerical methods are available, which produce approximate solutions.
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In engineering, differential equations are most commonly used to model dynamic

systems. These are systems which change with time. Examples include an electronic

circuit with time-dependent currents and voltages, a chemical production line in which

pressures, tank levels, flow rates, etc., vary with time, and a semiconductor device in

which hole and electron densities change with time.

19.2 BASIC DEFINITIONS

In order to solve a differential equation it is important to identify certain features. Recall

from Chapter 2 that in a function such as y = x2+3xwe say x is the independent variable

and y is the dependent variable since the value of y depends upon the choice we have

made for x.

In a differential equation such as

dy

dx
− 2y = 3x2

x is the independent variable, and y is the dependent variable.

Similarly, for the differential equation

dx

dt
+ 7x = et

t is the independent variable and x is the dependent variable.

We see that the variable being differentiated is the dependent variable.

Before classifying differential equations, we will derive one.

Engineering application 19.1

An RC charging circuit

Consider the RC circuit of Figure 19.1. Suppose we wish to derive a differential

equation which models the circuit so that we can determine the voltage across the

capacitor at any time, t. Clearly there are two different cases corresponding to the

switch being open and the switch being closed. We will concentrate on the latter and

for convenience assume that the switch is closed at t = 0. From Kirchhoff’s voltage

law we have

vS = vR + vC that is vR = vS − vC

where vS is the voltage of the supply, vC is the voltage across the capacitor, and vR is

the voltage across the resistor. Using Ohm’s law for the resistor then gives

i =
vS − vC

R

where i is the current flowing in the circuit after the switch is closed. For the capacitor

i = C
dvC
dt

Combining these equations gives

C
dvC
dt

=
vS − vC

R ➔
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i
R

C

+

–
yC

yR

yS

Figure 19.1

An RC charging circuit.

and hence

RC
dvC
dt

+ vC = vS

This is the differential equation which models the variation in voltage across the ca-

pacitor with time. Here vC is the dependent variable and t is the independent variable,

and when we are required to solve this differential equation we must attempt to �nd

vC as a function of t.

Differential equations which have features in common are often grouped together and

given certain classi�cations and it is usually the case that appropriate methods of solution

depend upon the classi�cations. Some important terminology is now given.

19.2.1 Order

The order of a differential equation is the order of its highest derivative.

Example 19.1 State the order of

(a)
d2y

dx2
+

dy

dx
= x (b)

dx

dt
= (xt)5

Solution (a) The highest derivative is
d2y

dx2
, a second derivative. The order is therefore two.

(b) The only derivative appearing is
dx

dt
, a �rst derivative. The order is therefore one.

19.2.2 Linearity

Recall that in a differential equation such as
dy

dx
+ 3y = x2, the independent variable is

x and the dependent variable is y.

A differential equation is said to be linear if:

(1) the dependent variable and its derivatives occur to the �rst power only,

(2) there are no products involving the dependent variable with its derivatives, and

(3) there are no non-linear functions of the dependent variable such as sine, exponen-

tial, etc.

If an equation is not linear, then it is said to be non-linear. Note from (2) that a product

of terms involving the dependent variable such as y
dy

dx
is non-linear. Note from (3) that

the existence of terms such as y2, sin y and ey causes an equation to be non-linear.
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Note also that the conditions for linearity are conditions on the dependent variable.

The linearity of a differential equation is not determined or affected by the presence of

non-linear terms involving the independent variable.

The distinction between a linear and a non-linear differential equation is important

because the methods of solution depend upon whether an equation is linear or non-

linear. Furthermore, it is usually the case that a linear differential equation is easier to

solve.

Example 19.2 Decide whether or not the following equations are linear:

(a) sin x
dy

dx
+ y = x

(b)
dx

dt
+ x = t3

(c)
d2y

dx2
+ y2 = 0

(d)
dy

dx
+ sin y = 0

Solution In (a), (c) and (d) the dependent variable is y, and the independent variable is x. In (b)

the dependent variable is x and the independent variable is t.

(a) This equation is linear.

(b) This equation is linear. It does not matter that the term in t, the independent variable,

is raised to the power 3.

(c) This equation is non-linear, the non-linearity arising through the term y2.

(d) This equation is non-linear, the non-linearity arising through the term sin y.

19.2.3 The solution of a di�erential equation

The solution of a differential equation is a relationship between the dependent and in-

dependent variables such that the differential equation is satis�ed for all values of the

independent variable over a speci�ed domain.

Example 19.3 Verify that y = ex is a solution of the differential equation

dy

dx
= y

Solution If y = ex then
dy

dx
= ex. For all values of x, we see that

dy

dx
= y and so y = ex is a

solution. Note also that this equation is �rst order and linear.

There are frequently many different functions which satisfy a differential equation; that

is, there are many solutions. The general solution embraces all of these and all possible

solutions can be obtained from it.
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Example 19.4 Verify that y = C ex is a solution of
dy

dx
= y, where C is any constant.

Solution If y = C ex, then
dy

dx
= C ex. Therefore, for all values of x,

dy

dx
= y and the equation

is satis�ed for any constant C; C is called an arbitrary constant and by varying it, all

possible solutions can be obtained. For example, by choosing C to be 1, we obtain the

solution of the previous example. In fact, y = C ex is the general solution of
dy

dx
= y.

More generally, to determine C we require more information given in the form of a

condition. For example, if we are told that, at x = 0, y = 4 then from y = C ex we have

4 = C e0 = C

so that C = 4. Therefore y = 4 ex is the solution of the differential equation which

additionally satis�es the condition y(0) = 4. This is called a particular solution. In

general, application of conditions to the general solution yields the particular solution.

To obtain a particular solution, the number of given independent conditions must be the

same as the number of constants.

Consider the following example.

Example 19.5 Consider the second-order differential equation

d2y

dx2
+ y = 0

The general solution of this equation can be shown to be

y = A cos x+ B sin x

where A and B are arbitrary constants.

Find the particular solution which satis�es the conditions

(a) when x = 0, then y = 0, and

(b) when x =
3π

2
, then y = 1.

Solution We note that because the general solution has two arbitrary constants, A and B, then two

conditions are necessary to obtain a particular solution. Applying the �rst condition to

the general solution gives

0 = A cos 0 + B sin 0

= A

Therefore A = 0, and the solution reduces to y = B sin x. Applying the second condition

we �nd

1 = B sin
3π

2
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from which

1 = B(−1)

B = −1

The particular solution becomes y = − sin x.

Sometimes the conditions involve derivatives.

Example 19.6 For the differential equation of Example 19.5 �nd the particular solution which satis�es

the conditions

(a) when x = 0, then y = 0, and

(b) when x = 0, then
dy

dx
= 5.

Solution Application of the �rst condition to the general solution y = A cos x+ B sin x gives

0 = A cos 0 + B sin 0

= A

Therefore A = 0 and the solution becomes y = B sin x. To apply the second condition

we must differentiate y:

dy

dx
= B cos x

Then applying the second condition we get

5 = B cos 0

= B

so that B = 5. Finally the required particular solution is y = 5 sin x.

In this example both conditions have been speci�ed at x = 0, and are often referred

to as initial conditions.

EXERCISES 19.2

1 Verify that y = 3 sin 2x is a solution of
d2y

dx2
+ 4y = 0.

2 Verify that 3 ex, Ax ex, Ax ex + B ex, where A, B are

constants, all satisfy the differential equation

d2y

dx2
− 2

dy

dx
+ y = 0

3 Verify that x = t2 + A ln t + B is a solution of

t
d2x

dt2
+

dx

dt
= 4t

4 Verify that y = A cos x+ B sin x satis�es the

differential equation

d2y

dx2
+ y = 0

Verify also that y = A cos x and y = B sin x each

individually satisfy the equation.

5 If y = A e2x is the general solution of
dy

dx
= 2y, �nd

the particular solution satisfying y(0) = 3. What is

the particular solution satisfying
dy

dx
= 2 when x = 0?
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6 Identify the dependent and independent variables of

the following differential equations. Give the order of

the equations and state which are linear.

(a)
dy

dx
+ 9y = 0

(b)

(
dy

dx

)(
d2y

dx2

)
+ 3

dy

dx
= 0

(c)
d3x

dt3
+ 5

dx

dt
= sin x

7 Show that x(t) = 7 cos 3t − 2 sin 2t is a solution of

d2x

dt2
+ 2x = −49 cos 3t + 4 sin 2t

8 The general solution of the equation

d2x

dt2
− 3

dx

dt
+ 2x = 0 is given by

x = A et + B e2t

Find the particular solution which satis�es x = 3 and
dx

dt
= 5 when t = 0.

9 The general solution of
d2y

dx2
− 2

dy

dx
+ y = 0 is

y = Ax ex + B ex. Find the particular solution

satisfying y(0) = 0,
dy

dx
(0) = 1.

10 The general solution of
d2x

dt2
= −ω2x is

x = A ejωt + B e−jωt , where j2 = −1. Verify that this

is indeed a solution. What is the particular solution

satisfying x(0) = 0,
dx

dt
(0) = 1? Express the general

solution and the particular solution in terms of

trigonometric functions.

Solutions

5 y(x) = 3 e2x, y(x) = e2x

6 (a) y is the dependent variable; x is the independent

variable; �rst order, linear

(b) y is the dependent variable; x is the independent

variable; second order, non-linear

(c) x is the dependent variable; t is the independent

variable; third order, non-linear.

8 x = et + 2 e2t

9 y = x ex

10 particular solution: sinωt/ω; general solution:

(A+ B) cosωt + (A− B)j sinωt

19.3 FIRST-ORDER EQUATIONS: SIMPLE EQUATIONS
AND SEPARATION OF VARIABLES

19.3.1 Simple equations

The simplest �rst-order equations to deal with are those of the form

dy

dx
= f (x)

where the r.h.s. is a function of the independent variable only. No special treatment is

necessary and direct integration yields y as a function of x, that is

y =

∫
f (x) dx
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Example 19.7 Find the general solution of
dy

dx
= 3 cos 2x.

Solution Given that
dy

dx
= 3 cos 2x, then y =

∫
3 cos 2x dx = 3

2
sin 2x + C. This is the required

general solution.

If
dy

dx
= f (x) then y =

∫
f (x) dx.

19.3.2 Separation of variables

When the function f on the r.h.s. of the equation depends upon both independent and

dependent variables the approach of Section 19.3.1 is not possible. However, �rst-order

equations which can be written in the form

dy

dx
= f (x)g(y) (19.1)

form an important class known as separable equations. For example,

dy

dx
= 3x2 e−4y

is a separable equation for which

f (x) = 3x2 and g(y) = e−4y

To obtain a solution we �rst divide both sides of Equation (19.1) by g(y) to give

1

g(y)

dy

dx
= f (x)

Integrating both sides with respect to x yields

∫
1

g(y)

dy

dx
dx =

∫
1

g(y)
dy =

∫
f (x) dx

The equation is then said to be separated. If the last two integrals can be found, we obtain

a relationship between y and x, although it is not always possible to write y explicitly in

terms of x as the following examples will show.

Separation of variables:

The solution of
dy

dx
= f (x)g(y) is found from

∫
1

g(y)
dy =

∫
f (x) dx
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Example 19.8 Solve
dy

dx
=

e−x

y
.

Solution Here f (x) = e−x and g(y) =
1

y
. Multiplication through by y yields

y
dy

dx
= e−x

Integration of both sides with respect to x gives
∫
y dy =

∫
e−x dx

so that

y2

2
= −e−x +C

Note that the constants arising from the two integrals have been combined to give a

single constant,C. Finally we can rearrange this expression to give y in terms of x:

y2 = −2 e−x + 2C

that is,

y = ±
√
D− 2 e−x

where D = 2C.

It is important to stress that the constant of integration must be inserted at the stage at

which the integration is actually carried out, and not simply added to the answer at the

end.

Example 19.9 Solve
dy

dx
= 3x2 e−y subject to y(0) = 1.

Solution Here g(y) = e−y and f (x) = 3x2. Separating the variables and integrating we �nd
∫

ey dy =

∫
3x2 dx

so that ey = x3 +C. Imposing the initial condition y(0) = 1 we �nd

e1 = (0)3 +C

so that C = e. Therefore,

ey = x3 + e

Note that since the exponential function is always positive, the solution will be valid

only for x3 + e > 0. Taking natural logarithms gives the particular solution explicitly:

y = ln(x3 + e)
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Example 19.10 Solve

dx

dt
=
t2 + 1

x2 + 1

Solution Separating the variables and integrating we �nd
∫
x2 + 1 dx =

∫
t2 + 1 dt

Therefore,

x3

3
+ x =

t3

3
+ t +C

which is the general solution. Here we note that x has not been obtained explicitly in

terms of t, although we have found a relationship between x and t which satis�es the

differential equation. To obtain the value of x at any given t it would be necessary to

solve the cubic equation.

Sometimes, equations which are not immediately separable can be reduced to separable

form by an appropriate substitution as the following example shows.

Example 19.11 By means of the substitution z =
y

x
, solve the equation

dy

dx
=
y2

x2
+
y

x
+ 1 (19.2)

Solution If z =
y

x
then y = zx. Because the solution, y, is a function of x the variable z depends

upon x also. The product rule gives
dy

dx
= z+ x

dz

dx
, so that Equation (19.2) becomes

z+ x
dz

dx
= z2 + z+ 1

that is,

x
dz

dx
= z2 + 1

This new equation has independent variable x and dependent variable z, and is separable.

We �nd∫
dz

z2 + 1
=

∫
dx

x

so that tan−1 z = ln |x| +C. Writing C = ln |D| we have

tan−1 z = ln |x| + ln |D| = ln |Dx|

so that z = tan(ln |Dx|). Returning to the original variables we see that the general

solution is

y = zx = x tan(ln |Dx|)
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Engineering application 19.2

RL circuit with step input

Write down the differential equation governing the current, i, flowing in theRL circuit

shown in Figure 19.2 when a step voltage of magnitude E is applied to the circuit at

t = 0. Solve this differential equation to obtain i(t). Assume that when t = 0, i = 0.

Solution

Applying Kirchhoff’s voltage law and Ohm’s law to the circuit we �nd

iR+ L
di

dt
= E for t > 0

that is,

L
di

dt
= E − iR

so that∫
L

E − iR
di =

∫
dt

R

i

L

E

Closed 

at t = 0

+ –

Figure 19.2

A step voltage is applied to the circuit at

t = 0.

t t

i

E/R

 0.63E/R

Figure 19.3

Response of the circuit of Figure 19.2 to

a step input.

Note in particular that in this equation L, E and R are constants and so the variables i

and t have been separated. If the applied voltage, E, varied with time this would not

have been the case since the l.h.s. would contain terms dependent upon t. Integrating,

we �nd∫
L

E − i R
di =

−L

R

∫
−R

E − i R
di = −

L

R
ln(E − i R) = t +C

To �nd the constant of integration,C, a condition is required. The physical condition

i = 0 at t = 0 provides this. Applying i = 0 when t = 0 we �nd

C = −
L

R
lnE

Substituting this value gives

−
L

R
ln(E − i R) = t −

L

R
lnE

Thus,

L

R
[lnE − ln(E − i R)] = t
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so that

L

R
ln

E

E − i R
= t

Then

ln
E

E − i R
=
Rt

L

hence

E

E − i R
= eRt/L

Rearranging to obtain E gives

E = (E − i R) eRt/L

hence

E = EeRt/L − i ReRt/L

and so

i ReRt/L = E
(
eRt/L − 1

)

so

i R = E
(
1 − e−Rt/L

)

Finally we have

i =
E

R

(
1 − e−Rt/L

)

The graph of this current against time is shown in Figure 19.2.We note that as t → ∞,

i →
E

R
. The rate at which the current increases towards its �nal value depends upon

the values of the components R and L. It is common to de�ne a time constant, τ , for

the circuit. In this case τ =
L

R
and the equation for the current can be written as

i =
E

R

(
1 − e−t/τ

)

The smaller the value of τ , the more rapidly the current reaches its �nal value. It is

possible to estimate a value of τ from a laboratory test curve by noting that after one

time constant, that is t = τ , i has reached 1 − e−1 ≈ 0.63 of its �nal value.

EXERCISES 19.3

1 Find the general solution of the following equations:

(a)
dy

dx
= 3 (b)

dx

dt
= 5

(c)
dy

dx
= 2x (d)

dy

dt
= 6t

(e)
dy

dx
= 8x2 (f)

dx

dt
= 3t3

(g)
dy

dx
=
x2

y
(h)

dx

dt
=

t3

x2

(i)
dx

dt
=

et

x
(j)

dy

dx
=

e−2x

y2
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(k)
dy

dx
=

6 sin x

y
(l)

dx

dt
=

9 cos 4t

x2

(m)
dx

dt
=

3 cos 2t + 8 sin 4t

x2 + x

2 Find the particular solution of the following

equations:

(a)
dx

dt
= 3t, x(0) = 1

(b)
dy

dx
=

6x2

y
, y(0) = 1

(c)
dy

dt
=

3 sin t

y
, y(0) = 2

(d)
dy

dx
=

e−x

y
, y(0) = 3

(e)
dx

dt
=

4 sin t + 6 cos 2t

x
, x(0) = 2

3 Find the general solution of
dx

dt
= ln t. Find the

particular solution satisfying x(1) = 1.

4 Find the general solutions of the following equations:

(a)
dy

dx
= kx, k constant

(b)
dy

dx
= −ky, k constant

(c)
dy

dx
= y2

(d) y
dy

dx
= sin x

(e) y
dy

dx
= x+ 2

(f) x2
dy

dx
= 2y2 + yx

(g)
dx

dt
=

t4

x5

5 Find the general solutions of the following equations:

(a)
dx

dt
= xt (b)

dy

dx
=
x

y

(c) t
dx

dt
= tan x

(d)
dx

dt
=
x2 − 1

t

6 Find the general solution of the equation
dx

dt
= t(x− 2). Find the particular solution which

satis�es x(0) = 5.

Solutions

1 (a) y = 3x+ c (b) x = 5t + c

(c) y = x2 + c (d) y = 3t2 + c

(e) y =
8

3
x3 + c (f) x =

3

4
t4 + c

(g)
y2

2
=
x3

3
+ c (h)

x3

3
=
t4

4
+ c

(i)
x2

2
= et + c (j)

y3

3
= c−

e−2x

2

(k)
y2

2
= c− 6 cos x (l)

x3

3
=

9

4
sin 4t + c

(m)
x3

3
+
x2

2
=

3

2
sin 2t − 2 cos 4t + c

2 (a) x =
3

2
t2 + 1 (b) y2 = 4x3 + 1

(c)
y2

2
= 5 − 3 cos t (d) y2 = 11 − 2 e−x

(e)
x2

2
= 3 sin 2t − 4 cos t + 6

3 t ln |t| − t + c, t ln |t| − t + 2

4 (a)
kx2

2
+ c

(b)A e−kx

(c) −
1

x+ c

(d) y2 = 2(c− cos x)

(e) y2 = x2 + 4x+ c

(f)
x

A− 2 ln |x|

(g)
x6

6
=
t5

5
+ c

5 (a) x = A et
2/2 (b) y2 = x2 + c

(c) x = sin−1(kt) (d) x =
1 + At2

1 − At2

6 2 + A et
2/2, 2 + 3 et

2/2
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19.4 FIRST-ORDER LINEAR EQUATIONS: USE OF AN
INTEGRATING FACTOR

In this section we develop a method for solving �rst-order linear differential equations.

19.4.1 Exact equations

Consider the differential equation

dy

dx
= 3x2

This can be solved very easily by simply integrating both sides to give

y =

∫
3x2dx

= x3 + c

where c is the constant of integration. An equation which can be solved by integrating

both sides is said to be an exact equation. A more complicated example which, never-

theless, can be solved in the same way is

d

dx
(xy) = 3x2

Integrating both sides we �nd

xy =

∫
3x2dx

= x3 + c

and dividing through by x gives the general solution

y = x2 +
c

x

The differential equation we have just solved is an exact equation.

Example 19.12 Solve the equation

d

dx

(
x2y
)

= cos x

Solution Integrating both sides we �nd

x2y =

∫
cos x dx

= sin x+ c

so that

y =
sin x

x2
+

c

x2
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Consider again the differential equation of the previous example:

d

dx
(x2y) = cos x

Using the product rule for differentiation we can expand the l.h.s. as follows:

d

dx
(x2y) = x2

dy

dx
+ 2xy

Doing this, the differential equation can be written in the equivalent form

x2
dy

dx
+ 2xy = cos x

Suppose we had posed the question in this form. A method of solving this equation

would be to recognize that the equation is exact and that the l.h.s. could be written as
d

dx
(x2y).

It is easy to recognize an exact equation because it will always take the form

µ
dy

dx
+ µ′y = f (x)

where µ is some function of x. That is, the coef�cient of y is the derivative of the coef-

�cient of
dy

dx
. When this is the case the l.h.s. can be written

d

dx
(µy).

Example 19.13 The following equations are exact. Note in each case that the coef�cient of y is the

derivative of the coef�cient of
dy

dx
. Solve them.

(a) x3
dy

dx
+ 3x2y = e2x

(b) cos x
dy

dx
− (sin x)y = 1

Solution (a) The equation can be written

d

dx
(x3y) = e2x

and so, upon integrating,

x3y =

∫
e2xdx

=
e2x

2
+ c

so that

y =
e2x

2x3
+

c

x3

(b) The equation can be written

d

dx
((cos x) y) = 1
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and so, upon integrating,

(cos x) y = x+ c

so that

y =
x

cos x
+

c

cos x

EXERCISES 19.4.1

1 Each of the following equations is exact. Solve them.

(a) x2
dy

dx
+ 2xy = x3

(b)
1

x2

dy

dx
−

2

x3
y = 5x3

(c) ex

(
y+

dy

dx

)
= cos x

Solutions

1 (a) y =
x2

4
+
C

x2
(b) y =

5x6

4
+Cx2

(c) y = e−x sin x+C e−x

19.4.2 A preliminary result involving separation of variables

Consider the following differential equation for the dependent variable µ:

dµ

dx
= µP (19.3)

where P is some function of x only. Using separation of variables we have

1

µ

dµ

dx
= P

and integrating both sides

∫
1

µ
dµ =

∫
P dx

lnµ =

∫
P dx

µ = e
∫
P dx

In this development the constant of integration has been omitted. The reason for this will

be apparent in what follows. So the solution of Equation (19.3), for any function P(x),

is µ = e
∫
Pdx.

For example, if P(x) =
1

x
, then Equation (19.3) is

dµ

dx
=

µ

x
and its solution is

µ = e
∫
(1/x)dx = eln x = x.
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19.4.3 First-order linear equations

First-order linear differential equations can always be written in the ‘standard’ form

dy

dx
+ P(x)y = Q(x) (19.4)

where P and Q are both functions of the independent variable, x, only. In some cases,

either of these may be simply constants.

An example of such an equation is

dy

dx
+ 3xy = 7x2

Comparing this with the standard form in Equation (19.4), note that P(x) = 3x and

Q(x) = 7x2. As a second example consider

dy

dx
−

2y

x
= 4 e−x

Here P(x) = −
2

x
(note in particular the minus sign) and Q(x) = 4 e−x.

Finally, in the equation

dy

dx
− 5y = sin x

note that P(x) is simply the constant −5.

Variables other than y and x may be used. So, for example,

dx

dt
+ 8t x = 3t2 − 5t

is a �rst-order linear equation in the form of Equation (19.4) but with independent vari-

able t and dependent variable x. Here P(t) = 8t and Q(t) = 3t2 − 5t.

In what follows it will be important that you can distinguish between the dependent

and independent variables, and also that you are able to identify the functions P and Q.

Equations such as these arise naturally when modelling many engineering applica-

tions. For example, the equation which determines the current flow in a series RL circuit

when the applied voltage takes the form of a ramp is given by

di

dt
+
R

L
i =

t

L

This is a �rst-order linear equation in which P(t) is the constant
R

L
and Q(t) =

t

L
. You

will learn how to solve such equations in the following section.

19.4.4 The integrating factor method

All �rst-order linear equations, even when they are not exact, can be made exact by

multiplying them through by a function known as an integrating factor. As we have

seen, the solution then follows by performing an integration. For example, the linear

equation

dy

dx
+

3

x
y =

e2x

x3

is not exact, but multiplying it through by x3 produces the differential equation in

Example 19.13(a) which is exact.
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Consider again a �rst-order linear equation in standard form:

dy

dx
+ Py = Q (19.5)

where P and Q are functions of x only. We are aiming to solve this and express the

dependent variable y in terms of the independent variable x. The aim is to multiply (19.5)

through by a function µ to make the equation exact. That is, so that the l.h.s. can be

written in the form

d

dx
(µy)

At this stage the function µ is not known. Multiplying (19.5) through by µ yields

µ
dy

dx
+ µPy = µQ (19.6)

If the l.h.s. is to equal
d

dx
(µy) then we must have

d

dx
(µy) = µ

dy

dx
+ µPy

Expanding the l.h.s. using the product rule gives

µ
dy

dx
+ y

dµ

dx
= µ

dy

dx
+ µPy

which simpli�es to

y
dµ

dx
= µPy

and consequently

dµ

dx
= µP

Using the result in Section 19.4.2 we see that this equation has solution

µ = e
∫
P dx

The function µ is called an integrating factor and is a function of x only. With this

choice of µ, the l.h.s. of (19.6) is the same as
d

dx
(µy) and hence (19.6) can be written

d

dx
(µy) = µQ

This exact equation can be solved by integration to give

µ y =

∫
µQ dx

and consequently

y =
1

µ

∫
µQ dx
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In summary:

Given any �rst-order linear equation in standard form

dy

dx
+ Py = Q

where P and Q are functions of x, the integrating factor µ is given by

µ = e
∫
P dx

and the solution of the equation is then obtained from

µy =

∫
µQ dx

It is important when working on a particular differential equation to rewrite the stan-

dard formulae in the correct form before use. Essentially this means using the correct

dependent and independent variables in the equations. For example, if x is the dependent

variable and t is the independent variable then the equations are as follows:

The integrating factor for

dx

dt
+ Px = Q

where P and Q are functions of t, is given by

µ = e
∫
P dt

and the solution of the equation is obtained from

µx =

∫
µQ dt

These results are illustrated in the examples which follow.

Example 19.14 Solve the differential equation
dy

dx
+
y

x
= 1 using the integrating factor method.

Solution Referring to the standard �rst-order linear equation

dy

dx
+ P(x)y = Q(x)

we see that P(x) =
1

x
and Q(x) = 1. Using the previous formula for µ(x), we �nd

µ(x) = e
∫
(1/x) dx

= eln x

= x
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Then from the �rst key point on page 552 with µ = x and Q = 1 we have

xy =

∫
x dx =

x2

2
+C

and �nally y =
x

2
+
C

x
is the required general solution.

Engineering application 19.3

RL circuit with ramp input

Recall from Section 2.4.7 that a standard ramp function has value 0 for t < 0 and a

value ct for t > 0. This is shown in Figure 2.46. A voltage ramp signal with a value

c = 1 is applied to an RL circuit. The arrangement is shown in Figure 19.4. The

differential equation governing the current flow, i(t), in this circuit is given by

iR+ L
di

dt
= t for t > 0 i(0) = 0

Show that this equation can be written in the form of Equation (19.4). Hence use the

integrating factor method to �nd i(t).

y (t)

t0

L

R

i

Figure 19.4

A ramp input signal applied to a series RL

circuit.

Solution

This equation can be written as

di

dt
+
R

L
i =

t

L
for t > 0

which is a �rst-order linear equation.

Note in this case that the independent variable is t and the dependent variable is i.

In standard form, we have

di

dt
+ P(t)i = Q(t)

where P(t) =
R

L
and Q(t) =

t

L
. The integrating factor, µ, is given by

µ = e
∫
P(t) dt

= e
∫
(R/L) dt

= eRt/L ➔
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Then

ieRt/L =
1

L

∫
teRt/L dt

=
1

L

(
teRt/L

R/L
−

∫
eRt/L

R/L
dt

)

=
teRt/L

R
−

L

R2
eRt/L + K

where K is the constant of integration. The general solution is

i =
t

R
−

L

R2
+ Ke−Rt/L

When t = 0, i = 0. This gives the initial condition required to �nd K. Applying

i(0) = 0 gives K = L/R2 so that the particular solution is

i =
t

R
+

L

R2

(
e−Rt/L − 1

)

In many engineering applications the terms transient response, steady-state response,

zero-input response, and zero-state response arise through the solution of differential

equations. These terms are explained in the following example.

Engineering application 19.4

RC circuit: zero-input response and zero-state response

The differential equation which is used to model the variation in voltage across a

capacitor, vC(t), in a series RC circuit was derived in Engineering application 19.1:

RC
dvC
dt

+ vC = vS(t)

where vS(t) is the applied voltage. Suppose that this applied voltage takes the form

vS(t) = V cosωt. Suppose also that when the switch is closed at t = 0, the initial

voltage across the capacitor is V0, that is vC(0) = V0.

(a) Show that this equation can be written in the form of Equation (19.4); that is, it

is a �rst-order linear equation.

(b) Use the integrating factor method to obtain the particular solution of this equation

which satis�es the given initial condition.

(c) Obtain the particular solution of the equation subject instead to the initial con-

dition vC(0) = 0. It corresponds to the response of the system when there is no

initial energy in the circuit. This solution is referred to as the zero-state response.

(d) Obtain the solution of the equation in the case when the supply voltage is identi-

cally zero, vS(t) = 0, subject to the given condition vC(0) = V0. This solution is

often referred to as the zero-input response, and represents the response of the

system when the input is zero.
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(e) Show that the solution in (b) can be written as the sum of the zero-state response

and the zero-input response.

(f) Identify the transient and steady-state terms in the solution to part (e).

Solution

(a) The given differential equation can be rewritten as

dvC
dt

+
1

RC
vC =

1

RC
vS(t)

Comparing the form of this equation with (19.4) we see that it is a �rst-order

linear equation, with independent variable t, and dependent variable vC, in which

P(t) =
1

RC
and Q(t) =

1

RC
vS(t).

(b) The integrating factor is given by

µ = e
∫
(1/RC)dt = et/(RC)

It follows from the second key point on page 552 that

et/(RC)vC =
V

RC

∫
et/(RC) cosωt dt

This integral can be evaluated using integration by parts twice following the tech-

nique in Example 14.4. You should verify that
∫

et/(RC) cosωt dt =
R2C2 et/(RC)

R2C2ω2 + 1

[
ω sinωt +

cosωt

RC

]

+ constant of integration

Then

et/(RC)vC =
VRCet/(RC)

R2C2ω2 + 1

[
ω sinωt +

cosωt

RC

]
+ K

from which

vC =
VRC

R2C2ω2 + 1

[
ω sinωt +

cosωt

RC

]
+ K e−t/(RC)

This is the general solution of the differential equation. Applying the initial con-

dition gives us a value for K. When t = 0, vC = V0, so

V0 =
VRC

R2C2ω2 + 1

[
1

RC

]
+ K

from which

K = V0 −
V

R2C2ω2 + 1

Finally,

vC =
VRC

R2C2ω2 + 1

[
ω sinωt+

cosωt

RC

]
+

(
V0 −

V

R2C2ω2 + 1

)
e−t/(RC)

This is the particular solution which satis�es the given initial condition. It tells

us the voltage across the capacitor as a function of time t.

➔
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(c) To �nd the particular solution subject to the condition vC(0) = 0 we need only

replaceV0 by 0 in the particular solution obtained in part (b). Hence the zero-state

response is

vC(t) =
VRC

R2C2ω2 + 1

[
ω sinωt +

cosωt

RC

]
−

V

R2C2ω2 + 1
e−t/(RC)

(d) In the case of zero input we have vS(t) = 0. In part (b) we solved the equation

with vS(t) = V cosωt. Hence, puttingV = 0 in the solution to part (b) will yield

the solution when vS(t) = 0. So,

vC(t) = V0 e
−t/(RC)

Alternatively we can note that when vS(t) = 0 the original equation becomes

dvC
dt

+
1

RC
vC = 0

subject to vC(0) = V0. This can be solved using separation of variables. So

1

vC

dvC
dt

= −
1

RC

Integration yields
∫

1

vC
dvC = −

∫
1

RC
dt

ln vC = −
t

RC
+ k (k a constant)

vC = e−t/(RC)+k

= ek e−t/(RC)

= A e−t/(RC)

where A is the constant ek. Applying the initial condition vC(0) = V0 we �nd

V0 = A and so �nally

vC(t) = V0 e
−t/(RC)

as before.

(e) Inspection of part (b) shows that it is the sum of the zero-input response and the

zero-state response:

zero-input zero-state response

response
︷ ︸︸ ︷ ︷ ︸︸ ︷

vC(t)=V0 e
−t/(RC)+

VRC

R2C2ω2+1

[
ω sinωt+

cosωt

RC

]
−

V

R2C2ω2+1
e−t/(RC)

(f) In this example, the terms involving e−t/(RC) tend to zero as t increases, and are

termed transients. Once the system has settled down their contribution will not

be important. The remaining terms represent the longer term behaviour of the

system or the so-called steady state.

Hence the transient terms are

V0 e
−t/(RC) −

V

R2C2ω2 + 1
e−t/(RC)
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and the steady-state terms are

VRC

R2C2ω2 + 1

[
ω sinωt +

cosωt

RC

]

EXERCISES 19.4.4

1 Find the general solution of the following equations:

(a)
dy

dx
+ y = 1 (b)

dy

dx
+ 2y = 6

(c)
dx

dt
+ 6x = 4 (d)

dy

dx
− 3y = 2

(e)
dy

dx
= 6y+ 9 (f)

dx

dt
= 3x− 8

2 Find the particular solution of the following

equations:

(a)
dy

dx
+ 4y = 7, y(0) = 1

(b)
dx

dt
− x = 4, x(0) = 2

(c)
dy

dt
= 3y+ 2, y(0) = 2

(d)
dy

dx
= 4y− 8, y(1) = 2

3 Find the general solution of
dx

dt
= 2x+ 4t. What is

the particular solution which satis�es x(1) = 2?

4 Find the general solution of
dy

dx
+ y = 2x+ 5.

5 Solve
dx

dt
= t − tx, x(0) = 0.

6 Use an integrating factor to obtain the general solution

of iR+ L
di

dt
= sinωt, where R, L and ω are constants.

7 Solve x
dy

dx
+ y = x4.

8 Use an integrating factor to �nd the general solution

of t
dx

dt
+ x = 3t.

9 Find the general solution of
dx

dt
+ 2xt = t. Find the

particular solution satisfying the condition

x(0) = −1.

10 Find the general solution of

tẋ+ 3x =
et

t2

Solutions

1 (a) y = 1 + c e−x

(b) y = 3 + c e−2x

(c) x =
2

3
+ c e−6t

(d) y = c e3x −
2

3

(e) y = c e6x −
3

2

(f) x =
8

3
+ c e3t

2 (a) y =
7

4
−

3

4
e−4x

(b) x = 6 et − 4

(c) y =
8

3
e3t −

2

3
(d) y = 2

3 −2t − 1 + c e2t ,−2t − 1 + 5 e2(t−1)

4 2x+ 3 + c e−x

5 1 − e−t
2/2

6
L((R/L) sinωt − ω cosωt)

R2 + L2ω2
+ c e−Rt/L

7
x4

5
+
c

x

8
3t

2
+
c

t

9
1

2
−

3

2
e−t

2

10
et + c

t3
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19.5 SECOND-ORDER LINEAR EQUATIONS

The general form of a second-order linear ordinary differential equation is

p(x)
d2y

dx2
+ q(x)

dy

dx
+ r(x)y = f (x) (19.7)

where p(x), q(x), r(x) and f (x) are functions of x only.

An important relative of this equation is

p(x)
d2y

dx2
+ q(x)

dy

dx
+ r(x)y = 0 (19.8)

which is obtained from Equation (19.7) by ignoring the term which is independent of y.

Equation (19.8) is said to be a homogeneous equation -- all its terms contain y or its

derivatives. Equation (19.7) is said to be inhomogeneous.

For example,

x2
d2y

dx2
+ x

dy

dx
+ (x2 − 1)y = e−x

is an inhomogeneous second-order linear equation in which p(x) = x2, q(x) = x, r(x) =

x2 − 1 and f (x) = e−x. The associated homogeneous equation is

x
d2y

dx2
+ x

dy

dx
+ (x2 − 1)y = 0

The following properties of linear equations are necessary for �nding solutions of

second-order linear equations.

19.5.1 Property 1

If y1(x) and y2(x) are any two linearly independent solutions of a second-order homo-

geneous equation then the general solution, yH(x), is

yH(x) = Ay1(x)+ By2(x)

where A, B are constants.

We see that the second-order linear ordinary differential equation has two arbitrary

constants in its general solution. The functions y1(x) and y2(x) are linearly independent

if one is not simply a multiple of the other.

19.5.2 Property 2

Let yP(x) be any solution of an inhomogeneous equation. Let yH(x) be the general so-

lution of the associated homogeneous equation. The general solution of the inhomoge-

neous equation is then given by

y(x) = yH(x)+ yP(x)

In other words, to �nd the general solution of an inhomogeneous equation we must �rst

�nd the general solution of the corresponding homogeneous problem, and then add to it

any solution of the inhomogeneous equation.

The function yH(x) is known as the complementary function and yP(x) is called the

particular integral. Clearly the complementary function of a homogeneous problem is
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the same as its general solution; we shall often write y(x) for both. If conditions are given

they are applied to the general solution of the inhomogeneous equation to determine any

unknown constants. This yields the particular solution satisfying the given conditions.

Example 19.15 Verify that y1(x) = x and y2(x) = 1 both satisfy
d2y

dx2
= 0. Write down the general

solution of this equation and verify that this indeed satis�es the equation.

Solution If y1(x) = x then
dy1
dx

= 1 and
d2y1
dx2

= 0, so that y1 satis�es
d2y

dx2
= 0. If y2(x) = 1,

then
dy2
dx

= 0 and
d2y2
dx2

= 0, so that y2 satis�es
d2y

dx2
= 0. From Property 1, the general

solution of
d2y

dx2
= 0 is

yH(x) = Ax+ B(1)

= Ax+ B

To verify that this satis�es the equation proceed as follows:

dyH
dx

= A

d2yH
dx2

= 0

and so yH(x) satis�es
d2y

dx2
= 0.

Example 19.16 Given

d2y

dx2
+ y = x (19.9)

(a) Show that yH = A cos x + B sin x is a solution of the corresponding homogeneous

equation.

(b) Verify that yP = x is a particular integral.

(c) Verify that yH + yP does indeed satisfy the inhomogeneous equation.

Solution (a) If yH = A cos x+ B sin x, then

y′
H = −A sin x+ B cos x y′′

H = −A cos x− B sin x

We see immediately that yH + y′′
H = 0 so that yH is a solution of the homogeneous

equation.

(b) If yP = x then y′
P = 1 and y′′

P = 0. Substitution into the inhomogeneous equation

shows that yP satis�es Equation (19.9), that is yP = x is a particular integral.

(c) Writing

y = A cos x+ B sin x+ x

we have

y′ = −A sin x+ B cos x+ 1 y′′ = −A cos x− B sin x
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Substitution into the l.h.s. of Equation (19.9) gives

(−A cos x− B sin x)+ (A cos x+ B sin x+ x)

which equals x, and so the complementary function plus the particular integral is

indeed a solution of the inhomogeneous equation, as required by Property 2.

19.6 CONSTANT COEFFICIENT EQUATIONS

We now proceed to study in detail those second-order linear equations which have con-

stant coef�cients. The general form of such an equation is

a
d2y

dx2
+ b

dy

dx
+ cy = f (x) (19.10)

where a, b, c are constants. The homogeneous form of Equation (19.10) is

a
d2y

dx2
+ b

dy

dx
+ cy = 0 (19.11)

Equations of this form arise in the analysis of circuits. Consider the following example.

Engineering application 19.5

The LCR circuit

Write down the differential equation governing the current flowing in the series LCR

circuit shown in Figure 19.5.

Solution

Using Kirchhoff’s voltage law and the individual laws for each component we �nd

L
di

dt
+ i R+

1

C

∫
i dt = v(t)

If this equation is now differentiated w.r.t. t we �nd

L
d2i

dt2
+ R

di

dt
+

1

C
i =

dv(t)

dt

This is an inhomogeneous second-order differential equation, with the inhomogene-

ity arising from the term
dv

dt
. When the circuit components L, R and C are constants

we have what is termed a linear time-invariant system, and the differential equation

then has constant coef�cients.

y (t)

L  C  R

i

Figure 19.5

An LCR circuit.
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A linear time-invariant system has components whose properties do not vary with

time and as such can be modelled by a linear constant coef�cient differential

equation.

19.6.1 Finding the complementary function

As stated in Property 2 (Section 19.5.2), �nding the general solution of ay′′+by′+cy = f

is a two-stage process. The �rst task is to determine the complementary function. This

is the general solution of the corresponding homogeneous equation, that is ay′′ + by′ +

cy = 0. We now focus attention on the solution of such equations.

Example 19.17 Verify that y1 = e4x and y2 = e2x both satisfy the constant coef�cient homogeneous

equation

d2y

dx2
− 6

dy

dx
+ 8y = 0 (19.12)

Write down the general solution of this equation.

Solution If y1 = e4x, differentiation yields

dy1
dx

= 4 e4x

and similarly,

d2y1
dx2

= 16 e4x

Substitution into Equation (19.12) gives

16 e4x − 6(4 e4x)+ 8 e4x = 0

so that y1 = e4x is indeed a solution. Similarly if y2 = e2x, then
dy2
dx

= 2 e2x and

d2y2
dx2

= 4 e2x. Substitution into Equation (19.12) gives

4 e2x − 6(2 e2x)+ 8 e2x = 0

so that y2 = e2x is also a solution of Equation (19.12). Now e2x and e4x are linearly

independent functions. So, from Property 1 we have

yH(x) = A e4x + B e2x

as the general solution of Equation (19.12).

Example 19.18 Find values of k so that y = ekx is a solution of

d2y

dx2
−

dy

dx
− 6y = 0

Hence state the general solution.
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Solution As suggested we try a solution of the form y = ekx. Differentiating we �nd
dy

dx
= k ekx

and
d2y

dx2
= k2 ekx. Substitution into the given equation yields

k2 ekx − k ekx − 6 ekx = 0

that is,

(k2 − k − 6) ekx = 0

The only way this equation can be satis�ed for all values of x is if

k2 − k − 6 = 0 (19.13)

that is,

(k − 3)(k + 2) = 0

so that k = 3 or k = −2. That is to say, if y = ekx is to be a solution of the differential

equation k must be either 3 or −2. We therefore have found two solutions

y1(x) = e3x and y2(x) = e−2x

These two functions are linearly independent and we can therefore apply Property 1 to

give the general solution:

yH(x) = A e3x + B e−2x

Equation (19.13) for determining k is called the auxiliary equation.

Example 19.19 Find the auxiliary equation of the differential equation

a
d2y

dx2
+ b

dy

dx
+ cy = 0

Solution We try a solution of the form y = ekx so that
dy

dx
= k ekx and

d2y

dx2
= k2 ekx. Substitution

into the given differential equation yields

ak2 ekx + bk ekx + c ekx = 0

that is,

(ak2 + bk + c) ekx = 0

Since this equation is to be satis�ed for all values of x, then

ak2 + bk + c = 0

is the required auxiliary equation.



19.6 Constant coe	cient equations 563

The auxiliary equation of a
d2y

dx2
+ b

dy

dx
+ cy = 0 is

ak2 + bk + c = 0

Solution of this quadratic equation gives the values of k which we seek. Clearly the

nature of the roots will depend upon the values of a, b and c. If b2 > 4ac the roots will

be real and distinct. The two values of k thus obtained, k1 and k2, will allow us to write

down two independent solutions:

y1(x) = ek1x y2(x) = ek2x

and so the general solution of the differential equation will be

y(x) = A ek1x + B ek2x

If the auxiliary equation has real, distinct roots k1 and k2, the complementary func-

tion will be

y(x) = A ek1x + B ek2x

On the other hand, if b2 = 4ac the two roots of the auxiliary equation will be equal

and this method will therefore only yield one independent solution. In this case, special

treatment is required. If b2< 4ac the two roots of the auxiliary equation will be complex,

that is k1 and k2 will be complex numbers. The procedure for dealing with such cases

will become apparent in the following examples.

Example 19.20 Find the general solution of

d2y

dx2
+ 3

dy

dx
− 10y = 0

Find the particular solution which satis�es the conditions y(0) = 1 and y′(0) = 1.

Solution By letting y = ekx, so that
dy

dx
= k ekx and

d2y

dx2
= k2 ekx, the auxiliary equation is found

to be

k2 + 3k − 10 = 0

Therefore,

(k − 2)(k + 5) = 0

so that k = 2 and k = −5. Thus there exist two solutions, y1 = e2x and y2 = e−5x. From

Property 1 we can write the general solution as

y = A e2x + B e−5x
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To �nd the particular solution we must now impose the given conditions:

y(0) = 1 gives 1 = A+ B

y′(0) = 1 gives 1 = 2A− 5B

from which A =
6

7
and B =

1

7
. Finally, the required particular solution is

y = 6
7
e2x + 1

7
e−5x.

Example 19.21 Find the general solution of

d2y

dx2
+ 4y = 0

Solution As before, let y = ekx so that
dy

dx
= k ekx and

d2y

dx2
= k2 ekx. The auxiliary equation is

easily found to be

k2 + 4 = 0

that is

k2 = −4

so that

k = ±2j

that is, we have complex roots. The two independent solutions of the equation are thus

y1(x) = e2jx and y2(x) = e−2jx

so that the general solution can be written in the form

y(x) = A e2jx + B e−2jx

However, in cases such as this, it is usual to rewrite the solution in the following way.

Recall from Chapter 9 that Euler’s relations give

e2jx = cos 2x+ j sin 2x

and

e−2jx = cos 2x− j sin 2x

so that

y(x) = A(cos 2x+ j sin 2x)+ B(cos 2x− j sin 2x)

If we now relabel the constants such that

A+ B = C and Aj − Bj = D

we can write the general solution in the form

y(x) = C cos 2x+ D sin 2x
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Engineering application 19.6

Oscillating mass--spring system

Consider the simple mechanical problem of a mass resting on a smooth frictionless

table. A spring is attached to the mass and an adjacent anchor point as shown in

Figure 19.6. The spring is capable of being compressed as well as stretched. When

the spring is neither compressed nor stretched the mass is located at x = 0.

m

x
0

Figure 19.6

Mass--spring system.

If the mass is pulled in the x direction and let go, it will oscillate about the x = 0

position. We wish to �nd the position of the mass, x, as a function of time, t. Differ-

ential equations are needed to describe this problem fully.

Newton’s second law states that if a force F is applied to a body of mass m then

the motion of the body is governed by F = ma, where a is the acceleration. Applying

Newton’s second law, and noting that a =
d2x

dt2
, we obtain

F = m
d2x

dt2

The force, F , is provided by the spring. The force exerted by a spring is given by

Hooke’s law, which states that the force is proportional to the extension or compres-

sion of the spring,

F = −kx

where k is the spring constant for the spring in use. The minus sign is required so that

when the spring is stretched (x > 0) the force is in the negative x direction. When

the spring is compressed (x < 0) the force is in the positive x direction.

If the table is suf�ciently smooth and if there are no other external forces acting,

then m
d2x

dt2
= −kx.

Therefore the differential equation that governs motion in the system is

m
d2x

dt2
+ kx = 0

We write this as

d2x

dt2
+

k

m
x = 0

Let
k

m
= ω2, giving

d2x

dt2
+ ω2x = 0

➔
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Using the technique illustrated in Example 19.21 we obtain

x(t) = A cosωt + B sinωt

where A, B are constants. Note this solution may also be expressed as a single wave

x = C cos(ωt + φ)

where C and φ are constants, using the technique described in Section 3.7.1, Com-

bining waves.

We note that this solution is sinusoidal and oscillates with time. It gives the po-

sition of the mass at a given point in time. The constants C and φ depend on the

position and velocity of the mass when it is released. These are known as the initial

conditions of the differential equation (see Example 19.6 on page 539). It is intuitive

that an equation that describes the position of the mass at a given time must take these

into account.

Mathematically describing or modelling systems like this one using differential

equations is an extremely important discipline. Mathematical models of mechanical,

electrical and other subsystems can be linked together and as a result whole systems

can be accurately characterized.

Example 19.22 Given ay′′ +by′ + cy = 0, write down the auxiliary equation. If the roots of the auxiliary

equation are complex and are denoted by

k1 = α + βj k2 = α − βj

show that the general solution is

y(x) = eαx(A cosβx+ B sinβx)

Solution Substitution of y = ekx into the differential equation yields

(ak2 + bk + c) ekx = 0

and so

ak2 + bk + c = 0

This is the auxiliary equation. If k1 = α + βj, k2 = α − βj then the general solution is

y = C e(α+βj)x + D e(α−βj)x

where C and D are arbitrary constants. Using the laws of indices this is rewritten as

y = C eαx eβjx + D eαx e−βjx = eαx(C eβjx + D e−βjx)

Then, using Euler’s relations, we obtain

y = eαx(C cosβx+Cj sinβx+ D cosβx− Dj sinβx)

= eαx{(C + D) cosβx+ (Cj − Dj) sinβx}
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Writing A = C + D and B = Cj − Dj, we �nd

y = eαx(A cosβx+ B sinβx)

This is the required solution.

If the auxiliary equation has complex roots α+βj and α−βj, then the complemen-

tary function is

y = eαx(A cosβx+ B sinβx)

Note that Example 19.21 is a special case of Example 19.22 with α = 0 and β = 2.

Example 19.23 Find the general solution of y′′ + 2y′ + 4y = 0.

Solution The auxiliary equation is k2 + 2k + 4 = 0. This equation has complex roots given by

k =
−2 ±

√
4 − 16

2

=
−2 ±

√
12j

2

= −1 ±
√
3j

Using the result of Example 19.22 with α = −1 and β =
√
3 we �nd the general

solution is

y = e−x(A cos
√
3x+ B sin

√
3x)

Example 19.24 The auxiliary equation of ay′′ + by′ + cy = 0 is ak2 + bk+ c = 0. Suppose this equation

has equal roots k = k1. Verify that y = x ek1x is a solution of the differential equation.

Solution We have

y = x ek1x y′ = ek1x(1 + k1x) y′′ = ek1x(k21x+ 2k1)

Substitution into the l.h.s. of the differential equation yields

ek1x
{
a
(
k21x+ 2k1

)
+ b(1 + k1x)+ cx

}
= ek1x

{(
ak21 + bk1 + c

)
x+ 2ak1 + b

}

But ak21 + bk1 + c = 0 since k1 satis�es the auxiliary equation. Also,

k1 =
−b±

√
b2 − 4ac

2a

but since the roots are equal, then b2 − 4ac = 0 and hence k1 = −
b

2a
. So 2ak1 + b = 0.

We conclude that y = x ek1x is a solution of ay′′ + by′ + cy = 0 when the roots of the

auxiliary equation are equal.
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If the auxiliary equation has two equal roots, k1, the complementary function is

y = A ek1x + Bx ek1x

Example 19.25 Obtain the general solution of the equation

d2y

dx2
+ 8

dy

dx
+ 16y = 0

Solution As before, a trial solution of the form y = ekx yields an auxiliary equation:

k2 + 8k + 16 = 0

This equation factorizes so that

(k + 4)(k + 4) = 0

and we obtain equal roots, that is k = −4 (twice). If we proceed as before, writing

y1(x) = e−4x, y2(x) = e−4x, it is clear that the two solutions are not independent. To

apply Property 1 we need to �nd a second independent solution. Using the result of

Example 19.24 we conclude that, because the roots of the auxiliary equation are equal,

the second independent solution is y2 = x e−4x. The general solution is then

y(x) = A e−4x + Bx e−4x

EXERCISES 19.6.1

1 Obtain the general solutions, that is the

complementary functions, of the following

homogeneous equations:

(a)
d2y

dx2
− 3

dy

dx
+ 2y = 0

(b)
d2y

dx2
+ 7

dy

dx
+ 6y = 0

(c)
d2x

dt2
+ 5

dx

dt
+ 6x = 0

(d)
d2y

dt2
+ 2

dy

dt
+ y = 0

(e)
d2y

dx2
− 4

dy

dx
+ 4y = 0

(f)
d2y

dt2
+

dy

dt
+ 8y = 0

(g)
d2y

dx2
− 2

dy

dx
+ y = 0

(h)
d2y

dt2
+

dy

dt
+ 5y = 0

(i)
d2y

dx2
+

dy

dx
− 2y = 0

(j)
d2y

dx2
+ 9y = 0

(k)
d2y

dx2
− 2

dy

dx
= 0

(l)
d2x

dt2
− 16x = 0

2 Find the auxiliary equation for the differential

equation

L
d2i

dt2
+ R

di

dt
+

1

C
i = 0

Hence write down the complementary function.

3 Find the complementary function of the equation

d2y

dx2
+

dy

dx
+ y = 0
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Solutions

1 (a) y = A ex + B e2x

(b) y = A e−x + B e−6x

(c) x = A e−2t + B e−3t

(d) y = A e−t + Bt e−t

(e) y = A e2x + Bx e2x

(f) y = e−0.5t (A cos 2.78t + B sin 2.78t)

(g) y = A ex + Bx ex

(h) y = e−0.5t (A cos 2.18t + B sin 2.18t)

(i) y = A e−2x + B ex

(j) y = A cos 3x+ B sin 3x

(k) y = A+ B e2x

(l) x = A e4t + B e−4t

2 Lk2 + Rk +
1

C
= 0 i(t) = A ek1t + B ek2t

where

k1, k2 =

−R±

√
R2C − 4L

C

2L

3 e−x/2

(
A cos

√
3x

2
+ B sin

√
3x

2

)

19.6.2 Finding a particular integral

We stated in Property 2 (Section 19.5.2) that the general solution of an inhomogeneous

equation is the sum of the complementary function and a particular integral. We have

seen how to �nd the complementary function in the case of a constant coef�cient equa-

tion. We shall now deal with the problem of �nding a particular integral. Recall that

the particular integral is any solution of the inhomogeneous equation. There are a num-

ber of advanced techniques available for �nding such solutions but these are beyond

the scope of this book. We shall adopt a simpler strategy. Since any solution will do

we shall try to �nd such a solution by a combination of educated guesswork and trial

and error.

Example 19.26 Find the general solution of the equation

d2y

dx2
−

dy

dx
− 6y = e2x (19.14)

Solution The complementary function for this equation has already been shown in Example 19.18

to be

yH = A e3x + B e−2x

We shall attempt to �nd a solution of the inhomogeneous problem by trying a function

of the same form as that on the r.h.s. In particular, let us try yP(x) = α e2x, where α is a

constant that we shall now determine. If yP(x) = α e2x then
dyP
dx

= 2α e2x and
d2yP
dx2

=

4α e2x. Substitution in Equation (19.14) gives

4α e2x − 2α e2x − 6α e2x = e2x

that is,

−4α e2x = e2x
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so that yP will be a solution if α is chosen so that−4α = 1, that is α = −
1

4
. Therefore the

particular integral is yP(x) = −
e2x

4
. From Property 2 the general solution of the inhomo-

geneous equation is found by summing this particular integral and the complementary

function

y(x) = A e3x + B e−2x −
1

4
e2x

Example 19.27 Obtain a particular integral of the equation

d2y

dx2
− 6

dy

dx
+ 8y = x

Solution In the last example, we found that a fruitful approach was to assume a solution in the

same form as that on the r.h.s. Suppose we assume a solution yP(x) = αx and proceed

to determine α. This approach will actually fail, but let us see why. If yP(x) = αx then
dyP
dx

= α and
d2yP
dx2

= 0. Substitution into the differential equation yields

0 − 6α + 8αx = x

and α ought now to be chosen so that this expression is true for all x. If we equate the

coef�cients of x we �nd 8α = 1 so that α =
1

8
, but with this value of α the constant

terms are inconsistent. Clearly a particular integral of the form αx is not possible. The

problem arises because differentiation of the term αx produces constant terms which are

unbalanced on the r.h.s. So, we try a solution of the form

yP(x) = αx+ β

with α, β constants. Proceeding as before,
dyP
dx

= α,
d2yP
dx2

= 0. Substitution in the

differential equation now gives

0 − 6α + 8(αx+ β) = x

Equating coef�cients of x we �nd

8α = 1 (19.15)

and equating constant terms we �nd

−6α + 8β = 0 (19.16)

From Equation (19.15), α =
1

8
and then from Equation (19.16)

−6

(
1

8

)
+ 8β = 0

so that

8β =
3

4
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that is,

β =
3

32

The required particular integral is yP(x) =
x

8
+

3

32
.

Experience leads to the trial solutions suggested in Table 19.1.

Table 19.1

Trial solutions to �nd the particular

integral.

f (x) Trial solution

constant constant

polynomial in x polynomial in x

of degree r of degree r

cos kx a cos kx+ b sin kx

sin kx a cos kx+ b sin kx

a ekx α ekx

Example 19.28 Find a particular integral for the equation

d2y

dx2
− 6

dy

dx
+ 8y = 3 cos x

Solution We shall try a solution of the form

yP(x) = α cos x+ β sin x

Differentiating, we �nd

dyP
dx

= −α sin x+ β cos x

d2yP
dx2

= −α cos x− β sin x

Substitution into the differential equation gives

(−α cos x− β sin x)− 6(−α sin x+ β cos x)+ 8(α cos x+ β sin x)

= 3 cos x

Equating coef�cients of cos x we �nd

−α − 6β + 8α = 3 (19.17)

while those of sin x give

−β + 6α + 8β = 0 (19.18)
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Solving Equations (19.17) and (19.18) simultaneously we �nd α =
21

85
and β = −

18

85
,

so that the particular integral is

yP(x) =
21

85
cos x−

18

85
sin x

Engineering application 19.7

An LC circuit with sinusoidal input

The differential equation governing the flow of current in a series LC circuit when

subject to an applied voltage v(t) = V0 sinωt is

L
d2i

dt2
+

1

C
i = ωV0 cosωt

Derive this equation and then obtain its general solution.

Solution

Kirchhoff’s voltage law and the component laws give

L
di

dt
+

1

C

∫
i dt = V0 sinωt

To avoid processes of differentiation and integration in the same equation let us dif-

ferentiate this equation w.r.t. t. This yields

L
d2i

dt2
+

1

C
i = ωV0 cosωt

as required.

The homogeneous equation is L
d2i

dt2
+

i

C
= 0. Letting i = ekt we �nd the aux-

iliary equation is Lk2 +
1

C
= 0 so that k = ±

j
√
LC

. Therefore, using the result of

Example 19.22, with α = 0 and β =
1

√
LC

, the complementary function is

i = A cos
t

√
LC

+ B sin
t

√
LC

To �nd a particular integral, try i = E cosωt+F sinωt, where E and F are constants.

We �nd

di

dt
= −ωE sinωt + ωF cosωt

d2i

dt2
= −ω2E cosωt − ω2F sinωt

Substitution into the inhomogeneous equation yields

L(−ω2E cosωt − ω2F sinωt)+
1

C
(E cosωt + F sinωt) = V0ω cosωt

Equating coef�cients of sinωt gives

−ω2LF +
F

C
= 0
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Equating coef�cients of cosωt gives

−ω2LE +
E

C
= V0ω

so that F = 0 and E =
CV0ω

1 − ω2LC
. It follows that the particular integral is

i =
CV0ω

1 − ω2LC
cosωt. Finally, the general solution is

i = A cos
t

√
LC

+ B sin
t

√
LC

+
CV0ω cosωt

1 − ω2LC

The terms zero-input response and zero-state response were introduced in Section 19.4

in connection with �rst-order equations. This terminology is identical when we deal with

second-order equations as the following example illustrates.

Engineering application 19.8

Parallel RLC circuit

Figure 19.7 shows a parallel RLC circuit which has a current source iS(t). The induc-

tor current, i, can be found by solving the second-order differential equation

LC
d2i

dt2
+
L

R

di

dt
+ i = iS(t) for t > 0

It would be a useful exercise for you to derive this equation. Note that this equation

is second order, and inhomogeneous due to the source term iS(t).

iS(t)

i

R L C

Figure 19.7

A parallel RLC circuit.

Suppose L = 10 H, R = 10 �, C = 0.1 F and iS(t) = e−2t and that the initial

conditions are i = 1 and
di

dt
= 2 when t = 0.

(a) Obtain the solution of this equation subject to the given initial conditions and

hence state the inductor current i.

(b) Obtain the zero-input response. This is the solution when iS(t) = 0.

(c) Obtain the zero-state response. This is the solution of the inhomogeneous equa-

tion subject to the conditions i = 0 and
di

dt
= 0 at t = 0. It corresponds to there

being no initial energy in the circuit.

(d) Show that the solution in (a) is the sum of the zero-input response and the zero-

state response. ➔
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Solution

(a) With the given parameter values the differential equation becomes

d2i

dt2
+

di

dt
+ i = e−2t

It is �rst necessary to �nd the complementary function. Letting i = ekt , the aux-

iliary equation is k2 + k + 1 = 0 which has complex solutions

k = −
1

2
±

√
3

2
j

The complementary function is therefore

i = e−t/2

(
A cos

√
3

2
t + B sin

√
3

2
t

)

For a particular integral we try a solution of the form i = α e−2t . Substitution

into the differential equation gives

4α e−2t − 2α e−2t + α e−2t = e−2t

so that

3α = 1, that is α =
1

3

Hence a particular integral is i = 1
3
e−2t . The general solution is the sum of the

complementary function and the particular integral:

i = e−t/2

(
A cos

√
3

2
t + B sin

√
3

2
t

)
+

1

3
e−2t

We now apply the initial conditions to �nd the constants A and B. Given i = 1

when t = 0 means

1 = A+
1

3
so that A =

2

3

To apply the second condition we need to �nd
di

dt
:

di

dt
= e−t/2

(
−

√
3

2
A sin

√
3

2
t +

√
3

2
B cos

√
3

2
t

)

−
1

2
e−t/2

(
A cos

√
3

2
t + B sin

√
3

2
t

)
−

2

3
e−2t

Given
di

dt
= 2 when t = 0 means

2 =

√
3

2
B−

1

2
(A)−

2

3

2 =

√
3

2
B−

1

2

(
2

3

)
−

2

3

2 =

√
3

2
B− 1

3 =

√
3

2
B
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B =
6

√
3

= 2
√
3

Finally, the required particular solution which gives the current through the

inductor at any time is

i = e−t/2

(
2

3
cos

√
3

2
t + 2

√
3 sin

√
3

2
t

)
+

1

3
e−2t

(b) The zero-input response is obtained by ignoring the source term iS(t). From

(a) we see that this is just the complementary function:

i = e−t/2

(
A cos

√
3

2
t + B sin

√
3

2
t

)

Applying the given initial conditions to this solution gives A = 1 and B =
5

√
3

and so the zero-input response is

i = e−t/2

(
cos

√
3

2
t +

5
√
3
sin

√
3

2
t

)

(c) The zero-state response of the inhomogeneous equation is found by applying the

conditions i = 0 and
di

dt
= 0 at t = 0 to the general solution already obtained in

(a). It is straightforward to show that A = −
1

3
and B =

1
√
3
. So the zero-state

response is

i = e−t/2

(
−

1

3
cos

√
3

2
t +

1
√
3
sin

√
3

2
t

)
+

1

3
e−2t

(d) Inspection of the previous working shows that the particular solution obtained in

(a) is the sum of the zero-state response and zero-input response.

19.6.3 Inhomogeneous term appears in the complementary function

In some examples, terms which form part of the complementary function also appear

in the inhomogeneous term. This gives rise to an additional complication. Consider

Example 19.29.

Example 19.29 Consider the equation y′′ − y′ − 6y = e3x. It is straightforward to show that the comple-

mentary function is

y = A e3x + B e−2x

Find a particular integral and deduce the general solution.

Solution Suppose we try to �nd a particular integral by using a trial solution of the form

yP = α e3x. Substitution into the l.h.s. of the inhomogeneous equation yields

9α e3x − 3α e3x − 6α e3x which simpli�es to 0

so that α e3x is clearly not a solution of the inhomogeneous equation. The reason is that

e3x is part of the complementary function and so causes the l.h.s. to vanish. To obtain a
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particular integral in such a case, we carry out the procedure required when the auxiliary

equation has equal roots. That is, we try yP = αx e3x. We �nd

y′ = α e3x(3x+ 1) y′′ = α e3x(9x+ 6)

Substitution into the inhomogeneous equation yields

α e3x(9x+ 6)− α e3x(3x+ 1)− 6αx e3x = e3x

Most terms cancel, leaving

5α e3x = e3x

so that α=
1

5
. Finally, the required particular integral is yP =

x e3x

5
. The general solution

is then y = A e3x + B e−2x +
x e3x

5
.

Engineering application 19.9

Transmission lines

A transmission line is an arrangement of electrical conductors for transporting

electromagnetic waves. Although this de�nition could be applied to most electrical

cables, it is usually restricted to cables used to transport high-frequency electromag-

netic waves. There are several different types of transmission lines. The most familiar

one is the coaxial cable which is used to carry the signal from a television aerial to

a television set (see Figure 19.8). When a high-frequency wave is being carried by a

cable several effects become important which can usually be neglected when dealing

with a low-frequency wave. These are:

(1) the capacitance, C, between the two conductors,

(2) the series inductance, L, of the two conductors,

(3) the leakage current through the insulation layer that separates the two conductors.

The electrical parameters of a coaxial cable are evenly distributed along its length.

This is true for transmission lines in general and so it is usual to specify per unit length

values for the parameters. When constructing a mathematical model of a transmis-

sion line it is easier to think in terms of lumped components spanning a distance δz

and then allow δz to tend to zero (see Figure 19.9). The leakage between the two

conductors is conventionally modelled by a conductance, G, as this simpli�es the

mathematics and avoids confusion with the line resistance, R. Note that C, G, L and

R are per unit length values for the transmission line.

Protective coating

Insulator

Outer conductor

Inner conductor×

Figure 19.8

A coaxial cable.
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For many transmission lines of interest the signal that is being carried varies sinu-

soidally with time. Therefore the voltage and current depend on both position along

the line, z, and time, t. However, it is common to separate the time dependence from

the voltage and current expressions in order to simplify the analysis. It must be re-

membered that any voltage and current variation with position has superimposed

upon it a sinusoidal variation with time. Therefore, ignoring the time-dependent ele-

ment we write the voltage as v and the current as i, knowing that they are functions

of z.

y

yL yR

y + dy

Ldz

dzz

Gdz
Cdz

i + di

di

iC iG

i

Rdz

Figure 19.9

A section of a transmission line.

Consider the circuit of Figure 19.9 which represents a section of the transmission

line of length δz. Applying Kirchhoff’s voltage law to the circuit yields

v + δv − v + vL + vR = 0

δv = −vL − vR

where vL is the voltage across the inductor and vR is the voltage across the resistor.

Using the individual component laws for the inductor and resistor gives

δv = −i jωLδz− i Rδz

= −i(R+ jωL)δz

Note that δi has been ignored because it is small compared to i. Now consider the par-

allel combination of the capacitor and resistor (with units of conductance). Applying

Kirchhoff’s current law to this combination yields

δi = iC + iG

where iC is the current through the capacitor and iG is the current through the resistor.

Using the individual component laws for the capacitor and resistor gives

δi = −vjωCδz− vGδz

= −v(G+ jωC)δz

Dividing these two circuit equations by δz yields

δv

δz
= −i(R+ jωL)

δi

δz
= −v(G+ jωC)

➔
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In order to model a continuous transmission line with evenly distributed parameters,

δz is allowed to tend to zero. In the limit the two circuit equations become

dv

dz
= −i(R+ jωL) (19.19)

di

dz
= −v(G+ jωC) (19.20)

Differentiating Equation (19.19) yields

d2v

dz2
= −(R+ jωL)

di

dz

Substituting for
di

dz
from Equation (19.20) yields

d2v

dz2
= (R+ jωL)(G+ jωC)v

This is usually written as

d2v

dz2
= γ 2v where γ 2 = (R+ jωL)(G+ jωC) (19.21)

This is the differential equation that describes the variation of the voltage, v, with

position, z, along the transmission line. The general solution of this equation is easily

shown to be

v = v1 e
−γ z + v2 e

γ z (19.22)

where v1 and v2 are constants that depend on the initial conditions for the transmission

line. It is useful to write γ = α + jβ thus separating the real and imaginary parts of

γ . Equation (19.22) can then be written as

v = v1 e
−αz e−jβz + v2 e

αz ejβz (19.23)

The quantity v1 e
−αz e−jβz represents the forward wave on the transmission line. It

consists of a decaying exponential multiplied by a sinusoidal term. The decaying

exponential represents a gradual attenuation of the wave caused by losses as it travels

along the transmission line. The quantity v2 e
αz ejβz represents the backward wave

produced by reflection. Reflection occurs if the transmission line is not matched

with its load. As the wave is travelling in the opposite direction to the forward wave,

eαz still represents an attenuation but in this case an attenuation as z decreases.

A lossless line is one in which the attenuation is negligible. This case corresponds

to α = 0, and so γ = jβ. If γ = jβ then γ 2 = −β2 so that, from Equation (19.21),

(R + jωL)(G + jωC) must be real and negative. We see that this is the case when

R = 0 and G = 0. This agrees with what would be expected in practice as it is the

resistive and conductive terms that lead to energy dissipation.

Engineering application 19.10

Voltage reflection coe	cient

Consider a lossless transmission line of the type already described in Engineering

application 19.9. We know in general that the forward wave at position z is given by

v1e
−αz e−jβz. For the lossless line this simpli�es to v1e

−jβz. The reverse term, by the

same reasoning, is v2e
jβz.
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A de�nition used regularly when analysing transmission lines is the voltage

reflection coef�cient. Usually this is denoted by ρ and can be de�ned either at a

speci�c position on a line or as a function of distance

ρ(z) =
v2e

jβz

v1e
−jβz

=
v2

v1
e2jβz

It is a dimensionless quantity and is the ratio of the reverse to forward wave compo-

nents.

In many systems encountered in radio-frequency (RF) engineering it is desirable

to minimize the relative amplitude of the backward wave component and hence the

reflection coef�cient. An example of this can be found in the transmit circuit of a

mobile handset where a transmission line carrying the signal is attached to an antenna.

During transmission, forward waves propagate towards the antenna terminals. At this

point they are either radiated from or dissipated within the antenna, or they reflect

back. If reflected back they may return to the ampli�er circuit which generated them,

and are wasted in the form of heat energy. As a consequence, battery life can be

reduced due to wasted power. Hence the minimization of the reflection coef�cient,

usually by carefully designing the antenna, at the working frequency of the handset

is an important activity.

For the antenna it is desirable for ρ(z) to be as small as possible and for v1 ≫ v2.

Note that in a system such as this |ρ(z)| < 1 and that ρ(z) is in general a complex

number.

We now consider a transmission line of length ℓ with characteristic impedance

Z0 terminated at z = ℓ with a load having impedance ZL. The setup is shown in

Figure 19.10.

Z0

ZL

z = ℓ z = 0

 

z

y1 e
–jbz

y2 e
jbz

Figure 19.10

Lossless transmission line with

termination.

The total voltage at the load end of the line, vL, is the sum of the forward and

backward wave components at z = ℓ, that is

vL = v1 e
−jβℓ + v2 e

jβℓ

Using the de�nition of the reflection coef�cient at z = ℓ,

ρ(ℓ) =
v2

v1
e2jβℓ

we can rewrite the voltage at the load as

vL = v1 e
−jβℓ + ρ(ℓ) v1

ejβℓ

ej2βℓ
= v1e

−jβℓ + ρ(ℓ)v1 e
−jβℓ = v1e

−jβℓ[1 + ρ(ℓ)]

The current at the load, iL, can be found from �rst principles by a similar analysis to

the voltage, but will be stated here for simplicity

iL =
1

Z0
(v1 e

−jβℓ − v2 e
jβℓ)

➔
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This equation can also be written in terms of the reflection coef�cient

iL =
v1 e

−jβℓ

Z0
[1 − ρ(ℓ)]

The voltage and current at the load are related by the simple equation

ZL =
vL

iL
and hence

ZL =
v1 e

−jβℓ[1 + ρ(ℓ)]

v1 e
−jβℓ

Z0
[1 − ρ(ℓ)]

= Z0
[1 + ρ(ℓ)]

[1 − ρ(ℓ)]

It can be shown by further manipulation that

ρ(ℓ) =
ZL − Z0

ZL + Z0

The reflection coef�cient at the load is therefore dependent only on the characteristic

impedance of the line, which is usually known, and the load impedance. Some RF

measuring instruments such as network analysers can measure the amount of forward

and backward waves. From this they are able to determine the load impedance.

Engineering application 19.11

Standing waves on transmission lines

The differential equations that model voltage and current waves on transmission lines

also describe the presence of standing waves. A standing wave is so called because

it appears to remain stationary in space. Standing waves are an effect caused by the

interference pattern created when two waves propagate in opposite directions in the

same transmission medium.

The previous example suggested that minimizing backwardwaves is often desired.

In this case the standing wave component on the line is also minimized. In order to

study this in more detail we wish to plot the voltage standing wave pattern for a given

load impedance, ZL.

Recall from Equation (19.23) (with α = 0 for a lossless line) that the voltage at

any point z on the line is given by

v(z) = v1 e
−jβz + v2 e

jβz

This voltage is the sum of the forward and reflected waves. The modulus of this

function can be plotted with z as the independent variable. Once the amplitude v1 is

known, then the amplitude v2 can be determined using the reflection coef�cient at

the load

ρ(ℓ) =
v2

v1
ej2βℓ

from which v2 = v1ρ(ℓ) e
−j2βℓ so that

v(z) = v1 e
−jβz + v1 ρ(ℓ) e

−j2βℓ e jβz
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which simpli�es to

v(z) = v1e
−jβz

[
1 + ρ(ℓ) ej2β(z−ℓ)

]

The modulus of v(z) is now plotted against z for several different values of the

reflection coef�cient at the load ρ(ℓ). Consider a transmission line of total length

ℓ = 10 m. Another quantity we need to know in order to plot the voltage on the line

is β, which is the phase constant. For a transmission line of given construction and

at a particular frequency, β is constant and represents the phase change per metre of

transmission line. Here we take β = π/2 rad m−1.

Case 1: ρ(ℓ)= −1

Consider the case when the transmission line is terminated in a short circuit. The

reflection coef�cient at the load is

ρ(ℓ) =
ZL − Z0

ZL + Z0
=

0 − Z0

0 + Z0
= −1

Taking the amplitude v1 = 1, which represents a 1 V peak sine wave, and plotting

the modulus of v(z), gives the result shown in Figure 19.11.

0

1

2

2 4 6 8 10 z

�y(z) 

Figure 19.11

Voltage standing wave pattern for a short-circuit load with a 1 V input wave.

Notice that the voltage peak on the line is 2 V whereas the voltage input was only

1 V. This is due to the forward-going 1 V input wave reaching the end of the line and

reflecting back upon itself. At some values of z it constructively interferes with itself

giving double the input; at others it destructively interferes giving zero volts.

Case 2: ρ(ℓ) = 1

A similar effect is seen for an open-circuit load. Here by considering ZL → ∞, ρ(ℓ)

can be shown to equal +1, giving rise to the standing wave pattern shown in

Figure 19.12. Note here that the voltage maximum is at the load, unlike the case

of the short circuit where the minimum was at the load.
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2

2 4 6 8 10 z

�y(z) 

Figure 19.12

Voltage standing wave pattern for an open-circuit load with a 1 V input wave.

➔
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Case 3: ρ(ℓ) = 0

Consider now the case in which the load impedance is equal to the characteristic

impedance, that is

ZL = Z0

This time, ρ(ℓ) = 0 and hence v(z) = v1 e
−jβz. The magnitude of this complex

exponential is shown plotted in Figure 19.13 and is a horizontal straight line with

|v(z)| = 1 for all values of z.

0

1

2

2 4 6 8 10 z

�y(z) 

Figure 19.13

Voltage on a transmission line with a reflection coef�cient of ρ(ℓ) = 0.

No standing wave component is present and the line is said to be matched. This

is the ideal case for power transfer because it represents the case in which all of the

input wave is delivered to the load and nothing is reflected back.

Case 4: a general case

Often it is dif�cult to arrange for a perfectly matched transmission line. More gener-

ally the peak voltage on the line appears like the one shown in Figure 19.14. Here an

assumed reflection coef�cient of ρ(ℓ) = 0.187 − j 0.015 is used.

0

1

2

2 4 6 8 10 z

�y(z) 

Figure 19.14

Voltage on a transmission line with a reflection coef�cient of ρ(ℓ) = 0.187 − j 0.015.

The standing wave component is still present although it is of smaller magnitude

than seen for the open- or short-circuit loads. Most of the input wave is transferred

to the load but a proportion is reflected back and interferes.

The standing wave pattern of a transmission line can be measured by a special

piece of apparatus known as a slotted line. The device consists of a length of trans-

mission line with a slot into which a small probe is inserted. The probe is used to �nd

the voltage as a function of distance as it is moved along the line towards an unknown

load. The equations presented above can be used with the results of the slotted line

experiment to determine the reflection coef�cient of the load.
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EXERCISES 19.6.3

1 Find the general solution of the following equations:

(a)
d2x

dt2
− 2

dx

dt
− 3x = 6

(b)
d2y

dx2
+ 5

dy

dx
+ 4y = 8

(c)
d2y

dt2
+ 5

dy

dt
+ 6y = 2t

(d)
d2x

dt2
+ 11

dx

dt
+ 30x = 8t

(e)
d2y

dx2
+ 2

dy

dx
+ 3y = 2 sin 2x

(f)
d2y

dt2
+

dy

dt
+ y = 4 cos 3t

(g)
d2y

dx2
+ 9y = 4 e8x

(h)
d2x

dt2
− 16x = 9 e6t

2 Find a particular integral for the equation

d2x

dt2
− 3

dx

dt
+ 2x = 5 e3t

3 Find a particular integral for the equation

d2x

dt2
− x = 4 e−2t

4 Obtain the general solution of

y′′ − y′ − 2y = 6.

5 Obtain the general solution of the equation

d2y

dx2
+ 3

dy

dx
+ 2y = 10 cos 2x

Find the particular solution satisfying

y(0) = 1,
dy

dx
(0) = 0.

6 Find a particular integral for the equation

d2y

dx2
+

dy

dx
+ y = 1 + x

7 Find the general solution of

(a)
d2x

dt2
− 6

dx

dt
+ 5x = 3

(b)
d2x

dt2
− 2

dx

dt
+ x = et

8 For the circuit shown in Figure 19.15 show that

RCL
d2i2
dt2

+ L
di2
dt

+ Ri2 = E(t)

If L = 1 mH, R = 10 �,C = 1 mF and

E(t) = 2 sin 100π t, �nd the complementary function.

9 Find the general solution of

d2i

dt2
+ 8

di

dt
+ 25i = 48 cos 3t − 16 sin 3t

R

C

E(t)

L
i

i1 

i2

Figure 19.15

Solutions

1 (a) x = A e−t + B e3t − 2

(b) y = A e−x + B e−4x + 2

(c) y = A e−2t + B e−3t +
t

3
−

5

18

(d) x = A e−6t + B e−5t + 0.267t − 0.0978

(e) y = e−x[A sin
√
2x+ B cos

√
2x] −

8

17
cos 2x−

2

17
sin 2x

(f) y = e−0.5t (A cos 0.866t + B sin 0.866t)−

0.438 cos 3t + 0.164 sin 3t

(g) y = A cos 3x+ B sin 3x+ 0.0548 e8x

(h) x = A e4t + B e−4t +
9

20
e6t

2 x = 2.5 e3t

3 x =
4

3
e−2t
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4 A e2x + B e−x − 3

5 A e−2x + B e−x +
3

2
sin 2x−

1

2
cos 2x,

3

2
e−2x +

3

2
sin 2x−

1

2
cos 2x

6 x

7 (a) A et + B e5t +
3

5

(b) A et + Bt et +
1

2
t2 et

8 A e−11270t + B e−88730t

9 e−4t (A sin 3t + B cos 3t)+
14 sin 3t + 18 cos 3t

13

19.7 SERIES SOLUTION OF DIFFERENTIAL EQUATIONS

We now introduce a technique for �nding solutions of differential equations that can be

expressed in the form of a power series y =

∞∑

m=0

amx
m = a0 + a1x + a2x

2 + . . .. Here,

am, m = 0, 1, 2, 3 . . . are constants whose values need to be found.

With the given power series form of y, we can differentiate term by term to obtain

power series for
dy

dx
and

d2y

dx2
. By substituting these series into certain classes of differ-

ential equation we can determine the constants am, for m = 0, 1, 2, 3 . . . and thus obtain

the power series solution for y. This technique of representing a solution in the form of

a power series paves the way for the introduction of an important family of differential

equations, known asBessel’s equations, which can be solved by this method. The power

series solutions so formed are known as Bessel functions which will be introduced in

Section 19.8.

Consider the following example:

Example 19.30 The general solution of the differential equation
d2y

dx2
+ y = 0 was shown in Example

19.16 to be

y = A cos x+ B sin x

where A and B are arbitrary constants. Obtain this result by looking for a solution of the

equation in the form of a power series y =

∞∑

m=0

amx
m.

Solution We let

y =

∞∑

m=0

amx
m = a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + . . .

from which, by differentiating with respect to x,

dy

dx
=

∞∑

m=0

mamx
m−1 = a1 + 2a2x+ 3a3x

2 + 4a4x
3 + 5a5x

4 + . . .

and

d2y

dx2
=

∞∑

m=0

(m− 1)mamx
m−2 = 2a2 + (2)(3)a3x+ (3)(4)a4x

2 + (4)(5)a5x
3 + . . .
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These expressions for y and
d2y

dx2
are substituted into the given differential equation

d2y

dx2
+ y = 0. Thus

(2a2 + (2)(3)a3x+ (3)(4)a4x
2 + (4)(5)a5x

3 + . . .)+

(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + . . .) = 0.

We now use the technique of equating coef�cients. This was �rst introduced in

Section 1.7 Partial fractions. Equating the constant terms:

2a2 + a0 = 0 so that a2 = −
1

2
a0.

Equating coef�cients of x:

(2)(3)a3 + a1 = 0 so that a3 = −
1

(2)(3)
a1.

Equating coef�cients of x2:

(3)(4)a4 + a2 = 0 so that a4 = −
1

(3)(4)
a2 =

1

(2)(3)(4)
a0.

Equating coef�cients of x3:

(4)(5)a5 + a3 = 0 so that a5 = −
1

(4)(5)
a3 =

1

(2)(3)(4)(5)
a1.

Note that by using factorial notation we can express these coef�cients concisely as:

a2 = −
1

2!
a0, a3 = −

1

3!
a1, a4 =

1

4!
a0, a5 =

1

5!
a1.

By equating higher order terms in the sameway further coef�cients am can be determined

and the power series y =

∞∑

m=0

amx
m can then be written out explicitly. Observe that all

coef�cients am are multiples of a0 when m is even, and multiples of a1 when m is odd.

We can therefore collect terms together as follows:

y =

∞∑

m=0

amx
m

= a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + . . .

= a0 + a1x−
1

2!
a0x

2 −
1

3!
a1x

3 +
1

4!
a0x

4 +
1

5!
a1x

5 + . . .

= a0(1 −
1

2!
x2 +

1

4!
x4 − . . .)+ a1(x−

1

3!
x3 +

1

5!
x5 − . . .) (19.24)

Observe that the series in the brackets in Equation 19.24 are the power series expansions

of cos x and sin x as discussed in Section 18.6. Hence we can write the solution as

y = a0 cos x+ a1 sin x.

We see that this is simply the general solution of the differential equation as given

in the question but where the coef�cients a0 and a1 are the arbitrary constants. Had

we not recognised the series expansions for the sine and cosine functions we would

still have obtained the general solution as expressed in the form of the power series in

Equation 19.24.
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This method of solution is widely applicable and involves the following steps:

• given a differential equation, we seek a solution in the form of the power series

y =

∞∑

m=0

amx
m,

• this power series is substituted into the differential equation

• the coef�cients am are then found by the technique of equating coef�cients.

Once the values of am are found, the solution follows in the form of a power series.

Some differential equations and their solutions have such importance in engineering

and scienti�c applications that the series obtained are used to introduce new functions

in much the same way as the sine and cosine functions appeared in Equation 19.24.

We shall see in the following section how an important class of functions known as

Bessel functions arises in this way. There is of course the question of whether any power

series expansion converges but such discussion is beyond the scope of the introductory

treatment given here.

EXERCISES 19.7

1 The general solution of the equation
d2y

dx2
− y = 0 is

y = Aex +Be−x where A and B are arbitrary constants.

Obtain this result by looking for a solution of the

equation in the form of a power series y =

∞∑

m=0

amx
m.

2 The general solution of the equation

d2y

dx2
− 3

dy

dx
+ 2y = 0 is y = Aex + Be2x where A and

B are arbitrary constants. Obtain this result by looking

for a solution of the equation in the form of a power

series y =

∞∑

m=0

amx
m.

3 Verify using the method of separation of variables that

the general solution of
dy

dx
= 2xy is y = Kex

2

where K

is an arbitrary constant. Obtain the same result by

seeking a power series solution of the differential

equation in the form y =

∞∑

m=0

amx
m.

4 Obtain the �rst four non-zero terms in the power

series solution of the initial value problem
dy

dx
+ xy = 0, y(0) = 1.

5 Obtain the power series solution of the equation

d2y

dx2
+ xy = 0, up to terms involving x7. This

differential equation is known as an Airy equation.

Solutions

4 y = 1 −
x2

2
+
x4

8
−
x6

48
+ . . ..

5
y = a0

(
1 −

x3

6
+

x6

180
− . . .

)

+a1

(
x−

x4

12
+

x7

504
− . . .

)
.
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19.8 BESSEL’S EQUATION AND BESSEL FUNCTIONS

A linear differential equation that has important applications in the theory of wave prop-

agation, particularly when using cylindrical or spherical polar coordinates, is known as

Bessel’s equation. In fact the term Bessel’s equation represents a whole family of equa-

tions having the form

x2
d2y

dx2
+ x

dy

dx
+ (x2 − v2)y = 0.

Here x and y are the independent variable and dependent variable respectively. The third

quantity v, termed a parameter, is known as the order of the equation.1 As we vary the

parameter v we obtain the family of differential equations. Note that v can be any real

number. In Sections 19.8.1 and 19.8.2 we will solve Bessel’s equation when v = 0 and

v = 1. In the engineering applications which follow later in the chapter you will see that

v may be other integers including those that are negative. Observe that the equation is

linear and homogeneous, but it does not have constant coef�cients: the coef�cient of
d2y

dx2

is x2, a function of the independent variable. In what follows we show that solutions of

Bessel’s equation can be found in the form of in�nite power series which we call Bessel

functions.

Bessel functions have many applications in physics and engineering. In electrical

engineering they are commonly used in the �eld of communications. They are important

in �nding the bandwidth and frequency content of some radio signals. They are also

essential in the analysis of propagating modes in cylindrical waveguides and cylindrical

cavity resonators, both of which are important devices used in high frequencymicrowave

engineering (see Engineering application 19.12). Bessel functions are also utilised in the

design of �lters.

19.8.1 Bessel’s equation of order zero

To introduce the solution of Bessel’s equation and thereby introduce a Bessel function

the following example deals with the special case when v = 0.

Example 19.31 By seeking a power series solution in the form

∞∑

m=0

amx
m obtain the �rst four non-zero

terms in a power series solution of Bessel’s equation in the special case when v = 0.

Solution When v = 0 Bessel’s equation is:

x2
d2y

dx2
+ x

dy

dx
+ x2y = 0.

which for non-zero x becomes

x
d2y

dx2
+

dy

dx
+ xy = 0. (19.25)

1Note that in this context the word ‘order’ means something different from the order of a differ-

ential equation, which was de�ned in 19.2.1.
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As was done in Section 19.7 we seek a power series solution in the form

y =

∞∑

m=0

amx
m = a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + . . .

The strategy is to substitute y, and its �rst and second derivatives into Equation 19.25

and choose values am so that the equation is satis�ed. y and its �rst two derivatives can

be written:

y = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + . . .

dy

dx
= a1 + 2a2x+ 3a3x

2 + 4a4x
3 + 5a5x

4 + . . .

d2y

dx2
= 2a2 + 6a3x+ 12a4x

2 + 20a5x
3 + . . .

Substitution into x
d2y

dx2
+

dy

dx
+ xy = 0 gives

(2a2x+ 6a3x
2 + 12a4x

3 + 20a5x
4 . . .) +

(
a1 + 2a2x+ 3a3x

2 + 4a4x
3 . . .

)

+ (a0x+ a1x
2 + a2x

3 + a3x
4 + a4x

5 . . .) = 0

We now equate coef�cients on both sides of this equation starting with the constant

term:

a1 = 0.

Equating coef�cients of x:

4a2 + a0 = 0 so that a2 = −
1

4
a0.

Equating coef�cients of x2:

9a3 + a1 = 0 so that a3 = −
1

9
a1 = 0 since a1 = 0.

Equating coef�cients of x3:

16a4 + a2 = 0 so that a4 = −
1

16
a2 =

(
−

1

16

)(
−
1

4

)
a0 =

1

64
a0.

It is easy to verify that all subsequent terms am, whenm is odd, are zero. You should ver-

ify, in a similar way, that a6 = −
1

2304
a0. Whenm is even, all am are multiples of a0. We

can now write down a power series that satis�es Bessel’s differential

Equation 19.25:

y = a0

(
1 −

1

4
x2 +

1

64
x4 −

1

2304
x6 + . . .

)
(19.26)

We have succeeded in obtaining a power series solution of Bessel’s Equation 19.25

where a0 is an arbitrary constant.

As we have already noted, a0 is an arbitrary constant. However, historically its value

is chosen to be 1 in Equation 19.26. The resulting power series is used to de�ne a
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Figure 19.16

The Bessel function of the �rst kind of order

zero, J0(x).

function called a Bessel function of the �rst kind of order zero that is convention-

ally denoted J0(x). It is possible to show that it can be expressed concisely using sigma

notation as

J0(x) =

∞∑

m=0

(−1)mx2m

22m(m!)2
. (19.27)

You should verify this by writing out the �rst few terms of this in�nite series. Note that

this method of solving the differential equation produces a power series solution and is

used to introduce a new function, J0(x). It is not practical to try to draw a graph of J0(x)

by hand but this can be obtained readily using a technical computing language such as

MATLAB®. Figure 19.16 shows a graph obtained in this way. Observe that J0 has some

similar characteristics to a cosine wave: its value when x = 0, J0(0), equals 1, and the

function oscillates, albeit with decreasing amplitude. The values of x where the function

crosses the horizonal axis are known as zeros of the Bessel function and these values

arise in important applications as we shall see in Engineering application 19.12: The

modes of a cylindrical microwave cavity.

When a speci�c value of a Bessel function is required it is usual practice to look this

up rather than work directly with the power series de�nition. Both printed tables and

computer packages are available for this purpose.

Recall from Section 19.5 that the general solution of a second order linear equa-

tion requires two independent solutions. The function J0(x) is one such solution. An-

other independent solution is called a Bessel function of the second kind of order

zero and is denoted by Y0(x). Derivation of this function is beyond the scope of this

book but, like J0(x), values of Y0(x) can be obtained from tables and by using com-

puter software. The general solution of Bessel’s equation of order zero can then be

written

y = AJ0(x)+ BY0(x)

where A and B are arbitrary constants.

19.8.2 Bessel’s equation of order one

Here we adopt the previous approach to obtain a solution of Bessel’s equation of order

one, and thereby introduce the Bessel function of the �rst kind of order one.
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Example 19.32 By seeking a power series solution in the form

∞∑

m=0

amx
m obtain the �rst three non-zero

terms in the solution of Bessel’s equation in the case when v = 1:

x2
d2y

dx2
+ x

dy

dx
+ (x2 − 1)y = 0. (19.28)

Solution As before we seek a power series solution in the form

y =

∞∑

m=0

amx
m = a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 . . .

The strategy is to substitute y, and its �rst and second derivatives into Equation 19.28

and choose values am so that the equation is satis�ed. y and its �rst two derivatives can

be written:

y = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 . . .

dy

dx
= a1 + 2a2x+ 3a3x

2 + 4a4x
3 + 5a5x

4 . . .

d2y

dx2
= 2a2 + 6a3x+ 12a4x

2 + 20a5x
3 . . .

Substitution into x2
d2y

dx2
+ x

dy

dx
+ (x2 − 1)y = 0 gives

2a2x
2 + 6a3x

3 + 12a4x
4 + 20a5x

5 . . . +
(
a1x+ 2a2x

2 + 3a3x
3 + 4a4x

4 + 5a5x
5 . . .

)

+ (x2 − 1)(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 . . .) = 0

Removing the brackets

2a2x
2 + 6a3x

3 + 12a4x
4 + 20a5x

5 . . .+
(
a1x+ 2a2x

2 + 3a3x
3 + 4a4x

4 + 5a5x
5 . . .

)

+a0x
2 + a1x

3 + a2x
4 + a3x

5 + a4x
6 + a5x

7 . . .

−(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 . . .) = 0

We now equate coef�cients on both sides of this equation starting with the constant

term:

−a0 = 0 so that a0 = 0.

Equating coef�cients of x:

a1 − a1 = 0 so that a1 is arbitrary.

Equating coef�cients of x2:

2a2 + 2a2 + a0 − a2 = 0 so that 3a2 = −a0, from which a2 = 0.

Equating coef�cients of x3:

6a3 + 3a3 + a1 − a3 = 0 so that 8a3 = −a1, from which a3 = −
1

8
a1.

It is easy to verify that all subsequent terms am when m is even, are zero. Equating

coef�cients of x5:

20a5 + 5a5 + a3 − a5 = 0 so that 24a5 = −a3
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from which

a5 = −
1

24
a3 =

1

192
a1 using a3 = −

1

8
a1.

Note that all non-zero coef�cients are multiples of a1. We can now write down the �rst

three non-zero terms in the power series solution:

y = a1

(
x−

1

8
x3 +

1

192
x5 − . . .

)
(19.29)

Here a1 is an arbitrary constant. We have succeeded in obtaining a power series solution

of Bessel’s Equation 19.28.

Although a1 is an arbitrary constant, historically its value is chosen to equal
1

2
in

Equation 19.29 and the resulting power series is used to de�ne a function called aBessel

function of the �rst kind of order one that is conventionally denoted J1(x). It is possi-

ble to show that it can be expressed concisely using sigma notation as

J1(x) =

∞∑

m=0

(−1)mx2m+1

22m+1m!(m+ 1)!
. (19.30)

You should verify this by writing out the �rst few terms of this in�nite series. Fig-

ure 19.17 shows a graph of J1(x) obtained using computer software. Observe that the

graph is similar to that of the sine function but has decreasing amplitude. Here,

J1(0) = 0.

0.5

0

J1(x)

–0.3

x
10 20 30

Figure 19.17

The Bessel function of the �rst kind of

order 1, J1(x).

A second independent solution is called a Bessel function of the second kind of

order one and is denoted byY1(x). Derivation of this function is beyond the scope of this

book but, like J1(x), values of Y1(x) can be obtained from tables and by using computer

software. The general solution of Bessel’s equation of order one can then be written

y = AJ1(x)+ BY1(x)

where A and B are arbitrary constants.
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EXERCISES 19.8.2

1 Write out explicitly the �rst �ve terms in the series

expansion of J0(x) and the �rst four terms in the

expansion of J1(x). By differentiating J0(x) verify

that d
dx (J0(x)) = −J1(x).

2 (Method of Frobenius) Substitute a power series in

the more general form y =

∞∑

m=0

amx
m+r, where r is to

be determined, into Bessel’s equation of order 1:

x2
d2y

dx2
+ x

dy

dx
+ (x2 − 1)y = 0.

(i) By equating coef�cients of xr show that r

satis�es the indicial equation r2 − 1 = 0 and

hence deduce r = ±1.

(ii) Continue the solution for the case r = 1 to

obtain a series solution of the differential

equation. Find the �rst 3 non-zero terms.

(iii) Con�rm that the solution is equivalent to that

obtained previously in Equation 19.29.

19.8.3 Bessel’s equation and Bessel functions of higher order

To cope with more general cases, including those of a non-integer order, the usual prac-

tice is to seek solutions in the form

∞∑

m=0

amx
m+r where r is an unknown real number

that is chosen during the course of the calculation in order to generate a solution (see

Exercise 19.8.2, question 2). For details on how to proceed in such cases you should

consult an advanced text on differential equations.

When the order, v, is a positive integer, it is conventional to label it as n instead. A

solution of Bessel’s equation of positive integer order n is a Bessel function of the �rst

kind of order n, denoted Jn(x), and can be shown to be

Jn(x) =

∞∑

m=0

(−1)mx2m+n

22m+nm!(m+ n)!
, for n = 0, 1, 2, . . .

Graphs of these functions for n = 0, 1, 2, 3, 4 are shown in Figure 19.18.

Whilst to this point we have only discussed cases where the order is non-negative,

in fact Bessel functions are de�ned for any order v, −∞ < v < ∞. Later, in Engi-

neering application 19.13 we shall make use of Bessel functions with negative integer

order. In such cases, careful inspection of the above de�nition shows that it will fail.

When n is negative, then m + n will be negative for some values of m and in these

case (m + n)! is not de�ned. For a complete treatment, and one which is beyond the

scope of this book, it is necessary to de�ne a new function - the gamma function Ŵ(x)

- which can be thought of as a generalisation of factorials to deal with negative argu-

ments. Nevertheless, this is possible and it can be shown that Bessel functions with

negative integer order are related to their counterparts with positive integer order by the

result

J−n(x) = (−1)nJn(x).

(See Exercise 19.8.3)
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Jn (x)

n 5 0

n 5 1

n 5 2
n 5 3

n 5 4

0
122 4 6 8 10 x

–0.4

1

Figure 19.18

Bessel functions Jn(x), for n = 0 . . . 4.

Engineering application 19.12

Modes of a cylindrical microwave cavity

Circular cross-sectionwaveguides and cylindricalmicrowave cavities are both com-

ponents that are found in high power microwave systems such as radar transmitters.

Bessel functions are used in the mathematical description of electromagnetic wave

behaviour in such devices. By way of example, consider the microwave cavity de-

picted in Figure 19.19.

ℓ

r

Figure 19.19

A cylindrical microwave cavity.

➔
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The walls of microwave cavities are usually made of metals with good conductiv-

ity such as copper, steel or aluminium but in some applications the internal surfaces

are plated with precious metals such as gold to prevent oxidation which would reduce

the surface conductivity. When used at high power levels the conductivity is impor-

tant. Low conductivity can lead to loss of power and heating of the cavity due to the

currents 	owing on the internal walls. The space inside the cavity can be empty or

it can contain a dielectric insulating material such as PTFE. The analysis here will

consider an empty cavity.

The purpose of the device is to act as a narrow band �lter which selects a spe-

ci�c frequency. In fact, there is a set of frequencies at which the microwave cavity

will work, known as the resonant frequencies. The electromagnetic waves inside

the cavity are governed by the propagation modes within the cylinder. These modes

are described mathematically by Bessel functions. It can be shown that the resonant

frequencies, fmnp, associated with the transverse magnetic modes of the cavity are

given by

fmnp =
c

2π

√(
Xmn

r

)2

+

( pπ
ℓ

)2

where m, n and p are mode index numbers, 0, 1, 2, . . . and Xmn denotes the n-th zero

of the Bessel function of the �rst kind of orderm, Jm(x), where c is the speed of wave

propagation in the medium.

The zeros can be observed in Figure 19.18 as the points where the graph crosses

the x axis. Usually software such asMATLAB® has the capability to calculate numer-

ically the zeros of a function. If we observe that the �rst zero of J0(x) is approximately

x = 2.5 (see Figure 19.18) we can type the following at the MATLAB® command

prompt:

X = fzero(@(x)besselj(0,x),2.5)

which gives the result X = 2.4048.

The second zero of J0(x) is close to 5.5, thus we type,

X = fzero(@(x)besselj(0,x),5.5)

which gives the result X = 5.5201.

The �rst zero of J1(x) is approximately 4, so,

X = fzero(@(x)besselj(1,x),4)

which gives the result X = 3.8317.

Table 19.2 shows a summary of the results of applying this method for m = 0, 1,

and 2.

Consider a microwave cavity resonator made from an aluminium �zzy drinks can

with dimensions r = 33 mm and ℓ = 120 mm. The transverse magnetic modes are

labelled TMnmp and the �rst commonly used mode is TM011. The resonant frequency

would be



19.8 Bessel’s equation and Bessel functions 595

Table 19.2

Bessel function zeros for a microwave

cavity.

m Xm1 Xm2 Xm3

0 2.4048 5.5201 8.6537

1 3.8317 7.0156 10.173

2 5.1356 8.4172 11.620

f011 =
3 × 108

2π

√(
2.4048

0.033

)2

+

(
1 × π

0.120

)2

= 3.70GHz

A different set of modes known as TE modes may also be calculated using Bessel

functions. Rather than using zeros of the Bessel functions directly it is necessary to

use the derivatives of the Bessel functions, a topic beyond the scope of this introduc-

tory treatment.

EXERCISES 19.8.3

1 We have seen that for positive integer order the Bessel

functions of the �rst kind are de�ned by

Jn(x) =

∞∑

m=0

(−1)mx2m+n

22m+nm!(m+ n)!
,

for n = 0, 1, 2, . . .

(a) Now suppose that we are interested in Bessel

functions with negative integer order. Replace n by

−n in this de�nition to show that

J−n(x) =

∞∑

m=0

(−1)mx2m−n

22m−nm!(m− n)!
,

with n = 1, 2, . . .

(b) Now make the assumption that (m− n)!, which

appears in the denominator of each term, becomes

in�nite when m = 0, 1, 2, . . . , n− 1. It is possible

to prove this using properties of the Gamma

function but is beyond the scope of this book. With

this assumption show that

J−n(x) =

∞∑

m=n

(−1)mx2m−n

22m−nm!(m− n)!
,

with n = 1, 2, . . .

(c) By introducing a new dummy variable, s, where

m = s+ n, show that

J−n(x) = (−1)n
∞∑

s=0

(−1)sx2s+n

22s+nm!s!

for n = 0, 1, 2, . . .

and hence deduce J−n(x) = (−1)nJn(x).

19.8.4 Bessel functions and the generating function

Several important properties of Bessel functions used in physics and engineering appli-

cations can be deduced from knowledge of the so-called generating function. In this

section we introduce this generating function and use it to derive the Jacobi-Anger iden-

tities which we then employ in Engineering application 19.13.

Firstly, recall the power series expansion of ex introduced in Section 6.5.

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+ . . . =

∞∑

n=0

1

n!
xn. (19.31)
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Recall also that there is nothing special about labelling the dummy variable n. Any other

letter could have been used and the statement of the expansion would be equivalent.

Now replace x �rstly by
xt

2
and then by −

x

2t
in Equation 19.31 to produce the fol-

lowing expansions where we have used r and s as the dummy variables:

e
xt
2 =

∞∑

r=0

1

r!

(xt
2

)r

and

e− x
2t =

∞∑

s=0

1

s!

(
−
x

2t

)s

Multiplying these two expansions together we �nd

e
xt
2 e− x

2t = e
x
2
(t− 1

t
) =

∞∑

r=0

1

r!

(xt
2

)r ∞∑

s=0

1

s!

(
−
x

2t

)s

or, more explicitly,

e
x
2
(t− 1

t
) =

[
1 +

xt

1! 2
+
x2t2

2!22
+
x3t3

3!23
+
x4t4

4!24
+ . . .

]
×

[
1 −

x

1! 2t
+

x2

2!22t2
−

x3

3!23t3
+

x4

4!24t4
− . . .

]
(19.32)

Now imagine multiplying out the brackets on the right and observe that the resulting

expression can be considered as the sum or difference of terms involving powers of t,

that is, t, t2, . . . tn . . . and t−1, t−2, . . . t−n, . . .. In fact we can express Equation 19.32

concisely as

e
x
2
(t− 1

t
) =

∞∑

n=−∞

yn(x)t
n (19.33)

where each yn(x) is a function of x that we can regard as the coef�cient of the term tn

in the expansion. For example, let us focus �rst on the those terms in Equation 19.32
which when multiplied out result in multiples of t0, as will happen by forming products
such as

(
1

)(
1

)
,

( xt

1! 2

) (
−

x

1! 2t

)
,

(
x2t2

2!22

)(
x2

2!22t2

)
,

(
x3t3

3!23

)(
−

x3

3!23t3

)
and so on.

Then together, these terms will form y0(x)t
0 in Equation 19.33, that is

y0(x) = 1 −
x2

(1!)222
+

x4

(2!)2(22)2
−

x6

(3!)2(23)2
+ . . .

or more concisely,

y0(x) =

∞∑

n=0

(−1)nx2n

(n!)222n
(19.34)

Comparing Equation 19.34 with Equation 19.27 we see that y0(x) is simply the Bessel

function of order zero, J0(x).
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In a similar manner, suppose we focus attention on the terms in Equation 19.32 that

when multiplied out result in t1 as will happen when we form products such as

( xt

1! 2

)
(1) ,

(
x2t2

2!22

)(
−

x

1! 2t

)
,

(
x3t3

3!23

)(
x2

2!22t2

)
and so on.

Then, together these will form y1(x)t
1 in Equation 19.33, so that

y1(x) =
x

1! 2
−

x3

2!23
+

x5

3!2!25
. . .

or more concisely,

y1(x) =

∞∑

m=0

(−1)mx2m+1

(m+ 1)!m!22m+1
(19.35)

Comparing Equation 19.35 with 19.30 we see that y1(x) is simply the Bessel function

of order one, J1(x).

In the same way, it is possible to show that all the other coef�cients yn(x) in Equation

19.33 are the Bessel functions Jn(x). The function e
x
2
(t− 1

t
) in Equation 19.33 is called

a generating function for the Bessel functions because the coef�cient of tn in the ex-

pansion is the Bessel function Jn(x). Thus the expansion is used to generate the Bessel

functions. We have the following important result:

Generating function for the Bessel functions:

e
x
2
(t− 1

t
) =

∞∑

n=−∞

Jn(x)t
n (19.36)

If the function on the left is expanded in powers of t then the coef�cient of tn is the

Bessel function of order n.

EXERCISES 19.8.4

1 Use the generating function to show that if n is an

even integer, then the Bessel function Jn(x) is an even

function, that is Jn(−x) = Jn(x). If n is an odd

integer, show that Jn(x) is an odd function, that is

Jn(−x) = −Jn(x).

19.8.5 The Jacobi-Anger identities

Two results which relate to Bessel functions and which are important in communica-

tions engineering are known as the Jacobi-Anger identities. We �rst state them before

deriving them from the generating function.
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Jacobi-Anger identities

ejx cos θ =

∞∑

n=−∞

Jn(x)j
nejnθ

ejx sin θ =

∞∑

n=−∞

Jn(x)e
jnθ

To obtain the �rst identity we let t = jejθ , so that tn = jnejnθ , in Equation 19.36.

Noting that

t −
1

t
= jejθ −

1

jejθ
= jejθ + je−jθ = 2j cos θ

(where we have used the Euler relation cos θ =
ejθ + e−jθ

2
, Section 9.7, p 339) then the

left hand side of Equation 19.36 is

e
x
2
(t− 1

t
) = e

x
2
(2j cos θ ) = ejx cos θ

and so from Equation 19.36 we have

ejx cos θ =

∞∑

n=−∞

Jn(x)j
nejnθ .

In a similar fashion, we let t = ejθ , so that tn = ejnθ , in Equation 19.36. Noting that

t −
1

t
= ejθ −

1

ejθ
= ejθ − e−jθ = 2j sin θ

(where we have used the Euler relation sin θ =
ejθ − e−jθ

2j
, Section 9.7 p 339) then the

left hand side of Equation 19.36 is

e
x
2
(t− 1

t
) = e

x
2
(2j sin θ ) = ejx sin θ

and so from Equation 19.36 we have

ejx sin θ =

∞∑

n=−∞

Jn(x)e
jnθ .

Engineering application 19.13

Use of Bessel functions in frequency modulation

A common type of modulation scheme used in electrical engineering is frequency

modulation (FM). The purpose of modulation is to prepare a signal for transmission,

such as when a signal is to be sent from a transmitter to a remote receiver during a

radio broadcast. At the receiver the signal is recovered from its modulated form by a

device called a demodulator.

Even though the process of electronically producing an FM signal is fairly

straightforward, the mathematics underpinning frequency modulation can become

complicated and requires the use of Bessel functions and a Jacobi-Anger identity. In
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order to explain how FM works it is helpful to start with the electronic process by

which the FM signal is generated and to then derive the properties of the modulated

signal mathematically.

The FM signal is usually produced by a device called a voltage controlled os-

cillator (VCO). The VCO generates a sinusoidal signal on its output, the frequency

of which is controlled by a voltage on its signal input. If we were to connect a d.c.

voltage to the input then we would observe a simple sine wave on the output. The

frequency of the sine wave could be changed by changing the d.c. voltage. In an ana-

logue radio broadcast system however we wish to transmit a time-varying signal and

this, rather than a d.c. voltage, is used as input to the VCO.

Consider the case of a sinusoidal modulating signal, sin(2π fmt), that we wish

to transmit such as that shown in Figure 19.20. Here fm is the frequency of this mod-

ulating signal. Another sinusoidal signal, termed the carrier, is used to carry the

modulated signal. The frequency of the carrier is denoted fc and is the frequency you

would tune to on a radio dial to receive the radio station. Let us suppose, for example,

that the carrier is A cos(2π fct) as illustrated in Figure 19.21.

1

VCO input voltage

–1

Time, t

Figure 19.20

A sinusoidal modulating signal: the signal we wish to transmit.

Carrier signal

Time, t 

–A

A

Figure 19.21

A sinusoidal carrier signal.

It is useful to de�ne a term, β, which is known as themodulation index:

β =
1 f

fm

where1 f is the maximum change in the frequency of the output from the VCOwhen

the modulating signal is applied. In other words the largest instantaneous frequency

of the carrier is fc +1 f and the smallest is fc −1 f . It may seem intuitive that the

frequencies within the output signal would be between fc +1 f and fc −1 f , but the

situation is actually more complex. The changing signal produces a different set of

output frequencies. Consider the following analysis.

We can describe this modulation process mathematically as

v(t) = A cos
[
2π fct + β sin(2π fmt)

]

➔
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and this output waveform is shown in Figure 19.22.

VCO output y(t) 

Time, t 
–A

A

Figure 19.22

The output signal.

We may rewrite this equation using phasor notation as:

v(t) = Re
[
Ae j[2π f

c
t+β sin(2π f

m
t)]
]

= Re
[
Ae j2π f

c
te jβ sin(2π f

m
t)
]

where Re means the real part of what follows. Notice that the second exponential

term is in the same form as the Jacobi-Anger identity, ejx sin θ =

∞∑

n=−∞

Jn(x)e
jnθ , and

can be expanded out in terms of Bessel functions of the �rst kind. Thus,

v(t) = Re

[
Ae j2π f

c
t

∞∑

n=−∞

Jn(β)e
jn2π f

m
t

]

This can be rearranged by combining the exponentials:

v(t) = Re

[
A

∞∑

n=−∞

Jn(β)e
jn2π f

m
te j2π f

c
t

]

v(t) = Re

[
A

∞∑

n=−∞

Jn(β)e
j2π( f

c
+n f

m
)t

]

Converting back from the phasor notation, and for simplicity takingA = 1, we obtain:

v(t) = J0(β) cos(2π fct)

+ J−1(β) cos[2π( fc − fm)t] + J1(β) cos[2π( fc + fm)t]

+ J−2(β) cos[2π( fc − 2 fm)t] + J2(β) cos[2π( fc + 2 fm)t]

+ J−3(β) cos[2π( fc − 3 fm)t] + J3(β) cos[2π( fc + 3 fm)t]

+ ...

We saw in Section 19.8.3 that for integer values of n, J−n(x) = (−1)nJn(x), hence,

v(t) = J0(β) cos(2π fct)

− J1(β) cos[2π( fc − fm)t] + J1(β) cos[2π( fc + fm)t]

+ J2(β) cos[2π( fc − 2 fm)t] + J2(β) cos[2π( fc + 2 fm)t]

− J3(β) cos[2π( fc − 3 fm)t] + J3(β) cos[2π( fc + 3 fm)t]

+ ...

We can see that the output from the VCO is actually made up from a set of sinusoidal

waveforms with frequencies fc−n fm, . . . , fc−3 fm, fc−2 fm, fc− fm, fc, fc+ fm, fc+

2 fm, fc + 3 fm, . . . , fc + n fm. This is known as the frequency content of the signal

and will be discussed in more detail in Chapters 23 & 24. The equation suggests that

a broadcast station with a carrier at fc would have an in�nite number of other fre-
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quencies, known as side bands associated with it. The amplitudes of the side bands

are given by the values of the Bessel functions. When these are evaluated, the val-

ues of Jn(β) generally diminish with increasing n hence only the sidebands near to

the carrier frequency have signi�cant amplitude. Therefore frequencies that are a

long way away from fc can be safely ignored when designing the communications

system.

Tabulated values of Bessel functions are available similar to those shown in Table

19.3. It can be seen how the signal amplitudes generally decrease with increasing

order of the Bessel function. A larger value of β also implies a larger number of

side bands are signi�cant and need to be considered. The use of Bessel functions

when designing radio communications systems is very important because each radio

channel has an allocated bandwidth outside of which it should not stray. To do so

would create the possibility of different radio channels interfering with each other.

This mathematical method allows the amplitudes of the side bands to be calculated to

ensure they are small enough so as to not interfere signi�cantly with other channels.

Table 19.3

Table of Bessel functions Jn(β) of integer order, n, for different values of

modulation index, β.

β n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

0.00 1.00 – – – – – – –

0.25 0.98 0.12 – – – – – –

0.50 0.94 0.24 0.03 – – – – –

0.75 0.86 0.35 0.07 – – – – –

1.00 0.77 0.44 0.11 0.02 – – – –

1.25 0.65 0.51 0.17 0.04 – – – –

1.50 0.51 0.56 0.23 0.06 0.01 – – –

1.75 0.37 0.58 0.29 0.09 0.02 – – –

2.00 0.22 0.58 0.35 0.13 0.03 – – –

2.25 0.08 0.55 0.40 0.17 0.05 0.01 – –

2.50 -0.05 0.50 0.45 0.22 0.07 0.02 – –

2.75 -0.16 0.43 0.47 0.26 0.10 0.03 – –

3.00 -0.26 0.34 0.49 0.31 0.13 0.04 0.01 –

3.25 -0.33 0.24 0.48 0.35 0.17 0.06 0.02 –

3.50 -0.38 0.14 0.46 0.39 0.20 0.08 0.03 –

3.75 -0.40 0.03 0.42 0.41 0.24 0.10 0.04 0.01

4.00 -0.40 -0.07 0.36 0.43 0.28 0.13 0.05 0.02

REVIEW EXERCISES 19

1 Find the general solution of the following equations:

(a)
dx

dt
= 2x (b) (1 + t)

dx

dt
= 3

(c)
dy

dx
= y2 cos x

2 Solve
dy

dx
= 2, subject to y(0) = 3.

3 Find the general solution of tẋ+ x = 2t.

4 Solve
dx

dt
+ 2x = e2t cos t

(a) by using an integrating factor

(b) by �nding its complementary function and a

particular integral.
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5 Find the general solution of y′′ + 16y = x2.

6 Find the particular solution of

y′′ + 3y′ − 4y = ex, y(0) = 2, y′(0) = 0.

7 A particle moves in a straight line such that its

displacement from the origin O is x, where x satis�es

the differential equation

d2x

dt2
+ 16x = 0

(a) Find the general solution of this equation.

(b) If x

(
π

4

)
= −12, and ẋ

(
π

4

)
= 20, �nd the

displacement of the particle when t =
π

2
.

8 Use an integrating factor to solve the differential

equation

dx

dt
+ x cot t = cos 3t

Solutions

1 (a) x = A e2t

(b) x = 3 ln |1 + t| + c

(c) y =
1

A− sin x

2 y = 2x+ 3

3 x = t +
c

t

4 x =
e2t (4 cos t + sin t)

17
+ c e−2t

5 y = A cos 4x+ B sin 4x+
x2

16
−

1

128

6 y =
39 ex + 11 e−4x

25
+
x ex

5

7 (a) A sin 4t + B cos 4t (b) 12

8 sin t; x(t) =

cos 2t −
1

2
cos 4t + c

4 sin t
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20.1 INTRODUCTION

Engineers sometimes �nd it convenient to represent a differential equation using an elec-

tronic circuit. This is known as analogue simulation. Analogue controllers are also fre-

quently used in control systems and these are based on similar circuits. Complicated en-

gineering systems need to be modelled using a set of differential equations. This leads

to the topic of state-space modelling. Such models �nd widespread use in the aerospace

industries as well as in other areas that have complex systems. Numerical techniques

are very important as they allow differential equations to be solved using computers.

Often this is the only way to obtain a solution of a differential equation, owing to its

complexity. State-space models are almost always solved using computers.

20.2 ANALOGUE SIMULATION

It is possible to solve differential equations using electronic circuits based on operational

ampli�ers. The advantage of this approach is the ease with which the coef�cients of

the differential equation can be adjusted and the effect on the solution observed. The
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An integrator.
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A summer.

technique is known as analogue simulation. Prior to the mass availability of powerful

digital computers this was a common approach in engineering design because it pro-

vided the engineer with an automated method to solve a range of mathematical models.

Special-purpose computers, known as analogue computers, were historically used which

had the electronic circuits already incorporated, thus making it easier to simulate a par-

ticular differential equation.

Three basic types of circuit are required to enable ordinary differential equations

with constant coef�cients to be simulated. The �rst type is an integrator which has al-

ready been discussed in Section 13.2. The usual symbol for such a circuit is shown in

Figure 20.1.

If an analogue computer is used it is common for there to be a gain of only 1 or 10

on the input voltage. A gain above 10 is better achieved by linking together two circuits

in series. In addition there is usually a facility to allow initial conditions to be set. The

equation for the circuit of Figure 20.1 is

vo = −

∫ t

0

(10v1 + v2 + v3) dt − vic (20.1)

where vic indicates the initial output voltage. Note that the gain is usually written on the

input line.

The second type of circuit is the summer. It has the symbol shown in Figure 20.2.

The equation for the circuit of Figure 20.2 is

vo = −(v1 + v2 + 10v3) (20.2)

Finally, a circuit is required to allow gains to be varied. This is simply a potentiometer

and is illustrated together with its symbol in Figure 20.3. The equation for the circuit of

Figure 20.3 is simply

vo = kvi 0 6 k 6 1 (20.3)

The potentiometer only allows the gain to be varied between 0 and 1. If a variable gain

greater than 1 is required, the potentiometer must be placed in series with a circuit that

increases gain, for example a one-input summer with a gain of 10.

These circuits can be combined to obtain the solutions of differential equations. This

is best illustrated by means of an example. Consider the general form of a second-order

differential equation with constant coef�cients:

a
d2y

dt2
+ b

dy

dt
+ cy = f (t) (20.4)

The general approach to obtaining the circuit for a particular differential equation is to

assume a certain point in the circuit corresponds to a particular term and then arrange
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A potentiometer.
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Figure 20.4

First stage in synthesizing Equation (20.4).

to connect that point to the correctly synthesized value. It is more straightforward if the

assumed point corresponds to the highest derivative. Rearranging Equation (20.4) we

�nd

a
d2y

dt2
= f (t)− b

dy

dt
− cy (20.5)

Assuming a
d2y

dt2
is already available, a potentiometer can be used to obtain

d2y

dt2
. Integra-

tors can then be used to obtain the variables
dy

dt
and y. This is shown in Figure 20.4. The

next stage is to obtain the expression corresponding to the r.h.s. of Equation (20.5). This

requires a summer to add together the individual terms and potentiometers to allow indi-

vidual coef�cients to be obtained. An invertor is also required to obtain the correct sign

for the variable
dy

dt
. This simply consists of a summer with one input and a gain of 1. The

�nal circuit is shown in Figure 20.5. The three potentiometers allow different values of

a, b and c to be obtained. If gains greater than 1 were required then extra summers would

be needed, or alternatively the input gains of the existing summers could be adjusted.

The input to the circuit, f (t), can be simulated by applying a signal at the appropriate

point in the circuit. The output of the circuit, y(t), corresponds to the solution of the

differential equation. It may be necessary to include initial conditions corresponding to

y(0) and
dy

dt
(0).

Although analogue computers remain an interesting historical development in the

simulation of control systems it is now much more common to use digital computers.

The system to be simulated can be represented either directly in the form ofmathematical

equations or by block diagrams similar to that shown in Figure 20.5. The response to

various inputs can be readily obtained.

1

1
1

1

1

1 1 y
– dy

—
dt

–b dy
—
dt

b dy
—
dt

a
–f(t)

f(t) d2y
—
dt2

d2y
—
dt21—

a

b

c
cy

Figure 20.5

The complete circuit to synthesize Equation (20.4).



606 Chapter 20 Ordinary di�erential equations II

20.3 HIGHER ORDER EQUATIONS

In this section we shall consider second- and higher order equations and show how they

can be represented as a set of simultaneous �rst-order equations. The main reason for

doing this is that when a computer solution is required it is useful to express an equation

in this form. Details of the analytical solution of such systems are not considered here

although one technique is discussed in Section 21.10.

It is possible to express a second-order differential equation as two �rst-order equa-

tions. Thus if we have

d2y

dx2
= f

(
dy

dx
, y, x

)
(20.6)

we can introduce the new dependent variables y1 and y2 such that y1 = y and y2 =
dy

dx
.

Equation (20.6) then becomes

dy1
dx

= y2
dy2
dx

= f (y2, y1, x) (20.7)

These �rst-order simultaneous differential equations are often referred to as coupled

equations.

Example 20.1 Express the equation

d2y

dx2
− 7

dy

dx
+ 3y = 0

as a set of �rst-order equations.

Solution Letting y1 = y, and y2 =
dy

dx
, we �nd

dy2
dx

=
d2y

dx2
. Therefore the differential equation

becomes

dy1
dx

= y2
dy2
dx

− 7y2 + 3y1 = 0

We note that these equations can also be written as

dy1
dx

= y2

dy2
dx

= −3y1 + 7y2

or, in matrix form,

(
y′
1

y′
2

)
=

(
0 1

−3 7

)(
y1
y2

)

where ′ denotes
d

dx
.
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Higher order differential equations can be reduced to a set of �rst-order equations in a

similar way.

Example 20.2 Express the equation

d3x

dt3
− 7

d2x

dt2
+ 3

dx

dt
+ 2x = 0

as a set of �rst-order equations.

Solution Letting x1 = x, x2 =
dx

dt
and x3 =

d2x

dt2
we �nd

dx1
dt

= x2

dx2
dt

= x3

dx3
dt

− 7x3 + 3x2 + 2x1 = 0

is the set of �rst-order equations representing the given differential equation.

Example 20.3 (a) Express the coupled �rst-order equations

dy1
dx

= y1 + y2

dy2
dx

= 4y1 − 2y2

as a second-order ordinary differential equation, and obtain its general solution.

(b) Express the given equations in the form

(
y′
1

y′
2

)
= A

(
y1
y2

)

where A is a 2 × 2 matrix.

Solution (a) Differentiating the second of the given equations we have

d2y2
dx2

= 4
dy1
dx

− 2
dy2
dx

and then, using the �rst, we �nd

d2y2
dx2

= 4(y1 + y2)− 2
dy2
dx

But from the second given equation 4y1 =
dy2
dx

+ 2y2, and therefore

d2y2
dx2

=
dy2
dx

+ 2y2 + 4y2 − 2
dy2
dx
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that is,

d2y2
dx2

+
dy2
dx

− 6y2 = 0

Writing y for y2 we �nd

d2y

dx2
+

dy

dx
− 6y = 0

To solve this we let y = ekx to obtain

k2 + k − 6 = 0

(k − 2)(k + 3) = 0

Therefore,

k = 2,−3

The general solution is then y = y2 = Ae2x + Be−3x. It is straightforward to show

that y1 satis�es the same second-order differential equation and hence has the same

general solution, but with different arbitrary constants.

(b) The �rst-order equations can be written as

(
y′
1

y′
2

)
=

(
1 1

4 −2

)(
y1
y2

)

Therefore A =

(
1 1

4 −2

)
.

EXERCISES 20.3

1 Express the following equations as a set of �rst-order

equations:

(a)
d2y

dx2
+ 2

dy

dx
+ 3y = 0

(b)
d2y

dx2
+ 8

dy

dx
+ 9y = 0

(c)
d2x

dt2
+ 4

dx

dt
+ 6x = 0

(d)
d2y

dt2
+ 6

dy

dt
+ 7y = 0

(e)
d3y

dx3
+ 6

d2y

dx2
+ 2

dy

dx
+ y = 0

(f)
d3x

dt3
+ 2

d2x

dt2
+ 4

dx

dt
+ 2x = 0

2 Express the following coupled �rst-order equations as

a single second-order differential equation:

(a)
dy1
dx

= y1 + y2,
dy2
dx

= 2y1 − 2y2

(b)
dy1
dx

= 2y1 − y2,
dy2
dx

= 4y1 + y2

(c)
dx1
dt

= 3x1 + x2,
dx2
dt

= 2x1 − 3x2

(d)
dy1
dt

= 2y1 + 4y2,
dy2
dt

= 6y1 − 7y2

3 Express

dy1
dt

= 2y1 + 6y2 and

dy2
dt

= −2y1 − 5y2

as a single second-order equation. Solve this equation

and hence �nd y1 and y2. Express the equations in the

form y′ = Ay.
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Solutions

1 (a)
dy1
dx

= y2
dy2
dx

= −3y1 − 2y2

(b)
dy1
dx

= y2
dy2
dx

= −9y1 − 8y2

(c)
dx1
dt

= x2
dx2
dt

= −6x1 − 4x2

(d)
dy1
dt

= y2
dy2
dt

= −7y1 − 6y2

(e)
dy1
dx

= y2
dy2
dx

= y3

dy3
dx

= −y1 − 2y2 − 6y3

(f)
dx1
dt

= x2
dx2
dt

= x3

dx3
dt

= −2x1 − 4x2 − 2x3

2 (a)
d2y

dx2
+

dy

dx
− 4y = 0

(b)
d2y

dx2
− 3

dy

dx
+ 6y = 0

(c)
d2x

dt2
− 11x = 0

(d)
d2y

dt2
+ 5

dy

dt
− 38y = 0

3 y′′ + 3y′ + 2y = 0

y1(t) = Ae−2t + Be−t

y2(t) = −
2

3
Ae−2t −

1

2
Be−t

(
y′1
y′2

)
=

(
2 6

−2 −5

)(
y1
y2

)

20.4 STATE-SPACE MODELS

There are several ways to model linear time-invariant systems mathematically. One way,

which we have already examined, is to use linear differential equations with constant

coef�cients. A second method is to use transfer functions which will be discussed in

Chapter 21. A third type of model is the state-space model. The state-space technique

is particularly useful for modelling complex engineering systems in which there are

several inputs and outputs. It also has a convenient form for solution by means of a

digital computer.

The basis of the state-space technique is the representation of a system by means of a

set of �rst-order coupled differential equations, known as state equations. The number

of �rst-order differential equations required to model a system de�nes the order of the

system. For example, if three differential equations are required then the system is a

third-order system. Associated with the �rst-order differential equations are a set of state

variables, the same number as there are differential equations.

The concept of a state variable lies at the heart of the state-space technique. A sys-

tem is de�ned by means of its state variables. Provided the initial values of these state

variables are known, it is possible to predict the behaviour of the system with time by

means of the �rst-order differential equations. One complication is that the choice of

state variables to characterize a system is not unique. Many different choices of a set of

state variables for a particular system are often possible. However, a system of order n

only requires n state variables to specify it. Introducing more state variables than this

only introduces redundancy.

The choice of state variables for a system is, to some extent, dependent on experience

but there are certain guidelines that can be followed to obtain a valid choice of variables.

One thing that is particularly important is that the state variables are independent of
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Figure 20.6

The circuit could be modelled using vC and i as the state

variables.

each other. For example, for the electrical system of Figure 20.6, the choice of vC and

3vC would lead to the two state variables being dependent on each other. A valid choice

would be vC and iwhich are not directly dependent on each other. This is a second-order

system and so only requires two state variables to model its behaviour.

Many engineering systems may have a high order and so require several differential

equations to model their behaviour. For this reason, a standard way of laying out these

equations has evolved to reduce the chance of making errors. There is also an added

advantage in that the standard layout makes it easier to present the equations to a dig-

ital computer for solution. Before introducing the standard form, an example will be

presented to illustrate the state variable method.

Engineering application 20.1

State-space model for a spring-mass-damper system

Consider the mechanical system illustrated in Figure 20.7. A mass rests on a friction-

less surface and is connected to a �xed wall by means of an ideal spring and an ideal

damper. A force, f (t), is applied to the mass and the position of the mass is w.

K

B

M

w

f(t)

Figure 20.7

A second-order mechanical system.

By considering the forces acting on the mass, M, it is possible to devise a differ-

ential equation that models the behaviour of the system. The force produced by the

spring is Kw (K is the spring stiffness) and opposes the forward motion. The force

produced by the damper is B
dw

dt
, where B is the damping coef�cient, and this also

opposes the forward motion. Since the mass is constant, Newton’s second law of mo-

tion states that the net force on the mass is equal to the product of the mass and its

acceleration. Thus we �nd

f (t)− B
dw

dt
− Kw = M

d2w

dt2
(20.8)

Note that this is a second-order differential equation and so the system is a second-

order system.

In order to obtain a state-space model the state variables have to be chosen. There

are several possible choices. An obvious one is the position,w, of the mass. A second



20.4 State-space models 611

state variable is required as the system is second order. In this case the velocity of the

mass will be chosen. The velocity of the mass is not directly dependent on its position

and so the two variables are independent. Another possible choice would have been
dw

dt
−w. This may seem a clumsy choice but for certain problems such choices may

lead to simpli�cations in the state variable equations.

It is customary to use the symbols x1, x2, x3, . . . to represent variables for reasons

that will become clear shortly. So,

x1 = w (20.9a)

x2 =
dw

dt
(20.9b)

Because of the particular choice of state variables, it is easy to obtain the �rst of

the �rst-order differential equations -- thus illustrating the need for experience when

choosing state variables.

Differentiating Equation (20.9a) gives

dx1
dt

=
dw

dt
= x2

This is the �rst state equation although it is usually written as

ẋ1 = x2

where ẋ1 denotes
dx1
dt

. The second of the �rst-order equations is obtained by rear-

ranging Equation (20.8):

d2w

dt2
= −

K

M
w −

B

M

dw

dt
+

1

M
f (t) (20.10)

However, differentiating Equation (20.9b) we get

d2w

dt2
= ẋ2

Then, using Equation (20.10) we obtain

ẋ2 = −
K

M
x1 −

B

M
x2 +

1

M
f (t)

Finally, it is usual to arrange the state equations in a particular way:

ẋ1 = + x2

ẋ2 = −
K

M
x1 −

B

M
x2 +

1

M
f (t)

w = x1

Note that it is conventional to relate the output of the system to the state variables.

Assume that for this system the required output variable is the position of the mass,

that is w.

It is straightforward to rewrite these equations in matrix form:
(
ẋ1
ẋ2

)
=

(
0 1

−K/M −B/M

)(
x1
x2

)
+

(
0

1/M

)
f (t)

w =
(
1 0
) (x1

x2

)
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More generally, the standard form of the state equations for a linear system is given by

ẋ(t) = Ax(t)+ Bu(t)

y(t) = Cx(t)+ Du(t)

For a system with n state variables, r inputs and p outputs:

x(t) is an n-component column vector representing the states of the nth-order sys-

tem. It is usually called the state vector.

u(t) is an r-component column vector composed of the input functions to the

system. It is usually called the input vector.

y(t) is a p-component column vector composed of the de�ned outputs of the

system. It is referred to as the output vector.

A = (n× n) matrix, known as the state matrix.

B = (n× r) matrix, known as the input matrix.

C = (p× n) matrix, known as the output matrix.

D = (p× r) matrix, known as the direct transmission matrix.

A, B, C and D have constant elements if the system is time invariant. When presented

in this form the equations appear to be extremely complicated. In fact, the problem is

only one of notation. The general nature of the notation allows any linear system to be

speci�ed but in many cases the matrices are zero or have simple coef�cient values. For

example, the matrix D is often zero for a system as it is unusual to have direct coupling

between the input and the output of a system. In this format it would be straightforward

to present the equations to a digital computer for solution.

Engineering application 20.2

An armature-controlled d.c. motor

Derive a state-space model for an armature-controlled d.c. motor connected to a me-

chanical load with combined moment of inertia J, and viscous friction coef�cient B.

The arrangement is shown in Figure 20.8.

va = applied armature voltage eb = back e.m.f. of the motor

ia = armature current ωm = angular speed of the motor

Ra = armature resistance T = torque generated by the motor.

La = armature inductance

Solution

Let us assume that the system input is the armature voltage, va, and the system output

is the angular speed of the motor, ωm. This is a second-order system and so two state

variables are required. We will choose the armature current and the angular speed of

the motor. So,

x1 = ia x2 = ωm
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Figure 20.8

An armature-

controlled d.c. motor.

The next stage is to obtain a mathematical model for the system. Using Kirchhoff’s

voltage law and the component laws for the resistor and inductor we obtain, for the

armature circuit,

va = iaRa + La
dia
dt

+ eb

Now for a d.c. motor the back e.m.f. is proportional to the speed of the motor and is

given by eb = Keωm, Ke constant. So,

va = iaRa + La
dia
dt

+ Keωm

dia
dt

= −
Ra

La
ia −

Ke

La
ωm +

1

La
va (20.11)

Let us now turn to the mechanical part of the system. If G is the net torque about

the axis of rotation then the rotational form of Newton’s second law of motion states

G = J
dω

dt
, where J is the moment of inertia, and

dω

dt
is the angular acceleration. In

this example, the torques are that generated by the motor, T , and a frictional torque

Bωm which opposes the motion, so that

T − Bωm = J
dωm

dt

For a d.c. motor, the torque developed by the motor is proportional to the armature

current and is given by T = KTia, where KT is a constant. So,

KTia − Bωm = J
dωm

dt

dωm

dt
=
KT

J
ia −

B

J
ωm (20.12)

Equations (20.11) and (20.12) are the state equations for the system. They can be

arranged in matrix form to give
(
i̇a
ω̇m

)
=

(
−Ra/La −Ke/La
KT/J −B/J

)(
ia
ωm

)
+

(
1/La
0

)
va

Alternatively the notation x =

(
x1
x2

)
=

(
ia
ωm

)
and u = va can be used. However,

when there is no confusion it is better to retain the original symbols because it makes

it easier to see at a glance what the state variables are. ➔
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Finally, an output equation is needed. In this case it is trivial as the output variable

is the same as one of the state variables. So,

ωm =
(
0 1

) ( ia
ωm

)

Engineering application 20.3

State-space model for a coupled-tanks system

Derive a state-space model for the coupled tank system shown in Figure 20.9. The

tanks have cross-sectional areas A1 and A2, valve resistances R1 and R2, fluid heights

h1 and h2, input flows q1 and q2. Additionally, there is a flow, qo, out of tank 2.

Assume that the valves can be modelled as linear elements and let the density of the

fluid in the tanks be ρ. Let qi be the intermediate flow between the two tanks.

h1

q1

q2

qi qo

R2Tank 2, 

area A2

Tank 1, 

area A1

R1

h2

Figure 20.9

Coupled tanks.

Solution

A convenient choice of state variables is the height of the fluid in each of the tanks,

although a perfectly acceptable choice would be the volume of fluid in each of the

tanks. For tank 1, conservation of mass gives

q1 − qi = A1

dh1
dt

For the resistance element, R1, the pressure difference across the valve is equal to the

product of the flow through the valve and the valve resistance. This can be thought of

as a fluid equivalent of Ohm’s law. Note that atmospheric pressure has been ignored

as it is the same on both sides of the valve. So,

ρgh1 − ρgh2 = qiR1

qi =
ρg

R1

(h1 − h2) (20.13)

Combining these two equations gives

dh1
dt

= −
ρg

R1A1

h1 +
ρg

R1A1

h2 +
1

A1

q1 (20.14)

For tank 2,

qi + q2 − qo = A2

dh2
dt

ρgh2 = R2qo (20.15)
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Combining these equations and using Equation (20.13) to eliminate qi and qo gives

dh2
dt

=
ρg

R1A2

h1 −

(
ρg

R1A2

+
ρg

R2A2

)
h2 +

1

A2

q2 (20.16)

Equations (20.14) and (20.16) are the state-space equations for the system and can

be written in matrix form as

(
ḣ1
ḣ2

)
=




−ρg

R1A1

ρg

R1A1

ρg

R1A2

−
ρg

R1A2

−
ρg

R2A2




(
h1
h2

)
+




1

A1

0

0
1

A2




(
q1
q2

)

Note that in this case the input vector is two-dimensional as there are two inputs to

the system. The output equation is given by

qo =
(
0 ρg/R2

) (h1
h2

)

and is obtained directly from Equation (20.15).

20.5 NUMERICAL METHODS

All the techniques we have so far met for solving differential equations are known as

analytical methods, and these methods give rise to a solution in terms of elementary

functions such as sin x, ex, x3, etc. In practice, most engineering problems involving dif-

ferential equations are too complicated to be solved easily using analytical techniques.

It is therefore frequently necessary to make use of computers. One such approach is to

use analogue simulation, which we discussed in Section 20.2. Another, more common,

approach is to use digital computers.

There are a variety of computer software packages available for solving differential

equations, includingMATLAB® which has already been introduced. Often the detail of

how the computer solves the equation is hidden from the user and it uses one of a range

of numerical methods. We will examine some of the methods that might be applied by

the computer in this section.

When using numerical methods it is important to note that they result in approximate

solutions to differential equations and solutions are only calculated at discrete intervals

of the independent variable, typically x or t. We shall begin by examining the �rst-order

differential equation

dy

dx
= f (x, y)

subject to the initial condition y(x0) = y0. Usually the solution is obtained at equally

spaced values of x, and we call this spacing the step size, denoted by h. By choosing

a suitable value of h we can control the accuracy of the approximate solution obtained.

We shall write yn for this approximate solution at x = xn, whereas we write y(xn) for the

true solution at x = xn. Generally these values will not be the same although we try to

ensure the difference is small for obvious reasons.

The simplest numerical method for the solution of the differential equation

dy

dx
= f (x, y)
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with initial condition

y(x0) = y0

is Euler’s method which we shall study in the next section.

20.6 EULER’S METHOD

You will recall, from Chapter 12, that given a function y(x), the quantity
dy

dx
represents

the gradient of that function. So if
dy

dx
= f (x, y) and we seek y(x), we see that the differ-

ential equation tells us the gradient of the required function. Given the initial condition

y = y0 when x = x0 we can picture this single point as shown in Figure 20.10. Moreover,

we know the gradient of the solution here. Because
dy

dx
= f (x, y) we see that

dy

dx

∣∣∣∣
x=x

0

= f (x0, y0)

which equals the gradient of the solution at x = x0. Thus the exact solution passes

through (x0, y0) and has gradient f (x0, y0) there. We can draw a straight line through this

point with the required gradient to approximate the solution as shown in Figure 20.10.

This straight line approximates the true solution, but only near (x0, y0) because, in gen-

eral, the gradient is not constant but changes. So, in practice we only extend it a short

distance, h, along the x axis to where x = x1. The y coordinate at this point is then taken

as y1. We now develop an expression for y1. The straight line has gradient f (x0, y0) and

passes through (x0, y0). It can be shown that its equation is therefore

y = y0 + (x− x0) f (x0, y0)

When x = x1 the y coordinate is then given by

y1 = y0 + (x1 − x0) f (x0, y0)

and since x1 − x0 = h we �nd

y1 = y0 + h f (x0, y0)

This equation can be used to �nd y1. We then regard (x1, y1) as known. From this known

point the whole process is then repeated using the formula

yi+1 = yi + h f (xi, yi)

0

True solution

Tangent line 

approximation

y

y(x1)

y1 

y0

x0 x1 x
Figure 20.10

Approximation used in Euler’s method.
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and we can therefore generate a whole sequence of approximate values of y. Naturally,

the accuracy of the solution will depend upon the step size, h. In fact, for Euler’s method,

the error incurred is roughly proportional to h, so that by halving the step size we roughly

halve the error.

An alternative way of deriving Euler’s method is to use a Taylor series expansion.

Recall from Chapter 18 that

y(x0 + h) = y(x0)+ hy′(x0)+
h2

2!
y′′(x0)+ · · ·

If we truncate after the second term we �nd

y(x0 + h) ≈ y(x0)+ hy′(x0)

that is,

y1 = y0 + hy′(x0) = y0 + h f (x0, y0)

so that Euler’s method is equivalent to the Taylor series truncated after the second term.

Example 20.4 Use Euler’s method with h = 0.25 to obtain a numerical solution of

dy

dx
= −xy2

subject to y(0) = 2, giving approximate values of y for 0 6 x 6 1. Work throughout

to three decimal places and determine the exact solution for comparison.

Solution We need to calculate y1, y2, y3 and y4. The corresponding x values are x1 = 0.25, x2 =

0.5, x3 = 0.75 and x4 = 1.0. Euler’s method becomes

yi+1 = yi + 0.25(−xiy
2
i ) with x0 = 0 y0 = 2

We �nd

y1 = 2 − 0.25(0)(22) = 2.000

y2 = 2 − 0.25(0.25)(22) = 1.750

y3 = 1.750 − 0.25(0.5)(1.7502) = 1.367

y4 = 1.367 − 0.25(0.75)(1.3672) = 1.017

The exact solution can be found by separating the variables:
∫

dy

y2
= −

∫
x dx

so that

−
1

y
= −

x2

2
+C

Imposing y(0) = 2 gives C = −
1

2
so that

−
1

y
= −

x2

2
−

1

2

Finally,

y =
2

x2 + 1
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Table 20.1

Comparison of numerical solution by Euler’s

method with exact solution.

i xi yi y(xi)

numerical exact

0 0.000 2.000 2.000

1 0.250 2.000 1.882

2 0.500 1.750 1.600

3 0.750 1.367 1.280

4 1.000 1.017 1.000

Table 20.2

The solution to Example 20.5

by Euler’s method.

i xi yi

0 1.00 1.00

1 1.20 1.20

2 1.40 1.40

3 1.60 1.60

4 1.80 1.80

5 2.00 2.00

Table 20.1 summarizes the numerical and exact solutions. In this example only one

correct signi�cant �gure is obtained. In practice, for most equations a very small step

size is necessary which means that computation is extremely time consuming. An im-

provement to Euler’s method, which usually yields more accurate solutions, is given in

Section 20.7.

Example 20.5 Obtain a solution for values of x between 1 and 2 of

dy

dx
=
y

x

subject to y = 1 when x = 1 using Euler’s method. Use a step size of h = 0.2, working

throughout to two decimal places of accuracy. Compare your answer with the analytical

solution. Comment upon the approximate and exact solutions.

Solution Here we have f (x, y) =
y

x
, y0 = 1, x0 = 1 and h = 0.20. With a step size of 0.2,

x1 = 1.2, x2 = 1.4, . . . , x5 = 2.0. We need to calculate y1, y2, . . . , y5. Euler’s method,

yi+1 = yi + h f (xi, yi), reduces to

yi+1 = yi + 0.2

(
yi

xi

)

Therefore,

y1 = y0 + 0.2

(
y0

x0

)
= 1 + 0.2

(
1

1

)
= 1.20

Similarly,

y2 = y1 + 0.2

(
y1

x1

)
= 1.20 + 0.2

(
1.20

1.20

)
= 1.40

Continuing in a similar fashion we obtain the results shown in Table 20.2. To obtain the

analytical solution we separate the variables to give
∫

dy

y
=

∫
dx

x

so that

ln y = ln x+ lnD = lnDx

Therefore,

y = Dx
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When x = 1, y = 1 so that D = 1, and the analytical solution is therefore y = x. We

see that in this example the numerical solution by Euler’s method produces the exact

solution. This will always be the case when the exact solution is a linear function and

exact arithmetic is employed.

EXERCISES 20.6

1 Using Euler’s method estimate y(3) given

y′ =
x+ y

x
y(2) = 1

Use h = 0.5 and h = 0.25. Solve this equation

analytically and compare your numerical solutions

with the true solution.

2 Find y(0.5) if y′ = x+ y, y(0) = 0. Use h = 0.25 and

h = 0.1. Find the true solution for comparison.

3 Use Euler’s method to �nd v(0.01) given

10−2 dv

dt
+ v = sin 100πt v(0) = 0

Take h = 0.005 and h = 0.002. Find the analytical

solution for comparison.

Solutions

1 Exact: y = x ln |x| − 0.1931x

xi yi yi y

(h = 0.5) (h = 0.25) (exact)

2.00 1.0000 1.0000 1.0000

2.25 -- 1.3750 1.3901

2.50 1.7500 1.7778 1.8080

2.75 -- 2.2056 2.2509

3.00 2.6000 2.6561 2.7165

2 Exact: y = −x− 1 + ex

xi yi y

(h = 0.25) (exact)

0 0.0000 0.0000

0.25 0.0000 0.0340

0.50 0.0625 0.1487

xi yi y

(h = 0.1) (exact)

0 0.0000 0.0000

0.1 0.0000 0.0052

0.2 0.0100 0.0214

0.3 0.0310 0.0499

0.4 0.0641 0.0918

0.5 0.1105 0.1487

3 Exact:

v =
sin 100πt − π cos 100πt + πe−100t

π2 + 1

ti vi v

(h = 0.005) (exact)

0 0.0000 0.0000

0.005 0.0000 0.2673

0.010 0.5000 0.3954

ti vi v

(h = 0.002) (exact)

0 0.0000 0.0000

0.002 0.0000 0.0569

0.004 0.1176 0.1919

0.006 0.2843 0.3354

0.008 0.4176 0.4178

0.010 0.4517 0.3954
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20.7 IMPROVED EULER METHOD

You will recall that Euler’s method is obtained by �rst �nding the slope of the solution at

(x0, y0) and imposing a straight line approximation (often called a tangent line approx-

imation) there as indicated in Figure 20.10. If we knew the gradient of the solution at

x = x1 in addition to the gradient at x = x0, a better approximation to the gradient over

the whole interval might be the mean of the two. Unfortunately, the gradient at x = x1
which is

dy

dx

∣∣∣∣
x=x

1

= f (x1, y1)

cannot be obtained until we know y1. What we can do, however, is use the value of y1
obtained by Euler’s method in estimating the gradient at x = x1. This gives rise to the

improved Euler method:

y1 = y0 + h× (average of gradients at x0 and x1)

= y0 + h×

{
f (x0, y0)+ f (x1, y1)

2

}

= y0 +
h

2
{ f (x0, y0)+ f (x1, y0 + h f (x0, y0))}

Then, knowing y1 the whole process is started again to �nd y2, etc. Generally,

yi+1 = yi +
h

2
{ f (xi, yi)+ f (xi+1, yi + h f (xi, yi))}

It can be shown that, like Euler’s method, the improved Euler method is equivalent to

truncating the Taylor series expansion, in this case after the third term.

Example 20.6 Use the improved Euler method to solve the differential equation y′ = −xy2, y(0) = 2,

in Example 20.4. As before take h = 0.25, but work throughout to four decimal places.

Solution Here f (x, y) = −xy2, y0 = 2, x0 = 0. We �nd f (x0, y0) = f (0, 2) = −0(22) = 0. The

improved Euler method

y1 = y0 +
h

2
{ f (x0, y0)+ f (x1, y0 + h f (x0, y0))}

yields

y1 = 2 +
0.25

2
{0 + f (0.25, 2)}

Now f (0.25, 2) = −0.25(22) = −1, so that

y1 = 2 + 0.125(−1) = 1.875

We shall set out the calculations required in Table 20.3. You shouldwork through the next

few stages yourself. Comparing the values obtained in this way with the exact solution,

we see that, over the interval of interest, our solution is usually correct to two decimal

places (Table 20.4).
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Table 20.3

Applying the improved Euler method to Example 20.6.

i xi yi f (xi, yi) yi + h f (xi, yi) f (xi+1, yi yi+1

+h f (xi, yi))

0 0 2 0 2 −1 1.8750

1 0.25 1.8750 −0.8789 1.6553 −1.3700 1.5939

2 0.5 1.5939 −1.2703 1.2763 −1.2217 1.2824

3 0.75 1.2824 −1.2334 0.9741 −0.9489 1.0096

Table 20.4

Comparison of the improved Euler

method with the exact solution.

i xi yi y(xi)

0 0.000 2.0000 2.0000

1 0.2500 1.8750 1.8824

2 0.5000 1.5939 1.6000

3 0.7500 1.2824 1.2800

4 1.0000 1.0096 1.0000

Example 20.7 Apply both Euler’s method and the improved Euler method to the solution of

dy

dx
= 2x y = 1 when x = 0

for 0 6 x 6 0.5 using h = 0.1. Compare your answers with the analytical solution.

Work throughout to three decimal places.

Solution We have
dy

dx
= 2x, x0 = 0, y0 = 1. Therefore, using Euler’s method we �nd

yi+1 = yi + h f (xi, yi)

= yi + 0.1(2xi)

= yi + 0.2xi

Therefore,

y1 = y0 + 0.2x0 = 1 + (0.2)(0) = 1

y2 = y1 + 0.2x1 = 1 + (0.2)(0.1) = 1.02

The complete solution appears in Table 20.5. Check the values given in the table for

yourself. Using the improved Euler method we have

yi+1 = yi +
h

2
{ f (xi, yi)+ f (xi+1, yi + h f (xi, yi))}

= yi + 0.05(2xi + 2xi+1)

= yi + 0.1(xi + xi+1)

Table 20.5

The solution of Example 20.7 using Euler’s method,

the improved Euler method and the exact solution.

xi yi (Euler) yi (improved y(xi)

Euler) (exact)

0 1.000 1.000 1.000

0.1 1.000 1.010 1.010

0.2 1.020 1.040 1.040

0.3 1.060 1.090 1.090

0.4 1.120 1.160 1.160

0.5 1.200 1.250 1.250
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Therefore,

y1 = y0 + 0.1(x0 + x1) = 1 + 0.1(0 + 0.1) = 1.01

y2 = y1 + 0.1(x1 + x2) = 1.01 + 0.1(0.1 + 0.2) = 1.04

and so on. The complete solution appears in Table 20.5. Check this for yourself. The

analytical solution is

y =

∫
2x dx = x2 + c

Applying the condition y(0) = 1 gives c = 1, and so y = x2 + 1. Values of this function

are also shown in the table and we note the marked improvement given by the improved

Euler method.

EXERCISES 20.7

1 Apply the improved Euler method to Question 1 in

Exercises 20.6.

2 Apply the improved Euler method to Question 2 in

Exercises 20.6.

3 Apply the improved Euler method to Question 3 in

Exercises 20.6.

Solutions

1

xi yi (h = 0.5) yi (h = 0.25) y (exact)

2.00 1.0000 1.0000 1.0000

2.25 -- 1.3889 1.3901

2.50 1.8000 1.8057 1.8080

2.75 -- 2.2476 2.2509

3.00 2.7017 2.7123 2.7165

2

xi yi (h = 0.25) y (exact)

0 0.0000 0.0000

0.25 0.0313 0.0340

0.50 0.1416 0.1487

xi yi (h = 0.1) y (exact)

0 0.0000 0.0000

0.1 0.0050 0.0052

0.2 0.0210 0.0214

0.3 0.0492 0.0499

0.4 0.0909 0.0918

0.5 0.1474 0.1487

3

ti vi (h = 0.005) v (exact)

0 0.0000 0.0000

0.005 0.2500 0.2673

0.010 0.2813 0.3954

ti vi (h = 0.002) v (exact)

0 0.0000 0.0000

0.002 0.0588 0.0569

0.004 0.1903 0.1919

0.006 0.3273 0.3354

0.008 0.4032 0.4178

0.010 0.3777 0.3954
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20.8 RUNGE--KUTTA METHOD OF ORDER 4

The ‘Runge--Kutta’ methods are a large family of methods used for solving differential

equations. The Euler and improved Euler methods are special cases of this family. The

order of the method refers to the highest power of h included in the Taylor series expan-

sion. We shall now present the fourth-order Runge--Kutta method. The derivation of this

is beyond the scope of this book.

To solve the equation
dy

dx
= f (x, y) subject to y = y0 when x = x0 we generate the

sequence of values, yi, from the formula

yi+1 = yi +
h

6
(k1 + 2k2 + 2k3 + k4) (20.17)

where

k1 = f (xi, yi)

k2 = f

(
xi +

h

2
, yi +

h

2
k1

)

k3 = f

(
xi +

h

2
, yi +

h

2
k2

)

k4 = f (xi + h, yi + hk3)

Example 20.8 Use the Runge--Kutta method to solve
dy

dx
= −xy2, for 0 6 x 6 1, subject to y(0) = 2.

Use h = 0.25 and work to four decimal places.

Solution We shall show the calculations required to �nd y1. You should follow this through and

then verify the results in Table 20.6. The exact solution is shown for comparison.

f (x, y) = −xy2 h = 0.25 x0 = 0 y0 = 2

Taking i = 0 in Equation (20.17), we have

k1 = f (x0, y0) = −0(2)2 = 0

k2 = f (0.125, 2) = −0.125(2)2 = −0.5

k3 = f

(
0.125, 2 +

0.25

2
(−0.5)

)
= f (0.125, 1.9375)

= −0.125(1.9375)2 = −0.4692

k4 = f (0.25, 2 + 0.25(−0.4692)) = f (0.25, 1.8827)

= −0.25(1.8827)2 = −0.8861

Therefore,

y1 = 2 +
0.25

6
(0 + 2(−0.5)+ 2(−0.4692)+ (−0.8861)) = 1.8823
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Table 20.6

Comparison of the Runge--Kutta method

with exact solutions.

i xi yi y(xi)

0 0.0 2.0 2.0

1 0.25 1.8823 1.8824

2 0.5 1.5999 1.6000

3 0.75 1.2799 1.2800

4 1.0 1.0000 1.0000

Table 20.7

The solution to

Example 20.9.

xi yi

0.0 0.0

0.2 0.0213

0.4 0.0897

0.6 0.2112

Example 20.9 Use the fourth-order Runge--Kutta method to obtain a solution of

dy

dx
= x2 + x− y

subject to y = 0 when x = 0, for 0 6 x 6 0.6 with h = 0.2. Work throughout to four

decimal places.

Solution We have

yi+1 = yi +
h

6
(k1 + 2k2 + 2k3 + k4)

where

k1 = f (xi, yi)

k2 = f

(
xi +

h

2
, yi +

h

2
k1

)

k3 = f

(
xi +

h

2
, yi +

h

2
k2

)

k4 = f (xi + h, yi + hk3)

In this example, f (x, y) = x2 + x− y and x0 = 0, y0 = 0. The �rst stage in the solution

is given by

k1 = f (x0, y0) = 0

k2 = f (0.1, 0) = 0.11

k3 = f (0.1, 0 + (0.1)(0.11)) = f (0.1, 0.011) = 0.099

k4 = f (0.2, 0 + (0.2)(0.099)) = f (0.2, 0.0198) = 0.2202

Therefore,

y1 = 0 +
0.2

6
(0 + 2(0.11)+ 2(0.099)+ 0.2202) = 0.0213

which, in fact, is correct to four decimal places. Check the next stage for yourself. The

complete solution is shown in Table 20.7.
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20.8.1 Higher order equations

The techniques discussed for the solution of single �rst-order equations generalize read-

ily to higher order equations such as those described in Section 20.3 and Section 20.4. It

is obvious that a computer solution is essential and there are a wide variety of computer

packages available to solve such equations.

EXERCISES 20.8

1 Find y(0.4) if y′ = (x+ y)2 and y(0) = 1 using the

Runge--Kutta method of order 4. Take (a) h = 0.2

and (b) h = 0.1.

2 Repeat Question 1 in Exercises 20.6 using the

fourth-order Runge--Kutta method.

3 Repeat Question 2 in Exercises 20.6 using the

fourth-order Runge--Kutta method.

4 Repeat Question 3 in Exercises 20.6 using the

fourth-order Runge--Kutta method.

Solutions

1 (a)

xi yi

0 1.0000

0.2 1.3085

0.4 2.0640

(b)

xi yi

0 1.0000

0.1 1.1230

0.2 1.3085

0.3 1.5958

0.4 2.0649

2

xi yi yi y

(h = 0.5) (h = 0.25) (exact)

2.00 1.0000 1.0000 1.0000

2.25 -- 1.3900 1.3901

2.50 1.8078 1.8079 1.8080

2.75 -- 2.2507 2.2509

3.00 2.7163 2.7164 2.7165

3

xi yi y

(h = 0.25) (exact)

0.00 0.0000 0.0000

0.25 0.0340 0.0340

0.50 0.1487 0.1487

xi yi y

(h = 0.1) (exact)

0.0 0.0000 0.0000

0.1 0.0052 0.0052

0.2 0.0214 0.0214

0.3 0.0499 0.0499

0.4 0.0918 0.0918

0.5 0.1487 0.1487

4

ti vi v

(h = 0.005) (exact)

0 0.0000 0.0000

0.005 0.2675 0.2673

0.010 0.3959 0.3954

ti vi v

(h = 0.002) (exact)

0 0.0000 0.0000

0.002 0.0569 0.0569

0.004 0.1919 0.1919

0.006 0.3352 0.3354

0.008 0.4178 0.4178

0.010 0.3954 0.3954
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REVIEW EXERCISES 20

1 Use Euler’s method with h = 0.1 to estimate x(0.4)

given
dx

dt
= x2 − 2xt, x(0) = 2.

2 The generalization of Euler’s method to the two

coupled equations

dy1
dx

= f (x, y1, y2)

dy2
dx

= g(x, y1, y2)

is given by

y1
(i+1)

= y1
(i)

+ h f (xi, y1
(i)
, y2

(i)
)

y2
(i+1)

= y2
(i)

+ hg(xi, y1
(i)
, y2

(i)
)

Given the coupled equations

dy1
dx

= xy1 + y2
dy2
dx

= xy2 + y1

estimate y1(0.3) and y2(0.3), if y1(0) = 1 and

y2(0) = −1. Take h = 0.1.

3 Express the following equations as a set of �rst-order

equations:

(a)
d2y

dt2
+ 6

dy

dt
+ 8y = 0

(b) 3
d2x

dt2
+ 5

dx

dt
+ 4x = 0

(c) 4
d3x

dt3
+ 8

d2x

dt2
+ 6

dx

dt
+ 5x = 0

4 Express the following coupled �rst-order equations as

a single second-order differential equation:

(a)
dy1
dx

= 3y1 + 4y2, 2
dy2
dx

= 6y1 + 8y2

(b)
dx1
dt

= 6x1 − 5x2, 2
dx2
dt

= 4x1 − 3x2

(c)
dy1
dt

= 8y1 + 4y2, 2
dy2
dt

= 4y1 − 6y2

Solutions

1 4.7937

2 0.7535, −0.7535

3 (a)
dy1
dt

= y2
dy2
dt

= −8y1 − 6y2

(b)
dx1
dt

= x2 3
dx2
dt

= −4x1 − 5x2

(c)
dx1
dt

= x2
dx2
dt

= x3

4
dx3
dt

= −5x1 − 6x2 − 8x3

4 (a)
d2y

dx2
− 7

dy

dx
= 0

(b)
d2x

dt2
−

9

2

dx

dt
+ x = 0

(c)
d2y

dt2
− 5

dy

dt
− 32y = 0
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21.1 INTRODUCTION

The Laplace transform is used to solve linear constant coef�cient differential equations.

This is achieved by transforming them to algebraic equations. The algebraic equations

are solved, then the inverse Laplace transform is used to obtain a solution in terms of

the original variables. This technique can be applied to both single and simultaneous

differential equations and so is extremely useful given that differential equation models

are common as we saw in Chapters 19 and 20.

The Laplace transform is also used to produce transfer functions for the elements of an

engineering system. These are represented in diagrammatic form as blocks. The various



628 Chapter 21 The Laplace transform

blocks of the system, corresponding to the system elements, are connected together and

the result is a block diagram for the whole system. By breaking down a system in this

way it is much easier to visualize how the various parts of the system interact and so

a transfer function model is complementary to a time domain model and is a valuable

way of viewing an engineering system. Transfer functions are useful in many areas of

engineering, but are particularly important in the design of control systems.

21.2 DEFINITION OF THE LAPLACE TRANSFORM

Let f (t) be a function of time t. In many real problems only values of t > 0 are of

interest. Hence f (t) is given for t > 0, and for all t < 0, f (t) is taken to be 0.

The Laplace transform of f (t) is F(s), de�ned by

F(s) =

∫ ∞

0

e−st f (t) dt

Note that to �nd the Laplace transform of a function f (t), we multiply it by e−st and

integrate between the limits 0 and ∞.

The Laplace transform changes, or transforms, the function f (t) into a different func-

tion F(s). Note also that whereas f (t) is a function of t,F(s) is a function of s. To denote

the Laplace transform of f (t) we write L{ f (t)}. We use a lower case letter to represent

the time domain function and an upper case letter to represent the s domain function.

The variable smay be real or complex. As the integral is improper restrictions may need

to be placed on s to ensure that the integral does not diverge.

Example 21.1 Find the Laplace transforms of

(a) 1 (b) e−at

Solution (a) L{1} =

∫ ∞

0

e−st1 dt =

[
e−st

−s

]∞

0

=
1

s
= F(s)

This transform exists provided the real part of s,Re(s), is positive.

(b) L{e−at} =

∫ ∞

0

e−ste−at dt

=

∫ ∞

0

e−(s+a)t dt

=

[
e−(s+a)t

−(s+ a)

]∞

0

= 0 −

(
1

−(s+ a)

)

=
1

s+ a
= F(s)

This transform exists provided s+ a > 0.

Throughout the chapter it is assumed that s has a value such that all integrals exist.
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21.3 LAPLACE TRANSFORMS OF SOME COMMON
FUNCTIONS

Determining the Laplace transform of a given function, f (t), is essentially an exercise

in integration. In order to save effort a look-up table is often used. Table 21.1 lists some

common functions and their corresponding Laplace transforms.

Table 21.1

The Laplace transforms of some common functions.

Function, f (t) Laplace transform, F(s) Function, f (t) Laplace transform, F(s)

1
1

s
e−at cos bt

s+ a

(s+ a)2 + b2

t
1

s2
sinh bt

b

s2 − b2

t2
2

s3
cosh bt

s

s2 − b2

tn
n!

sn+1
e−at sinh bt

b

(s+ a)2 − b2

eat
1

s− a
e−at cosh bt

s+ a

(s+ a)2 − b2

e−at
1

s+ a
t sin bt

2bs

(s2 + b2)2

tne−at
n!

(s+ a)n+1
t cos bt

s2 − b2

(s2 + b2)2

sin bt
b

s2 + b2
u(t) unit step

1

s

cos bt
s

s2 + b2
u(t − d)

e−sd

s

e−at sin bt
b

(s+ a)2 + b2
δ(t) 1

δ(t − d) e−sd

Example 21.2 Use Table 21.1 to determine the Laplace transform of each of the following functions:

(a) t3 (b) t7

(c) sin 4t (d) e−2t

(e) cos

(
t

2

)
(f) sinh 3t

(g) cosh 5t (h) t sin 4t

(i) e−t sin 2t (j) e3t cos t
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Solution From Table 21.1 we �nd the results listed in Table 21.2.

Table 21.2

f (t) F(s) f (t) F(s) f (t) F(s)

(a) t3
6

s4
(e) cos(t/2)

s

s2 + 0.25
(h) t sin 4t

8s

(s2 + 16)2

(b) t7
7!

s8
(f) sinh 3t

3

s2 − 9
(i) e−t sin 2t

2

(s+ 1)2 + 4

(c) sin 4t
4

s2 + 16
(g) cosh 5t

s

s2 − 25
(j) e3t cos t

s− 3

(s− 3)2 + 1

(d) e−2t 1

s+ 2

EXERCISES 21.3

1 Determine the Laplace transforms of the following

functions:

(a) sin 6t (b) cos 4t

(c) sin

(
2t

3

)
(d) cos

(
4t

3

)

(e) t4 (f) t2t3

(g) e−3t (h) e3t

(i)
1

e4t
(j) t cos 3t

(k) t sin t (l) e−t sin 3t

(m)
cos 7t

e5t
(n) sinh 6t

(o) cosh 5t (p) e−3t sinh 4t

(q) e−2t cosh 7t (r) e4t sinh 3t

(s) e7t cosh 9t

2 Show from the de�nition of the Laplace transform that

L{u(t − d)} =
e−sd

s
, d > 0

Solutions

1 (a)
6

s2 + 36
(b)

s

s2 + 16

(c)
6

9s2 + 4
(d)

9s

9s2 + 16

(e)
24

s5
(f)

120

s6

(g)
1

s+ 3
(h)

1

s− 3

(i)
1

s+ 4
(j)

s2 − 9

(s2 + 9)2

(k)
2s

(s2 + 1)2
(l)

3

(s+ 1)2 + 9

(m)
s+ 5

(s+ 5)2 + 49
(n)

6

s2 − 36

(o)
s

s2 − 25
(p)

4

(s+ 3)2 − 16

(q)
s+ 2

(s+ 2)2 − 49
(r)

3

(s− 4)2 − 9

(s)
s− 7

(s− 7)2 − 81
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21.4 PROPERTIES OF THE LAPLACE TRANSFORM

There are some useful properties of the Laplace transform that can be exploited. They

allow us to �nd the Laplace transforms of more dif�cult functions. The properties we

shall examine are:

(1) linearity;

(2) shift theorems;

(3) �nal value theorem.

21.4.1 Linearity

Let f and g be two functions of t and let k be a constant which may be negative. Then

L{ f + g} = L{ f } + L{g}

L{k f } = kL{ f }

The �rst property states that to �nd the Laplace transform of a sum of functions, we

simply sum the Laplace transforms of the individual functions. The second property

says that if we multiply a function by a constant k, then the corresponding transform

is also multiplied by k. Both of these properties follow directly from the de�nition of

the Laplace transform and linearity properties of integrals, and mean that the Laplace

transform is a linear operator. Using the linearity properties and Table 21.1, we can �nd

the Laplace transforms of more complicated functions.

Example 21.3 Find the Laplace transforms of the following functions:

(a) 3 + 2t (b) 5t2 − 2 et

Solution (a) L{3 + 2t} = L{3} + L{2t}

= 3L{1} + 2L{t}

=
3

s
+

2

s2

(b) L{5t2 − 2 et} = L{5t2} + L{−2 et}

= 5L{t2} − 2L{et}

=
10

s3
−

2

s− 1

With a little practice, some of the intermediate steps may be excluded.

Example 21.4 Find the Laplace transforms of the following:

(a) 5 cos 3t + 2 sin 5t − 6t3 (b) −e−t + 1
2
(sin t + cos t)

Solution (a) L{5 cos 3t + 2 sin 5t − 6t3} =
5s

s2 + 9
+

10

s2 + 25
−

36

s4
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(b) L

{
−e−t +

sin t + cos t

2

}
=

−1

s+ 1
+

1

2(s2 + 1)
+

s

2(s2 + 1)

=
−1

s+ 1
+

1 + s

2(s2 + 1)

21.4.2 First shift theorem

If L{ f (t)} = F(s) then

L{e−at f (t)} = F(s+ a) a constant

We obtain F(s + a) by replacing every ‘s’ in F(s) by ‘s + a’. The variable s has been

shifted by an amount a.

Example 21.5 (a) Use Table 21.1 to �nd the Laplace transform of

f (t) = t sin 5t

(b) Use the �rst shift theorem to write down

L{e−3tt sin 5t}

Solution (a) From Table 21.1 we have

L{ f (t)} = L{t sin 5t} =
10s

(s2 + 25)2
= F(s)

(b) From the �rst shift theorem with a = 3 we have

L{e−3t f (t)} = F(s+ 3)

=
10(s+ 3)

((s+ 3)2 + 25)2

=
10(s+ 3)

(s2 + 6s+ 34)2

Example 21.6 The Laplace transform of a function, f (t), is given by

F(s) =
2s+ 1

s(s+ 1)

State the Laplace transform of

(a) e−2t f (t) (b) e3t f (t)

Solution (a) Use the �rst shift theorem with a = 2.

L{e−2t f (t)} = F(s+ 2)

=
2(s+ 2)+ 1

(s+ 2)(s+ 2 + 1)

=
2s+ 5

(s+ 2)(s+ 3)
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(b) Use the �rst shift theorem with a = −3.

L{e3t f (t)} = F(s− 3)

=
2(s− 3)+ 1

(s− 3)(s− 3 + 1)

=
2s− 5

(s− 3)(s− 2)

21.4.3 Second shift theorem

If L{ f (t)} = F(s) then

L{u(t − d) f (t − d)} = e−sdF(s) d > 0

The function, u(t − d) f (t − d), is obtained by moving u(t) f (t) to the right by an

amount d. This is illustrated in Figure 21.1. Note that because f (t) is de�ned to be

0 for t < 0, then f (t− d) = 0 for t < d. It may appear that u(t− d) is redundant. How-

ever, it is necessary for inversion of the Laplace transform, which will be covered in

Section 21.6.

t

u(t) f(t)

(a) td

u(t – d) f(t – d)

(b)

Figure 21.1

Shifting the function u(t) f (t) to the right by an amount d yields the function

u(t − d) f (t − d).

Example 21.7 Given L{ f (t)} =
2s

s+ 9
, �nd L{u(t − 2) f (t − 2)}.

Solution Use the second shift theorem with d = 2.

L{u(t − 2) f (t − 2)} =
2s e−2s

s+ 9

Example 21.8 The Laplace transform of a function is
e−3s

s2
. Find the function.

Solution The exponential term in the transform suggests that the second shift theorem is used. Let

e−sdF(s) =
e−3s

s2
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so that d = 3 and F(s) =
1

s2
. If we let

L{ f (t)} = F(s) =
1

s2

then f (t) = t and so f (t − 3) = t − 3. Now, using the second shift theorem

L{u(t − 3) f (t − 3)} = L{u(t − 3)(t − 3)} =
e−3s

s2

Hence the required function is u(t − 3)(t − 3) as shown in Figure 21.2.

3 t

f(t)

Figure 21.2

The function: f (t) = u(t − 3)(t − 3).

21.4.4 Final value theorem

This theorem applies only to real values of s and for functions, f (t), which possess a

limit as t → ∞.

The �nal value theorem states:

lim
s→0

sF(s) = lim
t→∞

f (t)

Some care is needed when applying the theorem. The Laplace transform of some func-

tions exists only for Re(s) > 0 and for these functions taking the limit as s → 0 is not

sensible.

Example 21.9 Verify the �nal value theorem for f (t) = e−2t .

Solution
∫∞

0
e−ste−2t dt exists provided Re(s) > −2 and so

F(s) =
1

s+ 2
Re(s) > −2

Since we only require Re(s) > −2, it is permissible to let s → 0.

lim
s→0

sF(s) = lim
s→0

s

s+ 2
= 0

Furthermore

lim
t→∞

e−2t = 0

So lims→0 sF(s) = limt→∞ f (t) and the theorem is veri�ed.
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EXERCISES 21.4

1 Find the Laplace transforms of the following

functions:

(a) 3t2 − 4 (b) 2 sin 4t + 11 − t

(c) 2 − t2 + 2t4 (d) 3 e2t + 4 sin t

(e)
1

3
sin 3t − 4 cos

(
t

2

)

(f) 3t4 e5t + t

(g) sinh 2t + 3 cosh 2t

(h) e−t sin 3t + 4 e−t cos 3t

2 The Laplace transform of f (t) is given as

F(s) =
3s2 − 1

s2 + s+ 1

Find the Laplace transform of

(a) e−t f (t) (b) e3t f (t) (c) e−t/2 f (t)

3 Given

L{ f (t)} =
4s

s2 + 1

�nd

(a) L{u(t − 1) f (t − 1)}

(b) L{3u(t − 2) f (t − 2)}

(c) L

{
u(t − 4)

f (t − 4)

2

}

4 Find the �nal value of the following functions using

the �nal value theorem:

(a) f (t) = e−t sin t

(b) f (t) = e−t + 1

(c) f (t) = e−3t cos t + 5

Solutions

1 (a)
6

s3
−

4

s
(b)

8

s2 + 16
+

11

s
−

1

s2

(c)
2

s
−

2

s3
+

48

s5
(d)

3

s− 2
+

4

s2 + 1

(e)
1

s2 + 9
−

16s

4s2 + 1
(f)

72

(s− 5)5
+

1

s2

(g)
3s+ 2

s2 − 4
(h)

4s+ 7

(s+ 1)2 + 9

2 (a)
3s2 + 6s+ 2

s2 + 3s+ 3
(b)

3s2 − 18s+ 26

s2 − 5s+ 7

(c)
12s2 + 12s− 1

4s2 + 8s+ 7

3 (a)
4s e−s

s2 + 1
(b)

12s e−2s

s2 + 1
(c)

2s e−4s

s2 + 1

4 (a) 0 (b) 1 (c) 5

21.5 LAPLACE TRANSFORM OF DERIVATIVES
AND INTEGRALS

In later sections we shall use the Laplace transform to solve differential equations. In

order to do this we need to be able to �nd the Laplace transform of derivatives of func-

tions. Let f (t) be a function of t, and f ′ and f ′′ the �rst and second derivatives of f . The

Laplace transform of f (t) is F(s). Then

L{ f ′} = sF(s)− f (0)

L{ f ′′} = s2F(s)− s f (0)− f ′(0)

where f (0) and f ′(0) are the initial values of f and f ′. The general case for the

Laplace transform of an nth derivative is

L{ f (n)} = snF(s)− sn−1 f (0)− sn−2 f ′(0)− · · · − f (n−1)(0)
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Another useful result is

L

{∫ t

0

f (t) dt

}
=

1

s
F(s)

Example 21.10 The Laplace transform of x(t) is X (s). Given x(0) = 2 and x′(0) = −1, write expres-

sions for the Laplace transforms of

(a) 2x′′ − 3x′ + x (b) −x′′ + 2x′ + x

Solution L{x′} = sX (s)− x(0) = sX (s)− 2

L{x′′} = s2X (s)− sx(0)− x′(0) = s2X (s)− 2s+ 1

(a) L{2x′′ − 3x′ + x} = 2(s2X (s)− 2s+ 1)− 3(sX (s)− 2)+ X (s)

= (2s2 − 3s+ 1)X (s)− 4s+ 8

(b) L{−x′′ + 2x′ + x} = −(s2X (s)− 2s+ 1)+ 2(sX (s)− 2)+ X (s)

= (−s2 + 2s+ 1)X (s)+ 2s− 5

Engineering application 21.1

Voltage across a capacitor

The voltage, v(t), across a capacitor of capacitanceC is given by

v(t) =
1

C

∫ t

0

i(t) dt

Taking Laplace transforms yields

V (s) =
1

Cs
I(s)

where V (s) = L{v(t)} and I(s) = L{i(t)}.

Engineering application 21.2

Frequency response of a system

The Laplace variable s is sometimes referred to as the generalized or complex fre-

quency variable. It consists of a real and an imaginary part, where s = σ + jω. If

only the sinusoidal steady-state response to a sine wave input for a system is required

then we can obtain this by putting σ = 0 into the expression for s and so s = jω.

Thus it is possible to make this substitution in any transfer function given in terms of

the Laplace variable s to obtain the sinusoidal steady-state frequency response. We

will not prove this assertion here for reasons of brevity. Instead we will demonstrate

its usefulness.
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Consider the Laplace transform of the equation for the voltage across a capacitor

of capacitanceC. Recall from Engineering application 21.1 that

V (s) =
1

Cs
I(s)

Rearranging this expression gives a formula for the impedance of the capacitor, Z(s),

in the s domain

Z(s) =
V (s)

I(s)
=

1

Cs

This form of the equation can be used to determine the behaviour of the capacitor in

a variety of situations where the voltages and currents can take a number of forms,

for example step inputs, sine waves, triangular waves, etc. However, if we are only

interested in the sinusoidal steady-state response of the system when all transients

have decayed, then it is possible to substitute s = jω into the expression for Z(s)

Z( jω) =
V ( jω)

I( jω)
=

1

jωC

This form of the impedance is the one regularly used in a.c. circuit theory. It gives

the impedance of the capacitor in terms of the capacitance and the angular frequency

ω, where ω = 2π f . (This result has already been discussed in the context of phasors

on page 342).

The same substitution can be made to obtain the frequency response of a system,

given its transfer function. The system frequency response is something that can usu-

ally be obtained easily by experiment. All that is required is a signal source of a known

amplitude and a means of measuring the output amplitude and phase relative to the

original signal. Measurements of this sort can reveal some of the properties of the

system in question reflecting the close relationship between the transfer function and

the frequency response.

EXERCISES 21.5

1 The Laplace transform of y(t) is Y (s), y(0) = 3,

y′(0) = 1. Find the Laplace transforms of the

following expressions:

(a) y′ (b) y′′

(c) 3y′′ − y′

(d) y′′ + 2y′ + 3y

(e) 3y′′ − y′ + 2y

(f) −4y′′ + 5y′ − 3y

(g) 3
d2y

dt2
+ 6

dy

dt
+ 8y

(h) 4
d2y

dt2
− 8

dy

dt
+ 6y

2 Given the Laplace transform of f (t) is F(s),

f (0) = 2, f ′(0) = 3 and f ′′(0) = −1, �nd the

Laplace transforms of

(a) 3 f ′ − 2 f (b) 3 f ′′ − f ′ + f

(c) f ′′′ (d) 2 f ′′′ − f ′′ + 4 f ′ − 2 f

3 (a) If F(s) = L{ f (t)} =
∫∞

0 e−st f (t) dt, show using

integration by parts that

(i) L{ f ′(t)} = sF(s)− f (0)

(ii) L{ f ′′(t)} = s2F(s)− s f (0)− f ′(0)

(b) If F(s) = L{ f (t)} prove that

L{e−at f (t)} = F(s+ a)

Deduce L{te−t}, given L{t} =
1

s2
.
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Solutions

1 (a) sY − 3

(b) s2Y − 3s− 1

(c) 3s2Y − sY − 9s

(d) (s2 + 2s+ 3)Y − 3s− 7

(e) (3s2 − s+ 2)Y − 9s

(f) (−4s2 + 5s− 3)Y + 12s− 11

(g) (3s2 + 6s+ 8)Y − 9s− 21

(h) (4s2 − 8s+ 6)Y − 12s+ 20

2 (a) (3s− 2)F − 6

(b) (3s2 − s+ 1)F − 6s− 7

(c) s3F − 2s2 − 3s+ 1

(d) (2s3 − s2 + 4s− 2)F − 4s2 − 4s− 3

3 (b)
1

(s+ 1)2

21.6 INVERSE LAPLACE TRANSFORMS

As mentioned in Section 21.5, the Laplace transform can be used to solve differential

equations. However, before such an application can be put into practice, we must study

the inverse Laplace transform. So far in this chapter we have been given functions of t and

found their Laplace transforms. We now consider the problem of �nding a function f (t),

having been given the Laplace transform, F(s). Clearly Table 21.1 and the properties of

Laplace transforms will help us to do this. If L{ f (t)} = F(s) we write

f (t) = L
−1{F(s)}

and call L−1 the inverse Laplace transform. Like L, L−1 can be shown to be a linear

operator.

Example 21.11 Find the inverse Laplace transforms of the following:

(a)
2

s3
(b)

16

s3
(c)

s

s2 + 1
(d)

1

s2 + 1
(e)

s+ 1

s2 + 1

Solution (a) We need to �nd a function of t which has a Laplace transform of
2

s3
. Using

Table 21.1 we see L−1

{
2

s3

}
= t2.

(b) L
−1

{
16

s3

}
= 8L−1

{
2

s3

}
= 8t2

(c) L
−1

{
s

s2 + 1

}
= cos t

(d) L
−1

{
1

s2 + 1

}
= sin t

(e) L
−1

{
s+ 1

s2 + 1

}
= L

−1

{
s

s2 + 1

}
+ L

−1

{
1

s2 + 1

}
= cos t + sin t

In parts (a), (c) and (d) we obtained the inverse Laplace transform by referring directly

to the table. In (b) and (e) we used the linearity properties of the inverse transform, and

then referred to Table 21.1.
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Example 21.12 Find the inverse Laplace transforms of the following functions:

(a)
10

(s+ 2)4
(b)

(s+ 1)

(s+ 1)2 + 4
(c)

15

(s− 1)2 − 9

Solution (a) L−1

{
10

(s+ 2)4

}
=

10

6
L

−1

{
6

(s+ 2)4

}
=

5t3 e−2t

3

(b) L−1

{
s+ 1

(s+ 1)2 + 4

}
= L

−1

{
s+ 1

(s+ 1)2 + 22

}
= e−t cos 2t

(c) L−1

{
15

(s− 1)2 − 9

}
= 5L−1

{
3

(s− 1)2 − 32

}
= 5 et sinh 3t

The function is written to match exactly the standard forms given in Table 21.1, with

possibly a constant factor being present. Often the denominator needs to be written in

standard form as illustrated in the next example.

Example 21.13 Find the inverse Laplace transforms of the following functions:

(a)
s+ 3

s2 + 6s+ 13
(b)

2s+ 3

s2 + 6s+ 13
(c)

s− 1

2s2 + 8s+ 11

Solution (a) By completing the square we can write

s2 + 6s+ 13 = (s+ 3)2 + 4 = (s+ 3)2 + 22

Hence we may write

L
−1

{
s+ 3

s2 + 6s+ 13

}
= L

−1

{
s+ 3

(s+ 3)2 + 22

}
= e−3t cos 2t

(b)
2s+ 3

s2 + 6s+ 13
=

2s+ 3

(s+ 3)2 + 22
=

2s+ 6

(s+ 3)2 + 22
−

3

(s+ 3)2 + 22

= 2

(
s+ 3

(s+ 3)2 + 22

)
−

3

2

(
2

(s+ 3)2 + 22

)

The expressions in brackets are standard forms so their inverse Laplace transforms

can be found from Table 21.1.

L
−1

{
2s+ 3

s2 + 6s+ 13

}
= 2 e−3t cos 2t −

3 e−3t sin 2t

2

(c) We write the expression using standard forms:

s− 1

2s2 + 8s+ 11
=

1

2

s− 1

s2 + 4s+ 5.5
=

1

2

s− 1

(s+ 2)2 + 1.5

=
1

2

(
s+ 2

(s+ 2)2 + 1.5
−

3

(s+ 2)2 + 1.5

)

=
1

2

(
s+ 2

(s+ 2)2 + 1.5
−

3
√
1.5

√
1.5

(s+ 2)2 + 1.5

)
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Having written the expression in terms of standard forms, the inverse Laplace trans-

form can now be found:

L
−1

{
s− 1

2s2 + 8s+ 11

}
=

1

2

(
e−2t cos

√
1.5t −

3
√
1.5

e−2t sin
√
1.5t

)

In every case the given function of s is written as a linear combination of standard

forms contained in Table 21.1.

EXERCISES 21.6

1 By using the standard forms in Table 21.1 �nd the

inverse Laplace transforms of the following functions:

(a)
1

s
(b)

2

s3

(c)
8

s
(d)

1

s+ 2

(e)
6

s+ 4
(f)

5

s− 3

(g)
7

s+ 8
(h)

2

s2 + 4

(i)
s

s2 + 9
(j)

6s

s2 + 4

(k)
20

s2 + 16
(l)

2

(s+ 1)2

(m)
8

(s+ 2)2
(n)

9

(s+ 3)3

(o)
e−3s

s
(p)

4e−6s

s

(q) e−9s (r) 4 e−8s

(s)
4

s2 − 16
(t)

s

s2 − 9

(u)
12

s2 − 9
(v)

6s

s2 − 8

(w)
2

(s+ 1)2 − 4
(x)

s+ 3

(s+ 3)2 − 4

(y)
2

(s+ 3)2 − 4
(z)

6s

s2 − 5

2 Find the inverse Laplace transforms of the following

functions:

(a)
3

2s
(b)

4

s
−

1

s3

(c)
30

s2
(d)

1

3(s+ 2)

(e)
3s− 7

s2 + 9
(f)

s− 6

s− 4

(g)
s+ 4

(s+ 4)2 + 1
(h)

5

(s+ 4)2 + 1

(i)
6s+ 17

(s+ 4)2 + 1
(j)

s

s2 + 2s+ 7

(k)
0.5

(s+ 0.5)2
(l)

s+ 5

s2 + 8s+ 20

(m)
6s+ 9

s2 + 2s+ 10
(n)

7s+ 3

s2 + 4s+ 8

Solutions

1 (a) 1 (b) t2

(c) 8 (d) e−2t

(e) 6 e−4t (f) 5 e3t

(g) 7e−8t (h) sin 2t

(i) cos 3t (j) 6 cos 2t

(k) 5 sin 4t (l) 2te−t

(m) 8te−2t (n)
9

2
t2 e−3t

(o) u(t − 3) (p) 4u(t − 6)

(q) δ(t − 9) (r) 4δ(t − 8)

(s) sinh 4t (t) cosh 3t

(u) 4 sinh 3t (v) 6 cosh
√
8t

(w) e−t sinh 2t (x) e−3t cosh 2t

(y) e−3t sinh 2t (z) 6 cosh
√
5t
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2 (a)
3

2
(b) 4 −

t2

2

(c) 30t (d)
e−2t

3

(e) 3 cos 3t −
7

3
sin 3t

(f) δ(t)− 2 e4t

(g) e−4t cos t

(h) 5 e−4t sin t

(i) 6 e−4t cos t − 7e−4t sin t

(j) e−t cos
√
6t −

1
√
6
e−t sin

√
6t

(k)
te−t/2

2

(l) e−4t cos 2t +
1

2
e−4t sin 2t

(m) 6 e−t cos 3t + e−t sin 3t

(n) 7e−2t cos 2t −
11

2
e−2t sin 2t

21.7 USING PARTIAL FRACTIONS TO FIND THE INVERSE
LAPLACE TRANSFORM

The inverse Laplace transform of a fraction is often best found by expressing it as its par-

tial fractions, and �nding the inverse transform of these. (See Section 1.7 for a treatment

of partial fractions.)

Example 21.14 Find the inverse Laplace transform of

(a)
4s− 1

s2 − s
(b)

6s+ 8

s2 + 3s+ 2

Solution (a) We express
4s− 1

s2 − s
as its partial fractions:

4s− 1

s2 − s
=

4s− 1

s(s− 1)
=
A

s
+

B

s− 1

Using the technique of Section 1.6 we �nd that A = 1, B = 3 and hence

4s− 1

s2 − s
=

1

s
+

3

s− 1

The inverse Laplace transform of each partial fraction is found:

L
−1

(
1

s

)
= 1, L

−1

(
3

s− 1

)
= 3 et

Hence

L
−1

(
4s− 1

s2 − s

)
= 1 + 3 et

(b) The expression is expressed as its partial fractions. This was done in Section 1.7.

6s+ 8

s2 + 3s+ 2
=

2

s+ 1
+

4

s+ 2

The inverse Laplace transform of each partial fraction is noted:

L
−1

(
2

s+ 1

)
= 2 e−t

L
−1

(
4

s+ 2

)
= 4 e−2t
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and so

L
−1

(
6s+ 8

s2 + 3s+ 2

)
= 2 e−t + 4 e−2t

Example 21.15 Find the inverse Laplace transform of
3s2 + 6s+ 2

s3 + 3s2 + 2s
.

Solution Following from the work in Section 1.7.1, we have

3s2 + 6s+ 2

s3 + 3s2 + 2s
=

1

s
+

1

s+ 1
+

1

s+ 2

The inverse Laplace transform of the partial fractions is easily found:

L
−1

{
3s2 + 6s+ 2

s3 + 3s2 + 2s

}
= 1 + e−t + e−2t

Example 21.16 Find the inverse Laplace transform of
3s2 + 11s+ 14

s3 + 2s2 − 11s− 52
.

Solution From Example 1.33 we have

3s2 + 11s+ 14

s3 + 2s2 − 11s− 52
=

2

s− 4
+

s+ 3

s2 + 6s+ 13

We �nd the inverse Laplace transforms of the partial fractions:

L
−1

{
2

s− 4

}
= 2 e4t

L
−1

{
s+ 3

s2 + 6s+ 13

}
= e−3t cos 2t

So

L
−1

{
3s2 + 11s+ 14

s3 + 2s2 − 11s− 52

}
= 2 e4t + e−3t cos 2t

EXERCISES 21.7

1 Express the following as partial fractions and hence

�nd their inverse Laplace transforms:

(a)
5s+ 2

(s+ 1)(s+ 2)

(b)
3s+ 4

(s+ 2)(s+ 3)

(c)
4s+ 1

(s+ 3)(s+ 4)

(d)
6s− 5

(s+ 5)(s+ 3)

(e)
4s+ 1

s(s+ 2)(s+ 3)

(f)
7s+ 3

s(s+ 3)(s+ 4)

(g)
6s+ 7

s(s+ 2)(s+ 4)



21.8 Finding the inverse Laplace transform using complex numbers 643

(h)
8s− 5

(s+ 1)(s+ 2)(s+ 3)

(i)
3s+ 5

(s+ 1)(s2 + 3s+ 2)

(j)
2s− 8

(s+ 2)(s2 + 7s+ 6)

2 Express the following fractions as partial fractions

and hence �nd their inverse Laplace transforms:

(a)
3s+ 3

(s− 1)(s+ 2)

(b)
5s

(s+ 1)(2s− 3)

(c)
2s+ 5

s+ 2

(d)
s2 + 4s+ 4

s3 + 2s2 + 5s

(e)
1 − s

(s+ 1)(s2 + 2s+ 2)

(f)
s+ 4

s2 + 4s+ 4

(g)
2(s3 − 3s2 + s− 1)

(s2 + 4s+ 1)(s2 + 1)

(h)
3s2 − s+ 8

(s2 − 2s+ 3)(s+ 2)

Solutions

1 (a) 8 e−2t − 3 e−t

(b) 5 e−3t − 2 e−2t

(c) 15 e−4t − 11e−3t

(d)
35

2
e−5t −

23

2
e−3t

(e)
1

6
+

7

2
e−2t −

11

3
e−3t

(f)
1

4
+ 6 e−3t −

25

4
e−4t

(g)
7

8
+

5

4
e−2t −

17

8
e−4t

(h) 21e−2t −
29

2
e−3t −

13

2
e−t

(i) e−t + 2te−t − e−2t

(j) 3 e−2t − e−6t − 2 e−t

2 (a) 2 et + e−2t

(b) e−t +
3 e3t/2

2

(c) 2δ(t)+ e−2t

(d)
1

5
(4 + e−t cos 2t +

11

2
e−t sin 2t)

(e) e−t (2 − 2 cos t − sin t)

(f) e−2t (1 + 2t)

(g) e−2t

(
3 cosh

√
3t −

8
√
3
sinh

√
3t

)
− cos t

(h) et (cos
√
2t +

√
2 sin

√
2t)+ 2e−2t

21.8 FINDING THE INVERSE LAPLACE TRANSFORM USING
COMPLEX NUMBERS

In Sections 21.6 and 21.7 we found the inverse Laplace transform using standard forms

and partial fractions. We now look at a method of �nding inverse Laplace transforms

using complex numbers. Essentially the method is one using partial fractions, but where

all the factors in the denominator are linear -- that is, there are no quadratic factors. We

illustrate the method using Example 21.13.

Example 21.17 Find the inverse Laplace transforms of the following functions:

(a)
s+ 3

s2 + 6s+ 13
(b)

2s+ 3

s2 + 6s+ 13
(c)

s− 1

2s2 + 8s+ 11
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Solution (a) We �rst factorize the denominator. To do this we solve s2 + 6s+ 13 = 0 using the

formula

s =
−6 ±

√
36 − 4(13)

2

=
−6 ±

√
−16

2

=
−6 ± 4j

2

= −3 ± 2j

It then follows that the denominator can be factorized as (s − a)(s − b) where

a = −3 + 2j and b = −3 − 2j. Then, using the partial fractions method

s+ 3

s2 + 6s+ 13
=

s+ 3

(s− a)(s− b)
=

A

s− a
+

B

s− b

The unknown constants A and B can now be found:

s+ 3 = A(s− b)+ B(s− a)

Put s = a = −3 + 2j

2j = A(−3 + 2j − b) = A(4j)

A =
1

2

Equate the coef�cients of s

1 = A+ B

B =
1

2

So,

s+ 3

s2 + 6s+ 13
=

1

2

(
1

s− a
+

1

s− b

)

The inverse Laplace transform can now be found:

L
−1

{
s+ 3

s2 + 6s+ 13

}
=

1

2
L

−1

{
1

s− a
+

1

s− b

}

=
1

2
(eat + ebt ) =

1

2
(e(−3+2j)t + e(−3−2j)t )

=
1

2
e−3t (e2jt + e−2jt )

=
1

2
e−3t (cos 2t + j sin 2t + cos 2t − j sin 2t)

= e−3t cos 2t
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(b)
2s+ 3

s2 + 6s+ 13
=

2s+ 3

(s− a)(s− b)
=

A

s− a
+

B

s− b

where a = −3 + 2j and b = −3 − 2j. Hence,

2s+ 3 = A(s− b)+ B(s− a)

Put s = a = −3 + 2j

−3 + 4j = A(4j)

A = 1 + 0.75j

Equate the coef�cients of s

2 = A+ B

B = 1 − 0.75j

Hence,

2s+ 3

s2 + 6s+ 13
=

1 + 0.75j

s− a
+

1 − 0.75j

s− b

Taking the inverse Laplace transform yields

L
−1

{
2s+ 3

s2 + 6s+ 13

}
= (1 + 0.75j)eat + (1 − 0.75j) ebt

= (1 + 0.75j) e(−3+2j)t + (1 − 0.75j) e(−3−2j)t

= (1 + 0.75j) e−3t (cos 2t + j sin 2t)

+ (1 − 0.75j) e−3t (cos 2t − j sin 2t)

= e−3t (2 cos 2t − 1.5 sin 2t)

(c)
s− 1

2s2 + 8s+ 11
=

1

2

(
s− 1

s2 + 4s+ 5.5

)
=

1

2

(
s− 1

(s− a)(s− b)

)

where a = −2+
√
1.5j, b = −2−

√
1.5j. Applying the method of partial fractions

produces

s− 1

(s− a)(s− b)
=

A

s− a
+

B

s− b

Hence,

s− 1 = A(s− b)+ B(s− a)

By letting s = a, then s = b in turn, gives

A = 0.5 +
√
1.5j B = 0.5 −

√
1.5j

Hence we may write

s− 1

(s− a)(s− b)
=

0.5 +
√
1.5j

s− a
+

0.5 −
√
1.5j

s− b
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Taking the inverse Laplace transform yields

L
−1

{
s− 1

(s− a)(s− b)

}
= (0.5 +

√
1.5j) eat + (0.5 −

√
1.5j) ebt

= (0.5 +
√
1.5j) e(−2+

√
1.5j)t

+ (0.5 −
√
1.5j) e(−2−

√
1.5j)t

= e−2t{(0.5 +
√
1.5j) e

√
1.5jt

+ (0.5 −
√
1.5j) e−

√
1.5jt}

= e−2t{(0.5 +
√
1.5j)(cos

√
1.5t + j sin

√
1.5t)

+ (0.5 −
√
1.5j)(cos

√
1.5t − j sin

√
1.5t)}

= e−2t (cos
√
1.5t − 2

√
1.5 sin

√
1.5t)

Hence

L
−1

{
s− 1

2s2 + 8s+ 11

}
=

e−2t

2
(cos

√
1.5t − 2

√
1.5 sin

√
1.5t)

As seen from Example 21.17, when complex numbers are allowed, all the factors in the

denominator are linear. The unknown constants are evaluated using particular values of

s or equating coef�cients.

EXERCISES 21.8

1 Express the following expressions as partial fractions,

using complex numbers if necessary. Hence �nd their

inverse Laplace transforms.

(a)
3s− 2

s2 + 6s+ 13
(b)

2s+ 1

s2 − 2s+ 2

(c)
s2

(s2/2)− s+ 5
(d)

s2 + s+ 1

s2 − 2s+ 3

(e)
2s+ 3

−s2 + 2s− 5

Solutions

1 (a)

3
2 + 11j/4

s− a
+

3
2 − 11j/4

s− b
where a = −3 + 2j, b = −3 − 2j,

e−3t
[
3 cos 2t −

11

2
sin 2t

]

(b)
1 − 3j/2

s− a
+

1 + 3j/2

s− b
where a = 1 + j, b = 1 − j,

et (2 cos t + 3 sin t)

(c)
2 + 8j/3

s− a
+

2 − 8j/3

s− b
+ 2

where a = 1 + 3j, b = 1 − 3j,

et
(
4 cos 3t −

16

3
sin 3t

)
+ 2δ(t)

(d) 1 +

3
2 − j/(2

√
2)

s− a
+

3
2 + j/(2

√
2)

s− b

where a = 1 +
√
2j, b = 1 −

√
2j,

δ(t)+ et

(
3 cos

√
2t +

1
√
2
sin

√
2t

)

(e)
−1 + 5j/4

s− a
+

−1 − 5j/4

s− b

where a = 1 + 2j, b = 1 − 2j,

et (−2 cos 2t −
5

2
sin 2t)
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21.9 THE CONVOLUTION THEOREM

Let f (t) and g(t) be two piecewise continuous functions. The convolution of f (t)

and g(t), denoted ( f ∗ g)(t), is de�ned by

( f ∗ g)(t) =

∫ t

0

f (t − v)g(v) dv

Example 21.18 Find the convolution of 2t and t3.

Solution f (t) = 2t, g(t) = t3, f (t − v) = 2(t − v), g(v) = v3. Then

2t ∗ t3 =

∫ t

0

2(t − v)v3 dv = 2

∫ t

0

tv3 − v4 dv

= 2

[
tv4

4
−
v5

5

]t

0

= 2

[
t5

4
−
t5

5

]

=
t5

10

It can be shown that

f ∗ g= g ∗ f

but the proof is omitted. Instead, this property is illustrated by an example.

Example 21.19 Show that f ∗ g= g ∗ f where f (t) = 2t and g(t) = t3.

Solution f ∗ g= 2t ∗ t3 = t5/10 by Example 21.18. From the de�nition of convolution

(g ∗ f )(t) =

∫ t

0

g(t − v) f (v) dv

We have g(t) = t3, so g(t − v) = (t − v)3, and f (v) = 2v. Therefore

g ∗ f = t3 ∗ 2t =

∫ t

0

(t − v)32v dv

=

∫ t

0

(t3 − 3t2v + 3tv2 − v3)2v dv

= 2

∫ t

0

t3v − 3t2v2 + 3tv3 − v4 dv

= 2

[
t3v2

2
− t2v3 +

3tv4

4
−
v5

5

]t

0

=
t5

10
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For any functions f (t) and g(t)

f ∗ g= g ∗ f

21.9.1 The convolution theorem

Let f (t) and g(t) be piecewise continuous functions, with L{ f (t)} = F(s) and

L{g(t)} = G(s). The convolution theorem allows us to �nd the inverse Laplace trans-

form of a product of transforms, F(s)G(s):

L
−1{F(s)G(s)} = ( f ∗ g)(t)

Example 21.20 Use the convolution theorem to �nd the inverse Laplace transforms of the following

functions:

(a)
1

(s+ 2)(s+ 3)
(b)

3

s(s2 + 4)

Solution (a) Let F(s) =
1

s+ 2
, G(s) =

1

s+ 3
.

Then f (t) = L−1{F(s)} = e−2t , g(t) = L−1{G(s)} = e−3t .

L
−1

{
1

(s+ 2)(s+ 3)

}
= L

−1{F(s)G(s)} = ( f ∗ g)(t)

=

∫ t

0

e−2(t−v)e−3v dv =

∫ t

0

e−2te2ve−3v dv

=

∫ t

0

e−2te−v dv

= e−2t[−e−v]t0 = e−2t (−e−t + 1) = e−2t − e−3t

(b) Let F(s) =
3

s
, G(s) =

1

s2 + 4
. Then f (t) = 3, g(t) = 1

2
sin 2t. So,

L
−1

{
3

s(s2 + 4)

}
= L

−1{F(s)G(s)}

= ( f ∗ g)(t)

=

∫ t

0

3
sin 2v

2
dv =

3

2

∫ t

0

sin 2v dv

=
3

2

[
− cos 2v

2

]t

0

=
3

4
(1 − cos 2t)
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EXERCISES 21.9

1 Find

(a) e−2t ∗ e−t

(b) t2 ∗ e−3t

2 Find f ∗ gwhen

(a) f = 1, g= t

(b) f = t2, g= t

(c) f = et , g= t

(d) f = sin t, g= t

In each case verify that

L{ f } × L{g} = L{ f ∗ g}.

3 If F(s) =
1

s− 1
,G(s) =

1

s
and H(s) =

1

2s+ 3

use the convolution theorem to �nd the inverse

Laplace transforms of

(a) F(s)G(s)

(b) F(s)H(s)

(c) G(s)H(s)

4 Use the convolution theorem to determine the inverse

Laplace transforms of

(a)
1

s2(s+ 1)

(b)
1

(s+ 3)(s− 2)

(c)
1

(s2 + 1)2

Solutions

1 (a) e−t − e−2t

(b)
t2

3
−

2t

9
+

2

27
−

2 e−3t

27

2 (a)
t2

2
(b)

t4

12
(c) −t − 1 + et (d) t − sin t

3 (a) et − 1 (b)
et − e−3t/2

5
(c)

1 − e−3t/2

3

4 (a) t − 1 + e−t (b)
e2t − e−3t

5

(c)
sin t − t cos t

2

21.10 SOLVING LINEAR CONSTANT COEFFICIENT
DIFFERENTIAL EQUATIONS USING THE LAPLACE
TRANSFORM

So far we have seen how to �nd the Laplace transform of a function of time and how to

�nd the inverse Laplace transform. We now apply this to �nding the particular solution

of differential equations. The initial conditions are automatically satis�ed when solving

an equation using the Laplace transform. They are contained in the transform of the

derivative terms.

The Laplace transform of the equation is found. This transforms the differential equa-

tion into an algebraic equation. The transform of the dependent variable is found and then

the inverse transform is calculated to yield the required particular solution.

Example 21.21 Solve the differential equation

dx

dt
+ x = 0 x(0) = 3

using Laplace transforms.
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Solution The Laplace transform of each term is found:

L(x) = X (s), L

(
dx

dt

)
= sX (s)− x(0) = sX (s)− 3

Note that we write X (s) to draw attention to the fact that X is a function of s; X (s)

does not mean X multiplied by s. Taking the Laplace transform of the equation

yields

sX (s)− 3 + X (s) = 0

The equation is rearranged for X (s):

sX (s)+ X (s) = 3

(s+ 1)X (s) = 3

X (s) =
3

s+ 1

Taking the inverse Laplace transform of both sides of the equation gives

x(t) = 3 e−t

Example 21.22 Solve

dx

dt
+ x = 9 e2t x(0) = 3

using the Laplace transform.

Solution The Laplace transform of both sides of the equation is found:

sX (s)− x(0)+ X (s) =
9

s− 2

sX (s)− 3 + X (s) =
9

s− 2

(s+ 1)X (s) =
9

s− 2
+ 3

(s+ 1)X (s) =
3(s+ 1)

s− 2

X (s) =
3

s− 2

Taking the inverse Laplace transform yields

x(t) = 3 e2t
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Engineering application 21.3

RL circuit with ramp input

Recall from Engineering application 19.3 the differential equation for an RL circuit

with a unit ramp input is given by

iR+ L
di

dt
= t t > 0 i(0) = 0

Use the Laplace transform to solve this equation.

Solution

Let

L(i(t)) = I(s)

Then

L

(
di

dt

)
= sI(s)− i(0) = sI(s)− 0 = sI(s)

From Table 21.1 we see that

L(t) =
1

s2

We note that R and L are constants. We can now take the Laplace transform of the

given equation. This gives

I(s)R+ LsI(s) =
1

s2

This equation is solved for I(s):

I(s)(R+ Ls) =
1

s2

I(s) =
1

s2(R+ Ls)

In order to take the inverse Laplace transform and hence �nd i(t) we express I(s) as

the sum of its partial fractions. The expression

1

s2(R+ Ls)

has a repeated linear factor, s2 in the denominator, giving rise to partial fractions

A

s
+
B

s2

The linear factor, R+ Ls, gives rise to a partial fraction of the form

C

R+ Ls

Hence

I(s) =
1

s2(R+ Ls)
=
A

s
+
B

s2
+

C

R+ Ls ➔
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The unknown constants, A, B and C, need to be expressed in terms of the known

constants R and L. Multiplying the above equation by s2(R+ Ls) yields

1 = As(R+ Ls)+ B(R+ Ls)+Cs2 (1)

Letting s = 0 in Equation (1) gives

1 = BR

and so B =
1

R
.

We note that when s = −
R

L
then R+Ls is 0. Hence letting s = −

R

L
in Equation (1)

gives

1 = C

(
−
R

L

)2

from which C =
L2

R2

Comparing the coef�cient of s on both sides of Equation (1) gives

0 = AR+ BL

A = −
BL

R
= −

L

R2

Substituting the expressions for A, B andC into the expression for I(s) gives

I(s) = −
L

R2s
+

1

Rs2
+

L2

R2(R+ Ls)

In readiness for taking inverse Laplace transforms we write the �nal term as follows:

L2

R2(R+ Ls)
=

L2

R2L (R/L+ s)
=

L

R2 (R/L+ s)

Hence

I(s) = −
L

R2s
+

1

Rs2
+

L

R2 (R/L+ s)

Taking the inverse Laplace transform yields

i(t) = −
L

R2
+

t

R
+

L

R2
e−(R/L)t t > 0

This may be rearranged as

i(t) =
t

R
+

L

R2
(e−(R/L)t − 1) t > 0

Example 21.23 Solve

y′′ − y = −t2 y(0) = 2, y′(0) = 0

using the Laplace transform.

Solution Let L(y) = Y (s). Then using the result stated in Section 21.5 we have

L(y′′) = s2Y (s)− sy(0)− y′(0) = s2Y (s)− 2s
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We also note that

L(−t2) = −
2

s3

The Laplace transform of the differential equation is taken. This yields

s2Y (s)− 2s− Y (s) = −
2

s3

The equation is rearranged for Y (s):

(s2 − 1)Y (s) = −
2

s3
+ 2s

=
2(s4 − 1)

s3

=
2(s2 − 1)(s2 + 1)

s3

By dividing the equation by (s2 − 1) we obtain

Y (s) =
2(s2 − 1)(s2 + 1)

s3(s2 − 1)
=

2(s2 + 1)

s3

=
2s2

s3
+

2

s3
=

2

s
+

2

s3

Taking the inverse Laplace transform gives

y(t) = 2 + t2

Example 21.24 Solve

y′′ + y′ − 2y = −2 y(0) = 2, y′(0) = 1

Solution Let L(y) = Y (s). Then

L(y′) = sY (s)− y(0) = sY (s)− 2

L(y′′) = s2Y (s)− sy(0)− y′(0) = s2Y (s)− 2s− 1

We also note that

L(−2) = −
2

s

We can now take the Laplace transform of the differential equation to get

s2Y (s)− 2s− 1 + sY (s)− 2 − 2Y (s) = −
2

s

and so

(s2 + s− 2)Y (s) = −
2

s
+ 2s+ 3

(s− 1)(s+ 2)Y (s) =
2s2 + 3s− 2

s
=
(2s− 1)(s+ 2)

s

Dividing the equation by (s− 1)(s+ 2) gives

Y (s) =
(2s− 1)(s+ 2)

s(s− 1)(s+ 2)
=

2s− 1

s(s− 1)
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The expression,
2s− 1

s(s− 1)
, is written as its partial fractions:

Y (s) =
1

s
+

1

s− 1

Taking the inverse Laplace transform yields

y(t) = 1 + et

Example 21.25 Solve

x′′ + 2x′ + 2x = e−t x(0) = x′(0) = 0

using Laplace transforms.

Solution Taking the Laplace transform of both sides:

s2X (s)− sx(0)− x′(0)+ 2(sX (s)− x(0))+ 2X (s) =
1

s+ 1

Therefore,

(s2 + 2s+ 2)X (s) =
1

s+ 1
since x(0) = x′(0) = 0

X (s) =
1

(s+ 1)(s2 + 2s+ 2)
=

1

(s+ 1)(s− a)(s− b)

where a = −1 + j, b = −1 − j. Using partial fractions gives

X (s) =
1

s+ 1
−

1

2

(
1

s− a
+

1

s− b

)

Taking the inverse Laplace transform

x(t) = e−t −
1

2
(eat + ebt )

= e−t −
1

2
(e(−1+j)t + e(−1−j)t )

= e−t −
e−t

2
(ejt + e−jt )

= e−t −
e−t

2
(cos t + j sin t + cos t − j sin t)

= e−t − e−t cos t

Example 21.26 Solve

x′′ − 5x′ + 6x = 6t − 4 x(0) = 1, x′(0) = 2

Solution The Laplace transform of both sides of the equation is found. Let L{x} = X (s).

s2X (s)− sx(0)− x′(0)− 5(sX (s)− x(0))+ 6X (s) =
6

s2
−

4

s

(s2 − 5s+ 6)X (s) =
6

s2
−

4

s
+ s− 3 =

s3 − 3s2 − 4s+ 6

s2
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X (s) =
s3 − 3s2 − 4s+ 6

s2(s2 − 5s+ 6)
=
s3 − 3s2 − 4s+ 6

s2(s− 2)(s− 3)

=
A

s
+
B

s2
+

C

s− 2
+

D

s− 3

The constants A,B,C and D are evaluated in the usual way:

X (s) =
1

6s
+

1

s2
+

3

2(s− 2)
−

2

3(s− 3)

Taking the inverse Laplace transform yields

x(t) =
1

6
+ t +

3

2
e2t −

2

3
e3t

Engineering application 21.4

Discharge of a capacitor through a load resistor

In Engineering application 2.8, we examined the variation in voltage across a capac-

itor, C, when it was switched in series with a resistor, R, at time t = 0. We stated a

relationship for the time-varying voltage, v, across the capacitor. Prove this relation-

ship. Refer to the example for details of the circuit.

Solution

First we must derive a differential equation for the circuit. Using Kirchhoff’s voltage

law and denoting the voltage across the resistor by vR we obtain

v + vR = 0

Using Ohm’s law and denoting the current in the circuit by i we obtain

v + iR = 0

For the capacitor,

i = C
dv

dt

Combining these equations gives

v + RC
dv

dt
= 0

We now take the Laplace transform of this equation. Using L{v} = V (s) we obtain

V (s)+ RC(sV (s)− v(0)) = 0

V (s)(1 + RCs) = RCv(0)

V (s) =
RCv(0)

1 + RCs
=

v(0)

1

RC
+ s

Taking the inverse Laplace transform of the equation yields

v = v(0) e−t/(RC) t > 0

This is equivalent to the relationship stated in Engineering application 2.8.
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Engineering application 21.5

Electronic thermometer measuring oven temperature

Many engineering systems can be modelled by a �rst-order differential equation.

The time constant is a measure of the rapidity with which these systems respond to

a change in input. Suppose an electronic thermometer is used to measure the tem-

perature of an oven. The sensing element does not respond instantly to changes in

the oven temperature because it takes time for the element to heat up or cool down.

Provided the electronic circuitry does not introduce further time delays then the dif-

ferential equation that models the thermometer is given by

τ
dvm
dt

+ vm = vo

where vm = measured temperature, vo = oven temperature, τ = time constant of the

sensor. For convenience the temperature is measured relative to the ambient room

temperature, which forms a ‘base line’ for temperature measurement.

Suppose the sensing element of an electronic thermometer has a time constant

of 2 seconds. If the temperature of the oven increases linearly at the rate of 3 ◦C s−1

starting from an ambient room temperature of 20 ◦C at t = 0, calculate the response of

the thermometer to the changing oven temperature. State the maximum temperature

error.

Solution

Taking Laplace transforms of the equation gives

τ (sVm(s)− vm(0))+Vm(s) = Vo(s)

vm(0) = 0 as the oven temperature and sensor temperature are identical at t = 0.

Therefore,

τ sVm(s)+Vm(s) = Vo(s)

Vm(s) =
Vo(s)

1 + τ s
(21.1)

For this example, the input to the thermometer is a temperature ramp with a slope of

3 ◦C s−1. Therefore, vo = 3t for t > 0:

Vo(s) = L{vo(t)} =
3

s2
(21.2)

Combining Equations (21.1) and (21.2) yields

Vm(s) =
3

s2(1 + τ s)
=

3

s2(1 + 2s)
since τ = 2

Then using partial fractions, we have

Vm(s) =
3

s2
−

6

s
+

12

1 + 2s

Taking the inverse Laplace transform yields

vm = 3t − 6 + 6 e−0.5t t > 0
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This response consists of three parts:

(1) a decaying transient, 6 e−0.5t , which disappears with time;

(2) a ramp, 3t, with the same slope as the oven temperature;

(3) a �xed negative temperature error, −6.

Therefore, after the transient has decayed the measured temperature follows the oven

temperature with a �xed negative error. It is instructive to obtain the temperature error

by an alternative method. Given that the temperature error is ve, then

ve = vm − vo

and

Ve(s) = Vm(s)−Vo(s) (21.3)

Combining Equations (21.1) and (21.3) yields

Ve(s) =
Vo(s)

1 + τ s
−Vo(s) =

−τ sVo(s)

1 + τ s
(21.4)

Combining Equations (21.2) and (21.4) yields

Ve(s) =
−τ s

1 + τ s

3

s2
=

−3τ

s(1 + τ s)

The �nal value theorem can be used to �nd the steady-state error:

lim
t→∞

ve(t) = lim
s→0

sVe(s) = lim
s→0

[
−3τ s

s(1 + τ s)

]
= −3τ = −6

that is, the steady-state temperature error is −6 ◦C. It is important to note that the

�nal value theorem can only be used if it is known that the time function tends to a

limit as t → ∞. In many cases engineers know this is the case from experience.

The Laplace transform technique can also be used to solve simultaneous differential

equations.

Example 21.27 Solve the simultaneous differential equations

x′ + x+
y′

2
= 1 x(0) = y(0) = 0

x′

2
+ y′ + y = 0

Solution Take the Laplace transforms of both equations:

sX (s)− x(0)+ X (s)+
sY (s)− y(0)

2
=

1

s
sX (s)− x(0)

2
+ sY (s)− y(0)+ Y (s) = 0

These are rearranged to give

(s+ 1)X (s)+
sY (s)

2
=

1

s

sX (s)

2
+ (s+ 1)Y (s) = 0
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These simultaneous algebraic equations need to be solved for X (s) and Y (s). By

Cramer’s rule (see Section 8.7.2)

Y (s) =

∣∣∣∣
s+ 1 1/s

s/2 0

∣∣∣∣
∣∣∣∣
s+ 1 s/2

s/2 s+ 1

∣∣∣∣
=

−1/2

(s+ 1)2 − s2/4

= −
1

2

{
1

3s2/4 + 2s+ 1

}

= −
1

2

{
4

3s2 + 8s+ 4

}

= −
1

2

{
4

(3s+ 2)(s+ 2)

}

Using partial fractions we �nd

Y (s) = −
1

2

{
3

3s+ 2
−

1

s+ 2

}

= −
1

2

{
1

s+ 2
3

−
1

s+ 2

}

and hence

y(t) =
1

2
(e−2t − e−2t/3)

Similarly,

X (s) =
4(s+ 1)

s(3s+ 2)(s+ 2)
=

1

s
−

1

2
(
s+ 2

3

) −
1

2(s+ 2)

and so

x(t) = 1 −
1

2
(e−2t/3 + e−2t )

EXERCISES 21.10

1 Use Laplace transforms to solve

(a) x′ + x = 3,

x(0) = 1

(b) 3
dx

dt
+ 4x = 2,

x(0) = 2

(c) 2
dy

dt
+ 4y = 1,

y(0) = 4

(d) 4
dy

dt
+ 8y = 7,

y(0) = 6

(e) y′′ + y′ + y = 1,

y(0) = 1, y′(0) = 3

2 Use Laplace transforms to solve

(a) x′′ + x = 2t,

x(0) = 0, x′(0) = 5

(b) 2x′′ + x′ − x = 27 cos 2t + 6 sin 2t,

x(0) = −1, x′(0) = −2
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(c) x′′ + x′ − 2x = 1 − 2t,

x(0) = 6, x′(0) = −11

(d) x′′ − 4x = 4(cos 2t − 1),

x(0) = 1, x′(0) = 0

(e) x′ − 2x− y′ + 2y = −2t2 + 7,

x′

2
+ x+ 3y′ + y = t2 + 6

x(0) = 3, y(0) = 6

(f) x′ + x+ y′ + y = 6 et ,

x′ + 2x− y′ − y = 2 e−t

x(0) = 2, y(0) = 1

3 Using Laplace transforms �nd the particular

solution of

d2y

dt2
− 5

dy

dt
− 6y = 14 e−t

satisfying y = 3 and
dy

dt
= 8 when t = 0.

Solutions

1 (a) x(t) = 3 − 2 e−t

(b)
3

2
e−4t/3 +

1

2

(c)
1

4
+

15

4
e−2t

(d) y(t) =
7

8
+

41

8
e−2t

(e) y(t) = 1 + 3.464 e−0.5t sin 0.866t

2 (a) 3 sin t + 2t

(b) −3 cos 2t + 2 e−t

(c) t + 6 e−2t

(d)
e−2t

4
+

e2t

4
−

1

2
cos 2t + 1

(e) x = t2 + 3, y = 6 − t

(f) x(t) =
6 et

5
+ 2 e−t −

6 e−3t/2

5
,

y(t) =
6 e−3t/2

5
− 2 e−t +

9 et

5

3 −2 te−t +
8 e−t

7
+

13e6t

7

21.11 TRANSFER FUNCTIONS

It is possible to obtain a mathematical model of an engineering system that consists of

one or more differential equations. This approach was introduced in Section 20.4. We

have already seen that the solution of differential equations can be found by using the

Laplace transform. This leads naturally to the concept of a transfer function which will

be developed in this section. Consider the differential equation

dx(t)

dt
+ x(t) = f (t) x(0) = x0 (21.5)

and assume that it models a simple engineering system. Then f (t) represents the input to

the system and x(t) represents the output, or response of the system to the input f (t). For

reasons that will be explained below it is necessary to assume that the initial conditions

associated with the differential equation are zero. In Equation (21.5) this means we take

x0 to be zero. Taking the Laplace transform of Equation (21.5) yields

sX (s)− x0 + X (s) = F(s)

(1 + s)X (s) = F(s) assuming x0 = 0

so that

X (s)

F(s)
=

1

1 + s

The function, X (s)/F(s), is called a transfer function. It is the ratio of the Laplace

transform of the output to the Laplace transform of the input. It is often denoted by
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G(s). Therefore, for Equation (21.5),

G(s) =
1

1 + s

The concept of a transfer function is very useful in engineering. It provides a simple

algebraic relationship between the input and the output. In other words, it allows the

analysis of dynamic systems based on the differential equation to proceed in a relatively

straightforward manner. Earlier we noted that it was necessary to assume zero initial

conditions in order to form the transfer function. Without such an assumption, the re-

lationship between the input and the output would have been more complicated. What

is more, the relationship would vary depending on how much energy is stored in the

system at t = 0. By assuming zero initial conditions, the transfer function depends

purely on the system characteristics. Such an approach, whilst very convenient, does

have its limitations. The transfer function approach is useful for analysing the effect of

an input to the system. However, if one requires the effect of the combination of a system

input and initial conditions, then it is necessary to carry out a full solution of the differ-

ential equation as we did in Section 21.10. In practice there are many cases where the

simpli�ed treatment provided by the transfer function is perfectly acceptable. An alter-

native approach is provided by state-space models, which we examined in Section 20.4.

These provide a natural way of handling initial conditions. In order to solve a state-space

model where there are initial conditions, all that is necessary is to use a non-zero initial

value of the state vector. Recall that in Section 20.4 we only set up the state-space models

and did not solve them. However, the method for the standard solution of a state-space

model can be found in many advanced textbooks on control and systems engineering.

Example 21.28 Find the transfer functions of the following equations assuming that f (t) represents the

input and x(t) represents the output:

(a)
dx(t)

dt
− 4x(t) = 3 f (t), x(0) = 0

(b)
d2x(t)

dt2
+ 3

dx(t)

dt
− x(t) = f (t),

dx(0)

dt
= 0, x(0) = 0

Solution (a) Taking Laplace transforms of the differential equation gives

sX (s)− x(0)− 4X (s) = 3F(s)

(s− 4)X (s) = 3F(s) as x(0) = 0

X (s)

F(s)
= G(s) =

3

s− 4

(b) Taking Laplace transforms of the differential equation gives

s2X (s)− sx(0)−
dx(0)

dt
+ 3(sX (s)− x(0))− X (s) = F(s)

(s2 + 3s− 1)X (s) = F(s) as
dx(0)

dt
= 0 and x(0) = 0

X (s)

F(s)
= G(s) =

1

s2 + 3s− 1

When creating a mathematical model of an engineering system it is often convenient to

think of the variables within the system as signals and elements of the system as means



21.11 Transfer functions 661

by which these signals are modi�ed. The word signal is used in a very general sense

and is not restricted to, say, voltage. On this basis each of the elements of the system

can be modelled by a transfer function. A transfer function de�nes the relationship be-

tween an input signal and an output signal. The relationship is de�ned in terms of the

Laplace transforms of the signals. The advantage of this is that the rules governing the

R(s) Y(s)
G(s)

Figure 21.3

The relationship

Y (s) = G(s)R(s) holds

for a single block.

manipulation of transfer functions are then of a purely algebraic nature. Consider

Figure 21.3. If

R(s) = L{r(t)} = Laplace transform of the input signal

Y (s) = L{y(t)} = Laplace transform of the output signal

G(s) = transfer function

then

Y (s) = G(s)R(s)

Transfer functions are represented schematically by rectangular blocks, while signals

are represented as arrows. Engineers often speak of the time domain and the s do-

main in order to distinguish between the two mathematical representations of an en-

gineering system. However, it is important to emphasize the equivalence between the

two domains.

Often when constructing a mathematical model of a system using transfer functions,

it is convenient �rst to obtain transfer functions of the elements of the system and then

combine them. Before the overall transfer function is calculated a block diagram is drawn

which shows the relationship between the various transfer functions. Block diagrams

consist of three basic components. These are shown in Figure 21.4.

R(s) R(s)

X(s)

Y(s)Y(s)

Y(s)

+

–

R(s) – X(s)Y(s)
G(s)

(a) (b) (c)

Figure 21.4

The three components of block diagrams. (a) A basic block; the block contains a

transfer function which relates the input and output signals. (b) A summing point.

(c) A take-off point.

We have already examined the basic block which is governed by the relationship

Y (s) = G(s)R(s). A summing point adds together the incoming signals to the summing

point and produces an outgoing signal. The polarity of the incoming signals is denoted

by means of a positive or negative sign. There can be several incoming signals but only

one outgoing signal. A take-off point is a point where a signal is tapped. This process

of tapping the signal has no effect on the signal value; that is, the tap does not load the

original signal. There are several rules governing the manipulation of block diagrams.

Only two will be considered here.

21.11.1 Rule 1. Combining two transfer functions in series

Consider Figure 21.5. The following relationships hold:

X (s) = G1(s)R(s) Y (s) = G2(s)X (s)
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R(s) X(s)
G1(s)

Y(s)
G2(s)

Figure 21.5

Two blocks in series.

R(s) Y(s)
G1(s) G2(s)

Figure 21.6

Figure 21.5 is simpli�ed to a single block.

Eliminating X (s) from these equations yields

Y (s) = G1(s)G2(s)R(s)

Y (s)

R(s)
= G1(s)G2(s)

Finally the overall transfer function, G(s), is given by G1(s)G2(s) as shown in

Figure 21.6.

For two transfer functions in series the overall transfer function is given by

G(s) = G1(s)G2(s)

21.11.2 Rule 2. Eliminating a negative feedback loop

Consider Figure 21.7 which shows a negative feedback loop. It is so called because the

output signal is ‘fed back’ and subtracted from the input signal. Such loops are common

in a variety of engineering systems. The quantities X1(s) and X2(s) represent intermedi-

ate signals in the system. We wish to obtain an overall transfer function for this system

relating Y (s) and R(s). For the two transfer functions the following hold:

Y (s) = G(s)X2(s) (21.6)

X1(s) = H(s)Y (s) (21.7)

For the summing point

X2(s) = R(s)− X1(s) (21.8)

Combining Equations (21.7) and (21.8) gives

X2(s) = R(s)− H(s)Y (s) (21.9)

Combining Equations (21.6) and (21.9) gives

Y (s) = G(s)(R(s)− H(s)Y (s)) = G(s)R(s)− G(s)H(s)Y (s)

Y (s)(1 + G(s)H(s)) = G(s)R(s)

Y (s) =
G(s)R(s)

1 + G(s)H(s)

The overall transfer function for a negative feedback loop is given by

Y (s)

R(s)
=

G(s)

1 + G(s)H(s)
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X2(s)

X1(s)

R(s) +

–

Y(s)
G(s)

H(s)

Figure 21.7

Block diagram for a negative feedback loop.

R(s) Y(s)G(s)

1 + G(s)H(s)

Figure 21.8

Simpli�ed block diagram for a negative

feedback loop.

The simpli�ed block diagram for a negative feedback loop is shown in Figure 21.8.

A complicated engineering system may be represented by many differential equa-

tions. The output from one part of the system may form the input to another part. Con-

sider the following example.

Example 21.29 A system is modelled by the differential equations

x′ + 2x = f (t) (21.10)

2y′ − y = x(t) (21.11)

In Equation (21.10) the input is f (t) and the output is x(t). In Equation (21.11), x(t)

is the input and y(t) is the �nal output of the system. Find the overall system transfer

function assuming zero initial conditions.

Solution The output from Equation (21.10) is x(t); this forms the input to Equation (21.11). The

block diagrams for Equations (21.10) and (21.11) are combined into a single block dia-

gram as shown in Figure 21.9.

Using Rule 1, the overall system transfer function can then be found:

G(s) =
Y (s)

F(s)
=

1

(s+ 2)(2s− 1)

This transfer function relates Y (s) and F(s) (see Figure 21.10).

F(s)                       X(s) Y(s)
1

s + 2

1

2s – 1

Figure 21.9

Combined block diagram for

Equations (21.10) and (21.11).

F(s) Y(s)1

(s + 2)(2s – 1)

Figure 21.10

The overall system transfer function.

Example 21.30 A system is represented by the differential equations

2x′ − x = f (t)

y′ + 3y = x(t)

z′ + z = y(t)

The initial input is f (t) and the �nal output is z(t). Find the overall system transfer

function, assuming zero initial conditions.
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Solution The transfer function for each equation is found and combined into one block diagram

(see Figure 21.11). The three blocks are simpli�ed to a single block as shown in Fig-

ure 21.12. The overall system transfer function is

G(s) =
Z(s)

F(s)
=

1

(2s− 1)(s+ 3)(s+ 1)
.

1

2s – 1

F(s) Y(s)
1

s + 3

X(s) Z(s)
1

s + 1

Figure 21.11

Block diagram for the system given in

Example 21.30.

F(s) Z(s)1

(2s – 1)(s + 3)(s + 1)

Figure 21.12

Simpli�ed block diagram for

Example 21.30.

Engineering application 21.6

Transport lag in a system to supply fuel to a furnace

Transport lag is a term used to describe the time delay that may be present in certain

engineering systems. A typical example would be a conveyor belt feeding a furnace

with coal supplied by a hopper (see Figure 21.13). The amount of fuel supplied to

the furnace can be varied by varying the opening at the base of the hopper but there

is a time delay before this changed quantity of fuel reaches the furnace. The time

delay depends on the speed and length of the conveyor. Mathematically, the function

describing the variation in the quantity of fuel entering the furnace is a time-shifted

version of the function describing the variation in the quantity of fuel placed on the

conveyor (see Figure 21.14).

Let

u(t)q(t) = quantity of fuel placed on the conveyor,

where u(t) is the unit step function,

Coal

l

Conveyor velocity, y

Conveyor

Furnace

Figure 21.13

Coal is fed into the furnace via the conveyor

belt.



21.11 Transfer functions 665

d

q(t) q(t – d)

Fuel variation 

(mass of fuel 

per unit length 

of conveyor,

kgm–1)

Time (s)

Figure 21.14

The time delay, d, is introduced by the conveyor belt.

Qd(s)Q(s)
e–sd

Figure 21.15

Block diagram for the

conveyor belt.

u(t − d)q(t − d) = quantity of fuel entering the furnace,

d = time delay introduced by the conveyor,

l = length of conveyor (m),

v = speed of conveyor (m s−1).

The input to the conveyor is u(t)q(t). The output from the conveyor is

u(t − d)q(t − d). If the conveyor is moving at a constant speed then v =
l

d
and

so d =
l

v
. The transfer function that models the conveyor belt can be obtained by

using the second shift theorem:

Qd(s) = L{u(t − d)q(t − d)} = e−sd
L{q(t)} = e−sdQ(s)

The transfer function for the conveyor is shown in Figure 21.15.

Transport lags can cause dif�culty when trying to control a system because of

the delay between taking a control action and its effect being felt. In this example,

increasing the quantity of fuel on the conveyor does not lead to an immediate increase

in fuel entering the furnace. The dif�culty of controlling the furnace temperature

increases as the transport lag introduced by the conveyor increases.

Engineering application 21.7

Position control system

There are many examples of position control systems in engineering, for example

control of the position of a plotter pen, and control of the position of a radio telescope.

The common term for these systems is servo-systems.

Consider the block diagram of Figure 21.16 which represents a simple servo-

system. The actual position of the motor is denoted by 2a(s) in the s domain and

θa(t) in the time domain. The desired position is denoted by2d(s) and θd(t), respec-

tively. The system is a closed loop with negative feedback. The difference between

the desired and the actual position generates an error signal which is fed to a con-

troller with gain K. The output signal from the controller is fed to a servo-motor and

its associated drive circuitry. The aim of the control system is to maintain the actual

position of the motor at a value corresponding to the desired position. In practice, if ➔
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Qd(s)                                                                                Qa(s)
K

0.5

Controller Servo-motor +

drive amplifier

s(s + 1)+
–

Figure 21.16

Position control system.

a new desired position is requested then the system will take some time to attain this

new position. The engineer can choose a value of the controller gain to obtain the

best type of response from the control system. We will examine the effect of varying

K on the response of the servo-system.

We can use Rules 1 and 2 to obtain an overall transfer function for the system.

The forward transfer function is

G(s) =
0.5K

s(s+ 1)
by Rule 1

The overall transfer function
2a(s)

2d(s)
is obtained by Rule 2 with H(s) = 1. So,

2a(s)

2d(s)
=

0.5K

s(s+ 1)

1 +
0.5K(1)

s(s+ 1)

=
0.5K

s(s+ 1)+ 0.5K
=

0.5K

s2 + s+ 0.5K

Let us now examine the effect of varying K. We will consider three values,

K = 0.375, K = 0.5, K = 5, and examine the response of the system to a unit step

input in each case.

For K = 0.375

2a(s)

2d(s)
=

0.1875

s2 + s+ 0.1875

With 2d(s) =
1

s
, then

2a(s) =
0.1875

(s2 + s+ 0.1875)s
=

1

s
+

0.5

s+ 0.75
−

1.5

s+ 0.25

using partial fractions. So,

θa(t) = 1 + 0.5 e−0.75t − 1.5 e−0.25t t > 0

This is shown in Figure 21.17. Engineers usually refer to this as an overdamped

response. The response does not overshoot the �nal value.

For K = 0.5

2a(s)

2d(s)
=

0.25

s2 + s+ 0.25

2a(s) =
0.25

s(s2 + s+ 0.25)
=

1

s
−

1

s+ 0.5
−

0.5

(s+ 0.5)2

θa(t) = 1 − e−0.5t − 0.5te−0.5t t > 0
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K = 5

t

K = 0.5
K = 0.375

ua(t)

Figure 21.17

Time response for various values of K.

This is shown in Figure 21.17 and is termed a critically damped response. It corre-

sponds to the fastest rise time of the system without overshooting.

For K = 5

2a(s)

2d(s)
=

2.5

s2 + s+ 2.5

2a(s) =
2.5

s(s2 + s+ 2.5)

Rearranging to enable standard forms to be inverted gives

2a(s) =
1

s
−

s+ 0.5

(s+ 0.5)2 + 1.52
−

0.5

(s+ 0.52)+ 1.52

θa(t) = 1 − e−0.5t cos 1.5t − 1
3
e−0.5t sin 1.5t

The trigonometric terms can be expressed as a single sinusoid using the techniques

given in Section 3.7. Thus,

θa(t) = 1 − 1.054 e−0.5t sin(1.5t + 1.249) for t > 0

This is shown in Figure 21.17 and is termed an underdamped response. The system

overshoots its �nal value.

In a practical system it is common to design for some overshoot, provided it is not

excessive, as this enables the desired value to be reachedmore quickly. It is interesting

to compare the system response for the three cases with the nature of their respective

transfer function poles. For the overdamped case the poles are real and unequal, for

the critically damped case the poles are real and equal, and for the underdamped

case the poles are complex. Engineers rely heavily on pole positions when designing

a system to have a particular response. By varying the value of K it is possible to

obtain a range of system responses and corresponding pole positions.

EXERCISES 21.11

1 Find the transfer function for each of the following

equations assuming zero initial conditions:

(a) x′′ + x = f (t)

(b) 2
d2x

dt2
+

dx

dt
− x = f (t)

(c) 2
d2y

dt2
+ 3

dy

dt
+ 6y = p(t)

(d) 3
d3y

dt3
+ 6

d2y

dt2
+ 8

dy

dt
+ 4y = g(t)

(e) 6
d2y

dt2
+ 8

dy

dt
+ 4y = 3

d f

dt
+ 4 f ,

f is the system input

(f) 6x′′′ + 2x′′ − x′ + 4x = 4 f ′′ + 2 f ′ + 6 f , f is the

system input
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Solutions

1 (a)
1

s2 + 1
(b)

1

2s2 + s− 1

(c)
1

2s2 + 3s+ 6
(d)

1

3s3 + 6s2 + 8s+ 4

(e)
3s+ 4

6s2 + 8s+ 4

(f )
4s2 + 2s+ 6

6s3 + 2s2 − s+ 4

21.12 POLES, ZEROS AND THE s PLANE

Most transfer functions for engineering systems can be written as rational functions: that

is, as ratios of two polynomials in s, with a constant factor, K:

G(s) = K
P(s)

Q(s)

P(s) is of order m, and Q(s) is of order n; for a physically realizable system m < n.

Hence G(s) may be written as

G(s) =
K(s− z1)(s− z2) . . . (s− zm)

(s− p1)(s− p2) . . . (s− pn)

The values of s that make G(s) zero are known as the system zeros and correspond to

the roots of P(s) = 0, that is s = z1, z2, . . . , zm. The values of s that make G(s) in�nite

are known as the system poles and correspond to the roots of Q(s) = 0, that is s =

p1, p2, . . . , pn. As we have seen, poles may be real or complex. Complex poles always

occur in complex conjugate pairs whenever the polynomial Q(s) has real coef�cients.

Engineers �nd it useful to plot these poles and zeros on an s plane diagram. A complex

plane plot is used with, conventionally, a real axis label of σ and an imaginary axis label

of jω. Poles are marked as crosses and zeros are marked as small circles. Figure 21.18

shows an s plane plot for the transfer function

G(s) =
3(s− 3)(s+ 2)

(s+ 1)(s+ 1 + 3j)(s+ 1 − 3j)

The bene�t of this approach is that it allows the character of a linear system to be deter-

mined by examining the s plane plot. In particular, the transient response of the system

can easily be visualized by the number and positions of the system poles and zeros.

jv

s plane
3

–3

–2 –1  3 s

3

3

3

Figure 21.18

Poles and zeros plotted for the transfer function:

G(s) =
3(s− 3)(s+ 2)

(s+ 1)(s+ 1 + 3j)(s+ 1 − 3j)
.
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Example 21.31 Find the poles of
s− 2

(s2 + 2s+ 5)(s+ 1)
.

Solution The denominator is factorized into linear factors:

(s2 + 2s+ 5)(s+ 1) = (s− p1)(s− p2)(s− p3)

where p1 = −1 + 2j, p2 = −1 − 2j, p3 = −1. The poles are −1 + 2j,−1 − 2j,−1.

If X (s) =
1

s− p1
where the pole p1 is given by a+ bj, then

x(t) = ep1t = eatebtj = eat (cos bt + j sin bt)

Hence the real part of the pole, a, gives rise to an exponential term and the imaginary

part, b, gives rise to an oscillatory term. If a < 0 the response, x(t), will decrease to zero

as t → ∞.

Consider the Laplace transform in Example 21.25. There are three poles: −1, −1+ j

and −1 − j. The real pole is negative, and the real parts of the complex poles are also

negative. This ensures the response, x(t), decreases with time. The imaginary part of the

complex poles gives rise to the oscillatory term, cos t. The characteristics of poles and

the corresponding responses are now discussed.

Given a system with transfer function G(s), input signal R(s) and output signalC(s),

then
C(s)

R(s)
= G(s)

that is,

C(s) = G(s)R(s)

and so

C(s) =
K(s− z1)(s− z2) . . . (s− zm)R(s)

(s− p1)(s− p2) . . . (s− pn)

The poles and zeros of the system are independent of the input that is applied. All that

R(s) contributes to the expression forC(s) is extra poles and zeros.

Consider the case where R(s) =
1

s
, corresponding to a unit step input:

C(s) =
K(s− z1)(s− z2) . . . (s− zm)

(s− p1)(s− p2) . . . (s− pn)s

=
A1

s− p1
+

A2

s− p2
+ · · · +

An

s− pn
+
B1

s

where A1,A2, . . . ,An and B1 are constants. Taking inverse Laplace transforms yields

c(t) = A1e
p
1
t + A2 e

p
2
t + · · · + Ane

p
n
t + B1

If the system is stable then p1, p2, . . . , pn will have negative real parts and their contri-

bution to c(t) will vanish as t → ∞.

The response caused by the system poles is often called a transient response because

it decreases with time for a stable system. The component of the transient response due

to a particular pole is often termed its transient. Notice that the form of the transient

response is independent of the system input and is determined by the nature of the system

poles. It is now possible to derive a series of rules relating the transient response of the

system to the positions of the system poles in the s plane.
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jv

s t
33

s plane

Transient 

response

Figure 21.19

A pole with a negative real part leads to a decaying transient while a

pole with a zero real part leads to a transient that does not decay with

time.

jv

s t
33

s plane

Transient 

response

Figure 21.20

The further a pole is from the imaginary axis, the quicker the decay of

its transient.

21.12.1 Rule 1

The polesmay be either real or complex but for a particular pole it is necessary for the real

part to be negative if the transient caused by that pole is to decay with time. Otherwise the

transient response will increase with time and the system will be unstable, a condition

engineers usually design to avoid. In simple terms this means that the poles of a linear

system must all lie in the left half of the s plane for stability. Poles on the imaginary

axis lead to marginal stability as the transients introduced by such poles do not grow or

decay. This is illustrated in Figure 21.19.

21.12.2 Rule 2

The further a pole is to the left of the imaginary axis the faster its transient decays (see

Figure 21.20). This is because its transient contains a larger negative exponential term.

For example, e−5t decays faster than e−2t . The poles near to the imaginary axis are termed

the dominant poles as their transients take the longest to decay. It is quite common for

engineers to ignore the effect of poles that are more than �ve or six times further away

from the imaginary axis than the dominant poles.

21.12.3 Rule 3

For a real system, poles with imaginary components occur as complex conjugate pairs.

The transient resulting from this pair of poles has the form of a sinusoidal term
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jv

s

3

3

s plane

t

Transient 

response

Figure 21.21

A pair of stable complex poles gives rise to a decaying sinusoid

transient.

multiplying an exponential term. For a pair of stable poles, that is negative real part,

the transient can be sketched by drawing a sinusoid con�ned within a ‘decaying expo-

nential envelope’ (see Figure 21.21). The reason for this is that when the sinusoidal term

has a value of 1 the transient touches the decaying exponential. When the sinusoidal

term has a value of −1 the transient touches the reflection in the t axis of the decaying

exponential. The larger the imaginary component of the pair of poles, the higher the

frequency of the sinusoidal term.

It should now be clear how useful a concept the s plane plot is when analysing the

response of a linear system. A complex system may have many poles and zeros but by

plotting them on the s plane the engineer begins to get a feel for the character of the

system. The form of the transients relating to particular poles or pairs of poles can be

obtained using the above rules. The magnitude of the transients, that is the values of the

coef�cients A1,A2, . . . ,An, depends on the system zeros.

It can be shown that having a zero near to a pole reduces themagnitude of the transient

relating to that pole. Engineers often deliberately introduce zeros into a system to reduce

the effect of unwanted poles. If a zero coincides with the pole, it cancels it and the

transient corresponding to that pole is eliminated.

Engineering application 21.8

Asymptotic Bode plot of a transfer function with real poles
and zeros

Recall that the Bode magnitude plot of a simple linear circuit was examined in

Engineering application 2.14. It is possible to construct a plot of a more complicated

transfer function by following some simple steps.

Here we consider a transfer function with only real poles and zeros

G(s) = K

(
s− z1

) (
s− z2

)
· · ·
(
s− zm

)

s
(
s− p1

) (
s− p2

)
· · ·
(
s− pn

)

where z1, z2 . . . are the system zeros and p1, p2 . . . are the system poles.

The �rst stage is to obtain an expression for the frequency response of the system

by substituting s = jω

G (jω) = K

(
jω − z1

) (
jω − z2

)
· · ·
(
jω − zm

)

jω
(
jω − p1

) (
jω − p2

)
· · ·
(
jω − pn

)
➔
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We note that
(
jω − z1

)
can be written as −z1

(
jω

−z1
+ 1

)
. Applying this process

to each bracket in the numerator and denominator yields

G (jω) = K

(
−z1

) (
−z2

)
· · ·
(
−zm

)
(
−p1

) (
−p2

)
· · ·
(
−pn

)

×

(
jω

−z1
+ 1

) (
jω

−z2
+ 1

)
. . .

(
jω

−zm
+ 1

)

jω

(
jω

−p1
+ 1

) (
jω

−p2
+ 1

)
. . .

(
jω

−pn
+ 1

)

The Bode plot is a logarithmic plot of 20 log10|G(jω)|. So we wish to plot

20 log10 |G (jω)| = 20 log10

∣∣∣∣∣K
(
−z1

) (
−z2

)
· · ·
(
−zm

)
(
−p1

) (
−p2

)
· · ·
(
−pn

)

·

(
jω

−z1
+ 1

) (
jω

−z2
+ 1

)
. . .

(
jω

−zm
+ 1

)

jω

(
jω

−p1
+ 1

) (
jω

−p2
+ 1

)
. . .

(
jω

−pn
+ 1

)

∣∣∣∣∣∣∣∣

Using the laws of logarithms (page 86) this can be rewritten as

20 log10 |G (jω)|

= 20 log10

∣∣∣∣∣K
(
−z1

) (
−z2

)
· · ·
(
−zm

)
(
−p1

) (
−p2

)
· · ·
(
−pn

)
∣∣∣∣∣+ 20 log10

∣∣∣∣
jω

−z1
+ 1

∣∣∣∣

+ 20 log10

∣∣∣∣
jω

−z2
+ 1

∣∣∣∣+ · · · + 20 log10

∣∣∣∣
jω

−zm
+ 1

∣∣∣∣

− 20 log10 |jω| − 20 log10

∣∣∣∣
jω

−p1
+ 1

∣∣∣∣

− 20 log10

∣∣∣∣
jω

−p2
+ 1

∣∣∣∣− · · · − 20 log10

∣∣∣∣
jω

−pn
+ 1

∣∣∣∣

In this form the contribution of individual poles and zeros can be studied.

The term 20 log10

∣∣∣∣∣K
(
−z1

) (
−z2

)
· · ·
(
−zm

)
(
−p1

) (
−p2

)
· · ·
(
−pn

)
∣∣∣∣∣ is constant. It has no dependence on

frequency, ω.

The term 20 log10 |jω| has a value of 0 at ω = 1. At ω = 10 it has a value of 20, at

ω = 100 it has a value of 40, and so on. At ω = 0.1 it has a value of −20, at 0.01, a

value of −40, and so on. If we plot this term by itself using a logarithmic frequency

scale it would therefore be a straight line passing through the point whereω = 1 with

a gradient of 20 dB for each decade, or factor of 10, increase in frequency.

The term 20 log10

∣∣∣∣
jω

−z1
+ 1

∣∣∣∣ can be examined by considering the in	uence at dif-

ferent frequencies. If

∣∣∣∣
ω

z1

∣∣∣∣ ≪ 1, then 20 log10

∣∣∣∣
jω

−z1
+ 1

∣∣∣∣ ≈ 20 log10 |1| = 0. So the

term has very little in	uence.
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Now consider

∣∣∣∣
ω

z1

∣∣∣∣ = 10. Then 20 log10

∣∣∣∣
jω

−z1
+ 1

∣∣∣∣ ≈ 20 log10 |j10| = 20. It can

be shown by successively considering

∣∣∣∣
ω

z1

∣∣∣∣ = 100, 1000, 10 000, . . . that for every

decade multiplication in frequency (for fixed z1) the term increases by another 20 dB.

Graphically, it approximates to a straight line that increases at 20 dB for every decade

(×10) change in frequency. The point at which this straight line intersects the ω axis

is called the breakpoint.

The term −20 log10

∣∣∣∣
jω

−p1
+ 1

∣∣∣∣ and others like it have similar properties to those

discussed for the term involving zeros. The only difference is the straight line falls

by 20 dB for every decade multiplication in frequency away from the breakpoint.

By considering the addition of the terms discussed above we can produce an ap-

proximation to the Bode plot. These approximate lines are asymptotes to which the

actual plots tend as one moves away from the breakpoints. Hence the term asymp-

totic Bode diagram is used.

Consider a practical example of �nding the poles and zeros, and sketching the

transfer function

G(s) =
5000 (s+ 3)

s (s+ 100) (s+ 500)

Firstly we note the position of the poles and zeros by observing that

G(s) =
5000 (s− (−3))

s (s− (−100)) (s− (−500))

There is a single zero at z1 = −3. There are three poles at p1 = 0, p2 = −100,

p3 = −500. The pole at 0 is usually termed the pole at the origin.

The substitution s = jω is made to give

G(jω) =
5000 (jω + 3)

jω (jω + 100) (jω + 500)

The equation is rearranged as

G(jω) =
5000 × 3

100 × 500
·

(
jω

3
+ 1

)

jω

(
jω

100
+ 1

)(
jω

500
+ 1

)

The constant term contributes a gain of

20 log10

∣∣∣∣∣K
(
−z1

) (
−z2

)
· · ·
(
−zm

)
(
−p1

) (
−p2

)
· · ·
(
−pn

)
∣∣∣∣∣ = 20 log10

∣∣∣∣
5000 × 3

100 × 500

∣∣∣∣ = 20 log10 |0.3|

The zero contributes a gain of

20 log10

∣∣∣∣
jω

−z1
+ 1

∣∣∣∣ = 20 log10

∣∣∣∣
jω

3
+ 1

∣∣∣∣

This is approximated by a straight line on the Bode diagram starting at ω = 3 and

increasing at 20 dB per decade.

➔
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The pole at the origin contributes a gain of

−20 log10 |jω|

This is plotted as a straight line with no start or end points, with a slope of −20 dB

per decade passing through ω = 1.

The two other poles contribute a gain of

−20 log10

∣∣∣∣
jω

−p1
+ 1

∣∣∣∣ = −20 log10

∣∣∣∣
jω

100
+ 1

∣∣∣∣

and

−20 log10

∣∣∣∣
jω

−p2
+ 1

∣∣∣∣ = −20 log10

∣∣∣∣
jω

500
+ 1

∣∣∣∣

respectively. The �rst of these is approximated by a linewith slope−20 dB per decade

starting at ω = 100, the second has the same gradient and starts at ω = 500.

The individual contributions to the overall plot are shown in Figure 21.22. Notice

the starting points of the asymptotes -- the breakpoints -- and their correspondence to

the positions of the poles and zeros.

v
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–20 log10 | jv|

20 log10 |0.3|
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d
B

–20 

–40

–60 

–80

+ 1

500

–20 log10   jv + 1

100

–20 log10   jv + 1

Figure 21.22

Contributions of the individual terms to the Bode plot. Dotted lines are the asymptotic

approximations.

The asymptotes can now be added together to form a combined graph which is

shown in Figure 21.23. Also plotted on the same graph is an exact Bode plot of the

transfer function obtained using a computer.

Notice that the largest error in the approximation occurs at the breakpoints,

whereas the two graphs agree well at other frequencies. The reason for the error

is most apparent when we consider the case where ω = −z1, for example. The gain

at this break frequency according to the line plotted should be

20 log10

∣∣∣∣
−jz1
−z1

∣∣∣∣ = 20 log10 |j| = 0
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Figure 21.23

Comparison between the asymptotic Bode plot and the exact frequency response. The dotted

line is the result of adding the asymptotic approximations together at each frequency point.

whereas the exact value is

20 log10

∣∣∣∣
−jz1
−z1

+ 1

∣∣∣∣ = 20 log10 |j + 1| = 20 log10

∣∣∣
√
2

∣∣∣ ∼= −3.01

Fortunately this is the worst-case error for a single pole or zero and if a more

accurate sketch is required it is possible to use this fact to improve on the asymptotic

approximation of the transfer function. Engineers �nd it useful to sketch a Bode plot

in order to get a ‘feel’ for the frequency response of a system. If a more accurate plot

is needed then it is possible to use a computer package to obtain it.

21.13 LAPLACE TRANSFORMS OF SOME SPECIAL FUNCTIONS

In this section we apply the Laplace transform to the delta function and periodic func-

tions. These functions were introduced in Chapter 2.

21.13.1 The delta function, δ(t−d)

Recall the integral property of the delta function (see Section 16.4),∫ ∞

−∞

f (t)δ(t − d) dt = f (d)

The Laplace transform follows from this integral property. Let f (t) = e−st so that

f (d) = e−sd . Then∫ ∞

−∞

e−stδ(t − d) dt =

∫ ∞

0

e−stδ(t − d) dt = f (d) = e−sd

that is,

L{δ(t − d)} = e−sd
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The Laplace transform of δ(t) follows by setting d = 0:

L{δ(t)} = 1

Example 21.32 For a particular circuit it can be shown that the transfer function, G(s), is given by

G(s) =
Vo(s)

Vi(s)
=

1

s+ 2

where Vi(s) and Vo(s) are the Laplace transforms of the input and output voltages

respectively.

(a) Find vo(t) when vi(t) = δ(t).

(b) Use the convolution theorem to �nd vo(t) when

vi(t) =

{
e−t t > 0

0 t < 0

Solution (a) We are given the transfer function

G(s) =
Vo(s)

Vi(s)
=

1

s+ 2

When vi(t) = δ(t), Vi(s) = 1 and hence

Vo(s) =
1

s+ 2

and

vo(t) = L
−1

{
1

s+ 2

}
= e−2t

This is known as the impulse response of the system, g(t). If the impulse response,

g(t), is known then the response, vo(t), to any other input, vi(t), can be obtained by

convolution, that is vo(t) = g(t) ∗ vi(t).

(b) The response to an input, vi(t) = u(t) e−t , is given by

vo(t) = g(t) ∗ vi(t) =

∫ t

0

g(λ)vi(t − λ) dλ

=

∫ t

0

e−2λe−(t−λ) dλ

= e−t

∫ t

0

e−λ dλ

= e−t

[
e−λ

−1

]t

0

= e−t (1 − e−t )

= e−t − e−2t
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21.13.2 Periodic functions

Recall the de�nition of a periodic function, f (t). Given T > 0, f (t) is periodic if f (t) =

f (t + T ) for all t in the domain. If f (t) is periodic and we know the values of f (t)

over a period, then we know the values of f (t) over its entire domain. Hence, it seems

reasonable that the Laplace transform of f (t) can be found by studying an appropriate

integral over an interval whose length is just one period. This is indeed the case and

forms the basis of the following development.

Let f (t) be periodic, with period T . The Laplace transform of f (t) is

L{ f (t)} = F(s) =

∫ ∞

0

e−st f (t) dt

=

∫ T

0

e−st f (t) dt +

∫ 2T

T

e−st f (t) dt +

∫ 3T

2T

e−st f (t) dt + · · ·

Let t = x in the �rst integral, t = x+ T in the second, t = x+ 2T in the third and so on.

F(s) =

∫ T

0

e−sx f (x) dx+

∫ T

0

e−s(x+T ) f (x+ T ) dx

+

∫ T

0

e−s(x+2T ) f (x+ 2T ) dx+ · · ·

Since f is periodic with period T then

f (x) = f (x+ T ) = f (x+ 2T ) = · · ·

So,

F(s) =

∫ T

0

e−sx f (x) dx+

∫ T

0

e−sT e−sx f (x) dx+

∫ T

0

e−2sT e−sx f (x) dx+ · · ·

= (1 + e−sT + e−2sT + · · ·)

∫ T

0

e−sx f (x) dx

We recognize the terms in brackets as a geometric series whose sum to in�nity

is
1

1 − e−sT
. Hence,

F(s) =

∫ T
0
e−st f (t) dt

1 − e−sT

Example 21.33 A waveform, f (t), is de�ned as follows:

f (t) =

{
2 0 < t 6 1.25

0 1.25 < t 6 1.5

and f (t) is periodic with period of 1.5. Find the Laplace transform of the waveform.
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Solution L{ f (t)} =

∫ 1.5

0
e−st f (t) dt

1 − e−1.5s

=

∫ 1.25

0
2 e−st dt +

∫ 1.5

1.25
0e−st dt

1 − e−1.5s

=
2(1 − e−1.25s)

s(1 − e−1.5s)

EXERCISES 21.13

1 Find the Laplace transforms of

(a) 3u(t)+ δ(t) (b) −6u(t)+ 4δ(t)

(c) 3u(t − 2)+ δ(t − 2)

(d) u(t − 3)− δ(t − 4)

(e) 1
2u(t − 4)+ 3δ(t − 4)

where u(t) is the unit step function.

2 Find the inverse Laplace transforms of

(a)
2

s
− 1 (b)

2

3s
+

1

2
(c)

3 − 2s

s

(d)
4s− 3

s

3 A periodic waveform is de�ned by

f (t) =

{
t 0 6 t 6 1

2 − t 1 < t 6 2

and has a period of 2.

(a) Sketch two cycles of f (t).

(b) Find L{ f (t)}.

4 A waveform, f (t), is de�ned by

f (t) =

{
2 0 6 t 6 1.5

−2t + 5 1.5 < t < 2.5

and has a period of 2.5.

(a) Sketch f (t) on [0, 5].

(b) Find L{ f (t)}.

5 If the impulse response of a network is g(t) = 10e−4t

�nd the output when the input is f (t) = e−t cos 2t,

t > 0.

Solutions

1 (a)
3

s
+ 1 (b) −

6

s
+ 4

(c)
3e−2s

s
+ e−2s (d)

e−3s

s
− e−4s

(e)
e−4s

2s
+ 3 e−4s

2 (a) 2u(t)− δ(t) (b)
2u(t)

3
+
δ(t)

2

(c) 3u(t)− 2δ(t) (d) 4δ(t)− 3u(t)

3 (b)
1 − e−s

s2(1 + e−s)

4 (b)
2(s+ e−2.5s − e−1.5s)

s2(1 − e−2.5s)

5
(30 cos 2t + 20 sin 2t) e−t

13
−

30e−4t

13

REVIEW EXERCISES 21

1 Given F(s) =
s+ 1

s2 + 2
is the Laplace transform of

f (t), �nd the Laplace transforms of the following:

(a)
f (t)

e2t
(b) 3 e2t f (t)

(c) 2 e−t ( f (t)+ 1) (d) u(t − 1) f (t − 1)

(e) 4u(t − 3) f (t − 3)

(f) e−2tu(t − 2) f (t − 2)
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2 Find the Laplace transforms of the following:

(a) 2t sin 3t (b)
1

2
(−3t cos 2t)

(c) e−tu(t) (d) e−tu(t − 1)

(e) 3t2u(t − 1) (f) e−tδ(t − 2)

3 Find the inverse Laplace transforms of

(a)
2s+ 3

(s+ 1)(s+ 2)

(b)
4s

s2 − 9

(c)
2(s3 + 4s2 + 4s+ 64)

(s2 + 4)(s2 + 16)

(d) e−2s 6

s4
(e) e−s

s+ 1

s2

4 Solve the following differential equations using the

Laplace transform method:

(a) x′′ + 2x′ − 3x = 2t, x(0) = 1 x′(0) = 2

(b) x′′ − 2x′ + 5x = cos t, x(0) = 0 x′(0) = 1

(c) ẋ+ ẏ+ x+ y =
3

2
(1 + t)

ẋ− 2ẏ+ x+ 2y = 2t

x(0) = 0 y(0) = 0

(d) ẋ− ẏ+ x = −1, x(0) = 0 y(0) = 2

2ẋ− ẏ+
y

2
− x = 1

5 The current, i(t), in a series LC circuit is governed by

L
di

dt
+

1

C

∫ t

0

i dt = v(t)

where v(t) is the applied voltage.

(a) Assuming zero initial conditions show that

LsI +
1

Cs
I = V (s)

(b) If v(t) = δ(t) show that

i(t) =
1

L
cos

t
√
LC

6 The input and output voltages, vi(t) and vo(t), of a

series RC network are related by the differential

equation

CR
dvo
dt

+ vo = vi

(a) If Vo(s) = L{vo(t)} and Vi(s) = L{vi(t)}, show

that the transfer function,
Vo(s)

Vi(s)
, is given by

1

sCR+ 1
.

(b) If C = 0.1 µF, R = 100 k� �nd, and sketch a

graph of the response, vo(t), when

vi(t) =

{
5 volts t > 0

0 t < 0

(c) Using the component values given in (b) �nd the

response when the input is a unit impulse, δ(t).

(d) Using the component values given in (b) use the

convolution theorem to determine the response

when vi(t) = 5 e−100t .

7 Express the square wave

f (t) =

{
1 0 < t < a

−1 a < t < 2a period 2a

in terms of unit step functions. Hence deduce its

Laplace transform.

8 Consider the circuit shown in Figure 21.24.

F 1 H 4 V

i(t)

y(t)

1–
3

Figure 21.24

(a) Show that

di

dt
+ 4i+ 3

∫ t

0

i dt = v(t)

(b) Assuming zero initial conditions, show that

I(s) =
s

(s+ 1)(s+ 3)
V (s)

(c) Find i(t) if v(t) = δ(t).

(d) Find i(t) if

v(t) =

{
2 e−2t t > 0

0 otherwise
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Solutions

1 (a)
s+ 3

s2 + 4s+ 6

(b)
3(s− 1)

s2 − 4s+ 6

(c)
2(2s2 + 5s+ 5)

(s+ 1)(s2 + 2s+ 3)

(d)
e−s(s+ 1)

s2 + 2

(e)
4e−3s(s+ 1)

s2 + 2

(f)
e−2(s+2)(s+ 3)

s2 + 4s+ 6

2 (a)
12s

(s2 + 9)2

(b) −
3(s2 − 4)

2(s2 + 4)2

(c)
1

s+ 1

(d)
e−(s+1)

s+ 1

(e) 3 e−s

(
2

s3
+

2

s2
+

1

s

)

(f) e−2(s+1)

3 (a) e−t + e−2t

(b) 2 e−3t + 2 e3t

(c) 2(2 sin 2t + cos 4t)

(d) u(t − 2)(t − 2)3

(e) u(t − 1)t

4 (a) −
11e−3t

36
+

7et

4
−

2t

3
−

4

9

(b) et
[
− 1

5 cos 2t +
13
20 sin 2t

]

+ 1
5 cos t −

1
10 sin t

(c) x = t, y = t/2

(d) x = et − 1, y = 2 et

6 (b) vo(t) = 5 − 5 e−100t

(c) 100e−100t

(d) 500te−100t

7
1 − e−as

s(1 + e−as)

8 (c)
3 e−3t

2
−

e−t

2

(d) −e−t + 4 e−2t − 3 e−3t



22 Di�erence equations
and the z transform

Contents 22.1 Introduction 681

22.2 Basic definitions 682

22.3 Rewriting di�erence equations 686

22.4 Block diagram representation of di�erence equations 688

22.5 Design of a discrete-time controller 693

22.6 Numerical solution of di�erence equations 695

22.7 Definition of the z transform 698

22.8 Sampling a continuous signal 702

22.9 The relationship between the z transform and the Laplace transform 704

22.10 Properties of the z transform 709

22.11 Inversion of z transforms 715

22.12 The z transform and di�erence equations 718

Review exercises 22 720

22.1 INTRODUCTION

Difference equations are the discrete equivalent of differential equations. The termi-

nology is similar and the methods of solution have much in common with each other.

Difference equations arise whenever an independent variable can have only discrete val-

ues. They are of growing importance in engineering in view of their association with

discrete-time systems based on the microprocessor.

In Chapter 21 the Laplace transform was shown to be a useful tool for the solution of

ordinary differential equations, and for the construction of transfer functions in circuit

analysis, control theory, etc. Generally, Laplace transform methods apply when the vari-

ables being measured are continuous. The z transform plays a similar role for discrete
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systems to that played by the Laplace transform for continuous ones. In this chapter you

will be introduced to the z transform and one of its applications -- the solution of linear

constant coef�cient difference equations. The z transform is of increasing importance

as more and more engineering systems now contain a microprocessor or computer and

so have one or more discrete-time components. For example, most industrial controllers

now have an embeddedmicroprocessor, and overall control of a factory is often bymeans

of a supervisory process control computer. Many factories also have a production control

computer to schedule production.

22.2 BASIC DEFINITIONS

Before classifying difference equations we will �rst derive an example of one.

Suppose a microprocessor system is being used to capture and analyse images. The

number of instruction cycles, i, of the microprocessor needed to process an image de-

pends on the number of pixels, n, that the image is broken down into. Clearly n is a

non-negative integer, that is n ∈ N. Since i depends upon n we write i = i[n]. The

square brackets notation reflects the fact that n is a discrete variable (see Section 6.2). If

there are n items of data, the number of instruction cycles used is i[n].

Suppose that if there are n + 1 items of data, the number of instruction cycles used

increases by 10n+ 1. Then,

i[n+ 1] = i[n] + 10n+ 1

This is an example of adifference equation. The dependent variable is i; the independent

variable is n.

Putting n = 0 in the difference equation gives

i[1] = i[0] + 10(0)+ 1 = 1

Similarly, i[2] = 12, i[3] = 33, i[4] = 64 and so on. We see that the difference equation

gives rise to a sequence of values.

There are strong similarities between difference and differential equations. The im-

portant point to note is that with difference equations, the independent variable is dis-

crete, not continuous. In the above example, n is the number of pixels; it can have only

integer values. This discrete property of the independent variable is an essential and

distinguishing feature of difference equations. Much of the terminology of differential

equations is applied, with identical meaning, to difference equations.

22.2.1 Dependent and independent variables

Consider a simple difference equation:

x[n+ 1] − x[n] = 10

The dependent variable is x; the independent variable is n. In the difference equation

y[k + 1] − y[k] = 3k + 5

the dependent variable is y and the independent variable is k.
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22.2.2 The solution of a di�erence equation

A solution is obtained when the dependent variable is known for each value of interest

of the independent variable. Thus the solution takes the form of a sequence. There are

frequently many different sequences which satisfy a difference equation; that is, there

are many solutions. The general solution embraces all of these and all possible solutions

can be obtained from it.

Example 22.1 Show x[n] = A2n, where A is a constant, is a solution of

x[n+ 1] − 2x[n] = 0

Solution x[n] = A2n x[n+ 1] = A2n+1 = 2A2n

Hence,

x[n+ 1] − 2x[n] = 2A2n − 2A2n = 0

Hence x[n] = A2n is a solution of the given difference equation. In fact x[n] is the general

solution.

If additionally we are given a condition, say x[0] = 3, the constant A can be found. If

x[n] = A2n, then x[0] = A20 = A and hence

A = 3

The solution is thus x[n] = 3(2n). This is the speci�c solution and satis�es both the

difference equation and the given condition.

22.2.3 Linear and non-linear equations

An equation is linear if the dependent variable occurs only to the �rst power. If an equa-

tion is not linear it is non-linear. For example,

3x[n+ 1] − x[n] = 10

y[n+ 1] − 2y[n− 1] = n2

kz[k + 2] + z[k] = z[k − 1]

are all linear equations. Note that the presence of the term n2 does not make the equation

non-linear, since n is the independent variable. However,

(x[n+ 1])2 − x[n] = 10

y[k + 1] =
√
y[k] + 1

are both non-linear. Also,

z[n+ 1]z[n] = n2 + 100

sin x[n] = x[n− 1]

are non-linear. The product term z[n+ 1]z[n] and the term sin x[n] are the causes of the

non-linearity.
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22.2.4 Order

The order is the difference between the highest and lowest arguments of the dependent

variable. The equation

3x[n+ 2] − x[n+ 1] − 7x[n] = n

is second order because the difference between n+ 2 and n is 2.

x[n+ 1]x[n− 1] = 7x[n− 2]

is third order because the difference between n+ 1 and n− 2 is 3. In general, the higher

the order of an equation, the more dif�cult it is to solve.

In some difference equations the dependent variable occurs only once. These are clas-

si�ed as zero order. Engineers refer to them as non-recursive difference equations be-

cause calculation of the value of the dependent variable does not require knowledge of

the previous values. In contrast, difference equations of order 1 or greater are referred to

as recursive difference equations because their solution requires knowledge of previous

values of the dependent variable. The difference equation

x[n] = n2 + n+ 1

has zero order and so is a non-recursive difference equation.

22.2.5 Homogeneous and inhomogeneous equations

The meanings of homogeneous and inhomogeneous as applied to linear difference equa-

tions are analogous to those meanings when applied to differential equations. To decide

whether a linear equation is homogeneous or inhomogeneous it is written in standard

form, with all the dependent variable terms on the l.h.s. Any remaining independent

variable terms are written on the r.h.s. For example,

3nx[n+ 1] − 2n3 = x[n− 1]

is written as

3nx[n+ 1] − x[n− 1] = 2n3 (22.1)

If the r.h.s. is 0, the equation is homogeneous; otherwise it is inhomogeneous. Equa-

tion (22.1) is inhomogeneous but

3nx[n+ 1] − x[n− 1] = 0

is homogeneous.

Engineering application 22.1

Signal processing using a microprocessor

In engineering, an increasing number of products contain a microprocessor or com-

puter which is solving one or more difference equations. The input to the micropro-

cessor is a sequence of signal values, in many cases formed as a result of sampling a

continuous input signal. The output from the microprocessor is a sequence of signal

values which may be subsequently converted into a continuous signal. For example,
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an inhomogeneous difference equation could be of the form

y[n] − 2y[n− 1] = 0.1s[n] + 0.2s[n− 1] − 0.5s[n− 2]

where y[n] is the output sequence or dependent variable and s[n] is the input se-

quence. Note that the input sequence can still be thought of as the independent vari-

able but instead of being expressed analytically in terms of n it arises as a result of

sampling. The corresponding homogeneous equation is

y[n] − 2y[n− 1] = 0

22.2.6 Coe	cient

The term coef�cient refers to the coef�cient of the dependent variable. In Equation (22.1)

the coef�cients are 3n and −1.

Example 22.2 (a) State the order of each of the following equations (i)--(vii).

(b) State whether each equation is linear or non-linear.

(c) For each linear equation, state whether it is homogeneous or inhomogeneous.

(i) 2x[n] − 3nx[n− 1] + x[n− 2] + n2 = 0

(ii)
1

3
(x[n+ 1] − x[n− 1]) = x[n]

(iii) z[n+ 2](2n− z[n− 1]) = n+ 1

(iv)
7x[n− 1]

x[n− 2]
=
n+ 1

n− 1

(v) w[n+ 3]w[n+ 1] = n3 − 1

(vi) y[n+ 2]+ 2y[n+ 1] = 6s[n+ 2]− 2s[n+ 1]+ s[n] where y is the dependent

variable

(vii) x[k+3]−2x[k+2]+x[k] = e[k+2]−e[k] where x is the dependent variable.

Solution (a) (i) Second order

(ii) Second order

(iii) Third order

(iv) First order

(v) Second order

(vi) First order

(vii) Third order

(b) (i) Linear
(ii) Linear
(iii) Non-linear
(iv) Linear
(v) Non-linear
(vi) Linear
(vii) Linear

(c) Equations (iii) and (v) are non-linear. The linear equations are written in standard

form:

(i) 2x[n] − 3nx[n− 1] + x[n− 2] = −n2

(ii) x[n+ 1] − 3x[n] − x[n− 1] = 0
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(iv) 7(n− 1)x[n− 1] − (n+ 1)x[n− 2] = 0

(vi) and (vii) are already in standard form.

Hence we �nd the following:

(i) Inhomogeneous
(ii) Homogeneous
(iv) Homogeneous
(vi) Inhomogeneous
(vii) Inhomogeneous

EXERCISES 22.2

1 For each of the following equations (a)--(e):

(i) State the order of the equation. (ii) State whether

each equation is linear or non-linear. (iii) For each

linear equation, state whether it is homogeneous or

inhomogeneous.

(a) n(3n+ x[n]) = x[n− 1]

(b)
2z[k − 4]

z[k − 3]
= z[k − 2]

(c) y[n− 2] + y[n− 1] + y[n] = n2

(d)
√
n+ x[n] = x[n− 2] + e[n], where x is the

dependent variable.

(e) (2w[n−1]+1)2 = w[n−2]+ s[n−1]− s[n−2],

where w is the dependent variable.

Solutions

1 (a) First order; linear; inhomogeneous

(b) Second order; non-linear

(c) Second order; linear; inhomogeneous

(d) Second order; non-linear

(e) First order; non-linear

22.3 REWRITING DIFFERENCE EQUATIONS

Sometimes an equation or expression can be written in different ways. At �rst sight, it

may appear there are two independent equations when in fact there is only one. Thus

we need to be able to rewrite equations so that comparisons can be made. When general

solutions of equations are to be found, usually the equation is �rst written in a standard

form. So once again there is a need to rewrite equations.

Example 22.3 Rewrite the equation so that the highest argument of the dependent variable is n+ 1.

x[n+ 3] − x[n+ 2] = 2n x[2] = 7

Solution The highest argument in the given equation is n+ 3; this must be reduced by 2 to n+ 1.

To do this n is replaced by n− 2. The equation becomes

x[n+ 1] − x[n] = 2(n− 2) x[2] = 7

Note, however, that the initial condition, x[2] = 7, is not changed. This is simply stating

that x has a value of 7 when the independent variable has a value of 2.
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Example 22.4 Write the following equations so that the highest argument of the dependent variable is

n+ 2.

(a) 3x[n+ 4] − 2nx[n+ 2] = (n− 1)2 x[3] = 6 x[4] = −7

(b) z[n− 2] + z[n− 1] + z[n] = 1 + n z[0] = 1 z[1] = 0

Solution (a) The highest argument, n+4, must be replaced by n+2, that is n is replaced by n−2

throughout the equation.

3x[n+ 2] − 2(n− 2)x[n] = (n− 3)2 x[3] = 6 x[4] = −7

(b) The highest argument, n, is increased to n+ 2, that is n is replaced by n+ 2.

z[n] + z[n+ 1] + z[n+ 2] = n+ 3 z[0] = 1 z[1] = 0

Example 22.5 Write the following equations so that the highest argument of the dependent variable

is k:

(a) a[k + 2] =
s[k + 2] − 2s[k + 1] + s[k]

15

where a is the dependent variable.

(b) a[k + 3] =
l[k + 3] + l[k + 2] + l[k + 1] + l[k] + l[k − 1]

5

where a is the dependent variable.

Solution (a) The highest argument, k + 2, must be replaced by k, that is k is replaced by k − 2

throughout the equation:

a[k] =
s[k] − 2s[k − 1] + s[k − 2]

15

(b) The highest argument, k + 3, must be replaced by k, that is k is replaced by k − 3

throughout the equation:

a[k] =
l[k] + l[k − 1] + l[k − 2] + l[k − 3] + l[k − 4]

5

EXERCISES 22.3

1 Write each equation so that the highest argument of

the dependent variable is as speci�ed:

(a) p[k]− 3p[k+ 1] = p[k− 2], highest argument of

the dependent variable is to be k + 2.

(b) R[n− 1] − R[n− 2] − R[n− 3] = n, R[0] = 1,

R[1] = −2, highest argument of the dependent

variable is to be n.

(c) q[t] + tq[t − 1] = 3q[t + 1], q[1] = 0,

q[2] = −2, highest argument of the dependent

variable is to be t − 1.

(d) T [m] + (m− 1)T [m− 2] = m2,

T [0] = T [1] = 1, highest argument of the

dependent variable is to be m+ 2.

(e) y[k + 1] − y[k + 3] = (s[k + 2] − s[k + 4])/2,

where y is the dependent variable and the highest

argument of the dependent variable is to be k.
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Solutions

1 (a) p[k + 1] − 3p[k + 2] = p[k − 1]

(b) R[n] − R[n− 1] − R[n− 2] = n+ 1

R[0] = 1,R[1] = −2

(c) q[t − 2] + (t − 2)q[t − 3] = 3q[t − 1]

q[1] = 0, q[2] = −2

(d) T [m+ 2] + (m+ 1)T [m] = (m+ 2)2

T [0] = T [1] = 1

(e) y[k − 2] − y[k] =
s[k − 1] − s[k + 1]

2

22.4 BLOCK DIAGRAM REPRESENTATION OF DIFFERENCE
EQUATIONS

Many engineering systems can be modelled by means of difference equations. It is pos-

sible to represent a difference equation pictorially by means of a block diagram. The use

of a block diagram representation helps an engineer to visualize a system and may often

be helpful in suggesting the required hardware or software to implement a particular dif-

ference equation. This is particularly important in areas such as digital signal processing

and digital control engineering.

Before discussing block diagrams it is necessary to review the topic of sampling.

Difference equations operate on discrete-time data and therefore a continuous signal

needs to be sampled before use. In the most common form of sampling, a sample is taken

at regular intervals, T . A continuous signal and the sequence produced by sampling it

are shown in Figure 22.1. Some authors write the sequence as x[nT ] to indicate that the

sequence has been obtained by sampling a continuous waveform at intervals T . We will

not use this convention but simply refer to the sampled sequence as x[n].

Several components are used in a block diagram. The delay block is shown in

Figure 22.2. The effect of this element is to delay the sequence by one sampling interval,

T . For example, if

x[n] = 6, 4, 3,−2, 0, 2, 5, 0, . . . n = 0, 1, 2, . . .

we can write this as x[0] = 6, x[1] = 4, x[2] = 3, x[3] = −2, . . ., and then

x[n− 1] = 0, 6, 4, 3,−2, 0, 2, 5, 0, . . . n = 0, 1, 2, . . .

t

x(t)

n
T

(b)(a)

x[n]

Figure 22.1

(a) Continuous signal; (b) sequence produced as a result of sampling.
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x[n] x[n – 1]
T

Figure 22.2

A delay block delays a sequence

by a time interval, T .

x[n] x[n – 2]
T T

Figure 22.3

Two delay blocks in series.

1

x[n]

a

x[n] + a

Figure 22.4

Adding a constant

to a sequence.

3

x[n]

k

kx[n]

Figure 22.5

Scaling a sequence

by a constant.

p[n]

q[n]

r[n]

p[n] + q[n] + r[n]
S

Figure 22.6

Adding sequences together

using a summer.

Note that x[n− 1] is unde�ned when n = 0 and so this is assigned a value of 0. A delay

of two sampling intervals results in the sequence x[n− 2] as shown in Figure 22.3.

Another block diagram element represents the addition of a constant to a sequence

and is shown in Figure 22.4. A sequence can be scaled by a constant. This is shown in

Figure 22.5. Finally, sequences can be added together using a summer. This is shown

in Figure 22.6.

Engineering application 22.2

Discrete-time filter

The term �lter is used by engineers to describe an electronic device that selectively

processes signals of different frequencies. So, for example, a low pass �lter is a �lter

that allows low frequency signals to pass with little attenuation of their amplitude.

However, high frequency signals tend to be severely attenuated. In contrast, a high

pass �lter attenuates low frequency signals while allowing high frequency signals to

pass with relative ease. A discrete-time �lter or, as more commonly termed, a dig-

ital �lter is an electronic device that uses digital methods to selectively �lter digital

signals.

A simple example of a discrete-time �lter is one described by the difference

equation

y[n] − ay[n− 1] = x[n]

where x[n] is the input sequence, y[n] is the output sequence and a is a constant. If a

is positive then the �lter behaves as a low-pass �lter which rejects high frequencies

but allows low frequencies to pass. If a is negative then the �lter behaves as a

high-pass �lter. A block diagram for the �lter is shown in Figure 22.7. Note that

this is a recursive �lter because calculation of y[n] requires knowledge of previous

values of the output sequence. Note also that the block diagram contains a feedback

path. This is a feature of recursive difference equations.

➔
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y[n]x[n]

ay[n – 1]

y[n – 1]
a

S

3 T

Figure 22.7

Discrete-time �lter.

Engineering application 22.3

Development of a di�erence equation to calculate the
acceleration of an object

Engineers often need to calculate the acceleration of an object when all that is known

is the position of that object. This can be achieved by developing a difference equation

that can be solved at regular time intervals by a computer. It is �rst necessary to

use a device that converts the position signal into a form suitable for analysis by a

computer. Usually the position signal will be continuous and therefore in analogue

form. It is therefore necessary to use an analogue-to-digital converter to transform

the analogue signal into a digital signal. Consider the following problem. Develop

a difference equation to convert a digital position signal into a digital acceleration

signal given that this position signal varies with time. Derive an associated block

diagram for this difference equation.

Let s = position, v = speed and a = acceleration:

v =
ds

dt
a =

dv

dt
=

d2s

dt2

Therefore, in order to obtain an acceleration signal the position signal must be dif-

ferentiated twice. For a small time interval T , the derivative, y(t), of a signal x(t) can

be approximated by

y(t) ≈
x(t)− x(t − T )

T

This follows directly from the de�nition of differentiation. If the signal x(t) is sam-

pled to give x[n] then the process of differentiation is represented by the difference

equation

y[n] =
x[n] − x[n− 1]

T

Figure 22.8 shows a block diagram for the differentiator. It is important to note that

this difference equation is only an approximation to the process of differentiation.

This could be implemented using special-purpose hardware or by software on a mi-

croprocessor. It follows that the speed of the object is given by

v[n] =
s[n] − s[n− 1]

T

The problem of �nding the acceleration, a[n], can now be solved by coupling two

differentiators together as shown in Figure 22.9. An alternative approach to this
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y[n]x[n]

x[n]

–x[n – 1]

–1

3

3

T

S

1—
T

Figure 22.8

Block diagram of a differentiator.

s[n] y[n]

y[n]

a[n]

s[n]

–s[n – 1] –y[n – 1]

–1 –1

3

3

3

3

T 1—
T

1—
T

Figure 22.9

Two differentiators in series.

problem is to obtain a difference equation for the process of �nding a second deriva-

tive. Given that

v[n] =
s[n] − s[n− 1]

T
(22.2)

and

a[n] =
v[n] − v[n− 1]

T
(22.3)

then substituting Equation (22.2) into Equation (22.3) gives

a[n] =
(s[n] − s[n− 1])− (s[n− 1] − s[n− 2])

T 2

a[n] =
s[n] − 2s[n− 1] + s[n− 2]

T 2

The block diagram for this difference equation is shown in Figure 22.10. Note that the

difference equation is non-recursive and so there are no feedback paths in the block

diagram. The output sequence is a[n] and the input sequence is s[n]. The independent

variable is n.

–2s[n – 1]

s[n – 2]

s[n] a[n]s[n]
S

1—
T2

–2

T

T T

3

3
Figure 22.10

a[n] is obtained by

calculating the second

derivative of s[n].
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Engineering application 22.4

Development of a moving average filter to calculate the height
of acid in a chemical tank

A common problem in chemical engineering is that the height of liquid in a tank is

dif�cult to measure accurately because of the liquid swilling around. One solution to

this problem is to use amoving average �lter to smooth out any variations in height

obtained from the tank position sensor. A key design decision is how many past data

points to use when constructing the moving average �lter. In practice this depends,

amongst other things, on how much the liquid moves around. It is important not to

use too many points or signi�cant variations in height may not be picked up in time.

However, if too few points are used then the output from the �lter may be too spiky to

be of use. Consider the case of a moving average �lter that makes use of the �ve most

recently measured values of the level of the liquid in the tank. Formulate a difference

equation to carry out this averaging and draw an equivalent block diagram.

Let a[n] represent the average level of the acid in the tank and let l[n] represent

the sampled values of the level measurements received from the transducer. Then,

a[n] =
l[n] + l[n− 1] + l[n− 2] + l[n− 3] + l[n− 4]

5

The block diagram for this difference equation is shown in Figure 22.11. The action

of taking a moving average of sampled values is equivalent to passing the sampled

values through a low-pass �lter because it �lters out high-frequency variations in the

sampled values. This process is termed digital �ltering or digital signal processing.

a[n]

l[n]

l[n]

l[n – 4]

l[n – 1] 

l[n – 2]

l[n – 3]
1—
5

3

T

T

T

T

T

T

T

T

T

T

S

Figure 22.11

Block diagram of a moving averager.

EXERCISES 22.4

1 Design a digital �lter based on taking a moving

average of the last three values of a sampled signal.

2 A computer is fed a signal representing the velocity of

an object as a function of time. Prior to entering the

computer the signal is sampled using an

analogue-to-digital converter. Derive a difference

equation and associated block diagram to obtain the

acceleration of the object as a function of time.
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Solutions

1 See Figure S.23.

T

T

T

S 3 a[n]x[n]

1–
3

Figure S.23

2 a[n] =
v[n] − v[n− 1]

T
. See Figure S.24.

T

S 3

3

a[n]

–1

y[n]

1 –
T

Figure S.24

22.5 DESIGN OF A DISCRETE-TIME CONTROLLER

Figure 22.12 shows a block diagram of a single loop industrial control system. The con-

trol system employs feedback to compare the desired value of a process variable with

the actual value. Any difference between the two generates an error signal e(t). This

signal is processed by the controller to produce a controller signal m(t). An ampli�er is

often present to magnify this signal to make it suitable for driving the plant that is being

controlled.

The controller can be implemented by means of an analogue electronic circuit. How-

ever, digital computers are being used increasingly as controllers. The signals e(t) and

m(t) are both continuous in time and so it is necessary to sample e(t) before it can be

used by the computer and to reconstruct the signal generated by the computer to pro-

duce the controller output, m(t). The arrangement for implementing a digital controller

is shown in Figure 22.13.

r(t) +

–

m(t) c(t)e(t)
Controller Amplifier

Sensor

Plant

Figure 22.12

A single loop industrial control system.

e(t) m(t)Analogue-to-

digital converter

Digital

computer

Digital-to-

analogue converter

Figure 22.13

Block diagram of a digital controller.
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The most common type of controller used in industry is the proportional/integral/

derivative (p.i.d.) controller. It can be shown that the analogue form of this controller is

modelled by the equation

m(t) = Kpe(t)+ Ki

∫ t

0

e(t) dt + Kd

de(t)

dt
(22.4)

where Kp, Ki and Kd are constants. In order to implement a discrete-time (digital) con-

troller it is necessary to convert this equation into an equivalent difference equation. The

approximation for the process of differentiation has already been examined in

Engineering application 22.3, and is given by

de(t)

dt
≈
e[n] − e[n− 1]

T

There are several possible ways of approximating the process of integration. Onemethod

is illustrated in Figure 22.14. Here the area under the curve is approximated by a series

of rectangles, each of width T . If the approximate area under the curve from t = 0 to

t = nT is denoted by x[n], then

x[n] = x[n− 1] + Te[n] (22.5)

The discrete form of Equation (22.4) can now be formulated. It is given by

m[n] = Kpe[n] + Kix[n] + Kd

e[n] − e[n− 1]

T
(22.6)

Equations (22.5) and (22.6) form a set of equations to implement a discrete form of the

p.i.d. controller on a digital computer or microprocessor. These two equations are termed

coupled difference equations because both are needed to calculate m[n]. In addition,

Equation (22.5) is recursive. A flow chart for implementing these equations is shown in

Figure 22.15.

e(t)

t

Figure 22.14

Approximating the area under the curve by a

series of rectangles.

Initialization

Get e[n]

Calculate 

m[n]

Output m[n]

Time to 
sample?

YES

NO

Figure 22.15

Flow chart for a p.i.d. controller.
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EXERCISES 22.5

1 A transducer is used to measure the speed of a motor

car. Design a digital �lter to calculate the distance

travelled by the car.

2 Draw a block diagram for Equations (22.5)

and (22.6).

Solutions

1 s[n] = s[n− 1] + Tv[n]. See Figure S.25.

T
T

S3 s[n]y[n]

Figure S.25

22.6 NUMERICAL SOLUTION OF DIFFERENCE EQUATIONS

Having seen how difference equations are formulated we now proceed to methods of

solution. The numerical method illustrated may be applied to all classes of difference

equation.

Example 22.6 Given

x[n+ 1] − x[n] = n x[0] = 1

determine x[1], x[2] and x[3].

Solution The terms in the equation are evaluated for various values of n:

n = 0

x[1] − x[0] = 0

x[1] = 1

n = 1

x[2] − x[1] = 1

x[2] = 2

n = 2

x[3] − x[2] = 2

x[3] = 4

Example 22.7 Determine x[4] given

2x[k + 2] − x[k + 1] + x[k] = −k2 x[0] = 1 x[1] = 3
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Solution k= 0 k= 1

2x[2] − x[1] + x[0] = 0 2x[3] − x[2] + x[1] = −1

x[2] = 1 x[3] = −
3

2
k= 2

2x[4] − x[3] + x[2] = −4

x[4] = −
13

4

As the previous examples illustrate, to determine a unique solution to a �rst-order equa-

tion requires one initial condition; for a second-order equation, two initial values are

required.

Engineering application 22.5

Numerical solution of the output from a digital low-pass filter

Recall from Engineering application 22.2 that a low-pass �lter is a �lter that is de-

signed to attenuate high frequency signals. A simple difference equation for a digital

�lter is given by:

y[n] − ay[n− 1] = x[n]

If a is positive then the �lter is a low-pass �lter. We will choose a = 0.5 and so

y[n] = 0.5y[n− 1] + x[n]

Let us examine the response of this �lter to a unit step input applied at n = 0, that is

x[n] =

{
0 n < 0

1 otherwise
n ∈ Z

Assume the output of the �lter is zero prior to the application of the step input, that

is y[n] = 0 for n 6 −1. From the difference equation, we �nd

y[0] = 0.5y[−1] + x[0]

= 0.5(0)+ 1

= 1

Similarly,

y[1] = 0.5y[0] + x[1]

= 0.5(1)+ 1

= 1.5

and so on. When numerically solving a difference equation, it is often useful to form

a table with intermediate results. Table 22.1 shows such a table.

Figure 22.16 shows the input and output sequences superimposed on the same

graph. The sequence values have been joined to illustrate their trends. Note that the

input signal reaches its �nal value immediately whereas the output signal takes sev-

eral sample intervals to reach its �nal value. Engineers often refer to this process as

‘smoothing’ the input signal. We will see in Chapter 23 that rapidly changing signals
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Table 22.1

Numerical solution of a difference

equation.

n x[n] y[n− 1] y[n]

−1 0 0 0

0 1 0 1

1 1 1 1.5

2 1 1.5 1.75

3 1 1.75 1.88

4 1 1.88 1.94

5 1 1.94 1.97

6 1 1.97 1.98

7 1 1.98 1.99

8 1 1.99 2.00

9 1 2.00 2.00

10 1 2.00 2.00

y[n]

x[n]

n

2

1

0 1 2 3 4 5 6 7 8 9 10

Figure22.16

Input and output sequences for the

low-pass �lter.

tend to be richer in high frequencies than those that change more slowly. The effect

of the low-pass �lter is to �lter out these high frequencies and so the output from

the �lter changes more slowly than the input. In Chapter 23 we will also examine a

continuous low-pass �lter which does the same job for continuous signals.

Numerical solution of difference equations is often the only feasible method of ob-

taining a solution for many practical engineering systems. This is because the input terms

are usually obtained as a result of sampling an input signal and so cannot be expressed

analytically. However, in some cases it is possible to express the input analytically and

then an analytical solution to the difference equation may be feasible. While analytical

methods analogous to those applied to differential equations are available, z transform

techniques are more popular with engineers and so these are introduced in the following

sections.

EXERCISES 22.6

1 Given

x[n+ 2] + x[n+ 1] − x[n] = 2

x[0] = 3 x[1] = 5

�nd x[2], x[3], x[4] and x[5].

2 If

z[n]z[n− 1] = n2 z[1] = 7

�nd z[2], z[3] and z[4].

3 Determine x[2] and x[3] given

(a) 2x[n+ 2] − 5x[n+ 1] = 4n, x[1] = 2

(b) 6x[n] − x[n− 1] + 2x[n− 2]

= n2 − n, x[0] = 1, x[1] = 2

(c) 3x[n− 1] + x[n− 2] − 9x[n− 3]

= (n− 1)2, x[0] = 3, x[1] = 2

4 Calculate the �rst �ve terms of the following

difference equations with the given initial conditions:

(a) x[n+ 1] − x[n] = 2, x[0] = 3

(b) x[n+ 2] + x[n+ 1] − x[n] = 4,

x[0] = 5, x[1] = 7

(c) x[p+ 2] − x[p+ 1] + 2x[p] = 2,

x[0] = 1, x[1] = 1
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Solutions

1 0, 7, −5, 14

2
4

7
,
63

4
,
64

63

3 (a) 5,
29

2
(b)

1

3
,
7

18
(c)

29

3
,
52

9

4 (a) 3, 5, 7, 9, 11

(b) 5, 7, 2, 9, −3

(c) 1, 1, 1, 1, 1

Technical Computing Exercises 22.6

1 Write a computer program to implement the

difference equations given in Engineering application

22.5. Verify that your results agree precisely with

those given in Table 22.1.

2 Modify your program so that the input sequence is

x[n] = [0 1 0 0 0 0 0 0 0 0 0 0]. The output

is known as the impulse response of the system.

Observe the shape of the plot and compare it to the

output sequence in the Example.

3 Now change your program so that it will generate a

total of 100 samples of output and change the input

sequence to:

x[n] = sin(2πn/100)

You should observe a sine wave on the output y(n).

Make a note of its amplitude.

4 Investigate what happens to the amplitude of the

output when you increase the frequency of the input

sine wave. The frequency can be increased by

reducing the value of the denominator in the sine

function, for example,

x[n] = sin(2πn/10)

5 Does the result agree with the description of the

operation of the discrete-time �lter described in the

example?

22.7 DEFINITION OF THE z TRANSFORM

Suppose we have a sequence f [k], k ∈ N. Such a sequence may have arisen by sampling

a continuous signal. We de�ne its z transform to be

F(z) = Z{ f [k]} =

∞∑

k=0

f [k]z−k (22.7)

We see from the de�nition that the z transform is an in�nite series formed from the terms

of the sequence. Explicitly, we have

Z{ f [k]} = f [0] +
f [1]

z
+

f [2]

z2
+

f [3]

z3
+ · · ·

In most engineering applications we do not actually need to work with the in�nite series

since it is often possible to express this in a closed form. The closed form is generally

valid for values of z within a region known as the radius of absolute convergence as

will become apparent from the following examples.
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Example 22.8 Find the z transform of the sequence de�ned by

f [k] =

{
1 k = 0

0 k 6= 0

This sequence is sometimes called the Kronecker delta sequence, often denoted by

δ[k].

Solution Z{ f [k]} =

∞∑

k=0

f [k]z−k

= f [0] +
f [1]

z
+

f [2]

z2
+

f [3]

z3
+ · · ·

= 1 +
0

z
+

0

z2
+

0

z3
+ · · ·

= 1

Hence F(z) = 1.

Example 22.9 Find the z transform of the sequence de�ned by

f [k] = 1 k ∈ N

This is the unit step sequence, often denoted by u[k].

Solution Z{ f [k]} =

∞∑

k=0

f [k]z−k

= 1 +
1

z
+

1

z2
+

1

z3
+ · · ·

This is a geometric progression with �rst term 1 and common ratio
1

z
. The progression

converges if |z| > 1 in which case the sum to in�nity is

1

1 − 1/z
=

z

z− 1

We see that F(z) has the convenient closed form

F(z) =
z

z− 1

for |z| > 1.

Note that the process of taking the z transform converts the sequence f [k] into the con-

tinuous function F(z).

Example 22.10 Find the z transform of the sequence de�ned by f [k] = k, k ∈ N. This sequence is called

the unit ramp sequence.
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Solution F(z) = Z{ f [k]} =

∞∑

k=0

kz−k

=
1

z
+

2

z2
+

3

z3
+ · · ·

=
1

z

{
1 +

2

z
+

3

z2
+ · · ·

}

If we use the binomial theorem (Section 6.4) to express

(
1−

1

z

)−2

as an in�nite series,

we �nd that
(
1 −

1

z

)−2

= 1 +
2

z
+

3

z2
+ · · · provided

∣∣∣∣
1

z

∣∣∣∣ < 1, that is |z| > 1

Using this result we see that Z{ f [k]} can be written as

F(z) =
1

z

(
1 −

1

z

)−2

and so

F(z) =
1

z

1

(1 − 1/z)2
=

z

(z− 1)2
for |z| > 1

Example 22.11 Find the z transform of the sequence de�ned by

f [k] = Ak A constant

Solution We �nd

F(z) = Z{ f [k]} =

∞∑

k=0

Akz−k

= A

∞∑

k=0

kz−k

=
Az

(z− 1)2
using Example 22.10

In the same way as has been done for Laplace transforms, we can build up a library of

sequences and their z transforms. Some common examples appear in Table 22.2. Note

that in Table 22.2 a and b are constants.

Example 22.12 Use Table 22.2 to �nd the z transforms of

(a) sin 1
2
k (b) e3k cos 2k

Solution Directly from Table 22.2 we �nd

(a) Z{sin 1
2
k} =

z sin 1
2

z2 − 2z cos 1
2

+ 1

(b) Z{e3k cos 2k} =
z2 − ze3 cos 2

z2 − 2ze3 cos 2 + e6
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Table 22.2

The z transforms of some common functions.

f [k] F(z) f [k] F(z)

δ[k] =

{
1 k = 0

0 k 6= 0
1 k2

z(z+ 1)

(z− 1)3

u[k] =

{
1 k > 0

0 k < 0

z

z− 1
k3

z(z2 + 4z+ 1)

(z− 1)4

k
z

(z− 1)2
sin ak

z sin a

z2 − 2z cos a+ 1

e−ak
z

z− e−a
cos ak

z(z− cos a)

z2 − 2z cos a+ 1

ak
z

z− a
e−ak sin bk

ze−a sin b

z2 − 2ze−a cos b+ e−2a

kak
az

(z− a)2
e−ak cos bk

z2 − ze−a cos b

z2 − 2ze−a cos b+ e−2a

k2ak
az(z+ a)

(z− a)3

EXERCISES 22.7

1 Using the de�nition of the z transform, �nd

closed-form expressions for the z transforms of the

following sequences f [k] where

(a) f [0] = 0, f [1] = 0, f [k] = 1 for k > 2

(b) f [k] =

{
0 k = 0, 1, . . . , 5

4 k > 5

(c) f [k] = 3k, k > 0

(d) f [k] = e−k, k = 0, 1, 2, . . .

(e) f [0] = 1, f [1] = 2, f [2] = 3, f [k] = 0, k > 3

(f) f [0] = 3, f [k] = 0, k 6= 0

(g) f [k] =

{
2 k > 0

0 k < 0

2 Use Table 22.2 to �nd the z transforms of

(a) cos 3k (b) ek (c) e−2k cos k

(d) e4k sin 2k (e) 4k (f) (−3)k

(g) sin

(
kπ

2

)
(h) cos

(
kπ

2

)

3 Find, from Table 22.2, the sequences which have the

following z transforms:

(a)
z

z+ 4
(b)

2z

2z− 1
(c)

3z

3z+ 1

(d)
z

z− e3
(e)

z

z2 + 1

4 By considering the Taylor series expansion of e1/z,

�nd the z transform of the sequence

f [k] =
1

k!
k > 0

Solutions

1 (a)
1

z(z− 1)
(b)

4

z5(z− 1)

(c)
3z

(z− 1)2
(d)

ez

ez− 1

(e)
z2 + 2z+ 3

z2
(f) 3 (g)

2z

z− 1

2 (a)
z(z− cos 3)

z2 − 2z cos 3 + 1
(b)

z

z− e
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(c)
z2 − ze−2 cos 1

z2 − 2ze−2 cos 1 + e−4

(d)
ze4 sin 2

z2 − 2ze4 cos 2 + e8

(e)
z

z− 4
(f)

z

z+ 3

(g)
z

z2 + 1
(h)

z2

z2 + 1

3 (a) (−4)k (b) (1/2)k (c) (−1/3)k

(d) e3k (e) sin(πk/2)

4 e1/z

22.8 SAMPLING A CONTINUOUS SIGNAL

We have already introduced sampling in Section 22.4. We now return to the topic. Most

of the signals that are encountered in the physical world are continuous in time. This

means that they have a signal level for every value of time over a particular time interval

of interest. An example is the measured value of the temperature of an oven obtained

using an electronic thermometer. This type of signal can be modelled using a continuous

mathematical function in which for each value of t there is a continuous signal level,

f (t). Several engineering systems contain signals whose values are important only at

particular points in time. These points are usually equally spaced and separated by a time

interval, T . Such signals are referred to as discrete time, or more compactly, discrete

signals. They are modelled by a mathematical function that is only de�ned at certain

points in time. An example of a discrete system is a digital computer. It carries out

calculations at �xed intervals governed by an electronic clock.

Suppose we have a continuous signal f (t), de�ned for t > 0, which we sample, that

is measure, at intervals of time, T . We obtain a sequence of sampled values of f (t),

that is f [0], f [1], f [2], . . . , f [k], . . .. Returning to the example of the oven temperature

signal, a discrete signal with a time interval of 5 seconds can be obtained by noting

the value of the electronic thermometer display every 5 seconds. Some textbooks use

the notation f [kT ] as a reminder that the sequence has been obtained by sampling at

an interval T . We will not use this notation as it can become clumsy. However, it is

important to note that changing the value of T changes the z transform as we shall see

in Example 22.13. It can be shown that sampling a continuous signal does not lose the

essence of the signal provided the sampling rate is suf�ciently high, and it is in fact

possible to recreate the original continuous signal from the discrete signal, if required.

It is often convenient to represent a discrete signal as a series of weighted impulses. The

strength of each impulse is the level of the signal at the corresponding point in time. We

write

f ∗(t) =

∞∑

k=0

f [k]δ(t − kT ) (22.8)

the * indicating that f (t) has been sampled. This representation is discussed in

Appendix I. This is a useful mathematical way of representing a discrete signal as the

properties of the impulse function lend themselves to a value that only exists for a short

interval of time. In practice, no sampling method has zero sampling time but provided

the sampling time is much smaller than the sampling interval, then this is a valid math-

ematical model of a discrete signal.
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We can apply the z transform directly to a continuous function, f (t), if we regard the

function as having been sampled at discrete intervals of time. Consider the following

example.

Example 22.13 (a) Find the z transform of f (t) = e−t sampled at t = 0, 0.1, 0.2, . . . .

(b) Find the z transform of f (t) = e−t sampled at t = 0, 0.01, 0.02, . . . .

(c) Express the sequences obtained in (a) and (b) as series of weighted impulses.

Solution (a) The sequence of sampled values is

1, e−0.1, e−0.2, . . .

that is,

e−0.1k k ∈ N and T = 0.1

From Table 22.2 we �nd the z transform of this sequence is
z

z− e−0.1
.

(b) The sequence of sampled values is

1, e−0.01, e−0.02, . . .

that is,

e−0.01k k ∈ N and T = 0.01

From Table 22.2 we �nd the z transform of this sequence is
z

z− e−0.01
. We note

that modifying the sampling interval, T , alters the z transform even though we are

dealing with the same function f (t).

(c) When T = 0.1 we have, from Equation (22.8),

f ∗(t) =

∞∑

k=0

e−0.1kδ(t − 0.1k)

= 1δ(t)+ e−0.1δ(t − 0.1)+ e−0.2δ(t − 0.2)+ · · ·

Note that an advantage of expressing the sequence as a series of weighted impulses is

that information concerning the time of occurrence of a particular value is contained

in the corresponding δ term.

When T = 0.01, we have

f ∗(t) =

∞∑

k=0

e−0.01kδ(t − 0.01k)

= 1δ(t)+ e−0.01δ(t − 0.01)+ e−0.02δ(t − 0.02)+ · · ·

Example 22.14 (a) Find the z transform of the continuous function f (t) = cos 3t sampled at t = kT ,

k ∈ N.

(b) Write down the �rst four terms of the sampled sequence when T = 0.2, and express

the sequence as a series of weighted impulses.
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Solution (a) The sampled sequence is

f [k] = cos 3kT = cos((3T )k)

The z transform of this sequence can be obtained directly from Table 22.2 from

which we have

Z{cos ak} =
z(z− cos a)

z2 − 2z cos a+ 1

Writing a = 3T we �nd

Z{cos 3kT } =
z(z− cos 3T )

z2 − 2z cos 3T + 1

(b) When T = 0.2, the �rst four terms are

1 cos 0.6 cos 1.2 cos 1.8

From Equation (22.8), the sequence of sampled values can be represented as the

following series of weighted impulses:

f ∗(t) =

∞∑

k=0

cos 3kTδ(t − kT )

=

∞∑

k=0

cos 0.6kδ(t − 0.2k)

= δ(t)+ cos 0.6δ(t − 0.2)+ cos 1.2δ(t − 0.4)+ cos 1.8δ(t − 0.6)+ · · ·

22.9 THE RELATIONSHIP BETWEEN THE z TRANSFORM
AND THE LAPLACE TRANSFORM

We have de�ned the z transform quite independently of any other transform. However,

there is a close relationship between the z transform and the Laplace transform, the z

being regarded as the discrete equivalent of the Laplace. This can be seen from the fol-

lowing argument.

If the continuous signal f (t) is sampled at intervals of time, T , we obtain a sequence

of sampled values f [k], k ∈ N. From Section 22.8 we note that this sequence can be

regarded as a train of impulses.

f ∗(t) =

∞∑

k=0

f [k]δ(t − kT )

Taking the Laplace transform, we have

L{ f ∗(t)} =

∫ ∞

0

e−st

∞∑

k=0

f [k]δ(t − kT ) dt

=

∞∑

k=0

f [k]

∫ ∞

0

e−stδ(t − kT ) dt
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assuming that it is permissible to interchange the order of summation and integration.

Noting from Table 21.1 that the Laplace transform of the function δ(t− kT ) is e−skT , we

can write

L{ f ∗(t)} =

∞∑

k=0

f [k] e−skT (22.9)

Now, making the change of variable z = esT , we have

L{ f ∗(t)} =

∞∑

k=0

f [k]z−k

which is the de�nition of the z transform. The expression L{ f ∗(t)} is commonly written

as F∗(s).

In Appendix I it is shown that the continuous function f (t) can be approximated by

multiplying the function f ∗(t) by the sampling interval T . Correspondingly, TF∗(s) is

an approximation to the Laplace transform of f (t). This is illustrated in the following

example.

Example 22.15 Consider the function f (t) = u(t) e−t which has Laplace transform F(s) =
1

s+ 1
. Sup-

pose f (t) is sampled at intervals T to give the sequence f [k] = e−kT , for

k = 0, 1, 2 . . ..

(a) Use Table 22.2 to �nd the z transform of f [k].

(b) Make the change of variable z = esT to obtain F∗(s).

(c) Show that provided the sample interval T is suf�ciently small, TF∗(s) approximates

the Laplace transform F(s).

Solution (a) From Table 22.2 we �nd Z{ f [k]} = F(z) =
z

z− e−T
.

(b) Letting z = esT gives F∗(s) =
esT

esT − e−T
. Dividing numerator and denominator by

esT gives F∗(s) =
1

1 − e−T (1+s)
.

(c) Using the power series expansion for ex we can write ex = 1+ x+
x2

2!
+ · · · . So we

can approximate e−T (1+s) for suf�ciently small T as 1 − T (1 + s). Hence

F∗(s) ≈
1

1 − (1 − T (1 + s))

=
1

T (1 + s)

and so TF∗(s) ≈
1

1 + s
, that is the Laplace transform of f (t).

We have illustrated the connection between the two transforms and shown how the z

transform can be regarded as the discrete equivalent of the Laplace transform.
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22.9.1 Mapping the s plane to the z plane

When designing an engineering system it is often useful to consider an s plane repre-

sentation of the system. The characteristics of a system can be quickly identi�ed by the

positions of the poles and zeros as we saw in Chapter 21. Engineers will often modify the

system characteristics by introducing new poles and zeros or by changing the positions

of existing ones. Unfortunately, it is not convenient to use the s plane to analyse discrete

systems. For a sampled signal Equation (22.9) yields

F∗(s) = L{ f ∗(t)} =

∞∑

k=0

f [k] e−skT

The continuous signals and systems that were analysed in Chapter 21 had Laplace trans-

forms that were simple ratios of polynomials in s. This was one of the main reasons for

using Laplace transforms to solve differential equations; the problemwas reduced to one

of reasonably straightforward algebraic manipulation. Here we have a Laplace transform

that is very complicated. In fact it can have an in�nite number of poles and zeros. To see

this consider the following example.

Example 22.16 The continuous signal f (t) = cos

(
πt

2

)
is sampled at 1 second intervals starting from

t = 0.

(a) Find the Laplace transform of the sampled signal f ∗(t).

(b) Show that F∗(s) has an in�nity of poles.

(c) Find the z transform of the sampled signal and show that this has just two poles.

Solution (a) The continuous signal f (t) = cos

(
πt

2

)
sampled at 1 second intervals gives rise to

the sequence 1, 0, −1, 0, 1, 0, −1, . . .. Consequently, from Equation (22.9)

F∗(s) = L{ f ∗(t)} =

∞∑

k=0

f [k] e−skT =

∞∑

k=0

f [k] e−sk since T = 1

that is,

F∗(s) = 1 + 0 − e−2s + 0 + e−4s + 0 − e−6s + · · ·

This is a geometric progression with common ratio −e−2s and hence its sum to

in�nity is

1

1 − (−e−2s)

that is,

F∗(s) =
1

1 + e−2s

(b) Poles of F∗(s) will occur when 1+ e−2s = 0. Writing s = σ + jω we see that poles

will occur when e−2(σ+jω) = −1. Since −1 can be written as ej(2n−1)π, n ∈ Z (see

Chapter 9), we see that poles will occur when

e−2σ−2jω = ej(2n−1)π
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The sampled signal has an in�nite

number of poles.
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There are two poles at z = ±j.

that is, when σ = 0 and ω = −(2n− 1)π/2. Thus there exist an in�nite number of

poles occurring when

s = −(2n− 1)
π

2
j n ∈ Z

Some of these are illustrated in Figure 22.17.

(c) The z transform of the sampled signal is

Z{ f ∗(t)} = 1 +
0

z
−

1

z2
+

0

z3
+

1

z4
+ · · ·

=
1

1 − (−1/z2)

=
z2

z2 + 1

which has just two poles at z = ±j as shown in Figure 22.18.

It is possible to show in general that the result of sampling a continuous signal is

to convert each simple pole of the Laplace transform into an in�nite set of poles. Sup-

pose that the Laplace transform of the signal f (t) can be broken down by using partial

fractions into a series of n + 1 terms with simple poles a0, a1, . . . , an. For simplicity,

repeating poles will not be considered but the proof for such a case is similar. So,

F(s) =
A0

s− a0
+

A1

s− a1
+

A2

s− a2
+ · · · +

An

s− an

In the time domain this corresponds to

f (t) = A0 e
a
0
t + A1 e

a
1
t + · · · + Ane

a
n
t
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Now we consider the Laplace transform of the sampled signal f ∗(t):

F∗(s) = L{ f ∗(t)} =

∞∑

k=0

f [k] e−skT

=

∞∑

k=0

(A0 e
a
0
kT + A1 e

a
1
kT + · · · + Ane

a
n
kT ) e−skT

= A0

∞∑

k=0

e−kT (s−a
0
) + A1

∞∑

k=0

e−kT (s−a
1
) + · · ·

+An

∞∑

k=0

e−kT (s−a
n
)

Now each of the summations can be converted into a closed form. For example,

∞∑

k=0

e−kT (s−a
0
) = 1 + e−T (s−a

0
) + e−2T (s−a

0
) + e−3T (s−a

0
) + · · ·

=
1

1 − e−T (s−a
0
)

Therefore,

F∗(s) =
A0

1 − e−T (s−a
0
)
+

A1

1 − e−T (s−a
1
)
+ · · · +

An

1 − e−T (s−a
n
)

It is possible to show that for each simple pole in F(s) there is now an in�nite set of

poles. Consider the pole at s = a0. This contributes the term

A0

1 − e−T (s−a
0
)

to F∗(s). This term has poles whenever 1 − e−T (s−a
0
) = 0, that is e−T (s−a

0
) = 1. This

corresponds to T (s− a0) = 2πmj, m ∈ Z. Therefore,

T (s− a0) = 2πmj

s− a0 =
2πm

T
j

s = a0 +
2πm

T
j m ∈ Z

The effect of sampling is to introduce an in�nite set of poles. Each one is equal to the

pole of the original continuous signal but displaced by an imaginary component. This

is illustrated in Figure 22.19 for a real pole a0. However, the proof is equally valid for

a complex conjugate pair of poles but the diagram is more cluttered and has, therefore,

not been shown.

Clearly discrete systems are not amenable to s plane design techniques. Fortunately,

the z plane can be used for analysing discrete systems in the same way that the s plane

can be used when analysing continuous systems. It is possible to map points from the s

plane to the z plane using the relation z = esT which gives rise to the de�nition of the z

transform as described previously.
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Figure 22.19

The effect of sampling is to introduce an

in�nite set of poles.

jv
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11
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Figure 22.20

The left half of the s plane maps to the inside of the unit

circle of the z plane.

The great advantage of the z plane is that it eliminates the problem of in�nitely re-

peating poles and zeros when analysing discrete systems. This can be illustrated by con-

sidering how the imaginary axis of the s plane maps to the z plane.

Referring to Figure 22.20, we see that s = σ + jω. On the imaginary axis σ = 0

and therefore z = esT = ejωT . As ω varies between −
π

T
and

π

T
, the locus of z is a circle

of radius 1, centred at the origin (see Section 9.10). As ω is increased from 0 to
π

T
the

upper half of the unit circle is traced out, while as ω is decreased from 0 to −
π

T
, the

lower half of the unit circle is traced out. Increasing ω above
π

T
or decreasing it below

−
π

T
leads to a retracing of the unit circle. In other words, the repeated s plane points are

superimposed on top of each other. This is the reason why the z plane approach is much

simpler than the s plane approach when analysing discrete systems.

The z transforms of discrete signals and systems are, in many cases, simple ratios of

polynomials. We shall see shortly that this means the process of analysing difference

equations which model these signals and systems is reduced to relatively simple alge-

braic manipulations.

22.10 PROPERTIES OF THE z TRANSFORM

Because of the relationship between the two transforms we would expect that many of

the properties of the Laplace transform would be mirrored by properties of the z trans-

form. This is indeed the case and some of these properties are given now. These are:

(1) linearity;

(2) shift theorems;

(3) the complex translation theorem.



710 Chapter 22 Di�erence equations and the z transform

22.10.1 Linearity

If f [k] and g[k] are two sequences then

Z{ f [k] + g[k]} = Z{ f [k]} + Z{g[k]}

This statement simply says that to �nd the z transform of the sum of two sequences we

can add the z transforms of the two sequences. If c is a constant, which may be negative,

and f [k] is a sequence, then

Z{c f [k]} = cZ{ f [k]}

Together these two properties mean that the z transform is a linear operator.

Example 22.17 Find the z transform of e−k + k.

Solution From Table 22.2 we have

Z{e−k} =
z

z− e−1

and

Z{k} =
z

(z− 1)2

Therefore,

Z{e−k + k} =
z

z− e−1
+

z

(z− 1)2

Example 22.18 Find the z transform of 3k.

Solution From Table 22.2 we have

Z{k} =
z

(z− 1)2

Therefore,

Z{3k} = 3Z{k} = 3 ×
z

(z− 1)2
=

3z

(z− 1)2

Example 22.19 Find the z transform of the function f (t) = 2t2 sampled at t = kT , k ∈ N.

Solution The sequence of sampled values is

f [k] = 2(kT )2 = 2T 2k2

The z transform of this sequence can be read directly from Table 22.2 using the linearity

properties. We have

Z{2T 2k2} = 2T 2
Z{k2} =

2T 2z(z+ 1)

(z− 1)3
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22.10.2 First shift theorem

If f [k] is a sequence and F(z) is its z transform, then

Z{ f [k+ i]} = ziF(z)− (zi f [0]+ zi−1 f [1]+· · ·+ z f [i−1]), i ∈ N+ (22.10)

In particular, if i = 1 we have

Z{ f [k + 1]} = zF(z)− z f [0] (22.11)

If i = 2 we have

Z{ f [k + 2]} = z2F(z)− z2 f [0] − z f [1]

Example 22.20 The sequence f [k] is de�ned by

f [k] =

{
0 k = 0, 1, 2, 3

1 k = 4, 5, 6, . . .

Write down the sequence f [k + 1] and verify that

Z{ f [k + 1]} = zF(z)− z f [0]

where F(z) is the z transform of f [k].

Solution The graph of f [k] is illustrated in Figure 22.21. The sequence f [k + 1] is de�ned as

follows:

When k = 0, f [k + 1] = f [1] which is 0.

When k = 1, f [k + 1] = f [2] which is 0.

When k = 2, f [k + 1] = f [3] which is 0.

When k = 3, f [k + 1] = f [4] which is 1, and so on.

Consequently,

f [k + 1] =

{
0 k = 0, 1, 2

1 k = 3, 4, 5, . . .

as illustrated in Figure 22.22. We see that the graph of f [k + 1] is simply that of f [k]

shifted one place to the left. More generally, f [k+ i] is the sequence f [k] shifted i places

to the left. Now

f [k]

1

0 1 2 3 4 5 6 7 8 9 k

Figure 22.21

The sequence of Example 22.25.

f [k + 1]

1

0 1 2 3 4 5 6 7 8 9 k

Figure 22.22

A shifted version of the sequence of Figure 22.21.
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F(z) = Z{ f [k]} =

∞∑

k=0

f [k]z−k

=

∞∑

k=4

z−k

=
1

z4
+

1

z5
+

1

z6
+ · · ·

=
1

z4

(
1 +

1

z
+

1

z2
+ · · ·

)

=
1

z4
1

1 − 1/z

=
1

z4
z

z− 1

=
1

z3
1

z− 1

The same argument shows that

Z{ f [k + 1]} =
1

z2
1

z− 1

It then follows that

Z{ f [k + 1]} =
1

z2
1

z− 1
= zF(z)− z f [0]

since f [0] = 0. This illustrates the �rst shift theorem.

22.10.3 Second shift theorem

The function f (t)u(t) is de�ned by

f (t)u(t) =

{
f (t) t > 0

0 t < 0

where u(t) is the unit step function. The function f (t− iT )u(t− iT ), where i is a positive

integer, represents a shift to the right of i sample intervals. Suppose this shifted function

is sampled; then we obtain

f [k − i]u[k − i] k ∈ N

The second shift theorem states:

Z{ f [k − i]u[k − i]} = z−iF(z) i ∈ N+

where F(z) is the z transform of f [k].
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Example 22.21 The function t u(t) is sampled at intervals T = 1 to give k u[k]. This sample is then

shifted to the right by one sampling interval to give

(k − 1)u[k − 1]

Find its z transform.

Solution Figure 22.23(a) shows t u(t) and Figure 22.23(b) shows the sampled function. Fig-

ures 22.23(c) and (d) show (t − 1)u(t − 1) and (k − 1)u[k − 1], respectively. From

Table 22.2, we have

Z{k} =
z

(z− 1)2

and so, from the second shift theorem with i = 1, we have

Z{(k − 1)u[k − 1]} = z−1 z

(z− 1)2
=

1

(z− 1)2

1
(a) (b) (c) (d)

t

1

1 2 3 t

1

1 2  k

1

2

1 2  k

1

2

33

Figure 22.23

Graphs for Example 22.21: (a) t u(t); (b) k u[k]; (c) (t − 1)u(t − 1); (d) (k − 1)u[k − 1].

Example 22.22 Find the z transform of the unit step function u(t) and the shifted unit step u(t − 2T ),

sampled at intervals of T seconds.

Solution If the function u(t) is sampled at intervals T then we are concerned with �nding the

z transform of the sequence u[k]. This has been derived earlier: Z{u[k]} =
z

z− 1
. If

u(t − 2T ) is sampled, we have

u[k − 2] =

{
1 k = 2, 3, 4, . . .

0 otherwise

Therefore, by the second shift theorem,

Z{u[k − 2]} = z−2
Z{u[k]}

= z−2 z

z− 1

=
1

z(z− 1)
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Example 22.23 Find the sequence whose z transform is
1

z− 1
.

Solution
1

z− 1
=

1

z

z

z− 1
= z−1 z

z− 1

From Table 22.2 we have

Z{u[k]} =
z

z− 1

So from the second shift property, we have

Z{u[k − 1]} = z−1 z

z− 1

The required sequence is therefore u[k − 1].

Example 22.24 Find the sequence whose z transform is
1

z2(z− 1)2
.

Solution The expression
1

z2(z− 1)2
does not appear in the table of transforms, but we observe

that

1

z2(z− 1)2
=

1

z3
z

(z− 1)2

and
z

(z− 1)2
does appear. It follows from Table 22.2 that

Z{k} =
z

(z− 1)2

From the second shift property, z−3
z

(z− 1)2
is the z transform of (k − 3)u[k − 3].

22.10.4 The complex translation theorem

Z{e−bk f [k]} = F(ebz) where F(z) is the z transform of f [k].

Example 22.25 Given that the z transform of cos(ak) is

z(z− cos a)

z2 − 2z cos a+ 1

�nd the z transform of e−2k cos(ak).

Solution Since b = 2, the complex translation theorem states that we replace z by e2z in the z

transform F(z).

F(e2z) =
e2z(e2z− cos a)

e4z2 − 2 e2z cos a+ 1

is therefore the required transform.
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EXERCISES 22.10

1 Use Table 22.2 to �nd the z transforms of

(a) 3(4)k + 7k2, k > 0

(b) 3 e−k sin 4k − k, k > 0

2 Find the z transforms of the following continuous

functions sampled at t = kT , k ∈ N:

(a) t2 (b) 4t (c) sin 2t

(d) u(t − 4T ) (e) e3t

3 Find the z transform of (k − 3)u[k − 3] by direct use

of the de�nition of the z transform. Hence verify the

result of Example 22.24.

4 Prove that the z transform of e−at f (t) is F(eaT z).

5 Prove the �rst and second shift theorems.

6 Use the complex translation theorem to �nd the z

transforms of

(a) ke−bk (b) e−k sin k

7 If f [k] = 4(3)k �nd Z{ f [k]}. Use the �rst shift

theorem to deduce Z{ f [k + 1]}. Show that

Z{ f [k + 1]} − 3Z{ f [k]} = 0.

8 Write down the �rst �ve terms of the sequence

de�ned by f [k] = 4(2)k−1u[k − 1], k > 0. Find its z

transform directly, and also by using the second shift

theorem.

Solutions

1 (a)
3z

z− 4
+

7z(z+ 1)

(z− 1)3

(b)
3ze−1 sin 4

z2 − 2ze−1 cos 4 + e−2
−

z

(z− 1)2

2 (a)
T 2z(z+ 1)

(z− 1)3
(b)

4Tz

(z− 1)2

(c)
z sin 2T

z2 − 2z cos 2T + 1
(d)

1

z3(z− 1)

(e)
z

z− e3T

3
1

z2(z− 1)2

6 (a)
zeb

(zeb − 1)2

(b)
ez sin 1

e2z2 − 2 ez cos 1 + 1

7
4z

z− 3
,
12z

z− 3

8 0, 4, 8, 16, 32.
4

z− 2

22.11 INVERSION OF z TRANSFORMS

Just as it is necessary to invert Laplace transforms we need to be able to invert z trans-

forms and as before we can make use of tables of transforms, partial fractions and the

shift theorems. In very complicated cases more advanced techniques are required.

Example 22.26 If F(z) =
z+ 3

z− 2
, �nd f [k].

Solution Note that we can write F(z) as

z+ 3

z− 2
=

z

z− 2
+

3

z− 2

The reason for this choice is that quantities like the �rst on the r.h.s. appear in Table 22.2.

From this table we �nd

Z{2k} =
z

z− 2
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and write

Z
−1

{
z

z− 2

}
= 2k

where Z−1 denotes the inverse z transform. Also,

3

z− 2
=

3

z

z

z− 2

= 3z−1 z

z− 2

Using the second shift property we see that

Z{3(2)k−1u[k − 1]} =
3

z

z

z− 2

so that

Z
−1

{
z+ 3

z− 2

}
= Z

−1

{
z

z− 2

}
+ Z

−1

{
3z−1 z

z− 2

}

= 2k + 3(2)k−1u[k − 1]

=

{
1 k = 0

2k + 3(2)k−1 k = 1, 2, . . .

=

{
1 k = 0

2(2)k−1 + 3(2)k−1 k = 1, 2, . . .

=

{
1 k = 0

5(2)k−1 k = 1, 2, . . .

Often it is necessary to split a complicated expression into several simpler ones, using

partial fractions, before inversion can be carried out. Also, if we examine the z transform

table, Table 22.2, we notice that nearly all of the entries have a z term in the numerator.

For this reason it is convenient to divide a complicated expression by z before splitting

it into partial fractions. We illustrate this technique by means of an example.

Example 22.27 Find the sequence whose z transform is

F(z) =
2z2 − z

(z− 5)(z+ 4)

Solution The �rst stage is to divide the expression for F(z) by z. We have

F(z) =
2z2 − z

(z− 5)(z+ 4)

F(z) =
z(2z− 1)

(z− 5)(z+ 4)

F(z)

z
=

2z− 1

(z− 5)(z+ 4)
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We now split the r.h.s. expression into partial fractions using the standard techniques

discussed in Section 1.7. This gives

F(z)

z
=

1

z− 5
+

1

z+ 4

Multiplying by z gives

F(z) =
z

z− 5
+

z

z+ 4

It is now possible to invert this expression for F(z) using the z transform table,

Table 22.2. This gives

f [k] = 5k + (−4)k

22.11.1 Direct inversion

Sometimes it is possible to invert a transform F(z) directly by reading off the coef�-

cients.

Example 22.28 Find f [k] if

F(z) = 1 + z−1 + z−2 + z−3 + · · ·

Solution Using the de�nition of the z transform we see that

f [k] = 1, 1, 1, . . .

Occasionally it is possible to rewrite F(z) to obtain the required form.

Example 22.29 Use the binomial theorem to expand

(
1 −

1

z

)−3

up to the term
1

z4
. Hence �nd the

sequence with z transform F(z) =
z3

(z− 1)3
.

Solution Using the binomial theorem, we have
(
1 −

1

z

)−3

= 1 + (−3)

(
−
1

z

)
+
(−3)(−4)

2!

(
−
1

z

)2

+
(−3)(−4)(−5)

3!

(
−
1

z

)3

+
(−3)(−4)(−5)(−6)

4!

(
−
1

z

)4

+ · · ·

= 1 +
3

z
+

6

z2
+

10

z3
+

15

z4
+ · · ·

provided |z| > 1. Since

F(z) =
z3

(z− 1)3
=

(
z− 1

z

)−3

=

(
1 −

1

z

)−3
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we have

F(z) = 1 +
3

z
+

6

z2
+

10

z3
+

15

z4
+ · · ·

Thus F(z) can be inverted directly to give

f [k] = 1, 3, 6, 10, 15, . . . that is, f [k] =
(k + 2)(k + 1)

2
k > 0

EXERCISES 22.11

1 Find the inverse z transforms of the following:

(a)
4z

z− 4
(b)

z2 + 2z

3z2 − 4z− 7

(c)
z+ 1

(z− 3)z2
(d)

2z3 + z

(z− 3)2(z− 1)

2 Find the inverse z transforms of

(a)
2z

(z− 2)(z− 3)
(b)

ez

(ez− 1)2

(c) 1 −
2

z
+

z

(z− 3)(z− 4)
(d)

z2

(z2 − 1
9 )

(e)
2z2

(z− 1)(z− 0.905)

3 Express

F(z) =
(z+ 1)(2z− 3)(z− 2)

z3

in partial fractions and hence obtain its inverse z

transform.

4 If

F(z) =
10z

(z− 1)(z− 2)

�nd f [k].

Solutions

1 (a) 4(4k)

(b)
13(7/3)k

30
−
(−1)k

10

(c) u[k − 2]
4(3)k−2 − δ[k − 2]

3

May be written as:

3k−2u[k − 2] + 3k−3u[k − 3]

(d)
19k(3k)

6
+

3u[k]

4
+

5(3k)

4

2 (a) −2(2k)+ 2(3k)

(b) e−kk

(c) δ[k] − 2δ[k − 1] + 4k − 3k

(d)
(1/3)k + (−1/3)k

2

(e) 21.05u[k] − 19.05(0.905)k

3 2 −
5

z
−

1

z2
+

6

z3

f [0] = 2, f [1] = −5, f [2] = −1,

f [3] = 6, f [k] = 0 k > 4

4 10(2k − u[k])

22.12 THE z TRANSFORM AND DIFFERENCE EQUATIONS

In Chapter 21 we saw how useful the Laplace transform can be in the solution of linear,

constant coef�cient, ordinary differential equations. Similarly the z transform has a role

to play in the solution of difference equations.
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Example 22.30 Solve the difference equation y[k + 1] − 3y[k] = 0, y[0] = 4.

Solution Taking the z transform of both sides of the equation we have

Z{y[k + 1] − 3y[k]} = Z{0} = 0

since Z{0} = 0. Using the properties of linearity we �nd

Z{y[k + 1]} − 3Z{y[k]} = 0

Using the �rst shift theorem on the �rst of the terms on the l.h.s. we obtain

zZ{y[k]} − 4z− 3Z{y[k]} = 0

Writing Z{y[k]} = Y (z), this becomes

(z− 3)Y (z) = 4z

so that

Y (z) =
4z

z− 3

The function on the r.h.s. is the z transform of the required solution. Inverting this, from

Table 22.2 we �nd y[k] = 4(3)k.

Higher order equations are treated in the same way.

Example 22.31 Solve the second-order difference equation

y[k + 2] − 5y[k + 1] + 6y[k] = 0 y[0] = 0 y[1] = 2

Solution Taking the z transform of both sides of the equation and using the properties of linearity

we have

Z{y[k + 2]} − 5Z{y[k + 1]} + 6Z{y[k]} = 0

From the �rst shift theorem we have

z2Y (z)− z2y[0] − zy[1] − 5(zY (z)− zy[0])+ 6Y (z) = 0

where

Y (z) = Z{y[k]}

Substituting values for the conditions gives

z2Y (z)− 0z2 − 2z− 5(zY (z)− 0z)+ 6Y (z) = 0

z2Y (z)− 5zY (z)+ 6Y (z) = 2z

Hence

(z2 − 5z+ 6)Y (z) = 2z

so that

Y (z) = Z{y[k]} =
2z

(z− 2)(z− 3)
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Dividing both sides by z gives

Y (z)

z
=

2

(z− 2)(z− 3)

Expressing the r.h.s. in partial fractions yields

Y (z)

z
=

2

z− 3
−

2

z− 2

Y (z) =
2z

z− 3
−

2z

z− 2

Inverting gives the solution to the difference equation:

y[k] = 2(3k)− 2(2k)

EXERCISES 22.12

1 Use z transforms to solve the following difference

equations:

(a) x[k + 1] − 3x[k] = −6, x[0] = 1

(b) 2x[k + 1] − x[k] = 2k, x[0] = 2

(c) x[k + 1] + x[k] = 2k + 1, x[0] = 0

(d) x[k + 2] − 8x[k + 1] + 16x[k] = 0,

x[0] = 10, x[1] = 20

(e) x[k + 2] − x[k] = 0, x[0] = 0, x[1] = 1

2 Solve the difference equation

x[k + 2] − 3x[k + 1] + 2x[k] = δ[k]

subject to the conditions x[0] = x[1] = 0.

3 Solve the difference equation

y[k + 2] + 3y[k + 1] + 2y[k] = 0

subject to the conditions y[0] = 0, y[1] = 1.

4 Solve the difference equation

x[k + 2] − 7x[k + 1] + 12x[k] = k

subject to the conditions x[0] = 1, x[1] = 1.

Solutions

1 (a) x[k] = 3 − 2(3k) (b)
2k

3
+

5(1/2)k

3

(c) k (d) 10(4k)− 5(k4k)

(e)
u[k] − (−1)k

2

May be expressed as x[k] =

{
0 k even

1 k odd

2 (2k−1 − 1)u[k − 1]

3 (−1)k − (−2)k

4
k

6
+

5

36
u[k] +

11

4
(3)k −

17

9
(4)k

REVIEW EXERCISES 22

1 State

(i) the order

(ii) the independent variable

(iii) the dependent variable

(iv) whether linear or non-linear

for each of the following equations:

(a) x[n] + x[n− 2] = 6

(b) y[k + 1] + ky[k − 1] − k = 0

(c) (y[z] + 1)y[z+ 1] = z2

(d) z[n] − z[n− 1] = n2z[n− 2]
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(e) q[k + 3] +
√
q[k + 2] = q[k] − 1

For each linear equation state whether it is

homogeneous or inhomogeneous.

2 Given

3(x[n+ 1])2 − 2x[n] = n2 x[0] = 2

�nd x[1], x[2] and x[3].

3 Rewrite each equation so that the highest argument of

the dependent variable is as speci�ed.

(a) 3ny[n+ 1] − y[n− 1] = n2, highest argument of

the dependent variable is to be n.

(b) z[k + 2] + (3 + k/2)z[k] =
√
k z[k − 1], highest

argument of the dependent variable is to be k+ 1.

(c) x[3]x[n] − x[2]x[n− 1] = (n+ 1)2, highest

argument of the dependent variable is to be n+ 1.

4 Find f [k] if

F(z) =
z(1 − a)

(z− 1)(z− a)

5 Find the inverse z transform of

(a)
3z(z+ 2)

(z− 2)(z− 3)2

(b)
z2 + 3z

3z2 + 2z− 5

6 The sequence δ[k− i] is the Kronecker delta sequence

shifted i units to the right. Find its z transform.

7 Show that sin ak can be written as

eakj − e−akj

2j

Given that

Z{e−ak} =
z

z− e−a

show that

Z{sin ak} =
z sin a

z2 − 2z cos a+ 1

Solutions

1 (a) Second order, n, x, linear, inhomogeneous

(b) Second order, k, y, linear, inhomogeneous

(c) First order, z, y, non-linear

(d) Second order, n, z, linear, homogeneous

(e) Third order, k, q, non-linear

2 1.1547, 1.0503, 1.4260

3 (a) 3(n− 1)y[n] − y[n− 2] = (n− 1)2

(b) z[k + 1] +

(
3 +

1

2
(k − 1)

)
z[k − 1]

=
√
k − 1z[k − 2]

(c) x[3]x[n+ 1] − x[2]x[n] = (n+ 2)2

4 u[k] − ak

5 (a) 12(2k)− 12(3k)+ 5k3k

(b)
u[k] − (−5/3)k/3

2

6
1

zi
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23.1 INTRODUCTION

The ability to analyse waveforms of various types is an important engineering skill.

Fourier analysis provides a set of mathematical tools which enable the engineer to break

down a wave into its various frequency components. It is then possible to predict the

effect a particular waveform may have from knowledge of the effects of its individual

frequency components. Often an engineer �nds it useful to think of a signal in terms of

its frequency components rather than in terms of its time domain representation. This

alternative view is called a frequency domain representation. It is particularly useful

when trying to understand the effect of a �lter on a signal. Filters are used extensively

in many areas of engineering. In particular, communication engineers use them in signal

reception equipment for �ltering out unwanted frequencies in the received signal; that is,

removing the transmission signal to leave the audio signal. We shall begin this chapter

by reviewing the essential properties of waves before describing how breaking down

into frequency components is achieved.
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23.2 PERIODIC WAVEFORMS

In this chapter we shall be concerned with periodic functions, especially sine and cosine

functions. Let us recall some important de�nitions and properties already discussed in

Section 3.7. The function f (t) = A sin(ωt + φ) = A sinω

(
t +

φ

ω

)
is a sine wave of

amplitude A, angular frequency ω, frequency
ω

2π
, period T =

2π

ω
and phase angle φ.

The time displacement is de�ned to be
φ

ω
. These quantities are shown in Figure 23.1.

Similar remarks can be made about the function A cos(ωt + φ) and together the sine

and cosine functions form a class of functions known as sinusoids or harmonics. It will

be particularly important for what follows that you havemastered the skills of integrating

these functions. The following results can be found in Table 13.1 (see page 431):

∫
sin nωt dt = −

cos nωt

nω
+ c

∫
cos nωt dt =

sin nωt

nω
+ c

for n = ±1,±2, . . .

Sometimes a function occurs as the sum of a number of different sine or cosine compo-

nents such as

f (t) = 2 sinω1t + 0.8 sin 2ω1t + 0.7 sin 4ω1t (23.1)

The r.h.s. of Equation (23.1) is a linear combination of sinusoids.

Note in particular that the angular frequencies of all components in Equation (23.1)

are integer multiples of the angular frequency ω1. Functions like these can easily be

plotted using a graphics calculator or computer graph-plotting package. The component

with the lowest frequency, or largest period, is 2 sinω1t. The quantity ω1 is called the

fundamental angular frequency and this component is called the fundamental or �rst

harmonic. The component with angular frequency 2ω1 is called the second harmonic

and so on. In what follows all angular frequencies are integer multiples of the fundamen-

tal angular frequency as in Equation (23.1). A consequence of this is that the resulting

function, f (t), is periodic and has the same frequency as the fundamental. Some har-

monics may be missing. For example, in Equation (23.1) the third harmonic is missing.

In some cases the �rst harmonic may be missing. For example, if

f (t) = cos 2ω1t + 0.5 cos 3ω1t + 0.4 cos 4ω1t + · · ·

T =    , period

Amplitude

—
f(t)

A

t

–A

–
f
v

2p
v

Figure 23.1

The function: f (t) = A sin(ωt + φ).



724 Chapter 23 Fourier series

all angular frequencies are integer multiples of the fundamental angular frequency ω1,

which is missing. Nevertheless, f (t) has the same angular frequency as the fundamen-

tal. A common value for ω1 is 100π as this corresponds to a frequency of 50 Hz, the

frequency of the UK mains supply.

Example 23.1 Describe the frequency and amplitude characteristics of the different harmonic compo-

nents of the function

f (t) = cos 20π t + 0.6 cos 60π t − 0.2 sin 140π t

Solution The fundamental angular frequency is 20π arising through the term cos 20π t. This cor-

responds to a frequency of 10 Hz. This term has amplitude 1. The second, fourth, �fth

and sixth harmonics aremissing, while the third and seventh have amplitudes 0.6 and 0.2,

respectively.

Example 23.2 If f (t) = 2 sin t + 3 cos t, express f (t) as a single sinusoid and hence determine its

amplitude and phase.

Solution Both terms have angular frequency ω = 1. Recalling the trigonometric identity (Sec-

tion 3.7)

R cos(ωt − θ ) = a cosωt + b sinωt

where R =
√
a2 + b2, tan θ =

b

a
, we see that in this case R =

√
32 + 22 =

√
13 and

tan θ =
2

3
, that is θ = 0.59 radians. Therefore we can express f (t) in the form

f (t) =
√
13 cos(t − 0.59)

We see immediately that this is a sinusoid of amplitude
√
13 and phase angle −0.59

radians.

Example 23.3 Find the amplitude and phase of the fundamental component of the function

f (t) = 0.5 sinω1t + 1.5 cosω1t + 3.5 sin 2ω1t − 3 cos 3ω1t

Solution Contributions to the fundamental component -- that is, that with the lowest frequency --

come from the terms 0.5 sinω1t and 1.5 cosω1t only. To �nd the amplitude and phase

we must express these as a single component. Using the trigonometric identity

R cos(ωt − θ ) = a cosωt + b sinωt

where R =
√
a2 + b2, tan θ =

b

a
, we �nd

R =
√
1.52 + 0.52 = 1.58

tan θ =
0.5

1.5
=

1

3
that is, θ = 0.32 radians

Therefore the fundamental can be written 1.58 cos(ω1t − 0.32) and has amplitude 1.58

and phase angle −0.32 radians.
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–1 0 1  t

1

f(t)

2 3

Figure 23.2

Graph for Example 23.4.

–1 0 1

1

2 3 4 5 6 t

f(t)

Figure 23.3

Graph for Example 23.5.

Many other periodic functions arise in engineering applications as well as the more fa-

miliar harmonic waves. Remember, to be periodic the function values must repeat at

regular intervals known as the period, T . The angular frequency ω is given by ω =
2π

T
.

To describe a periodic function mathematically it is suf�cient to give its equation over

one full period and state that period. From this information the complete graph can be

drawn as Examples 23.4 and 23.5 show.

Example 23.4 Sketch the graph of the periodic function de�ned by

f (t) = t 0 6 t < 1 period 1

Solution To proceed we �rst sketch the graph on the given interval 0 6 t < 1 (Figure 23.2), and

then use the fact that the function repeats regularly with period 1 to complete the picture.

Example 23.5 Write down a mathematical expression for the function whose graph is shown in

Figure 23.3.

Solution We �rst note that the interval over which the function repeats itself is 2; that is, period

= 2. It is then suf�cient to describe the function over any interval of length 2. The

simplest interval to take is 0 6 t < 2. We note in this example that a single formula is

insuf�cient to describe the function for 0 6 t < 2 since different behaviour is exhibited

in the two intervals 0 6 t < 1 and 1 6 t < 2. For 0 6 t < 1 the function is a ramp with

slope 1 and passes through the origin, that is it has equation f (t) = t. For 1 6 t < 2 the

function value remains constant at 1. Therefore this periodic function can be described

by the expression

f (t) =

{
t 0 6 t < 1 period 2

1 1 6 t < 2

EXERCISES 23.2

1 Describe the frequency and amplitude characteristics

of the different harmonic components of the following

waveforms:

(a) f (t) = 3 sin 100π t − 4 sin 200π t

+ 0.7 sin 300π t

(b) f (t) = sin 40t − 0.5 cos 120t

+ 0.3 cos 240t

Use a graph-plotting computer package or graphics

calculator to graph these waveforms.
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2 Express each of the following functions as a single

sinusoid and hence �nd their amplitudes and phases.

(a) f (t) = 2 cos t − 3 sin t

(b) f (t) = 0.5 cos t + 3.2 sin t

(c) f (t) = 3 cos 3t

(d) f (t) = 2 cos 2t + 3 sin 2t

3 Sketch the graphs of the following functions:

(a) f (t) = t2,−1 6 t 6 1, period 2

(b) f (t) =

{
0 0 6 t < π/2 period π

sin t π/2 6 t 6 π

(c) f (t) =

{
−t −2 6 t < 0 period 3

t 0 6 t < 1

4 Write down mathematical expressions to describe the

functions whose graphs are shown in Figure 23.4.

1

(a) (b)

21–1–2 t

f(t)

1

210–1–2 t

f(t)

(c)

1

31 4–2–3 t

f(t)

Figure 23.4

Solutions

1 (a) Fundamental frequency is 50 Hz, amplitude 3.

Second harmonic has frequency of 100 Hz,

amplitude 4. Third harmonic has frequency of

150 Hz, amplitude 0.7.

(b) Fundamental frequency is
20

π
Hz, amplitude 1.

Second harmonic is missing. Third harmonic has

frequency of
60

π
Hz, amplitude 0.5. Fourth and

�fth harmonics are missing. Sixth harmonic has

frequency of
120

π
Hz, amplitude 0.3.

2 (a)
√
13 cos(t + 0.983); amplitude =

√
13,

phase = 0.983

(b) 3.24 cos(t + 4.867); amplitude = 3.24,

phase = 4.867

(c) 3 cos 3t; amplitude = 3, phase = 0

(d)
√
13 cos(2t − 0.983); amplitude =

√
13,

phase = −0.983

4 (a) f (t) =

{
1 0 6 t 6 1

0 1 < t < 2 period = 2

(b) f (t) =

{
2t 0 6 t 6 1/2

2 − 2t 1/2 < t < 1

period = 1

(c) f (t) =

{
0 0 6 t 6 1

t/2 − 1/2 1 < t < 3

period = 3

23.3 ODD AND EVEN FUNCTIONS

The functions sin t and cos t each possess certain properties which can be generalized to

other functions. Figure 23.5 shows the graph of f (t) = cos t. It is obvious from the graph

that the function value at a negative t value, say −
π

4
, will be the same as the function

value at the corresponding positive t value, in this case +
π

4
. This is true because the

graph is symmetrical about the vertical axis. We can therefore state that for any value

of t, cos(−t) = cos t.
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f(t)

t2pp–p–2p

1

p–
4

p–
4

–

Figure 23.5

The function: f (t) = cos t.

f(t)

t

f(t)

t

3

(a) (b)

Figure 23.6

Examples of even functions: (a) f (t) = t2; (b) f (t) = 3.

More generally, any function with the property that f (t) = f (−t) for any value of

its argument, t, is said to be an even function.

If f (t) = f (−t) then f is an even function.

In particular, the set of functions cos nωt, for any integer n, is even. The graphs of all

even functions are symmetrical about the vertical axis -- or equivalently, the graph on

the left of the origin can be obtained by reflecting in the vertical axis that on the right.

Some other examples of even functions are shown in Figure 23.6.

Sketching a graph shows up the required symmetry immediately. However, even func-

tions can be identi�ed by an algebraic approach as shown in Example 23.6. Given any

function f (t), we examine f (−t) to see if f (t) = f (−t).

Example 23.6 Show that f (t) = t2 is even.

Solution We can argue as follows. If

f (t) = t2

then

f (−t) = (−t)2

= t2

= f (t)

so that f (t) is even, by de�nition.



728 Chapter 23 Fourier series

Example 23.7 Test whether or not the function f (t) = 4t3 is even.

Solution If

f (t) = 4t3

then

f (−t) = 4(−t)3

= −4t3

= − f (t)

so that f (−t) is not equal to f (t) and therefore the given function is not even.

Let us turn now to the graph of f (t) = sin t in Figure 23.7. It is obvious from the

graph that the function value at a negative t value, say −
π

4
, will not be the same as the

function value at the corresponding positive t value, in this case +
π

4
. This graph is not

symmetrical about the vertical axis. However, we can state something else. The function

value at a negative t value is minus the function value at the corresponding positive t

value. For example, sin

(
−

π

4

)
= − sin

(
π

4

)
. In fact, for all values of t we can state that

sin(−t) = − sin t. More generally, any function with the property that f (−t) = − f (t)

for all values of its argument, t, is said to be an odd function.

If f (−t) = − f (t) then f is an odd function.

In particular, the set of functions sin nωt, for any integer n, is odd. In Example 23.7,

f (t) = 4t3, we found that f (−t) = − f (t) so this function is odd. The graph of an odd

function can be obtained by reflection �rst in the horizontal axis and then in the vertical

axis. Some more examples of odd functions are shown in Figure 23.8.

There are some functions that are neither odd nor even -- for example, the exponential

function (see Chapter 2).

Example 23.8 Show that any function, f (t), can be expressed as the sum of an odd component and an

even component.

Solution We can write

f (t) = f (t)+
f (−t)

2
−

f (−t)

2

=
f (t)

2
+

f (t)

2
+

f (−t)

2
−

f (−t)

2

Rearranging gives

f (t) =
f (t)+ f (−t)

2
+

f (t)− f (−t)

2
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f(t)

t

1

–1

–

p–
4

p–
4

Figure 23.7

The function: f (t) = sin t.

f(t)

t

f(t)

t

1 

0

–1

(a)

(b)

Figure 23.8

Examples of odd functions:

(a) f (t) = t;

(b) f (t) =

{
1 t > 0

−1 t < 0.

Now it is easy to check that the �rst term on the r.h.s. is even and the second term is

odd, so that we have expressed f (t) as the sum of an even and an odd component as

required.

Example 23.9 Show that the product of two even functions is itself an even function. Determinewhether

the product of two odd functions is even or odd. Is the product of an even function and

an odd function even or odd?

Solution If f (t) and g(t) are even then f (−t) = f (t) and g(−t) = g(t). Let P(t) = f (t)g(t) be

the product of f and g. Then

P(−t) = f (−t)g(−t) by de�nition

= f (t)g(t) since f and g are even

= P(t)

Therefore, P(−t) = P(t) and so the product f (t)g(t) is itself an even function. On the

other hand, if f (t) and g(t) are both odd we �nd

P(−t) = f (−t)g(−t)

= (− f (t))(−g(t))

= f (t)g(t)

= P(t)

so that the product f (t)g(t) is even.
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f (t)

ta–a                    0

Figure 23.9

A typical odd function, f (t).

f (t)

ta–a                    0

Figure 23.10

A typical even function, f (t).

If f (t) is even and g(t) is odd, we �nd

P(−t) = f (−t)g(−t)

= f (t)(−g(t))

= − f (t)g(t)

= −P(t)

so the product is an odd function. These rules are obviously analogous to the rules for

multiplying positive and negative numbers.

The results of Example 23.9 are summarized thus:

(even) × (even) = even

(odd) × (odd) = even

(even) × (odd) = odd

23.3.1 Integral properties of even and odd functions

Consider a typical odd function, f (t), such as that shown in Figure 23.9. Suppose we

wish to evaluate
∫ a

−a
f (t) dt where the interval of integration [−a, a] is symmetrical

about the vertical axis. Recall from Chapter 13 that a de�nite integral can be regarded as

the area bounded by the graph of the integrand and the horizontal axis. Areas above the

horizontal axis are positive while those below are negative. We see that because positive

and negative contributions cancel, the integral of an odd function over an interval which

is symmetrical about the vertical axis will be zero.

Example 23.10 Evaluate
∫

π

−π
t cos nωt dt.

Solution The function t is odd. The function cos nωt is even and hence the product t cos nωt is

odd. The interval [−π,π] is symmetrical about the vertical axis and hence the required

integral is zero.

Consider now a typical even function, f (t), such as that shown in Figure 23.10. Suppose

we wish to evaluate
∫ a

−a
f (t) dt. Clearly the area bounded by the graph and the t axis in
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the interval [−a, 0] is the same as the corresponding area in the interval [0, a]. Hence

we can write

∫ a

−a

f (t) dt = 2

∫ a

0

f (t) dt

Example 23.11 Evaluate
∫

π

−π
t sin t dt.

Solution The functions t and sin t are both odd, and hence their product is even. Therefore, using

the fact that the integrand is even we can write

∫
π

−π

t sin t dt = 2

∫
π

0

t sin t dt

So, integrating by parts,

2

∫
π

0

t sin t dt = 2

(
[−t cos t]π0 +

∫
π

0

cos t dt

)

= 2((−π cosπ)− (0)+ [sin t]π0 )

= 2π

EXERCISES 23.3

1 Determine by inspection whether each of the

functions in Figure 23.11 is odd, even or neither.

f(t)

t

f(t)

t

(a) (b)

f(t)

t

(d)

f(t)

t

(c)

Figure 23.11

(a) The function: f (t) = −t;

(b) f (t) =
t

2
+ 1;

(c) f (t) = t3;

(d) f (t) = cos t + 0.1t2.

2 By using the properties of odd and even functions

developed in Example 23.9 state whether the

following are odd, even or neither:

(a) t3 sinωt (b) t cos 2t

(c) sin t sin 4t (d) cosωt sin 2ωt

(e) et sin t

3 Evaluate the following integrals using the integral

properties of odd and even functions where

appropriate:

(a)
∫ 5
−5 t

3 dt (b)
∫ 5
−5 t

3 cos 3t dt

(c)
∫

π

−π
t2 sin t dt (d)

∫ 2
−2 t cosh 3t dt

(e)
∫ 1
−1 |t| dt (f)

∫ 1
−1 t|t| dt
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Solutions

1 (a) odd (b) neither

(c) odd (d) even

2 (a) even (b) odd (c) even

(d) odd (e) neither

3 (a) 0 (b) 0

(c) 0 (d) 0

(e) 1 (f) 0

23.4 ORTHOGONALITY RELATIONS AND OTHER
USEFUL IDENTITIES

Recall from Chapter 16 that two functions f (t) and g(t) are said to be orthogonal on the

interval a 6 t 6 b if

∫ b

a

f (t)g(t) dt = 0

Example 23.12 Show that the functions cosmωt and cos nωt with m, n positive integers and m 6= n are

orthogonal on the interval −
π

ω
6 t 6

π

ω
.

Solution We must evaluate

∫
π/ω

−π/ω

cosmωt cos nωt dt

Using the trigonometric identity 2 cosA cosB = cos(A+ B)+ cos(A− B), we �nd the

integral becomes

1

2

∫
π/ω

−π/ω

cos(m+ n)ωt + cos(m− n)ωt dt

=
1

2

[
sin(m+ n)ωt

(m+ n)ω
+

sin(m− n)ωt

(m− n)ω

]
π/ω

−π/ω

= 0

since sin(m ± n)π = 0 for all integers m, n. It was necessary to require m 6= n since

otherwise the second quantity in brackets becomes unde�ned.

Hence cosmωt and cos nωt are orthogonal on the given interval.

A number of other functions regularly appearing inwork connectedwith Fourier analysis

are orthogonal. The main results together with some other useful integral identities are

given in Table 23.1.
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Table 23.1

Some useful integral identities.

∫ T

0

sin
2nπ t

T
dt = 0 for all integers n

∫ T

0

cos
2nπ t

T
dt = 0 n = 1, 2, 3, . . .

∫ T

0

cos
2nπ t

T
dt = T n = 0

∫ T

0

cos
2mπ t

T
cos

2nπ t

T
dt =

{
0 m 6= n

T/2 m = n 6= 0

∫ T

0

sin
2mπ t

T
sin

2nπ t

T
dt =

{
0 m 6= n

T/2 m = n 6= 0

∫ T

0

sin
2mπ t

T
cos

2nπ t

T
dt = 0 for all integers m and n

23.5 FOURIER SERIES

We have seen that the functions sinωt, sin 2ωt, sin 3ωt, . . . , cosωt, cos 2ωt, . . . are

periodic. Furthermore, linear combinations of them are also periodic. They are also con-

venient functions to deal with because they can be easily differentiated, integrated, etc.

They also possess another very useful property -- that of completeness. This means that

almost any periodic function can be expressed as a linear combination of them and no

additional functions are required to do this. In other words, they can be used as build-

ing blocks to construct periodic functions simply by adding particular multiples of them

together.

We shall see, for example, that the sawtooth waveform with period 2π, shown in

Figure 23.12, is given by the particular combination

f (t) = 2

(
sin t −

1

2
sin 2t +

1

3
sin 3t −

1

4
sin 4t +

1

5
sin 5t − · · ·

)

This is an in�nite series which can be shown to converge for almost all values of t to the

function f . This means that if any value of t is substituted into the in�nite series and the

series is summed, the result will be the same as the value of the sawtooth function at

that value of t. There is an exception: if t is one of the points of discontinuity the in�nite

series will converge to the mean of the values to its left and right, that is 0.

To obtain a feel for what is happening consider Figure 23.13. Graphs (a), (b) and (c)

show the effect of including more and more terms in the series. As more terms are taken

p

p

–p

3p t

f(t)

Figure 23.12

Sawtooth waveform.
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f(t)

t

f(t)

t

f(t)

t

(a)
(b) (c)

Figure 23.13

Fourier synthesis of a sawtooth waveform: (a) f (t) = 2 sin t;

(b) f (t) = 2(sin t − 1
2 sin 2t +

1
3 sin 3t);

(c) f (t) = 2(sin t − 1
2 sin 2t +

1
3 sin 3t −

1
4 sin 4t +

1
5 sin 5t).

we see that the series approaches the desired sawtooth waveform. The process of adding

together sinusoids to form a new periodic function is called Fourier synthesis. We see

that the sawtooth waveform has been expressed as an in�nite series of harmonic waves,

sin t being the fundamental or �rst harmonic, and the rest being waves with frequencies

that are integer multiples of the fundamental frequency. This in�nite series is called the

Fourier series representation of f (t) and what we have succeeded in doing is to break

down f (t) into its component harmonic waveforms. In this example, only sine waves

were required to construct the function. More generally we shall need both sine and

cosine waves.

Suppose the function f (t) is de�ned in the interval 0 < t < T and is periodic with

period T . Then, under certain conditions, its Fourier series is given by

f (t) =
a0

2
+

∞∑

n=1

(
an cos

2nπ t

T
+ bn sin

2nπ t

T

)
(23.2)

or equivalently

f (t) =
a0

2
+

∞∑

n=1

(an cos nωt + bn sin nωt)

where an and bn are constants called the Fourier coef�cients. These are given by the

formulae

a0 =
2

T

∫ T

0

f (t) dt (23.3)

an =
2

T

∫ T

0

f (t) cos
2nπ t

T
dt for n a positive integer (23.4)

bn =
2

T

∫ T

0

f (t) sin
2nπ t

T
dt for n a positive integer (23.5)

The term
a0

2
represents the mean value or d.c. component of the waveform (see Sec-

tion 15.2). The derivation of these formulae appears in Example 23.16. It is important to
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point out that the integrals in Equations (23.3), (23.4) and (23.5) can be evaluated over

any complete period, for example from t = −
T

2
to t =

T

2
. Prudent choice of the interval

of integration can often save effort. The expression appearing in the r.h.s. of the Fourier

representation, Equation (23.2), is an in�nite series. We list conditions, often called the

Dirichlet conditions, suf�cient for the series to converge to the value of the function

f (t). The integral
∫

| f (t)| dt over a complete period must be �nite, and f (t) may have

no more than a �nite number of discontinuities in any �nite interval. Fortunately, most

signals of interest to engineers satisfy these conditions. At a point of discontinuity the

Fourier series converges to the average of the two function values at either side of the

discontinuity.

Example 23.13 Find the Fourier series representation of the function with period T =
1

50
given by

f (t) =

{
1 0 6 t < 0.01

0 0.01 6 t < 0.02

Solution The function f (t) is shown in Figure 23.14. Note that f (t) is de�ned to be zero between

t = 0.01 and t = 0.02. This means we need only consider 0 6 t < 0.01. Using

Equations (23.3)--(23.5) we �nd

a0 = 100

∫ 0.02

0

f (t) dt = 100

∫ 0.01

0

1 dt + 100

∫ 0.02

0.01

0 dt

= 100[t]0.010 = 1

an = 100

∫ 0.01

0

cos 100nπ t dt = 100

[
sin 100nπ t

100nπ

]0.01

0

= 0

bn = 100

∫ 0.01

0

sin 100nπ t dt = 100

[
− cos 100nπ t

100nπ

]0.01

0

= −
1

nπ
(cos nπ − cos 0)

Noting that cos nπ = (−1)n we �nd

bn =
1

nπ
(1 − (−1)n)

t

1

T =

f(t)

1–––
100

1––
50

Figure 23.14

Graph for Example 23.13.
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If n is even bn = 0. If n is odd bn =
2

nπ
. Therefore the Fourier series representation of

f (t) is

f (t) =
1

2
+

2

π

(
sin 100π t +

sin 300π t

3
+

sin 500π t

5
+ · · ·

)

The average value of the waveform is 1
2
. This is the zero frequency component or d.c.

value. We note that in this example only odd harmonics are present.

Example 23.14 Find the Fourier series representation of f (t) = 1 + t, −π < t 6 π, period 2π.

Solution As usual we sketch f (t) �rst as this often provides insight into what follows (see Fig-

ure 23.15). Here T = 2π, ω = 1, and for convenience we shall consider the period of

integration to be [−π,π]. Using Equation (23.3) we �nd

a0 =
1

π

∫
π

−π

1 + t dt =
1

π

[
t +

t2

2

]
π

−π

=
1

π

((
π +

π
2

2

)
−

(
−π +

π
2

2

))

=
1

π
(2π)

= 2

Similarly, using Equation (23.4) we �nd

an =
1

π

∫
π

−π

(1 + t) cos nt dt

Integrating by parts gives

an =
1

π

([
(1 + t)

sin nt

n

]
π

−π

−

∫
π

−π

sin nt

n
dt

)

=
1

π

(
0 +

[
cos nt

n2

]
π

−π

)
since sin±nπ = 0

=
1

πn2
(cos nπ − cos(−nπ))

1

tp–p

f(t)

Figure 23.15

Graph for Example 23.14.
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but cos(−nπ) = cos nπ and hence an = 0, for all positive integers n. Using Equa-

tion (23.5) we �nd

bn =
1

π

∫
π

−π

(1 + t) sin nt dt

=
1

π

([
−(1 + t)

cos nt

n

]
π

−π

+

∫
π

−π

cos nt

n
dt

)

=
1

π

(
−(1 + π)

cos nπ

n
+ (1 − π)

cos(−nπ)

n
+

[
sin nt

n2

]
π

−π

)

=
1

πn
(−2π cos nπ)

since sin±nπ = 0. Hence,

bn = −
2

n
cos nπ = −

2

n
(−1)n

We �nd b1 = 2, b2 = −1, b3 =
2

3
, . . . . Thus the Fourier series representation is given

from Equation (23.2) as

f (t) = 1 + 2 sin t − sin 2t +
2

3
sin 3t + · · ·

which we can write concisely as

f (t) = 1 −

∞∑

n=1

2

n
(−1)n sin nt

Example 23.15 Find the Fourier series representation of the function with period 2π de�ned by

f (t) = t2, 0 < t 6 2π.

Solution As usual we sketch f (t), as shown in Figure 23.16. Here T = 2π and we shall integrate,

for convenience, over the interval [0, 2π]. Using Equation (23.3) we �nd

a0 =
1

π

∫ 2π

0

t2 dt =
1

π

[
t3

3

]2π

0

=
8π2

3

t2p

4p2

f(t)

Figure 23.16

Graph for Example 23.15.
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Using Equation (23.4) we have

an =
1

π

∫ 2π

0

t2 cos nt dt

Integrating by parts, we �nd

an =
1

π

([
t2
sin nt

n

]2π

0

−

∫ 2π

0

2t
sin nt

n
dt

)

= −
2

nπ

∫ 2π

0

t sin nt dt

= −
2

nπ

([
−t

cos nt

n

]2π

0

+

∫ 2π

0

cos nt

n
dt

)

= −
2

nπ

(
−2π cos 2nπ

n
+

[
sin nt

n2

]2π

0

)

=
4

n2

Hence a1 = 4, a2 = 1, a3 =
4

9
, . . .. Similarly,

bn =
1

π

∫ 2π

0

t2 sin nt dt

=
1

π

([
−t2

cos nt

n

]2π

0

+

∫ 2π

0

2t
cos nt

n
dt

)

=
1

π

(
−
4π2

n
cos 2nπ +

2

n

∫ 2π

0

t cos nt dt

)

=
1

π

(
−
4π2

n
+

2

n

([
t sin nt

n

]2π

0

−

∫ 2π

0

sin nt

n
dt

))

=
1

π

(
−
4π2

n
−

2

n2

[
−
cos nt

n

]2π

0

)

= −
4π

n

Thus b1 = −4π, b2 = −2π, . . .. Finally, the required Fourier series representation is

given by

f (t) =
4π2

3
+

(
4 cos t + cos 2t +

4

9
cos 3t + · · ·

)

−π

(
4 sin t + 2 sin 2t +

4 sin 3t

3
+ · · ·

)
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Example 23.16 Obtain the expressions for the Fourier coef�cients a0, an and bn in Equations (23.3),

(23.4) and (23.5).

Solution Assume that f (t) can be expressed in the form

f (t) =
a0

2
+

∞∑

n=1

(
an cos

2nπ t

T
+ bn sin

2nπ t

T

)
(23.6)

Multiplying Equation (23.6) through by cos
2mπ t

T
and integrating from 0 to T we �nd

∫ T

0

f (t) cos
2mπ t

T
dt =

∫ T

0

a0

2
cos

2mπ t

T
dt

+

∫ T

0

∞∑

n=1

(
an cos

2nπ t

T
+ bn sin

2nπ t

T

)
cos

2mπ t

T
dt

If we now assume that it is legitimate to interchange the order of integration and

summation we obtain
∫ T

0

f (t) cos
2mπ t

T
dt =

∫ T

0

a0

2
cos

2mπ t

T
dt

+

∞∑

n=1

∫ T

0

(
an cos

2nπ t

T
+ bn sin

2nπ t

T

)
cos

2mπ t

T
dt

The �rst integral on the r.h.s. is easily shown to be zero unless m = 0. Furthermore, we

can use the previously found orthogonality properties (Table 23.1) to show that the rest

of the integrals on the r.h.s. vanish except for the case when n = m, in which case the

r.h.s. reduces to
amT

2
. Consequently,

am =
2

T

∫ T

0

f (t) cos
2mπ t

T
dt for all positive integers m

as required. When m = 0 all terms on the r.h.s. except the �rst vanish and we obtain
∫ T

0

f (t) dt =

∫ T

0

a0

2
dt

=
a0T

2

so that

a0 =
2

T

∫ T

0

f (t) dt

To obtain the formula for the bn multiply Equation (23.6) through by sin
2mπ t

T
and

integrate from 0 to T .
∫ T

0

f (t) sin
2mπ t

T
dt =

∫ T

0

a0

2
sin

2mπ t

T
dt

+

∫ T

0

∞∑

n=1

(
an cos

2nπ t

T
+ bn sin

2nπ t

T

)
sin

2mπ t

T
dt
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Again assuming that it is legitimate to interchange the order of integration and sum-

mation, we obtain

∫ T

0

f (t) sin
2mπ t

T
dt =

∫ T

0

a0

2
sin

2mπ t

T
dt

+

∞∑

n=1

∫ T

0

(
an cos

2nπ t

T
+ bn sin

2nπ t

T

)
sin

2mπ t

T
dt

The �rst integral on the r.h.s. is easily shown to be zero. Furthermore, we can use the

properties given in Table 23.1 to show that the rest of the integrals on the r.h.s. vanish

except for the case when n = m, in which case the r.h.s. reduces to
bmT

2
. Hence we �nd

bm =
2

T

∫ T

0

f (t) sin
2mπ t

T
dt

as required.

23.5.1 Fourier series of odd and even functions

Let us now consider what happens when we determine Fourier series of functions which

are either odd or even.

Example 23.17 Find the Fourier series for the function with period 2π de�ned by

f (t) =





0 −π < t < −π/2

4 −π/2 6 t 6 π/2

0 π/2 < t < π

Solution As usual we sketch the function �rst (Figure 23.17). Inspection of Figure 23.17 shows

that the Dirichlet conditions (page 735) are satis�ed. We note from the graph that the

function is symmetrical about the vertical axis; that is, it is an even function. We shall

see shortly that this fact has important implications for the Fourier series representa-

tion. For convenience we consider the period of integration to be

[
−
T

2
,
T

2

]
. Hence

Equation (23.4) becomes

an =
2

T

∫ T/2

−T/2

f (t) cos
2nπ t

T
dt for all positive integers n

In this example the period T equals 2π. The formula for an then simpli�es to

an =
1

π

∫
π

−π

f (t) cos nt dt

The interval of integration is from t = −π to t = π. However, a glance at the graph

shows that the function is zero outside the interval −
π

2
6 t 6

π

2
, and takes the value 4
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t

y

4

π–π π–
2

π–
2

3π––
2

3π––
2

– –

Figure 23.17

Graph for Example 23.17.

inside. The integral thus reduces to

an =
1

π

∫
π/2

−π/2

4 cos nt dt

=
4

π

∫
π/2

−π/2

cos nt dt

=
4

π

[
sin nt

n

]
π/2

−π/2

=
4

nπ

[
sin

nπ

2
− sin

(
−
nπ

2

)]

=
8

nπ
sin

nπ

2

We obtain a1 =
8

π
, a2 = 0, a3 = −

8

3π
, etc. We �nd a0 using Equation (23.3), again

integrating over

[
−
T

2
,
T

2

]
:

a0 =
2

T

∫ T/2

−T/2

f (t) dt

=
1

π

∫
π/2

−π/2

4 dt =
4

π
[t]

π/2

−π/2

= 4

Similarly, to �nd the Fourier coef�cients, bn, we use Equation (23.5):

bn =
2

T

∫ T/2

−T/2

f (t) sin
2nπ t

T
dt

which reduces to

bn =
1

π

∫
π/2

−π/2

4 sin nt dt

=
4

π

[
− cos nt

n

]
π/2

−π/2

=
4

nπ

[
− cos

nπ

2
+ cos

nπ

2

]

= 0
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that is, all the Fourier coef�cients, bn, are zero. Finally we can gather together all our

results and write down the Fourier series representation of f (t):

f (t) = 2 +
8

π
cos t −

8

3π
cos 3t +

8

5π
cos 5t − · · ·

In this example we see that there are no sine terms at all. In fact, whenever a function

is even its Fourier series will possess no sine terms. To see this we note that bn can be

found from

bn =
2

T

∫ T/2

−T/2

f (t) sin
2nπ t

T
dt

Since f (t) is even and sin
2nπ t

T
is odd, the product f (t) sin

2nπ t

T
is odd also. Now the

integral of an odd function on an interval which is symmetrical about the vertical axis

was shown in Section 23.3 to be zero. Hence whenever f (t) is even we can immediately

assume bn = 0 for all n.

Correspondingly, when a function is odd its Fourier series will contain no cosine or

constant terms. This is because the product

f (t) cos
2nπ t

T

is odd also and so the integral

an =
2

T

∫ T/2

−T/2

f (t) cos
2nπ t

T
dt

will equal zero. We conclude that when f (t) is odd, an = 0 for all n. These facts can

often be used to save time and effort. Knowing the function in Example 23.17 was even

before we started the Fourier analysis, we could have assumed that the bn would all be

zero.

Example 23.18 Find the Fourier series representation of the sawtooth waveform described at the begin-

ning of this section (see Figure 23.12).

Solution This function is de�ned by f (t) = t, −π < t < π, and has period T = 2π. It is an odd

function and hence an = 0 for all n. To �nd the bn we must evaluate

bn =
1

π

∫
π

−π

t sin nt dt

=
1

π

{[
−t cos nt

n

]
π

−π

+

∫
π

−π

cos nt

n
dt

}

=
1

nπ
{−π cos nπ − π cos nπ}

since the last integral vanishes. Therefore,

bn = −
2

n
cos nπ = −

2

n
(−1)n
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We conclude that b1 = 2, b2 = −1, b3 =
2

3
, . . .. Therefore f (t) has Fourier series

f (t) = 2

{
sin t −

1

2
sin 2t +

1

3
sin 3t −

1

4
sin 4t +

1

5
sin 5t − · · ·

}

Engineering application 23.1

Spectrum of a pulse width modulation controlled solar charger

Pulse width modulated (PWM) signals are found in a wide variety of electronics

applications. A PWM signal is simply a rectangular wave with a �xed time period,

T , where the ‘on’ time of the signal, known as themark time, m, can be varied. The

ratio of the ‘on’ time, m, of the signal to the period, T , is known as the duty cycle,

denoted by d:

duty cycle (d) =
‘on’ time

period
=
m

T

The frequency of the PWM signal is f =
1

T
.

Solar charge controllers, which often use pulse width modulation, are devices that

protect the batteries in the system from becoming overcharged or from becoming

fully discharged, both of which can cause permanent damage. Pulse width modu-

lation is used to vary the charge rate to the batteries. Charge controllers and other

devices that employ pulse width modulation generate high-frequency harmonics due

to their switching.

Consider the PWM signal shown in Figure 23.18. It has an amplitude of A volts.

It has period T and mark time m, so that the duty cycle is d =
m

T
.

Note that the function is even because of the symmetry about the vertical axis.

This means that the Fourier series will contain only cosine terms, that is all the bn
values are zero. The an values can be shown (see Exercises 23.5, Question 8) to be

an =
2A

nπ
sin(nπ d)

T t

A

m

T

m

Figure 23.18

A PWM signal of period T and duty cycle m/T . ➔
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Note that the value of an is the amplitude of the nth harmonic. Further, the frequency

of the nth harmonic is n f , that is integer multiples of the frequency of the PWM

signal. A graph of |an| against f n is often referred to as the frequency spectrum. This

concept is discussed further in Chapter 24.

Consider the speci�c case of a 12 V signal at a frequency of f = 300 Hz.

Figures 23.19(a)--(d) show the frequency spectra when d = 0.01, 0.15, 0.30 and

0.50 respectively.

It can be seen that the frequency spectrum becomes narrower for higher values

of the duty cycle. The sinc function (see Section 3.5) forms the envelope for the

spectrum, which is most clearly evident for d = 0.15. For low values of the duty

cycle the harmonics may extend up to radio frequencies and hence there is a potential

for interference to occur.

Note that when d = 0.5

an =
2A

nπ
sin
(nπ
2

)

When n is even the value of sin
(nπ
2

)
is zero and so all the even harmonics are

absent. In other words, when d = 0.5 the PWM signal possesses only odd

harmonics.

2 4 6 8

0.14

0.16

0.18

0.20

0.22

0.24

— —

an  (V)

f (kHz)

— —

an  (V)

2 4 6 8

0.5

1.0

1.5

2.0

2.5

3.0

3.5

f (kHz)

(a) (b)

— —
an  (V)

2 4 6 8

1

2

3

4

5

6

f (kHz) f (kHz)

— —

an  (V)

2 4 6 8

2

4

6

(c) (d)

Figure 23.19

Spectrum for (a) d = 0.01, (b) d = 0.15, (c) d = 0.30, (d) d = 0.50.
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EXERCISES 23.5

1 Find the Fourier series representation of the function

f (t) =

{
0 −5 < t < 0 period 10

1 0 < t < 5

2 Find the Fourier series representation of the function

f (t) =

{
−t −π < t < 0 period 2π

0 0 < t < π

3 Find the Fourier series representation of the function

f (t) = t2 + π t −π < t < π period 2π

4 Find the Fourier series representation of the function

f (t) =

{
−4 −π < t 6 0 period 2π

4 0 < t < π

5 Find the Fourier series representation of the function

f (t) =

{
2(1 + t) −1 < t 6 0 period 2

0 0 < t < 1

6 Find the Fourier series representation of the function

with period 2π given by

f (t) =

{
t2 0 6 t < π

0 π 6 t < 2π

7 Find the Fourier series representation of the function

f (t) = 2 sin t 0 < t < 2π period 2π

8 For the signal in Engineering application 23.1, show

that

an =
2A

nπ
sin(nπ d)

Solutions

1
1

2
+

2

π
sin

π t

5
+

2

3π
sin

3π t

5
+

2

5π
sin

5π t

5

+
2

7π
sin

7π t

5
· · ·

2
π

4
−

2

π
cos t−sin t+

1

2
sin 2t−

2

9π
cos 3t−

1

3
sin 3t . . .

3
π
2

3
+ 2π sin t − 4 cos t − π sin 2t + cos 2t+

2π

3
sin 3t −

4

9
cos 3t · · ·

4
8
(
2 sin t + 2

3 sin 3t +
2
5 sin 5t + · · ·

)

π

5
1

2
+ 2

{
(2/π) cosπ t − sinπ t −

1

2
sin 2π t

+(2/9π) cos 3π t −
1

3
sin 3π t + · · ·

}/
π

6
π
2

6
+

π
2 − 4

π
sin t − 2 cos t −

π

2
sin 2t +

1

2
cos 2t

+
9π2 − 4

27π
sin 3t −

2

9
cos 3t + · · ·

7 2 sin t

23.6 HALF-RANGE SERIES

Sometimes an engineering function is not periodic but is only de�ned over a �nite

interval, 0 < t <
T

2
say, as shown in Figure 23.20. In cases like this Fourier analy-

sis can still be useful. Because the region of interest is only that between t = 0 and

t =
T

2
we may choose to de�ne the function arbitrarily outside the interval. In partic-

ular, we can make our choice so that the resulting function is periodic, with period T .

There is more than one way to proceed. For example, we can reflect the above function

in the vertical axis and then repeat it periodically so that the result is the periodic even

function shown in Figure 23.21. We have performed what is called a periodic exten-

sion of the given function. Note that within the interval of interest nothing has altered



746 Chapter 23 Fourier series

t

y

0 T–
2

Figure 23.20

Function de�ned over interval 0 < t <
T

2
.

t

y

0 T–
2

Figure 23.21

An even periodic extension.

t

y

0 T–
2

Figure 23.22

An odd periodic extension.

t

y

0 T–
2

Figure 23.23

A periodic extension that is neither even nor odd.

but we have now achieved our objective of �nding a periodic function. We can �nd

the Fourier series of this periodic function and within the interval of interest this will

converge to the required function. What happens outside this interval is not important.

Moreover, since the periodic function is even the Fourier series will contain no sine

terms.

An alternative periodic extension is that shown in Figure 23.22, which has been ob-

tained by reflecting in both the vertical and t axes before repeating it periodically to give

a periodic odd function. Its Fourier series will contain no cosine terms and within the

interval of interest will converge to the function required.

A third alternative periodic extension is shown in Figure 23.23. However, this exten-

sion is neither odd nor even and so it has none of the desirable properties of the other two.

Whichever extension we choose, the resulting Fourier series only gives a representation

of the original function in the interval 0 < t <
T

2
and as such is termed a half-range

Fourier series. Similarly we have the terminology half-range sine series for a series

containing only sine terms and half-range cosine series for a series containing only co-

sine terms. The Fourier series formulae then simplify to give the following half-range

formulae:

Half-range sine series:

a0 = 0, an = 0 for n a positive integer

bn =
4

T

∫ T/2

0

f (t) sin
2nπ t

T
dt for n a positive integer (23.7)

and f (t) is given by

f (t) =

∞∑

n=1

bn sin
2nπ t

T
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Half-range cosine series:

a0 =
4

T

∫ T/2

0

f (t) dt (23.8)

an =
4

T

∫ T/2

0

f (t) cos
2nπ t

T
dt for n a positive integer (23.9)

bn = 0 for n a positive integer

and then f (t) is given by

f (t) =
a0

2
+

∞∑

n=1

an cos
2nπ t

T

Example 23.19 By de�ning an appropriate periodic extension of the function illustrated in Figure 23.24,

�nd the half-range cosine series representation.

Solution The function illustrated in Figure 23.24 is given by the formula f (t) = t for 0 < t < π

and is unde�ned outside this interval. Since the cosine series is required an even peri-

odic extension must be formed. This is illustrated in Figure 23.25. Taking T = 2π in

Equations (23.8) and (23.9), we �nd a0 and an.

a0 =
2

π

∫
π

0

t dt

=
2

π

[
t2

2

]
π

0

= π

an =
2

π

∫
π

0

t cos nt dt

=
2

π

{[
t sin nt

n

]
π

0

−

∫
π

0

sin nt

n
dt

}

=
2

π

[
cos nt

n2

]
π

0

tπ

π

y

Figure 23.24

Graph for Example 23.19.

tπ 2π–π 0–2π

π

y

Figure 23.25

Graph for Example 23.19.
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Now cos nπ = (−1)n, so that

an =
2

π

(
(−1)n

n2
−

1

n2

)
n = 1, 2, . . .

Of course, all the bn are zero. Therefore the half-range cosine series is

f (t) =
π

2
−

4

π
cos t −

4

9π
cos 3t . . .

and this series converges to the given function within the interval 0 < t < π.

EXERCISES 23.6

1 Graph an appropriate periodic extension of

f (t) = 3t 0 < t < π

and hence �nd its half-range cosine series

representation.

2 Find the half-range sine series representation of the

function given in Example 23.19.

3 Find the half-range cosine series representing the

function

f (t) = sin t 0 < t < π

4 Graph an appropriate periodic extension of

f (t) = et 0 < t < 1

and �nd its half-range cosine series.

5 Find the half-range sine series representation of

f (t) = 2 − t, 0 6 t 6 2.

Solutions

1
3π

2
+

6

π

∞∑

1

(
cos nπ − 1

n2

)
cos nt

2 −2

∞∑

1

(
cos nπ

n

)
sin nt

3
2

π
−

2

π

∞∑

2

(
cos nπ + 1

n2 − 1

)
cos nt

4 e − 1 + 2

∞∑

1

(
e cos nπ − 1

n2π2 + 1

)
cos nπ t

5
4

π

∞∑

1

sin(nπ t/2)

n

23.7 PARSEVAL’S THEOREM

If the function f (t) is periodic with period T and has Fourier coef�cients an and bn, then

Parseval’s theorem states:

2

T

∫ T

0

( f (t))2 dt =
1

2
a20 +

∞∑

n=1

(
a2n + b2n

)

It is frequently useful in power calculations as the following example shows.
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Engineering application 23.2

Average power of a signal

Find the average power developed across a 1 � resistor by a voltage signal with

period 2π given by

v(t) = cos t −
1

3
sin 2t +

1

2
cos 3t

Solution

We note that v(t) is periodic with period T = 2π; v(t) is already expressed as a

Fourier series with a1 = 1, a3 =
1

2
and b2 = −

1

3
. All other Fourier coef�cients are 0.

The instantaneous power is (v(t))2 and hence the average power over one period is

given by

Pav =
1

2π

∫ 2π

0

(v(t))2 dt

Therefore, using Parseval’s theorem we �nd

Pav =
1

2

(
12 +

(
−
1

3

)2

+

(
1

2

)2)
= 0.68 W

23.8 COMPLEX NOTATION

An alternative notation for Fourier series involving complex numbers is available which

leads naturally into the more general topic of Fourier transforms. Recall from Chapter 9

the Euler relations

e±jθ = cos θ ± j sin θ

from which we can obtain expressions for cos θ and sin θ :

cos θ =
ejθ + e−jθ

2
sin θ =

ejθ − e−jθ

2j

which enable us to rewrite the Fourier representation

f (t) =
a0

2
+

∞∑

n=1

(
an cos

2nπ t

T
+ bn sin

2nπ t

T

)

as

f (t) =
a0

2
+

∞∑

n=1

(
an

ej2nπ t/T + e−j2nπ t/T

2
+ bn

ej2nπ t/T − e−j2nπ t/T

2j

)

=
a0

2
+

∞∑

n=1

(
an − jbn

2
ej2nπ t/T +

an + jbn
2

e−j2nπ t/T

)
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which we can write equivalently as

f (t) =

∞∑

n=−∞

cn e
j2nπ t/T

where

cn =
an − jbn

2
c−n =

an + jbn
2

n = 1, 2, . . .

and c0 = a0/2. It can be shown that the Fourier coef�cients, cn, are then given by

cn =
1

T

∫ T/2

−T/2

f (t) e−j2nπ t/T dt

The integral can also be evaluated over any complete period as convenient. Further, if

we write T =
2π

ω1

then this complex form can be expressed as

f (t) =

∞∑

n=−∞

cn e
jnω

1
t

where

cn =
ω1

2π

∫
π/ω

1

−π/ω
1

f (t) e−jnω
1
t dt

Example 23.20 Find the complex Fourier series representation of the function with period T de�ned by

f (t) =

{
1 −T/4 < t < T/4

0 otherwise

Solution We �nd

cn =
1

T

∫ T/4

−T/4

1e−j2nπ t/T dt

=
1

T

[
e−j2nπ t/T

−j2nπ/T

]T/4

−T/4

=
−1

2nπ j
(e−jnπ/2 − ejnπ/2)

=
1

nπ

(
ejnπ/2 − e−jnπ/2

2j

)

=
1

nπ
sin

nπ

2

Therefore,

f (t) =

∞∑

n=−∞

1

nπ
sin

nπ

2
ej2nπ t/T
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The observant reader will note that the expressions for cn appear invalid when n = 0,

since the denominator is then zero. We can compute c0 in either of two ways. Using an

integral expression we see that

c0 =
1

T

∫ T/4

−T/4

1 dt =
1

2

Also, using a Taylor series expansion it is possible to show

lim
n→0

1

T

[
e−j2nπ t/T

−j2nπ/T

]T/4

−T/4

=
1

2

giving a consistent result.

EXERCISES 23.8

1 Find the complex Fourier series representation of

(a) f (t) =

{
1 0 < t < 2

0 2 < t < 4
period 4

(b) f (t) = et − 1 < t < 1 period 2

(c) f (t) =

{
A sinωt 0 < t < π/ω

0 π/ω < t < 2π/ω

period 2π/ω

2 If

f (t) =

∞∑

−∞

cn e
j2nπ t/T

show that the coef�cients, cn, are given by

cn =
1

T

∫ T

0

f (t) e−j2nπ t/T dt

[Hint: multiply both sides by e−j2mπ t/T and integrate

over [0,T ].]

Solutions

1 (a)

∞∑

−∞

j

2nπ
(cos nπ − 1) ejnπ t/2

(b)
1

2

∞∑

−∞

(
e−jnπ+1 − e−1+jnπ

1 − jnπ

)
ejnπ t

(c)

∞∑

−∞

A(1 + e−jnπ) ejnωt

2π(1 − n2)

23.9 FREQUENCY RESPONSE OF A LINEAR SYSTEM

Linear systems have the property that the response to several inputs being applied to

the system can be obtained by adding the effects of the individual inputs. Another useful

property of linear systems is that if a sinusoidal input is applied to the system then the

output will also be a sinusoid of the same frequency but with modi�ed amplitude and

phase. This is illustrated in Figure 23.26.

In Section 9.7 we saw that sinusoidal signals can be represented by complex numbers

and that an a.c. electrical circuit can be analysed using complex numbers. This is true
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t

Ai

t

Linear 

system

Ao

f
v

Figure 23.26

The response of a linear system to a sinusoidal input is also sinusoidal.

for linear systems in general. It is possible to de�ne a complex frequency function,

G(jω), where ω is the frequency of the input; G relates the output and the input of a

linear system.

If a sine wave of amplitude Ai is applied to the system then the amplitude, Ao, of the

output is given by

Ao = |G(jω)|Ai

The phase shift, φ, is given by

φ = 6 G(jω)

Note that Ao and φ depend upon ω. It is important to note that G(jω) is a frequency-

dependent function. Although the notation for G(jω) may seem slightly odd it arises

because one method of obtaining the frequency function for a linear system is to substi-

tute s = jω in the Laplace transform transfer function, G(s), of the system.

It is now possible to analyse the effect of applying a generalized periodic waveform to

a linear system. The �rst stage is to calculate the Fourier components of the input wave-

form. The amplitude and phase shift of each of the output components is then calculated

using G(jω). Finally, the output components are added to obtain the output waveform.

This is only possible because of the additive nature of linear systems. An example will

help to clarify these points.

Engineering application 23.3

Analogue low-pass filter

Recall from Engineering application 22.2 that a low-pass �lter is a �lter that has a

tendency to attenuate high frequency signals. If the �lter consists of electronic com-

ponents and operates on analogue signals directly then it is known as an analogue �l-

ter. A simple circuit that acts as an analogue low-pass �lter is shown in Figure 23.27.

Derive the frequency response for this circuit and draw graphs of its amplitude and

phase characteristics.

Consider the circuit of Figure 23.27. Using Kirchhoff’s voltage law and Ohm’s

law we obtain

vi = iR+ vo

For the capacitor,

vo =
i

jωC
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Eliminating i yields

vi = vojωCR+ vo = vo(1 + jωRC)

vo

vi
=

1

1 + jωRC
(23.10)

Equation (23.10) relates the output of the system to the input of the system.

Therefore,

G(jω) =
1

1 + jωRC

It is convenient to convert G(jω) into polar form:

G(jω) =
16 0√

1 + (ωRC)2 6 tan−1 ω RC

=
1√

1 + (ωRC)2
6 − tan−1 ω RC

Therefore,

|G(jω)| =
1√

1 + (ω RC)2
(23.11)

6 G(jω) = − tan−1 ω RC (23.12)

The amplitude and phase characteristics for the circuit of Figure 23.27 are shown in

Figure 23.28. These show the variation of |G(jω)| and 6 G(jω) with angular

frequency ω.

R

i C yoyi

Figure 23.27

Circuit for Engineering

application 23.3.

|G(jv)|

v

1

0.707

0

G(jv) 

1
v

–

–

1/RC

p–
2

p–
4

Figure 23.28

Amplitude and phase characteristics for the circuit

of Figure 23.27.

Note that the circuit is a low-pass �lter; it allows low frequencies to pass eas-

ily and rejects high frequencies. The cut-off point of the �lter, that is the point at

which signi�cant frequency attenuation begins to occur, can be varied by changing ➔
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the values of R andC. The quantity RC is usually known as the time constant for the

system. Consider the case when RC = 0.3. Equations (23.11) and (23.12) reduce to

|G(jω)| =
1

√
1 + 0.09ω2

(23.13)

6 G(jω) = − tan−1 0.3ω (23.14)

Let us examine the response of this system to a square wave input with fundamental

angular frequency 1 and amplitude 1. This waveform is shown in Figure 23.29(a).

We note that T = 2π. The waveform function is odd and so will not contain any

cosine Fourier components. It has an average value of 0 and so will not have a zero

frequency component; that is, there will be no d.c. component. Therefore calculating

the Fourier components reduces to evaluating

f (t) =

∞∑

n=1

bn sin
2π nt

T

bn =
2

T

∫ T/2

−T/2

f (t) sin
2π nt

T
dt for positive integers n

Since T = 2π, we �nd

bn =
1

π

(∫ 0

−π

−1 sin nt dt +

∫
π

0

sin nt dt

)

=
1

π

([
cos nt

n

]0

−π

+

[
− cos nt

n

]
π

0

)

=
1

nπ
(cos 0 − cosπn− cosπn+ cos 0)

=
1

nπ
(2 − 2 cosπn)

=
2

nπ
(1 − cosπn)

yi

t

(a)

yo

t

(b)

Figure 23.29

(a) Input to low-pass �lter; (b) output from low-pass �lter.
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The values of the �rst few coef�cients are

b1 =
2

π
(1 − cosπ) =

4

π

b2 =
2

2π
(1 − cos 2π) = 0

b3 =
2

3π
(1 − cos 3π) =

4

3π

The next stage is to evaluate the gain and phase changes of the Fourier components.

Using Equations (23.13) and (23.14):

n = 1

ω1 = 1

|G(jω1)| =
1

√
1 + 0.09 × 1

= 0.96

6 G(jω1) = − tan−1 0.3 = −16.7◦

n = 3

ω3 = 3

|G(jω3)| =
1

√
1 + 0.09 × 9

= 0.74

6 G(jω3) = − tan−1 0.9 = −42.0◦

n = 5

ω5 = 5

|G(jω5)| =
1

√
1 + 0.09 × 25

= 0.55

6 G(jω5) = − tan−1 1.5 = −56.3◦

It is clear that high-frequency Fourier components are attenuated and phase shifted

more than low-frequency Fourier components. The effect is to produce a rounding

of the rising and falling edges of the square wave input signal. This is illustrated

in Figure 23.29(b). The output signal has been obtained by adding together the

attenuated and phase-shifted output Fourier components. This is possible because

the system is linear.

REVIEW EXERCISES 23

1 Find the half-range Fourier sine series representation

of f (t) = t sin t, 0 6 t 6 π.

2 Find the half-range sine series representation of

f (t) = cos 2t, 0 6 t 6 π.

3 Find (a) the half-range sine series, and (b) the

half-range cosine series representation of the function

de�ned in the interval [0, τ ] by

f (t) =





4t

τ
0 6 t 6

τ

4

4

3

(
1 −

t

τ

)
τ

4
6 t 6 τ

4 Find the Fourier series representation of the function

with period T de�ned by

f (t) =

{
V (constant) |t| < T/6

0 T/6 6 |t| 6 T/2
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5 The output from a half-wave recti�er is given by

i(t) =

{
I sinωt 0 < t < T/2

0 T/2 < t < T

and is periodic with period T =
2π

ω
.

Find its Fourier series representation.

6 Find the complex Fourier series representation of the

function with period T = 0.02 de�ned by

v(t) =

{
V (constant) 0 6 t < 0.01

0 0.01 6 t < 0.02

7 Find the Fourier series representation of the function

with period 8 given by

f (t) =

{
2 − t 0 < t < 4

t − 6 4 < t < 8

8 The r.m.s. voltage, vr.m.s., of a periodic waveform,

v(t), with period T , is given by

vr.m.s. =

√
1

T

∫ T

0

(v(t))2 dt

If v(t) has Fourier coef�cients an and bn show, using

Parseval’s theorem, that

vr.m.s. =

√
1

4
a20 +

1

2

∞∑

n=1

(a2n + b2n)

9 If f (t) has Fourier series

f (t) =
a0
2

+

∞∑

n=1

(
an cos

2nπ t

T
+ bn sin

2nπ t

T

)

prove Parseval’s theorem.

[Hint: multiply both sides by f (t) to obtain

( f (t))2 =
a0 f (t)

2
+

∞∑

n=1

(
an f (t) cos

2nπ t

T

+ bn f (t) sin
2nπ t

T

)

and integrate both sides over the interval [0,T ] using

Equations (23.3)--(23.5).]

10 Find the half-range cosine series and the half-range

sine series for the function

f (t) = sinhπ t 0 < t < 1

Solutions

1
π

2
−

∞∑

2

4n(1 + cos nπ)

π(n+ 1)2(n− 1)2
sin(nt)

2
2

π

∞∑

1

n(1 − cos nπ)

(n2 − 4)
sin(nt)

3 (a)
32

3π2

∞∑

1

sin(nπ/4) sin(nπ t/τ )

n2

(b)
1

2
+

8

π2

×

∞∑

1

4 cos(nπ/4)− cos nπ − 3

3n2
cos

(
nπ t

τ

)

4
v

3
+

2v

π

∞∑

1

sin(nπ/3) cos(2nπ t/T )

n

5
I

π
+
I

2
sinωt −

I

π

∞∑

2

cos nπ + 1

n2 − 1
cos nωt

6
v

2π

∞∑

−∞

j
cos nπ − 1

n
e100nπjt

7
8

π2

∞∑

1

1 − cos nπ

n2
cos

(
nπ t

4

)

10 cosine series:
1

π
(coshπ − 1)

+

∞∑

n=1

2

π(1 + n2)
((−1)n coshπ − 1) cos nπ t

sine series:

−

∞∑

n=1

2n

π(1 + n2)
(−1)n sinhπ sin nπ t
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24.1 INTRODUCTION

We have seen that almost any periodic signal can be represented as a linear combination

of sine and cosine waves of various frequencies and amplitudes. All frequencies are inte-

ger multiples of the fundamental. However, many practical waveforms are not periodic.

Examples are pulse signals and noise signals. The function shown in Figure 24.1 is an

example of a non-periodic signal.
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We shall now see how Fourier techniques can still be useful by introducing the Fourier

transform which is used extensively in communications engineering and signal process-

ing. For example, it can be used to analyse the processes of modulation, which involves

superimposing an audio signal onto a carrier signal, and demodulation, which involves

removing the carrier signal to leave the audio signal.

f(t)

tba0

1

Figure 24.1

A non-periodic

function.

24.2 THE FOURIER TRANSFORM -- DEFINITIONS

Under certain conditions it can be shown that a non-periodic function, f (t), can be

expressed not as the sum of sine and cosine waves but as an integral. In particular,

f (t) =

∫ ∞

0

A(ω) cosωt + B(ω) sinωt dω (24.1)

where

A(ω) =
1

π

∫ ∞

−∞

f (t) cosωt dt and B(ω) =
1

π

∫ ∞

−∞

f (t) sinωt dt (24.2)

Provided

(1) f (t) and f ′(t) are piecewise continuous in every �nite interval, and

(2)
∫∞

−∞
| f (t)| dt exists

then the above Fourier integral representation of f (t) holds. At a point of discontinuity

of f (t) the integral representation converges to the average value of the right- and left-

hand limits. As with Fourier series, an equivalent complex representation exists which

is, in fact, more commonly used:

Fourier integral representation of f (t):

f (t) =
1

2π

∫ ∞

−∞

F(ω) ejωt dω (24.3)

where

F(ω) =

∫ ∞

−∞

f (t) e−jωt dt (24.4)

There is no universal convention concerning the de�nition of these integrals and a num-

ber of variants are still correct. For instance, some authors write the factor
1

2π
in the

second integral rather than the �rst, while others place a factor
1

√
2π

in both, giving

some symmetry to the equations. There is also variation in the location of the factors

e−jωt and ejωt . We shall use de�nitions (24.3) and (24.4) throughout but it is important to

be aware of possible differences when consulting other texts.

Equations (24.3) and (24.4) form what is called a Fourier transform pair. The

Fourier transform of f (t) is F(ω) which is sometimes written F{ f (t)}. Similarly

f (t) in Equation (24.3) is the inverse Fourier transform of F(ω), usually denoted

F−1{F(ω)}.
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The Fourier transform of f (t) is de�ned to be

F{ f (t)} = F(ω) =

∫ ∞

−∞

f (t)e−jωt dt

Youwill also note the similarity between Equation (24.4) and the de�nition of the Laplace

transform of f (t):

L{ f (t)} =

∫ ∞

0

f (t) e−st dt (24.5)

We see that, apart from the limits of integration, the substitution jω = s in Equa-

tion (24.4) results in the Laplace transform in Equation (24.5). There is indeed an impor-

tant relationship between the two transforms which we shall discuss in Section 24.7. We

note that Equation (24.3) provides a formula for the inverse Fourier transform of F(ω),

although the integral is frequently dif�cult to evaluate.

Example 24.1 Find the Fourier transform of the function f (t) = u(t) e−t , where u(t) is the unit step

function.

f(t)

t

1

Figure 24.2

Graph of u(t) e−t .

Solution The function u(t) e−t is shown in Figure 24.2. Using Equation (24.4), its Fourier trans-

form is given by

F(ω) =

∫ ∞

−∞

f (t) e−jωt dt

=

∫ ∞

0

e−t e−jωt dt since f (t) = 0 for t < 0

=

∫ ∞

0

e−(1+jω)t dt

=

[
e−(1+jω)t

−(1 + jω)

]∞

0

=
1

1 + jω
since e−(1+jω)t → 0 as t → ∞

that is,

F(ω) =
1

1 + jω

Example 24.2 Use Equation (24.3) to �nd the Fourier integral representation of the function de�ned

by

f (t) =

{
1 −1 6 t 6 1

0 |t| > 1

Solution Using Equation (24.3) we �nd

f (t) =
1

2π

∫ ∞

−∞

F(ω) ejωt dω
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where

F(ω) =

∫ ∞

−∞

f (t) e−jωt dt

=

∫ 1

−1

1e−jωt dt since f (t) is zero outside [−1, 1]

=

[
e−jωt

−jω

]1

−1

=
e−jω − ejω

−jω

=
ejω − e−jω

jω

Using Euler’s relation (Section 9.6)

sin θ =
ejθ − e−jθ

2j

we �nd

F(ω) =
2 sinω

ω

so that

f (t) =
1

2π

∫ ∞

−∞

2 sinω

ω
ejωt dω

is the required integral representation. Note thatF(ω) =
2 sinω

ω
is the Fourier transform

of f (t). The function
sinω

ω
occurs frequently and is often referred to as the sinc function

(see Section 3.5).

As with Laplace transforms, tables have been compiled for reference. Such a table of

common transforms appears in Table 24.1.

EXERCISES 24.2

1 Find the Fourier transforms of

(a) f (t) =

{
1/4 |t| 6 3

0 |t| > 3

(b) f (t) =





1 −
t

2
0 6 t 6 2

1 +
t

2
−2 6 t 6 0

0 otherwise

(c) f (t) =

{
e−αt t > 0 α > 0

eαt t < 0

(d) f (t) =

{
e−t cos t t > 0

0 t < 0

(e) f (t) = u(t) e−t/τ where τ is a constant

2 Find

(a) the Fourier transform, and

(b) the Laplace transform of

f (t) = u(t) e−αt α > 0

Show that making the substitution s = jω in the

Laplace transform of f results in the Fourier

transform.

3 If f (t) =

{
1 |t| 6 2

0 otherwise

and g(t) = ejt , �nd F{ f (t)g(t)}.
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Table 24.1

Common Fourier transforms.

f (t) F(ω)

f (t) = Au(t) e−αt , α > 0
A

α + jω

f (t) =

{
1 −α 6 t 6 α

0 otherwise

2 sinωα

ω

f (t) = A constant 2πAδ(ω)

f (t) = u(t)A A

(
πδ(ω)−

j

ω

)

f (t) = δ(t) 1

f (t) = δ(t − a) e−jωa

f (t) = cos at π(δ(ω + a)+ δ(ω − a))

f (t) = sin at
π

j
(δ(ω − a)− δ(ω + a))

f (t) = e−α|t|, α > 0
2α

α2 + ω2

f (t) = sgn(t) =

{
1 t > 0

−1 t < 0

2

jω

f (t) =
1

t
−jπsgn(ω)

f (t) = e−at
2

√
π

a
e−ω

2/4a

Solutions

1 (a)
sin 3ω

2ω
(b)

1 − cos 2ω

ω2
(c)

2α

α2 + ω2

(d)
1 + jω

(1 + jω)2 + 1
(e)

τ

1 + jωτ

2 (a)
1

α + jω
(b)

1

s+ α

3
2 sin 2(1 − ω)

1 − ω

24.3 SOME PROPERTIES OF THE FOURIER TRANSFORM

A number of the properties of Laplace transforms that we have already discussed hold

for Fourier transforms. We consider linearity and two shift theorems.

24.3.1 Linearity

If f and g are functions of t and k is a constant, then

F{ f + g} = F{ f } + F{g}

F{k f } = kF{ f }
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Both of these properties follow directly from the de�nition and linearity properties of

integrals, and mean that F is a linear operator.

Example 24.3 Find F{u(t) e−t + u(t) e−2t}.

Solution We saw in Example 24.1 that

F{u(t) e−t} =
1

1 + jω

Furthermore,

F{u(t) e−2t} =

∫ ∞

−∞

u(t) e−2t e−jωt dt

=

∫ ∞

0

e−(2+jω)t dt

=

[
e−(2+jω)t

−(2 + jω)

]∞

0

=
1

2 + jω

Therefore,

F{u(t) e−t + u(t) e−2t} =
1

1 + jω
+

1

2 + jω
by linearity

=
2 + jω + 1 + jω

(1 + jω)(2 + jω)

=
3 + 2jω

2 − ω2 + 3jω

24.3.2 First shift theorem

If F(ω) is the Fourier transform of f (t), then

F{ejat f (t)} = F(ω − a) where a is a constant

Example 24.4 (a) Show that the Fourier transform of

f (t) =

{
3 −2 6 t 6 2

0 otherwise

is given by F(ω) =
6 sin 2ω

ω
.

(b) Use the �rst shift theorem to �nd the Fourier transform of e−jt f (t).

(c) Verify the �rst shift theorem by obtaining the Fourier transform of e−jt f (t) directly.
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Solution (a) F(ω)= 3

∫ 2

−2

e−jωt dt = 3

[
e−jωt

−jω

]2

−2

= 3

(
e−2jω − e2jω

−jω

)

= 6

(
e2jω − e−2jω

2jω

)

=
6

ω
sin 2ω

(b) We have F{ f (t)} = F(ω) =
6 sin 2ω

ω
. Using the �rst shift theorem with a = −1

we have

F{e−jt f (t)} = F(ω + 1) =
6

ω + 1
sin 2(ω + 1)

(c) e−jt f (t) =

{
3e−jt −2 6 t 6 2

0 otherwise

So to evaluate its Fourier transform directly we must �nd

F{e−jt f (t)} = 3

∫ 2

−2

e−jt e−jωt dt

= 3

∫ 2

−2

e−(1+ω)jt dt

= 3

[
e−(1+ω)jt

−j(1 + ω)

]2

−2

=
6

1 + ω

(
e2(1+ω)j − e−2(1+ω)j

2j

)

=
6

1 + ω
sin 2(1 + ω)

as required.

Example 24.5 Use the �rst shift theorem to �nd the function whose Fourier transform is
1

3 + j(ω − 2)
,

given that F{u(t) e−mt} =
1

m+ jω
,m > 0.

Solution From the given result we have

F{u(t) e−3t} =
1

3 + jω
= F(ω)

Now

1

3 + j(ω − 2)
= F(ω − 2)
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Therefore, from the �rst shift theorem with a = 2 we have

F{e2jtu(t) e−3t} =
1

3 + j(ω − 2)

Consequently the function whose Fourier transform is
1

3 + j(ω − 2)
is u(t) e−(3−2j)t .

Example 24.6 Find the Fourier transform of

f (t) =

{
e−3t t > 0

e3t t < 0

Deduce the function whose Fourier transform is G(ω) =
6

10 + 2ω + ω2
.

Solution F(ω)=

∫ ∞

−∞

f (t) e−jωt dt

=

∫ 0

−∞

e3t e−jωt dt +

∫ ∞

0

e−3t e−jωt dt

=

∫ 0

−∞

e(3−jω)t dt +

∫ ∞

0

e−(3+jω)t dt

=

[
e(3−jω)t

3 − jω

]0

−∞

+

[
e−(3+jω)t

−(3 + jω)

]∞

0

=
1

3 − jω
+

1

3 + jω

=
6

9 + ω2

Now

G(ω) =
6

10 + 2ω + ω2
=

6

(ω + 1)2 + 9
= F(ω + 1)

Then, using the �rst shift theorem F(ω + 1) will be F{e−jt f (t)}; that is, the required

function is

g(t) =

{
e(−3−j)t t > 0

e(3−j)t t < 0

24.3.3 Second shift theorem

If F(ω) is the Fourier transform of f (t) then

F{ f (t − α)} = e−jαωF(ω)
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Example 24.7 Given that when f (t) =

{
1 |t| 6 1

0 |t| > 1
, F(ω) =

2 sinω

ω
, apply the second shift theorem

to �nd the Fourier transform of

g(t) =

{
1 1 6 t 6 3

0 otherwise

Verify your result directly.

g(t)

t1 2 3

1
Figure 24.3

The function

g(t) =

{
1 1 6 t 6 3

0 otherwise.

Solution The function g(t) is depicted in Figure 24.3. Clearly g(t) is the function f (t) translated

2 units to the right, that is g(t) = f (t−2). Now F(ω) =
2 sinω

ω
is the Fourier transform

of f (t). Therefore, by the second shift theorem

F{g(t)} = F{ f (t − 2)} = e−2jωF(ω) =
2e−2jω sinω

ω

To verify this result directly we must evaluate

F{g(t)} =

∫ ∞

−∞

g(t) e−jωt dt =

∫ 3

1

e−jωt dt =

[
e−jωt

−jω

]3

1

=
e−3jω − e−jω

−jω
= e−2jω

(
e−jω − ejω

−jω

)

=
2e−2jω sinω

ω

as required.

EXERCISES 24.3

1 Prove the �rst shift theorem.

2 Find the Fourier transform of

f (t) =

{
1 − t2 |t| 6 1

0 |t| > 1

Use the �rst shift theorem to deduce the Fourier

transforms of

(a) g(t) =

{
e3jt (1 − t2) |t| 6 1

0 |t| > 1

(b) h(t) =

{
e−t (1 − t2) |t| 6 1

0 |t| > 1

3 Find the inverse Fourier transforms of

(a)
1

(ω + 7)j + 1

(b)
2

1 + 2(ω − 1)j

4 Prove the second shift theorem.
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5 Given F{u(t) e−t} =
1

1 + jω
, use the second shift

theorem to �nd

F{u(t + 4) e−(t+4)}

Verify your result by direct integration.

6 Find, using the second shift theorem,

F
−1

{
6e−4jω sin 2ω

ω

}

Solutions

2
4 cosω

−ω2
+

4 sinω

ω3

(a)
−4 cos(ω − 3)

(ω − 3)2
+

4 sin(ω − 3)

(ω − 3)3

(b)
−4 cos(ω − j)

(ω − j)2
+

4 sin(ω − j)

(ω − j)3

3 (a) u(t) e−t e−7jt (b) ejtu(t) e−t/2

5
e4jω

1 + jω

6 3 for 2 6 t 6 6, 0 otherwise

24.4 SPECTRA

In the Fourier analysis of periodic waveforms we stated that although a waveform physi-

cally exists in the time (or spatial) domain it can be regarded as comprising components

with a variety of temporal (or spatial) frequencies. The amplitude and phase of these

components are obtained from the Fourier coef�cients an and bn. This is known as a

frequency domain description. Plots of amplitude against frequency and phase against

frequency are together known as the spectrum of a waveform. Periodic functions have

discrete or line spectra; that is, the spectra assume non-zero values only at certain fre-

quencies. Only a discrete set of frequencies is required to synthesize a periodic wave-

form. On the other hand when analysing non-periodic phenomena via Fourier transform

techniques we �nd that, in general, a continuous range of frequencies is required. Instead

of discrete spectra we have continuous spectra. The modulus of the Fourier transform,

|F(ω)|, gives the spectrum amplitude while its argument arg(F(ω)) describes the spec-

trum phase.

Example 24.8 In Example 24.2 the Fourier transform of

f (t) =

{
1 |t| 6 1

0 |t| > 1

was found to be F(ω) =
2 sinω

ω
. Sketch the spectrum of f (t).

Solution F(ω) is purely real. The spectrum of f (t) is depicted by plotting |F(ω)| against ω as

illustrated in Figure 24.4. Note that lim
ω→0

sinω

ω
= 1. (See Review exercises in

Chapter 18.)
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2p

2

p v–p–2p–3p–4p 3p 4p

uF(v)u

Figure 24.4

Spectrum of f (t) =

{
1 |t| 6 1

0 |t| > 1.

Engineering application 24.1

Amplitude modulation

Amplitude modulation is a technique that allows audio signals to be transmitted as

electromagnetic radio waves. The maximum frequency of audio signals is typically

10 kHz. If these signals were to be transmitted directly then it would be necessary

to use a very large antenna. This can be seen by calculating the wavelength of an

electromagnetic wave of frequency 10 kHz using the formula

c = fλ

Here c is the velocity of an electromagnetic wave in a vacuum (3 × 108 m s−1), f is

the frequency of the wave and λ is its wavelength, and hence λ =
c

f
= 30 000 m.

It can be shown that an antenna must have dimensions of at least one-quarter of the

wavelength of the signal being transmitted if it is to be reasonably ef�cient. Clearly a

very large antenna would be needed to transmit a 10 kHz signal directly. The solution

is to have a carrier signal of a much higher frequency than the audio signal which is

usually termed themodulation signal. This allows the antenna to be a reasonable size

as a higher frequency signal has a smaller wavelength. The arrangement for mixing

the two signals is shown in Figure 24.5.

3

Antenna

x(t)cosvct
x(t)

cosvct
Figure 24.5

Amplitude modulation.

Let us now derive an expression for the frequency spectrum of an amplitude-

modulated signal given by

φ(t) = x(t) cosωct

where ωc is the angular frequency of the carrier signal and x(t) is the modulation

signal. Now φ(t) = x(t) cosωct can be written as

φ(t) = x(t)
ejωc

t + e−jω
c
t

2
➔



768 Chapter 24 The Fourier transform

v

uX(v)u

vvc

uF(v)u

–vc
(a) (b)

Figure 24.6

Amplitude modulation. (a) Spectrum of the modulation signal; (b) spectrum of the

amplitude-modulated signal.

Taking the Fourier transform and using the �rst shift theorem yields

F{φ(t)} = 8(ω) = F

{
x(t)(ejωc

t + e−jω
c
t )

2

}

= F

{
ejωc

tx(t)

2

}
+ F

{
e−jω

c
tx(t)

2

}

=
1

2
(X (ω − ωc)+ X (ω + ωc))

where X (ω) = F{x(t)}, the frequency spectrum of the modulation signal.

Let us consider the case where the frequency spectrum, |X (ω)|, has the pro�le

shown in Figure 24.6(a). The frequency spectrum of the amplitude-modulated sig-

nal, |8(ω)|, is shown in Figure 24.6(b). All of the frequencies of the amplitude-

modulated signal are much higher than the frequencies of the modulation signal thus

allowing a much smaller antenna to be used to transmit the signal. This method of

amplitude modulation is known as suppressed carrier amplitude modulation be-

cause the carrier signal is modulated to its full depth and so the spectrum of the

amplitude-modulated signal has no identi�able carrier component.

EXERCISES 24.4

1 Show that the Fourier transform of the pulse

f (t) =

{
t + 1 −1 < t < 0

1 − t 0 < t < 1

can be written as

F(ω) =
2

ω2
(1 − cosω)

Plot a graph of the spectrum of f (t) for

−2π 6 ω 6 2π. Write down an integral expression

for the pulse which would result if the signal f (t)

were passed through a �lter which eliminates all

angular frequencies greater than 2π.

Solutions

1
1

2π

∫ 2π

−2π

2(1 − cosω)
ejωt

ω2
dω

24.5 THE t−ω DUALITY PRINCIPLE

We have, from the de�nition of the Fourier integral,

f (t) =
1

2π

∫ ∞

−∞

F(ω) ejωt dω (24.6)
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f (t)

t

F(v)

v

1

–1 1

Figure 24.7

Illustrating the t--ω duality principle.

2pf (v)

t v

2p

–1 1

2 sin t 
———

t

Figure 24.8

Illustrating the t--ω duality principle.

where

F(ω) =

∫ ∞

−∞

f (t) e−jωt dt (24.7)

is the Fourier transform of f (t). In Equation (24.6), ω is a dummy variable so, for ex-

ample, Equation (24.6) could be equivalently written as

f (t) =
1

2π

∫ ∞

−∞

F(z) ejzt dz (24.8)

Then, from Equation (24.8), replacing t by −ω we �nd

f (−ω) =
1

2π

∫ ∞

−∞

F(z) e−jωz dz =
1

2π

∫ ∞

−∞

F(t) e−jωt dt

which we recognize as
1

2π
times the Fourier transform of F(t).

We have the following result:

If F(ω) is the Fourier transform of f (t) then

f (−ω) is
1

2π
× (the Fourier transform of F(t))

which is known as the t--ω duality principle.

We have seen in Example 24.2 that if

f (t) =

{
1 |t| 6 1

0 |t| > 1

then F(ω) =
2 sinω

ω
. This is depicted in Figure 24.7. From the duality principle we can

immediately deduce that

F

{
2 sin t

t

}
= 2π f (−ω) = 2π f (ω)

since f is an even function (Figure 24.8). Unfortunately it is very dif�cult to verify this

result in most cases because while one of the integrals is relatively straightforward to

evaluate, the other is usually very dif�cult. However, we can use the result to derive a

number of new Fourier transforms.

Example 24.9 Given that the Fourier transform of u(t) e−t is
1

1 + jω
use the duality principle to deduce

the transform of
1

1 + jt
.
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Solution We know F(ω) =
1

1 + jω
is the Fourier transform of f (t) = u(t) e−t . Therefore

2π(u(−ω) eω) is the Fourier transform of
1

1 + jt
.

24.6 FOURIER TRANSFORMS OF SOME SPECIAL FUNCTIONS

We saw in Section 24.4 that the Fourier transform tells us the frequency content of a sig-

nal. If we were to �nd the Fourier transform of a signal composed of only one frequency

component, for example f (t) = sin t, we would hope that the exercise of �nding the

Fourier transform would result in a spectrum containing that single frequency.

Unfortunately if we try to �nd the Fourier transform of, say, f (t) = sin t problems

arise since the integral

∫ ∞

−∞

sin t e−jωt dt

cannot be evaluated in the usual sense because sin t oscillates inde�nitely as |t| → ∞.

In particular, Condition (2) of Section 24.2 fails since
∫∞

−∞
| sin t| dt diverges. There are

many other functions which give rise to similar dif�culties, for instance the unit step

function, polynomials and so on. All these functions fail to have a Fourier transform

in its usual sense. However, by making use of the delta function it is possible to make

progress even with functions like these.

24.6.1 The Fourier transform of δ(t − a)

Example 24.10 Use the properties of the delta function to deduce its Fourier transform.

Solution By de�nition

F{δ(t − a)} =

∫ ∞

−∞

δ(t − a) e−jωt dt

Next, recall the following property of the delta function

∫ ∞

−∞

f (t)δ(t − a) dt = f (a) (24.9)

for any reasonably well-behaved function f (t). Using Equation (24.9) with f (t) = e−jωt

we have

F{δ(t − a)} =

∫ ∞

−∞

e−jωtδ(t − a) dt = e−jωa

In particular, if a = 0 we have F{δ(t)} = 1. This result is depicted in Figure 24.9.
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f(t)

t

F(v)

v

1
1

Figure 24.9

F{δ(t)} = 1.

2pd (v)

1
2p

t v

F(t)

Figure 24.10

F{1} = 2πδ(ω).

Example 24.11 Apply the t--ω duality principle to the previous result. Interpret the result physically.

Solution We have f (t) = δ(t) and F(ω) = 1. The duality principle tells us that

f (−ω) = δ(−ω) which equals
1

2π
F{1}

that is,

F{1} = 2πδ(ω)

(since δ(−ω) = δ(ω)). This is illustrated in Figure 24.10. Physically F(t) = 1 can be

regarded as a d.c. waveform. This result con�rms that a d.c. signal has only one frequency

component, namely zero.

Example 24.12 Given that F{δ(t − a)} = e−jωa �nd F{e−jta}.

Solution We have f (t) = δ(t − a), F(ω) = e−jωa. Applying the t--ω duality principle we �nd

f (−ω) = δ(−ω − a) =
1

2π
F{e−jta}

Therefore

F{e−jta} = 2πδ(−ω − a)

= 2πδ(−(ω + a))

= 2πδ(ω + a)

since δ(ω) is an even function.

24.6.2 Fourier transforms of some periodic functions

From Example 24.12 we have F{e−jta} = 2πδ(ω + a) and also, replacing a by −a,

F{ejta} = 2πδ(ω − a). Adding these two expressions we �nd

F{e−jta} + F{ejta} = 2π(δ(ω + a)+ δ(ω − a))

Recalling the linearity properties of F we can write

F{e−jta + ejta} = 2π(δ(ω + a)+ δ(ω − a))

and using Euler’s relations we �nd

F{cos at} = π(δ(ω + a)+ δ(ω − a))
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F(v)

t v–a a

p

f (t) = cos at

Figure 24.11

The spectrum of cos at.

We see that the spectrum of cos at consists of single lines at ω = ±a corresponding to

a single frequency component (Figure 24.11).

Example 24.13 Find F{sin at}.

Solution Subtracting the previous expressions forF{ejta} andF{e−jta} and using Euler’s relations

we �nd

F{ejta} − F{e−jta} = 2π(δ(ω − a)− δ(ω + a))

that is,

F

{
ejta − e−jta

2j

}
=

π

j
(δ(ω − a)− δ(ω + a))

so that

F{sin at} =
π

j
(δ(ω − a)− δ(ω + a))

24.7 THE RELATIONSHIP BETWEEN THE FOURIER
TRANSFORM AND THE LAPLACE TRANSFORM

We have already noted (Section 24.2) the similarity between the Laplace transform and

the Fourier transform. Let us now look at this a little more closely. We have

F{ f (t)} =

∫ ∞

−∞

f (t) e−jωt dt and L{ f (t)} =

∫ ∞

0

f (t) e−st dt

In the de�nition of the Laplace transform, the parameter s is complex and we may write

s = σ + jω, so that

L{ f (t)} =

∫ ∞

0

f (t) e−σ t e−jωt dt

Thus an additional factor, e−σ t , appears in the integrand of the Laplace transform. For

σ > 0 this represents an exponentially decaying factor, the presence of which means that

the integral exists for awider variety of functions than the corresponding Fourier integral.

Example 24.14 Find, if possible,

(a) the Laplace transform

(b) the Fourier transform

of f (t) = u(t) e3t . Comment upon the result.
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Solution (a) Either by integration, or from Table 21.1, we �nd

L{u(t) e3t} =
1

s− 3
provided s > 3

(b) F{u(t) e3t} =

∫ ∞

0

e3t e−jωt dt =

∫ ∞

0

e(3−jω)t dt =

[
e(3−jω)t

3 − jω

]∞

0

.

Now, as t → ∞, e3t → ∞, so that the integral fails to exist. Clearly, u(t) e3t has a

Laplace transform but no Fourier transform.

Suppose f (t) is de�ned to be 0 for t < 0. Then its Fourier transform becomes

F{ f (t)} =

∫ ∞

0

f (t) e−jωt dt

and its Laplace transform is

L{ f (t)} =

∫ ∞

0

f (t) e−st dt

By replacing s by jω in the Laplace transform we obtain the Fourier transform of f (t) if

it exists. Care must be taken here since we have seen that the Fourier transform may not

exist for a function that nevertheless has a Laplace transform.

Example 24.15 Find the Laplace transforms of

(a) u(t) e−2t

(b) u(t) e2t

Let s = jω and comment upon the result.

Solution (a) L{u(t) e−2t} =
1

s+ 2
.

(b) L{u(t) e2t} =
1

s− 2
.

Replacing s by jω in (a) gives
1

jω + 2
. Similarly, replacing s by jω in (b) gives

1

jω − 2
.

Now

F{u(t) e−2t} =
1

jω + 2

so that replacing s by jω in the Laplace transform results in the Fourier transform. How-

ever, F{u(t) e2t} does not exist and even though we can let s = jω in the Laplace trans-

form and obtain
1

jω − 2
, we cannot interpret this as a Fourier transform.

The Fourier transform does possess certain advantages over the Laplace transform.While

the Laplace transform can only be applied to functions which are zero for t < 0, the
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Fourier transform is applicable to functions with domain −∞ < t < ∞. In some ap-

plications where, for example, t represents not time but a spatial variable, it is often

necessary to work with negative values.

The inverse Fourier transform is given by

F
−1{F(ω)} =

1

2π

∫ ∞

−∞

F(ω) ejωt dω (24.10)

The corresponding inverse Laplace transform requires advanced techniques in the theory

of complex variables which are beyond the scope of this book. The existence of Equa-

tion (24.10) is not quite as advantageous as it may seem because it is often dif�cult to

perform the required integration analytically.

24.8 CONVOLUTION AND CORRELATION

Convolution is an important technique in signal and image processing. It provides a

means of calculating the response or output of a system to an arbitrary input signal if

the impulse response is known. The impulse response is the response of the system to

an impulse function. Convolving the input signal and the impulse response results in the

response to the arbitrary input. Correlation is a second important technique. It can be

used to determine the time delay between a transmitted signal and a received signal as

might occur in radar or sonar detection equipment.

24.8.1 Convolution and the convolution theorem

If f (t) and g(t) are two real piecewise continuous functions, their convolution, which

we denote by f ∗ g, is de�ned as follows:

The convolution of f (t) and g(t):

f ∗ g=

∫ ∞

−∞

f (λ)g(t − λ) d λ

f ∗ g is itself a function of t, and to show this explicitly we sometimes write ( f ∗ g)(t).

Note that convolution is an integral with respect to the dummy variable λ. In general,

as can be seen from the limits of integration, λ varies from −∞ to ∞, but in particular

cases we will see that this interval of integration can be reduced. In the examples which

follow the precise meaning of the terms f (λ) and g(t − λ) will become apparent.

Because convolution is commutative, that is f ∗ g = g ∗ f , the convolution can be

de�ned equivalently as

∫ ∞

−∞

f (t − λ)g(λ) dλ

In cases when f (t) and g(t) are zero for t < 0 this expression reduces to that de�ned for

the Laplace transform in Section 21.9.
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The convolution theorem states that convolution in the time domain corresponds to

multiplication in the frequency domain:

The convolution theorem:

If F{ f (t)} = F(ω) and F{g(t)} = G(ω) then

F{ f ∗ g} = F(ω)G(ω)

This theorem gives us a technique for calculating the convolution of two functions using

the Fourier transform, since

f ∗ g= F
−1{F(ω)G(ω)}

So, it is possible to �nd the convolution of f (t) and g(t), by

(1) �nding the corresponding Fourier transforms, F(ω) and G(ω),

(2) multiplying these together to form F(ω)G(ω),

(3) �nding the inverse Fourier transform which then yields f ∗ g.

This is a process often used for �nding convolutions using a computer as will be ex-

plained in Section 24.15.

A graphical representation of convolution is useful as it can throw light on the under-

lying process and help us to determine appropriate limits of integration.Wewill illustrate

this in the following example.

Example 24.16 (a) Using the de�nition of convolution, calculate the convolution f ∗ gwhen

f (t) = u(t) e−t and g(t) = u(t) e−2t , where u(t) is the unit step function.

(b) Verify the convolution theorem for these functions.

f (t) = u(t)e–t

g(t) = u(t)e–2t

t

1

Figure 24.12

Graphs of

f (t) = u(t) e−t and

g(t) = u(t) e−2t .

Solution (a) The convolution of f and g is given by

f ∗ g=

∫ ∞

−∞

f (λ)g(t − λ) dλ

Graphs of f (t) and g(t) are shown in Figure 24.12.

Evaluating a convolution integral can be dif�cult, so we will develop the solu-

tion in stages. First of all it is necessary to be clear about the meaning of the different

terms in the integrand. Note that if f (t) = u(t) e−t then f (λ) = u(λ) e−λ. Similarly

g(λ) = u(λ) e−2λ. The function g(−λ) is found by reflecting g(λ) in the vertical axis

as shown in Figure 24.13(a). In signal processing terminology this is also known as

folding. The folded graph can be translated a distance t to the left or to the right by

changing the argument of g to g(t−λ). If t is negative the graph moves to the left as

shown in Figure 24.13(b) whereas if t is positive it moves to the right as shown in

Figure 24.13(c). In Figure 24.13 we have superimposed the graphs of f (λ), shown

dashed, and g(t − λ), for t being negative, zero and positive. Where the graphs do

not overlap, the product f (λ)g(t−λ), and hence the convolution, must be zero. We

examine separately the domains t < 0 and t > 0 corresponding to where the graphs

do not overlap and where they do overlap respectively.
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(a)

(b)

(c)

f (  ) = u(  )e–

g(t – )  when t < 0

g(t – )  when t > 0

g(–l)
l

l

l

l

l

l

l l

t

t

Figure 24.13

The function g(t − λ) for various values

of t.

When t < 0

When t < 0 there is clearly no overlap and it follows that f ∗ g= 0.

When t > 0

When t > 0 there is overlap for values of λ between 0 and t, that is when 0 6 λ 6 t,

and hence

f ∗ g =

∫ t

0

e−λ e−2(t−λ) dλ

=

∫ t

0

e−λ e−2t e2λ dλ

= e−2t

∫ t

0

eλdλ

= e−2t[eλ]t0

= e−2t (et − 1)

= e−t − e−2t

Finally the complete expression for the convolution is

( f ∗ g)(t) =

{
e−t − e−2t when t > 0

0 when t < 0

This may also be written as

( f ∗ g)(t) = u(t)(e−t − e−2t )

(b) Using Table 24.1 the Fourier transforms of f and g are

F(ω) =
1

1 + jω
G(ω) =

1

2 + jω
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and their product is

F(ω)G(ω) =
1

(1 + jω)(2 + jω)
(24.11)

The Fourier transform of the convolution is, using linearity and Table 24.1,

F{u(t)(e−t − e−2t )} =
1

1 + jω
−

1

2 + jω

=
(2 + jω)− (1 + jω)

(1 + jω)(2 + jω)

=
1

(1 + jω)(2 + jω)

which is the same as Equation (24.11). We have shown that F{ f ∗ g} = F(ω)G(ω)

and so the convolution theorem has been veri�ed.

Example 24.17 (a) Using the de�nition of convolution �nd the convolution, f ∗ g, of the ‘top-hat’

function

f (t) =

{
1 −1 6 t 6 1

0 otherwise

and the function g(t) = u(t) e−t , where u(t) is the unit step function.

(b) Verify the convolution theorem for these functions.

Solution (a) The functions f (t) and g(t) are shown in Figure 24.14.

The convolution of f (t) and g(t) is given by

f ∗ g=

∫ ∞

−∞

f (λ)g(t − λ) dλ

Note that since g(t) = u(t) e−t , it follows that g(λ) = u(λ) e−λ as shown in Fig-

ure 24.15(a). The function g(−λ) is found by reflecting, or folding, g(λ) in the

vertical axis. This folding is shown in Figure 24.15(b). The folded graph can be

translated a distance t to the left or to the right by changing the argument of g to

g(t − λ). If t is negative the graph in Figure 24.15(b) moves to the left, whereas if t

is positive it moves to the right. Study Figures 24.15(c--g) to observe this.

Convolution is the integral of the product of f (λ) and g(t − λ). We have super-

imposed f (λ) on the graphs in Figure 24.15. For values of λ where the graphs do

not overlap, this product must be zero.

Inspection of the graphs shows that when t is less than−1 (Figure 24.15(c)) there

is no overlap and hence f (λ)g(t − λ) = 0. So:

if t < −1

f ∗ g= 0

e– tg(t) =

t

u(t)

t–1 1

1

f(t)

Figure 24.14

The ‘top-hat’ function f (t),

and g(t) = u(t) e−t .
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g(–  )

g(t –  ) when t <  –1

g(t –  ) when t  =  –1

g(t –  ) when  – 1 ø

.

øt      1

g(t –  ) when t = 1

g(t –  ) when  t 1

1

1

g( )
1

(g)

(f)

(e)

(d)

(c)

(b)

(a)

–1

–1

–1

–1

–1

1

1

1

1

1

t

t

t

l

l

l

l

l

l

l

l

l

l

l

l

l

l

Figure 24.15

The function g(t − λ) for various

values of t.
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When t is greater than −1 but less than 1, as in Figure 24.15(e), there is an overlap,

and hence a non-zero product. This occurs for values of λ between −1 and t, that is

in the interval −1 6 λ 6 t. Within this interval f (λ) = 1 and g(t − λ) = e−(t−λ).

So:

if −1 6 t < 1

f ∗ g=

∫ t

−1

e−(t−λ) dλ = e−t

∫ t

−1

eλ dλ = e−t[eλ]t−1 = e−t[et − e−1] = 1 − e−1−t

When t is greater than 1 the graphs overlap, but only for values of λ between −1

and 1, that is for −1 6 λ < 1. So:

if t > 1

f ∗ g=

∫ 1

−1

e−(t−λ) dλ = e−t[eλ]1−1 = e−t (e1 − e−1)

Putting all these results together

( f ∗ g)(t) =




0 t < −1

1 − e−1−t −1 6 t < 1

e−t (e1 − e−1) t > 1

(b) Using Table 24.1 the Fourier transforms of f and g are

F(ω) =
2 sinω

ω
G(ω) =

1

1 + jω

and their product is

F(ω)G(ω) =
2 sinω

ω(1 + jω)
(24.12)

Since the convolution is de�ned differently on each part of the domain, then the

Fourier transform of the convolution must be found by integrating over each part of

the domain separately. You will also need to recall that

sinω =
ejω − e−jω

2j

So,

F{( f ∗ g)(t)} =

∫ ∞

−∞

( f ∗ g)(t) e−jωt dt

=

∫ −1

−∞

0 · e−jωt dt +

∫ 1

−1

(1 − e−1−t ) e−jωt dt

+

∫ ∞

1

e−t (e1 − e−1) e−jωt dt

=

∫ 1

−1

e−jωt − e−1−t−jωt dt + (e1 − e−1)

∫ ∞

1

e−t e−jωt dt

=

∫ 1

−1

e−jωt − e−1 e−t(1+jω) dt + (e1 − e−1)

∫ ∞

1

e−t(1+jω) dt

=

[
e−jωt

−jω

]1

−1

−e−1

[
e−t(1+jω)

−(1+jω)

]1

−1

+(e1 − e−1)

[
e−t(1+jω)

−(1+jω)

]∞

1



780 Chapter 24 The Fourier transform

=
e−jω

−jω
+

ejω

jω
− e−1

(
e−(1+jω)

−(1 + jω)

)

+ e−1

(
e(1+jω)

−(1 + jω)

)
+ (e1 − e−1)

(
e−(1+jω)

1 + jω

)

The �rst two terms simplify to
2 sinω

ω
. By simplifying and rearranging the remain-

der becomes −
ejω − e−jω

1 + jω
. Putting all this together we �nd

F{( f ∗ g)(t)} =
2 sinω

ω
−

ejω − e−jω

1 + jω

=
2 sinω

ω
−

2j sinω

1 + jω

=
2 sinω

ω(1 + jω)

which is the same as Equation (24.12). We have shown that F{ f ∗ g} = F(ω)G(ω)

and so the convolution theorem has been veri�ed.

24.8.2 Correlation and the correlation theorem

If f (t) and g(t) are two piecewise continuous functions their correlation (also called

their cross-correlation), which we denote by f ⋆ g, is de�ned as follows:

The correlation of f (t) and g(t):

f ⋆ g=

∫ ∞

−∞

f (λ)g(λ− t) dλ

This formula is the same as that for convolution except for the important difference that

the function g is not folded; that is, we have g(λ− t) here rather than g(t − λ).

It is possible to show that the correlation of f (t) and g(t) can be written in the alter-

native form

f ⋆ g=

∫ ∞

−∞

f (t + λ)g(λ) dλ

Some texts use this form, but note that it is the argument of f which is t + λ (see Ques-

tion 8 in Exercises 24.8).

We can now state the correlation theorem.

The correlation theorem:

If F{ f (t)} = F(ω) and F{g(t)} = G(ω) then

F{ f ⋆ g} = F(ω)G(−ω)
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Example 24.18 (a) Using the de�nition of correlation, calculate the correlation of f (t) = u(t) e−t and

g(t) = u(t) e−2t , where u(t) is the unit step function.

(b) Verify the correlation theorem for these functions.

Solution (a) The correlation of f and g is given by

f ⋆ g=

∫ ∞

−∞

f (λ)g(λ− t) dλ

Graphs of f (t) and g(t) are shown in Figure 24.16.

In Figure 24.17 we have superimposed the graphs of f (λ), shown dashed, and

g(λ − t), for t being negative, and then positive. Where the graphs do not overlap,

the product f (λ)g(λ− t), and hence the correlation, is zero.

f (t) =  e– t

g(t) = e– 2t

t

u(t)

u(t)1

Figure 24.16

Graphs of f (t) = u(t) e−t

and g(t) = u(t) e−2t .

When t < 0

When t < 0 the graphs overlap for 0 6 λ < ∞. Hence

f ⋆ g =

∫ ∞

0

f (λ)g(λ− t) dλ

=

∫ ∞

0

e−λ e−2(λ−t) dλ

= e2t
∫ ∞

0

e−3λ dλ

= e2t
[
e−3λ

−3

]∞

0

=
1

3
e2t

(a)

(b)

(c)

f (  ) = u(  )e–

g( – ) when t < 0

t

t

t

g(  –  ) when t  0t >

l

l

l

l

l

l l l

Figure 24.17

Graphs of f (λ), and g(λ− t) for (b) t < 0,

(c) t > 0.
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When t > 0

When t > 0 the graphs overlap for t 6 λ < ∞. Hence

f ⋆ g =

∫ ∞

t

f (λ)g(λ− t) dλ

=

∫ ∞

t

e−λ e−2(λ−t) dλ

= e2t
∫ ∞

t

e−3λ dλ

= e2t
[
e−3λ

−3

]∞

t

= e2t
e−3t

3

=
1

3
e−t

Finally the complete expression for the correlation is

( f ⋆ g)(t) =





1

3
e2t when t < 0

1

3
e−t when t > 0

(b) Using Table 24.1 the Fourier transforms of f and g are

F(ω) =
1

1 + jω
G(ω) =

1

2 + jω

and hence

F(ω)G(−ω) =
1

(1 + jω)(2 − jω)

Furthermore, taking the Fourier transform of f ⋆ g, obtained in part (a), we have

F{ f ⋆ g} =

∫ 0

−∞

1

3
e2t e−jωt dt +

∫ ∞

0

1

3
e−t e−jωt dt

=

[
et(2−jω)

3(2 − jω)

]0

−∞

+

[
et(−1−jω)

3(−1 − jω)

]∞

0

=
1

3(2 − jω)
+

1

3(1 + jω)

=
3 + 3jω + 6 − 3jω

9(2 − jω)(1 + jω)

=
1

(2 − jω)(1 + jω)

We have shown that F{ f ⋆ g} = F(ω)G(−ω) and so the correlation theorem has

been veri�ed.
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EXERCISES 24.8

1 Find the convolution of

f (t) =

{
2

3
t 0 6 t 6 3

0 otherwise

and

g(t) =

{
4 −1 6 t 6 3

0 otherwise

2 The convolution of a function with itself is known as

autoconvolution. Find the autoconvolution f ∗ f

when

f (t) =

{
1 −1 6 t 6 1

0 otherwise

3 Find the correlation of f (t) = 1 for −1 6 t 6 1 and

zero otherwise, and g(t) = u(t) e−t . Verify the

correlation theorem for these functions.

4 Prove that convolution is commutative, that is

f ∗ g= g ∗ f . Note that correlation is not.

5 Show that if f (t) and g(t) are both zero, for t < 0,

then ( f ∗ g)(t) =
∫ t
0 f (λ)g(t − λ) dλ.

6 Prove the convolution theorem.

7 Show that f (t) ⋆ g(t) = f (t) ∗ g(−t). Deduce that a

correlation can be expressed in terms of a convolution.

Show also that f (t) ∗ g(t) = f (t) ⋆ g(−t).

8 Prove that the correlation integral

f ⋆ g=
∫∞

−∞
f (λ)g(λ− t) dλ can also be written in

the form
∫∞

−∞
g(λ) f (t + λ) dλ.

9 Prove the correlation theorem.

Solutions

1 f ∗ g=





0 t 6 −1

4

3
(t + 1)2 −1 < t 6 2

12 2 < t 6 3

12 −
4

3
(t − 3)2 3 < t 6 6

0 t > 6

2 f ∗ f =





t + 2 −2 6 t 6 0

2 − t 0 < t 6 2

0 otherwise

3 f ⋆ g=





et (e1 − e−1) t < −1

1 − et−1 −1 6 t 6 1

0 t > 1

24.9 THE DISCRETE FOURIER TRANSFORM

For most practical engineering problems requiring the evaluation of a Fourier transform

it is necessary to use a computer and so some form of approximation is needed. In this

section we show how a function f (t), with Fourier transform F(ω), can be sampled at

intervals of T to give a sequence of values f (0), f (T ), f (2T ) . . . . The discrete Fourier

transform (d.f.t.) takes such a sequence and processes it to produce a new sequence

which can be thought of as a sampled version of F(ω). The d.f.t. is important as it is the

basis of most signal and image processing methods. The use of a computer is essential

because of the enormous number of calculations required.

We start by stating the transform and provide a simple example to show how it is

calculated. The interested reader should refer to Section 24.10 for a derivation which

shows the relationship between the Fourier transform and the d.f.t.
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24.9.1 Definition of the d.f.t.

We consider a sequence of N terms, f [0], f [1], f [2], . . . , f [N − 1].

The d.f.t. of a sequence f [n], n = 0, 1, 2, . . . ,N−1, is another sequence F[k], also

having N terms, de�ned by

F[k] =

N−1∑

n=0

f [n] e−2jnkπ/N for k = 0, 1, 2, . . . ,N − 1

We write F[k] = D{ f [n]} to denote the d.f.t. of the sequence f [n].

There are a number of variations of this de�nition and you need to be aware that

different authors may use slightly different formulae. This can cause confusion when

the d.f.t. is �rst met. In particular, some authors include a factor
1

N
in the de�nition, and

others use a positive exponential term instead of the negative one given above. What is

crucial is that you know which formula is being used and you apply it consistently.

We now give an example to show the application of the formula.

Example 24.19 Find the d.f.t. of the sequence f [n] = 1, 2,−5, 3.

Solution We use the formula

D{ f [n]} = F[k] =

N−1∑

n=0

f [n] e−2jnkπ/N for k = 0, 1, 2, . . . ,N − 1

Here the number of terms, N, is four:

F[k] =

3∑

n=0

f [n] e−2jnkπ/4 for k = 0, 1, 2, 3

So, when k = 0,

F[0] =

3∑

n=0

f [n] e0

= 1 + 2 + (−5)+ 3

= 1

When k = 1,

F[1] =

3∑

n=0

f [n] e−2jnπ/4

= 1 + 2e−2jπ/4 + (−5) e−2j2π/4 + 3e−2j3π/4

= 1 + 2e−πj/2 − 5e−πj + 3e−3jπ/2

= 1 + 2(−j)− 5(−1)+ 3j

= 6 + j
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When k = 2,

F[2] =

3∑

n=0

f [n] e−2jn2π/4

=

3∑

n=0

f [n] e−πjn

= 1 + 2e−jπ + (−5) e−2jπ + 3e−3jπ

= 1 + 2(−1)− 5(1)+ 3(−1)

= −9

Finally, when k = 3,

F[3] =

3∑

n=0

f [n] e−2jn3π/4

=

3∑

n=0

f [n] e−3jnπ/2

= 1 + 2e−3jπ/2 + (−5) e−3jπ + 3e−9jπ/2

= 1 + 2(j)− 5(−1)+ 3(−j)

= 6 − j

So, the d.f.t. of the sequence 1, 2,−5, 3 is the sequence 1, 6 + j,−9, 6 − j.

You will note from this simple example that a signi�cant amount of calculation is nec-

essary even when there are just four points in the sampled sequence. This is why it is

necessary to use a computer program to �nd the transform. Even then, the computation

can be very time consuming. For this reason, much effort has gone into developing fast

algorithms known as fast Fourier transforms (f.f.t.s). For details of these algorithms

you should refer to one of the many specialist texts on the subject. You should also inves-

tigate which packages are available to enable you to perform this sort of calculation. For

example, the computer package MATLAB® has built-in commands for �nding a d.f.t.

using an f.f.t. For example, the MATLAB® command fft(f) calculates the d.f.t. of a

sequence f as shown below:

f=[1 2 -5 3];

y=fft(f)

y =

1.0000 6.0000+ 1.0000i -9.0000 6.0000- 1.0000i

In MATLAB® either j or i can be used in input to represent
√

−1, for example

1+5j

or

1+5i
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and they are both equivalent. However when variables are printed, i is always used.

Hence both of these inputs if typed at the command line would give

ans = 1 + 5i

this should be borne in mind when viewing the results of the f.f.t.

EXERCISES 24.9.1

1 Use the de�nition to �nd the d.f.t. of the sequences

f [n] = 1, 2, 0,−1 and g[n] = 3, 1,−1, 1.

2 Calculate the d.f.t. of the sequence f [n] = 5,−1, 2.

3 Use a technical computing language such as

MATLAB® to verify your answers to Questions 1

and 2.

4 From the de�nition of the d.f.t. show that if f [n] is a

sequence of real numbers with d.f.t. F[k], then

∑N−1
n=0 f [n] e2jnkπ/N = F[k] where the overline

denotes the complex conjugate of F[k].

5 For a sequence of complex numbers F[k], let F[k]

represent the sequence obtained by taking the

complex conjugate of each term in the sequence.

Show that if f [n] is a sequence of real numbers, then

F[N − k] = F[k] for k = 0, 1, 2, . . . ,N/2 if N is

even, and for k = 0, 1, 2, . . . , (N − 1)/2 if N is odd.

This can be seen in Example 24.20 where N = 4 and

F[3] = F[1].

Solutions

1 F[k] = 2, 1 − 3j, 0, 1 + 3j. G[k] = 4, 4, 0, 4 2 6, 4.5 + 2.5981j, 4.5 − 2.5981j

24.9.2 The inverse d.f.t.

Just as there is an inverse Fourier transform which transforms F(ω) back to f (t), there

is an inverse d.f.t. which converts F[k] back to f [n].

The inverse d.f.t. of the sequence F[k],

k = 0, 1, 2, . . . ,N − 1, is the sequence f [n], also having N terms, given by

D
−1{F[k]} = f [n] =

1

N

N−1∑

k=0

F[k] e2jknπ/N n = 0, 1, 2, . . . ,N − 1

Example 24.20 Using the de�nition, �nd the inverse d.f.t. of the sequence F[k], for k = 0, 1, 2, 3,

given by

F[k] = −4, 1, 0, 1

Solution In this sequence there are four terms and so N = 4. From the de�nition

D
−1{F[k]} = f [n] =

1

4

3∑

k=0

F[k] e2jknπ/4 n = 0, 1, 2, 3

=
1

4

3∑

k=0

F[k] ejknπ/2 n = 0, 1, 2, 3

=
1

4
(−4 + 1ejnπ/2 + 0ejnπ + 1e3jnπ/2)
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Then, taking n = 0, 1, 2, 3 gives the sequence:

f [n] = −
1

2
,−1,−

3

2
,−1

EXERCISES 24.9.2

1 Use the de�nition to �nd the inverse d.f.t. of the

sequence F[k] = 6,−2, 2,−2.

2 Investigate whether you have access to a computer

package which will calculate an inverse d.f.t. Use the

package to verify your answer to Question 1.

3 Prove that f [n] =
1

N

∑N−1
k=0 F[k] e

2jknπ/N is indeed

the inverse of F[k] =
∑N−1

m=0 f [m] e
−2jkmπ/N by

substituting the expression for F[k] from the second

formula into the �rst, interchanging the order of

summation and simplifying the result.

Solutions

1 f [n] = 1, 1, 3, 1

24.10 DERIVATION OF THE D.F.T.

24.10.1 Some preliminary results

A number of results discussed earlier in this book will be required in the development

which follows. To assist in this development we remind you of these now.

Euler’s relations have been discussed in Section 9.7. Recall that

e−jθ = cos θ − j sin θ

and in particular that

e−2nπj = cos 2nπ − j sin 2nπ

Furthermore, when n is an integer cos 2nπ = 1 and sin 2nπ = 0 and so e−2nπj = 1.

The following integral property of the delta, or impulse, function will be needed:
∫ ∞

−∞

f (t)δ(t − a) dt = f (a)

So,multiplying any function, f (t), by the delta function δ(t−a), representing an impulse

occurring at t = a, and integrating, results in f (a). This sifting property of the delta

function, so called because it sifts out the value of f (t) at the location of the impulse,

has been discussed in Section 16.4. In particular, when f (t) = e−jωt we note
∫ ∞

−∞

e−jωtδ(t − a) dt = e−jωa

When a continuous function f (t), which is de�ned for t > 0, is evaluated at times

t = 0,T, 2T, . . . , nT, . . . we obtain the sequence of values f (0), f (T ), f (2T ), . . . ,

f (nT ), . . . , which we denote more concisely by the sequence f [0], f [1], f [2], . . . ,

f [n],…. This sequence can be expressed in the form of a continuous function, f̃ (t),



788 Chapter 24 The Fourier transform

in the following way:

f̃ (t) = T

∞∑

n=0

f [n]δ(t − nT )

Note that whereas f (t) is the original continuous function of t, f̃ (t) is an approximation

obtained using only the sampled values. This representation is discussed in greater detail

in Appendix I.

24.10.2 Derivation

This derivation is based upon the fact that a function f (t), de�ned for t > 0, and having

been sampled at intervals of T , can be represented by the function f̃ (t) where

f̃ (t) = T

∞∑

n=0

f [n]δ(t − nT )

In any real problem it is only possible to sample a signal over a �nite time interval.

Suppose we obtain N samples of the signal at times t = 0,T, 2T, . . . , (N − 1)T . Then

the sampled signal can be represented by amending the limits of summation and writing

f̃ (t) = T

N−1∑

n=0

f [n]δ(t − nT )

Taking the Fourier transform of both sides gives

F{ f̃ (t)} = T

∫ ∞

−∞

e−jωt

N−1∑

n=0

f [n]δ(t − nT ) dt

If we make the assumption that it is permissible to interchange the order of integration

and summation we �nd

F{ f̃ (t)} = T

N−1∑

n=0

f [n]

∫ ∞

−∞

e−jωtδ(t − nT ) dt

= T

N−1∑

n=0

f [n] e−jωnT

where we have used the sifting property of the delta function. The quantity on the r.h.s.

is a continuous function of ω derived using the values in the sequence f [n]. Write this as

F̃(ω) and note that F̃(ω) is an approximation to the Fourier transform F(ω) = F{ f (t)}.

It can also be thought of as a Fourier transform for sequences. An important point to

note about this function of ω is that it is periodic with period
2π

T
. This is proved in the

following example.

Example 24.21 Show that the function

F̃(ω) = T

N−1∑

n=0

f [n] e−jωnT

is periodic with period
2π

T
.
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Solution Consider F̃

(
ω +

2π

T

)
for any ω.

F̃

(
ω +

2π

T

)
= T

N−1∑

n=0

f [n] e−j(ω+2π/T )nT

= T

N−1∑

n=0

f [n] e−jωnT e−j 2π
T
nT using the laws of indices

= T

N−1∑

n=0

f [n] e−jωnT e−2nπj

Now we saw in Section 24.10.1 that

e−2nπj = cos 2nπ − j sin 2nπ = 1

Finally we have

F̃

(
ω +

2π

T

)
= T

N−1∑

n=0

f [n] e−jωnT

which equals F̃(ω).

We have shown that F̃

(
ω +

2π

T

)
= F̃(ω) for any ω. Hence F̃(ω) is periodic with

period
2π

T
.

For computational purposes it is necessary to sample F̃(ω) at discrete values. Suppose

we choose to sample at N points over the interval 0 6 ω <
2π

T
. By choosing this

interval we are sampling over a complete period in the frequency domain. So we choose

the sample points given by ω = k
2π

NT
for k = 0, 1, 2, . . . , (N − 1). Writing F̃

(
k
2π

NT

)

as F̃(ωk) we have

F̃(ωk) = T

N−1∑

n=0

f [n] e−jk 2π
NT

nT

= T

N−1∑

n=0

f [n] e−2jnkπ/N (24.13)

This last sum, without the factor T , is usually taken as the de�nition of the d.f.t. of f [n],

written F[k]. To denote the d.f.t. of the sequence f [n] we will write D{ f [n]}.

The d.f.t. of the sequence f [n], n = 0, 1, 2, . . . ,N − 1, is the sequence given by

D{ f [n]} = F[k] =

N−1∑

n=0

f [n] e−2jnkπ/N for k = 0, 1, 2, . . . ,N − 1
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When we use this transform to approximate the Fourier transform of the function f (t)

sampled at intervals T , it follows from Equation (24.13) that we must multiply by the

factor T to obtain our approximation. An example of this is given in the next

section.

24.11 USING THE D.F.T. TO ESTIMATE A FOURIER TRANSFORM

One application of the d.f.t. is to estimate the continuous Fourier transform of a signal

f (t). The following example shows how this can be done.

Example 24.22 The signal f (t) = u(t) e−2t , where u(t) is the unit step function, is shown in

Figure 24.18(a). Its Fourier transform, which can be found from Table 24.1, is

F(ω) =
1

2 + jω
and a graph of |F(ω)| is shown in Figure 24.18(b).

Suppose we obtain 16 sample values of f (t) at intervals of T = 0.1 from t = 0 to

t = 1.5.

(a) Obtain the d.f.t. of the sampled sequence.

(b) Use the d.f.t. to estimate the true Fourier transform values.

(c) Plot a graph to compare values of |F[k]| and |F(ω)|.

Solution (a) If f (t) = u(t) e−2t is sampled at t = nT , that is t = 0, 0.1, 0.2, . . . , 1.5, we obtain

the sequence f [n] = e−2nT = e−0.2n for n = 0, 1, 2, . . . , 15. This is the sequence

given in the second column of Table 24.2.

(b) The calculation of the d.f.t. is far too laborious to be done by hand. Instead we have

used the MATLAB® command fft() to do the calculation and the results, F[k],

have been placed in the third column.

(c) From Section 24.10 we know that the d.f.t. samples at intervals of
2π

NT
in the fre-

quency domain. So for comparison the fourth column shows the true values of F(ω)

1

1 f(t) = u(t)e– 2  t

t

F ( ) =
1

4 + 2

30–30

0.5

(a) (b)

u uv
v

v

Figure 24.18

The signal f (t) = u(t) e−2t and its Fourier transform.
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Table 24.2

n, k f [n] = e−0.2n F[k] F(ωk) 0.1F[k]

0 1.0000 5.2918 0.5000 0.5292

1 0.8187 1.4835 − 1.9082j 0.1030 − 0.2022j 0.1484 − 0.1908j

2 0.6703 0.7882 − 1.0837j 0.0304 − 0.1196j 0.0788 − 0.1084j

3 0.5488 0.6311 − 0.6952j 0.0140 − 0.0825j 0.0631 − 0.0695j

4 0.4493 0.5743 − 0.4702j 0.0080 − 0.0626j 0.0574 − 0.0470j

5 0.3679 0.5485 − 0.3159j 0.0051 − 0.0504j 0.0548 − 0.0316j

6 0.3012 0.5355 − 0.1964j 0.0036 − 0.0421j 0.0536 − 0.0196j

7 0.2466 0.5293 − 0.0944j 0.0026 − 0.0362j 0.0529 − 0.0094j

8 0.2019 0.5274 0.0020 − 0.0317j 0.0527

9 0.1653 0.5293 + 0.0944j 0.0016 − 0.0282j 0.0529 + 0.0094j

10 0.1353 0.5355 + 0.1964j 0.0013 − 0.0254j 0.0536 + 0.0196j

11 0.1108 0.5485 + 0.3159j 0.0011 − 0.0231j 0.0548 + 0.0316j

12 0.0907 0.5743 + 0.4702j 0.0009 − 0.0212j 0.0574 + 0.0470j

13 0.0743 0.6311 + 0.6952j 0.0008 − 0.0196j 0.0631 + 0.0695j

14 0.0608 0.7882 + 1.0837j 0.0007 − 0.0182j 0.0788 + 0.1084j

15 0.0498 1.4835 + 1.9082j 0.0006 − 0.0170j 0.1484 + 0.1908j

also sampled at intervals of
2π

NT
. Recall that to obtain an estimate of the Fourier

transform of f (t) we must multiply the d.f.t. values by T = 0.1. This is shown in

the �fth column of the table.

Figure 24.19 shows graphs of |0.1F[k]| and |F(ω)|. Values of |F[k]| obtained beyond

k = 8 are mirror images of the earlier values. This is because F[N−k] = F[k] as proved

in Question 5 in Exercises 24.9.1. This is a phenomenon of the d.f.t. and arises because

of its periodicity and symmetry properties, further details of which are beyond the scope

of this book. The interested reader is referred to a text on signal processing for further

details.

0 2 4 6 8 10 12 14

0.1

0.2

0.3

0.4

0.5

0.6

k

0.1uF[k]u

F ( k )  =  F (
2  k

N T )u uv
p

Figure 24.19

Comparison of true values of a Fourier

transform and approximate values obtained

using a d.f.t.
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24.12 MATRIX REPRESENTATION OF THE D.F.T.

When it is necessary to develop computer code for performing a d.f.t., an understanding

of the following matrix representation is useful.

We have seen that the d.f.t. of a sequence f [n] is given by

F[k] =

N−1∑

n=0

f [n] e−2jnkπ/N

Consider the term e−2jnkπ/N which can be written using the laws of indices as (e−2jπ/N )nk.

De�neW = e−2jπ/N so that

F[k] =

N−1∑

n=0

f [n]W nk

Note that W does not depend upon n or k. For a �xed value of N we can calculate W

which is then a constant. Writing out this sum explicitly we �nd

F[k] = f [0]W 0 + f [1]W k + f [2]W 2k + f [3]W 3k + · · ·

+ f [N − 1]W (N−1)k for k = 0, 1, 2, . . . ,N − 1

Writing this out for each k we �nd

F[0] = f [0]W 0 + f [1]W 0 + f [2]W 0 + f [3]W 0 + · · · + f [N−1]W 0

F[1] = f [0]W 0 + f [1]W 1 + f [2]W 2 + f [3]W 3 + · · · + f [N−1]WN−1

F[2] = f [0]W 0 + f [1]W 2 + f [2]W 4 + f [3]W 6 + · · · + f [N−1]W 2(N−1)

... =
...

F[N − 1] = f [0]W 0 + f [1]WN−1 + f [2]W 2(N−1)

+ f [3]W 3(N−1) + · · · + f [N − 1]W (N−1)(N−1)

These equations can be written in matrix form as follows:




F[0]

F[1]

F[2]
...

F[N − 1]




=




W 0 W 0 W 0 . . . W 0

W 0 W 1 W 2 . . . WN−1

W 0 W 2 W 4 . . . W 2(N−1)

...
...

...
...

...

W 0 WN−1 W 2(N−1) . . . W (N−1)(N−1)







f [0]

f [1]

f [2]
...

f [N − 1]




whereW = e−2jπ/N .

Example 24.23 (a) Find the matrix representing a three-point d.f.t.

(b) Use the matrix to �nd the d.f.t. of the sequence f [n] = 4,−7, 11.

Solution (a) Here N = 3 and soW = e−2πj/3. The required matrix is



1 1 1

1 e−2πj/3 e−4πj/3

1 e−4πj/3 e−8πj/3
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which using the Cartesian form can be written




1 1 1

1 −
1

2
− j

√
3

2
−
1

2
+ j

√
3

2

1 −
1

2
+ j

√
3

2
−
1

2
− j

√
3

2




(b)



F[0]

F[1]

F[2]


 =




1 1 1

1 −
1

2
− j

√
3

2
−
1

2
+ j

√
3

2

1 −
1

2
+ j

√
3

2
−
1

2
− j

√
3

2







4

−7

11


 =




8

2 + 15.5885j

2 − 15.5885j




So, the required d.f.t. is the sequence

8, 2 + 15.5885j, 2 − 15.5885j

EXERCISES 24.12

1 Using the de�nition of the d.f.t. show that the matrix

which can be used to implement the d.f.t. of a

four-point signal is

W =




1 1 1 1

1 −j −1 j

1 −1 1 −1

1 j −1 −j




Use this matrix to �nd the d.f.t. of the sequences

f [n] = {1, 2, 0,−1} and g[n] = {3, 1,−1, 1}.

Solutions

1 F[k] = 2, 1 − 3j, 0, 1 + 3j. G[k] = 4, 4, 0, 4

24.13 SOME PROPERTIES OF THE D.F.T.

24.13.1 Periodicity

The d.f.t. F[k] is periodic with period N, that is

F[k + N] = F[k]

This is why we take only N terms in the frequency domain. Calculating further values

will only reproduce the earlier ones. The inverse d.f.t. is also periodic with period N.

24.13.2 Linearity

The d.f.t. is a linear transform. This means that the d.f.t. of the sequence a f [n] + bg[n]

where a and b are constants is aF[k] + bG[k].
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24.13.3 Parseval’s theorem

If D{ f [n]} = F[k] and D{g[n]} = G[k] then

N−1∑

n=0

f [n]g[n] =
1

N

N−1∑

k=0

F[k]G[k]

where the overline indicates the complex conjugate.

24.13.4 Rayleigh’s theorem

This theorem is obtained from Parseval’s theorem by letting g[n] = f [n].

N−1∑

n=0

| f [n]|2 =
1

N

N−1∑

k=0

|F[k]|2

Example 24.24 Verify Rayleigh’s theorem for the sequence f [n] = 5, 4.

Solution Here N = 2. We �rst calculate F[k].

F[k] =

1∑

n=0

f [n] e−jnkπ

= f [0] + f [1] e−jkπ

= 5 + 4e−jkπ

When k = 0, we have F[0] = 5 + 4e0 = 9.

When k = 1, we have F[1] = 5 + 4e−jπ = 5 − 4 = 1.

For brevity we often write F[k] = 9, 1.

Then
∑1

n=0 | f [n]|2 = 52 + 42 = 41.

Also,
∑1

k=0 |F[k]|2 = 92 + 12 = 82.

We note that 41 =
1

2
× 82 and this veri�es Rayleigh’s theorem.

EXERCISES 24.13

1 (a) Obtain the d.f.t.s of f [n] = 1, 2, 2, 1 and

g[n] = 2, 1, 1, 2.

(b) Verify Rayleigh’s theorem for each of these

sequences.

2 Suppose f [n] = 3, 1, 5, 4 and g[n] = 2,−1, 9, 5.

(a) Show that
∑3

n=0 f [n]g[n] = 70.

(b) Obtain the d.f.t.s F[k] and G[k].

(c) Calculate F[k]G[k].

(d) Hence verify Parseval’s theorem for these

sequences.

3 Show that if the d.f.t. of f [n] is F[k] then the d.f.t. of

f [n− i] is e−2πjki/NF[k]. This is known as the shift

theorem.

4 Prove Parseval’s theorem.

5 Prove Rayleigh’s theorem.



24.14 The discrete cosine transform 795

Solutions

1 (a) F[k] = 6,−1 − j, 0,−1 + j.

G[k] = 6, 1 + j, 0, 1 − j

(b)
∑

| f [n]|2 = 10,
∑

|F[k]|2 = 40.
∑

|g[n]|2 = 10,
∑

|G[k]|2 = 40

2 (b) F[k] = 13,−2 + 3j, 3,−2 − 3j.

G[k] = 15,−7 + 6j, 7,−7 − 6j

(c) 195, 32 − 9j, 21, 32 + 9j

24.14 THE DISCRETE COSINE TRANSFORM

There is an alternative method to that of the d.f.t. for transforming a set of time domain

samples of the signal f (t) into the frequency domain, F[ω]. It is known as the discrete

cosine transform or d.c.t. We have already seen that the discrete Fourier transform takes

N samples, f [0], f [1], f [2], . . . , f [N − 1] and produces N output samples in the fre-

quency domain F[0], F[1], F[2], . . . , F[N−1]. The d.c.t. is calculated in a similar way.

However, the d.c.t. of a set of samples has special properties which make it particularly

suitable for image and audio processing. These will become apparent in the following

examples.

A detailed derivation will not be presented here for the d.c.t., although much of the

mathematics of the d.c.t. and the d.f.t. is very similar. It should also be mentioned that

very ef�cient methods for computing the d.c.t. are possible; this is beyond the scope of

this book which will focus on the important properties of the d.c.t. as a transformation.

24.14.1 Definition of the d.c.t. and its inverse

We consider a sequence of N terms, f [0], f [1], f [2], . . . , f [N − 1].

The d.c.t. of a sequence f [n], n = 0, 1, 2, . . . ,N−1, is another sequence F[k], also

having N terms, de�ned by

F[k] =
1

√
N

N−1∑

n=0

f [n] cos

[
π

N

(
n+

1

2

)
k

]
for k = 0, 1, 2, . . . ,N − 1

There are several variants of the de�nition of the d.c.t. The one given above is probably

the most commonly used and is usually termed d.c.t.-II. The main mathematical differ-

ence between this and the d.f.t. is that in the d.c.t. only real numbers are produced in

F[k], assuming real-valued samples in f [n]. The same cannot be said for the d.f.t. be-

cause even with real-valued samples in f [n] the output F[k] in general contains samples

which have both a real and imaginary part.

The d.c.t. and its variants are popular choices for image and audio compression.

Compression is the process of reducing the volume of data associated with a signal by

removing redundant, partially redundant or repeated data. We will see in the following

examples that the d.c.t. is very useful for compressing certain types of signal.

In order to make use of the d.c.t. in these applications it is necessary to use the inverse

operation to recover the original samples. The inverse of d.c.t.-II is another d.c.t. termed

d.c.t.-III.
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The inverse d.c.t. of a sequence F[k], k = 0, 1, 2, . . . ,N − 1, is another sequence

f [n], also having N terms, de�ned by

f [n] =
1

√
N

{
F[0] + 2

N−1∑

k=1

F[k] cos

[
π

N
k

(
n+

1

2

)]}

for n = 0, 1, 2, . . . ,N − 1

Again, a derivation of this inverse will not be presented here. However, we will demon-

strate the inverse property for a speci�c example.

Example 24.25 (a) Find the d.c.t., F[k], of the sequence f [n] = 2, 4, 6.

(b) Apply the inverse d.c.t. to F[k] and show that the original sequence, f [n], is

obtained.

Solution (a) We use the formula

F[k] =
1

√
N

N−1∑

n=0

f [n] cos

[
π

N

(
n+

1

2

)
k

]
for k = 0, 1, 2, . . . ,N − 1

Here the number of terms, N, is three.

When k = 0

F[0] =
1

√
3

2∑

n=0

f [n] cos

[
π

3

(
n+

1

2

)
× 0

]

=
1

√
3
[2 cos 0 + 4 cos 0 + 6 cos 0] =

12
√
3

When k = 1

F[1] =
1

√
3

2∑

n=0

f [n] cos

[
π

3

(
n+

1

2

)
× 1

]

=
1

√
3

[
2 cos

π

6
+ 4 cos

π

2
+ 6 cos

5π

6

]

=
1

√
3

[
2 ×

√
3

2
+ 0 + 6 ×

(
−

√
3

2

)]
=

1
√
3

[√
3 − 3

√
3
]

= −2

When k = 2

F[2] =
1

√
3

2∑

n=0

f [n] cos

[
π

3

(
n+

1

2

)
× 2

]

=
1

√
3

[
2 cos

π

3
+ 4 cosπ + 6 cos

5π

3

]

=
1

√
3

[
2 ×

1

2
+ 4 × (−1)+ 6 ×

1

2

]
= 1 − 4 + 3 = 0

So the d.c.t. of the sequence 2, 4, 6 is
12
√
3
, −2, 0.
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(b) We now apply the inverse d.c.t. to F[k].

The inverse d.c.t. is

f [n] =
1

√
N

{
F[0] + 2

N−1∑

k=1

F[k] cos

[
π

N
k

(
n+

1

2

)]}

for n = 0, 1, 2, . . . ,N − 1

When n = 0

f [0] =
1

√
3

{
12
√
3

+ 2

2∑

k=1

F[k] cos

[
π

3
k

(
0 +

1

2

)]}

=
1

√
3

[
12
√
3

+ 2 × (−2)× cos
(
π

6

)
+ 2 × 0

]

=
1

√
3

[
12
√
3

− 4 ×

√
3

2
+ 0

]
= 4 − 2 = 2

When n = 1

f [1] =
1

√
3

{
12
√
3

+ 2

2∑

k=1

F[k] cos

[
π

3
k

(
1 +

1

2

)]}

=
1

√
3

[
12
√
3

+ 2 × (−2)× cos
(
π

2

)
+ 2 × 0

]

=
1

√
3

[
12
√
3

− 4 × 0 + 0

]
= 4

When n = 2

f [2] =
1

√
3

{
12
√
3

+ 2

2∑

k=1

F[k] cos

[
π

3
k

(
2 +

1

2

)]}

=
1

√
3

[
12
√
3

+ 2 × (−2)× cos

(
5π

6

)
+ 2 × 0

]

=
1

√
3

[
12
√
3

− 4 ×

(
−

√
3

2

)
+ 0

]
= 4 + 2 = 6

So f [n] = 2, 4, 6, which was the original sequence as expected.

If a d.f.t. had been performed on the sequence f [n], the output, F[k], would have been

the sequence of complex terms 12, −3 + j1.7321,−3 − j1.7321. Compare this with

the d.c.t. which is F[k] =
12
√
3
,−2, 0. Note that this latter sequence contains only real-

valued terms.
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Engineering application 24.2

E�ect of truncating the d.c.t. and d.f.t. of a set of samples

Now we turn our attention to a longer sequence and consider the effect of deleting

samples in the d.c.t.

In this example, we produce both a d.c.t. and a d.f.t. of a given set of samples

and then set some of the samples in the latter part of the sequence to zero. Following

this we carry out an inverse d.c.t. to return an approximation to the original sample

set.

We consider the sequence of samples

f [n] = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Using the methods described in the previous example we can show that the d.c.t. is

FDCT[k] = 14.2302,−6.3815, 0.0000,−0.6835, 0.0000,

− 0.2236, 0.0000,−0.0904, 0.0000,−0.0254

The notation FDCT has been used to distinguish this sequence from the d.f.t. sequence

that it will be compared to. The d.f.t. is

FDFT[k] = 45.0000,−5.0000 + j15.3884,−5.0000 + j6.8819,−5.0000

+ j3.6327,−5.0000 + j1.6246,−5.0000,−5.0000 − j1.6246,

− 5.0000 − j3.6327,−5.0000 − j6.8819,−5.0000 − j15.3884

By de�nition, applying the appropriate inverse operations to either set of data would

recover the original input samples.

If instead we delete samples from the end of each sequence by setting the values

to zero and then perform the inversion then the results are different. In this example

we set the last �ve samples to be zero. So we perform the inversion on

FDCT[k] = 14.2302,−6.3815, 0.0000,−0.6835, 0.0000, 0, 0, 0, 0, 0

FDFT[k] = 45.0000,−5.0000 + j15.3884,−5.0000 + j6.8819,−5.0000

+ j3.63271,−5.0000 + j1.6246, 0, 0, 0, 0, 0

The results of the inversion are shown plotted in Figure 24.20. The values obtained

from the inverse d.c.t. are all real values. The values plotted on the graph for the

inverse d.f.t. are the magnitudes of the complex values that are returned. This is nec-

essary because now samples have been removed from the d.f.t., it can no longer be

guaranteed that the solution consists of wholly real numbers.

Notice that the samples in both cases are not exactly the same as the ones we

started with. This is expected because in setting some of the sample values to zero in

the d.c.t. we have destroyed some data. In fact we have destroyed half of the samples

in this example. However, notice also that the d.c.t. appears to perform much better

than the d.f.t. in recovering the input data. The reason the d.c.t. looks qualitatively

better than the d.f.t. is that the information content or energy is concentrated in the

lowest order samples. Hence when we set the later samples to zero they affect the

d.c.t. far less than the d.f.t.
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2 4 6 8
n

2

4

6

8

f(n)

Figure 24.20

Lossy compression using the d.c.t. and the d.f.t. Markers: circle = original data; square =

d.c.t. derived values; diamond = d.f.t. derived values.

This is an example of lossy compression, which is used extensively in audio, image

and video compression. Because some of the samples are known to be zero they do

not need to be stored and hence the �le or data storage requirement is much lower. An

approximation of the original data can be recovered even though not all of the original

d.c.t. samples are provided. It can be shown that the more samples we retain, the better

the quality of the reproduction. It is well known that the d.c.t. performs well on straight

line data and is used extensively in compression standards for images such as JPEG. In

image data which is viewed qualitatively a certain amount of data loss is tolerable, and

this will be illustrated in the following example.

Engineering application 24.3

Two-dimensional d.c.t. and image compression

So far we have only seen the d.c.t. applied to a one-dimensional data set. This could

be used to handle the compression of audio data, for example. When applying the

d.c.t. to a two-dimensional problem such as an image a slightly different form is

required:

F[k, l] =
1

√
NM

N−1∑

n=0

{
M−1∑

m=0

f [n,m] cos

[
π

M

(
m+

1

2

)
l

]}
cos

[
π

N

(
n+

1

2

)
k

]

for n = 0, 1, 2, . . . ,N − 1

m = 0, 1, 2, . . . ,M − 1

This formula can be applied to a 2D data set. We take the greyscale image given

in Figure 24.21 as the source data. Each pixel in the image has assigned to it a

numerical brightness value and it is to these values that we apply the d.c.t.
➔
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f(124, 124)

f(0, 0)

Figure 24.21

Source image for d.c.t.

application.

We use the transform given above to produce an N × M matrix containing the

real d.c.t. values, F[k, l]. Figure 24.22 is a visualization of F[k, l]. Dark pixels rep-

resent large values, white pixels represent zero or close to zero elements. Notice the

concentration of large values close to F[0,0], which is in the top-left corner.

F(124, 124)

F(0, 0)

Figure 24.22

The d.c.t. matrix.

In the next step we compress the image by setting the array elements to zero at the

right-hand side and bottom. Since the coef�cients are small in this region the effects

on the image after inversion are minor, unless a signi�cant number of values on the

right-hand side and bottom are set to zero.

The results of applying the inverse transform are shown in Figure 24.23. We can

see that the image on the right which contains the lowest number of d.c.t. coef�cients

has more distortion due to the compression. Such distortions are often termed visual

artefacts. The advantage of having a highly compressed �le is that it requires less

space for data storage.

In practice, the image is often broken into smaller blocks with the d.c.t. being

carried out on these blocks. If a highly compressed image is viewed on a computer

at a low resolution it is often possible to see these blocks, which typically measure 8

by 8 pixels.
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Figure 24.23

Effect of setting elements to zero in the d.c.t. matrix. Moving from left to right a greater

number of elements in the matrix are set to zero, resulting in more image artefacts.

24.15 DISCRETE CONVOLUTION AND CORRELATION

As stated at the beginning of Section 24.8, convolution and correlation are important

techniques in signal and image processing. In this section we will describe their discrete

representations. Both of these can be implemented ef�ciently using the d.f.t.

24.15.1 Linear convolution

The linear convolution of two real sequences f [n] and g[n] is another sequence, h[n]

say, which we denote by f ∗ g, which is de�ned as follows:

Linear convolution of f [n] and g[n]:

h[n] = f ∗ g=

∞∑

m=−∞

f [m]g[n− m] for n = . . .− 3,−2,−1, 0, 1, 2, 3, . . .

Notice the similarity between this de�nition and that of convolution de�ned in the con-

text of the continuous Fourier transform in Section 24.8. Notice also that in this for-

mula the sequence g is folded and shifted. This will be illustrated in the example which

follows.

Frequently the sequences being considered will be �nite.

Assume now that f [n] is a �nite sequence of N1 terms, so that all terms other than

f [0], f [1], . . . , f [N1 − 1] are zero.

Suppose also that g[n] is a �nite sequence of N2 terms, with all terms other than

g[0], g[1], . . . , g[N2 − 1] being zero.

It can be shown that the sequence h[n] will have lengthN1+N2−1, and the convolution

sum simpli�es to the following:

The linear convolution of the two �nite sequences f [n] and g[n] is de�ned as

h[n] = f ∗ g=

n∑

m=0

f [m]g[n− m] for n = 0, 1, 2, 3, . . . , (N1 + N2 − 2)
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The terms of this sequence can be calculated by brute force as the following example

will show, although in practice a convolution can be calculated much more ef�ciently

using a d.f.t.

Example 24.26 Suppose f [n] is the sequence 3, 9, 2,−1, and g[n] is the sequence −4, 8, 5.

(a) Find the linear convolution h[n] = f ∗ g using the previous formula.

(b) Develop a graphical interpretation of this process.

Solution (a) Note that both f and g are �nite sequences of length 4 and 3 respectively. The con-

volution f ∗ gwill be a sequence of length 4 + 3 − 1 = 6. By de�nition,

h[n] =

n∑

m=0

f [m]g[n− m] for n = 0, 1, 2, . . . , 5

The �rst term in h[n] is obtained by letting n = 0:

h[0] =

0∑

m=0

f [m]g[0 − m]

= f [0]g[0]

= (3)(−4)

= −12

The second term is obtained by letting n = 1:

h[1] =

1∑

m=0

f [m]g[1 − m]

= f [0]g[1] + f [1]g[0]

= (3)(8)+ (9)(−4)

= 24 − 36

= −12

Subsequent terms are calculated in a similar manner. You should obtain these for

yourself to ensure that you understand the process. The complete sequence is

h[n] = f ∗ g= −12,−12, 79, 65, 2,−5

(b) The graphical interpretation is developed along the same lines as was done for the

continuous convolution in Section 24.8.

The sequences f [m] and g[m] are shown in Figure 24.24.

The sequence g[−m] is found by reflection in the vertical axis, that is folding as

shown in Figure 24.25(a). Then the folded graph can be translated n units to the left or

the right by changing the argument of g from g[m] to g[n−m]. If n is positive the graph

moves to the right. Study Figures 24.25(b--g) to observe this. Convolution is the sum

of products of f [m] with g[n − m]. The graph of f [m] is superimposed. We are only

interested in values of n for which the graphs overlap -- otherwise each product is zero.

For each value of n the superimposed graphs make it easy to see which values must be
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f  [m ]

m m1 2

g [m ]

–4
–2–2

2
4
6
8

10

–4

2
4
6
8

10

1 2

Figure 24.24

The sequences f [m] = 3, 9, 2,−1 and g[m] = −4, 8, 5.

multiplied together and added. If required, a table can be constructed which summarizes

all the necessary information as shown below.

m −2 −1 0 1 2 3 4 5

f [m] -- -- 3 9 2 −1 -- --

n = 0 g[−m] 5 8 −4 -- -- -- -- --

n = 1 g[1 − m] -- 5 8 −4 -- -- -- --

n = 2 g[2 − m] -- -- 5 8 −4 -- -- --

n = 3 g[3 − m] -- -- -- 5 8 −4 -- --

n = 4 g[4 − m] -- -- -- -- 5 8 −4 --

n = 5 g[5 − m] -- -- -- -- -- 5 8 −4

EXERCISES 24.15.1

1 Given f [n] = 1, 2, 2, 1 and g[n] = 2, 1, 1, 2, �nd the

linear convolution f ∗ g.

2 (a) The linear convolution of the sequences

3, 9, 2,−1 and −4, 8, 5 was obtained in

Example 24.27. Show that this convolution is

equivalent to multiplying the two polynomials

3 + 9x+ 2x2 − x3 and −4 + 8x+ 5x2.

(b) By using polynomial multiplication �nd the

linear convolution of the sequences f [n] = 9,−8

and g[n] = 1, 2,−4.

(c) Use the polynomial method to �nd the linear

convolution of f [n] = 9,−1, 3 and

g[n] = 7, 2,−4.

3 Find the linear convolution of f [n] = 1,−1, 1, 3 and

g[n] = 7, 2, 0, 1.

4 Prove from the de�nition that linear convolution is

commutative, that is f ∗ g= g ∗ f .

Solutions

1 2, 5, 7, 8, 7, 5, 2

2 (b) 9, 10,−52, 32 (c) 63, 11,−17, 10,−12

3 7,−5, 5, 24, 5, 1, 3

24.15.2 Circular convolution

In this section we consider periodic sequences having periodN. We can select one period

for examination by looking at the terms f [0], f [1], f [2], . . . , f [N−1], say. For example,

the sequence

f [n] = . . .− 7, 11, 2,−7, 11, 2,−7, 11, 2 . . .
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g [  m ]

m

– 4

2
4
6
8

10

1 2

–

g [  m ]

m

– 4

2
4
6
8

10

1 2

–

g [  m ]

m

– 4

2
4
6
8

10

1 2

–1

g [  m ]

m

– 4

2
4
6
8

10

1 2

–2

g [  m ]

m

– 4

2
4
6
8

10

1 2

–3

g [  m ]

m

– 4

2
4
6
8

10

1 2

–4

g [  m ]

m

– 4

2
4
6
8

10

1 2

–5

sum of products: 
(3)( – 4) = –12

sum of products:
(3)(8) + (9)( – 4) = –12

sum of products:
(3)(5) + (9)(8) + (2)( – 4) = 79

sum of products:
(9)(5) + (2)(8) + ( – 1)( – 4) = 65

sum of products: 
(2)(5) + (– 1)(8) = 2

sum of products:
(– 1)(5) = –5

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 24.25

The effect of translating g[−m] by n units, for n = 0, 1, . . . , 5.
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–7

11 2

f [0]=

f [1]= f [2]=

f [3]

f  [–1]f  [–2]f [4] f [5]

–7

11 2

f [0]

(a) (b)

Figure 24.26

A periodic sequence can be visualized

by listing its terms around a circle.

is a periodic sequence with periodN = 3.We can select the terms f [0], f [1], f [2], that is

terms −7, 11, 2, and use these to study the entire sequence.

Such a sequence can be represented graphically by listing its terms around a circle as

shown in Figure 24.26. Doing this allows us to calculate further terms in the sequence

as we require them. Rotation anticlockwise represents increasing n as in (a). Rotation

clockwise represents decreasing n as in (b).

Suppose f [n] and g[n] are two periodic sequences having period N. Their circular

convolution, or periodic convolution, is the sequence h[n], which we denote by f ©∗ g

and which is de�ned as follows:

The circular convolution of two periodic sequences each of period N is de�ned as

h[n] = f ©∗ g=

N−1∑

m=0

f [m]g[n− m] for n = 0, 1, 2, . . . ,N − 1

The sequence is periodic with period N and so we can state it for n = 0, 1, 2, . . . ,

N − 1.

Example 24.27 (a) Calculate the circular convolution, h[n] = f ©∗ g, of the two periodic sequences

f [n] = 9,−1, 3 and g[n] = 7, 2,−4.

(b) Develop a graphical representation of this process.

7

g[0]

g[1] g[2]
g[–1]g[–2]

2 – 4

Figure 24.27

The periodic sequence

g[n] = 7, 2,−4.

Solution (a) The sequence g[n] is depicted in Figure 24.27.

We use the formula given above. In this Example, N = 3. First let n = 0.

h[0] =

2∑

m=0

f [m]g[0 − m]

= f [0]g[0] + f [1]g[−1] + f [2]g[−2]

= (9)(7)+ (−1)(−4)+ (3)(2)

= 73

Next let n = 1.

h[1] =

2∑

m=0

f [m]g[1 − m]

= f [0]g[1] + f [1]g[0] + f [2]g[−1]

= (9)(2)+ (−1)(7)+ (3)(−4)

= −1
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9

1– 3

7

24–

9

1– 3

7

2

9

1– 3

72

–4

4–

Sums of products:

n = 0  n = 1  n = 2

(9)(7) + ( –1)(– 4) + (3)(2) = 73

(9)(2) + ( –1)(7) + (3)( – 4) = –1

(9)( – 4) + ( –1)(2) + (3)(7) = –17

Figure 24.28

The sequences f [m] drawn around the inner circle, and g[n− m] drawn around the outer circle,

for n = 0, 1, 2.

Finally, let n = 2.

h[2] =

2∑

m=0

f [m]g[2 − m]

= f [0]g[2] + f [1]g[1] + f [2]g[0]

= (9)(−4)+ (−1)(2)+ (3)(7)

= −17

So the circular convolution f ©∗ g= 73,−1,−17.

If required, a table can be constructed which summarizes all the necessary in-

formation as was shown in Example 24.26. The sequences must be extended to show

their periodicity, and this time we are only interested in generating the convolution

sequence over one period, namely that section of the table for m = 0, 1, 2.

m −2 −1 0 1 2 3 4 5

f [m] −1 3 9 −1 3 9 −1 3

n = 0 g[−m] −4 2 7 −4 2 7 −4 2

n = 1 g[1 − m] 7 −4 2 7 −4 2 7 −4

n = 2 g[2 − m] 2 7 −4 2 7 −4 2 7

(b) A graphical representation can be developed by listing the �xed sequence f [m],

for m = 0, 1, 2, anticlockwise around an inner circle as shown in Figure 24.28.

We list g[−m] around an outer circle but do so clockwise to take account of the

folding. By rotating the outer circle anticlockwise we obtain g[1−m] and g[2−m].

By multiplying neighbouring terms and adding we obtain the required convolution.

The result is 73,−1,−17 as obtained in part (a).

In the following section you will see how circular convolution can be performed using

the d.f.t.
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EXERCISES 24.15.2

1 Calculate the circular convolution of f [n] = 1,−1, 1, 3 and g[n] = 7, 2, 0, 1.

Solutions

1 12,−4, 8, 24

24.15.3 The (circular) convolution theorem

Suppose f [n] and g[n] are periodic sequences of periodN. Suppose further that the d.f.t.s

of f [n] and g[n] for n = 0, 1, 2, . . . ,N − 1 are calculated and are denoted by F[k] and

G[k]. The convolution theorem states that the d.f.t. of the circular convolution of f [n]

and g[n] is equal to the product of the d.f.t.s of f [n] and g[n].

The convolution theorem:

D{ f ©∗ g} = F[k]G[k]

This is important because it provides a technique for �nding a circular convolution. It

follows from the theorem that

f ©∗ g= D
−1{F[k]G[k]}

So, to �nd the circular convolution of f [n] and g[n] we proceed as follows:

(1) Find the corresponding d.f.t.s, F[k] and G[k].

(2) Multiply these together to obtain F[k]G[k].

(3) Find the inverse d.f.t. to give f ©∗ g.

Whilst this procedure may seem complicated, it is nevertheless an ef�cient way of cal-

culating a convolution.

Example 24.28 Use the convolution theorem to �nd f ©∗ gwhen f [n] = 5, 4 and g[n] = −1, 3.

Solution First we �nd the corresponding d.f.t.s, F[k] and G[k]. Using

F[k] =

N−1∑

n=0

f [n] e−2jnkπ/N

with N = 2 gives

F[0] =

1∑

n=0

f [n] = 9, F[1] =

1∑

n=0

f [n] e−jnπ = 5 + 4e−jπ = 1
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and similarly,

G[0] =

1∑

n=0

g[n] = 2, G[1] =

1∑

n=0

g[n] e−jnπ = −1 + 3e−jπ = −4

and so

F[k] = 9, 1 G[k] = 2,−4

These transforms are multiplied together, term by term, to give

H[k] = F[k]G[k] = (9)(2), (1)(−4) = 18,−4

Finally the inverse d.f.t. of the sequence 18,−4, is found using

h[n] =
1

N

N−1∑

k=0

H[k] e2jnkπ/N

to give

( f ©∗ g)[0] =
1

2
(18 − 4) = 7

( f ©∗ g)[1] =
1

2
(18)+

1

2
(−4ejπ) = 11

and so

f ©∗ g= 7, 11

The convolution could also be evaluated directly using the technique of Section 24.15.2.

You should try this to con�rm the result obtained using the theorem.

Example 24.29 Use the convolution theorem and a computer package which calculates d.f.t.s to �nd the

circular convolution of the sequences f [n] = 1, 2,−1, 7 and g[n] = −1, 3, 2,−5.

Solution You will need access to a computer package such as MATLAB® to work through this

example. The d.f.t. of f [n] can be calculated either directly, which is laborious, or using

the MATLAB® command fft().

F=fft([1 2 -1 7])

ans =

9.0000 2.0000+ 5.0000i -9.0000 2.0000- 5.0000i

Hence F[k] = 9, 2 + 5j,−9, 2 − 5j.

Similarly,

G=fft([-1 3 2 -5])

ans =

-1.0000 -3.0000- 8.0000i 3.0000 -3.0000+ 8.0000i

Hence G[k] = −1,−3 − 8j, 3,−3 + 8j. Then, the product of these d.f.t.s is calculated

by multiplying corresponding terms together:

F[k]G[k] = −9, 34 − 31j,−27, 34 + 31j
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In MATLAB®,

product = F.*G

product =

-9.0000 34.0000-31.0000i -27.0000 34.0000+31.0000i

Finally, taking the inverse d.f.t., using the MATLAB® command ifft(), gives

ifft([-9 34-31i -27 34+31i])

ans =

8 20 -26 -11

This is the circular convolution of f [n] and g[n], that is

f [n] ©∗ g[n] = 8, 20,−26,−11

This example has illustrated how circular convolution can be achieved through the use

of the d.f.t.

The convolution theorem applies to circular convolution but not linear convolution. How-

ever, by modifying the procedure slightly, the linear convolution of two �nite sequences

can also be found.

If f [n] is a �nite sequence of length N1 and g[n] is a �nite sequence of length N2 we

know from Section 24.15.1 that their linear convolution is a sequence of length N1 +

N2 − 1.

First we extend both the sequences f [n] and g[n] to make each have lengthN1+N2−1.

This extension is done by adding zeros. This process is known as ‘padding’ with zeros.

Then the d.f.t.s of the padded sequences are calculated to give F[k] and G[k]. It can

be shown that the linear convolution of the original sequences is equal to the circular

convolution of the padded sequences. Hence the linear convolution f ∗ g is then found

from

f ∗ g= D
−1{F[k]G[k]}

Consider the following example.

Example 24.30 If f [n] is the �nite sequence 7,−1 and g[n] is the �nite sequence 4, 2,−7 use circular

convolution with padded zeros to obtain the linear convolution f ∗ g.

Solution Their linear convolution is a sequence of length 2 + 3 − 1 = 4.

We pad f and g to give sequences of length 4.

f [n] = 7,−1, 0, 0 and g[n] = 4, 2,−7, 0

Then, either by direct calculation or by using a computer package you can verify that

F[k] = 6, 7 + j, 8, 7 − j and G[k] = −1, 11 − 2j,−5, 11 + 2j
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Then

F[k]G[k] = −6, 79 − 3j,−40, 79 + 3j

Then taking the inverse d.f.t. gives

D
−1{F[k]G[k]} = 28, 10,−51, 7

which is the required linear convolution. You should verify this by calculating the linear

convolution directly.

Engineering application 24.4

Convolution reverb

Convolution can be used on an audio signal to simulate the echoing or reverberation

of a real room or space. An application of such a method can be found in recording

studios where it may be desirable to simulate the acoustics of a large room such as a

concert hall on a recording.

The �rst stage involves capturing the impulse response of the room to be simu-

lated. An impulsive sound source such as a pistol or a small explosion can be used to

excite a broad range of frequencies. It can be shown that a short-duration impulse has

a very broad spectrum. A popular alternative is to use a sinusoidal signal source of

time-varying frequency. In the latter case the output of the convolution process, h[n],

is known because the spectrum can be measured directly. The second stage consists

of applying the inverse process, termed deconvolution, to this data in order to obtain

the impulse response of the room.

When the impulse response has been found, whichever method has been used, it

becomes a case of convolving the impulse response of the room or space with the

signal. It is necessary to carry out a linear convolution process to obtain the desired

effect. We do not wish to use circular convolution because the signal is not periodic.

However, we may wish to make use of the circular convolution theorem

f ©∗ g= D−1{D{ f [n]} · D{g[n]}}

Recall, however, that this theorem relates only to circular convolution, not to linear

convolution. We may still make use of the convolution theorem if we pad the signals

with zero values in order to prevent unwanted overlap. This is best illustrated by use

of an example.

The problem of calculating the circular convolution h[n] = f ©∗ g for the signals

f [n] = 9,−1, 3 and g[n] = 7, 2,−4 has already been explained (see Example 24.27).

The result of h[n] = 73,−1,−17 could have been obtained either graphically or us-

ing the convolution theorem. The linear convolution is h[n] = 63, 11, −17, 10, −12

and can be found using the direct method, and this result is presented here for refer-

ence (see Exercises 24.15.1, Question 2(c)).

To use the convolution theorem it is �rst necessary to take the original signals

and pad them with zero values so that the overall length of each is equal to the sum
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of the two − 1. So in the simple example, both signals start with length 3, and after

padding they must have a length of 3 + 3 − 1 = 5. The padded signals are

f ′[n] = 9, −1, 3, 0, 0

g′[n] = 7, 2, −4, 0, 0

The calculation of the �rst term in the output signal is shown graphically in Fig-

ure 24.29.

9

–1

3 0

0

7

2

–40

0

n = 0

Figure 24.29

The padded signals f ′[m] (inner circle) and g′[m] (outer

circle).

The �rst element of h[n] is (9)(7) = 63. Notice how the padding is suf�cient to

ensure that all of the values in the linear convolution can be producedwithout overlap.

In this position all of the other terms are multiplied by 0 and hence can be removed

from the calculation. By rotating the outer circle anticlockwise four more times the

other values can be calculated. It can be seen that this method is exactly equivalent

to carrying out the linear convolution.

Hence we can use the convolution theorem on the padded signals f ′[n], g′[n] and

f ©∗ g= D
−1{D{ f ′[n]} · D{g′[n]}}

This method is sometimes preferred because the d.f.t. values of the signals are readily

and quickly calculated on a computer.

The signals may be padded with additional zeros if desired with no effect on the

result. In order to optimize the computation speed for the d.f.t. it is often desirable

to use the f.f.t. algorithm mentioned earlier. One restriction of the f.f.t. is that the

number of samples in the input signal must be a power of 2, so it has to contain 2, 4,

8, 16, 32, . . . samples. Since padding is possible without affecting the result then the

f.f.t. can be used.

As an example we consider adding reverb to a signal g[n], which is a 30 second

duration piece of music played on an electric guitar. The signal g[n] is very ‘clean’,

obtained by plugging the guitar directly into the recording equipment. As a result, it

contains no reverberant room effects that would have been present if a microphone

and ampli�er had been used instead. An impulse response f [n] is obtained by bursting

a balloon in an environment to be simulated. The two signals prior to introducing

padding are shown in Figure 24.30.

The two padded Fourier transformed signals are multiplied together and the in-

verse d.f.t. taken to produce the signal in Figure 24.31. The signal h[n] has a duration

of 32 s due to the effects of linear convolution. When the signal is played through

speakers it has a distinctive echo or reverb effect that is not present in g[n]. There are

visible differences in the signal if it is examined carefully.
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f [n]

g[n]

 Scale:

1s

Figure 24.30

Two audio signals: a 2 s impulse response of an environment to be simulated, f [n], and a 30 s

music track to be processed, g[n]. Both signals are sampled at a rate of 44 100 samples per

second.

Figure 24.31

The output signal h[n] = f ©∗ g including reverb.

EXERCISES 24.15.3

1 The circular convolution of f [n] = 1,−1, 1, 3 and

g[n] = 7, 2, 0, 1 was calculated in Question 1 in

Exercises 24.15.2. Verify the convolution theorem for

these sequences.

2 Use circular convolution and padding with zeros to

obtain the linear convolution of f [n] = 9, 0, 1 and

g[n] = 5, 4, 5, 2, 1. Further, verify the convolution

theorem for these sequences.

3 Prove the circular convolution theorem.

Solutions

1 F[k] = 4, 4j, 0,−4j. G[k] = 10, 7 − j, 4, 7 + j 2 45, 36, 50, 22, 14, 2, 1

24.15.4 Linear cross-correlation

The linear cross-correlation of two real sequences f [n] and g[n] is another sequence,

c[n] say, which we denote by f ⋆ g, which is de�ned as follows:

Linear cross-correlation of f [n] and g[n]:

c[n] = f ⋆ g=

∞∑

m=−∞

f [m]g[m− n] for n = . . .− 3,−2,−1, 0, 1, 2, 3 . . .
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Note the similarity between this de�nition and that of linear convolution de�ned in

Section 24.15.1. In the formula for cross-correlation the sequence g is not folded. If

the two sequences are �nite and of length N, that is f [n] and g[n] are non-zero only

when 0 6 n 6 N − 1, there are 2N − 1 terms in the cross-correlation sequence and the

formula can be written as follows:

Linear cross-correlation of two �nite sequences f [n] and g[n]:

c[n] = f ⋆ g=

N−1∑

m=n

f [m]g[m− n] for n = 0, 1, 2, . . . ,N − 1

and

c[n] = f ⋆ g=

N+n−1∑

m=0

f [m]g[m− n] for n = 0,−1,−2, . . . ,−(N − 1)

Example 24.31 Suppose f [n] = 7, 2,−3 and g[n] = 1, 9,−1. Assume both sequences f and g start at

n = 0.

(a) Find the linear cross-correlation c[n] = f ⋆ g using the formulae above.

(b) Develop a graphical interpretation of this process.

Solution (a) Both f and g are �nite sequences of length N = 3. Their cross-correlation is a

sequence c[n], for n = −2,−1, 0, 1, 2, of length 5.

Using the formulae above with n = −2 gives

c[−2] =

0∑

m=0

f [m]g[m+ 2]

= f [0]g[2]

= (7)(−1)

= −7

When n = −1 we have

c[−1] =

1∑

m=0

f [m]g[m+ 1]

= f [0]g[1] + f [1]g[2]

= (7)(9)+ (2)(−1)

= 61

The remaining terms are calculated in a similar fashion. You should calculate one

or two terms yourself to verify that the full sequence is

c[n] = −7, 61, 28,−25,−3 n = −2,−1, 0, 1, 2

(b) The graphical interpretation is developed along the same lines as for linear convo-

lution in Example 24.26. Figure 24.32 shows the sequence f [m], for m = 0, 1, 2,

denoted by the symbols ◦. Also shown is the sequence g[m] denoted by •.
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(e) m
– 4

2
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sum of products:

(7)(1) + (2)(9) + (–3)(–1) = 7 + 18 + 3 = 28

(2)(1)  +  ( –3)(9)  =  2  –  27 =  –25

n =  0

n =  1

n = –1

n =  2

n = –2

( –3)(1) =  –3

(7)(9) + (2)( –1) = 63 – 2 = 61

(7)(  –1)  =  –7

g[m ]

g[m – 1]

g[m – 2]

g[m + 1]

g[m + 2]

Figure 24.32

The effect of translating g[m].

The graph of g[m] can be translated n units to the left or right by changing the

argument of g from g[m] to g[m − n]. If n is positive the graph moves to the right.

Study the �gure to observe this. Correlation is the sum of products of f [m] and

g[m − n]. For each value of n, the graph of f [m] is superimposed. We are only

interested in values of n for which the graphs overlap -- otherwise each product is

zero. For each value of n the superimposed graphs make it easy to see which values

must be multiplied together and added. Placing these results in order con�rms the

result obtained in part (a), that is the correlation is −7, 61, 28,−25,−3.

When a sequence is cross-correlated with itself the process is known as autocorrelation.

Autocorrelation is used to search for possible periodicities in signals, because if a signal

is periodic with period N its autocorrelation sequence will show peaks at intervals of N.

EXERCISES 24.15.4

1 Find the linear cross-correlation of the sequences

f [n] = 4, 5, 9 and g[n] = 3, 1, 1.

2 Show that the linear cross-correlation of f [n] and g[n]

can be written in the alternative form

f ⋆ g=
∑∞

m=−∞ f [m+ n]g[m].
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3 There are variants of the de�nition of correlation.

Show that if f ⋆ g is rede�ned to be∑∞
m=−∞ f [m− n]g[m] then the corresponding

correlation of the sequences in Question 1 is

27, 24, 26, 9, 4.

4 Find the linear autocorrelation of the sequence

f [n] = 3, 2, 1.

Solutions

1 4, 9, 26, 24, 27 4 3, 8, 14, 8, 3

24.15.5 Circular cross-correlation

The circular cross-correlation of two periodic sequences of period N is de�ned in a

similar manner to their circular convolution. It is a sequence c[n] of length N.

The circular cross-correlation of two periodic sequences, f [n] and g[n], each of

period N, is de�ned as

c[n] = f ©⋆ g=

N−1∑

m=0

f [m]g[m− n] for n = 0, 1, 2, . . . ,N − 1

When a sequence is cross-correlated with itself the process is known as autocorrelation.

Example 24.32 (a) Find the circular autocorrelation of the sequence f [n] = 3, 2, 1 using the formula.

(b) Develop a graphical method for performing this calculation.

Solution (a) Here N = 3. From the de�nition

c[n] = f ©⋆ f =

2∑

m=0

f [m] f [m− n] for n = 0, 1, 2

c[0] =

2∑

m=0

f [m] f [m]

= (3)(3)+ (2)(2)+ (1)(1)

= 14

c[1] =

2∑

m=0

f [m] f [m− 1]

= f [0] f [−1] + f [1] f [0] + f [2] f [1]

= (3)(1)+ (2)(3)+ (1)(2)

= 11
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3

2 1

3

12

3

2 1

3

1

3

2 1

31

2

2

Sums of products:

n = 0  n = 1  n = 2

(3)(3) + (2)(2) + (1)(1) = 14 (3)(1) + (2)(3) + (1)(2) = 11 (3)(2) + (2)(1) + (1)(3) = 11

Figure 24.33

Graphical calculation of the autocorrelation of f [n] = 3, 2, 1.

c[2] =

2∑

m=0

f [m] f [m− 2]

= (3)(2)+ (2)(1)+ (1)(3)

= 11

Hence c[n] = 14, 11, 11.

(b) The graphical method involves listing the sequence f [m], m = 0, 1, 2, around an

inner circle. Around an outer circle we list it again. This method is identical to that

used in Example 24.27 for circular convolution, but because now there is no fold-

ing, the sequence on the outer circle is not reversed. The calculation can be seen in

Figure 24.33.

24.15.6 (Circular) correlation theorem

For real sequences f [n] and g[n] the correlation theorem states:

D{ f ©⋆ g} = F[k]G[k]

where G[k] denotes the complex conjugate of G[k].

This provides a technique for calculating a correlation using the d.f.t.

Example 24.33 Find the circular correlation f ©⋆ gwhen f [n] = 8,−9, 3, 2 and g[n] = 11, 4,−1,−5.

Solution Either directly from the de�nition of the d.f.t., or by using a computer package, we can

show that

F[k] = 4, 5 + 11j, 18, 5 − 11j G[k] = 9, 12 − 9j, 11, 12 + 9j

The conjugate of G[k] is G[k] = 9, 12 + 9j, 11, 12 − 9j. Then

F[k]G[k] = 36,−39 + 177j, 198,−39 − 177j
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Either directly, or using a computer package, taking the inverse d.f.t. yields the sequence

39,−129, 78, 48

which is the required circular correlation. You may like to verify this by directly calcu-

lating f ©⋆ g.

It follows from the theorem that the circular autocorrelation sequence has the following

property:

D{ f ©⋆ f } = F[k]F[k]

Example 24.34 Use the d.f.t. to �nd the circular autocorrelation of the sequence f [n] = 8, 3,−1, 2.

Solution It is straightforward but tedious to show that the d.f.t. of f [n] is

F[k] = 12, 9 − j, 2, 9 + j

Then, the conjugate of F[k] is F[k] = 12, 9 + j, 2, 9 − j, and

F[k]F[k] = 144, 82, 4, 82

Finally, taking the inverse d.f.t. gives the sequence 78, 35,−4, 35 which you can verify

is the circular autocorrelation of f [n] = 8, 3,−1, 2.

Engineering application 24.5

Use of correlation in radar

Both sonar and radar operate by transmitting a signal which bounces off a distant

target and returns to a receiver. The main difference is that sonar uses sound waves

whereas radar uses radio waves. The time taken for the signal to return to the receiver

having reached the target can be used to deduce, d, the distance between the trans-

mitter and the target. In both radar and sonar, the received signal is typically very

much smaller than the transmitted signal and can contain a lot of unwanted noise.

High-gain electronic ampli�ers may be required to make the signal large enough to

be processed and these introduce even more noise. In addition the receiver experi-

ences interference from other sources which has to be separated from the returning

signal. Correlation techniques are very useful for retrieving a signal from the noise

and the interference.

We will consider a radar system. The signals transmitted are usually modulated

using a high-frequency carrier signal (see Engineering application 24.1). For our pur-

poses the presence of a carrier signal is not important.

However, the high-frequency component of the signal can be removed

electronically prior to the signals being sampled by a process called

demodulation. ➔
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The received and demodulated signal is represented by f [n] and the transmitted

signal prior to modulation is represented by g[n]. Consider the case where g[n] is a

square pulse comprising 10 samples. Let the time between each sample be T . Both

signals are shown plotted in Figure 24.34. Note that this is an idealized case in which

there is no noise on the received signal.

1.0

0.2

0.4

0.6

0.8

20 40 60 80 100 140120
n

f [n]

g[n]

Figure 24.34

Plot of transmitted and received digital signals for a radar system.

The returned signal is delayed due to the time taken for it to travel to a distant

target and back. Examining Figure 24.34 we note that the returned signal is delayed

by 65 samples when compared with the transmitted signal. This equates to a time

delay of 65T . We know the speed that the transmitted pulse travels is c, the speed of

light. Using

distance = time × velocity

gives total distance travelled = 65T × c. But the total distance travelled is twice the

distance between the transmitter and the target, that is 2d. Hence d =
65Tc

2
.

We now con�rm the number of samples delay by calculating the circular cross-

correlation of f [n] and g[n]. We wish to calculate c[n] = f ©∗ g and plot this on a

graph for analysis. This can be done either directly by calculating the circular cross-

correlation or by using the circular correlation theorem. Owing to the large number

of calculations involved they are not presented here. Normally such a process would

be carried out using a computer.

The result is a sequence of samples which are plotted in Figure 24.35. The largest

value of c[n] occurs at 65, which corresponds to the delay in samples between the

two signals. It agrees with our initial observation where the difference was quite

straightforward to see by inspecting the two signals.
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c[n]

Figure 24.35

Cross-correlation function c[n] for the signals f [n] and g[n].

We now consider a more realistic case in which there is random noise on the re-

turned signal and carry out the same calculation that we did previously. Figure 24.36

shows the two signals. Although the return signal is still present it is no longer pos-

sible to accurately determine where it actually starts and �nishes by just looking at

the graph.
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Figure 24.36

Plot of transmitted and received digital signals for a radar system in which noise is present on

the returned signal.
➔
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Carrying out the circular cross-correlation on these signals gives the result shown

in Figure 24.37. The highest peak still occurs at 65 time intervals, allowing the dis-

tance of the remote object to be accurately calculated.
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c[n]

Figure 24.37

Cross-correlation function c[n] for the signals f [n] and g[n] for the case where f [n] contains

additive noise.

The cross-correlation function allows the distance of the remote object to be calcu-

lated even when there is a large quantity of noise on the returned signal. It is therefore

a very useful signal processing operation for radar systems. Similar considerations

apply when working with sonar signals.

EXERCISES 24.15.6

1 Find the circular cross-correlation of f [n] = 2, 3,−1

and g[n] = 8, 7, 1. Verify the correlation theorem.

2 From the de�nition, prove the correlation theorem.

3 There are variants of the de�nition of correlation.

Show that if f ©⋆ g is rede�ned to be∑N−1
m=0 f [m− n]g[m] then the corresponding

correlation theorem states D{ f ©⋆ g} = F[k]G[k].

Solutions

1 36, 19, 9
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REVIEW EXERCISES 24

1 Find the Fourier transforms of

(a) f (t) =

{
1 − t2 |t| < 1

0 otherwise

(b) f (t) =

{
sin t |t| < π

0 otherwise

(c) f (t) =

{
1 0 < t < τ

0 otherwise

(d) f (t) =

{
e−αt t > 0

−eαt t < 0
α > 0

2 Find the Fourier integral representations of

(a) f (t) =

{
3t |t| < 2

0 otherwise

(b) f (t) =




0 t < 0

6 0 < t < 2

0 t > 2

3 (a) If F(ω) = F{ f (t)}, show that

F{ f ′(t)} = jωF(ω).

(b) If F(ω) = F{ f (t)}, show that

F{ f (n)(t)} = (jω)nF(ω). These results enable us

to calculate the Fourier transforms of derivatives

of functions.

4 If F(ω) = F{ f (t)}, show that

F{ f (at)} =
1

a
F

(
ω

a

)
.

5 If F(ω) is the Fourier transform of f (t) show that

(a) F(0) =
∫∞

−∞
f (t) dt.

(b) f (0) =
1

2π

∫ ∞

−∞

F(ω) dω.

(c) Show that if f (t) is an even function,

F(ω) = 2
∫∞

0 f (t) cosωt dt.

6 The convolution theorem given in Section 24.8.1

represents convolution in the time domain.

Convolution can also be performed in the frequency

domain, in which case the equivalent convolution

theorem is

F{ f (t)g(t)} =
1

2π
[F(ω) ∗ G(ω)]

Prove the convolution theorem in this form.

7 (a) Given that the Fourier transform of f (t) = e−α|t|

is
2α

α2 + ω2
use the t--ω duality principle to �nd

the Fourier transform of
1

α2 + t2
.

(b) From a table of transforms write down the

Fourier transform of cos bt.

(c) Use the convolution theorem obtained in

Question 6 to �nd the Fourier transform of

cos bt

α2 + t2
, for b > 0.

(d) Using the result in part (c) evaluate the integral
∫ ∞

−∞

cos bt

α2 + t2
dt

8 Find the d.f.t. of the sequence f [n] = {3, 3, 0, 3}.

Verify Rayleigh’s theorem for this sequence.

9 Find the linear convolution of the two �nite sequences

f [n] = 3,−1,−7 and g[n] = 4, 0, 12 .

10 The signum function is de�ned to be

sgn(t) =





1 t > 0

−1 t < 0

0 t = 0

This function can be represented as the exponential

function e−ǫt , if t > 0, and as −eǫt , if t < 0, in the

limit as ǫ → 0.

(a) Show that
∫ ∞

−∞

sgn(t) e−jωtdt =
2

jω

(b) Use the t--ω duality principle to show that
∫ ∞

−∞

1

πt
e−jωt dt = −j sgn(ω)

(c) Use the second result in part (b), the convolution

theorem and the integral properties of the delta

function to show that

1

πt
∗ cos(αt) = sin(αt)

11 Show that f [n] ©⋆ g[n] = f [n] ©∗ g[−n] and hence

deduce that a correlation can be expressed in terms of

a convolution.
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Solutions

1 (a)
4(sinω − ω cosω)

ω3

(b) −
2j sinωπ

1 − ω2

(c)
sinωτ

ω
+

j(cosωτ − 1)

ω

(d) −
2jω

α2 + ω2

2 (a)
1

2π

∫ ∞

−∞

6

ω2
(2jω cos 2ω − j sin 2ω) ejωt dω

(b)
1

2π

∫ ∞

−∞

6

ω
[sin 2ω + (cos 2ω − 1)j] ejωt dω

7 (a)
π

α
e−α|ω|

(c)
π

2α
[e−α|ω+b| + e−α|ω−b|]

(d)
πe−αb

α

8 F[k] = 9, 3,−3, 3

9 12,−4,−26.5,−0.5,−3.5
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25.1 INTRODUCTION

In engineering there are many functions which depend upon more than one variable. For

example, the voltage on a transmission line depends upon position along the transmission

line as well as time. The height of liquid in a tank depends upon the flow rates into and

out of the tank. We shall examine some more examples in this chapter.

We have already discussed differentiation of functions of one variable. However, we

also need to be able to differentiate functions of two or more variables. This is achieved

by allowing one variable to change at a time, holding the others �xed. Differentiation

under these conditions is called partial differentiation.

25.2 FUNCTIONS OF MORE THAN ONE VARIABLE

In Chapter 10 we saw how to differentiate a function y(x) with respect to x. Many stan-

dard derivatives were listed and some techniques explained. Since y is a function of x

we call y the dependent variable and x the independent variable. The function y depends

upon the one variable x. Consider the following example.

The area, A, of a circle depends only upon the radius, r, and is given by

A(r) = πr2
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The rate of change of area w.r.t. the radius is
dA

dr
= 2πr. In practice functions often

depend upon more than one variable. For example, the volume,V , of a cylinder depends

upon the radius, r, and the height, h, and is given by

V = πr2h

where V is the dependent variable; r and h are independent variables. V is a function of

the two independent variables, r and h. We write V = V (r, h).

Engineering application 25.1

Electrical potential inside a cathode ray tube

In recent years the cathode ray tube has declined in popularity as a screen display

device. It is now rarely used in consumer electronics as 	at screen televisions have

become more popular. However, it is still sometimes used in the specialist electronics

sector and instruments such as cathode ray oscilloscopes are still commonly in use

in many laboratories.

Within a cathode ray tube the electrical potential,V , will vary with spatial position

and time. Given Cartesian coordinates x, y and z, we can write

V = V (x, y, z, t)

to show this dependence. Note that V is a function of four independent variables.

Engineering application 25.2

Power dissipated in a variable resistor

The power,P, dissipated in a variable resistor depends upon the instantaneous voltage

across the resistor, v, and the resistance, r. It is given by

P =
v2

r

Hence we may write P = P(v, r) to show this dependence. The power is a function

of two independent variables.

As another example of a function of more than one variable consider a three-dimensional

surface as shown in Figure 25.1. The height, z, of the surface above the x--y plane de-

pends upon the x and y coordinates, that is z = z(x, y). If we are given values of x and

y, then z(x, y) can be evaluated. This value of z is the height of the surface above the

point (x, y). We write, for example, z(3,−1) for the value of z evaluated when x = 3

and y = −1. The dependent variable, z, is a function of the independent variables

x and y.

Some important features are shown in Figure 25.1. The value of z at a maximum

point is greater than the values of z at nearby points. Point A is such a point. As you
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C

E

B

D

z

y
x

A

z = z(x,y)

Figure 25.1

The height of the surface

above the x--y plane is z.

move away from A the value of z decreases. A minimum point is similarly de�ned.

At a minimum point, the value of z is smaller than the z value at nearby points. This is

illustrated by point B. Point C illustrates a saddle point. At a saddle point, z increases in

one direction, axis D on the �gure, but decreases in the direction of axis E. These axes

are at right angles to each other. The term ‘saddle’ is descriptive as a horse saddle has

a similar shape. Maximum points, minimum points and saddle points are considered in

greater depth in Section 25.7.

25.3 PARTIAL DERIVATIVES

Consider

z = z(x, y)

that is, z is a function of the independent variables x and y. We can differentiate z either

w.r.t. x, or w.r.t. y. We need symbols to distinguish between these two cases. When �nd-

ing the derivative w.r.t. x, the other independent variable, y, is held constant and only

x changes. Similarly when differentiating w.r.t. y, the variable x is held constant. We

write
∂z

∂x
to denote differentiation of z w.r.t. x for a constant y. It is called the �rst partial

derivative of z w.r.t. x. Similarly, the �rst partial derivative of z w.r.t. y is denoted
∂z

∂y
.

Referring to the surface z(x, y),
∂z

∂x
gives the rate of change of z moving only in the x

direction, and hence y is held �xed.

If z = z(x, y), then the �rst partial derivatives of z are

∂z

∂x
and

∂z

∂y

If we wish to evaluate a partial derivative, say
∂z

∂x
, at a particular point (x0, y0), we

indicate this by

∂z

∂x
(x0, y0) or

∂z

∂x

∣∣∣∣
(x

0
,y

0
)

just as we did for functions of one variable.
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Example 25.1 Given z(x, y) = x2y+ sin x+ x cos y �nd
∂z

∂x
and

∂z

∂y
.

Solution To �nd
∂z

∂x
we differentiate z w.r.t. x, treating y as a constant. Note that since y is a

constant then so is cos y.

∂z

∂x
= 2xy+ cos x+ cos y

In �nding
∂z

∂y
, x and hence x2 and sin x are held �xed, thus

∂z

∂y
= x2 − x sin y

Example 25.2 Given z(x, y) = 3 ex − 2 ey + x2y3

(a) �nd z(1, 1)

(b) �nd
∂z

∂x
and

∂z

∂y
when x = y = 1.

Solution (a) z(1, 1) = 3 e1 − 2 e1 + 1 = 3.718

(b)
∂z

∂x
= 3 ex + 2xy3

∂z

∂y
= −2 ey + 3x2y2

When x = y = 1, then

∂z

∂x
= 3 e + 2 = 10.155

∂z

∂y
= −2 e + 3 = −2.437

At the point (1, 1, 3.718) on the surface de�ned by z(x, y), the height of the surface

above the x--y plane is increasing in the x direction, and decreasing in the y direction.

Note that we could also write

∂z

∂x

∣∣∣∣
(1,1)

= 10.155 and
∂z

∂y

∣∣∣∣
(1,1)

= −2.437

or

∂z

∂x
(1, 1) = 10.155 and

∂z

∂y
(1, 1) = −2.437

Both notations are in common use.
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Engineering application 25.3

Eddy current losses

Eddy currents are circulating currents that arise in iron cores of electrical equipment

as a result of an a.c. magnetic �eld. They lead to energy losses given by

Pe = ke f
2B2

max

where

Pe = eddy current losses (W per unit mass),

Bmax = maximum value of the magnetic �eld wave (T),

f = frequency of the magnetic �eld wave (Hz),

ke = a constant that depends upon factors such as the lamination thickness of

the iron core.

Calculate
∂Pe

∂ f
, and

∂Pe

∂Bmax

.

Solution

∂Pe

∂ f
= 2ke f B

2
max and

∂Pe

∂Bmax

= 2ke f
2Bmax

Example 25.3 If V (x, y) = sin(xy), �nd
∂V

∂x
and

∂V

∂y
.

Solution To �nd
∂V

∂x
we treat y as a constant. Recalling that

d

dx
(sin kx) = k cos kx we �nd

∂V

∂x
= y cos(xy). To �nd

∂V

∂y
we treat x as a constant. Thus

∂V

∂y
= x cos(xy).

Example 25.4 Find the �rst partial derivatives of z where

(a) z(x, y) = yx ex

(b) z(x, y) = x2 sin(xy)

Solution (a) To �nd
∂z

∂x
we must treat y as a constant. However, the differentiation of the factor

x ex will require use of the product rule. We �nd

∂z

∂x
= y

∂

∂x
(x ex)

= y((1) ex + x ex)

= y ex(x+ 1)
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To �nd
∂z

∂y
the variable x is held constant and so

∂z

∂y
= x ex

(b) Observe the product term in the variable x which means we shall need to use the

product rule. We �nd

∂z

∂x
= 2x sin(xy)+ x2(y cos(xy)) = 2x sin(xy)+ x2y cos(xy)

To �nd
∂z

∂y
we treat x as a constant and �nd

∂z

∂y
= x2(x cos(xy)) = x3 cos(xy)

EXERCISES 25.3

1 Find the �rst partial derivatives of

(a) z = 2x+ 3y (b) z = x− y+ x2

(c) z = x2 + y2 + 3 (d) z = xy− 1

(e) z = x2y+ xy2

(f) z = x3 + 2x2y− 4xy2 + 2y3

2 Find the �rst partial derivatives of

(a) z =
x

y
(b) z =

√
x y

(c) z =
y2

x3
+ 2 (d) z =

1

xy

(e) z =
3x2

y
−

√
y

x
(f) z =

√
xy− 3(x+ y)

3 Find the �rst partial derivatives of

(a) z = 2 sin x+ 3 cos y (b) z = x sin y

(c) z = x tan y− y2 sin x (d) z = xy sin y

(e) z = sin(x+ y) (f) z = 4 cos(4x− 6y)

(g) z =
sin y

x

4 Find the �rst partial derivatives of y. Note that y is a

function of x and t.

(a) y = t ex (b) y = x2 e−t

(c) y = t et + x (d) y = 3x2 e2t + t3 e−x

(e) y = ext (f) y = e2x+3t

5 Find the �rst partial derivatives of z where

(a) z =
√
x2 + y2 (b) z =

x

2x+ 3y

(c) z = sin

(
x

y

)
(d) z = e3xy

(e) z = ln(2x− 3y) (f) z = ln(xy)

(g) z = x ln(xy) (h) z = x ln

(
y

x

)

6 Evaluate the �rst partial derivatives of f at x = 1,

y = 2.

(a) f = 3x2y− 2xy (b) f =
x+ y

y

(c) f = 2 sin(3x+ 2y) (d) f = 2exy

(e) f = y ln x+ ln(xy) (f) f =
√
3x+ y

7 Given

f (r, h) = 2r2h−
√
rh

evaluate the �rst partial derivatives of f when r = 2,

h = 1.

Solutions

1 (a)
∂z

∂x
= 2,

∂z

∂y
= 3

(b) 1 + 2x,−1

(c) 2x, 2y

(d) y, x

(e) 2xy+ y2, x2 + 2xy

(f) 3x2 + 4xy− 4y2, 2x2 − 8xy+ 6y2
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2 (a)
∂z

∂x
=

1

y
,
∂z

∂y
= −

x

y2

(b)
y

2
√
x
,
√
x

(c) −
3y2

x4
,
2y

x3

(d) −
1

x2y
,−

1

xy2

(e)
6x

y
+

√
y

x2
,−

3x2

y2
−

1

2x
√
y

(f)
1

2

√
y

x
− 3,

1

2

√
x

y
− 3

3 (a)
∂z

∂x
= 2 cos x,

∂z

∂y
= −3 sin y

(b) sin y, x cos y

(c) tan y− y2 cos x, x sec2 y− 2y sin x

(d) y sin y, x sin y+ xy cos y

(e) cos(x+ y), cos(x+ y)

(f) −16 sin(4x− 6y), 24 sin(4x− 6y)

(g) −
sin y

x2
,
cos y

x

4 (a)
∂y

∂x
= t ex,

∂y

∂t
= ex

(b) 2x e−t ,−x2 e−t

(c) 1, et (1 + t)

(d) 6x e2t − t3 e−x, 6x2 e2t + 3t2 e−x

(e) t ext , x ext

(f) 2 e2x+3t , 3 e2x+3t

5 (a)
∂z

∂x
=

x√
x2 + y2

,
∂z

∂y
=

y√
x2 + y2

(b)
3y

(2x+ 3y)2
,−

3x

(2x+ 3y)2

(c)
1

y
cos

(
x

y

)
,−

x

y2
cos

(
x

y

)

(d) 3y e3xy, 3x e3xy

(e)
2

2x− 3y
,−

3

2x− 3y

(f)
1

x
,
1

y

(g) 1 + ln(xy),
x

y

(h) ln

(
y

x

)
− 1,

x

y

6 (a)
∂ f

∂x
(1, 2) = 8,

∂ f

∂y
(1, 2) = 1

(b) 0.5,−0.25

(c) 4.5234, 3.0156

(d) 29.5562, 14.7781

(e) 3, 0.5

(f) 0.6708, 0.2236

7
∂ f

∂r
(2, 1) = 7.6464,

∂ f

∂h
(2, 1) = 6.5858

25.4 HIGHER ORDER DERIVATIVES

Just as functions of one variable have second and higher derivatives, so do functions of

several variables. Consider

z = z(x, y)

The �rst partial derivatives of z are
∂z

∂x
and

∂z

∂y
. The second partial derivatives are found

by differentiating the �rst derivatives. We can differentiate �rst partial derivatives either

w.r.t. x or w.r.t. y to obtain various second partial derivatives:

differentiating
∂z

∂x
w.r.t. x produces

∂

∂x

(
∂z

∂x

)
=
∂2z

∂x2

differentiating
∂z

∂x
w.r.t. y produces

∂

∂y

(
∂z

∂x

)
=

∂2z

∂y∂x
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differentiating
∂z

∂y
w.r.t. x produces

∂

∂x

(
∂z

∂y

)
=

∂2z

∂x∂y

differentiating
∂z

∂y
w.r.t. y produces

∂

∂y

(
∂z

∂y

)
=
∂2z

∂y2

For most common functions, the mixed derivatives
∂2z

∂y∂x
and

∂2z

∂x∂y
are equal.

Example 25.5 Given

z(x, y) = 3xy3 − 2xy+ sin x

�nd all second partial derivatives of z.

Solution
∂z

∂x
= 3y3 − 2y+ cos x

∂z

∂y
= 9xy2 − 2x

∂2z

∂x2
=
∂

∂x

(
∂z

∂x

)
= − sin x

∂2z

∂y2
=
∂

∂y

(
∂z

∂y

)
= 18xy

∂2z

∂x∂y
=
∂

∂x

(
∂z

∂y

)
= 9y2 − 2

∂2z

∂y∂x
=
∂

∂y

(
∂z

∂x

)
= 9y2 − 2

Note that
∂2z

∂x∂y
=

∂2z

∂y∂x
.

Example 25.6 Given

H(x, t) = 3x2 + t2 + ext

verify that
∂2H

∂x∂t
=
∂2H

∂t∂x
.

Solution
∂H

∂x
= 6x+ t ext

∂H

∂t
= 2t + x ext

∂2H

∂t∂x
=
∂

∂t

(
∂H

∂x

)
=
∂

∂t
(6x+ t ext ) = ext + tx ext

∂2H

∂x∂t
=
∂

∂x

(
∂H

∂t

)
=
∂

∂x
(2t + x ext ) = ext + xt ext

Third, fourth and higher derivatives are found in a similar way to �nding second deriva-

tives. The third derivatives are found by differentiating the second derivatives and

so on.
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Example 25.7 Find all third derivatives of f (r, s) = sin(2r)− 3r4s2.

Solution
∂ f

∂r
= 2 cos(2r)− 12r3s2

∂ f

∂s
= −6r4s

∂2 f

∂r2
= −4 sin(2r)− 36r2s2

∂2 f

∂s2
= −6r4

∂2 f

∂r∂s
= −24r3s

The third derivatives are
∂3 f

∂r3
,
∂3 f

∂r2∂s
,
∂3 f

∂r∂s2
and

∂3 f

∂s3
, and these are found by differen-

tiating the second derivatives.

∂3 f

∂r3
=
∂

∂r

(
∂2 f

∂r2

)
= −8 cos(2r)− 72rs2

∂3 f

∂r2∂s
=
∂

∂r

(
∂2 f

∂r∂s

)
= −72r2s

∂3 f

∂r∂s2
=
∂

∂r

(
∂2 f

∂s2

)
= −24r3

∂3 f

∂s3
=
∂

∂s

(
∂2 f

∂s2

)
= 0

Note that the mixed derivatives can be calculated in a variety of ways.

∂3 f

∂r2∂s
=
∂

∂r

(
∂2 f

∂r∂s

)
=
∂

∂s

(
∂2 f

∂r2

)

∂3 f

∂r∂s2
=
∂

∂r

(
∂2 f

∂s2

)
=
∂

∂s

(
∂2 f

∂r∂s

)

EXERCISES 25.4

1 Calculate all second derivatives of v where

v(h, r) = r2
√
h

2 Find the second partial derivatives of f given

(a) f = x2y+ y3 (b) f = 2x4y3 − 3x3y5

(c) f = 4
√
xy2 (d) f =

x2 + 1

y

(e) f =
3x3

√
y

(f) f = 4
√
xy

3 Find all second partial derivatives of

(a) z = x e2y (b) z = 2 sin(xy)

(c) z = x cos(2x+ 3y) (d) z = y sin(4xy)

(e) z = ex sin y (f) z = e3x−y

(g) z = exy

4 Find all second partial derivatives of

(a) z = (3x− 2y)20 (b) z =
√
2x+ 5y

(c) z = sin(x2 + y2) (d) z = ln(2x+ 5y)

(e) z =
1

3x− 2y

5 Find all third partial derivatives of z where

z(x, y) =
x2

y+ 1

6 Evaluate all second partial derivatives of f at x = 2,

y = 1.

(a) f = y ex (b) f = sin(2x− y)

(c) f = ln

(
y

x

)
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Solutions

1
∂2v

∂h2
= −

r2

4h3/2
,
∂2v

∂h∂r
=

r
√
h
,
∂2v

∂r2
= 2

√
h

2 (a)
∂2 f

∂x2
= 2y,

∂2 f

∂x∂y
= 2x,

∂2 f

∂y2
= 6y

(b) 24x2y3 − 18xy5,

24x3y2 − 45x2y4,

12x4y− 60x3y3

(c) −x−3/2y2, 4x−1/2y, 8
√
x

(d)
2

y
,−

2x

y2
,
2(x2 + 1)

y3

(e) 18xy−1/2,− 9
2x

2y−3/2, 94x
3y−5/2

(f) −x−3/2y1/2, x−1/2y−1/2,−x1/2y−3/2

3 (a)
∂2z

∂x2
= 0,

∂2z

∂x∂y
= 2 e2y,

∂2z

∂y2
= 4x e2y

(b) −2y2 sin(xy),

2 cos(xy)− 2xy sin(xy),

−2x2 sin(xy)

(c) −4 sin(2x+ 3y)− 4x cos(2x+ 3y),

−3 sin(2x+ 3y)− 6x cos(2x+ 3y),

−9x cos(2x+ 3y)

(d) −16y3 sin(4xy),

8y cos(4xy)− 16xy2 sin(4xy),

8x cos(4xy)− 16x2y sin(4xy)

(e) ex sin y, ex cos y,−ex sin y

(f) 9 e3x−y,−3 e3x−y, e3x−y

(g) y2 exy, exy(1 + xy), x2 exy

4 (a)
∂2z

∂x2
= 3420(3x− 2y)18,

∂2z

∂x∂y
= −2280(3x− 2y)18,

∂2z

∂y2
= 1520(3x− 2y)18

(b) −(2x+ 5y)−3/2,

−
5

2
(2x+ 5y)−3/2,

−
25

4
(2x+ 5y)−3/2

(c) 2 cos(x2 + y2)− 4x2 sin(x2 + y2),

−4xy sin(x2 + y2),

2 cos(x2 + y2)− 4y2 sin(x2 + y2)

(d) −
4

(2x+ 5y)2
,

−
10

(2x+ 5y)2
,

−
25

(2x+ 5y)2

(e)
18

(3x− 2y)3
,−

12

(3x− 2y)3
,

8

(3x− 2y)3

5
∂3z

∂x3
= 0,

∂3z

∂x2∂y
= −

2

(y+ 1)2
,

∂3z

∂x∂y2
=

4x

(y+ 1)3
,
∂3z

∂y3
= −

6x2

(y+ 1)4

6 (a)
∂2 f

∂x2
(2, 1) = 7.3891,

∂2 f

∂x∂y
(2, 1) = 7.3891,

∂2 f

∂y2
(2, 1) = 0

(b) −0.5645, 0.2822,−0.1411

(c) 0.25, 0,−1

25.5 PARTIAL DIFFERENTIAL EQUATIONS

Partial differential equations (p.d.e.s) occur in many areas of engineering. If a variable

depends upon two or more independent variables, then it is likely this dependence can be

described by a p.d.e. The independent variables are often time, t, and space coordinates

x, y, z.

One example is the wave equation. The displacement, u, of the wave depends upon

time and position. Under certain assumptions, the displacement of a wave travelling in

one direction satis�es

∂2u

∂t2
= c2

∂2u

∂x2
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where c is the speed of the wave. This p.d.e. is called the one-dimensional wave equation.

Under prescribed conditions the subsequent displacement of the wave can be calculated

as a function of position and time.

Example 25.8 Verify that

u(x, t) = sin(x+ 2t)

is a solution of the one-dimensional wave equation

∂2u

∂t2
= 4

∂2u

∂x2

Solution The �rst partial derivatives are calculated.

∂u

∂x
= cos(x+ 2t)

∂u

∂t
= 2 cos(x+ 2t)

The second derivatives,
∂2u

∂x2
and

∂2u

∂t2
, are now found.

∂2u

∂x2
= − sin(x+ 2t)

∂2u

∂t2
= −4 sin(x+ 2t)

Now

∂2u

∂t2
= −4 sin(x+ 2t) = 4[− sin(x+ 2t)] = 4

∂2u

∂x2

Hence u(x, t) = sin(x+ 2t) is a solution of the given wave equation.

Another equally important p.d.e. is Laplace’s equation. This equation is used exten-

sively in electrostatics. Under certain conditions the electrostatic potential in a region is

described by a function φ(x, y) which satis�es Laplace’s equation in two dimensions.

∂2φ

∂x2
+
∂2φ

∂y2
= 0

This equation is so important that a whole area of applied mathematics, called potential

theory, is devoted to the study of its solution.

Example 25.9 Verify that

φ(x, y, z) =
1√

x2 + y2 + z2

satis�es the three-dimensional Laplace’s equation

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= 0

Solution We begin by calculating the �rst partial derivative,
∂φ

∂x
. We are given

φ = (x2 + y2 + z2)−1/2

and so

∂φ

∂x
= −

1

2
(x2 + y2 + z2)−3/2(2x) = −x(x2 + y2 + z2)−3/2
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We use the product rule to �nd
∂2φ

∂x2
.

∂2φ

∂x2
= −1(x2 + y2 + z2)−3/2 − x

(
− 3

2

)
(x2 + y2 + z2)−5/22x

= (x2 + y2 + z2)−5/2[−(x2 + y2 + z2)+ 3x2]

By a similar analysis we have

∂2φ

∂y2
= (x2 + y2 + z2)−5/2[−(x2 + y2 + z2)+ 3y2]

∂2φ

∂z2
= (x2 + y2 + z2)−5/2[−(x2 + y2 + z2)+ 3z2]

So

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= (x2 + y2 + z2)−5/2[−3(x2 + y2 + z2)+ 3x2 + 3y2 + 3z2]

= 0

Hence φ =
1√

x2 + y2 + z2
is a solution of the three-dimensional Laplace’s equation.

The transmission equation is another important p.d.e. The potential, u, in a transmission

cable with leakage satis�es a p.d.e. of the form

∂2u

∂x2
= A

∂2u

∂t2
+ B

∂u

∂t
+Cu

where A, B and C are constants relating to the physical properties of the cable.

The analytical and numerical solution of p.d.e.s is an important topic in engineering.

Coverage is beyond the scope of this book.

EXERCISES 25.5

1 Verify that

u(x, y) = x2 + xy

is a solution of the p.d.e.

∂u

∂x
− 2

∂u

∂y
= y

2 Verify that

φ = sin(xy)

satis�es the equation

∂2φ

∂x2
+
∂2φ

∂y2
+ (x2 + y2)φ = 0

3 Verify that

u(x, y) = x3y+ xy3

is a solution of the equation

xy
∂2u

∂x∂y
+ x

∂u

∂x
+ y

∂u

∂y
= 7u

4 Verify that

u(x, y) = xy+
x

y

is a solution of

y
∂2u

∂y2
+ 2x

∂2u

∂x∂y
= 2x

5 Verify that

φ(x, y) = x sin y+ ex cos y

satis�es

∂2φ

∂x2
+
∂2φ

∂y2
= −x sin y
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6 Given

φ =

√
x2 + y2

(a) Show

∂2φ

∂x2
= y2(x2 + y2)−3/2

(b) Verify that φ is a solution of

∂2φ

∂x2
+
∂2φ

∂y2
= (x2 + y2)−1/2

25.6 TAYLOR POLYNOMIALS AND TAYLOR SERIES
IN TWO VARIABLES

In Chapter 18 we introduced Taylor polynomials and Taylor series for functions of a

single variable. We now extend this to include functions of two variables. Recall the

main idea behind Taylor polynomials and series for a function of one variable. Knowing

the values of a function, f (x), and its derivatives at x = a we can write down the Taylor

polynomial generated by f about x = a. This polynomial approximates to the function

f . The values of the Taylor polynomial and the function are usually in close agreement

for values of x near to x = a. To put it another way, knowing the value of f and its

derivatives at x = a allows us to estimate the value of f near to x = a.

The same idea holds when f is a function of two variables, x and y. If we know the

value of f and its partial derivatives at a point x = a, y = b, then the Taylor polynomials

allow us to estimate f at points near to (a, b).

25.6.1 First-order Taylor polynomial in two variables

Suppose f is a function of two independent variables, x and y, and that the values of

f ,
∂ f

∂x
and

∂ f

∂y
are known at the point x = a, y = b, that is we know

f (a, b)
∂ f

∂x
(a, b)

∂ f

∂y
(a, b)

The �rst-order Taylor polynomial, p1(x, y), generated by f about (a, b) is given by

p1(x, y) = f (a, b)+ (x− a)
∂ f

∂x
(a, b)+ (y− b)

∂ f

∂y
(a, b)

We note the following properties of a �rst-order Taylor polynomial:

(1) The values of the Taylor polynomial and the function are identical at the point (a, b).

(2) The values of the �rst partial derivatives of the Taylor polynomial and the function

are identical at the point (a, b).

(3) The highest derivative needed to calculate the Taylor polynomial is the �rst deriva-

tive.

(4) The �rst-order Taylor polynomial contains only linear terms; that is, there are no

powers of x or y higher than 1.

The �rst-order Taylor polynomial represents a plane which is tangent to the surface

f (x, y) at (a, b).

We can use p1(x, y) to estimate the value of f near to (a, b).
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Example 25.10 A function, f , is such that

f (3, 1) = 2
∂ f

∂x
(3, 1) = −1

∂ f

∂y
(3, 1) = 4

(a) State the �rst-order Taylor polynomial generated by f about (3, 1).

(b) Estimate the values of f (3.5, 1.2) and f (3.2, 0.7).

(c) Verify that the Taylor polynomial and the function have identical values at (3, 1).

(d) Verify that the �rst partial derivatives of the Taylor polynomial and the function are

identical at (3, 1).

Solution (a) In this example a = 3 and b = 1. Hence

p1(x, y) = f (3, 1)+ (x− 3)
∂ f

∂x
(3, 1)+ (y− 1)

∂ f

∂y
(3, 1)

= 2 + (x− 3)(−1)+ (y− 1)4

= 4y− x+ 1

The �rst-order Taylor polynomial generated by f about (3, 1) is

p1(x, y) = 4y− x+ 1

(b) We use p1(x, y) to estimate f (3.5, 1.2) and f (3.2, 0.7).

p1(3.5, 1.2) = 4(1.2)− 3.5 + 1 = 2.3

p1(3.2, 0.7) = 4(0.7)− 3.2 + 1 = 0.6

Hence 2.3 is an estimate of f (3.5, 1.2) and 0.6 is an estimate of f (3.2, 0.7).

(c) We are given f (3, 1) = 2. Also

p1(3, 1) = 4(1)− 3 + 1 = 2

and so f (3, 1) = p1(3, 1).

(d) We are given
∂ f

∂x
(3, 1) = −1 and

∂ f

∂y
(3, 1) = 4. Now

p1(x, y) = 4y− x+ 1

and so

∂ p1

∂x
= −1

∂ p1

∂y
= 4

Hence

∂ p1

∂x
(3, 1) =

∂ f

∂x
(3, 1) = −1

∂ p1

∂y
(3, 1) =

∂ f

∂y
(3, 1) = 4

Example 25.11 A function, f (x, y), is de�ned by

f (x, y) = x2 + xy− y3

(a) State the �rst-order Taylor polynomial generated by f about (1, 2).

(b) Verify that the Taylor polynomial in (a) and the function f have identical values at

(1, 2).
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(c) Verify that the �rst partial derivatives of the Taylor polynomial and f have identical

values at (1, 2).

(d) Estimate f (1.1, 1.9) using the Taylor polynomial. Compare this with the true value.

Solution (a) We are given f = x2 + xy− y3 and so

∂ f

∂x
= 2x+ y

∂ f

∂y
= x− 3y2

Evaluating these at the point (1, 2) gives

f (1, 2) = −5
∂ f

∂x
(1, 2) = 4

∂ f

∂y
(1, 2) = −11

Putting a = 1 and b = 2 in the formula for p1(x, y) we are able to write down the

Taylor polynomial:

p1(x, y) = f (1, 2)+ (x− 1)
∂ f

∂x
(1, 2)+ (y− 2)

∂ f

∂y
(1, 2)

= −5 + (x− 1)4 + (y− 2)(−11)

= 4x− 11y+ 13

The �rst-order Taylor polynomial is p1(x, y) = 4x− 11y+ 13.

(b) We can evaluate the Taylor polynomial and the function at (1, 2).

p1(1, 2) = 4 − 22 + 13 = −5 f (1, 2) = −5

Hence p1(1, 2) = f (1, 2); that is, the Taylor polynomial and the function have

identical values at (1, 2).

(c) The �rst partial derivatives of p1(x, y) are found.

∂ p1

∂x
= 4

∂ p1

∂y
= −11

∂ f

∂x
(1, 2) = 4

∂ f

∂y
(1, 2) = −11

Hence the �rst partial derivatives of p1 and f are identical at (1, 2).

(d) p1(1.1, 1.9) = 4(1.1)− 11(1.9)+ 13 = −3.5

f (1.1, 1.9) = (1.1)2 + (1.1)(1.9)− (1.9)3 = −3.559

The values of the Taylor polynomial and the function are in close agreement near to

the point (1, 2).

25.6.2 Second-order Taylor polynomial in two variables

Given a function, f , and its �rst and second partial derivatives at (a, b) we can write

down the second-order Taylor polynomial, p2(x, y).

p2(x, y) = f (a, b)+ (x− a)
∂ f

∂x
(a, b)+ (y− b)

∂ f

∂y
(a, b)

+
1

2!

(
(x−a)2

∂2 f

∂x2
(a, b)+2(x−a)(y−b)

∂2 f

∂x∂y
(a, b)+(y−b)2

∂2 f

∂y2
(a, b)

)
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We note the following properties of the second-order Taylor polynomial:

(1) The values of the Taylor polynomial and the function are identical at (a, b).

(2) The values of the �rst partial derivatives of the Taylor polynomial and the function

are identical at (a, b).

(3) The values of the second partial derivatives of the Taylor polynomial and the func-

tion are identical at (a, b).

(4) The second-order Taylor polynomial contains quadratic terms, that is terms involv-

ing x2, y2 and xy.

Example 25.12 A function, f , and its �rst and second partial derivatives are evaluated at (2,−1). The

values are

f = 3
∂ f

∂x
= 4

∂ f

∂y
= −3

∂2 f

∂x2
= 1

∂2 f

∂x∂y
= 2

∂2 f

∂y2
= −1

(a) State the second-order Taylor polynomial generated by f about (2,−1).

(b) Estimate f (1.8,−0.9).

(c) Verify that the Taylor polynomial and f have identical values at (2,−1).

(d) Verify that the �rst partial derivatives of the Taylor polynomial and f are identical

at (2,−1).

(e) Verify that the second partial derivatives of the Taylor polynomial and f are identical

at (2,−1).

Solution (a) We put a = 2 and b = −1 in the formula for p2(x, y):

p2(x, y) = f + (x− 2)
∂ f

∂x
+ (y+ 1)

∂ f

∂y

+
1

2

(
(x− 2)2

∂2 f

∂x2
+ 2(x− 2)(y+ 1)

∂2 f

∂x∂y
+ (y+ 1)2

∂2 f

∂y2

)

where f and its derivatives are evaluated at (2,−1). So

p2(x, y) = 3 + (x− 2)4 + (y+ 1)(−3)+
1

2
{(x− 2)2 + 2(x− 2)(y+ 1)2

+ (y+ 1)2(−1)} =
x2

2
−
y2

2
+ 2xy+ 4x− 8y−

21

2

(b) The value of p2(1.8,−0.9) is an estimate of f (1.8,−0.9):

p2(1.8,−0.9) =
(1.8)2

2
−
(−0.9)2

2
+2(1.8)(−0.9)+4(1.8)− 8(−0.9)−

21

2

= 1.875

(c) p2(2,−1)=
22

2
−
(−1)2

2
+ 2(2)(−1)+ 4(2)− 8(−1)−

21

2
= 3

f (2,−1)= 3

Hence p2(2,−1) = f (2,−1); that is, the Taylor polynomial and the function have

identical values at (2,−1).

(d) The �rst partial derivatives of p2 are

∂ p2

∂x
= x+ 2y+ 4

∂ p2

∂y
= −y+ 2x− 8
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so

∂ p2

∂x
(2,−1) = 2 + 2(−1)+ 4 = 4

∂ p2

∂y
(2,−1) = 1 + 4 − 8 = −3

Hence

∂ p2

∂x
(2,−1) =

∂ f

∂x
(2,−1)

∂ p2

∂y
(2,−1) =

∂ f

∂y
(2,−1)

that is, the �rst partial derivatives of the Taylor polynomial and the function have

identical values at (2,−1).

(e) The second partial derivatives of p2 are found:

∂2p2

∂x2
= 1

∂2p2

∂x∂y
= 2

∂2p2

∂y2
= −1

These values are identical to the second partial derivatives of f at (2,−1).

Example 25.13 A function f is given by

f (x, y) = x3 + x2y+ y4

(a) State the second-order Taylor polynomial generated by f about (1, 1).

(b) Use the polynomial to estimate f (1.2, 0.9). Compare this value with the true value.

(c) Verify that the second partial derivatives of the function and the Taylor polynomial

are identical at (1, 1).

Solution (a) Here a = 1 and b = 1. We are given that f = x3 + x2y+ y4 and so

∂ f

∂x
= 3x2 + 2xy

∂ f

∂y
= x2 + 4y3

∂2 f

∂x2
= 6x+ 2y

∂2 f

∂x∂y
= 2x

∂2 f

∂y2
= 12y2

Evaluation of f and its derivatives at (1, 1) yields

f = 3
∂ f

∂x
= 5

∂ f

∂y
= 5

∂2 f

∂x2
= 8

∂2 f

∂x∂y
= 2

∂2 f

∂y2
= 12

The second-order Taylor polynomial is p2(x, y):

p2(x, y) = f + (x− 1)
∂ f

∂x
+ (y− 1)

∂ f

∂y

+
1

2

(
(x− 1)2

∂2 f

∂x2
+ 2(x− 1)(y− 1)

∂2 f

∂x∂y
+ (y− 1)2

∂2 f

∂y2

)

= 3 + 5(x− 1)+ 5(y− 1)+
1

2
(8(x− 1)2 + 4(x− 1)(y− 1)+ 12(y− 1)2)

= 4x2 + 6y2 + 2xy− 5x− 9y+ 5

(b) The value of p2(1.2, 0.9) is an estimate of f (1.2, 0.9).

p2(1.2, 0.9) = 4(1.2)2 + 6(0.9)2 + 2(1.2)(0.9)− 5(1.2)− 9(0.9)+ 5 = 3.68

The actual value is

f (1.2, 0.9) = (1.2)3 + (1.2)2(0.9)+ (0.9)4 = 3.6801
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(c) The partial derivatives of p2(x, y) are found.

∂ p2

∂x
= 8x+ 2y− 5

∂ p2

∂y
= 12y+ 2x− 9

∂2p2

∂x2
= 8

∂2p2

∂x∂y
= 2

∂2p2

∂y2
= 12

The second partial derivatives of p2 are identical to the second partial derivatives of

f evaluated at (1, 1).

25.6.3 Taylor series in two variables

The third-order Taylor polynomial involves all the third-order partial derivatives of f ,

the fourth-order Taylor polynomial involves all the fourth-order partial derivatives of f

and so on. Taylor polynomials approximate more and more closely to the generating

function as more and more terms are included. As more and more terms are included,

we obtain an in�nite series known as a Taylor series in two variables. The general form

of this series is beyond the scope of this book.

EXERCISES 25.6

1 Use a �rst-order Taylor polynomial to estimate

f (2.1, 3.2) given

f (2, 3) = 4
∂ f

∂x
(2, 3) = −2

∂ f

∂y
(2, 3) = 3

2 Use a �rst-order Taylor polynomial to estimate

g(−1.1, 0.2) given

g(−1, 0) = 6
∂g

∂x
(−1, 0) = 2

∂g

∂y
(−1, 0) = −1

3 Use a �rst-order Taylor polynomial to estimate

h(−1.2,−0.7) given

h(−1.3,−0.6) = 4

∂h

∂x
(−1.3,−0.6) = −1

∂h

∂y
(−1.3,−0.6) = 1

4 Use a second-order Taylor polynomial to estimate

f (3.1, 4.2) given

f (3, 4) = 1
∂ f

∂x
(3, 4) = 0

∂ f

∂y
(3, 4) = 2

∂2 f

∂x2
(3, 4) = −1

∂2 f

∂x∂y
(3, 4) = 3

∂2 f

∂y2
(3, 4) = 0.5

5 Use a second-order Taylor polynomial to estimate

g(−2.9, 3.1) given

g(−3, 3) = 1
∂g

∂x
(−3, 3) = −1

∂g

∂y
(−3, 3) = 4

∂2g

∂x2
(−3, 3) = 3

∂2g

∂x∂y
(−3, 3) = −2

∂2g

∂y2
(−3, 3) = 2

6 Use a second-order Taylor polynomial to estimate

h(0.1, 0.1) given

h(0, 0) = 4
∂h

∂x
(0, 0) = −1

∂h

∂y
(0, 0) = −3

∂2h

∂x2
(0, 0) = 2

∂2h

∂x∂y
(0, 0) = 2

∂2h

∂y2
(0, 0) = −1
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7 A function, f (x, y), is de�ned by

f (x, y) = x3y+ xy3

(a) Calculate the �rst-order Taylor polynomial

generated by f about (1, 1).

(b) Calculate the second-order Taylor polynomial

generated by f about (1, 1).

(c) Estimate f (1.2, 1.2) using the �rst-order Taylor

polynomial.

(d) Estimate f (1.2, 1.2) using the second-order

Taylor polynomial.

(e) Compare your answers in (c) and (d) with the

true value of f (1.2, 1.2).

8 A function g(x, y) is de�ned by

g(x, y) = x sin y+
x

y

(a) Calculate the �rst-order Taylor polynomial

generated by g about (0, 1).

(b) Calculate the second-order Taylor polynomial

generated by g about (0, 1).

(c) Estimate g(0.2, 0.9) using the polynomial in (a).

(d) Estimate g(0.2, 0.9) using the polynomial in (b).

(e) Compare your estimates with the exact value of

g(0.2, 0.9).

9 A function h(x, y) is de�ned by

h(x, y) = exy+ x2 ey

(a) Calculate the �rst-order Taylor polynomial

generated by h about (0, 0).

(b) Calculate the second-order Taylor polynomial

generated by h about (0, 0).

(c) Estimate h(0.2, 0.15) using the polynomial

from (a).

(d) Estimate h(0.2, 0.15) using the polynomial

from (b).

(e) Compare your answers in (c) and (d) with the

exact value of h(0.2, 0.15).

10 A function, f (x, y, z), is de�ned by

f (x, y, z) = x2 + xyz+ yz2

(a) Write down the �rst-order Taylor polynomial

generated by f about (0, 1, 2).

(b) Use the polynomial from (a) to estimate

f (0.1, 1.2, 1.9).

(c) Compare your answer in (b) with the exact value

of f (0.1, 1.2, 1.9).

Solutions

1 4.4

2 5.6

3 3.8

4 1.465

5 1.305

6 3.625

7 (a) 4x+ 4y− 6

(b) 3x2 + 3y2 + 6xy− 8x− 8y+ 6

(c) 3.6 (d) 4.08 (e) 4.1472

8 (a) 1.8415x (b) 2.3012x− 0.4597xy

(c) 0.3683 (d) 0.3775

(e) 0.3789

9 (a) y (b) x2 + xy+ y (c) 0.15

(d) 0.22 (e) 0.2297

10 (a) 2x+ 4y+ 4z− 8 (b) 4.6

(c) 4.57

25.7 MAXIMUM AND MINIMUM POINTS OF A FUNCTION
OF TWO VARIABLES

We saw in Chapter 12 that to �nd the turning points of y(x) we solve

dy

dx
= 0
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The sign of the second derivative,
d2y

dx2
, is then used to distinguish between a maximum

point and a minimum point. The analysis is very similar for a function of two variables.

When considering a function of two variables, f (x, y), we often seekmaximumpoints,

minimum points and saddle points. Collectively these are known as stationary points.

Figure 25.1 illustrates a maximum point at A, a minimum point at B and a saddle point

at C. When leaving a maximum point the value of the function decreases; when leav-

ing a minimum point the value of the function increases. When leaving a saddle point,

the function increases in one direction, axis D on the �gure, and decreases in the other

direction, axis E on the �gure.

To locate stationary points we equate both �rst partial derivatives to zero, that is we

solve

∂ f

∂x
= 0

∂ f

∂y
= 0

Stationary points are located by solving

∂ f

∂x
= 0

∂ f

∂y
= 0

Example 25.14 Locate the stationary points of

(a) f (x, y) = 2x2 − xy− 7y+ y2

(b) f (x, y) = x2 − 6x+ 4xy+ y2

Solution (a) The �rst partial derivatives are found:

∂ f

∂x
= 4x− y

∂ f

∂y
= −x− 7 + 2y

The stationary points are located by solving
∂ f

∂x
= 0 and

∂ f

∂y
= 0 simultaneously,

that is

4x− y = 0

−x+ 2y− 7 = 0

Solving these equations yields x = 1, y = 4. Hence the function f (x, y) has one

stationary point and it is located at (1, 4).

(b) The �rst partial derivatives are found:

∂ f

∂x
= 2x− 6 + 4y

∂ f

∂y
= 4x+ 2y

The �rst partial derivatives are equated to zero:

2x+ 4y− 6 = 0

4x+ 2y = 0

Solving the equations simultaneously yields x = −1, y = 2. Thus the function has

one stationary point located at (−1, 2).
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Example 25.15 Locate the stationary points of

f (x, y) =
x3

3
+ 3x2 + xy+

y2

2
+ 6y

Solution The �rst partial derivatives are found:

∂ f

∂x
= x2 + 6x+ y

∂ f

∂y
= x+ y+ 6

These derivatives are equated to zero:

x2 + 6x+ y = 0 (25.1)

x+ y+ 6 = 0 (25.2)

Equations (25.1) and (25.2) are solved simultaneously. From (25.2) y = −x − 6, and

substituting this into Equation (25.1) yields x2 + 5x − 6 = 0. Solving this quadratic

equation gives x = 1, −6. When x = 1, y = −7, and when x = −6, y = 0. The function

has stationary values at (1,−7) and (−6, 0).

Equating the �rst partial derivatives to zero locates the stationary points, but does not

identify them as maximum points, minimum points or saddle points. To distinguish be-

tween these various points a test involving second partial derivatives must be made.

Note that this is similar to locating and identifying turning points of a function of one

variable.

To identify the stationary points we consider the expression

∂2 f

∂x2
∂2 f

∂y2
−

(
∂2 f

∂x∂y

)2

If the expression is negative at a stationary point, then that point is a saddle point.

If the expression is positive and in addition
∂2 f

∂x2
is positive at a stationary point, then

that point is a minimum point.

If the expression is positive and in addition
∂2 f

∂x2
is negative at a stationary point, then

that point is a maximum point.

If the expression is zero then further tests are required. These are beyond the scope

of the book.

In summary:

∂2 f

∂x2
∂2 f

∂y2
−

(
∂2 f

∂x∂y

)2

< 0 Saddle point

∂2 f

∂x2
∂2 f

∂y2
−

(
∂2 f

∂x∂y

)2

> 0 and
∂2 f

∂x2
> 0 Minimum point

∂2 f

∂x2
∂2 f

∂y2
−

(
∂2 f

∂x∂y

)2

> 0 and
∂2 f

∂x2
< 0 Maximum point
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Example 25.16 Locate and identify the stationary values of

f (x, y) = x2 + xy+ y

Solution The �rst partial derivatives are found:

∂ f

∂x
= 2x+ y

∂ f

∂y
= x+ 1

The �rst partial derivatives are equated to zero:

2x+ y = 0

x+ 1 = 0

This yields x = −1, y = 2. Thus there is one stationary point, positioned at (−1, 2).

The second partial derivatives are found:

∂2 f

∂x2
= 2

∂2 f

∂x∂y
= 1

∂2 f

∂y2
= 0

Now

∂2 f

∂x2
∂2 f

∂y2
−

(
∂2 f

∂x∂y

)2

= 2(0)− (1)2 = −1

Since the expression is negative, we conclude that (−1, 2) is a saddle point.

Example 25.17 Locate and identify the stationary points of

f (x, y) = xy− x2 − y2

Solution The �rst partial derivatives are found:

∂ f

∂x
= y− 2x

∂ f

∂y
= x− 2y

Solving
∂ f

∂x
= 0,

∂ f

∂y
= 0 yields x = 0, y = 0.

The second partial derivatives are found:

∂2 f

∂x2
= −2

∂2 f

∂x∂y
= 1

∂2 f

∂y2
= −2

The second derivative test to identify the stationary point is used. Now

∂2 f

∂x2
∂2 f

∂y2
−

(
∂2 f

∂x∂y

)2

= (−2)(−2)− (1)2 = 3

Since
∂2 f

∂x2
< 0 and

∂2 f

∂x2
∂2 f

∂y2
−

(
∂2 f

∂x∂y

)2

> 0 then (0, 0) is a maximum point.
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Example 25.18 Locate and identify the stationary points of

f (x, y) =
x3

3
− x+

y2

2
+ 2y

Solution The �rst partial derivatives are found:

∂ f

∂x
= x2 − 1

∂ f

∂y
= y+ 2

The �rst partial derivatives are equated to zero:

x2 − 1 = 0

y+ 2 = 0

These equations have two solutions: x = 1, y = −2 and x = −1, y = −2.

In order to identify the nature of each stationary point, the second derivatives are

found:

∂2 f

∂x2
= 2x

∂2 f

∂x∂y
= 0

∂2 f

∂y2
= 1

Each stationary point is examined in turn.

At (1,−2)

∂2 f

∂x2
∂2 f

∂y2
−

(
∂2 f

∂x∂y

)2

= 2x(1)− 02 = 2x = 2 since x = 1

∂2 f

∂x2
= 2x = 2

Since both expressions are positive the point (1,−2) is a minimum point.

At (−1,−2)

Here

∂2 f

∂x2
∂2 f

∂y2
−

(
∂2 f

∂x∂y

)2

= 2x = −2 since x = −1

Since the expression is negative then (−1,−2) is a saddle point.

Figure 25.2 illustrates a plot of the surface de�ned by f (x, y).
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Figure 25.2

The function

f (x, y) =
x3

3
− x+

y2

2
+ 2y

has a minimum at (1,−2)

and a saddle point at

(−1,−2).
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EXERCISES 25.7

1 Determine the position and nature of the stationary

points of the following functions:

(a) f (x, y) = x+ y+ xy

(b) f (x, y) = x2 + y2 − 2y

(c) f (x, y) = x2 + xy− y

(d) f (x, y) = x2 + y2 − xy

(e) f (x, y) = x2 + 2y2 − 3xy+ x

2 Determine the position and nature of the stationary

points of the following functions:

(a) z(x, y) = x2 + y2 − 3xy+ 2x

(b) z(x, y) = x3 + xy+ y2

(c) z(x, y) =
y3

3
− x2 − y

(d) z(x, y) =
1

x
+

1

y
−

1

xy

(e) z(x, y) = 4x2y− 6xy

3 Locate and identify the stationary points of the

following:

(a) f (x, y) = x2y− x2 + y2

(b) f (x, y) =
x

y
+ x+ y

(c) f (x, y) = x4 + 16xy+ y4

(d) f (x, y) = y− y2 − exx

(e) f (x, y) =
ex

y4
− xy

Solutions

1 (a) (−1,−1), saddle point

(b) (0, 1), minimum

(c) (1,−2), saddle point

(d) (0, 0), minimum

(e) (4, 3), saddle point

2 (a)
(
4
5 ,

6
5

)
, saddle point

(b) (0, 0), saddle point;
(
1
6 ,−

1
12

)
, minimum

(c) (0, 1), saddle point; (0,−1), maximum

(d) (1, 1), saddle point

(e) (0, 0), (1.5, 0), saddle points

3 (a) (0, 0), saddle point

(b) (1,−1), saddle point

(c) (0, 0), saddle point; (2,−2), minimum; (−2, 2),

minimum

(d) (−1, 0.5), maximum

(e) (−4, 0.4493), saddle point

REVIEW EXERCISES 25

1 Find all �rst partial derivatives of the following

functions:

(a) z(x, y) = 9x2 + 2y2

(b) z(x, y) = 3x3y6

(c) z(x, y) = 4x3 − 5y3

(d) z(x, y) = xy+ x2y2

(e) z(x, y) = sin(2xy)

(f) z(x, y) = 2 e3xy

2 Evaluate the �rst partial derivatives of f at x = −1,

y = 2.

(a) f (x, y) = 3x3 − y3 + x2y2

(b) f (x, y) =
4x

y

(c) f (x, y) = sin x+ 2 cos y

(d) f (x, y) = (xy)3 + x

(e) f (x, y) =
x+ y

x− y

(f) f (x, y) = 2 ex ey

3 Find all second partial derivatives of z where

(a) z(x, y) = 3x4 − 9y4 + x3y3

(b) z(x, y) = (x2 + y2)2

(c) z(x, y) = 2 e4x−3y

(d) z(x, y) =
2

x+ y

(e) z(x, y) = 2
√
x+ y

(f) z(x, y) = (sin x)(cos y)
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4 Find all �rst and second partial derivatives of

f (x, y) = (ax+ by)n

where a, b and n are constants.

5 Find the �rst partial derivatives of

f (x, y) = (ax2 + by2 + cxy)n

where a, b, c and n are constants.

6 Verify that

z(x, y) = 3x+ 2y+ 1

is a solution of

∂z

∂x
−
∂z

∂y
= 1

7 Verify that

z(x, y) = 2xy− x+ y

is a solution of

∂z

∂x
+
∂z

∂y
= 2(x+ y)

8 Verify that

f (x, y) = x2 + y2 − 2xy

is a solution of

∂ f

∂x
+
∂ f

∂y
= 0

9 Verify that

z(x, y) = sin x+ cos y

is a solution of

∂2z

∂x2
+
∂2z

∂y2
+ z = 0

10 Verify that

z(x, y) = xy ex

is a solution of

∂2z

∂x2
+
∂2z

∂y2
− y

∂2z

∂x∂y
= y ex

11 (a) Write down the second-order Taylor polynomial

generated by f (x, y) about x = 2, y = 3 given

f (x, y) = 3x3y− x2y3

(b) Estimate f (2.1, 2.9) using your polynomial from

(a) and compare this with the exact answer.

12 Write down the second-order Taylor polynomial

generated by z(x, y) about x = 1, y = 1 given

z(x, y) =
x+ y

x

13 Calculate the second-order Taylor polynomial

generated by

f (x, y) =

√
x2 + y2

about x = 1, y = 0.

14 Locate and identify all the stationary points of the

following functions:

(a) f (x, y) = x2 + y3 − 3y

(b) f (x, y) = 4xy− x2y

(c) f (x, y) = x3 + 2y2 − 12x

(d) f (x, y) = xy− y2 − x3

15 Locate and identify the stationary points of

f (x, y) =
y

x
− x2 + y2

Solutions

1 (a)
∂z

∂x
= 18x,

∂z

∂y
= 4y

(b) 9x2y6, 18x3y5

(c) 12x2,−15y2

(d) y+ 2xy2, x+ 2x2y

(e) 2y cos(2xy), 2x cos(2xy)

(f) 6y e3xy, 6x e3xy

2 (a)
∂ f

∂x
(−1, 2) = 1,

∂ f

∂y
(−1, 2) = −8

(b) 2, 1 (c) 0.5403,−1.8186

(d) 25,−12 (e) −
4

9
,−

2

9
(f) 5.4366, 5.4366

3 (a)
∂2z

∂x2
= 36x2 + 6xy3,

∂2z

∂x∂y
= 9x2y2,

∂2z

∂y2
= −108y2 + 6x3y

(b) 12x2 + 4y2, 8xy, 4x2 + 12y2

(c) 32 e4x−3y,−24 e4x−3y, 18 e4x−3y
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(d)
4

(x+ y)3
,

4

(x+ y)3
,

4

(x+ y)3

(e) − 1
2 (x+ y)−3/2,

− 1
2 (x+ y)−3/2,

− 1
2 (x+ y)−3/2

(f) −(sin x)(cos y),

−(cos x)(sin y),

−(sin x)(cos y)

4
∂ f

∂x
= an(ax+ by)n−1,

∂ f

∂y
= bn(ax+ by)n−1,

∂2 f

∂x2
= a2n(n− 1)(ax+ by)n−2,

∂2 f

∂x∂y
= abn(n− 1)(ax+ by)n−2,

∂2 f

∂y2
= b2n(n− 1)(ax+ by)n−2

5
∂ f

∂x
= (2ax+ cy)n(ax2 + by2 + cxy)n−1,

∂ f

∂y
= (2by+ cx)n(ax2 + by2 + cxy)n−1

11 (a) 27x2 − 36y2 − 72xy+ 108x+ 276y− 432

(b) p2(2.1, 2.9) = −26.97,

f (2.1, 2.9) = −26.985

12 x2 − xy− 2x+ 2y+ 2

13
y2

2
+ x

14 (a) (0, 1) minimum; (0,−1) saddle point

(b) (0, 0), (4, 0) saddle points

(c) (2, 0) minimum; (−2, 0) saddle point

(d) (0, 0) saddle point;
(
1
6 ,

1
12

)
maximum

15

(
1

√
2
,−

1

2
√
2

)
,

(
−

1
√
2
,

1

2
√
2

)
; saddle points
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26.1 INTRODUCTION

This chapter draws together several threads from previous chapters. It builds upon dif-

ferential and integral calculus, functions of several variables and the study of vectors.

These topics together form a branch of engineering mathematics known as vector calcu-

lus. Vector calculus is used to model a vast range of engineering phenomena including

electrostatic charges, electromagnetic �elds, air flow around aircraft, cars and other solid

objects, fluid flow around ships and heat flow in nuclear reactors. The chapter starts by

explaining what is meant by the operators grad, div and curl. These are used to carry out

various differentiation operations on the �elds.

26.2 PARTIAL DIFFERENTIATION OF VECTORS

Consider the vector �eld v = vxi + vyj + vzk, where each component vx, vy and vz is a

function of x, y and z. We can partially differentiate the vector w.r.t. x as follows:

∂v

∂x
=
∂vx

∂x
i +

∂vy

∂x
j +

∂vz

∂x
k

This is a new vector with a magnitude and direction different from those of v.
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Partial differentiation w.r.t. y and z is de�ned in a similar way, as are higher deriva-

tives. For example,

∂2v

∂x2
=
∂2vx

∂x2
i +

∂2vy

∂x2
j +

∂2vz

∂x2
k

Example 26.1 If v = 3x2yi + 2xyzj − 3x4y2k, �nd
∂v

∂x
,
∂v

∂y
,
∂v

∂z
. Further, �nd

∂2v

∂x2
and

∂2v

∂x∂z
.

Solution We �nd

∂v

∂x
= 6xyi + 2yzj − 12x3y2k

∂v

∂y
= 3x2i + 2xzj − 6x4yk

∂v

∂z
= 2xyj

∂2v

∂x2
= 6yi − 36x2y2k

∂2v

∂x∂z
= 2yj

EXERCISES 26.2

1 Given v = 2xi + 3yzj + 5xz2k �nd

(a)
∂v

∂x
(b)

∂v

∂y
(c)

∂v

∂z

2 If f = 2i − xyzj + 3x2zk �nd

(a)
∂f

∂x
(b)

∂f

∂y
(c)

∂f

∂z

(d)
∂2f

∂x2
(e)

∂2f

∂y2
(f)

∂2f

∂z2

3 Given E = (x2 + y)i + (1 − z)j + (x+ 2z)k �nd

(a)
∂E

∂x
(b)

∂E

∂y
(c)

∂E

∂z

(d)
∂2E

∂x2
(e)

∂2E

∂y2
(f)

∂2E

∂z2

4 If v = 3xyzi + (x2 − y2 + z2)j + (x+ y2)k �nd

∂v

∂x
,
∂v

∂y
,
∂v

∂z
,
∂2v

∂x2
,
∂2v

∂y2
, and

∂2v

∂z2
.

5 If v = sin(xyz)i + z exyj − 2xyk �nd
∂v

∂x
,
∂v

∂y
,
∂v

∂z
.

6 If v = xi + x2yj − 3x3k, and φ = xyz, �nd

φv,
∂

∂x
(φv),

∂φ

∂x
,
∂v

∂x
. Deduce that

∂

∂x
(φv) = φ

∂v

∂x
+
∂φ

∂x
v

7 If v = ln(xy)i + 2xy cos zj − x4yzk, �nd

∂v

∂x
,
∂v

∂y
,
∂v

∂z
,
∂2v

∂x2
,
∂2v

∂y2
, and

∂2v

∂z2
.

Solutions

1 (a) 2i + 5z2k (b) 3zj

(c) 3yj + 10xzk

2 (a) −yzj + 6xzk (b) −xzj

(c) −xyj + 3x2k (d) 6zk

(e) 0 (f) 0
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3 (a) 2xi + k (b) i

(c) −j + 2k (d) 2i

(e) 0 (f) 0

4
∂v

∂x
= 3yzi + 2xj + k

∂v

∂y
= 3xzi − 2yj + 2yk

∂v

∂z
= 3xyi + 2zj

∂2v

∂x2
= 2j

∂2v

∂y2
= −2j + 2k

∂2v

∂z2
= 2j

5
∂v

∂x
= yz cos(xyz)i + yz exyj − 2yk

∂v

∂y
= xz cos(xyz)i + xz exyj − 2xk

∂v

∂z
= xy cos(xyz)i + exyj

6 φv = x2yzi + x3y2zj − 3x4yzk

∂(φv)

∂x
= 2xyzi + 3x2y2zj − 12x3yzk

∂φ

∂x
= yz

∂v

∂x
= i + 2xyj − 9x2k

7
∂v

∂x
=

i

x
+ 2y cos zj − 4x3yzk

∂v

∂y
=

i

y
+ 2x cos zj − x4zk

∂v

∂z
= −2xy sin zj − x4yk

∂2v

∂x2
= −

i

x2
− 12x2yzk

∂2v

∂y2
= −

i

y2

∂2v

∂z2
= −2xy cos zj

26.3 THE GRADIENT OF A SCALAR FIELD

Given a scalar function of x, y, z

φ = φ(x, y, z)

we can differentiate it partially w.r.t. each of its independent variables to �nd
∂φ

∂x
,
∂φ

∂y

and
∂φ

∂z
. If we do this, the vector

∂φ

∂x
i +

∂φ

∂y
j +

∂φ

∂z
k

turns out to be particularly important. We call this vector the gradient of φ and denote

it by

∇φ or grad φ

An alternative form of writing ∇φ is as three components
(
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)

grad φ = ∇φ =
∂φ

∂x
i +

∂φ

∂y
j +

∂φ

∂z
k

The process of forming a gradient applies only to a scalar �eld and the result is always

a vector �eld.
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It is often useful to write ∇φ in the form
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
φ

where the quantity in brackets is called a vector operator and is regarded as operating

on the scalar φ. Thus the vector operator, ∇, is given by
(
∂

∂x
,
∂

∂y
,
∂

∂z

)

Example 26.2 If φ = φ(x, y, z) = 4x3y sin z, �nd ∇φ.

Solution φ(x, y, z) = 4x3y sin z

so that by partial differentiation we obtain

∂φ

∂x
= 12x2y sin z

∂φ

∂y
= 4x3 sin z

∂φ

∂z
= 4x3y cos z

Therefore

∇φ = 12x2y sin zi + 4x3 sin zj + 4x3y cos zk

We often need to evaluate ∇φ at a particular point, say, for example, at (4, 2, 3). We

write ∇φ|(4,2,3) to denote the value of ∇φ at the point (4, 2, 3).

Example 26.3 If φ = x3y+ xy2 + 3y �nd

(a) ∇φ

(b) ∇φ|(0,0,0)

(c) |∇φ| at (1, 1, 1)

Solution (a) If φ = x3y+ xy2 + 3y then

∂φ

∂x
= 3x2y+ y2

∂φ

∂y
= x3 + 2xy+ 3

∂φ

∂z
= 0

so that

∇φ = (3x2y+ y2)i + (x3 + 2xy+ 3)j + 0k
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(b) At (0, 0, 0), ∇φ = 0i + 3j + 0k = 3j.

(c) At (1, 1, 1), ∇φ = (3× 12 × 1+ 1)i+ (13 + 2× 1× 1+ 3)j+ 0k = 4i+ 6j+ 0k

so that |∇φ| at (1, 1, 1) is equal to
√
42 + 62 =

√
52.

So far we have been given φ and have calculated ∇φ. Sometimes we will be given ∇φ

and will need to �nd φ. Consider Example 26.4.

Example 26.4 If F = ∇φ �nd φ when F = (3x2 + y2)i + (2xy+ 5)j.

Solution Note that in this example F has only two components. Consequently ∇φ will have two

components, that is F = ∇φ =
∂φ

∂x
i +

∂φ

∂y
j. Therefore

(3x2 + y2)i + (2xy+ 5)j =
∂φ

∂x
i +

∂φ

∂y
j

Equating the i components we have

∂φ

∂x
= 3x2 + y2 (26.1)

Equating the j components we have

∂φ

∂y
= 2xy+ 5 (26.2)

Integrating Equation (26.1) w.r.t. x and treating y as a constant we �nd

φ = x3 + xy2 + f (y) (26.3)

where f (y) is an arbitrary function of y which plays the same role as the constant of

integration does when there is only one independent variable. Note in particular that
∂

∂x
f (y) = 0. Check by partial differentiation that

∂φ

∂x
= 3x2 + y2.

Integrating Equation (26.2) w.r.t. y and treating x as a constant we �nd

φ = xy2 + 5y+ g(x) (26.4)

where g(x) is an arbitrary function of x. Note that
∂

∂y
g(x) = 0. Check by partial differ-

entiation that
∂φ

∂y
= 2xy+5. Comparing both forms for φ given in Equations (26.3) and

(26.4) we see that by choosing g(x) = x3 and f (y) = 5y we have

φ = x3 + xy2 + 5y

Check that F is indeed equal to ∇φ. Also check that by adding any constant to φ the

same property holds, that is F is still equal to ∇φ.
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26.3.1 Physical interpretation of ∇φ

Suppose we think of the scalar �eld φ(x, y, z) as describing the temperature throughout

a region. This temperature will vary from point to point. At a particular point it can be

shown that ∇φ is a vector pointing in the direction in which the rate of temperature in-

crease is greatest. |∇φ| is themagnitude of the rate of increase in that direction. Similarly,

the rate of temperature decrease is greatest in the direction of −∇φ. Analogous inter-

pretations are possible for other scalar �elds such as pressure and electrostatic potential.

Engineering application 26.1

Electrostatic potential

Engineers working on the design of equipment such as cathode ray tubes and elec-

trical valves, which are also commonly known by their generic term vacuum tubes,

need to calculate the electrostatic potential that results from an accumulation of static

charges at various points in a region of space. Complicated examples require the use

of a computer. Let us consider a simple example.

The electrostatic potential, V , in a region is given by

V =
y

(x2 + y2 + z2)3/2

Suppose a unit charge is located in the region at the point with coordinates (2, 1, 0).

Find the direction at this point, in which the rate of decrease in potential is greatest.

Solution

The rate of decrease is greatest in the direction of −∇V .

We �rst calculate the �rst partial derivatives of V . Writing

V = y(x2 + y2 + z2)−3/2

we �nd

∂V

∂x
=

(
−
3

2

)
y(x2 + y2 + z2)−5/2(2x) = −3xy(x2 + y2 + z2)−5/2

∂V

∂y
=

(
−
3

2

)
y(x2 + y2 + z2)−5/2(2y)+ (x2 + y2 + z2)−3/2

= −3y2(x2 + y2 + z2)−5/2 + (x2 + y2 + z2)−3/2

∂V

∂z
=

(
−
3

2

)
y(x2 + y2 + z2)−5/2(2z) = −3yz(x2 + y2 + z2)−5/2

These partial derivatives can each be evaluated at the point (2, 1, 0). That is,

∂V

∂x

∣∣∣∣
(2,1,0)

= −0.107
∂V

∂y

∣∣∣∣
(2,1,0)

= 0.036
∂V

∂z

∣∣∣∣
(2,1,0)

= 0

and so

∇V |(2,1,0) = −0.107i + 0.036j + 0k

Finally,

−∇V |(2,1,0) = 0.107i − 0.036j − 0k
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At the point (2, 1, 0) this vector points in the direction of greatest rate of decrease in

potential. This is also the direction of the electrostatic force experienced by the unit

charge at that point.

EXERCISES 26.3

1 If φ = x2 − y2 − 3xyz, (a) �nd ∇φ, (b) evaluate ∇φ at

the point (0, 0, 0).

2 If φ = x2yz3, �nd (a) ∇φ, (b) ∇φ at (1, 2, 1), (c) |∇φ|

at (1, 2, 1).

3 If v = ∇φ, �nd φ when v = (2x− 4y2)i − 8xyj.

4 Given φ = xyz �nd (a) ∇φ, (b) −∇φ, (c) ∇φ

evaluated at (3, 0,−1).

5 Find ∇V when

(a)V = x2 + y2 + z2

(b)V = z sin−1

(
y

x

)

(c)V = ex+y+z.

6 An electrostatic potential is given by V = x e−
√
y.

Find ∇V and deduce the direction in which the

decrease of potential is greatest at the point with

coordinates (1, 1, 1).

7 In the theory of fluid mechanics the scalar �eld φ is

known as the velocity potential of a fluid flow. The

fluid velocity vector, v, at a point can be found from

the equation v = ∇φ. For a particular type of flow

φ = Ux, whereU is a constant. Show that the

corresponding fluid motion is entirely parallel to the x

axis, and at any point the fluid speed isU . Find a

velocity potential for a similar flow which is entirely

parallel to the y axis.

8 Is −∇φ the same as ∇(−φ)? Explain your answer.

9 Given φ = 3x2y+ xz,

(a) determine ∇φ

(b) determine ∇(7φ)

(c) determine 7∇φ

(d) Is ∇(7φ) the same as 7∇φ?

10 For any scalar �eld φ and any constant k, is ∇(kφ) the

same as k∇φ?

Solutions

1 (a) (2x− 3yz)i − (2y+ 3xz)j − 3xyk

(b) 0

2 (a) 2xyz3i + x2z3j + 3x2yz2k

(b) 4i + j + 6k

(c)
√
53

3 φ = x2 − 4xy2 + c

4 (a) yzi + xzj + xyk

(b) −yzi − xzj − xyk (c) −3j

5 (a) 2xi + 2yj + 2zk

(b)
−zy

x2
√
1 − y2/x2

i

+
z

x
√
1 − y2/x2

j + sin−1

(
y

x

)
k

(c) ex+y+z(i + j + k)

6 e−
√
yi −

x e−
√
y

2
√
y

j,−0.368i + 0.184j

7 φ = Uy

8 yes

9 (a) (6xy+ z)i + 3x2j + xk

(b) (42xy+ 7z)i + 21x2j + 7xk

(c) (42xy+ 7z)i + 21x2j + 7xk

(d) yes

10 yes
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26.4 THE DIVERGENCE OF A VECTOR FIELD

Given a vector �eld v = v(x, y, z) let us consider what happens when we differentiate

its individual components. If

v = vxi + vyj + vzk

we can take each component in turn and differentiate it partially w.r.t. x, y and z, respec-

tively; that is, we can evaluate

∂vx

∂x

∂vy

∂y

∂vz

∂z

If we add the calculated quantities the result turns out to be a very useful scalar quantity

known as the divergence of v, that is

divergence of v =
∂vx

∂x
+
∂vy

∂y
+
∂vz

∂z

This is usually abbreviated to div v. Alternatively, the notation ∇ · v is often used. If we

use the vector operator notation introduced in the previous section we have

∇ · v =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
· v

=

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
· (vx, vy, vz)

Interpreting the · as a scalar product we �nd

∇ · v =
∂vx

∂x
+
∂vy

∂y
+
∂vz

∂z

as before, although this is not a scalar product in the usual sense because

(
∂

∂x
,
∂

∂y
,
∂

∂z

)

is a vector operator. We note that the process of �nding the divergence is always per-

formed on a vector �eld and the result is always a scalar �eld:

div v = ∇ · v =
∂vx

∂x
+
∂vy

∂y
+
∂vz

∂z

Example 26.5 If v = x2zi + 2y3z2j + xyz2k �nd div v.

Solution Partially differentiating the �rst component of v w.r.t. x we �nd

∂vx

∂x
= 2xz

Similarly,

∂vy

∂y
= 6y2z2 and

∂vz

∂z
= 2xyz

Adding these results we �nd

div v = ∇ · v = 2xz+ 6y2z2 + 2xyz
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26.4.1 Physical interpretation of ∇ · v

If the vector �eld v represents a fluid velocity �eld, then, loosely speaking, the diver-

gence of v evaluated at a point represents the rate at which fluid is flowing away from

or towards that point. If fluid is flowing away from a point then either the fluid den-

sity must be decreasing there or there must be some source providing a supply of new

fluid.

If the divergence of a flow is zero at all points then outflow from any point must be

matched by an equal inflow to balance this. Such a vector �eld is said to be solenoidal.

Example 26.6 Show that the vector �eld

v = x sin yi + y sin xj − z(sin x+ sin y)k

is solenoidal.

Solution We have

vx = x sin y so that
∂vx

∂x
= sin y

Also,

vy = y sin x so that
∂vy

∂y
= sin x

Finally,

vz = −z(sin x+ sin y) so that
∂vz

∂z
= −(sin x+ sin y)

Therefore,

∇ · v = sin y+ sin x− (sin x+ sin y) = 0

and hence v is solenoidal.

Engineering application 26.2

Electric flux and Gauss’s law

We saw in Engineering application 7.5 that electric charges produce an electric �eld,

E, around them which can be visualized by drawing lines of force. Suppose we sur-

round a region containing charges with a surface S. If a small portion of this surface,

δS, is chosen we can draw the �eld lines which pass through this portion as shown in

Figure 26.1.

The flux of E through δS is a measure of the number of lines of force passing

through δS. Gauss’s law states that the total flux out of any closed surface S is pro-

portional to the total charge enclosed. It is possible to show that this law can be

expressed mathematically as

∇ ·E =
ρ

ε0 ➔



858 Chapter 26 Vector calculus

dS

E

Figure 26.1

The flux of E through δS is a

measure of the number of lines

of force passing through δS.

where ρ is the charge density and ε0 is a constant called the permittivity of free

space. Note that in a charge-free region, ρ = 0, and so ∇ ·E = 0. This means there

is no net flux of E.

EXERCISES 26.4

1 A vector �eld v is given by

v = 3x2yi + 2y3zj + xz3k

Find

(a) vx, vy, vz

(b)
∂vx

∂x
,
∂vy

∂y
,
∂vz

∂z

(c) ∇ · v

2 A vector �eld F is de�ned by

F = (x+ y2)i + (y2 − z)j + (y+ z2)k

(a) Find ∇ ·F.

(b) Calculate ∇ ·F at the point (3, 2,−1).

3 If A = 3yzi + 2xyj + xyzk �nd ∇ ·A.

4 Find the divergence of each of the following vector

�elds:

(a) v = x2i + y2j + z2k

(b) v = exyi + 2z sin(xy)j + x3zk

(c) v = xyi − 2yzj + k

(d) v = x2y2i − y2j − xyzk

5 If E = xi + z2j − yzk �nd

(a) E · i

(b) E · j

(c) E · k

(d) ∇ ·E

6 A vector �eld is given by

F = (3x2 − z)i + (2x+ y)j

+ (x+ 3yz)k

Find ∇ ·F at the point (1, 2, 3).

7 Given the scalar �eld φ = x2 + y2 − 2z2, �nd ∇φ and

show that ∇ · (∇φ) = 0.

8 For any vector �eld F is ∇ · (−F) the same as

−(∇ ·F)?

9 The vector �eld F is given by

F = xz2i + 2xy2zj + xz3k

(a) Find ∇ ·F.

(b) State 4F.

(c) Find ∇ · (4F).

(d) Is 4(∇ ·F) the same as ∇ · (4F)?

10 For any vector �eld F and any scalar constant k is

∇ · (kF) the same as k∇ ·F?

11 Give an example of a vector �eld

v = vxi + vyj + vzk such that
∂vx

∂x
6= 0,

∂vy

∂y
6= 0,

∂vz

∂z
6= 0, but ∇ · v = 0.
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Solutions

1 (a) 3x2y, 2y3z, xz3

(b) 6xy, 6y2z, 3xz2

(c) 6xy+ 6y2z+ 3xz2

2 (a) 1 + 2y+ 2z (b) 3

3 ∇ ·A = 2x+ xy

4 (a) 2x+ 2y+ 2z

(b) y exy + 2xz cos(xy)+ x3

(c) y− 2z

(d) 2xy2 − 2y− xy

5 (a) x (b) z2 (c) − yz (d) 1 − y

6 13

7 ∇φ = 2xi + 2yj − 4zk

8 yes

9 (a) z2 + 4xyz+ 3xz2

(b) 4xz2i + 8xy2zj + 4xz3k

(c) 4z2 + 16xyz+ 12xz2

(d) yes

10 yes

11 v = 2xyi + y2j − 4yzk for example

26.5 THE CURL OF A VECTOR FIELD

A third differential operator is known as curl. It is de�ned rather like a vector product.

curl v = ∇ × v

=

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
× (vx, vy, vz)

=

∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

vx vy vz

∣∣∣∣∣∣∣∣∣

This determinant is evaluated in the usual way except that we must regard
∂

∂x
,
∂

∂y
and

∂

∂z
as operators, not multipliers. Thus, for example,

∣∣∣∣∣∣

∂

∂x

∂

∂y
vx vy

∣∣∣∣∣∣
means

∂vy

∂x
−
∂vx

∂y

Explicitly we have

curl v =

(
∂vz

∂y
−
∂vy

∂z

)
i +

(
∂vx

∂z
−
∂vz

∂x

)
j +

(
∂vy

∂x
−
∂vx

∂y

)
k
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Example 26.7 If v = x2yzi − 2xyj + yzk �nd ∇ × v.

Solution ∇ × v=

∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

x2yz −2xy yz

∣∣∣∣∣∣∣∣

=

[
∂(yz)

∂y
−
∂(−2xy)

∂z

]
i −

[
∂(yz)

∂x
−
∂(x2yz)

∂z

]
j +

[
∂(−2xy)

∂x
−
∂(x2yz)

∂y

]
k

= zi + x2yj − (2y+ x2z)k

Note that the curl operation is only performed on a vector �eld and the result is another

vector �eld.

A detailed discussion of the physical interpretation of the curl of a vector �eld is be-

yond the scope of this book. However, if the vector �eld v under consideration represents

a fluid flow then it may be shown that curl v is a vector which measures the extent to

which individual particles of the fluid are spinning or rotating. For this reason, a vector

�eld whose curl is zero for all values of x, y and z is said to be irrotational.

Example 26.8 Show that the vector �eld

F = y exyi + x exyj + 0k

is irrotational.

Solution ∇ × F=

∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

y exy x exy 0

∣∣∣∣∣∣∣∣

=

(
∂

∂y
0 −

∂

∂z
x exy

)
i −

(
∂

∂x
0 −

∂

∂z
y exy

)
j +

(
∂

∂x
x exy −

∂

∂y
y exy

)
k

= 0i + 0j + ((xy exy + exy)− (yx exy + exy))k

= 0 for all x, y and z

The �eld is therefore irrotational.

EXERCISES 26.5

1 Find the curl of the vector �eld

v = xi − 3xyj + 4zk.

2 If v = 3xi − 2y2zj + 3xyzk �nd ∇ × v.

3 Suppose F = P(x, y)i + Q(x, y)j is a

two-dimensional vector �eld. Show that F is

irrotational if
∂P

∂y
=
∂Q

∂x
.

4 Find the divergence and curl of the vector �eld

E = cos xi + sin xj.
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5 Find the curl of each of the following vector �elds:

(a) E = x2yi + 7xyzj + 3x2k

(b) v = y2xi + 4xzj + y2xk

(c) F = sin xi + cos xj + 3xyzk

6 A vector �eld F is given by

F = x3yi + 2y2j + (x+ z2)k

(a) Find ∇ × F.

(b) State 3F.

(c) Find ∇ × (3F).

(d) Is 3(∇ × F) the same as ∇ × (3F)?

7 F is a vector �eld and k is a constant. Is ∇ × (kF) the

same as k(∇ × F)?

Solutions

1 −3yk

2 (3xz+ 2y2)i − 3yzj

4 − sin x, cos xk

5 (a) −7xyi − 6xj + (7yz− x2)k

(b) x(2y− 4)i − y2j + (4z− 2xy)k

(c) 3xzi − 3yzj − sin xk

6 (a) −j − x3k

(b) 3x3yi + 6y2j + 3(x+ z2)k

(c) −3j − 3x3k

(d) yes

7 yes

26.6 COMBINING THE OPERATORS GRAD, DIV AND CURL

We have now met three vector operators; these are summarized in Table 26.1.

It is important to be able to combine the three operators grad, div and curl in sensible

ways. For instance, because the gradient of a scalar is a vector we can consider evaluating

its divergence, that is

∇ · (∇φ) = ∇ ·

(
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)

=

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
·

(
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)

=
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2

This last expression is very important and is often abbreviated to simply

∇2φ

Table 26.1

The three vector operators.

Operator Acts on Result is a De�nition

grad scalar �eld vector �eld ∇φ = grad φ =
∂φ

∂x
i +

∂φ

∂y
j +

∂φ

∂z
k

div vector �eld scalar �eld ∇ · v = div v =
∂vx

∂x
+
∂vy

∂y
+
∂vz

∂z

curl vector �eld vector �eld ∇ × v = curl v =

∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z
vx vy vz

∣∣∣∣∣∣∣∣
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pronounced ‘del-squared φ’, and occurs in Laplace’s equation∇2φ = 0 and other partial

differential equations.

Example 26.9 If φ = 2x2 − y2 − z2, �nd ∇φ, ∇ · (∇φ) and deduce that φ satis�es Laplace’s equation.

Solution ∇φ = 4xi − 2yj − 2zk

∇ · (∇φ) = 4 − 2 − 2 = 0

that is,

∇2φ = 0

Hence φ satis�es Laplace’s equation.

Example 26.10 If φ(x, y, z) is an arbitrary differentiable scalar �eld, show that curl (grad φ) = ∇×(∇φ)

is always zero.

Solution Given φ = φ(x, y, z) we have, by de�nition,

∇φ =
∂φ

∂x
i +

∂φ

∂y
j +

∂φ

∂z
k

Then

curl(grad φ) = ∇ × (∇φ)

=

∣∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

∂φ

∂x

∂φ

∂y

∂φ

∂z

∣∣∣∣∣∣∣∣∣∣∣

=

(
∂

∂y

(
∂φ

∂z

)
−
∂

∂z

(
∂φ

∂y

))
i −

(
∂

∂x

(
∂φ

∂z

)
−
∂

∂z

(
∂φ

∂x

))
j

+

(
∂

∂x

(
∂φ

∂y

)
−
∂

∂y

(
∂φ

∂x

))
k

Now, since
∂

∂x

(
∂φ

∂y

)
=
∂

∂y

(
∂φ

∂x

)
with similar results for the other mixed partial deriva-

tives, it follows that

∇ × (∇φ) = 0

for any scalar �eld φ whatsoever.

For an arbitrary differentiable scalar �eld φ

∇ × (∇φ) = 0
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Engineering application 26.3

Poisson’s equation

Recall from Engineering application 26.1 that engineers sometimes need to solve

complex electrostatic problems when designing electrical equipment. For example,

this need arises when calculating the electrical �eld strength in a high-voltage elec-

trical distribution station to ensure there is no danger of electrical discharge across

the air gap between components that have different voltages. Poisson’s equation is

an equation that can be useful when carrying out this work. Consider the following.

If E is an electric �eld and V an electrostatic potential, then the two �elds are

related by

E = −∇V

From Example 26.2 we know Gauss’s law: ∇ · E =
ρ

ε0
. Combining these two equa-

tions we can write

∇ · (−∇V ) =
ρ

ε0

that is

∇2V = −
ρ

ε0

This partial differential equation is known as Poisson’s equation and by solving it we

could determine the electrostatic potential in a region occupied by charges. Note that

in a charge-free region, ρ = 0 and Poisson’s equation reduces to Laplace’s equation

∇2V = 0.

EXERCISES 26.6

1 A scalar �eld φ is given by

φ = 3x+ y− y2z2. Show that φ satis�es

∇2φ = −2(y2 + z2).

2 If φ = 2x2y− xz3 show that ∇2φ = 4y− 6xz.

3 If v = xyi − yzj + (y+ 2z)k �nd curl (curl (v)).

4 If φ = xyz and v = 3x2i + 2y3j + xyk �nd ∇φ, ∇ · v,

and ∇ · (φv). Show that

∇ · (φv) = (∇φ) · v + φ∇ · v.

5 Verify that φ = x2y+ y2z+ z2x satis�es

∇ · (∇φ) = 2(x+ y+ z).

6 If A is an arbitrary differentiable vector �eld show

that the divergence of the curl of A is always 0.

7 Express each of the following in operator notation

using ‘∇’, ‘∇ · ’ and ‘∇×’:

(a) grad (div F)

(b) curl (grad φ)

(c) curl (curl F)

(d) div (curl F)

(e) div (grad φ)

8 Scalar �elds φ1 and φ2 are given by

φ1 = 2xy+ y2z φ2 = x2z

(a) Find ∇φ1.

(b) Find ∇φ2.

(c) State φ1φ2.

(d) Find ∇(φ1φ2).

(e) Find φ1∇φ2 + φ2∇φ1.

(f) What do you conclude from (d) and (e)?



864 Chapter 26 Vector calculus

9 A scalar �eld φ and a vector �eld F are given by

φ = xyz2 F = x2i + 2j + zk

(a) Find ∇φ.

(b) Find ∇ ·F.

(c) Calculate φ(∇ ·F)+ F · (∇φ). [Hint: recall the

dot product of two vectors.]

(d) State φF.

(e) Calculate ∇ · (φF).

(f) What do you conclude from (c) and (e)?

Solutions

3 j − k

4 ∇φ = yzi + xzj + xyk

∇ · v = 6x+ 6y2

∇ · (φv) = 9x2yz+ 8xy3z+ x2y2

7 (a) ∇(∇ ·F) (b) ∇ × (∇φ)

(c) ∇ × (∇ × F) (d) ∇ · (∇ × F)

(e) ∇ · (∇φ)

8 (a) 2yi + (2x+ 2yz)j + y2k

(b) 2xzi + x2k

(c) 2x3yz+ y2x2z2

(d) (6x2yz+ 2xy2z2)i + (2x3z+ 2yx2z2)j

+ (2x3y+ 2y2x2z)k

(e) same as (d)

(f) ∇(φ1φ2) = φ1∇φ2 + φ2∇φ1

9 (a) yz2i + xz2j + 2xyzk

(b) 2x+ 1

(c) 3x2yz2 + 2xz2 + 3xyz2

(d) x3yz2i + 2xyz2j + xyz3k

(e) same as (c)

(f) ∇ · (φF) = φ(∇ ·F)+ F · (∇φ)

26.7 VECTOR CALCULUS AND ELECTROMAGNETISM

Vector calculus provides a useful mechanism for expressing the fundamental laws of

electromagnetism in a concise manner. These laws can be summarized by means of four

equations, known as Maxwell’s equations. Much of electromagnetism is concerned with

solving Maxwell’s equations for different boundary conditions.

Equation 1

div D = ∇ · D = ρ

where D = electric flux density, and ρ = charge density. This equation is a general

form of Gauss’s theorem which states that the total electric flux flowing out of a closed

surface is proportional to the electric charge enclosed by that surface.

Equation 2

div B = ∇ · B = 0

where B is the magnetic flux density.

This equation arises from the observation that all magnetic poles occur in pairs and

therefore magnetic �eld lines are continuous; that is, there are no isolated magnetic

poles. In contrast, electric �eld lines originate on positive charges and terminate on neg-

ative charges and so a net positive charge in a region leads to an outflow of electric

flux.
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Equation 3

curl E = ∇ × E = −
∂B

∂t

where E is the electric �eld strength. This equation is a statement of Faraday’s law. A

time-varying magnetic �eld produces a space-varying electric �eld.

Equation 4

curl H = ∇ × H = J +
∂D

∂t

where H is the magnetic �eld strength and J is the free current density. This equation

states that a time-varying electric �eld gives rise to a space-varying magnetic �eld.

The derivation of these equations is beyond the scope of this text but can be found in

many books on electromagnetism. The power of these equations lies in their generality.

The brevity with which the main laws of electromagnetism can be expressed is a tribute

to the utility of vector calculus.

REVIEW EXERCISES 26

1 Find ∇φ if

(a) φ = 3xyz

(b) φ = x2yz+ xy2z+ xyz2

(c) φ = xy2z2 + x2yz2 + x2y2z

2 If φ = 1/
√
x2 + y2 + z2, show that

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= 0

3 Functions satisfying Laplace’s equation are called

harmonic functions. Show that the following

functions are harmonic:

(a) z = x4 − 6x2y2 + y4

(b) z = 4x3y− 4xy3

4 If A = xi + yj + zk and

B = cos xi − sin xj, �nd

(a) A × B

(b) ∇ · (A × B)

(c) ∇ × A

(d) ∇ × B

Verify that

∇ · (A × B) = B · (∇ × A)− A · (∇ × B).

5 For arbitrary differentiable scalar �elds φ and ψ show

that ∇(φψ) = ψ∇φ + φ∇ψ .

6 If ψ = x2y and a = xi + yj + zk, �nd ∇ψ ,

∇ × a,∇ × (ψa). Show that

∇ × (ψa) = ψ∇ × a + (∇ψ)× a.

7 A scalar �eld φ is a function of x, z and t only. Vectors

E and H are de�ned by

E =
1

ε

(
∂φ

∂z
i −

∂φ

∂x
k

)
H = −

∂φ

∂t
j

where ε is a constant.

(a) Show that ∇ ·E = 0.

(b) Show that ∇ ·H = 0.

Given that ∇ × E = −µ
∂H

∂t
, where µ is a constant,

show that φ satis�es the partial differential equation

∂2φ

∂x2
+
∂2φ

∂z2
= µε

∂2φ

∂t2

8 If v = (2x2y+ 3x5)i + exyj + xyzk �nd
∂v

∂x
and

∂2v

∂x2
.

9 An electrostatic potential is given by V = 5xyz. Find

(a) the associated electric �eld E,

(b) |E| at the point (1, 1, 1).

10 An electrostatic �eld is given by

E = 3(x+ y)i+ 2xyj. Find the direction of this �eld at

(a) the point (2, 2)

(b) the point (3, 4).

11 Find the curl of A = yi + 2xyj + 3zk.

12 Find the curl of the vector �eld

F = (x2 − y)i + (xy− 4y2)j.

13 If φ = 5 ex+2y cos z �nd ∇φ at the point (0, 0, 0).
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14 The vector �elds A and B are given by

A = x2yi + 2xzj + xk

B = yzi + x2yj + 3k

(a) Calculate the vector product A × B.

(b) Calculate ∇ · (A × B).

(c) Calculate B · (∇ × A)− A · (∇ × B).

(d) What do you conclude from (b) and (c)?

(e) Can you prove this result is true for any two

vector �elds?

15 Given

F = (3x, 2y, 4z) G = (1,−1, 3)

φ = x2yz

�nd

(a) ∇ ·F

(b) ∇φ

(c) ∇ × F

(d) ∇ · (φF)

(e) ∇ × (φG)

(f) ∇(F ·G)

(g) ∇ × (F × G)

(h) ∇ · (F + G)

(i) ∇ × (3F + 4G)

Solutions

1 (a) 3yzi + 3xzj + 3xyk

(b) (2xyz+ y2z+ yz2)i

+ (x2z+ 2xyz+ xz2)j

+ (x2y+ xy2 + 2xyz)k

(c) (y2z2 + 2xyz2 + 2xy2z)i

+ (2xyz2 + x2z2 + 2x2yz)j

+ (2xy2z+ 2x2yz+ x2y2)k

4 (a) z sin xi + z cos xj + (−y cos x− x sin x)k

(b) z cos x (c) 0 (d) − cos xk

6 ∇ψ = 2xyi + x2j

∇ × a = 0

∇ × (ψa) = x2zi − 2xyzj + (2xy2 − x3)k

8 (4xy+ 15x4)i + y exyj + yzk,

(4y+ 60x3)i + y2 exyj

9 (a) E = −∇V = −5yzi − 5xzj − 5xyk

(b)
√
75

10 (a) 12i + 8j

(b) 21i + 24j

11 (2y− 1)k

12 (y+ 1)k

13 5i + 10j

14 (a) (6xz− x3y)i + (xyz− 3x2y)j

+(x4y2 − 2xyz2)k

(b) −3x2(y+ 1)− xz(4y− 1)+ 6z

(c) −3x2(y+ 1)− xz(4y− 1)+ 6z

(d) ∇ · (A × B) = B · (∇ × A)− A · (∇ × B)

15 (a) 9

(b) 2xyzi + x2zj + x2yk

(c) 0

(d) 21x2yz

(e) x2(y+ 3z)i + (x2y− 6xyz)j

− (x2z+ 2xyz)k

(f) 3i − 2j + 12k

(g) −6i + 7j − 15k

(h) 9

(i) 0
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27.1 INTRODUCTION

In this chapter a number of new sorts of integral are introduced. These are intimately

connected with the developments of the previous chapter on differential vector calcu-

lus. The chapter starts by explaining the physical signi�cance of line integrals and how

these are evaluated. This leads naturally into the topics of conservative vector �elds and

potential functions. These are important in the study of electrostatics. Double and triple

integrals are then introduced; these generalize the earlier work on integration to inte-

grands which contain two and three independent variables.

Finally some simple volume and surface integrals are introduced, together with the di-

vergence theorem and Stokes’ theorem. These enable Maxwell’s equations to be

expressed in integral form.

27.2 LINE INTEGRALS

Consider an object of mass m placed in a gravitational �eld. Because the force of grav-

ity is a vector the gravitational �eld is an example of a vector �eld. The gravitational

force on the mass is known as its weight and is given by mg where g is a constant
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A

B

m M

N
ds

s

Figure 27.1

An object of mass m falls from A to B.

vector called the acceleration due to gravity. Suppose we release the mass and allow

it to fall from point A in Figure 27.1. The vertical displacement measured downwards

from A is s.

Work is being done by the gravitational force in order tomake themass accelerate.We

wish to calculate the work done by the �eld in moving the mass from A to B. Suppose

we consider the amount of work done as the mass moves from point M to point N, a

distance δs. Elementary physics tells us that the work done is equal to the product of the

magnitude of the force and the distance moved in the direction of the force. In this case

the magnitude of the force is mg, and so the small amount of work done, δW , in moving

from M to N, is

δW = mg δs

from which we have
δW

δs
= mg. As δs → 0 we obtain

lim
δs→0

δW

δs
=

dW

ds
= mg

To �nd the total work done as the mass falls from A to B we must add up, or integrate,

the contributions over the whole interval of interest, that is

total work done =W =

∫ B

A

mgds

This is an elementary example of a line integral, so called because we are integrating

along the line from A to B. In this case it is straightforward to evaluate. Since both g and

m are constants the integral becomes

W = mg

∫ B

A

ds

which equals mg× (distance from A to B).

Engineering application 27.1

The work done by the gravitational field

An object of mass m falls vertically from A to B. If A is the point where s = 0 and B

is the point where s = 10 �nd the total work done by gravity as the mass falls from

A to B.
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Solution

The work done by gravity is found by evaluating the line integral

W = mg

∫ s=10

s=0

ds = mg[s]100 = 10mg

Note that this is also the potential energy lost by m in falling a distance of 10 units.

In the previous example the path along which we integrated was a straight line, but this

need not always be the case. Consider the following example.

Engineering application 27.2

The work done by an electric field

Figure 27.2 shows a unit charge moving along a curve C from point A to point B in

an electric �eld E.

At the particular point of interest, M, we have resolved the electric �eld vector

into two components. Resolving a vector into perpendicular components has been

described in Example 7.3. One component is tangential to C, namely Et, and one is

normal toC, namely En. As a unit charge moves fromM to N, a distance δs along the

curve, the work done by the electric �eld is Etδs. The component En does no work

since there is no motion perpendicular to the curveC. To �nd the total work done we

must add up all contributions, resulting in the integral

total work done =

∫ B

A

Et ds

This is a second example of a line integral, the line being the curve,C, joining A and

B. It is usual to denote this by

total work done =

∫

C

Et ds

where the symbol

∫

C

tells us to integrate along the curveC.

B

M

A

Et

En

C

N
ds

E
Figure 27.2

As a charge moves from M to N,

the �eld E does work Etδs.
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If the coordinates of the end points of the curve C are known, say (x1, y1) and (x2, y2),

we often write
∫ (x

2
,y

2
)

(x
1
,y

1
)
to show this, but care must then be taken to de�ne the intended

route from A to B.

We now explain how to integrate a function along a curve. Consider a vector �eld, F,

through which runs a curve,C, as shown in Figure 27.3.

Ft

Fn
C

N
u

M

F(x,y)

F

MN 5 ds

Figure 27.3

The integral

∫

C

F · ds is equal to the work

done by F as the particle moves alongC.

Suppose we restrict ourselves to two-dimensional situations. In the general case the

vector �eld will vary as x and y vary, that is F = F(x, y). Consider the small element

of C joining points M and N. Let θ be the angle between the tangent to the curve at M

and the direction of the �eld there. We shall denote the vector joining M and N (i.e.
−→
MN)

by δs. Consider the quantity

F · δs

where · represents the scalar product. When F represents a gravitational force �eld,

F · δs represents the small amount of work done by the �eld in moving a particle of unit

mass from M to N. The appropriate integral along the whole curve represents the total

work done. From the de�nition of the scalar product we note that

F · δs = |F‖δs| cos θ

Writing the modulus of F as simply F , and the modulus of δs, as δs, we have

F · δs = Fδs cos θ

= (F cos θ )δs

= Ftδs

where Ft is the component of F tangential to C. This result is of the same form as the

expressions for work done obtained previously. We are therefore interested in integrals

of the form
∫

C

F(x, y) · ds
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Since F is a vector function of x and y it will have Cartesian components P(x, y) and

Q(x, y) and so we can write F in the form

F(x, y) = P(x, y)i + Q(x, y)j

dyj
ds

dxi

Figure 27.4

The vector ds can be

written as dxi + dyj.

Similarly, referring to Figure 27.4, we can write the vector ds as ds = dxi + dyj. Hence
∫

C

F(x, y) · ds =

∫

C

(P(x, y)i + Q(x, y)j) · (dxi + dyj)

Taking the scalar product gives
∫

C

P(x, y) dx+ Q(x, y) dy

and this is the line integral in Cartesian form.

If F(x, y) = P(x, y)i + Q(x, y)j then
∫

C

F(x, y) · ds =

∫

C

(P(x, y)i + Q(x, y)j) · (dxi + dyj)

=

∫

C

P(x, y) dx+ Q(x, y) dy

In order to proceed further we now need to explore how such integrals are evaluated

in practice. This is the topic of the next section.

27.3 EVALUATION OF LINE INTEGRALS IN TWO DIMENSIONS

Example 27.1 Evaluate
∫

C

F · ds

where F = 5y2i + 2xyj andC is the straight line joining the origin and the point (1, 1).

Solution We compare the integrand with the standard form and recognize that in this case

P(x, y) = 5y2 and Q(x, y) = 2xy. The integral becomes
∫

C

5y2 dx+ 2xy dy

The curve of interest, in this case a straight line, is shown in Figure 27.5. Along this

curve it is clear that y = x at all points. We use this fact to simplify the integral by

writing everything in terms of x. We could equally well choose to write everything in

terms of y. If y = x then
dy

dx
= 1, that is dy = dx. As we move along the curve C, x

ranges from 0 to 1, and the integral reduces to
∫

C

5x2 dx+ 2x2 dx =

∫

C

7x2 dx =

∫ x=1

x=0

7x2 dx =

[
7x3

3

]1

0

=
7

3
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1

C

1 (1, 1)

0 x

y

Figure 27.5

The path of integration joins

(0, 0) and (1, 1) and has equation

y = x.

(1, 1)

C2

C1

C

1

1

0 x

y

Figure 27.6

The pathC is made up of two distinct

parts. Integration is performed

separately on each part.

Let us now see what happens when we choose to evaluate the integral of Example 27.1

along a different path joining (0, 0) and (1, 1).

Example 27.2 Evaluate the integral
∫
C
5y2 dx + 2xy dy along the curve, C, consisting of the x axis be-

tween x = 0 and x = 1 and the line x = 1 as shown in Figure 27.6.

Solution We evaluate this integral in two parts because the curveC is made up of two pieces. The

�rst pieceC1 is horizontal, and the secondC2 is vertical. The required integral is the sum

of the two separate ones. Along the x axis, y = 0 and dy = 0. This means that both the

terms 5y2 dx and 2xy dy are zero, and so the integral reduces to

∫ x=1

x=0

0 dx = 0

and so there is zero contribution to the �nal answer from this part of the curveC. Along

the line x = 1, the quantity dx equals zero. Hence 5y2 dx also equals zero, and 2xy dy

equals 2y dy. Because y ranges from 0 to 1 the integral becomes

∫ y=1

y=0

2y dy = [y2]10 = 1

Note that this is a different answer from that obtained in Example 27.1.

As we have seen from Examples 27.1 and 27.2 the value of a line integral can depend

upon the path taken. It is therefore essential to specify this path clearly.

Example 27.3 Evaluate the integral
∫
C
F(x, y) · ds, where F(x, y) = (3x2 + y)i+ (5x− y)j andC is the

portion of the curve y = 2x2 between A(2, 8) and B(3, 18).

Solution

∫

C

F(x, y) · ds =

∫

C

(3x2 + y) dx+ (5x− y) dy

The curve C has equation y = 2x2 for 2 6 x 6 3. Along this curve we can replace y by

2x2. Note also that
dy

dx
= 4x and so we can replace dy with 4x dx. This will produce an
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integral entirely in terms of the variable x which is then integrated between x = 2 and

x = 3. Thus

∫

C

(3x2 + y) dx+ (5x− y) dy =

∫ 3

2

(3x2 + 2x2) dx+ (5x− 2x2)(4x dx)

=

∫ 3

2

25x2 − 8x3 dx

=

[
25x3

3
− 2x4

]3

2

= 28.333

EXERCISES 27.3

1 Evaluate
∫
C 3y dx+ 2x dy along the straight line C

between (1, 1) and (3, 3).

2 Evaluate
∫
C 2yx dx+ x2 dy along the straight line

y = 4x from (0, 0) to (3, 12).

3 Evaluate
∫
C(7x+ 3y) dx+ 2y dy along the curve

y = x2 between (0, 0) and (2, 4).

4 If E = (x+ 2y)i+ (x− 3y)j, A is the point (0, 0) and

B is the point (3, 2), evaluate

∫ B

A

E · ds

(a) along the straight line joining A and B,

(b) horizontally along the x axis from x = 0 to x = 3

and then vertically from y = 0 to y = 2.

5 If F = (2xy− y4 + 3)i + (x2 − 4xy3)j evaluate∫
C F · ds whereC is the straight line joining A(1, 3)

and B(2, 5).

6 Evaluate the integral

∫

C

(3x2 + 2y) dx+ (7x+ y2) dy

from A(0, 1) to B(2, 5) along the curveC de�ned by

y = 2x+ 1.

Solutions

1 20

2 108

3 38

4 (a)
15

2
(b)

9

2

5 −1149

6
268

3

27.4 EVALUATION OF LINE INTEGRALS IN THREE DIMENSIONS

Evaluation of line integrals along curves lying in three-dimensional space is performed

in a similar way. It is often helpful in this case to express the independent variables x, y

and z in terms of a single parameter. Consider the following example.
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Example 27.4 A curve, C, is de�ned parametrically by

x = 4 y = t3 z = 5 + t

and is located within a vector �eld F = yi + x2j + (z+ x)k.

(a) Find the coordinates of the point P on the curve where the parameter t takes the

value 1.

(b) Find the coordinates of the point Q where the parameter t takes the value 3.

(c) By expressing the line integral
∫
C
F · ds entirely in terms of t �nd the value of the

line integral from P to Q. Note that ds = dxi + dyj + dzk.

Solution (a) When t = 1, x = 4, y = 1 and z = 6, and so P has coordinates (4, 1, 6).

(b) When t = 3, x = 4, y = 27 and z = 8, and so Q has coordinates (4, 27, 8).

(c) To express the line integral entirely in terms of t we note that if x = 4,
dx

dt
= 0 so that dx is also zero. If y = t3 then

dy

dt
= 3t2 so that dy = 3t2 dt.

Similarly since z = 5 + t,
dz

dt
= 1 so that dz = dt. The line integral becomes

∫

C

F · ds =

∫

C

(yi + x2j + (z+ x)k) · (dxi + dyj + dzk)

=

∫

C

y dx+ x2 dy+ (z+ x) dz

=

∫ t=3

t=1

0 + 16(3t2) dt + (9 + t) dt

=

∫ 3

1

48t2 + 9 + t dt

=

[
48t3

3
+ 9t +

t2

2

]3

1

=

(
48(33)

3
+ (9)(3) +

32

2

)
−

(
48

3
+ 9 +

1

2

)

= 438

EXERCISES 27.4

1 You are required to evaluate the line integral∫
C F · ds where F is the vector �eld

F = (2y+ 3x)i + (yz+ x)j + 3xyk and

ds = dxi + dyj + dzk. The curve C is de�ned

parametrically by x = t2, y = 3t and z = 2t for

values of t between 0 and 1.

(a) Find the coordinates of the point A, where t = 0.

(b) Find the coordinates of the point B, where t = 1.

(c) By expressing the line integral entirely in terms

of t, evaluate the line integral from A to B along

the curveC.
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Solutions

1 (a) (0, 0, 0)

(b) (1, 3, 2)

(c) 17

27.5 CONSERVATIVE FIELDS AND POTENTIAL FUNCTIONS

We have seen that, in general, the value of a line integral depends upon the particular

path chosen. However, in special cases, the integral of a given vector �eld F turns out to

be the same on any path with the same end points; that is, it is independent of the path

chosen. In these cases the vector �eld F is said to be conservative. There is a simple test

which tells us whether or not F is conservative:

F is a conservative vector �eld if

curl F = 0 everywhere

If we are dealing with a two-dimensional vector �eld F(x, y) = P(x, y)i+Q(x, y)j then

this test becomes: F is conservative if
∂P

∂y
=

∂Q

∂x
. (See Question 7 in Exercises 27.5.)

Example 27.5 Show that the vector �eld

F = zex sin yi + zex cos yj + ex sin yk

is a conservative �eld.

Solution We �nd curl F:

∇ × F =

∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

zex sin y zex cos y ex sin y

∣∣∣∣∣∣∣∣

= (ex cos y− ex cos y)i − (ex sin y− ex sin y)j + (zex cos y− zex cos y)k

= 0

We have shown that ∇ × F = 0 and so the �eld is conservative. Note from Section 26.5

that such a �eld is also said to be irrotational.

There are two important properties of conservative vector �elds which we now discuss.

27.5.1 The potential function

It can be shown that any conservative vector �eld, F, can be expressed as the gradient of

some scalar �eld φ. That is, we can �nd a scalar �eld φ such that F = ∇φ. The scalar

�eld φ is said to be a potential function and F is said to be derivable from a potential.
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In three dimensions, if

F = P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k

is conservative, we can write

F = ∇φ

=
∂φ

∂x
i +

∂φ

∂y
j +

∂φ

∂z
k

So

P =
∂φ

∂x
Q =

∂φ

∂y
R =

∂φ

∂z

You should refer back to Example 26.4 where this idea was introduced.

Example 27.6 The vector �eld v is derivable from the potential φ = 2xy+ zx. Find v.

Solution If v is derivable from the potential φ, then v = ∇φ and so

v = ∇φ = (2y+ z)i + 2xj + xk

This vector �eld is conservative as is easily veri�ed by �nding curl v. In fact,

∇ × v =

∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

2y+ z 2x x

∣∣∣∣∣∣∣∣

= 0i − (1 − 1)j + (2 − 2)k

= 0

Indeed, recall from Example 26.10 that curl (grad φ) is identically zero for any φ.

When the vector �eld F is conservative there is an alternative method of evaluating the

line integral
∫
C
F · ds which involves the use of the potential function φ. Consider the

following example.

Example 27.7 The two-dimensional vector �eld F = i + 2j is conservative.

(a) Find a suitable potential function φ such that F = ∇φ =
∂φ

∂x
i +

∂φ

∂y
j.

(b) Evaluate
∫ (3,2)

(0,0)
F · ds along any convenient path.

(c) Find the value of φ at B(3, 2), and the value of φ at A(0, 0), and show that the

difference between these is equal to the value of the line integral obtained in part (b).

Solution (a) We are given that
∂φ

∂x
= 1 so that φ = x + f (y), where f is an arbitrary function

of y. We are also given that
∂φ

∂y
= 2 so that φ = 2y+ g(x), where g is an arbitrary

function of x. It is easy to verify that φ = x+ 2y is a suitable potential function.
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(b) To �nd the line integral we shall choose the straight line path,C, joining (0, 0) and

(3, 2). This has equation y =
2

3
x. The line integral becomes

∫ (3,2)

(0,0)

F · ds =

∫ (3,2)

(0,0)

(i + 2j) · (dxi + dyj)

=

∫ (3,2)

(0,0)

dx+ 2 dy

=

∫ (3,2)

(0,0)

dx+
4

3
dx since dy =

2

3
dx on C

=

∫ x=3

x=0

7

3
dx

=

[
7

3
x

]3

0

= 7

(c) The value of φ at B(3, 2) is 3 + 2(2) = 7. The value of φ at A(0, 0) is 0. Clearly

the difference between these values is 7, the same as the value of the line integral

obtained in part (b).

The result obtained in the previous example is important:

If F is a conservative vector �eld such that F = ∇φ then, for any points A and B,
∫ B

A

F · ds = φ(B) − φ(A)

27.5.2 The line integral around a closed loop

A second important property of conservative �elds arises when the curveC of integration

forms a closed loop. Suppose we evaluate a line integral from A to B �rstly along the

curve C1 and secondly alongC2 as shown in Figure 27.7.

If the �eld, F, is conservative both integrals will yield the same answer, that is
∫

C
1

F · ds =

∫

C
2

F · ds

But
∫

F · ds from A to B = −

∫
F · ds from B to A

Consequently, the line integral around the closed curve A to B and back to A must equal

zero. When the path of integration is a closed curve we use the symbol
∮
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C2

C1

A

B

Figure 27.7

The line integral

∫
F · ds can be

evaluated along different paths

between A and B.

0 1

A

B

C2

C1

1

y

x

Figure 27.8

The path of integration is the curveC1

followed by the lineC2.

to represent the integral. So, for a conservative �eld we have the result
∮

C

F · ds = 0

for any closed curveC.

In summary we have the following results:

For a conservative �eld, F, all the following statements are equivalent:

∇ × F = 0∮
F · ds = 0

∫ B

A

F · ds is independent of the path between A and B

F is derivable from a scalar potential, that is F = ∇φ

Example 27.8 Evaluate∫

C

F · ds

where F is the vector �eld y2i + 2xyj and where:

(a) C = C1 is the curve y = x2 going from A(0, 0) to B(1, 1).

(b) C = C2 is the straight line going from B(1, 1) to A(0, 0).

(c) Deduce that
∮
F · ds = 0 where the closed line integral is taken around the path C1

and thenC2.

Solution The situation is depicted in Figure 27.8.

(a) C1 has equation y = x2 and so dy = 2x dx. Note that we are integrating from A to B.

Therefore
∫

C
1

F · ds =

∫

C
1

(y2i + 2xyj) · (dxi + dyj) =

∫

C
1

y2 dx+ 2xy dy
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Substituting y = x2 and dy = 2x dx we have
∫

C
1

F · ds =

∫

C
1

x4 dx+ (2x)x2(2x dx)

=

∫ x=1

x=0

5x4 dx = [x5]10 = 1

(b) C2 has equation y = x and so dy = dx. Note that this time we are integrating from B

to A. Therefore∫

C
2

F · ds =

∫

C
2

(y2i + 2xyj) · (dxi + dyj) =

∫

C
2

y2 dx+ 2xy dy

Substituting y = x and dy = dx we have
∫

C
2

F · ds =

∫ x=0

x=1

x2 dx+ 2x2 dx =

∫ 0

1

3x2 dx = [x3]01 = −1

(c) Now
∮

F · ds =

∫

C
1

F · ds +

∫

C
2

F · ds = 1 − 1 = 0

The line integral around the closed path is zero because the �eld is conservative.

You should check that ∇ × F = 0 and that a suitable potential function is φ = y2x.

EXERCISES 27.5

1 Verify that the vector �eld

F = (4x3 + y)i + xj is conservative.

2 For the vector �eld

F = y cos xyi + x cos xyj + 2zk �nd ∇ × F and verify

that the �eld is conservative.

3 Consider the �eld F = yi + xj.

(a) Show that F is a conservative �eld.

(b) Find a function φ such that
∂φ

∂x
= y and

∂φ

∂y
= x.

(c) Find a suitable potential function φ for F.

(d) If A is the point (2, 1) and B is the point

(5, 8) evaluate
∫ B
A F · ds.

(e) Find φ at B and φ at A and show that the value of

the line integral calculated in part (d) is equal to

the difference between the values of φ at B and A.

4 Show that the vector �eld,

F = (2xy− y4 + 3)i + (x2 − 4xy3)j, of Question 5 in

Exercises 27.3, is conservative and �nd a suitable

potential function φ from which F can be derived.

Show that the difference between φ evaluated at

B(2, 1) and at A(1, 0) is equal to the value of the line

integral
∫ B
A F · ds.

5 Show that

I =

∫ (1,1)

(−1,−1)

3x2y2 dx+ 2x3y dy

is independent of the path of integration, and evaluate

the integral.

6 The function φ = 4xy is a potential function for

which F = ∇φ.

(a) Find F.

(b) Evaluate
∫
F · ds along the curve y = x3 from

A(0, 0) to B(2, 8).

(c) Evaluate φ at B and at A and show that the

difference between these values is equal to the

value of the line integral obtained in part (b).

7 If F = P(x, y)i + Q(x, y)j + 0k, show that

∇ × F =

(
∂Q

∂x
−

∂P

∂y

)
k. Deduce that if F is

conservative then
∂Q

∂x
=

∂P

∂y
.
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Solutions

3 (b) φ = xy+ c (c) xy+ c (d) 38

4 φ = x2y− y4x+ 3x+ c, 5

5 2

6 (a) F = 4yi + 4xj (b) 64 (c) 64

27.6 DOUBLE AND TRIPLE INTEGRALS

27.6.1 Double integrals

Expressions such as

∫ y=y
2

y=y
1

∫ x=x
2

x=x
1

f (x, y) dx dy

are known as double integrals. What is meant by the above is

∫ y=y
2

y=y
1

(∫ x=x
2

x=x
1

f (x, y) dx

)
dy

where �rstly the inner integral is performed by integrating f with respect to x, treating y

as if it were a constant. The limits of integration are inserted as usual and then the whole

expression is integrated with respect to y between the limits y1 and y2.

It is important that you can distinguish between double integrals and line integrals.

Physically they mean quite different things, and they are evaluated in different ways.

Whilst both types of integral contain terms involving x, y, dx and dy, in a double integral

dx and dy always occur as a product, that is as dx dy. In a line integral they occur sep-

arately. When evaluating a line integral we integrate along a curve. When evaluating a

double integral we integrate over a two-dimensional region.

Double integrals may also be written in the form

∫ ∫

R

f (x, y) dx dy

where R is called the region of integration. The region Rmust be described mathemat-

ically. In the integral

∫ y=y
2

y=y
1

∫ x=x
2

x=x
1

f (x, y) dx dy

R is the rectangular region de�ned by x1 6 x 6 x2, y1 6 y 6 y2. Non-rectangular

regions are also common.

Example 27.9 Sketch the region R de�ned by 1 6 x 6 4 and 0 6 y 6 2.

Solution The region is shown in Figure 27.9.We see that x lies between 1 and 4, and y lies between

0 and 2. Consequently the region is rectangular.



27.6 Double and triple integrals 881

0

4 

3

2 

1

y

1 2

dy

3 4 x

R

Figure 27.9

The rectangular region over which the

integration in Example 27.10 is

performed.

0

4 

3

2 

1

y

1 2

dx

3 4 x

R

Figure 27.10

The integral could have been found by �rst

integrating over a vertical strip such as that

shown.

Example 27.10 Evaluate

∫ y=2

y=0

∫ x=4

x=1

x+ 2y dx dy

over the region, R, given in Example 27.9 and de�ned by 1 6 x 6 4 and 0 6 y 6 2.

Solution The inner integral is found �rst by integrating with respect to x, keeping y �xed, that is

constant.

∫ x=4

x=1

x+ 2y dx =

[
x2

2
+ 2xy

]x=4

x=1

= 8 + 8y−
1

2
− 2y =

15

2
+ 6y

Then the outer integral is found by integrating the result with respect to y:

∫ y=2

y=0

15

2
+ 6y dy =

[
15

2
y+ 3y2

]2

0

= 15 + 12 = 27

Now consider again Example 27.10. By performing the inner integral �rst,

∫ x=4

x=1

x+ 2y dx

we are effectively singling out a horizontal strip, such as that shown in Figure 27.9, and

integrating along it from x = 1 to x = 4. When we then integrate the result from y = 0

to y = 2 we are effectively adding up contributions from all such horizontal strips.

The integral over the same region could also have been performed by integrating �rst

over vertical strips for 0 6 y 6 2 (Figure 27.10) yielding

∫ y=2

y=0

x+ 2y dy = [xy+ y2]
y=2

y=0 = 2x+ 4
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The result is then integrated from x = 1 to x = 4 effectively adding up contributions

from each vertical strip:

∫ x=4

x=1

2x+ 4 dx = [x2 + 4x]41 = 32 − 5 = 27

as expected. We note that

∫ y=2

y=0

∫ x=4

x=1

x+ 2y dx dy =

∫ x=4

x=1

∫ y=2

y=0

x+ 2y dy dx (27.1)

In particular, note the order of dx and dy in Equation (27.1). The simple interchange of

limits is only possible because in this example the region R is a rectangle.

When evaluating a double integral over a rectangular region R, the integration may

be carried out in any order, that is
∫ ∫

R

f (x, y) dx dy =

∫ ∫

R

f (x, y) dy dx

The double integral in Example 27.10 could have the following interpretation. Con-

sider the surface z = x + 2y, for 0 6 y 6 2, 1 6 x 6 4, as shown in Figure 27.11. In

this example the surface is a plane but the theory applies to more general surfaces. The

variable z represents the height of the surface above the point (x, y) in the x--y plane.

For example, consider a point in the x--y plane, say (2, 3), that is x = 2, y = 3. Then at

(2, 3), z = x + 2y = 2 + 2(3) = 8. Thus the point on the surface directly above (2, 3)

is 8 units from (2, 3).

Let us now consider dx dy. We call dx dy an element of area. It is a rectangle with

dimensions dx and dy and area dx dy. Hence z dx dy represents the volume of a rectangu-

lar column of base dx dy. As we integrate with respect to x for 1 6 x 6 4 and integrate

with respect to y for 0 6 y 6 2 we are effectively summing all such volumes. Thus
∫ y=2

y=0

∫ x=4

x=1

x+ 2y dx dy

represents the volume bounded by the surface z = x + 2y and the region R in the x--y

plane.

Example 27.11 Sketch the region R over which we would evaluate the integral
∫ y=1

y=0

∫ x=2−2y

x=0

f (x, y) dx dy

Solution First consider the outer integral. The restriction on ymeans that interest can be con�ned

to the horizontal strip 0 6 y 6 1. Then examine the inner integral. The lower limit on

x means that we need only consider values of x greater than or equal to 0. The upper x

limit depends upon the value of y. If y = 0 this upper limit is x = 2 − 2y = 2. If y = 1

the upper limit is x = 2− 2y = 0. At any other intermediate value of y we can calculate

the corresponding upper x limit. This upper limit will lie on the straight line x = 2− 2y.

With this information the region of integration can be sketched. The region is shown in

Figure 27.12 and is seen to be triangular.
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6 

5 

4 

3 

2

1
0
0

1
2

3
4

d x  dy

x

z

z

y

Figure 27.11

The surface z = x+ 2y, 0 6 y 6 2, 1 6 x 6 4; the

quantity z dx dy is the volume of the rectangular column

with base area dx dy.

y

x

1

0 2

x = 2 – 2y, y = 

dy

2–x ––—
2

Figure 27.12

The region over which the integration in Example 27.12

is performed.

Example 27.12 Evaluate

∫ y=1

y=0

∫ x=2−2y

x=0

4x+ 5 dx dy

over the region described in Example 27.11.

Solution We �rst perform the inner integral

∫ x=2−2y

x=0

4x+ 5 dx

integrating with respect to x. This gives

[2x2 + 5x]
x=2−2y

x=0 = 2(2 − 2y)2 + 5(2 − 2y) − 0

= 8y2 − 26y+ 18

Next we perform the outer integral

∫ y=1

y=0

8y2 − 26y+ 18 dy =

[
8y3

3
−

26y2

2
+ 18y

]1

0

=
8

3
−

26

2
+ 18

= 7.667

The region of integration is shown in Figure 27.12. The �rst integral, with respect to x,

corresponds to integrating along the horizontal strip from x = 0 to x = 2 − 2y. Then

as y varies from 0 to 1 in the second integral, the horizontal strips will cover the entire

region.
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If we wish to change the order in which the integration is carried out, care must be

taken with the limits of a non-rectangular region. Consider again Figure 27.12. The line

x = 2 − 2y can be written as y =
2 − x

2
. We can describe the region R by restricting

attention to the vertical strip 0 6 x 6 2, and then letting y vary from 0 up to
2 − x

2
,

that is

∫ x=2

x=0

∫ y=(2−x)/2

y=0

4x+ 5 dy dx

You should check by evaluating this integral that the same result is obtained as in

Example 27.12.

Example 27.13 Evaluate the double integral of f (x, y) = x2 + 3xy over the region R indicated in Fig-

ure 27.13 by

(a) integrating �rst with respect to x, and then with respect to y,

(b) integrating �rst with respect to y, and then with respect to x.

Solution (a) If we integrate �rst with respect to x we must select an arbitrary horizontal strip as

shown in Figure 27.13 and integrate in the x direction. On OB, y = x so that the

lower limit of the x integration is x = y. On AB, x = 1 so the upper limit is x = 1.

Therefore

∫ x=1

x=y

x2 + 3xy dx =

[
x3

3
+

3x2y

2

]1

y

=

(
1

3
+

3y

2

)
−

(
y3

3
+

3y3

2

)

=
1

3
+

3y

2
−

11y3

6

As y varies from 0 to 1 the horizontal strips will cover the entire region. Hence the

limits of integration of the y integral are 0 and 1. So

∫ y=1

y=0

1

3
+

3y

2
−

11

6
y3 dy =

[
1

3
y+

3

4
y2 −

11y4

24

]1

0

=
1

3
+

3

4
−

11

24

=
15

24

=
5

8

that is,

∫ y=1

y=0

∫ x=1

x=y

x2 + 3xy dx dy =
5

8
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y

x

Ry = x

x = y

x = 1

1

O 1

B

A

dy

Figure 27.13

The integral with respect to x has

limits x = y and x = 1.

y

x

R

y = x

y = 0

1

0 1

B

A

Figure 27.14

We integrate along a vertical strip

from y = 0 to y = x.

(b) If we choose to integrate with respect to y �rst we must select an arbitrary vertical

strip as shown in Figure 27.14. At the lower end of the strip y = 0. At the upper end

y = x.

To integrate along the strip we evaluate

∫ y=x

y=0

x2 + 3xy dy =

[
x2y+

3xy2

2

]x

0

= x3 +
3x3

2
=

5x3

2

We add contributions of all such vertical strips by integrating with respect to x from

x = 0 to x = 1:

∫ 1

0

5x3

2
dx =

[
5x4

8

]1

0

=
5

8

We see that the prudent selection of the order of integration can yield substantial

savings in the effort required.

27.6.2 Triple integrals

The techniques we have used for evaluating double integrals can be generalized natu-

rally to triple integrals. Whereas double integrals are evaluated over two-dimensional

regions, triple integrals are evaluated over volumes.

Example 27.14 Evaluate

I =

∫ x=1

x=0

∫ y=1

y=0

∫ z=1

z=0

x+ y+ z dz dy dx

Solution What is meant by this expression is

I =

∫ x=1

x=0

(∫ y=1

y=0

(∫ z=1

z=0

x+ y+ z dz

)
dy

)
dx
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where, as before, the inner integral is performed �rst, integrating with respect to z, with

x and y being treated as constants. So

I =

∫ x=1

x=0

(∫ y=1

y=0

[
xz+ yz+

z2

2

]1

0

dy

)
dx

=

∫ x=1

x=0

(∫ y=1

y=0

x+ y+
1

2
dy

)
dx

=

∫ x=1

x=0

[
xy+

y2

2
+

1

2
y

]1

0

dx

=

∫ x=1

x=0

x+
1

2
+

1

2
dx

=

[
x2

2
+ x

]1

0

=
3

2

Consideration of the limits of integration shows that the integral is evaluated over a unit

cube.

27.6.3 Green’s theorem

There is an important relationship between line and double integrals expressed in

Green’s theorem in the plane:

If the functions P(x, y) and Q(x, y) are �nite and continuous in a region of the

x--y plane, R, and on its boundary, the closed curve C, provided the relevant par-

tial derivatives exist and are continuous in and onC, then
∮

C

P dx+ Q dy =

∫ ∫

R

(
∂Q

∂x
−

∂P

∂y

)
dx dy

where the direction of integration along C is such that the region R is always to

the left.

The conditions given in the theorem are present for mathematical completeness. Most

of the functions that engineers deal with satisfy these conditions, and so we will not

consider these further. The important thing to note is that this relationship states that a

line integral around a closed curve can be expressed in terms of a double integral over

the region, R, enclosed byC.

Example 27.15 (a) Evaluate
∮
C
xy dx + x2 dy around the sides of the square with vertices D(0, 0),

E(1, 0), F(1, 1) and G(0, 1).

(b) Convert the line integral to a double integral and verify Green’s theorem.
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Solution (a) The path of integration is shown in Figure 27.15. To apply Green’s theorem the

path of integration should be followed in such a way that the region of integration

is always to its left. We must therefore travel anticlockwise aroundC.

On DE, y = 0, dy = 0 and 0 6 x 6 1.

On EF, x = 1, dx = 0 and 0 6 y 6 1.

On FG, y = 1, dy = 0 and x decreases from 1 to 0.

On GD, x = 0, dx = 0 and y decreases from 1 to 0.

10

1

x

E

FG

D

R

y

Figure 27.15

The pathC is chosen so

that the region R is

always to its left.

The integral around the curveC can then be written as

∮

C

=

∫ E

D

+

∫ F

E

+

∫ G

F

+

∫ D

G

Therefore

∮

C

xy dx+ x2 dy = 0 +

∫ 1

0

1 dy+

∫ 0

1

x dx+ 0

= [y]10 +

[
x2

2

]0

1

= 1 −
1

2

=
1

2

(b) Applying Green’s theorem with P(x, y) = xy and Q(x, y) = x2 we can convert the

line integral into a double integral. Note that
∂Q

∂x
= 2x and

∂P

∂y
= x. Clearly the

region of integration is the square R. We �nd

∮

C

xy dx+ x2 dy =

∫ ∫

R

(2x− x) dx dy

=

∫ 1

0

∫ 1

0

x dx dy

=

∫ 1

0

[
x2

2

]1

0

dy

=

∫ 1

0

1

2
dy

=

[
1

2
y

]1

0

=
1

2

We see that the same result as that in part (a) is obtained and so Green’s theorem

has been veri�ed.
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EXERCISES 27.6

1 Evaluate

(a)

∫ 1

0

∫ 3

0

z2 dx dz (b)

∫ 4

0

∫ 2

0

x dy dz

(c)

∫ 2

1

∫ 3

2

x2y+ 1 dx dy (d)

∫ 1

−1

∫ 3

2

y

x
dx dy

2 R is the shaded region shown in Figure 27.16.

Evaluate
∫∫
Rx+

√
y dx dy

(a) performing the integration with respect to x �rst,

(b) performing the integration with respect to y �rst.

0 1

4

y

2

2 x

y = x2

Figure 27.16

The region of integration for Question 2.

3 Evaluate
∫∫
R(5x2 + 2y2) dx dy where R is the interior

of the triangular region bounded by

A(1, 1), B(2, 0) and C(2, 2).

4 (a) Sketch the region of integration of the double

integral
∫ 3

1

∫ √
4−y

1

y dx dy

(b) Evaluate the integral by �rst reversing the order

of integration.

5 Evaluate
∫ 1

−1

∫ 5

1

(x2 + y2) dx dy

6 Evaluate
∫ ∫

R

(x2 + y2) dx dy

over the triangular region R with vertices at

(0, 0), (2, 0) and (1, 1).

7 Evaluate
∫

R

(x+ 2y)−1/2 dx dy

over the region R given by x− 2y 6 1 and

x > y2 + 1.

8 Evaluate
∮
C(sin x+ cos y) dx+ 4ex dy whereC is the

boundary of the triangle formed by the points (1, 0),

(3, 0) and (3, 2). By converting this line integral into a

double integral, verify Green’s theorem.

9 Evaluate the line integral
∮

C

(x+ y) dx+ 3xy dy

whereC is the boundary of the triangle formed by the

points (0, 0), (2, 0) and (0, 5). Express the line integral

in terms of an appropriate double integral and

evaluate this. Verify Green’s theorem.

Solutions

1 (a) 1 (b) 8x (c) 10.5 (d) 0

2 (a)
20

3
(b)

20

3

3
33

2

4 (b) 1.354 35

5
256

3

6
4

3

7
2

3
. The region R is shown in Figure S.26.

0 1

2

y

x

x = y2 + 1

1

2 3 4 5

y = – x–
2

1–
2

Figure S.26

8 92.306

9 20
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27.7 SOME SIMPLE VOLUME AND SURFACE INTEGRALS

Volume and surface integrals arise frequently in electromagnetism and fluid mechan-

ics. We will illustrate these concepts through some simple examples. For a thorough

treatment of more general cases you will need to refer to a more advanced text.

Engineering application 27.3

The mass of a solid object

Consider a solid object such as that shown in Figure 27.17. The density, ρ, of this

object may vary from point to point. So, at any point P with coordinates (x, y, z), the

density is a function of position, that is ρ = ρ(x, y, z). Since density is a scalar, this

is an example of a scalar �eld, like those discussed in Section 7.4.

Suppose we select a very small piece of this object having volume δV and located

at P(x, y, z). Recall from elementary physics that

density =
mass

volume
Then the mass of this small piece, δm, is given by

δm = ρ δV

If we wish to calculate the total mass, M, of the object we must sum all such contri-

butions from the entire volume. This is found by integrating throughout the volume.

We write this as

total mass, M =

∫

V

ρ dV

This is an example of a volume integral, so called because the integration is per-

formed throughout the volume. It will usually take the form of a triple integral such

as those discussed in Section 27.6.2. Technically, there are three integral signs, but

for brevity these have been replaced by the single
∫
V
where it is to be understood that

the integral is to be performed over a volume. In any speci�c problem care must be

taken to ensure that the entire volume is included when the integration is performed.

For example, consider the case of a solid cube with sides of length 1 unit. Let

one corner be positioned at the origin and let the edges coincide with the positive

x, y and z axes. Suppose the density of the cube varies from point to point, and is

given by ρ(x, y, z) = x+ y+ z. Then the integral which gives the mass of the cube is∫
V
(x + y + z) dV , where the volume V is the region occupied by the cube. This

integral has been evaluated in Example 27.16 and found to be 3
2
, representing the

mass of the cube.

P (x, y, z )

volume  V

volume  dV

density r (x,  y , z )

Figure 27.17

The total mass of a body is found by

summing, or integrating, throughout

the whole volume.
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Engineering application 27.4

The electric charge enclosed in a region

Suppose electric charge is distributed throughout a volume, V , and at any point has

charge density ρ(x, y, z). Charge density is a scalar �eld.

Suppose we select a very small portion having volume δV and located at P(x, y, z)

as shown in Figure 27.18. The charge in this portion, δQ, is given by

δQ = ρ δV

If we wish to calculate the total charge enclosed within the volume, we must sum all

such contributions from the entire volume. This is found by integrating throughout

the volume. We write this as

total charge, Q =

∫

V

ρ dV

This is another example of a volume integral.

P (x, y, z )

volume  V

volume dV

r (x,  y, z )charge density

Figure 27.18

The total charge enclosed is found by

summing, or integrating, throughout

the whole volume.

Engineering application 27.5

Fluid flow across a surface

Figure 27.19(a) represents the motion of a body of fluid throughout a region. At any

point P(x, y, z) fluid will be moving with a certain speed in a certain direction. So,

each small fluid element has a particular velocity v, which varies with position, that

is v = v(x, y, z). This is an example of a vector �eld, as discussed in Section 7.4.

v =  v(x,  y, z)

P (x,  y, z)

small portion of surface dS

v =  v(x,  y, z)

surface S

dS

(a)                                                                 (b)

Figure 27.19

The vector �eld v represents fluid velocity and S is an imaginary surface through which the

fluid flows.
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In Figure 27.19(b) we have placed an imaginary surface, S, within the flow and

it is reasonable to ask ‘what is the volume of fluid which crosses this surface in

any given time?’ Suppose we select a very small portion of the surface having area

δS. Note that δS is a scalar. We can also de�ne an associated vector δS, which has

magnitude δS and whose direction is normal to this portion of the surface. The

component of fluid velocity in the direction of δS is given by the scalar product

v · δ̂S where δ̂S is a unit vector in the direction of δS. The volume of fluid cross-

ing this portion each second is v · δS. This is also known as the flux of v. If we

wish to calculate the total flux through the surface S we must sum all such contribu-

tions over the entire surface. This is found by integrating over the surface. We write

this as

volume flow per second = total flux =

∫

S

v · dS

This is an example of a surface integral, so called because we must integrate over

a surface. It will usually take the form of a double integral such as those discussed

in Section 27.6.1. Technically, there are two integral signs, but for brevity these have

been replaced by the single
∫
S
where it is to be understood that the integral is to be

performed over the surface S. In any speci�c problem care must be taken to ensure

that the entire surface is included when the integration is performed. The double

integrals evaluated in Section 27.6 are special cases of surface integrals, in which the

surface is a plane region (the x--y plane).

For example, suppose the velocity �eld is given by v = (x+2y)k. This represents

a flow in the z direction whose magnitude varies with x and y. Suppose S is the

plane surface de�ned by 1 6 x 6 4, 0 6 y 6 2, z = 0. This surface is shown in

Figure 27.20. Note that the normal to this surface is parallel to the z axis and so we

can write dS = dx dyk. Then

v · dS = (x+ 2y)k · dx dyk

= (x+ 2y) dx dy

y =  2

y =  0
x =  1

x =  4

x

y

v = (x + 2y)k

S

dS =  dx dy k

z

0

Figure 27.20

The vector �eld v represents

fluid flowing across the

surface S. The integral over

the surface of v · dS gives the

volume flow per second

across S.

➔
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The surface integral which gives the flux of v through S is
∫ y=2

y=0

∫ x=4

x=1

(x+ 2y) dx dy

Note how the limits of integration are chosen so that contributions from the whole

surface are included. This integral has already been evaluated in Example 27.10 and

found to be 27. This represents the volume flow per second through S.

Engineering application 27.6

Electric current density

Electric current is the flow of electric charges. Figure 27.21 represents an electric

current flowing across a surface S.

If ρ(x, y, z) is the charge density at a point, that is the charge per unit volume, and

v(x, y, z) is the velocity of the charges, then the quantity J de�ned as

J = ρv

is called the current density and has units of amperes per square metre. Suppose

we select a very small portion of the surface having area δS. Note that δS is a scalar.

Suppose we de�ne a vector, δS, which has magnitude δS and which is normal to this

portion of surface. The component of current density in the direction of δS is given

by the scalar product J · δ̂S. The current crossing this portion is J · δS. If we wish to

calculate the total current, I, through the surface S we must sum all such contribu-

tions over the entire surface. This is found by integrating over the surface. We write

this as

current, I =

∫

S

J · dS

This is an example of a surface integral.

small portion of surface dS

J =  J (x,  y, z )

surface  S

dS Figure 27.21

The electric current through a surface is

obtained using a surface integral.

Note that this surface integral involves integrating a current density with units of

amperes per square metre over an area with units of square metres. Therefore the

result is a quantity with units of amperes and so the units balance on both sides of

the equation.
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Engineering application 27.7

Electric flux and Gauss’s law

Electric charges produce an electric �eld, E, which can be visualized by drawing

lines of force. Suppose we surround a region containing charges with a surface S.

The flux of E through S is a measure of the number of lines of force passing through

it. The flux is given by

flux =

∫

S

E · dS

Gauss’s law states that the total flux out of any closed surface is proportional to the

total charge enclosed. So consider a closed surface in free space, enclosing a volume

V . The total charge enclosed in V is given by the volume integral

total charge =

∫

V

ρ dV

Gauss’s law then states:∮

S

E · dS =
1

ε0

∫

V

ρ dV

where ε0 is the permittivity of free space. The notation
∮
indicates that the surface is

a closed surface. Note how a surface integral can be expressed as a volume integral.

This relationship is generalized in the divergence theorem in the following section.

Example 27.16 A vector �eld is given by v = x2i + 1
2
y2j + 1

2
z2k.

(a) Find div v.

(b) Evaluate
∫
V
div v dV where V is the unit cube 0 6 x 6 1, 0 6 y 6 1, 0 6 z 6 1.

Solution (a) div v = 2x+ y+ z.

(b) We seek
∫
V
(2x + y + z) dV where V is the given unit cube. The small element of

volume dV is equal to dz dy dx. With appropriate limits of integration the integral

becomes

∫ x=1

x=0

∫ y=1

y=0

∫ z=1

z=0

(2x+ y+ z) dz dy dx

This is a triple integral of the kind evaluated in Section 27.6.2:

∫ x=1

x=0

∫ y=1

y=0

∫ z=1

z=0

(2x+y+z) dz dy dx =

∫ x=1

x=0

∫ y=1

y=0

[
2xz+ yz+

z2

2

]1

0

dy dx

=

∫ x=1

x=0

∫ y=1

y=0

(
2x+ y+

1

2

)
dy dx

=

∫ x=1

x=0

[
2xy+

y2

2
+
y

2

]1

0

dx
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=

∫ x=1

x=0

2x+ 1 dx

= [x2 + x]10

= 2

Example 27.17 Evaluate
∮
S
v · dS where v = x2i + 1

2
y2j + 1

2
z2k and where S is the surface of the unit

cube 0 6 x 6 1, 0 6 y 6 1, 0 6 z 6 1. The vector dS should be drawn on each of the

six faces in an outward sense.

Solution The cube is shown in Figure 27.22. We evaluate the surface integral over each of the six

faces separately and then add the results.

On surface A, x = 1 and 0 6 y 6 1, 0 6 z 6 1. dS is a vector normal to this surface,

drawn in an outward sense, and so we can write it as dy dz i. Then

v · dS =
(
x2i + 1

2
y2j + 1

2
z2k
)

· dy dz i

= x2 dy dz

= dy dz since on A, x = 1

The required surface integral over A is then

∫ z=1

z=0

∫ y=1

y=0

1 dy dz =

∫ z=1

z=0

[y]10 dz

= 1

On surface B, x = 0 and 0 6 y 6 1, 0 6 z 6 1. dS is a vector normal to this surface and

so we can write it as −dy dz i. Then v · dS becomes −x2 dy dz = 0 since x = 0. Over this

surface, the integral is zero.

You should verify in a similar manner that over each of C and E the integral is 1
2
,

whilst integrals over D and F are zero. The total surface integral is then 2.

dS = dydz i

dy

dz

on A,

dx
dz

dx

dy

dS = dxdz jon C,

dS = dxdy kon E,

x

y

z

x =  1

y =  1

z =  1

A

B

C

D

E

F
Figure 27.22

The integral is evaluated over

all six surfaces.
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EXERCISES 27.7

1 Given F = −yi − xk evaluate
∮
S F · dS where S is the

surface of a unit cube 0 6 x 6 1, 0 6 y 6 1,

0 6 z 6 1.

2 Given F = 6xy2z2k evaluate
∫
S F · dS where S is the

plane surface z = 2, 0 6 x 6 2, 0 6 y 6 2. Take the

direction of the vector element of area to be k.

3 Evaluate the volume integral
∫
V 6x dV where V is the

parallelepiped 0 6 z 6 2, 0 6 x 6 1, 0 6 y 6 3.

4 Evaluate
∫
V 1 + z dV where V is a unit cube

0 6 x 6 1, 0 6 y 6 1, 0 6 z 6 1.

Solutions

1 0

2 128

3 18

4 3
2

27.8 THE DIVERGENCE THEOREM AND STOKES’ THEOREM

There are a number of theorems in vector calculus which allow line, surface and volume

integrals to be expressed in alternative forms. One of these, Green’s theorem, has been

described in Section 27.6.3. This allows a line integral to be written in terms of a double

integral. Now we give details of the divergence theorem and Stokes’ theorem.

27.8.1 The divergence theorem

The divergence theorem relates the integral over a volume, V , to an integral over the

closed surface, S, which surrounds that volume, as illustrated in Figure 27.23.

When calculating such surface integrals vectors drawn normal to the surface should

always be drawn in an outward sense, that is away from the enclosed volume. Recall

that when a surface is closed the symbol for a surface integral is
∮
S
.

The divergence theorem:
∮

S

v · dS =

∫

V

div v dV

Example 27.18 Verify the divergence theorem for the vector �eld v = x2i + 1
2
y2j + 1

2
z2k over the unit

cube 0 6 x 6 1, 0 6 y 6 1, 0 6 z 6 1.

Solution Firstly we need to evaluate
∮
S
v · dS where S is the surface of the cube. This integral has

been calculated in Example 27.17 and shown to be 2.

Secondly we need to calculate
∫
V
div v dV over the volume of the cube. This has been

done in Example 27.16 and again the result is 2.

We have veri�ed the divergence theorem that
∮
S
v · dS =

∫
V
div v dV .
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surface  S

outwardly drawn normal

dS

volume V

Figure 27.23

The divergence theorem relates a volume integral

to a surface integral.

open surface S

bounding curve C

dS

Figure 27.24

An open surface S with bounding

curveC.

27.8.2 Stokes’ theorem

Stokes’ theorem relates the integral over an open surface, S, to a line integral around a

closed curve, C, which bounds that surface such as that shown in Figure 27.24.

When a surface is open we adopt the following convention when drawing vectors

normal to the surface. When the direction of the normal vector has been speci�ed, use

the right-hand screw rule to obtain a sense of turning around the normal vector, as shown

in Figure 27.24. Imagine nowmoving the circle which surrounds the normal vector along

the surface until it just meets the curve C. Transfer its sense of turning to the curve C.

When calculating the line integral around the curveC, it should be traversed in the same

sense.

Speci�cally consider the two open surfaces shown in Figure 27.25. In both cases we

are considering cubes. In the �rst case the cube has no top face. In the second case the

cube has no bottom face. Drawing vector dx dz j note that the sense of turning required by

the right-hand screw rule is that shown. The curveC must be traversed in the directions

shown.

Recall that when a curve is closed the symbol for a line integral is
∮
C
.

x

y

z

C

C

dS = dx dz jdS = – dx dz j

dS = – dx dy k

x

y

z

dS = dx dz jdS = – dx dz j

dS = dx dy k

Figure 27.25

The right-hand screw rule gives the direction in whichC must be traversed.
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Stokes’ theorem:∮

C

v · dr =

∫

S

curl v · dS

Here dr is an element of length along the curveC. Recall that dr = dxi+ dyj+ dzk.

We have used the symbol dr rather than ds as we did in Section 27.2 to avoid confusion

with the element of area dS.

Example 27.19 A cube of side 2 units is constructed with �ve solid faces and one open face. It is located

in the region de�ned by 0 6 x 6 2, 0 6 y 6 2, 0 6 z 6 2 and its open face is its top

face, bounded by the curveC, lying in the plane z = 2, as shown in Figure 27.26.

Throughout this region a vector �eld is given by

v = (x+ y)i + (y+ z)j + (x+ z)k

(a) Evaluate
∮
C
v · dr.

(b) Evaluate curl v.

(c) Evaluate
∫
S
curl v dS, and verify Stokes’ theorem.

Solution (a) The open face is highlighted in Figure 27.26. It is bounded by the curve C around

which the line integral
∮
C
v · drmust be performed in the sense shown. In this plane

z = 2 and dz = 0, and hence

v · dr = (x+ y) dx+ (y+ 2) dy

We perform the line integral aroundC in four stages.

On I, x = 0, dx = 0 and hence v · dr = (y+ 2) dy. Noting that y varies from 0 to

2, the contribution to the line integral is

∫ 2

0

y+ 2 dy =

[
y2

2
+ 2y

]2

0

= 6

x

y

z

x =  2

y =  2

z =  2  bounding curve CI

II

III

IV

A

B

C

D

E

F

dS = dx dz jdS = dx dz j

dS = dx dy k

Figure 27.26

A cubical box with open top bounded by curveC.
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On II, y = 2, dy = 0 and hence v · dr = (x + 2) dx. Noting that x varies from 0

to 2, the contribution to the line integral is

∫ 2

0

x+ 2 dx =

[
x2

2
+ 2x

]2

0

= 6

On III, x = 2, dx = 0 and hence v · dr = (y + 2) dy. Here y varies from 2 to 0.

This contribution to the line integral is

∫ 0

2

y+ 2 dy =

[
y2

2
+ 2y

]0

2

= −6

On IV, y = 0, dy = 0 and hence v · dr = x dx. Here x varies from 2 to 0. The

contribution to the line integral is

∫ 0

2

x dx =

[
x2

2

]0

2

= −2

Putting all these results together we �nd
∮

C

v · dr = 6 + 6 − 6 − 2 = 4

(b) curl v =

∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

x+ y y+ z x+ z

∣∣∣∣∣∣∣∣
= −i − j − k

(c) Now we calculate the surface integral which must be performed over the �ve solid

surfaces separately. Refer to Figure 27.26. On surface A, the front face lying in the

plane x = 2, dS = dy dz i. Hence curl v · dS = −dy dz. Then

∫

A

curl v · dS =

∫ z=2

z=0

∫ y=2

y=0

−dy dz

=

∫ z=2

z=0

[−y]20 dz

=

∫ z=2

z=0

−2 dz

= [−2z]20

= −4

On B, the back face lying in the plane x = 0, dS = −dy dz i. It follows that

curl v · dS = dy dz. The required integral over B is

∫ z=2

z=0

∫ y=2

y=0

dy dz = 4

On C, the right-hand face, dS = dx dz j. Hence curl v · dS = −dx dz. The required

integral over C is

∫ z=2

z=0

∫ x=2

x=0

−dx dz = −4
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Similarly, on D, the left-hand face, dS = −dx dz j. Hence curl v · dS = dx dz. The

required integral over D is
∫ z=2

z=0

∫ x=2

x=0

dx dz = 4

On surface F , the base, z = 0 and dS = −dx dyk. Hence curl v · dS = dx dy. The

required integral over F is
∫ y=2

y=0

∫ x=2

x=0

dx dy = 4

Recall that the top surface E is open, and so we have completed the surface integrals.

Finally, putting these results together,
∫

S

curl v · dS = −4 + 4 − 4 + 4 + 4 = 4

Note from part (a) that this equals
∮
v · dr and so we have veri�ed Stokes’ theorem.

EXERCISES 27.8

1 Verify Stokes’ theorem for the �eld v = xyi + yzj

where S is the surface of the cube 0 6 x 6 1,

0 6 y 6 1, 0 6 z 6 1 and the face z = 0 is open.

2 If v = 3x2i + xyzj − 5zk verify Stokes’ theorem

where S is the surface of the cube 0 6 x 6 1,

0 6 y 6 1, 0 6 z 6 1 and the face z = 0 is open.

3 Suppose v = x3i − 3x2y2z2j + (7x+ z)k and S is the

surface of a cube of side 2 units lying in the region

0 6 x 6 2, 0 6 y 6 2, 0 6 z 6 2 with an open top in

the plane z = 2. Verify Stokes’ theorem for this �eld.

4 Consider a cube given by 0 6 x 6 1, 0 6 y 6 1,

1 6 z 6 2, above the surface z = 1. Suppose the

surface z = 1 is the only open face. Let S be the

surface of this cube. Verify Stokes’ theorem for the

�eld v = yi + (x− 2xz)j − xyk. TakeC as the square

with corners (0, 0, 1), (1, 0, 1), (1, 1, 1), (0, 1, 1) in

the plane z = 1.

5 Consider that part of the positive octant, that is where

x, y and z are all positive, bounded by the planes

x = 0, y = 0, z = 0 and x+ y+ 2z = 2. Assume that

the tetrahedron so formed has three solid faces, and

one open face on the plane x+ y+ 2z = 2. Verify

Stokes’ theorem for the �eld v = x2i − 2xzk. TakeC

as the triangle (2, 0, 0), (0, 2, 0) and (0, 0, 1).

Solutions

When calculating the relevant line and surface integrals

the sign of the result depends upon the orientation of

the curveC.

1
∮
v · dr = ± 1

2

2
∮
v · dr = 0

3
∮
v · dr = ±128

4 ±2

5 ± 2
3

27.9 MAXWELL’S EQUATIONS IN INTEGRAL FORM

In Section 26.7Maxwell’s equations were stated as examples of the application of vector

calculus. In fact, alternative integral forms of these equations are often more useful and

these are given here for completeness.
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Equation 1∮

S

D · dS =

∫

V

ρ dV

whereD = electric flux density, and ρ is electric charge density. Note that the r.h.s. is the

total charge enclosed by the volumeV . This equation states that the total flux crossing a

closed surface S which encloses a volume V is equal to the total charge enclosed by the

surface. This is also the integral form of Gauss’s law. (See Engineering application 27.7

which is obtained by letting D = ε0E.)

Equation 2∮

S

B · dS = 0

where B = magnetic flux density. This law states that the net magnetic flux crossing

any closed surface is zero. So whilst charges can be thought of as sources or sinks of

electric flux, there are no equivalent sources or sinks of magnetic flux.

Equation 3∮

C

E · dr = −
∂

∂t

∫

S

B · dS

Note that in the theory of electrostatics, differentiating partially with respect to time

always yields zero, and so this equation reduces to

∮

C

E · dr = 0. This is a condition

discussed in Section 27.5 and con�rms that an electrostatic �eld is a conservative �eld.

Equation 4∮

C

H · dr =
∂

∂t

∫

S

D · dS +

∫

S

J · dS

This is the integral form of Ampère’s circuital law. The closed curveC bounds an open

surface S. A current with density
∂D

∂t
+ J flows through the surface S.

EXERCISES 27.9

1 Starting with Maxwell’s equation ∇ ·D = ρ, by

integrating both sides over an arbitrary volume V and

using the divergence theorem obtain Equation 1

above.

2 Starting with Maxwell’s equation ∇ ·B = 0, by

integrating both sides over an arbitrary volume V and

using the divergence theorem obtain Equation 2

above.

3 Starting with the equation ∇ × E = 0 for static

electric �elds, use Stokes’ theorem to show that∮
E · dr = 0.

4 Starting from ∇ × H =
∂D

∂t
+ J and using Stokes’

theorem obtain Equation 4.

5 In magnetostatics

(
∂

∂t
= 0

)
, Ampère’s law (or the

magnetic circuit law) states:
∮

C

H · dr = I

where I is the current enclosed by the closed pathC.

Obtain this law from Equation 4 and using∫
S J · dS = I.
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REVIEW EXERCISES 27

1 Find
∫
C(2x− y) dx+ xy dy along the straight line

joining (−1, −1) and (1, 1).

2 Find
∫
C(2x+ y) dx+ y3 dy

(a) along the curve y = x3 between (1, 1) and (2, 8),

and

(b) along the straight line joining these points.

3 If F = 3xyi + 2ex yj �nd
∫
C F · ds whereC is the

straight line y = 2x+ 1 between (1, 3) and (4, 9).

4 Show that the �eld F = (2x+ 1)yi + (x2 + x+ 1)j is

conservative and �nd a suitable potential function φ.

5 Find
∮
C(x2i + 4xyj) · ds whereC is a closed path in

the form of a triangle with vertices at

(0, 0), (3, 0) and (3, 5).

6 Find
∫ y=3
y=0

∫ x=2
x=1 (3x− 5y) dx dy.

7 Find
∫ y=2
y=0

∫ x=1+y
x=0

(2y+ 5x) dx dy.

8 Find∫ x=2
x=0

∫ y=1
y=0

∫ z=3
z=0 (x2 + y2 + z2) dz dy dx.

9 Evaluate
∫∫
R(4y+ x2) dx dy where R is the interior of

the square with vertices at (0, 0),

(4, 4), (0, 4) and (4, 0).

10 Evaluate
∮
C ey dx+ ex dy whereC is the boundary

of the triangle formed by the lines y = x, y = 5

and x = 0. By converting this line integral into a

double integral verify Green’s theorem in the

plane.

11 The region R is bounded by the y axis and the lines

y = x and y = 3 − 2x.

(a) Sketch the region R.

(b) Find the volume between the surface z = xy+ 1

and the region R.

12 The region R is shown in Figure 27.27.

The vector �eld F is given by

F = y2i + 3xyj

(a) Evaluate
∮
C F · ds whereC is the curve enclosing

the region R.

(b) Verify Green’s theorem in the plane.

(c) The surface, z(x, y), is given by z = 1 + x+ xy.

Calculate the volume under the surface and above

the region R.

13 The region R is bounded by the x axis and the curve

y = 8 + 2x− x2.

(a) Sketch R.

(b) Evaluate
∫∫
R3x+ 2y dx dy

14 Evaluate

(a)
∫ 0
−1

∫ 4
3 3xy dx dy

(b)
∫ 3
2

∫ 2
0 4 + x− y dy dx

(c)
∫ 1
0

∫ 4
2y x

2 + y2 dx dy

(d)
∫ −1
−2

∫ x3
0 1 dy dx

15 Sketch the regions of integration of the double

integrals in Question 14.

16 If a, b, c and d are constants show that

∫ d

c

∫ b

a

f (x)g(y) dx dy

is identical to
[∫ b

a

f (x) dx

] [∫ d

c

g(y) dy

]

30

9

x

C R

y

y = 9 – x2

Figure 27.27

The region R for Question 12.

Solutions

1 2
3

2 (a) 1030.5 (b) 1031.25

3 1666.37

4 φ = x2y+ yx+ y+ c
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5 50

6 −9

7 31

8 28

9 640
3

10 −452.239

11 (b) 17
8

12 (a) 64.8 (c) 99

13 (b) 367.2

14 (a) − 21
4 (b) 11 (c) 21.5

(d) − 15
4
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28.1 INTRODUCTION

Probability theory is applicable to several areas of engineering. One example is relia-

bility engineering which is concerned with analysing the likelihood that an engineering

system will fail. For most systems calculating the exact time of failure is not feasible

but it is often possible to obtain a good estimate of whether or not a system will fail in

a certain time interval. This is useful information to have for any engineering system,

but it is vital if the failure of the system results in the possibility of injury or loss of life.

Examples include the failure of high-voltage switchgear so that the casing becomes live,

or electrical equipment producing a spark while being used underground in a mine.

Probability theory is also used extensively in production engineering, particularly in

the �eld of quality control. No manufacturing process produces components of exactly

the same quality each time. There is always some variation in quality and probability

theory allows this variation to be quanti�ed. This enables some predictability to be in-

troduced into the activity of manufacturing and gives an engineer the con�dence to say

components of a certain quality can be supplied to a customer.

A �nal example is in the �eld of communication engineering. Communication chan-

nels are subject to noise which is random in nature and so is most successfully modelled

using probability theory. We will examine some of these concepts in more detail in this

chapter.
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28.2 INTRODUCING PROBABILITY

Consider a machine which manufactures electronic components. These must meet a cer-

tain speci�cation. The quality control department regularly samples the components.

Suppose, on average, 92 out of 100 components meet the speci�cation. Imagine that a

component is selected at random and let A be the outcome that a component meets the

speci�cation; let B be the outcome that a component does not meet the speci�cation.

Then we say the probability of A occurring is
92

100
= 0.92 and the probability of B

occurring is
8

100
= 0.08. The probability is thus a measure of the likelihood of the

occurrence of a particular outcome. We write

P(A) = probability of A occurring = 0.92

P(B) = probability of B occurring = 0.08

B = A

A

E

Figure 28.1

A: a component meets

the speci�cation. B = A:

a component fails to

meet the speci�cation.

We note that the sum of the probabilities of all possible outcomes is 1. The process of

selecting a component is called a trial. The possible outcomes are also called events.

In this example there are only two possible events, A and B. We can depict this situa-

tion using a Venn diagram as shown in Figure 28.1. Recall from Section 5.2 that Venn

diagrams are used to depict sets. In this diagram we are depicting the events A and B as

sets. The set of all possible outcomes is called the sample space and is represented by

the universal set E. The set A represents the event that a component meets the speci�-

cation. The set B represents the event that a component fails to meet the speci�cation.

In this instance, when a trial takes place there are only two possible outcomes, either a

component meets the speci�cation or it does not; that is, either event A occurs or event

B occurs. An alternative notation is to write

B = A

where A is said to be the complement of A. We could also write

A = B

When a bar appears over a set then we say, for example, ‘not A’, or ‘not B’.

We now seek to de�ne probability in a more formal way. Let E be an event. We wish

to obtain the probability that E will occur, that is P(E ), when a trial takes place. In order

to do so we repeat the trial a large number of times, n. We count the number of times

that event E occurs, denoted by m. We then conclude that

P(E ) =
m

n
(28.1)

The larger the number of trials that take place, the more con�dent we are of our estimate

of the probability of E occurring. For example, consider the trial of tossing a coin. If

we wish to calculate the probability of a head occurring then measuring the results of

1000 tosses of the coin is likely to yield a more accurate estimate than measuring the

results of 10 tosses of the coin. Various consequences flow from Equation (28.1). The

number of times E occurs must be non-negative and less than or equal to the number of

trials, that is 0 6 m 6 n. So,

0 6 P(E ) 6 1



28.2 Introducing probability 905

If m = 0, corresponding to event E never occurring in n trials, then

P(E ) =
0

n
= 0

We conclude that E is an impossible event.

If m = n, corresponding to event E always occuring in n trials, then

P(E ) =
n

n
= 1

We deduce that E is a certain event.

If P(E ) > 0.5 then we conclude that E is more likely to occur than not.

The approach to de�ning probability that we have adopted so far is essentially exper-

imental. We carry out a series of trials and measure the probability of an event occurring.

Sometimes it is possible to deduce the probability of an event purely from theoretical

considerations. Consider again the trial of tossing a coin. If the coin is fair then de�ning

H to be the event that the coin lands with the head facing up we can easily deduce that

P(H) = 0.5

because we intuitively recognize that a head has the same likelihood of occurring as a

tail. Similarly, if we roll a fair die -- die is the singular of dice -- and E is the event that

a 6 is obtained, then P(E ) =
1

6
.

Suppose there are two possible outcomes, E1 and E2, of a trial. Then

P(E1) + P(E2) = 1

If a trial has n possible outcomes, E1,E2, . . . ,En, then

P(E1) + P(E2) + · · · + P(En) = 1

The sum of the probabilities of all possible outcomes is 1, representing the total

probability.

28.2.1 Compound event

Consider the situation of rolling a fair die. It is possible to de�ne a variety of events

or outcomes associated with this trial. We choose to de�ne two events, E1 and E2, as

follows:

E1 : a 1, 2, 3 or 4 is obtained

E2 : an even number is obtained

So,

E1 = {1, 2, 3, 4}

E2 = {2, 4, 6}

Now the universal set is

E = {1, 2, 3, 4, 5, 6}

which embraces all possible outcomes.

Suppose we now de�ne the event E3 as

E3 : E1 occurs and E2 occurs



906 Chapter 28 Probability

The event E3 is known as a compound event and only occurs when both E1 and E2 occur

at the same time. Using set notation we can write

E3 = E1 ∩ E2

= {1, 2, 3, 4} ∩ {2, 4, 6}

= {2, 4}

So E3 occurs when a 2 or a 4 is rolled. Hence E1 ∩E2 can occur in two out of six equally

likely ways. Therefore,

P(E3) = P(E1 ∩ E2) =
2

6
=

1

3

Figure 28.2 shows a Venn diagram for this example.

E1

1
3

2
4

6

5

E2

E

Figure 28.2

E1 ∩ E2 corresponds to

the compound event E1
occurs and E2 occurs.

We could also de�ne the compound event E4 as

E4 : E1 occurs or E2 occurs

The event E4 occurs when either E1 occurs or E2 occurs, or both. We can write

E4 = E1 ∪ E2

= {1, 2, 3, 4} ∪ {2, 4, 6}

= {1, 2, 3, 4, 6}

So,

P(E4) = P(E1 ∪ E2) =
5

6

If events A and B both occur then this compound event is denoted A ∩ B.

If either event A or event B occurs then this compound event is denoted A ∪ B.

Engineering application 28.1

Power supply to a computer

Computers used in the control of life-critical systems often have two separate power

supplies. If one power supply fails then the other takes over. Let E1 be the event that

power supply 1 fails, and let E2 be the event that power supply 2 fails. For the power

supply to the computer to fail completely the compound event E1 and E2 must occur,

that is E1 ∩ E2 occurs.

A system such as this is said to have dual modular redundancy. One of the

dif�culties with such a system is in determining which system is operating correctly

and which unit is switched to being the active one. In some situations it is necessary

to have three systems operating in parallel and then using a voting system to decide

on the correct output. This way the decision is taken based on the majority of the

three systems, that is, when at least two out of the three agree.
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Engineering application 28.2

Quality control on a factory production line

Quality control is an important aspect of factory production. So much so that some

engineers spend their whole careers in this �eld and are known as quality control en-

gineers. The fundamental goal is to ensure that manufactured goods are produced to

a speci�ed standard in spite of variations in the �nished product that are an inevitable

part of the manufacturing process. Consider the following problem.

Machines A and B make components, which are then placed on a conveyor belt.

Of those made bymachine A, 93% are acceptable. Of those made bymachine B, 95%

are acceptable. Machine A makes 60% of the components and machine B makes the

rest. Find the probability that a component selected at random from the conveyor

belt is

(a) made by machine A

(b) made by machine A and acceptable

(c) made by machine B and acceptable

(d) made by machine B and unacceptable

Solution

(a) We are given that 60% of the components are made by machine A. Converting

this percentage to a decimal number gives

P(component is made by machine A) = 0.6

(b) We know that 60% of the components are made by machine A and 93% of these

are acceptable. Converting these percentages to decimal numbers we have

P(component is made by machine A and is acceptable) =
60

100
×

93

100
= 0.60 × 0.93 = 0.558

(c) We know that 40% of the components are made by machine B and 95% of these

are acceptable. So,

P(component is made by machine B and is acceptable) =
40

100
×

95

100
= 0.40 × 0.95 = 0.38

(d) We know that 40% of the components are made by machine B and 5% of these

are unacceptable. So,

P(component is made by machine B and is unacceptable) =
40

100
×

5

100
= 0.40 × 0.05 = 0.02

An alternative way to solve this problem is by constructing a tree diagram. To

do so, consider the case when 1000 components are picked from the conveyor

belt. We know that machine A makes 60% of the components and so 600 of these

components, on average, will be made by machine A and the other 400 must

therefore be made by machine B. This is shown in Figure 28.3.

➔
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1000

600

400

machine A

machine B

Figure 28.3

Partial tree diagram for Engineering

application 28.2.

1000

600

400

machine A

machine B

558

42

acceptable

not acceptable

380

20

acceptable

not acceptable

Figure 28.4

Full tree diagram for Engineering

application 28.2.

Of the 600 components made by machine A, we know that 93% of these are ac-

ceptable, that is 93% of 600 = 558. So 600 − 558 = 42 are unacceptable.

Of the 400 components made by machine B, we know that 95% of these are ac-

ceptable, that is 95% of 400 = 380. So 400 − 380 = 20 are unacceptable.

We can now complete a full tree diagram for this problem, which is shown in

Figure 28.4.

Using the tree diagram it is straightforward to calculate the required probabilities.

(a) The probability a component is made by machine A is found by noting that 600

of the 1000 components are made by machine A, that is

P(component is made by machine A) =
600

1000
= 0.6

(b) The probability a component is made by machine A and is acceptable is found by

noting that 558 of the 1000 components are made by machine A and acceptable,

that is

P(component is made by machine A and acceptable) =
558

1000
= 0.558

(c) P(component is made by machine B and acceptable) =
380

1000
= 0.38

(d) P(component is made by machine B and unacceptable) =
20

1000
= 0.02

EXERCISES 28.2

1 A fair die is rolled. The events E1, . . . ,E5 are de�ned

as follows:

E1: an even number is obtained

E2: an odd number is obtained

E3: a score of less than 2 is obtained

E4: a 3 is obtained

E5: a score of more than 3 is obtained

Find
(a) P(E1), P(E2), P(E3), P(E4), P(E5)

(b)P(E1 ∩ E3)

(c) P(E2 ∩ E5)

(d)P(E2 ∩ E3)

(e) P(E3 ∩ E5)

2 A trial can have three outcomes, E1, E2 and E3. E1
and E2 are equally likely to occur. E3 is three times

more likely to occur than E1. Find P(E1), P(E2) and

P(E3).

3 A component is made by machines A and B. Machine

A makes 70% of the components and machine B

makes the rest. For both machines, the proportion of
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acceptable components is 90%. Find the probability

that a component selected at random is

(a) unacceptable

(b) acceptable and is made by machine A

(c) unacceptable and is made by machine B

4 Machines A, B and C make components. Machine A

makes 20% of the components, machine B makes

30% of the components and machine C makes the

rest. The probability that a component is faulty is 0.07

when made by machine A, 0.06 when made by

machine B and 0.05 when made by machine C. A

component is picked at random. Calculate the

probability that the component is

(a) made by machine C

(b) made by machine A and is faulty

(c) made by machine B and is not faulty

(d) made by machine C and is faulty

(e) made by machine A and is not faulty

(f) faulty and is not made by machine B

5 Circuit boards are made by machines A, B, C and D.

Machine A makes 15% of the components, machine

B makes 30%, machine C makes 35% and machine D

makes the remainder. The probability that a board is

acceptable is 0.93 when made by machine A, 0.96

when made by machine B, 0.95 when made by

machine C and 0.93 when made by machine D. A

board is picked at random. Calculate the probability

that it is

(a) made by machine D

(b) made by machine A and is acceptable

(c) made by machine B and is unacceptable

(d) made by machine C and is acceptable

(e) made by machine D and is unacceptable

(f) unacceptable and made by machine C

(g) In a batch of 1000 boards, how many would be

expected to be acceptable and made by

machine D?

Solutions

1 (a)
1

2
,
1

2
,
1

6
,
1

6
,
1

2
(b) 0 (c)

1

6

(d)
1

6
(e) 0

2 0.2, 0.2, 0.6

3 (a) 0.1 (b) 0.63 (c) 0.03

4 (a) 0.5 (b) 0.014 (c) 0.282

(d) 0.025 (e) 0.186 (f) 0.039

5 (a) 0.2 (b) 0.1395 (c) 0.012

(d) 0.3325 (e) 0.014 (f) 0.0175

(g) 186

28.3 MUTUALLY EXCLUSIVE EVENTS: THE ADDITION
LAW OF PROBABILITY

Consider a machine whichmanufactures car components. Suppose each component falls

into one of four categories:

top quality

standard

substandard

reject

After many samples have been taken and tested, it is found that under certain speci�c

conditions the probability that a component falls into a category is as shown in Ta-

ble 28.1. The four categories cover all possibilities and so the probabilities must sum

to 1. If 100 samples are taken, then on average 18 will be top quality, 65 of standard

quality, 12 substandard and 5 will be rejected.

Table 28.1

The probability of a car

component falling into

one of four categories.

Category Probability

top quality 0.18

standard 0.65

substandard 0.12

reject 0.05
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Example 28.1 Using the data in Table 28.1 calculate the probability that a component selected at ran-

dom is either standard or top quality.

Solution On average 18 out of 100 components are top quality and 65 out of 100 are standard

quality. So 83 out of 100 are either top quality or standard quality. Hence the probability

that a component is either top quality or standard quality is 0.83. The solution may be

expressed more formally as follows. Let A be the event that a component is top quality.

Let B be the event that a component is standard quality.

P(A) = 0.18 P(B) = 0.65

Then,

P(A ∪ B) = 0.18 + 0.65 = 0.83

Note that in this example

P(A ∪ B) = P(A) + P(B)

In Example 28.1 the events A and B could not possibly occur together. A component is

either top quality or standard quality but cannot be both. We say A and B are mutually

exclusive because the occurrence of one excludes the occurrence of the other. The result

applies more generally.

Ei

E

Ej

Figure 28.5

Ei and E j are mutually

exclusive events and so

are depicted as disjoint

sets.

If the occurrence of either of events Ei or E j excludes the occurrence of the other,

then Ei and E j are said to be mutually exclusive events.

If Ei and E j are mutually exclusive we denote this by

Ei ∩ E j = ◦/

We use ◦/ to denote the empty set, that is a set with no elements. In effect we are stating

that the compound event Ei ∩ E j is an impossible event and so will never occur. On a

Venn diagram Ei and E j are shown as disjoint sets (see Figure 28.5). Suppose that E1,

E2, . . ., En are n events and that in a single trial only one of these events can occur. The

occurrence of any event, Ei, excludes the occurrence of all other events. Such events are

mutually exclusive.

For mutually exclusive events the addition law of probability applies:

P(E1 or E2 or . . . or En) = P(E1 ∪ E2 ∪ · · · ∪ En)

= P(E1) + P(E2) + · · · + P(En)
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Engineering application 28.3

Electrical component reliability

Electrical components fail after a certain length of time in use. Their lifespan is not

�xed but subject to variation. It is important to be able to quantify the reliability of

these components. Consider the following problem.

The lifespans of 5000 electrical components are measured to assess their reliabil-

ity. The lifespan (L) is recorded and the results are shown in Table 28.2. Find the

probability that a randomly selected component will last

(a) more than 3 years

(b) between 3 and 5 years

(c) less than 4 years

Table 28.2

The lifespans of 5000 electrical components.

Lifespan of component (years) Number

L > 5 500

4 < L 6 5 2250

3 < L 6 4 1850

L 6 3 400

Solution

We de�ne events A, B, C and D:

A: the component lasts more than 5 years

B: the component lasts between 4 and 5 years

C: the component lasts between 3 and 4 years

D: the component lasts 3 years or less

P(A) =
500

5000
= 0.1, P(B) =

2250

5000
= 0.45, P(C) =

1850

5000
= 0.37,

P(D) =
400

5000
= 0.08.

The events A, B, C and D are clearly mutually exclusive and so the addition law

may be applied.

(a) P(component lasts more than 3 years)= P(A ∪ B ∪C)

= P(A) + P(B) + P(C)

= 0.1 + 0.45 + 0.37

= 0.92

There is a 92% chance a component will last for more than 3 years.

(b) P(component lasts between 3 and 5 years)= P(B ∪C)

= P(B) + P(C)

= 0.45 + 0.37

= 0.82 ➔
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(c) P(component lasts less than 4 years)= P(C ∪ D)

= P(C) + P(D)

= 0.37 + 0.08

= 0.45

Engineering application 28.4

Calculating the probability a component is acceptable on
a factory production line with several machines

Sometimes a factory production line may be fed by several machines that make com-

ponents. It is important to be able to calculate the overall quality of the product that

emerges given knowledge of the performance of the individual machines. Consider

the following problem.

Machines A and B make components. Machine A makes 60% of the components.

The probability that a component is acceptable is 0.93 when made by machine A

and 0.95 when made by machine B. A component is picked at random. Calculate the

probability that it is

(a) made by machine A and is acceptable

(b) made by machine B and is acceptable

(c) acceptable

Solution

We have already looked at this problem in Engineering application 28.2. Figure 28.4

shows the tree diagram for the problem.

(a) P (component is made by machine A and is acceptable) =
558

1000
= 0.558.

(b) P (component is made by machine B and is acceptable) =
380

1000
= 0.38.

(c) Note that the events described in (a) and (b) are mutually exclusive and so the

addition law can be applied.

P(component is acceptable) = P(component is made by machine A and is acceptable)

+P(component is made by

machine B and is acceptable)

= 0.558 + 0.38

= 0.938

We can now obtain this probability directly from the tree diagram. We see that

558 + 380 = 938 components are acceptable and so

P(component is acceptable) =
938

1000
= 0.938
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EXERCISES 28.3

1 A component is classi�ed as one of top quality,

standard quality or substandard, with respective

probabilities of 0.07, 0.85 and 0.08. Find the

probability that a component is

(a) either top quality or standard quality

(b) not top quality

2 The lifespan (L) of each of 2000 valves is measured

and given in Table 28.3.

Table 28.3

The lifespans of 2000 valves.

Lifespan (hours) Number

L > 1000 119

800 6 L < 1000 520

600 6 L < 800 931

400 6 L < 600 230

L < 400 200

Calculate the probability that the lifespan of a valve is

(a) more than 800 hours

(b) less than 600 hours

(c) between 400 and 800 hours

3 Chips are manufactured by machines A and B.

Machine A makes 65% of the chips and machine B

makes the remainder. The probability that a chip is

faulty is 0.03 when made by machine A and 0.05

when made by machine B. A chip is selected at

random. Calculate the probability that it is

(a) faulty and made by machine A

(b) faulty or made by machine A

(c) faulty or made by machine B

(d) faulty and made by machine B

(e) faulty

4 Components are made by machines A, B, C and D.

Machine A makes 25% of the components, machine

B makes 16% of the components, machine C makes

21% of the components and machine D makes the

remainder. The probability that a component is

acceptable is 0.92 when made by machine A, 0.90

when made by machine B, 0.96 when made by

machine C and 0.93 when made by machine D. A

component is picked at random. Calculate the

probability that it is

(a) made by machine A or machine C

(b) made by machines A, B or D

(c) acceptable and made by machine B

(d) acceptable and made by machine C

(e) acceptable and made by machine B or acceptable

and made by machine C

(f) acceptable or made by machine A

(g) acceptable

Solutions

1 (a) 0.92 (b) 0.93

2 (a) 0.3195 (b) 0.215 (c) 0.5805

3 (a) 0.0195 (b) 0.6675 (c) 0.3695

(d) 0.0175 (e) 0.037

4 (a) 0.46 (b) 0.79 (c) 0.144

(d) 0.2016 (e) 0.3456 (f) 0.949

(g) 0.929

28.4 COMPLEMENTARY EVENTS

Consider an electronic circuit. Clearly, either the circuit works correctly or it does not

work correctly. Let A be the event that the circuit works correctly, and let B be the event

that the circuit does not work correctly. Either A or B must happen when the circuit is

tested, and one excludes the other. The events A and B are said to be complementary.
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The Venn diagram corresponding to this situation is identical to that in Figure 28.1 where

the set A corresponds to the event A, and the event B is represented by A.

Two events, A and B, are complementary if they are mutually exclusive and in a

single trial either A or B must happen.

Hence, if A and B are complementary then

P(A) + P(B) = 1

and

P(A ∩ B) = 0

It is usual to denote complementary events as A and A. For example,

A : the component is top quality

A : the component is not top quality

B : n > 6

B : n 6 6

C : the circuit has failed to meet the speci�cation

C : the circuit has met the speci�cation

Recall from Engineering application 28.3 that D was the event the component lasts

3 years or less, and this had probability P(D) = 0.08. We could say

D : the component lasts 3 years or less

D : the component lasts more than 3 years

D and D are complementary events and so

P(D) + P(D) = 1

P(D) = 1 − P(D) = 1 − 0.08 = 0.92

Engineering application 28.5

Testing multiple electronic components

Three transistors are tested. The probability that none of them works is 0.03. What

is the probability that at least one transistor works?

Solution

We de�ne the events A and A:

A : all three transistors fail

A : not all three transistors fail

A and A are complementary events and so

P(A) = 0.03 P(A) = 1 − P(A) = 0.97
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To say that not all three transistors fail is the same as saying that one or more tran-

sistors work. So we could say

A : at least one transistor works

Hence the probability that at least one transistor works is 0.97.

EXERCISES 28.4

1 Which pairs of events are complementary?

A: the component is reliable

B: there is only one component

C: there are less than two components

D: more than two components are

reliable

E: the component is unreliable

F : there is more than one component

G: most of the components are

unreliable

2 Events A, B,C and D are de�ned.

A: the lifespan is 90 days or less

B: the machine is reliable

C: all components have been tested

D: at least three components from

the sample are unreliable

State the events A, B,C and D.

Solutions

1 A and E;C and F

2 A: the lifespan is more than 90 days

B: the machine is unreliable

C: some components have not been tested

D: two or fewer components are unreliable

28.5 CONCEPTS FROM COMMUNICATION THEORY

Communication engineers �nd it useful to quantify information for the purposes of anal-

ysis. In order to do so a very restricted view of information is used. Information is seen in

terms of knowledge of an event occurring. A highly improbable event occurring consti-

tutes more information than an almost certain event occurring. This correlates to some

extent with human experience as people tend to be much more interested in hearing

about unlikely events. The information, I, associated with an event, is de�ned by

I = − log p 0 < p 6 1

where p = probability of an event occurring. Notice that p = 0 is excluded from the

domain of the function as the logarithm is not de�ned at 0. In practice this is not a

problem because an event with zero probability never occurs. Often logarithms to the

base 2 are used when calculating information as in many cases information arrives in

the form of a ‘bit stream’ consisting of a series of binary numbers. For this case I has

units of bits and is given by

I = − log2 p

A formula for evaluating logarithms to the base 2 is given in Chapter 2.
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Engineering application 28.6

Information content of a binary data stream

Suppose that a computer generates a binary stream of data and that 1s and 0s occur

with equal probability, that is P(0) = P(1) = 0.5. Calculate the information per

binary digit generated.

Solution

Here, p = 0.5 whether the binary digit is 0 or 1, so

I = − log2(0.5) =
− log10(0.5)

log10 2
= 1 bit

Engineering application 28.7

Information content of an alphabetic character stream

Suppose that a system generates a stream of upper case alphabetic characters and that

the probability of a character occurring is the same for all characters. Calculate

(a) the information associated with the character G occurring

(b) the information associated with any single character.

Solution

(a) P(G occurring) =
1

26
, I = − log2

(
1

26

)
=

− log10(1/26)

log10 2
= 4.70 bits

(b) All characters are equally likely to occur and so

I = − log2

(
1

26

)
=

− log10(1/26)

log10 2
= 4.70 bits

Often a series of events may occur that do not have the same probability. For example,

if a stream of alphabetic characters is being generated then it is likely that some charac-

ters will occur more frequently than others and so have a higher probability associated

with them. For this situation it becomes convenient to introduce the concept of average

information. Given a source producing a set of events

E1,E2,E3, . . . ,En

with probabilities

p1, p2, p3, . . . , pn

then for a long series of events the average information per event is given by

H = −

i=n∑

i=1

pi log2 pi bits

H is also termed the entropy.
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Engineering application 28.8

Entropy of a signal consisting of three characters

A source produces messages consisting of three characters, A, B and C. The probabil-

ities of each of these characters occurring is P(A) = 0.2, P(B) = 0.5, P(C) = 0.3.

Calculate the entropy of the signal.

Solution

H = −0.2 log2(0.2) − 0.5 log2(0.5) − 0.3 log2(0.3) = 1.49 bits

Engineering application 28.9

Entropy of a binary data stream

A source generates binary digits 0, 1, with probabilities P(0) = 0.3 and P(1) = 0.7.

Calculate the entropy of the signal.

Solution

H = −0.3 log2(0.3) − 0.7 log2(0.7) = 0.881 bits

Note that in Engineering application 28.9, on average, each binary digit only carries

0.881 bits of information. In fact the maximum average amount of information that can

be carried by a binary digit occurs when P(0) = P(1) = 0.5, as seen in Engineering

application 28.6. For this case H = 1.

For any data stream, the maximum average amount of information that can be carried

by a digit occurs when all digits have equal probability, that is H is maximized when

p1 = p2 = p3 = · · · = pn.

H is maximized when p1 = p2 = p3 = · · · = pn. The maximum value of H is

denoted Hmax.

When the probabilities are not the same then one way of viewing the reduction in

H is to think of the likely event being given too much of the signalling time given its

lower information content. It is interesting to explore the two limiting cases, that is (a)

P(0) = 0, P(1) = 1; (b) P(0) = 1, P(1) = 0. In both cases it can be shown that H = 0.

However, on examination this is reasonable because a continuous stream of 1s does not

relay any useful information to the recipient and neither does a continuous stream of 0s.

The fact that some streams of symbols do not contain as much information as other

streams of the same symbols leads to the concept of redundancy. This allows the ef�-

ciency with which information is being sent to be quanti�ed and is de�ned as

redundancy =
maximum entropy -- actual entropy

maximum entropy

A low value of redundancy corresponds to ef�cient transmission of information.
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Engineering application 28.10

Redundancy of a binary data stream

Consider the source of binary digits examined in Engineering application 28.6 and

28.9. The maximum entropy for a binary stream is 1 bit per binary digit. Calculate

the redundancy in each case.

Solution

For Engineering application 28.6

redundancy =
1 − 1

1
= 0

For Engineering application 28.9

redundancy =
1 − 0.881

1
= 0.119

Engineering application 28.11

Redundancy of a character data stream

A stream of data consists of four characters A, B, C, D with probabilities 0.1, 0.3,

0.2, 0.4, respectively. Calculate the redundancy.

Solution

It can be shown that the maximum entropy, Hmax, corresponds to the situation in

which the probability of each symbol is the same, that is 0.25.

Hmax = 4 × (−0.25 log2(0.25)) = 2 bits

The actual entropy, Hact, is given by

Hact = −(0.1 log2(0.1) + 0.3 log2(0.3) + 0.2 log2(0.2) + 0.4 log2(0.4))

= 1.846 bits

redundancy =
2 − 1.846

2
= 0.0770

In the examples we have examined so far we have used the bit as the unit of information

because the most common form of digital signalling uses binary digits. When there are

only two possible events it is possible to represent an event by a single binary digit.

However, if there is a larger number of possible events then several binary digits are

needed to represent a single event. When calculating values for information and entropy

in these examples an assumption was made that each event was represented by binary

sequences or codes of the same length. It is only possible to do this ef�ciently if the

number of events is a power of 2, that is 2, 4, 8, 16, . . .. In practice this problem does not

arise because it is more common to produce codes that have a small number of binary

digits for likely events and a long number of binary digits for unlikely events. This allows
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the redundancy of a data stream to be reduced. The design of such codes is known as

coding theory. One complication is that most streams of data are not transmitted with

100% accuracy as a result of the presence of noise within the communication channel. It

is often necessary to build extra redundancy into a code in order to recover these errors.

EXERCISES 28.5

1 A source generates six characters, A, B, C, D, E, F,

with respective probabilities 0.05, 0.1, 0.25, 0.3, 0.15,

0.15. Calculate the average information per character

and the redundancy.

2 A visual display unit has a resolution of 600 rows by

800 columns. Ten different grey levels are associated

with each pixel and their probabilities are 0.05, 0.07,

0.09, 0.10, 0.11, 0.13, 0.12, 0.12, 0.11, 0.10. Calculate

the average information content in each picture frame.

3 A source generates �ve characters A, B, C, D and E

with respective probabilities of 0.1, 0.15, 0.2, 0.25

and 0.3.

(a) Calculate the information associated with the

character B.

(b) Calculate the entropy.

(c) Calculate the redundancy.

4 A data stream comprises the characters A, B, C, D

and E with respective probabilities of 0.23, 0.16, 0.11,

0.37 and 0.13.

(a) Calculate the information associated with the

character B.

(b) Calculate the information associated with the

character D.

(c) Calculate the entropy.

(d) Calculate the redundancy.

5 A data stream comprises the characters A, B, C, D

and E with respective probabilities of 0.12, 0.21, 0.07,

0.31 and 0.29.

(a) Which character carries the greatest information

content?

(b) Which character carries the least information

content?

(c) Calculate the information associated with the

letter D.

(d) Calculate the entropy.

(e) Calculate the redundancy.

Solutions

1 2.3905, 0.0752

2 3.2790

3 (a) 2.7370 (b) 2.2282 (c) 0.0404

4 (a) 2.6439 (b) 1.4344 (c) 2.1743

(d) 0.0636

5 (a) C (b) D (c) 1.6897

(d) 2.1501 (e) 0.0740

28.6 CONDITIONAL PROBABILITY: THE MULTIPLICATION LAW

Suppose two machines, M and N, both manufacture components. Of the components

made by machine M, 92% are of an acceptable standard and 8% are rejected. For ma-

chine N, only 80% are of an acceptable standard and 20% are rejected. Consider now

the event E:

E: a component is of an acceptable standard

If all the components are manufactured by machine M then P(E ) = 0.92. However,

if all the components are manufactured by machine N then P(E ) = 0.8. If half the

components are manufactured by machine M and half by machine N then P(E ) = 0.86.

To see why this is so consider 1000 components. Of the half made by machineM, 92%×
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500 = 460 will be of an acceptable standard. Of the half made by machine N, 80% ×

500 = 400 will be acceptable. Hence 860 of the 1000 components will be acceptable

and so P(E ) =
860

1000
= 0.86. Clearly, there are distinct probabilities of the same event;

the probability changes as the conditions change. This is intuitive and leads to the idea

of conditional probability.

We introduce a notation for conditional probability. De�ne events A and B by

A: the component is manufactured by machine M

B: the component is manufactured by machine N

Then the probability that a component is of an acceptable standard, given it is manufac-

tured by machine M, is written as P(E|A). We read this as the conditional probability

of E given A. Similarly P(E|B) is the probability of E happening, given B has already

happened.

P(E|A) = 0.92 P(E|B) = 0.8

To be pedantic, all probabilities are conditional since the conditions surrounding any

event can change. However, for many situations there is tacitly assumed a de�nite set

of conditions which is always satis�ed. The probability of an event calculated under

only these conditions is known as the unconditional probability. If further well-de�ned

conditions are attached, the probability is conditional.

Engineering application 28.12

Production line product fed by two machines

Machines M and N manufacture a component. The probability that the component is

of an acceptable standard is 0.95 when manufactured by machine M and 0.83 when

manufactured by machine N. Machine M supplies 65% of components; machine N

supplies 35%. A component is picked at random.

(a) What is the probability that the component is of an acceptable standard?

(b) What is the probability that a component is of an acceptable standard and is made

by machine M?

(c) What is the probability that the component is of an acceptable standard given it

is made by machine M?

(d) What is the probability that the component was made by machine M?

(e) What is the probability that the component was made by machine M given it is

of an acceptable standard?

(f) The component is not of an acceptable standard. What is the probability that it

was made by machine N?

Solution

We de�ne the events:

A: the component is manufactured by machine M

B: the component is manufactured by machine N

C: the component is of an acceptable standard
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(a) Consider 1000 components. Then 650 are manufactured by machine M, 350 by

machine N. Of the 650manufactured bymachineM, 95%will be acceptable, that

is 650×
95

100
= 617.5. Of the 350 manufactured by machine N, 83% will be ac-

ceptable, that is 350×
83

100
= 290.5. So on average in 1000 components, 617.5+

290.5 = 908 will be acceptable, that is P(C) = 0.908.

(b) From part (a) we know that out of 1000 components 617.5 will be made by

machine M and be of an acceptable standard. Hence P(A ∩ C) =
617.5

1000
=

0.6175.

(c) We require P(C|A). The probability a component is acceptable given it is man-

ufactured by machine M is

P(C|A) = 0.95

(d) Machine M makes 65% of components, that is P(A) = 0.65.

(e) We require P(A|C). Consider again the 1000 components. On average 908 are

acceptable. Of these 908 acceptable components, 617.5 are manufactured byma-

chine M and 290.5 by machine N. We are told the component is acceptable and

so wemust restrict attention to the 908 acceptable components. So, out of 908 ac-

ceptable components, 617.5 are made by machine M, that is P(A|C) =
617.5

908
=

0.68.

(f) We require P(B|C). Consider 1000 components. Machine M manufactures

650 components of which 617.5 are acceptable and hence 32.5 are unaccept-

able. Machine N manufactures 350 components of which 290.5 are acceptable

and 59.5 are unacceptable. There are 92 unacceptable components of which 59.5

were made by machine N. The probability of the component being made by ma-

chine N given it is unacceptable is

P(B|C) =
59.5

92
= 0.647

that is, almost 65% of unacceptable components are manufactured by

machine N.

As an alternative method of solution, we can represent the information via a tree

diagram. This is shown in Figure 28.6.

1000

650

M

N

350

617.5 (acceptable) 

32.5 (unacceptable)

290.5 (acceptable) 

59.5 (unacceptable)

Figure 28.6

Tree diagram for Engineering application

28.12.
➔
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(a) There are 617.5 + 290.5 = 908 acceptable components, so

P(component is acceptable) = 0.908

(b) There are 617.5 components which are acceptable and made by machine M. So

P(component is acceptable and made by machine M)

= P(C ∩ A) = 0.6175

(c) Of the 650 components made by machine M, 617.5 are acceptable, and so

P(component is acceptable given it is made by machine M) = P(C|A)

=
617.5

650
= 0.95

(d) Of the 1000 components, 650 are made by machine M, so

P(component is made by machine M) = P(A) = 0.65

(e) There are 908 acceptable components. Of these, 617.5 are made by machine M.

Hence

P(component is made by machine M given it is acceptable) = P(A|C)

=
617.5

908
= 0.68

(f) There are 32.5 + 59.5 = 92 unacceptable components. Of these 92, 59.5 are

made by machine N. Thus

P(component is made by machine N given it is not acceptable) = P(B|C)

=
59.5

92
= 0.647

28.6.1 The multiplication law

Consider events A and B for which A ∩ B 6= ◦/ as shown in Figure 28.7. Suppose we

know that event A has occurred and we seek the probability that B occurs, that is P(B|A).

Knowing event A has occurred we can restrict our attention to the set A. Event B will

occur if any outcome is in A ∩ B. Hence,

P(B|A) =
P(A ∩ B)

P(A)

The multiplication law of probability states:

P(A ∩ B) = P(A)P(B|A)

A > B

A B

E

Figure 28.7

A and B are not

mutually exclusive.

Since the compound event ‘A and B’ is identical to ‘B and A’ we may also say

P(A ∩ B) = P(B ∩ A) = P(B)P(A|B)

Consider Engineering application 28.12(e). We require the probability that the compo-

nent was manufactured by machine M, given it is acceptable. This is P(A|C). Now
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P(A ∩C) = P(C ∩ A) = P(C)P(A|C)

P(A|C) =
P(A ∩C)

P(C)

Now P(A∩C) is the probability that the component is manufactured by machine M and

is acceptable. This is known to be 0.6175, using Engineering application 28.12(b). Also

from Engineering application 28.12(a) we see P(C) = 0.908. Hence,

P(A|C) =
0.6175

0.908
= 0.68

Engineering application 28.13

Reliability of manufactured components

A manufacturer studies the reliability of a certain component so that suitable guar-

antees can be given: 83% of components remain reliable for at least 5 years; 92%

remain reliable for at least 3 years. What is the probability that a component which

has remained reliable for 3 years will remain reliable for 5 years?

Solution

We de�ne the events:

A: a component remains reliable for at least 3 years

B: a component remains reliable for at least 5 years

Then P(A) = 0.92, P(B) = 0.83. Note that these are unconditional probabilities. We

require P(B|A), a conditional probability.

P(A ∩ B) = P(A)P(B|A)

A∩ B is the compound event a component remains reliable for at least 3 years and it

remains reliable for at least 5 years. Clearly this is the same as the event B. So

P(A ∩ B) = P(B)

Hence

P(B) = P(A)P(B|A)

P(B|A) =
P(B)

P(A)
=

0.83

0.92
= 0.90

that is, 90% of the components which remain reliable for 3 years will remain reliable

for at least 5 years.

Alternatively, a tree diagram is shown in Figure 28.8. Starting with 100 compo-

nents, 92 remain reliable 3 years later. Of these 92, 2 years later, 83 are still reliable.

So

P(component is reliable after 5 years, given it is reliable after 3 years) =
83

92
= 0.90 ➔
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100

92 (reliable)

3 years 5 years

83 (reliable) 

9 (unreliable)

17 (unreliable)

8 (unreliable)8 (unreliable)
}

Figure 28.8

Tree diagram for Engineering application 28.13.

EXERCISES 28.6

1 A component is manufactured by machines 1 and 2.

Machine 1 manufactures 72% of total production of

the component. The percentage of components which

are acceptable varies, depending upon which machine

is used. For machine 1, 97% of components are

acceptable and for machine 2, 92% are acceptable. A

component is picked at random.

(a) What is the probability it was manufactured by

machine 1?

(b) What is the probability it is not acceptable?

(c) What is the probability that it is acceptable and

made by machine 2?

(d) If the component is acceptable what is the

probability it was manufactured by machine 2?

(e) If the component is not acceptable what is the

probability it was manufactured by machine 1?

2 The measured lifespans (L) of 1500 components are

recorded in Table 28.4.

Table 28.4

Lifespans of 1500 components.

Lifespan (hours) Number of components

L > 1000 210

900 6 L < 1000 820

800 6 L < 900 240

700 6 L < 800 200

L < 700 30

(a) What is the probability that a component which is

still working after 800 hours will last for at least

900 hours?

(b) What is the probability that a component which is

still working after 900 hours will continue to last

for at least 1000 hours?

3 The lifespan, L, of 1000 components is measured and

detailed in Table 28.5.

Table 28.5

Lifespans of 1000 components.

Lifespan (hours) Number of components

L > 1750 70

1500 6 L < 1750 110

1250 6 L < 1500 150

1000 6 L < 1250 200

750 6 L < 1000 317

500 6 L < 750 96

250 6 L < 500 42

L < 250 15

(a) Calculate the probability that the lifespan of a

component is more than 1000 hours.

(b) Calculate the probability that the lifespan of a

component is less than 750 hours.

(c) Calculate the probability that a component which

is still working after 500 hours will continue to

last for at least 1500 hours.

4 Machines A, B and C manufacture components.

Machine A makes 50% of the components, machine

B makes 30% of the components and machine C

makes the rest. The probability that a component is

reliable is 0.93 when made by machine A, 0.90 when

made by machine B and 0.95 when made by machine

C. A component is picked at random.

(a) Calculate the probability that it is reliable.

(b) Calculate the probability that it is made by

machine B given it is unreliable.
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5 Components are made by machines A, B, C and D.

Machine A makes 17% of the components, machine

B makes 21% of the components, machine C makes

20% of the components and machine D makes the

remainder. For machine A, 96% of the components

are reliable, for machine B, 89% are reliable, for

machine C, 92% are reliable and for machine D, 97%

are reliable. A component is picked at random.

Calculate the probability that it is

(a) reliable

(b) not reliable

(c) reliable, given it is made by machine B

(d) not reliable, given it is made by machine D

(e) made by machine A given it is reliable

(f) made by machine C given it is unreliable

Solutions

1 (a) 0.72 (b) 0.044 (c) 0.2576

(d) 0.2695 (e) 0.4909

2 (a) 0.8110 (b) 0.2039

3 (a) 0.53 (b) 0.153 (c) 0.1909

4 (a) 0.925 (b) 0.4

5 (a) 0.9415 (b) 0.0585 (c) 0.89

(d) 0.03 (e) 0.1733 (f) 0.2735

28.7 INDEPENDENT EVENTS

Two events are independent if the occurrence of either event does not influence the

probability of the other event occurring.

Engineering application 28.14

Acceptability of manufactured electronic chips

Machine 1 manufactures an electronic chip, A, of which 90% are acceptable. Ma-

chine 2 manufactures an electronic chip, B, of which 83% are acceptable. Two chips

are picked at random, one of each kind. Find the probability that they are both

acceptable.

Solution

The events E1 and E2 are de�ned:

E1: chip A is acceptable

E2: chip B is acceptable

P(E1) = 0.9 P(E2) = 0.83

A single trial consists of choosing two chips at random. We require the probability

that the compound event, E1 ∩ E2, is true. Using the multiplication law we have

P(E1 ∩ E2) = P(E1)P(E2|E1) = 0.9P(E2|E1) ➔
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P(E2|E1) is the probability of E2 happening given E1 has happened. However, ma-

chine 1 and machine 2 are independent, so the probability of chip B being acceptable

is in no way influenced by the acceptability of chip A. The events E1 and E2 are

independent.

P(E2|E1) = P(E2) = 0.83

Therefore

P(E1 ∩ E2) = P(E1)P(E2) = (0.9)(0.83) = 0.75

For independent events E1 and E2:

(1) P(E1|E2) = P(E1), P(E2|E1) = P(E2)

(2) P(E1 ∩ E2) = P(E1)P(E2)

The concept of independence may be applied to more than two events. Three or more

events are independent if every pair of events is independent. If E1,E2, . . . ,En are n

independent events then

P(Ei|E j) = P(Ei) for any i and j, i 6= j

and

P(Ei ∩ E j) = P(Ei)P(E j) i 6= j

A compound event may comprise several independent events. The multiplication law is

extended in an obvious way:

P(E1 ∩ E2 ∩ E3) = P(E1)P(E2)P(E3)

P(E1 ∩ E2 ∩ E3 ∩ E4) = P(E1)P(E2)P(E3)P(E4)

and so on.

Engineering application 28.15

Probability of faulty components

The probability that a component is faulty is 0.04. Two components are picked at

random. Calculate the probability that

(a) both components are faulty

(b) both components are not faulty

(c) one of the components is faulty

(d) one of the components is not faulty

(e) at least one of the components is faulty

(f) at least one of the components is not faulty
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Solution

We de�ne events F1 and F2 to be

F1: the �rst component is faulty

F2: the second component is faulty

Then events F1 and F2 are

F1: the �rst component is not faulty

F2: the second component is not faulty

Then

P(F1) = P(F2) = 0.04 P(F1) = P(F2) = 1 − 0.04 = 0.96

(a) We require both components to be faulty:

P(F1 ∩ F2) = P(F1)P(F2) since events are independent

= (0.04)2

= 0.0016

(b) We require both components to be not faulty:

P(F1 ∩ F2) = P(F1)P(F2)

= (0.96)2

= 0.9216

(c) Consider the two components. Then either both components are faulty or one

component is faulty or neither of the components is faulty. So,

P(one component is faulty) = 1 − P(both components are faulty)

−P(neither of the components is faulty)

= 1 − 0.0016 − 0.9216

= 0.0768

An alternative approach is as follows. Either the �rst component is faulty and the

second one is not faulty, or the �rst component is not faulty and the second one

is faulty. These two cases are represented by F1 ∩ F2 and F1 ∩ F2. So,

P(one component is faulty) = P(F1 ∩ F2) + P(F1 ∩ F2)

= P(F1)P(F2) + P(F1)P(F2)

= (0.04)(0.96) + (0.96)(0.04)

= 0.0768

(d) We require one component to be not faulty. Since there are two components then

requiring one to be not faulty is equivalent to requiring one to be faulty. Hence

the calculation is the same as that in (c):

P(one component is not faulty) = 0.0768

(e) At least one of the components is faulty means that one or both of the compo-

nents is faulty:

➔
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P(at least one component is faulty) = P(exactly one component is faulty)

+P(both components are faulty)

= 0.0768 + 0.0016

= 0.0784

As an alternative we can note that the complement of ‘at least one of the compo-

nents is faulty’ is ‘none of the components is faulty’. The probability that neither

of the components is faulty is given in (b). Hence

P(at least one component is faulty)

= 1 − P(none of the components is faulty)

= 1 − 0.9216

= 0.0784

(f) At least one of the components is not faulty means that one or both of the com-

ponents is not faulty. So

P(at least one component is not faulty)

= P(exactly one component is not faulty)

+P(both components are not faulty)

= 0.0768 + 0.9216

= 0.9984

As an alternative we note that the complement of ‘at least one of the components

is not faulty’ is ‘none of the components are not faulty’. The last statement is

equivalent to ‘both the components are faulty’. Hence

P(at least one component is not faulty) = 1−P(both components are faulty)

= 1 − 0.0016

= 0.9984

Engineering application 28.16

Probability of acceptable components

Machines 1, 2 and 3 manufacture resistors A, B and C, respectively. The probabili-

ties of their respective acceptabilities are 0.9, 0.93 and 0.81. One of each resistor is

selected at random.

(a) Find the probability that they are all acceptable.

(b) Find the probability that at least one resistor is acceptable.

Solution

De�ne events E1, E2 and E3 by

E1: resistor A is acceptable P(E1) = 0.9

E2: resistor B is acceptable P(E2) = 0.93

E3: resistor C is acceptable P(E3) = 0.81



28.7 Independent events 929

E1, E2 and E3 are independent events.

(a) P(E1 ∩ E2 ∩ E3) = P(E1)P(E2)P(E3) = (0.9)(0.93)(0.81) = 0.68

(b) Let E4 and E5 be the events

E4: at least one resistor is acceptable

E5: no resistor is acceptable

E4 and E5 are complementary events and so

P(E4) + P(E5) = 1

E5 may be expressed as

E5: resistor A is not acceptable and resistor B is not acceptable and

resistor C is not acceptable

that is, E1 ∩ E2 ∩ E3

P(E5) = P(E1 ∩ E2 ∩ E3) = P(E1)P(E2)P(E3)

= (1 − 0.9)(1 − 0.93)(1 − 0.81)

= (0.1)(0.07)(0.19)

= 0.001 33

P(E4) = 1 − P(E5) = 1 − 0.001 33 = 0.998 67

EXERCISES 28.7

1 A and B are two independent events with P(A) = 0.7

and P(B) = 0.4. The compound event A occurs, then

A occurs, then B occurs, is denoted AAB, and other

compound events are denoted in a similar way.

Calculate the probability of the following compound

events:

(a) AAB

(b) BAB

(c) AAAA

2 The probability a component is faulty is 0.07. Two

components are picked at random. Calculate the

probability that

(a) both are faulty

(b) both are not faulty

(c) the �rst one picked is faulty and the second one

picked is not faulty

(d) at least one is not faulty

3 The probability a component is acceptable is 0.92.

Three components are picked at random. Calculate

the probability that

(a) all three are acceptable

(b) none are acceptable

(c) exactly two are acceptable

(d) at least two are acceptable

4 Components are made by machines A, B and C.

Machine A makes 30% of the components, machine

B makes 25% of the components and machine C

makes the rest. Two components are picked at

random. Calculate the probability that

(a) they are both made by machine C

(b) one is made by machine A and one is made by

machine B

(c) exactly one of the components is made by

machine B

(d) at least one of the components is made by

machine B

(e) both components are made by the same machine

5 Capacitors are manufactured by four machines, 1, 2, 3

and 4. The probability a capacitor is manufactured

acceptably varies according to the machine. The
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probabilities are 0.94, 0.91, 0.97 and 0.94,

respectively, for machines 1, 2, 3 and 4.

(a) A capacitor is taken from each machine. What is

the probability all four capacitors are acceptable?

(b) Two capacitors are taken from machine 1 and two

from machine 2. What is the probability all four

capacitors are acceptable?

(c) A capacitor is taken from each machine.

Calculate the probability that at least three

capacitors are acceptable.

(d) A capacitor is taken from each machine. From

this sample of four capacitors, one is taken at

random.

(i) What is the probability it is acceptable and

made by machine 1?

(ii) What is the probability it is acceptable and

made by machine 2?

(e) A capacitor is taken from each machine. From

this sample of four capacitors, one is taken at

random. What is the probability it is acceptable?

[Hint: use the results in (d).]

Solutions

1 (a) 0.196 (b) 0.112 (c) 0.2401

2 (a) 0.0049 (b) 0.8649 (c) 0.0651

(d) 0.9951

3 (a) 0.7787 (b) 5.12 × 10−4

(c) 0.2031 (d) 0.9818

4 (a) 0.2025 (b) 0.15 (c) 0.375

(d) 0.4375 (e) 0.355

5 (a) 0.7800 (b) 0.7317 (c) 0.9808

(d) (i) 0.235 (ii) 0.2275 (e) 0.94

REVIEW EXERCISES 28

1 Components are made by machines A, B and C.

Machine A makes 30% of the components, machine

B makes 50% of the components and machine C

makes the rest. The probability that a component is

acceptable when made by machine A is 0.96, when

made by machine B the probability is 0.91 and when

made by machine C the probability is 0.93.

(a) A component is picked at random. Calculate the

probability that it is made by machine C.

(b) A component is picked at random. Calculate the

probability that it is made by either machine A or

machine C.

(c) A component is picked at random. Calculate the

probability that it is made by machine B and is

acceptable.

(d) A component is picked at random. Calculate the

probability that it is not acceptable.

(e) A component picked at random is not acceptable.

Calculate the probability that it is made by

machine A.

(f) A component picked at random is acceptable.

Calculate the probability that it is made by either

machine A or machine B.

(g) Two components are picked at random. Calculate

the probability that they are both acceptable.

(h) Two components are picked at random. Calculate

the probability that one is acceptable and one is

unacceptable.

2 Three machines, A, B and C, manufacture a

component. Machine A manufactures 35% of the

components, machine B manufactures 40% of the

components and machine C makes the rest. A

component is either acceptable or not acceptable: 7%

of components made by machine A are not

acceptable, 12% of components made by machine B

are not acceptable and 2% of those made by machine

C are also not acceptable.

(a) Find the probability that a component is made by

either machine A or machine B.

(b) Two components are picked at random. What is

the probability that they are both made by

machine B?

(c) Three components are picked at random. What is

the probability they are each made by a different

machine?
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(d) A component is picked at random. What is the

probability it is not acceptable?

(e) A component is picked at random. It is not

acceptable. What is the probability it was made

by machine B?

(f) A component is picked at random and is

acceptable. What is the probability it was made

by either machine A or machine B?

3 Machines M and N manufacture components. The

probability that a component is of an acceptable

standard is 0.93 when manufactured by machine M

and 0.86 when manufactured by machine N. Machine

M supplies 70% of the components and machine N

supplies the rest.

(a) Calculate the probability that a component picked

at random is of an acceptable standard.

(b) A component is not of an acceptable standard.

Calculate the probability that it is made by

machine N.

(c) Two components are picked at random. Calculate

the probability that they are made by different

machines.

4 E1 is the event the component is reliable. E2 is the

event the component is made by machine A. State

(a) E1

(b) E2

(c) E1 ∩ E2

(d) E1 ∪ E2

(e) E2 ∩ E1

5 The lifespans, L, of 2500 components were measured

and the results were recorded in Table 28.6.

Table 28.6

Lifespan (hours) Number of components

0 6 L < 200 76

200 6 L < 300 293

300 6 L < 400 574

400 6 L < 500 1211

500 6 L < 600 346

(a) Calculate the probability that a component has a

lifespan of over 400 hours.

(b) Calculate the probability that a component has a

lifespan of less than 300 hours.

(c) Calculate the probability that a component that

lasts for 300 hours will continue to last for at

least 500 hours.

6 Given the events E1, E2 and E3 are

E1: the circuit is functioning

E2: the circuit is made by machine A

E3: the circuit will last for at least 600 hours state

(a) E2

(b) E3

(c) E1 ∪ E2

(d) E1 ∩ E3

(e) E2 ∩ E3

7 A data stream consists of the characters A, B, C, D

and E, with respective probabilities of 0.16, 0.23,

0.31, 0.12 and 0.18.

(a) Calculate the information associated with the

character B.

(b) Calculate the entropy.

(c) Calculate the redundancy.

8 The probability a component is reliable is 0.93. Three

components are picked at random. Calculate the

probability that

(a) all components are unreliable

(b) exactly one component is reliable

(c) at least one component is reliable

(d) exactly two components are reliable

9 A circuit is as shown in Figure 28.9. The circuit is

operational if current can flow from P to Q along any

route. The probability that resistor type A is faulty is

0.09, and for resistor type B the probability of a fault

is 0.14. Calculate the probability that the circuit is

operational.

A B

AP                                                                             QA

B

Figure 28.9

10 The probability a component is reliable is 0.96. Five

components are picked at random. Calculate the

probability that

(a) all �ve components are reliable

(b) none are reliable

(c) at least one is reliable
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Solutions

1 (a) 0.2 (b) 0.5 (c) 0.455

(d) 0.071 (e) 0.1690 (f) 0.7998

(g) 0.8630 (h) 0.1319

2 (a) 0.75 (b) 0.16 (c) 0.21

(d) 0.0775 (e) 0.619 (f) 0.734

3 (a) 0.909 (b) 0.4615 (c) 0.42

4 (a) The component is not reliable.

(b) The component is not made by machine A.

(c) The component is reliable and made by

machine A.

(d) The component is reliable or it is made by

machine A.

(e) The component is made by machine A and it is

not reliable.

5 (a) 0.6228 (b) 0.1476 (c) 0.1624

6 (a) The circuit is not made by machine A.

(b) The circuit will last for less than 600 hours.

(c) The circuit is functioning or it is made by

machine A.

(d) The circuit is functioning and will last for at least

600 hours.

(e) The circuit is made by machine A and will last

for at least 600 hours.

7 (a) 2.1203 (b) 2.2469 (c) 0.0323

8 (a) 3.43 × 10−4 (b) 0.0137 (c) 0.9997

(d) 0.1816

9 0.9948

10 (a) 0.8154 (b) 1.024 × 10−7

(c) 0.999 999 9



29 Statistics and probability
distributions

Contents 29.1 Introduction 933

29.2 Random variables 934

29.3 Probability distributions -- discrete variable 935

29.4 Probability density functions -- continuous variable 936

29.5 Mean value 938

29.6 Standard deviation 941

29.7 Expected value of a random variable 943

29.8 Standard deviation of a random variable 946

29.9 Permutations and combinations 948

29.10 The binomial distribution 953

29.11 The Poisson distribution 957

29.12 The uniform distribution 961

29.13 The exponential distribution 962

29.14 The normal distribution 963

29.15 Reliability engineering 970

Review exercises 29 977

29.1 INTRODUCTION

Engineers often need tomeasuremany different variables, for example the output voltage

of a system, the strength of a beam or the cost of a project. Variables are classi�ed into

one of two types, discrete or continuous. These are discussed in Section 29.2.

It is of interest to know the probability that a variable has of falling within a given

range. There is a high probability that a given variable will fall within some ranges,

and a small probability for other ranges of values. The way in which the probability is
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distributed across various ranges of values gives rise to the idea of a probability distribu-

tion. The study of probability distributions forms the major part of this chapter. The most

important distributions, the binomial, the Poisson, the uniform, the exponential and the

normal, are all included. The chapter concludes with a study of reliability engineering.

29.2 RANDOM VARIABLES

Engineering quantities whose variation contains an element of chance are called random

variables. Some examples are listed below:

(1) the diameter of a motor shaft of nominal size 0.2 m;

(2) the weight of a steel box used to contain an electronic circuit board;

(3) the number of components passing a point on a factory production line in 1 minute;

(4) the nominal resistance value of resistors;

(5) the length of time a machine works without failing.

All of these quantities vary. In (1), (2) and (5) the quantities vary continuously; that

is, they can assume any value in some range. For example, a motor shaft may have any

diameter between 0.197 m and 0.203 m; a steel box could have any weight between, say,

0.345 kg and 0.352 kg. These are examples of continuous variables. The value itself

will only be recorded to a certain accuracy, which depends on the measuring device

and the use to which the data will be put. For example, the shaft diameter may only

be measured to the nearest tenth of a millimetre. Although such a measurement is only

integer in multiples of a tenth of a millimetre, the variable being measured is continuous.

In (3) and (4) the variables can assume only a limited number of values. The number of

components passing a point in a minute will be a non-negative integer 0, 1, 2, 3 . . .. The

nominal resistance value of resistors has a limited number of values which is speci�ed

by manufacturers in their catalogues. Variables such as these, which can assume only a

limited set of values, are called discrete variables.

EXERCISES 29.2

1 Is the length of time a machine works without failing

a continuous or a discrete variable?

2 State whether the following variables are continuous

or discrete:

(a) the length of a bridge

(b) the number of electrical sockets in a house

(c) the length of cable used to wire a house

(d) the weight of solder used to build a circuit board

3 State whether the following variables are discrete or

continuous:

(a) the force required to stretch a spring by a

speci�ed length

(b) the output voltage of a system

(c) the height of a column of liquid

(d) the number of resistors in a circuit

(e) the number of bits of memory of a computer

Solutions

1 continuous

2 (a) continuous (b) discrete
(c) continuous (d) continuous

3 (a) continuous (b) continuous (c) continuous

(d) discrete (e) discrete
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29.3 PROBABILITY DISTRIBUTIONS -- DISCRETE VARIABLE

The range of values that a variable can take does not give suf�cient information about

the variable. We need to know which values are likely to occur often and which values

will occur only infrequently. For example, suppose x is a discrete random variable which

can take values 0, 1, 2, 3, 4, 5 and 6. We may ask questions such as ‘Which value is most

likely to occur?’, ‘Is a 6 more likely to occur than a 5?’, and so on. We need information

on the probability of each value occurring. Suppose that information is provided and is

given in Table 29.1. If x is sampled 100 times then on average 0 will occur 10 times, 1

will occur 10 times, 2 will occur 15 times and so on. Table 29.1 is called a probability

distribution for the random variable x. Note that the probabilities sum to 1; the table

tells us how the total probability is distributed among the various possible values of the

random variable. Table 29.1 may be represented in graphical form (see Figure 29.1).

Table 29.1

The probability of a discrete

value occurring.

x 0 1 2 3 4 5 6

P(x) 0.1 0.1 0.15 0.3 0.2 0.1 0.05

0 1 2 3 4 5 6

0.3 

0.2

0.1

P(x)

x

Figure29.1

Plotted data of Table 29.1.

EXERCISES 29.3

1 The probability distribution for the random variable,

x, is

x 2 2.5 3.0 3.5 4.0 4.5

P(x) 0.07 0.36 0.21 0.19 0.10 0.07

(a) State P(x = 3.5)

(b) Calculate P(x > 3.0)

(c) Calculate P(x < 4.0)

(d) Calculate P(x > 3.5)

(e) Calculate P(x 6 3.9)

(f) The variable, x, is sampled 50 000 times. How

many times would you expect x to have a value

of 2.5?

2 The probability distribution of the random variable, y,

is given as

y −3 −2 −1 0 1 2 3

P(y) 0.63 0.20 0.09 0.04 0.02 0.01 0.01

Calculate

(a) P(y > 0) (b) P(y 6 1)

(c) P(|y| 6 1) (d) P(y2 > 3)

(e) P(y2 < 6)

Solutions

1 (a) 0.19 (b) 0.57 (c) 0.83 (d) 0.17

(e) 0.83 (f) 18000

2 (a) 0.08 (b) 0.98 (c) 0.15 (d) 0.85

(e) 0.36
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29.4 PROBABILITY DENSITY FUNCTIONS -- CONTINUOUS
VARIABLE

Suppose x is a continuous random variable which can take any value on [0, 1]. It is

impossible to list all possible values because of the continuous nature of the variable.

There are in�nitely many values on [0, 1] so the probability of any one particular value

occurring is zero. It is meaningful, however, to ask ‘What is the probability of x falling

in a sub-interval, [a, b]?’ Dividing [0, 1] into sub-intervals and attaching probabilities to

each sub-interval will result in a probability distribution. Table 29.2 gives an example.

The probability that x will lie between 0.4 and 0.6 is 0.35, that is P(0.4 6 x < 0.6) =

0.35. Similarly,

P(0.2 6 x < 0.4) = 0.25

Figure 29.2 shows the table in a graphical form. By making the sub-intervals smaller a

more re�ned distribution is obtained. Table 29.3 and Figure 29.3 illustrate this.

The probability that x lies in a particular interval is given by the sum of the heights

of the rectangles on that interval. For example, the probability that x lies in [0.5, 0.8] is

0.2+0.1+0.1 = 0.4; that is, there is a probability of 0.4 that x lies somewhere between

0.5 and 0.8. Note that the sum of all the heights is 1, representing total probability.

Consider the sub-interval [a, b]. We require the probability that x lies in this interval.

The way this is answered is by means of a probability density function (p.d.f.), f (x).

Such a p.d.f. is shown in Figure 29.4, where it is the area under the graph between a and

Table 29.2

Probability that x lies in a given sub-interval.

x [0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1.0]

P(x) 0.1 0.25 0.35 0.2 0.1

Table 29.3

Re�ning the sub-intervals in Table 29.2.

x [0, 0.1) [0.1, 0.2) [0.2, 0.3) [0.3, 0.4) [0.4, 0.5)

P(x) 0.03 0.07 0.1 0.15 0.15

x [0.5, 0.6) [0.6, 0.7) [0.7, 0.8) [0.8, 0.9) [0.9, 1.0]

P(x) 0.2 0.1 0.1 0.07 0.03

0

0.4 

0.3

0.2 

0.1

P(x)

x0.2 0.4 0.6 0.8 1.0

Figure 29.2

Plotted data of Table 29.2.

0.2 

0.1

0

P(x)

x0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 29.3

Plotted data of Table 29.3.
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0 xba

f(x)

Figure 29.4

Shaded area represents P(a 6 x 6 b).

b that gives P(a 6 x 6 b).

P(a 6 x 6 b) = area above [a, b] =

∫ b

a

f (x) dx

The total area under a p.d.f. is always 1.

Example 29.1 Suppose x is a continuous random variable taking any value on [1, 4]. Its p.d.f., f (x), is

given by

f (x) =
1

2
√
x

1 6 x 6 4

(a) Check that f (x) is a suitable function for a p.d.f.

(b) What is the probability that (i) x lies on [2, 3.5], (ii) x > 2, (iii) x < 3?

Solution (a) x can have any value on [1, 4]. For f (x) to be a p.d.f., then the total area under it

should equal 1, that is

∫ 4

1

f (x) dx = 1

∫ 4

1

f (x) dx =

∫ 4

1

1

2
√
x
dx = [

√
x]41 = 1

Hence f (x) is a suitable function for a p.d.f.

(b) (i) P(2 6 x 6 3.5) =

∫ 3.5

2

f (x) dx = [
√
x]3.52 = 0.457

(ii) P(x > 2) =

∫ 4

2

f (x) dx = [
√
x]42 = 0.586

(iii) P(x < 3) =

∫ 3

1

f (x) dx = [
√
x]31 = 0.732

Example 29.2 A random variable, z, has a p.d.f. f (z) where

f (z) = e−z 0 6 z < ∞

Calculate the probability that

(a) 0 6 z 6 2

(b) z is more than 1

(c) z is less than 0.5
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Solution Note that
∫∞

0
e−z dz = 1 so that f (z) = e−z is suitable as a p.d.f.

(a) P(0 6 z 6 2) =
∫ 2

0
e−z dz = [−e−z]20 = 0.865

(b) P(z > 1) =
∫∞

1
e−z dz = [−e−z]∞1 = 0.368

(c) P(z < 0.5) = [−e−z]0.50 = 0.393

EXERCISES 29.4

1 f (x) = kx2, k constant, −1 6 x 6 1. f (x) is a p.d.f.

(a) What is the value of k?

(b) Calculate the probability that x > 0.5.

(c) If P(x > c) = 0.6 then what is the value of c?

2 f (x) is a p.d.f. for the random variable x, which can

vary from 0 to 10. It is illustrated in Figure 29.5. What

is the probability that x lies in [2, 4]?

0  10 x

f(x)

Figure 29.5

Probability density function for Question 2.

3 A p.d.f. is given by

f (z) = 2 e−2z 0 6 z < ∞

(a) If 200 measurements of z are made, how many,

on average, will be greater than 1?

(b) If 50% of measurements are less than k, �nd k.

4 A p.d.f., h(x), is de�ned by

h(x) =
3

4
(1 − x2) −1 6 x 6 1

Calculate

(a) P(0 6 x 6 0.5)

(b) P(−0.3 6 x 6 0.7)

(c) P(|x| < 0.5)

(d) P(x > 0.5)

(e) P(x 6 0.7)

5 (a) Verify that

f (t) = λ e−λ t t > 0

is suitable as a p.d.f.

(b) Calculate P(t > 2) if λ = 3.

Solutions

1 (a) 1.5 (b) 0.4375 (c) −0.5848

2 0.28

3 (a) 27 (b) 0.3466

4 (a) 0.3438 (b) 0.6575 (c) 0.6875

(d) 0.1563 (e) 0.9393

5 (b) 2.479 × 10−3

29.5 MEAN VALUE

If {x1, x2, x3, . . . , xn} is a set of n numbers, then the mean value of these numbers, de-

noted by x, is

x =
sum of the numbers

n
=

∑
xi

n

x is sometimes called the arithmetic mean.
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Example 29.3 Find the mean of −2.3, 0, 1, 0.7.

Solution x =
−2.3 + 0 + 1 + 0.7

4
=

−0.6

4
= −0.15

The mean value is a single number which characterizes the set of numbers. It is useful

in helping to make comparisons.

Engineering application 29.1

Comparison of two production machines

A component is made by two machines, A and B. The lifespans of six components

made by each machine are recorded in Table 29.4. Which is the preferred machine?

Table 29.4

The lifespans of six components made by machines A and B.

Lifespan (hours)

Machine A 92 86 61 70 58 65

Machine B 64 75 84 80 63 70

Solution

For components manufactured by machine A

average lifespan =
432

6
= 72

For components manufactured by machine B

average lifespan =
436

6
= 72.7

Machine B produces components with a higher average lifespan and so is the pre-

ferred machine.

Example 29.4 A variable, x, can have values 2, 3, 4, 5 and 6. Many observations of x are made and

denoted by xi. They have corresponding frequencies, fi. The results are as follows:

value (xi) 2 3 4 5 6

frequency ( fi) 6 9 3 7 4

Calculate the mean of x.

Solution The sum of all the measurements must be found. The value 2 occurs six times, contribut-

ing 12 to the total. Similarly, 3 occurs nine times contributing 27 to the total. Thus

total = 2(6)+ 3(9)+ 4(3)+ 5(7)+ 6(4) = 110
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The number of measurements made is 6 + 9 + 3 + 7 + 4 = 29. So,

mean = x =
110

29
= 3.79

Example 29.4 illustrates a general principle.

If values x1, x2, . . . , xn occur with frequencies f1, f2, . . . , fn then

x =

∑
xi fi∑
fi

EXERCISES 29.5

1 Engineers in a design department are assessed by their

leader. A ‘0’ is ‘Terrible’ and a ‘5’ is ‘Outstanding’.

The 29 members of the department are evaluated and

their scores recorded as follows:

score 0 1 2 3 4 5

number of staff 2 5 6 9 4 3

What is the mean score for the whole department?

2 Two samples of nails are taken. The �rst sample has

12 nails with a mean length of 2.7 cm, the second

sample has 20 nails with a mean length of 2.61 cm.

What is the mean length of all 32 nails?

3 The output, in volts, from a system is measured 40

times. The results are recorded as follows:

voltage (volts) 9.5 10.0 10.5 11.0 11.5

number of 6 14 8 7 5

measurements

Calculate the mean output voltage.

4 The current, in amps, through a resistor is measured

140 times. The results are:

current (amps) 2.25 2.50 2.75 3.00 3.25

number of 32 27 39 22 20

measurements

Calculate the mean current through the resistor.

5 In a communication network, packets of information

travel along lines. The number of lines used by each

packet varies according to the following table:

number of lines used 1 2 3 4 5

number of packets 17 54 32 6 1

Calculate the mean number of lines used per packet.

Solutions

1 2.586

2 2.64

3 10.39

4 2.70

5 2.27
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29.6 STANDARD DEVIATION

Although themean indicates where the centre of a set of numbers lies, it gives nomeasure

of the spread of the numbers. For example, −1, 0, 1 and −10, 0, 10 both have a mean of

0 but clearly the numbers in the second set are much more widely dispersed than those

in the �rst. A commonly used measure of dispersion is the standard deviation.

Let x1, x2, . . . , xn be n measurements with a mean x. Then xi − x is the amount by

which xi differs from the mean. The quantity xi − x is called the deviation of xi from

the mean. Some of these deviations will be positive, some negative. The mean of these

deviations is always zero (see Question 3 in Exercises 29.6) and so this is not helpful

in measuring the dispersion of the numbers. To avoid positive and negative deviations

summing to zero the squared deviation is taken, (xi − x)2. The variance is the mean of

the squared deviations:

variance =

∑
(xi − x)2

n

and

standard deviation =
√
variance

Standard deviation has the same units as the xi.

Example 29.5 Calculate the standard deviation of

(a) −1, 0, 1

(b) −10, 0, 10

Solution (a) x1 = −1, x2 = 0, x3 = 1. Clearly x = 0.

x1 − x = −1 x2 − x = 0 x3 − x = 1

variance =
(−1)2 + 02 + 12

3
=

2

3

standard deviation =

√
2

3
= 0.816

(b) x1 = −10, x2 = 0, x3 = 10. Again x = 0 and so xi − x = xi, for i = 1, 2, 3.

variance =
(−10)2 + 02 + 102

3
=

200

3

standard deviation =

√
200

3
= 8.165

As expected, the second set has a much higher standard deviation than the �rst.
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Example 29.6 Find the standard deviation of −2, 7.2, 6.9, −10.4, 5.3.

Solution x1 = −2, x2 = 7.2, x3 = 6.9, x4 = −10.4, x5 = 5.3, x = 1.4

x1 − x = −3.4

x2 − x = 5.8

x3 − x = 5.5

x4 − x = −11.8

x5 − x = 3.9

variance =
(−3.4)2 + (5.8)2 + (5.5)2 + (−11.8)2 + (3.9)2

5
=

229.9

5

standard deviation =

√
229.9

5
= 6.78

Calculating xi − x, i = 1, 2, . . . , n, is tedious for large n and so a more tractable form of

the standard deviation is sought. Firstly observe that
∑
xi = nx and

∑
x2 = nx2, since

x2 is a constant. Now

∑
(xi − x)2 =

∑
x2i −

∑
2xix+

∑
x2

=
∑

x2i − 2x
∑

xi + nx2

=
∑

x2i − 2x(nx)+ nx2

=
∑

x2i − nx2

Hence,

variance =

∑
x2i − nx2

n

and

standard deviation =

√∑
x2i − nx2

n

Using these formulae it is not necessary to calculate xi − x.

Example 29.7 Repeat Example 29.6 using the newly derived formulae.

Solution
∑
x2i = (−2)2 + (7.2)2 + (6.9)2 + (−10.4)2 + (5.3)2 = 239.7

standard deviation =

√
239.7 − 5(1.4)2

5
= 6.78
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EXERCISES 29.6

1 Calculate the means and standard deviations of:

(a) 1, 2, 3, 4, 5

(b) 2.1, 2.3, 2.7, 2.6

(c) 37, 26, 19, 21, 19, 25, 17

(d) 6, 6, 6, 6, 6, 6

(e) −1, 2, −3, 4, −5, 6

2 A set of measurements {x1, x2, x3, . . . , xn} has a mean

of x and a standard deviation of s. What are the mean

and standard deviation of the set

{kx1, kx2, kx3, . . . , kxn} where k is a constant?

3 The mean of the numbers {x1, x2, x3, . . . , xn} is x.

Show that the sum of the deviations about the mean

is 0; that is, show
∑n

i=1(xi − x) = 0.

Solutions

1 (a) mean = 3; st. dev. = 1.414

(b) 2.425, 0.238

(c) 23.4, 6.321

(d) 6, 0

(e) 0.5, 3.862

2 mean = kx, st. dev. = ks

29.7 EXPECTED VALUE OF A RANDOM VARIABLE

In Sections 29.5 and 29.6 we showed how to calculate the mean and standard deviation

of a given set of numbers. No reference was made to probability distributions or p.d.f.s.

Suppose now that we have knowledge of the probability distribution of a discrete random

variable or the p.d.f. of a continuous random variable. The mean value of the random

variable can still be found. Under these circumstances the mean value is known as the

expected value or expectation.

29.7.1 Expected value of a discrete random variable

Suppose for de�niteness that x is a discrete random variable with probability distribution

as given in Table 29.5.

Table 29.5

Probability distribution for a discrete random variable x.

x 0 1 2 3 4

P(x) 0.1 0.2 0.4 0.15 0.15

In 100 trials x will have a value of zero 10 times on average, a value of one 20 times on

average and so on. The mean value, that is the expected value, is therefore

expected value =
0(10)+ 1(20)+ 2(40)+ 3(15)+ 4(15)

100
= 2.05

We could have arranged the calculation as follows:

expected value = 0
(

10
100

)
+ 1

(
20
100

)
+ 2

(
40
100

)
+ 3

(
15
100

)
+ 4

(
15
100

)

= 0(0.1)+ 1(0.2)+ 2(0.4)+ 3(0.15)+ 4(0.15)
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Each term is of the form (value) × (probability). Thus,

expected value =

i=5∑

i=1

xiP(xi)

The symbol, µ, is used to denote the expected value of a random variable.

If a discrete random variable can take values

x1, x2, . . . , xn

with probabilities P(x1), P(x2), . . . ,P(xn), then

expected value of x = µ =

i=n∑

i=1

xiP(xi)

Example 29.8 A random variable, y, has a known probability distribution given by

y 2 4 6 8 10

P(y) 0.17 0.23 0.2 0.3 0.1

Find the expected value of y.

Solution We have

µ = expected value = 2(0.17)+ 4(0.23)+ 6(0.2)+ 8(0.3)+ 10(0.1) = 5.86

29.7.2 Expected value of a continuous random variable

Suppose a continuous random variable, x, has p.d.f. f (x), a 6 x 6 b. The probability

that x lies in a very small interval, [x, x+ δx], is

∫ x+δx

x

f (t) dt

Since the interval is very small, f will vary only slightly across the interval. Hence the

probability is approximately f (x)δx: see Figure 29.6. The contribution to the expected

value as a result of this interval is

(value) × (probability)

that is, x f (x)δx. Summing all such terms yields

expected value = µ =

∫ b

a

x f (x) dx
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Area ≈ f(x).dx

x + dxx x

f(x)

Figure 29.6

The shaded area represents the probability that x lies

in the small interval [x, x+ δx].

Example 29.9 A random variable has p.d.f. given by

f (x) =
1

2
√
x

1 6 x 6 4

Calculate the expected value of x.

Solution µ=

∫ 4

1

x
1

2
√
x
dx =

∫ 4

1

√
x

2
dx

=

[
x3/2

3

]4

1

=
7

3

So, if several values of x are measured, the mean of these values will be near to
7

3
. As

more and more values are measured the mean will get nearer and nearer to
7

3
.

EXERCISES 29.7

1 Calculate the expected value of the discrete random

variable, h, whose probability distribution is

h 1 1.5 1.7 2.1 3.2

P(h) 0.32 0.24 0.17 0.15 0.12

2 Calculate the expected value of the random variable,

x, whose probability distribution is

x 2 2.5 3.0 3.5 4.0 4.5

P(x) 0.07 0.36 0.21 0.19 0.10 0.07

3 A random variable, z, has p.d.f. f (z) = e−z,

0 6 z < ∞. Calculate the expected value of z.

4 A random variable, x, has p.d.f. f (x) given by

f (x) =
5

4x2
1 6 x 6 5

(a) Calculate the expected value of x.

(b) Ten values of x are measured. They are

1.9, 2.9, 2.8, 2.1, 3.2, 3.4, 2.7, 2.3, 2.8, 2.7

Calculate the mean of the observations and

comment on your �ndings.

5 A p.d.f. h(x) is de�ned by

h(x) =
3

4
(1 − x2) −1 6 x 6 1

Calculate the expected value of x.

6 Is the expected value of a discrete random variable

necessarily one of its possible values?
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Solutions

1 1.668

2 3.05

3 1

4 (a) 2.012 (b) 2.68

5 0

6 no

29.8 STANDARD DEVIATION OF A RANDOM VARIABLE

29.8.1 Standard deviation of a discrete random variable

Recall from Section 29.6 that the standard deviation of a set of numbers, {x1, x2, . . . , xn},

is given by

standard deviation =

√∑
(xi − x)2

n

Now suppose that x is a discrete random variable which can have values x1, x2, x3, . . . , xn
with respective probabilities of p1, p2, p3, . . . , pn; that is, we have

x x1 x2 x3 . . . xn
P(x) p1 p2 p3 . . . pn

Let the expected value of x be µ. Then the square of the deviation from the expected

value has an identical probability distribution:

value (x1 − µ)2 (x2 − µ)2 . . . (xn − µ)2

probability p1 p2 . . . pn

The expected value of the mean squared deviation is the variance. The symbol σ 2 is used

to denote the variance of a random variable:

variance = σ 2 =

n∑

1

pi(xi − µ)2

As before the standard deviation is the square root of the variance:

standard deviation = σ =

√∑
pi(xi − µ)2

Example 29.10 A discrete random variable has probability distribution

x 1 2 3 4 5

P(x) 0.12 0.15 0.23 0.3 0.2



29.8 Standard deviation of a random variable 947

Calculate

(a) the expected value

(b) the standard deviation

Solution (a) µ =
∑
xipi = 1(0.12)+ 2(0.15)+ 3(0.23)+ 4(0.3)+ 5(0.2) = 3.31

(b) σ 2 =
∑

pi(xi − µ)2

= 0.12(1 − 3.31)2 + 0.15(2 − 3.31)2 + 0.23(3 − 3.31)2

+ 0.3(4 − 3.31)2 + 0.2(5 − 3.31)2

= 1.6339

standard deviation = σ =
√
1.6339 = 1.278

29.8.2 Standard deviation of a continuous random variable

We simply state the formula for the standard deviation of a continuous random variable.

It is analogous to the formula for the standard deviation of a discrete variable. Let x be

a continuous random variable with p.d.f. f (x), a 6 x 6 b. Then

σ =

√∫ b

a

(x− µ)2 f (x) dx

Example 29.11 A random variable, x, has p.d.f. f (x) given by

f (x) = 1 0 6 x 6 1

Calculate the standard deviation of x.

Solution The expected value, µ, is found:

µ =

∫ 1

0

x f (x) dx =

[
x2

2

]1

0

=
1

2

The variance can now be found:

variance = σ 2 =

∫ 1

0

(
x−

1

2

)2

1 dx

=

∫ 1

0

x2 − x+
1

4
dx

=

[
x3

3
−
x2

2
+
x

4

]1

0

=
1

3
−

1

2
+

1

4
=

1

12

Hence

σ =

√
1

12
= 0.29

The standard deviation of x is 0.29.
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EXERCISES 29.8

1 A p.d.f. h(x) of the random variable x is de�ned by

h(x) =
3

4
(1 − x2) −1 6 x 6 1

(a) Calculate the expected value of x.

(b) Calculate the standard deviation of x.

2 A random variable, t, has p.d.f. H(t) given by

H(t) = 3 e−3t t > 0

(a) Calculate the expected value of t.

(b) Calculate the standard deviation of t.

3 A discrete random variable, w, has a known

probability distribution

w −1 −0.5 0 0.5 1

P(w) 0.1 0.17 0.4 0.21 0.12

Calculate the standard deviation of w.

4 A discrete random variable, y, has a probability

distribution

y 6 7 8 9 10 11

P(y) 0.13 0.26 0.14 0.09 0.11 0.27

Calculate the standard deviation of y.

5 A continuous random variable has p.d.f.

f (x) =

{
x+ 1 −1 6 x 6 0

−x+ 1 0 < x 6 1

(a) Calculate the expected value of x.

(b) Calculate the standard deviation of x.

Solutions

1 (a) 0 (b) 0.4472

2 (a) 1
3 (b) 1

3

3 0.5598

4 1.84

5 (a) 0 (b) 0.4082

29.9 PERMUTATIONS AND COMBINATIONS

Both permutations and combinations are used extensively in the calculation of probabil-

ities.

29.9.1 Permutations

The following problem introduces permutations.

Engineering application 29.2

Linking process control computers

A primary and a secondary route must be chosen from available routes A, B and C,

for the linking of two process control computers in order to provide redundancy in

case one fails. In how many ways can the choices be made?
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Solution

The various possibilities are listed.

Primary route Secondary route

A B

B A

A C

C A

B C

C B

There are six ways in which the choices can be made. Alternatively we could argue

as follows. Suppose the primary route is chosen �rst. There are three choices: any

one of A, B or C. The secondary route is then chosen from the two remaining routes,

giving two possible choices. Together there are 3×2 = 6 ways of choosing a primary

route and a secondary route.

In Engineering application 29.2 the choice AB is distinct from the choice BA, that is the

order is important. Choosing two routes from three and arranging them in order is an

example of a permutation. More generally:

A permutation of n distinct objects taken r at a time is an arrangement of r of the n

objects.

In forming permutations, the order of the objects is important. If three letters are chosen

from the alphabet the permutation XYZ is distinct from the permutation ZXY. We pose

the question ‘How many permutations are there of n objects taken r at a time?’ The

following example will help to establish a formula for the number of permutations.

Example 29.12 Calculate the number of permutations there are of

(a) four distinct objects taken two at a time

(b) �ve distinct objects taken three at a time

(c) seven distinct objects taken four at a time

Solution (a) Listing all possible permutations is not feasible when the numbers involved are

large. In choosing the �rst object, four choices are possible. In choosing the sec-

ond object, three choices are possible. There are thus 4 × 3 = 12 permutations of

four objects taken two at a time. Note that 12 may be written as

12 = 4 × 3 =
4!

2!
=

4!

(4 − 2)!

(b) There are �ve objects available for the �rst choice, four for the second choice and

three for the third choice. Hence there are 5× 4× 3 = 60 permutations. Again note

that

60 =
5!

2!
=

5!

(5 − 3)!
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(c) There are seven objects available for the �rst choice, six for the second, �ve for the

third and four for the fourth. The number of permutations is 7 × 6 × 5 × 4 = 840.

This may be written as
7!

(7 − 4)!
.

The example illustrates the following general rule.

The number of permutations of n distinct objects taken r at a time, written P(n, r), is

P(n, r) =
n!

(n− r)!

Example 29.13 Find the number of permutations of

(a) 10 distinct objects taken six at a time

(b) 15 distinct objects taken two at a time

(c) six distinct objects taken six at a time

Solution (a) P(10, 6) =
10!

(10 − 6)!
=

10!

4!
= 151 200

(b) P(15, 2) =
15!

(15 − 2)!
=

15!

13!
= 210

(c) P(6, 6) =
6!

(6 − 6)!
=

6!

0!
= 720 (Note that 0! = 1)

P(6, 6) is simply the number of ways of arranging all six of the objects.

Note that

P(n, n) = n!

This is the number of ways of arranging n given objects.

29.9.2 Combinations

Closely related to, but nevertheless distinct from, permutations are combinations.

A combination is a selection of r distinct objects from n objects.

In making a selection the order is unimportant. For example, given the letters A, B and C,

AB and BA are the same combination but different permutations. As with permutations

we develop an expression for the number of combinations of n objects taken r at a time.

Examples 29.14 and 29.15 help with this development.
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Example 29.14 There are three routes, A, B and C, joining two computers. In how many ways can two

routes be chosen from A, B and C?

Solution The possible combinations (selections) can be listed as

AB, BC, AC

that is, there are three possible ways of making the selection. We can also use our knowl-

edge of permutations to calculate the number of combinations. There are P(3, 2) ways

of arranging the three routes taken two at a time.

P(3, 2) =
3!

(3 − 2)!
= 6

Each combination of two routes can be arranged in P(2, 2) ways; that is, each combina-

tion gives rise to two permutations. For example, the combination AB could be arranged

as AB or BA, giving two permutations. Thus, the number of combinations is half the

number of permutations. There are 6/2 = 3 combinations.

Example 29.15 Calculate the number of combinations of

(a) six distinct objects taken four at a time

(b) 10 distinct objects taken six at a time

Solution (a) Consider one combination of four objects. These four objects can be arranged in

4! ways; that is, each combination gives rise to 4! permutations. The number of

permutations of six objects taken four at a time is

P(6, 4) =
6!

2!

Hence the number of combinations is

P(6, 4)

4!
=

6!

2!4!
= 15

There are 15 combinations of six objects taken four at a time.

(b) Each combination, comprising six objects, gives rise to 6! permutations. The number

of permutations of 10 objects taken six at a time is

P(10, 6) =
10!

4!

Hence the number of combinations =
P(10, 6)

6!
=

10!

4!6!
= 210.

We write

(
n

r

)
to denote the number of combinations of n objects taken r at a time. A

formula for

(
n

r

)
is now developed.
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Each combination of r objects gives rise to r! permutations, but

P(n, r) =
n!

(n− r)!

The number of combinations of n distinct objects taken r at a time is
(
n

r

)
=
P(n, r)

r!
=

n!

(n− r)!r!

Example 29.16 Calculate the number of combinations of

(a) six distinct objects taken �ve at a time

(b) nine distinct objects taken nine at a time

(c) 25 distinct objects taken �ve at a time

Solution (a)

(
6

5

)
=

6!

1!5!
= 6 (b)

(
9

9

)
=

9!

0!9!
= 1 (c)

(
25

5

)
=

25!

5!20!
= 53 130

We can generalize the result of Example 29.16(b) and state that

(
n

n

)
= 1.

Example 29.17 There are k identical objects and n compartments (n > k). Each compartment can

hold only one object. In how many different ways can the k objects be placed in the n

compartments?

Solution The order in which the objects are placed is unimportant since all the objects are iden-

tical. Placing the k objects is identical to selecting k of the n compartments (see Fig-

ure 29.7). But the number of ways of selecting k compartments from n is precisely

(
n

k

)
.

Hence the k objects can be placed in the n compartments in

(
n

k

)
different ways.

n compartments

k objects
Figure 29.7

Placing k objects in n compartments.
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EXERCISES 29.9

1 Evaluate

(a) P(8, 6) (b) P(11, 7)

(c)

(
12

9

)
(d)

(
15

12

)
(e)

(
15

3

)

2 Write out explicitly

(a)

(
n

0

)
(b)

(
n

1

)
(c)

(
n

2

)

3 The expansion of (a+b)n where n is a positive integer

may be written with the help of combination notation.

(a+ b)n = an +

(
n

1

)
an−1b

+

(
n

2

)
an−2b2 + · · ·

+

(
n

n− 1

)
abn−1 +

(
n

n

)
bn

=

n∑

k=0

(
n

k

)
an−kbk

Expand

(a) (a+ b)4 (b) (1 + x)6 (c) (p+ q)5

4 Primary and secondary routes connecting two

computers need to be chosen. Two primary routes are

needed from eight which are suitable and three

secondary routes must be chosen from four available.

In how many ways can the routes be chosen?

5 A combination lock can be opened by dialling three

correct letters followed by three correct digits. How

many different possibilities are there for arranging the

letters and digits? Is this more secure than a lock

which has seven digits? Is the word ‘combination’

being used correctly?

6 A nuclear power station is to be built on one of 20

possible sites. A team of engineers is commissioned to

examine the sites and rank the three most favourable

in order. In how many ways can this be done?

Solutions

1 (a) 20 160 (b) 1 663 200 (c) 220

(d) 455 (e) 455

2 (a) 1 (b) n (c)
n(n− 1)

2

3 (a) a4 + 4a3b+ 6a2b2 + 4ab3 + b4

(b) 1 + 6x+ 15x2 + 20x3 + 15x4 + 6x5 + x6

(c) p5 + 5p4q+ 10p3q2 + 10p2q3 + 5pq4 + q5

4 112

5 17 576 000. Yes, it is more secure. Combination is not

being used correctly: permutation lock would be

better.

6 6840

29.10 THE BINOMIAL DISTRIBUTION

In a single trial or experiment a particular result may or may not be obtained. For ex-

ample, in an examination, a student may pass or fail; when testing a component it may

work or not work. The important point is that the two outcomes are complementary. As-

suming that the probability of an outcome is �xed, such a trial is called a Bernoulli trial

in honour of the mathematician, J. Bernoulli.

We address the following problem. In a single trial the outcome is either A or B, that is

A. We refer to A as a success and B as a failure. If we know P(A) = p then P(B) = 1−p.

If n independent trials are observed, what is the probability that A occurs k times, and B

occurs n− k times? The number of successful trials in n such experiments is a discrete

random variable; such a variable is said to have a binomial distribution. Let us consider

a particular problem.
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Engineering application 29.3

Sampling components made by a machine

Amachine makes components. The probability that a component is acceptable is 0.9.

(a) If three components are sampled �nd the probability that the �rst is acceptable,

the second is acceptable and the third is not acceptable.

(b) If three components are sampled what is the probability that exactly two are

acceptable?

Solution

Let the events A and B be de�ned thus:

A: the component is acceptable, P(A) = 0.9

B: the component is not acceptable, P(B) = 0.1

(a) We denote by AAB the compound event that the �rst is acceptable, the second

is acceptable, the third is not acceptable. Since the three events are independent

the multiplication law in Section 28.7 gives

P(AAB) = P(A)P(A)P(B) = (0.9)(0.9)(0.1) = (0.9)2(0.1) = 0.081

(b) We are interested in the compound event inwhich two components are acceptable

and one is not acceptable. We denote by AAB the compound event that the �rst

is acceptable, the second is acceptable, the third is not acceptable. Compound

events ABA and BAA have obvious interpretations.

If exactly two components are acceptable then either AAB or ABA or BAA

occurs. These compound events are mutually exclusive and we can therefore use

the addition law (see Section 28.3). Hence

P(exactly two acceptable components) = P(AAB)+ P(ABA)+ P(BAA)

From (a) P(AAB) = 0.081 and by similar reasoning P(ABA) = P(BAA) =

0.081. Hence,

P(exactly two acceptable components) = 3(0.081) = 0.243

29.10.1 Probability of k successes from n trials

Let us now return to the general problem posed earlier. We de�ne the compound

event C:

C: A occurs k times and B occurs n− k times

The k occurrences of event A can be distributed amongst the n trials in

(
n

k

)
different

ways (see Example 29.17). The probability of a particular distribution of k occurrences

of A and n−k occurrences of B is pk(1− p)n−k. Since there are

(
n

k

)
distinct distributions

possible then

P(C) =

(
n

k

)
pk(1 − p)n−k k = 0, 1, 2, . . . , n
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Example 29.18 The probability that a component is acceptable is 0.93. Ten components are picked at

random. What is the probability that

(a) at least nine are acceptable

(b) at most three are acceptable?

Solution (a) P(exactly 9 components are acceptable) =

(
10

9

)
(0.93)9(0.07) = 0.364

P(exactly 10 components are acceptable) =

(
10

10

)
(0.93)10 = 0.484

Hence,

P(at least 9 components are acceptable) = 0.364 + 0.484 = 0.848

(b) We require the probability that none are acceptable, one is acceptable, two are ac-

ceptable and three are acceptable:

P(0 are acceptable) =

(
10

0

)
(0.93)0(0.07)10 = 2.825 × 10−12

P(1 is acceptable) =

(
10

1

)
(0.93)1(0.07)9 = 3.753 × 10−10

P(2 are acceptable) =

(
10

2

)
(0.93)2(0.07)8 = 2.244 × 10−8

P(3 are acceptable) =

(
10

3

)
(0.93)3(0.07)7 = 7.949 × 10−7

Hence,

P(at most 3 are acceptable) = 2.825 × 10−12 + 3.753 × 10−10

+ 2.244 × 10−8 + 7.949 × 10−7

= 8.18 × 10−7

that is, the probability that at most three components are acceptable is almost zero;

it is virtually impossible.

29.10.2 Mean and standard deviation of a binomial distribution

Let the probability of success in a single trial be p and let the number of trials be n.

The number of successes in n trials is a discrete random variable, x, with a binomial

distribution. Then x can have any value from {0, 1, 2, 3, . . . , n}, although clearly some

values are more likely to occur than others. The expected value of x can be shown to be

np. Thus, if many values of x are recorded, the mean of these will approach np.

Expected value of the binomial distribution = np

The standard deviation of the binomial distribution can also be found. This is given by

standard deviation of the binomial distribution =
√
np(1 − p)
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29.10.3 Most likely number of successes

When conducting a series of trials it is sometimes desirable to know the most likely

outcome. For example, what is the most likely number of acceptable components in a

sample of �ve tested?

Example 29.19 The probability a component is acceptable is 0.8. Five components are picked at random.

What is the most likely number of acceptable components?

Solution P(no acceptable components)=

(
5

0

)
(0.8)0(0.2)5 = 3.2 × 10−4

P(1 acceptable component) =

(
5

1

)
(0.8)1(0.2)4 = 6.4 × 10−3

P(2 acceptable components) =

(
5

2

)
(0.8)2(0.2)3 = 0.0512

P(3 acceptable components) =

(
5

3

)
(0.8)3(0.2)2 = 0.2048

P(4 acceptable components) =

(
5

4

)
(0.8)4(0.2)1 = 0.4096

P(5 acceptable components) =

(
5

5

)
(0.8)5(0.2)0 = 0.3277

The most likely number of acceptable components is four.

Example 29.19 illustrates an important general result. Suppose we conduct n Bernoulli

trials and wish to �nd the most likely number of successes. If p = probability of success

on a single trial, and i = most likely number of successes in n trials, then

p(n+ 1)− 1 < i < p(n+ 1)

In Example 29.19, p = 0.8, n = 5 and so

(0.8)(6)− 1 < i < (0.8)(6)

3.8 < i < 4.8

Since i is an integer, then i = 4.

EXERCISES 29.10

1 The probability a component is acceptable is 0.8. Four

components are sampled. What is the probability that

(a) exactly one is acceptable

(b) exactly two are acceptable?

2 A machine requires all seven of its micro-chips to

operate correctly in order to be acceptable. The

probability a micro-chip is operating correctly is 0.99.

(a) What is the probability the machine is

acceptable?

(b) What is the probability that six of the seven chips

are operating correctly?

(c) The machine is redesigned so that the original

seven chips are replaced by four new chips. The

probability a new chip operates correctly is 0.98.
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Is the new design more or less reliable than the

original?

3 The probability a machine has a lifespan of more than

5 years is 0.8. Ten machines are chosen at random.

What is the probability that

(a) eight machines have a lifespan of more than 5

years

(b) all machines have a lifespan of more than 5 years

(c) at least eight machines have a lifespan of more

than 5 years

(d) no more than two machines have a lifespan of

less than 5 years?

4 The probability a valve remains reliable for more than

10 years is 0.75. Eight valves are sampled. What is

the most likely number of valves to remain reliable

for more than 10 years?

5 The probability a chip is manufactured to an

acceptable standard is 0.87. A sample of six chips is

picked at random from a large batch.

(a) Calculate the probability all six chips are

acceptable.

(b) Calculate the probability none of the chips is

acceptable.

(c) Calculate the probability that fewer than �ve

chips in the sample are acceptable.

(d) Calculate the most likely number of acceptable

chips in the sample.

(e) Calculate the probability that more than two

chips are unacceptable.

Solutions

1 (a) 0.0256 (b) 0.1536

2 (a) 0.9321 (b) 0.0659 (c) 0.9224.

New design is less reliable

3 (a) 0.3020 (b) 0.1074 (c) 0.678 (d) 0.678

4 6

5 (a) 0.4336 (b) 4.826 × 10−6 (c) 0.1776 (d) 6

(e) 0.0324

29.11 THE POISSON DISTRIBUTION

The Poisson distribution models the number of occurrences of an event in a given inter-

val. Consider the number of emergency calls received by a service engineer in one day.

We may know from experience that the number of calls is usually three or four per day,

but occasionally it will be only one or two, or even none, and on some days it may be six

or seven, or even more. This example suggests a need for assigning a probability to the

number of occurrences of an event during a given time period. The Poisson distribution

serves this purpose.

The number of occurrences of an event, E, in a given time period is a discrete random

variable which we denote by X . We wish to �nd the probability that X = 0, X = 1,

X = 2, X = 3, and so on. Suppose the occurrence of E in any time interval is not

affected by its occurrence in any preceding time interval. For example, a car is not more,

or less, likely to pass a given spot in the next 10 seconds because a car passed (or did

not pass) the spot in the previous 10 seconds, that is the occurrences are independent.

Let λ be the expected (mean) value of X , the number of occurrences during the time

period. If X is measured for many time periods the average value of X will be λ. Under

the given conditions X follows a Poisson distribution. The probability that X has a value

r is given by

P(X = r) =
e−λλr

r!
r = 0, 1, 2, . . .
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The expected value and variance of the Poisson distribution are both equal to λ.

Engineering application 29.4

Emergency calls to a service engineer

Records show that on average three emergency calls per day are received by a service

engineer. What is the probability that on a particular day

(a) three (b) two (c) four

calls will be received?

Solution

The number of calls received follows a Poisson distribution. The average number of

calls is three per day, that is λ = 3.

(a) P(X = 3) =
e−333

3!
= 0.224 (b) P(X = 2) =

e−332

2!
= 0.224

(c) P(X = 4) =
e−334

4!
= 0.168

The engineer will receive three calls on approximately 22 days in 100, two calls on

approximately 22 days in 100 and four calls on approximately 17 days in 100.

Engineering application 29.5

Machine breakdowns in a workshop

A workshop has several machines. During a typical month two machines will break

down. What are the probabilities that in a month

(a) none (b) one (c) more than two

will break down?

Solution

λ = average number of machines that break down = 2

X = number of machines broken down

(a) P(X = 0) =
e−220

0!
= 0.135

(b) P(X = 1) =
e−221

1!
= 0.271

(c) P(X > 2)= 1 − P(X = 0)− P(X = 1)− P(X = 2)

= 1 − e−2 − 2 e−2 − 2 e−2 = 0.323
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Table 29.6

The probabilities for binomial and Poisson distributions.

Binomial (n, p) Poisson (λ)

P(X = r); n = 15, p = 0.05 P(X = r); λ = 0.75

r = 0 0.463 39 0.472 37

r = 1 0.365 76 0.354 27

r = 2 0.134 75 0.132 85

r = 3 0.030 73 0.033 21

r = 4 0.004 85 0.006 23

r = 5 0.000 56 0.000 90

r = 6 0.000 05 0.000 07

r = 7 0.000 00 0.000 01

29.11.1 Poisson approximation to the binomial

The Poisson and binomial distributions are related. Consider a binomial distribution, in

which n trials take place and the probability of success is p. If n increases and p decreases

such that np is constant, the resulting binomial distribution can be approximated by a

Poisson distribution with λ = np. Recall that np is the expected value of the binomial

distribution, and λ is the expected value of the Poisson distribution.

To illustrate the above point, Table 29.6 lists the probabilities for binomial and Pois-

son distributions with n = 15, p = 0.05 and hence λ = 15(0.05) = 0.75. The remaining

probabilities are all almost 0.

As n increases and p decreases with np remaining constant, agreement between the

two distributions becomes closer.

Engineering application 29.6

Workforce absentees

A workforce comprises 250 people. The probability a person is absent on any one

day is 0.02. Find the probability that on a day

(a) three (b) seven

people are absent.

Solution

This problem may be treated either as a sequence of Bernoulli trials or as a Poisson

process.

Bernoulli trials

The probabilities follow a binomial distribution.

E: a person is absent

n = number of trials = 250

p = probability that E occurs in a single trial = 0.02

X = number of occurrences of event E
➔



960 Chapter 29 Statistics and probability distributions

(a) P(X = 3) =

(
250

3

)
(0.02)3(0.98)247 = 0.140

(b) P(X = 7) =

(
250

7

)
(0.02)7(0.98)243 = 0.105

Poisson process

Since n is large and p is small the Poisson distribution will be a good approximation

to the binomial distribution

λ = np = 5

(a) P(X = 3) =
e−5(5)3

3!
= 0.140 (b) P(X = 7) =

e−5(5)7

7!
= 0.104

EXERCISES 29.11

1 A computer network has several hundred computers.

During an 8 hour period, there are on average seven

computers not functioning. Find the probability that

during an 8 hour period

(a) nine (b) �ve

do not function.

2 A workforce has on average two people absent

through illness on any given day. Find the probability

that on a typical day

(a) two

(b) at least three

(c) less than four

people are absent.

3 A machine manufactures 300 micro-chips per hour.

The probability an individual chip is faulty is 0.01.

Calculate the probability that

(a) two

(b) four

(c) more than three

faulty chips are manufactured in a particular hour. Use

both the binomial and Poisson approximations and

compare the resulting probabilities.

4 The probability of a disk drive failure in any week is

0.007. A computer service company maintains 900

disk drives. Use the Poisson distribution to calculate

the probability of

(a) seven (b) more than seven

disk drive failures in a week.

5 The probability an employee fails to come to work is

0.017. A large engineering �rm employs 650 people.

What is the probability that on a particular day

(a) nine (b) 10

people are away from work?

6 A machine manufactures electrical components for

the car industry at the rate of 750 per hour. The

probability a component is faulty is 0.013. Use both

the binomial distribution and the corresponding

Poisson approximation to �nd the probability that in a

sample of 200 components

(a) none are faulty

(b) one is faulty

(c) two are faulty

(d) three are faulty

(e) more than three are faulty

Solutions

1 (a) 0.1014 (b) 0.1277

2 (a) 0.2707 (b) 0.3233

(c) 0.8571

3 (a) Binomial 0.2244; Poisson 0.2240

(b) 0.1689, 0.1680

(c) 0.353, 0.353

4 (a) 0.1435 (b) 0.2983
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5 (a) 0.1075 (b) 0.1188

6 (a) Binomial 0.0730; Poisson 0.0743

(b) 0.1923, 0.1931

(c) 0.2521, 0.2510

(d) 0.2191, 0.2176

(e) 0.2634, 0.2640

29.12 THE UNIFORM DISTRIBUTION

We now consider a continuous distribution -- the uniform distribution. Suppose the prob-

ability of an event occurring remains constant across a given time interval. The p.d.f.,

f (t), of such a distribution takes the form shown in Figure 29.8.

Area = 1

T t

f(t)

0

1 –
T

Figure 29.8

The uniform p.d.f.

The area under f (t) must equal 1 and so if the interval is of length T , the height of

the rectangle is
1

T
.

The p.d.f. for the uniform distribution is given by

f (t) =





1

T
0 < t < T

0 otherwise

The probability an event occurs in an interval [a, b] is
∫ b
a
f (t) dt. If 0 6 a 6 b 6 T

this probability is simply
b− a

T
. We shall make use of this distribution in Section 29.15

when we deal with reliability engineering.

EXERCISES 29.12

1 A random variable, x, has a uniform p.d.f. with

T = 10. Calculate the probability that

(a) 1 6 x 6 3 (b) 1.6 6 x 6 9.3

(c) x > 2.9 (d) x < 7.2

(e) −1 < x < 2 (f) 9.1 < x < 12.3

2 A random variable t has a uniform p.d.f. with

T = 1.5. Calculate the probability that

(a) 0.7 6 t 6 1.3 (b) 1 < t < 2

(c) |t| < 0.5 (d) |t| > 1

Solutions

1 (a) 0.2 (b) 0.77 (c) 0.71 (d) 0.72

(e) 0.2 (f) 0.09

2 (a) 0.4 (b) 0.3333 (c) 0.3333

(d) 0.3333
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29.13 THE EXPONENTIAL DISTRIBUTION

Suppose a random variable has a Poisson distribution; for example, the random variable

could be the number of customers arriving at a service point, the number of telephone

calls received at a switchboard, the number of machines breaking down in a week. Then

the time between events happening is a random variable which follows an exponential

distribution. Note that whereas the number of events is a discrete variable, the time

between events is a continuous variable.

Let t be the time between events happening.

The exponential p.d.f. f (t) is given by

f (t) =

{
αe−αt t > 0

0 otherwise

where α > 0.

The probability of an event occurring in a time interval, T , is given by
∫ T
0
f (t) dt.

Figure 29.9 shows f (t) for various values of α. The expected value of the distribution is

given, by de�nition, as

expected value = µ =

∫ ∞

0

tαe−αt dt =
1

α

For example, if

f (t) = 3 e−3t t in seconds t > 0

then the mean time between events is
1

3
s; that is, on average there are three events

happening per second.

a increasing

t

f(t)

Figure 29.9

The exponential p.d.f. for various values of α.

Engineering application 29.7

Time between breakdowns of a machine

The time between breakdowns of a particular machine follows an exponential distri-

bution, with a mean of 17 days. Calculate the probability that a machine breaks down

in a 15 day period.
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Solution

The mean time between breakdowns = 17 =
1

α
, so α =

1

17
. Thus the p.d.f., f (t), is

given by

f (t) =
1

17
e−t/17 t > 0

We require the probability that the machine breaks down in a 15 day period:

P(0 6 t 6 15) =

∫ 15

0

f (t) dt

=

∫ 15

0

1

17
e−t/17 dt

=

[
−e−t/17

]15

0

= −e−15/17 + 1

= 0.5862

There is a 58.62% chance that the machine will break down in a 15 day period.

EXERCISES 29.13

1 A service engineer receives on average an emergency

call every 3 hours. If the time between calls follows

an exponential distribution, calculate the probability

that the time from one emergency call to the next is

(a) greater than 3 hours

(b) less than 4.5 hours

2 The mean time between breakdowns for a certain type

of machine is 400 hours. Calculate the probability that

the time between breakdowns for a particular

machine is

(a) greater than 450 hours

(b) less than 350 hours

3 The mean time taken by an engineer to repair an

electrical fault in a system is 2.7 hours. Calculate the

probability that the engineer will repair a fault in less

than the mean time.

Solutions

1 (a) 0.3679 (b) 0.7769

2 (a) 0.3247 (b) 0.5831

3 0.6321

29.14 THE NORMAL DISTRIBUTION

The normal probability density function, commonly called the normal distribution, is

one of the most important and widely used. It is used to calculate the probable values

of continuous variables, for example weight, length, density, error measurement. Prob-

abilities calculated using the normal distribution have been shown to reflect accurately

those which would be found using actual data.
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m x

N(x)

m x

N(x)

(a) (b)

Figure 29.10

Two typical normal curves.

m1 m2 x

N(x) (a) (b)

Figure 29.11

Two normal curves with the same

standard deviation but different means.

Let x be a continuous random variable with a normal distribution, N(x). Then

N(x) =
1

σ
√
2π

e−(x−µ)2/2σ 2

−∞ < x < ∞

where µ = expected (mean) value of x, σ = standard deviation of x. Figure 29.10 shows

two typical normal curves. All normal distributions are bell shaped and symmetrical

about µ.

In Figure 29.10(a) the values of x are grouped very closely to the mean. Such a dis-

tribution has a low standard deviation. Conversely, in Figure 29.10(b) the values of the

variable are spread widely about the mean and so the distribution has a high standard

deviation.

Figure 29.11 shows two normal distributions. They have the same standard deviation

but different means. The mean of the distribution in Figure 29.11(a) isµ1 while the mean

of that in Figure 29.11(b) is µ2. Note that the domain of N(x) is (−∞,∞); that is, the

domain is all real numbers. As for all distribution curves the total area under the curve

is 1.

29.14.1 The standard normal

A normal distribution is determined uniquely by specifying the mean and standard de-

viation. The probability that x lies in the interval [a, b] is

P(a 6 x 6 b) =

∫ b

a

N(x) dx

Themathematical form of the normal distributionmakes analytic integration impossible,

so all probabilities must be computed numerically. As these numerical values would

change every time the value of µ or σ was altered some standardization is required. To

this end we introduce the standard normal. The standard normal has a mean of 0 and

a standard deviation of 1.

Consider the probability that the random variable, x, has a value less than z. For con-

venience we call this A(z).

A(z) = P(x < z) =

∫ z

−∞

N(x) dx

Figure 29.12 illustrates A(z). Values of A(z) have been computed numerically and tabu-

lated. They are given in Table 29.7. Using the table and the symmetrical property of the

distribution, probabilities can be calculated.
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xz

N(x)

0

A(z)

Figure 29.12

A(z) = P(x < z) =
∫ z
−∞

N(x) dx.

Example 29.20 The continuous random variable x has a standard normal distribution. Calculate the prob-

ability that

(a) x < 1.2 (b) x > 1.2 (c) x > −1.2 (d) x < −1.2

Solution (a) From Table 29.7

P(x < 1.2) = 0.8849

This is depicted in Figure 29.13.

(b) P(x > 1.2) = 1 − 0.8849 = 0.1151

This is shown in Figure 29.14.

(c) By symmetry P(x > −1.2) is identical to P(x < 1.2) (see Figure 29.15). So,

P(x > −1.2) = 0.8849

(d) Using part (c) we �nd

P(x < −1.2) = 1 − P(x > −1.2) = 0.1151

(see Figure 29.16).

N(x)

0 1.2 x

Figure 29.13

P(x < 1.2) = 0.8849.

N(x)

0 1.2 x

Figure 29.14

P(x > 1.2) = 0.1151.

N(x)

0–1.2 x

Figure 29.15

P(x > −1.2) = 0.8849.

N(x)

0–1.2 x

Figure 29.16

P(x < −1.2) = 0.1151.
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Example 29.21 The continuous random variable v has a standard normal distribution. Calculate the prob-

ability that

(a) 0 < v < 1 (b) −1 < v < 1 (c) −0.5 6 v 6 2

Solution (a) Figure 29.17 shows the area (probability) required.

P(v < 1) = 0.8413 using Table 29.7

P(v < 0) = 0.5 using symmetry

P(0 < v < 1) = 0.8413 − 0.5 = 0.3413

(b) Figure 29.18 shows the area (probability) required.

P(−1 < v < 1) = 2 × P(0 < v < 1) using symmetry

= 2 × 0.3413 = 0.6826

This tells us that 68.3% of the values of v are within one standard deviation of the

mean.

(c) Figure 29.19 shows the area (probability) required.

P(v 6 2) = 0.9772

P(v 6 −0.5) = P(v > 0.5) = 1 − P(v < 0.5)

= 1 − 0.6915 = 0.3085

P(−0.5 6 v 6 2) = 0.9772 − 0.3085 = 0.6687

Note that whether or not inequalities de�ning v are strict is of no consequence in

calculating the probabilities.

N(v)

0 1 v

Figure 29.17

P(0 < v < 1) = 0.3413.

N(y)

0 1–1 y

Figure 29.18

P(−1 < v < 1) = 0.6826.

N(y)

0 2–0.5 y

Figure 29.19

P(−0.5 6 v 6 2) = 0.6687.

29.14.2 Non-standard normal

Table 29.7 allows us to calculate probabilities for a random variable with a standard

normal distribution. This section show us how to use the same table when the variable

has a non-standard distribution. A non-standard normal has a mean value other than 0

and/or a standard deviation other than 1. The non-standard normal is changed into a

standard normal by application of a simple rule. Suppose the non-standard distribution

has a mean µ and a standard deviation σ . Then all non-standard values are transformed

to standard values using

non-standard → standard

X →
X − µ

σ
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Table 29.7

Cumulative normal probabilities.

z A(z) z A(z) z A(z) z A(z) z A(z) z A(z)

0.00 0.500 000 0 0.40 0.655 421 7 0.80 0.788 144 6 1.20 0.884 930 3 1.60 0.945 200 7 2.00 0.977 249 9

0.01 0.503 989 4 0.41 0.659 097 0 0.81 0.791 029 9 1.21 0.886 860 6 1.61 0.946 301 1 2.01 0.977 784 4

0.02 0.507 978 3 0.42 0.662 757 3 0.82 0.793 891 9 1.22 0.888 767 6 1.62 0.947 383 9 2.02 0.978 308 3

0.03 0.511 966 5 0.43 0.666 402 2 0.83 0.796 730 6 1.23 0.890 651 4 1.63 0.948 449 3 2.03 0.978 821 7

0.04 0.515 953 4 0.44 0.670 031 4 0.84 0.799 545 8 1.24 0.892 512 3 1.64 0.949 497 4 2.04 0.979 324 8

0.05 0.519 938 8 0.45 0.673 644 8 0.85 0.802 337 5 1.25 0.894 350 2 1.65 0.950 528 5 2.05 0.979 817 8

0.06 0.523 922 2 0.46 0.677 241 9 0.86 0.805 105 5 1.26 0.896 165 3 1.66 0.951 542 8 2.06 0.980 300 7

0.07 0.527 903 2 0.47 0.680 822 5 0.87 0.807 849 8 1.27 0.897 957 7 1.67 0.952 540 3 2.07 0.980 773 8

0.08 0.531 881 4 0.48 0.684 386 3 0.88 0.810 570 3 1.28 0.899 727 4 1.68 0.953 521 3 2.08 0.981 237 2

0.09 0.535 856 4 0.49 0.687 933 1 0.89 0.813 267 1 1.29 0.901 474 7 1.69 0.954 486 0 2.09 0.981 691 1

0.10 0.539 827 8 0.50 0.691 462 5 0.90 0.815 939 9 1.30 0.903 199 5 1.70 0.955 434 5 2.10 0.982 135 6

0.11 0.543 795 3 0.51 0.694 974 3 0.91 0.818 588 7 1.31 0.904 902 1 1.71 0.956 367 1 2.11 0.982 570 8

0.12 0.547 758 4 0.52 0.698 468 2 0.92 0.821 213 6 1.32 0.906 582 5 1.72 0.957 283 8 2.12 0.982 997 0

0.13 0.551 716 8 0.53 0.701 944 0 0.93 0.823 814 5 1.33 0.908 240 9 1.73 0.958 184 9 2.13 0.983 414 2

0.14 0.555 670 0 0.54 0.705 401 5 0.94 0.826 391 2 1.34 0.909 877 3 1.74 0.959 070 5 2.14 0.983 822 6

0.15 0.559 617 7 0.55 0.708 840 3 0.95 0.828 943 9 1.35 0.911 492 0 1.75 0.959 940 8 2.15 0.984 222 4

0.16 0.563 559 5 0.56 0.712 260 3 0.96 0.831 472 4 1.36 0.913 085 0 1.76 0.960 796 1 2.16 0.984 613 7

0.17 0.567 494 9 0.57 0.715 661 2 0.97 0.833 976 8 1.37 0.914 656 5 1.77 0.961 636 4 2.17 0.984 996 6

0.18 0.571 423 7 0.58 0.719 042 7 0.98 0.836 456 9 1.38 0.916 206 7 1.78 0.962 462 0 2.18 0.985 371 3

0.19 0.575 345 4 0.59 0.722 404 7 0.99 0.838 912 9 1.39 0.917 735 6 1.79 0.963 273 0 2.19 0.985 737 9

0.20 0.579 259 7 0.60 0.725 746 9 1.00 0.841 344 7 1.40 0.919 243 3 1.80 0.964 069 7 2.20 0.986 096 6

0.21 0.583 166 2 0.61 0.729 069 1 1.01 0.843 752 4 1.41 0.920 730 2 1.81 0.964 852 1 2.21 0.986 447 4

0.22 0.587 060 4 0.62 0.732 371 1 1.02 0.846 135 8 1.42 0.922 196 2 1.82 0.965 620 5 2.22 0.986 790 6

0.23 0.590 954 1 0.63 0.735 652 7 1.03 0.848 495 0 1.43 0.923 641 5 1.83 0.966 375 0 2.23 0.987 126 3

0.24 0.594 834 9 0.64 0.738 913 7 1.04 0.850 830 0 1.44 0.925 066 3 1.84 0.967 115 9 2.24 0.987 454 5

0.25 0.598 706 3 0.65 0.742 153 9 1.05 0.853 140 9 1.45 0.926 470 7 1.85 0.967 843 2 2.25 0.987 775 5

0.26 0.602 568 1 0.66 0.745 373 1 1.06 0.855 427 7 1.46 0.927 855 0 1.86 0.968 557 2 2.26 0.988 089 4

0.27 0.606 419 9 0.67 0.748 571 1 1.07 0.857 690 3 1.47 0.929 219 1 1.87 0.969 258 1 2.27 0.988 396 2

0.28 0.610 261 2 0.68 0.751 747 8 1.08 0.859 928 9 1.48 0.930 563 4 1.88 0.969 946 0 2.28 0.988 696 2

0.29 0.614 091 9 0.69 0.754 902 9 1.09 0.862 143 4 1.49 0.931 887 9 1.89 0.970 621 0 2.29 0.988 989 3

0.30 0.617 911 4 0.70 0.758 036 3 1.10 0.864 333 9 1.50 0.933 192 8 1.90 0.971 283 4 2.30 0.989 275 9

0.31 0.621 719 5 0.71 0.761 147 9 1.11 0.866 500 5 1.51 0.934 478 3 1.91 0.971 933 4 2.31 0.989 555 9

0.32 0.625 515 8 0.72 0.764 237 5 1.12 0.868 643 1 1.52 0.935 744 5 1.92 0.972 571 1 2.32 0.989 829 6

0.33 0.629 300 0 0.73 0.767 304 9 1.13 0.870 761 9 1.53 0.936 991 6 1.93 0.973 196 6 2.33 0.990 096 9

0.34 0.633 071 7 0.74 0.770 350 0 1.14 0.872 856 8 1.54 0.938 219 8 1.94 0.973 810 2 2.34 0.990 358 1

0.35 0.636 830 7 0.75 0.773 372 6 1.15 0.874 928 1 1.55 0.939 429 2 1.95 0.974 411 9 2.35 0.990 613 3

0.36 0.640 576 4 0.76 0.776 372 7 1.16 0.876 975 6 1.56 0.940 620 1 1.96 0.975 002 1 2.36 0.990 862 5

0.37 0.644 308 8 0.77 0.779 350 1 1.17 0.878 999 5 1.57 0.941 792 4 1.97 0.975 580 8 2.37 0.991 106 0

0.38 0.648 027 3 0.78 0.782 304 6 1.18 0.880 999 9 1.58 0.942 946 6 1.98 0.976 148 2 2.38 0.991 343 7

0.39 0.651 731 7 0.79 0.785 236 1 1.19 0.882 976 8 1.59 0.944 082 6 1.99 0.976 704 5 2.39 0.991 575 8

(continued)
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Table 29.7

Cumulative normal probabilities (continued).

z A(z) z A(z) z A(z) z A(z) z A(z) z A(z)

2.40 0.991 802 5 2.45 0.992 857 2 2.50 0.993 790 3 2.55 0.994 613 9 2.60 0.995 338 3 3.20 0.999 312 9

2.41 0.992 023 7 2.46 0.993 053 1 2.51 0.993 963 4 2.56 0.994 766 4 2.70 0.996 533 0 3.40 0.999 663 1

2.42 0.992 239 7 2.47 0.993 244 3 2.52 0.994 132 3 2.57 0.994 915 1 2.80 0.997 444 9 3.60 0.999 840 9

2.43 0.992 450 6 2.48 0.993 430 9 2.53 0.994 296 6 2.58 0.995 060 0 2.90 0.998 134 2 3.80 0.999 927 7

2.44 0.992 656 4 2.49 0.993 612 8 2.54 0.994 457 4 2.59 0.995 201 2 3.00 0.998 650 1 4.00 0.999 968 3

4.50 0.999 996 6

5.00 0.999 999 7

5.50 0.999 999 9

This table is condensed from Table 1 of the Biometrika Tables for Statisticians, Vol. 1 (1st ed.), edited by E. S. Pearson

and H. O. Hartley. Reproduced with the kind permission of E. S. Pearson and the trustees of Biometrika.

Source: StatisticsVol. 1 Probability Inference and Decision by Hays, W. L. and Winkler, R. L. (Holt Rinehart &Winston,

New York, 1970).

Example 29.22 A random variable, h, has a normal distribution with mean 7 and standard deviation 2.

Calculate the probability that

(a) h > 9 (b) h < 6 (c) 5 < h < 8

Solution (a) Applying the transformation gives

9 →
9 − 7

2
= 1

So h > 9 has the same probability as x > 1, where x is a random variable with a

standard normal distribution:

P(h > 9) = P(x > 1) = 1 − P(x < 1) = 1 − 0.8413 = 0.1587

(b) Applying the transformation gives

6 →
6 − 7

2
= −0.5

So h < 6 has the same probability as x < −0.5:

P(x < −0.5) = P(x > 0.5) = 1 − P(x < 0.5) = 0.3085

(c) Applying the transformation to 5 and 8 gives

5 →
5 − 7

2
= −1 8 →

8 − 7

2
= 0.5

and so we require P(−1 < x < 0.5). Therefore

P(x < 0.5) = 0.6915 P(x < −1) = 0.1587

and then

P(−1 < x < 0.5) = 0.6915 − 0.1587 = 0.5328



29.14 The normal distribution 969

EXERCISES 29.14

1 A random variable, x, has a standard normal

distribution. Calculate the probability that x lies in the

following intervals:

(a) (0.25, 0.75)

(b) (−0.3, 0.1)

(c) within 1.5 standard deviations of the mean

(d) more than two standard deviations from the mean

(e) (−1.7,−0.2)

2 A random variable, x, has a normal distribution with

mean 4 and standard deviation 0.8. Calculate the

probability that

(a) 3.0 6 x 6 4.4

(b) 2.5 < x < 3.9

(c) x > 4.6

(d) x < 4.2

(e) x is within 0.6 of the mean

3 A random variable, t, has a normal distribution with

mean 1 and standard deviation 2.5. Calculate the

probability that

(a) −1 6 t 6 2 (b) t > 0

(c) |t| 6 0.9 (d) |t| > 1.6

4 The scores from IQ tests have a mean of 100 and a

standard deviation of 15. What should a person score

in order to be described as in the top 10% of the

population?

5 A machine produces car pistons. The diameter of the

pistons follows a normal distribution, mean 6.04 cm

with a standard deviation of 0.02 cm. The piston is

acceptable if its diameter is in the range 6.010 cm to

6.055 cm. What percentage of pistons is

acceptable?

6 The random variable, x, has a normal distribution.

How many standard deviations above the mean must

the point P be placed if the tail-end is to represent

(a) 10% (b) 5% (c) 1%

of the total area? (See Figure 29.20.)

N(x)

x

?
P

Figure 29.20

Graph for Question 6.

7 Consider Figure 29.21. The two tail-ends have equal

area. How many standard deviations from the mean

must A and B be placed if the tail-ends are

(a) 10% (b) 5% (c) 1%

of the total area?

N(x)

x
BA

Figure 29.21

Graph for Question 7.

Solutions

1 (a) 0.1747 (b) 0.1577 (c) 0.8664

(d) 0.0455 (e) 0.3762

2 (a) 0.5858 (b) 0.4199 (c) 0.2266

(d) 0.5987 (e) 0.5467

3 (a) 0.4436 (b) 0.6554 (c) 0.2604

(d) 0.5544

4 119

5 71%

6 (a) 1.28 (b) 1.645 (c) 2.33

7 (a) 1.64 (b) 1.96 (c) 2.57
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29.15 RELIABILITY ENGINEERING

Reliability engineering is an important area of study. Unreliable products lead to hu-

man frustration, �nancial loss and in the case of life-critical systems can lead to death.

As the complexity of engineering systems has increased, mathematical methods of as-

sessing reliability have grown in importance. Probability theory forms a central part of

the design of highly reliable systems. For most items the failure rate changes with time.

A common pattern is exhibited by the appropriately named ‘bath tub’ curve, illustrated

in Figure 29.22.

Car part failures are quite well modelled by this distribution. For example, a crankshaft

may fail quite quickly as a result of a manufacturing defect. If it does not, then there is

usually a long period during which the likelihood of failure is low. After many years the

probability of failure increases.

Consider the probability of an item failing over a total time period T . This period, T ,

is the time during which the item is functioning. The time taken to repair the item is not

considered in this calculation but is considered a little later on. Suppose the probability of

failure is evenly distributed over this period; that is, the probability of failure is modelled

by the uniform distribution (see Section 29.12). It is important to note that this is a fairly

simplistic assumption. If N = number of failures of the item over a time period T , it is

possible to de�ne a mean failure rate, k, by

k =
N

T

For example, if an item fails 10 times in a period of 5 years we de�ne the mean failure

rate to be k = 10/5 = 2, that is two failures per year. Because of the uniform distribution

of the failures across the time period, the quantity k is constant. To illustrate this consider

the previous example with a period of 10 years. During this time the item will fail 20

times and so

k =
20

10
= 2 failures per year

as found earlier.

Another useful term is themean time between failures (MTBF), which is given by

MTBF =
1

k

The termMTBF is only used for items that are repairable.

Let the interval T be divided into n small sub-intervals each of length δT , that is

nδT = T . Suppose each sub-interval is so small that only one failure can occur during

it. Note that since repair time has been neglected it is always possible to have a failure

in a sub-interval. So the N failures which occur during time T occur in N distinct sub-

Time

F
ai

lu
re

 r
at

e

Figure 29.22

The ‘bath tub’ curve.
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intervals. The probability of failure occurring in a particular sub-interval, Pf , is then

given by

Pf =
number of sub-intervals in which failure occurs

total number of sub-intervals

=
N

n

In each sub-interval, δT , the probability of an item not failing, Pnf , is

Pnf = 1 − Pf = 1 −
N

n
=
n− N

n

As the item progresses through each of the successive sub-intervals δT it can be thought

of as undergoing a series of trials, the result of which is failure or non-failure. Therefore,

the probability of the item not failing as it passes through all of the n sub-intervals can

be obtained by multiplying each of the sub-interval probabilities of not failing, that is

probability of not failing in time T =

(
n− N

n

)n

As the sub-interval δT becomes small, that is δT → 0, the number of sub-intervals, n,

becomes large, that is n → ∞. Hence we need to consider the quantity

lim
n→∞

(
n− N

n

)n

This limit can be shown to be e−N (see Appendix IV). Hence

probability of not failing in time T = e−N

Finally, the probability of an item failing one or more times -- items can be repaired and

fail again -- in the time interval T is given by

P(T ) = 1 − e−N = 1 − e−kT

P(T ) is the probability of at least one failure in the time period T . As a consequence

of the constancy of k, this formula can be used to calculate the probability of an item

failing one or more times in an arbitrary time period, t, in which case

P(t) = 1 − e−kt (29.1)

It is important to stress that this formula only applies if the probability of failure is evenly

distributed.

Engineering application 29.8

Breakdowns on a factory process line

A factory process line makes use of 12 controllers to maintain process variables at

their correct values; all 12 controllers need to be working in order for the process

line to be operational. Records show that each controller fails, on average, once

every six months. Calculate the probability of the process line being stopped as a

result of a controller failure within a time period of one month.
➔
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Solution

The mean failure rate of each controller is 1/6 breakdowns per month. Given that

there are 12 controllers the overall failure rate for controllers is 12/6 = 2 breakdowns

per month. Using Equation (29.1) with k = 2 and t = 1 gives the probability, P(t),

of the process line being stopped because of a controller failure within a period of

one month as

P(t) = 1 − e−kt = 1 − e−2 = 0.865

So far we have ignored the ‘downtime’ associated with an item waiting to be repaired

after it has failed. This can be a signi�cant factor with many engineering systems. The

simplest possibility is that an item is out of action for a �xed period of time Tr while it is

being repaired. If there are N failures during a period T then the total downtime is NTr.

The time the item is available, Ta, is given by

Ta = T − NTr

A useful quantity is the fractional dead time, D, which is the ratio of the mean time the

item is in the dead state to the total time. In this case

D =
NTr

T
(29.2)

Another useful quantity is the availability, A, which is the ratio of the mean time in the

working state to the total time. For the present model

A =
T − NTr

T
= 1 − D

The failure rate model developed previously was based on the time the itemwas working

rather than the total time. When the repair time is included k becomes

k =
N

Ta

and so

N = kTa = k(T − NTr)

N + kNTr = kT

and therefore

N =
kT

1 + kTr

So using Equation (29.2)

D =
kT

1 + kTr

Tr

T
=

kTr

1 + kTr

Also

A = 1 − D = 1 −
kTr

1 + kTr
=

1

1 + kTr
(29.3)

For more complicated repair characteristics the equations for D and A are correspond-

ingly more complicated.
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Engineering application 29.9

Availability of an electrical supply to a large factory

The electrical supply to a large factory has a mean time between failures of 350 hours.

When the supply fails it takes 3 hours to repair the failure and restore the supply.

Calculate the average availability of the electrical supply to the factory.

Solution

Failure rate of the supply is k where k = 1/350 failures per hour. Using Equa-

tion (29.3) with Tr = 3 hours gives

A =
1

1 + 3/350
= 0.992 that is, 99.2%

The supply is up and running for 99.2% of the time.

So far we have only examined systems in which failure was caused by one or more

components each with the same failure rate orMTBF. Amore common situation is one in

which the different components of a system have different degrees of reliability. It is still

useful to be able to calculate the overall reliability of the system although the analysis

is more complicated. In order to do so it is necessary to de�ne the term reliability. From

Equation (29.1) we know that P(t) de�nes the probability of one or more failures during

a time period, t. Therefore the probability of no failures is given by 1−P(t). The quantity

1−P(t) is called the reliability of the system during a time period t, and is denoted R(t),

that is

R(t) = 1 − P(t) = e−kt (29.4)

R(t) can be interpreted as the probability a component works properly during a period

t. We now examine the reliability of two simple system con�gurations.

29.15.1 Series system

A series system is one in which all the components of a system must operate satis-

factorily if the system is to function correctly. Consider a system consisting of three

components, shown in Figure 29.23. The reliability of the system is the product of the

reliabilities of the individual components, that is

R = RARBRC (29.5)

This formula is a direct consequence of the fact that the failure of any one of the com-

ponents is an independent event. So the probability of the system not failing, that is its

reliability, is the product of the probabilities of each of the components not failing. (See

Section 28.7 for independent events.)

A B OutputInput C Figure 29.23

Series system.
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Engineering application 29.10

Reliability of a radio system

A radio system consists of a power supply, a transmitter/ampli�er and an antenna.

During a 1000 hour period the reliability of the various components is as follows:

Rps = 0.95

Rta = 0.93

Ra = 0.99

Calculate the overall reliability of the radio system.

Solution

R = RpsRtaRa = 0.95 × 0.93 × 0.99 = 0.87

that is, there is an 87% chance that the radio will not fail during a 1000 hour period.

Using Equations (29.4) and (29.5) it is possible to generate a formula for the reliability

of a system consisting of n series components:

R = e−k
1
t e−k

2
t . . . e−k

n
t = e−(k

1
+k

2
+···+k

n
)t

where k1, k2, . . . , kn are the mean failure rates of the n components.

Engineering application 29.11

Reliability of a satellite link

A satellite link is being used to transmit television pictures fromAmerica to England.

The components of this system are the television studio in New York, the transmitter

ground station, the satellite and the receiver ground station in London. TheMTBF of

each of the components is as follows:

MTBFts = 1000 hours

MTBFtgs = 2000 hours

MTBFs = 500 000 hours

MTBFrgs = 5000 hours

Calculate the overall reliability of the system during a 28 day period and a yearly

period of 365 days.

Solution

First we calculate the mean failure rate of each of the components:

kts =
1

1000
= 1 × 10−3 failures per hour

ktgs =
1

2000
= 5 × 10−4failures per hour
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ks =
1

500 000
= 2 × 10−6 failures per hour

krgs =
1

5000
= 2 × 10−4 failures per hour

So the overall reliability of the system is

R = e
−(k

ts
+k

tgs
+k

s
+k

rgs
)t

= e−(1×10−3+5×10−4+2×10−6+2×10−4 )t

= e−1.702×10−3t

For t = 28 × 24 hours, R = 0.319.

For t = 365× 24 hours, R = 3.35× 10−7. Clearly during a yearly period the system

is almost certain to fail at least once.

29.15.2 Parallel system

A parallel system is one in which several components are in parallel and all of them

must fail for the system to fail. The case of three components is shown in Figure 29.24.

The probability of all three components failing in a time period, t, is the product of the

individual probabilities of each component failing, that is (1 − RA)(1 − RB)(1 − RC).

So the overall system reliability is

R = 1 − (1 − RA)(1 − RB)(1 − RC)

This formula can be generalized to the case of n components in parallel quite easily.

A

B OutputInput

C Figure 29.24

Parallel system.

Engineering application 29.12

Reliability of process control computer power supplies

A process control computer is supplied by two identical power supplies. If one fails

then the other takes over. The MTBF of the power supplies is 1000 hours. Calculate

the reliability of the power supply to the computer during a 28 day period. Compare

this with the reliability if there is no standby power supply.

Solution

k =
1

1000
= 0.001 failures per hour

Rps = e−kt = e−0.001×24×28 = 0.511 ➔
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Therefore the overall reliability of the power supply to the computer is

R = 1 − (1 − 0.511)(1 − 0.511) = 0.761

Clearly the existence of a standby power supply does improve the reliability of the

power supply to the computer. In practice, the �gure would be much higher than

this because once a power supply failed the standby would take over and main-

tenance engineers would quickly repair the failed power supply. Therefore the pe-

riod of time in which the computer was relying on one power supply would be very

small.

We have only examined the simplest possible reliability models. In practice, reliability

engineering can often be very complicated. Some models can cater for maintenance

strategies of the sort we touched on in the previous example. The effect of non-uniform

failure rates can also be catered for. Also, many systems consist of a mixture of series and

parallel subsystems of the type we have discussed as well as more complicated failure

modes than we have examined.

EXERCISES 29.15

1 A computer contains 20 circuit boards each with an

MTBF of 3 months. Calculate the probability that the

computer will suffer a circuit board failure during a

monthly period.

2 Three pumps are required to feed water to a boiler in a

power station in order for it to be fully operational.

TheMTBF of each of the pumps is 10 days. Calculate

the probability that the boiler will not be fully

operational during a monthly period if there are only

three pumps available.

3 A process control computer has a power supply with

an MTBF of 600 hours. If the power supply fails then

it takes 2 hours to replace it. Calculate the average

availability of the computer power supply.

4 A radar station has anMTBF of 1000 hours. The

average repair time is 10 hours. Calculate the average

availability of the radar station.

5 A process line to manufacture bread consists of four

main stages: mixing of ingredients, cooking,

separation and �nishing, packaging. Each of the

stages has an MTBF of

MTBFm = 30 hours

MTBFc = 10 hours

MTBFsf = 20 hours

MTBFp = 15 hours

Calculate the probability that the process line will be

stopped during an 8 hour shift.

6 A remote water pumping station has two pumps. Only

one pump is needed in normal operation; the other

acts as a standby. Access to this station is dif�cult and

so if a pump fails it is not easy to repair it

immediately. Given that theMTBF of the pumps is

3000 hours, calculate the overall reliability of the

pumping station during a 28 day period in which the

maintenance engineers are unable to repair a pump

which fails. Calculate the improvement in reliability

that would be obtained if a second standby pump was

installed in the pumping station.

7 Repeat the calculation carried out in Question 6 with

the following information. The pumps, which are

different from those in Question 6, can be considered

to consist of two components: a motor and the pump

itself. The MTBF of the motors is 4000 hours and that

of the pumps is 6000 hours.
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Solutions

1 0.999

2 0.9998

3 0.9967

4 0.9901

5 0.865

6 0.960, 0.992

7 0.940, 0.985

REVIEW EXERCISES 29

1 Find the mean and standard deviation of

8, 6.9, 7.2, 8.4, 9.6, 10.3, 7.4, 9.0

2 A discrete random variable, v, has a probability

distribution given by

v −2 −1.5 −1 −0.5 0 0.5 1.0

P(v) 0.23 0.17 0.06 0.03 0.17 0.31 0.03

Calculate

(a) P(v = −1) (b) P(v = −2 or v = 0)

(c) P(v > 0) (d) P(v < −0.5)

3 A continuous random variable, x, has a p.d.f., f (x),

given by

f (x) = 3x2 0 6 x 6 1

(a) Find P(0 6 x 6 0.5).

(b) Find P(x > 0.3).

(c) Find P(x < 0.6).

(d) Find the expected value of x.

(e) Find the standard deviation of x.

4 A discrete random variable, y, has a probability

distribution given by

y −0.25 0.25 0.75 1.25 1.75

P(y) 0.25 0.20 0.10 0.15 0.30

(a) Find the expected value of y.

(b) Find the standard deviation of y.

5 The random variable, t, has a p.d.f., H(t), given by

H(t) = λ e−λt t > 0

(a) Calculate the expected value of t.

(b) Calculate the standard deviation of t.

6 Calculate the number of permutations of

(a) �ve distinct objects, taken two at a time

(b) eight distinct objects, taken four at a time

7 Calculate the number of combinations of

(a) seven distinct objects, taken four at a time

(b) 200 distinct objects, taken 198 at a time

8 The probability a component is manufactured to an

acceptable standard is 0.92. Twelve components are

picked at random. Calculate the probability that

(a) six are acceptable

(b) 10 are acceptable

(c) more than 10 are acceptable

(d) at least two are not acceptable

9 The number of breakdowns of a computer system in a

month is a random variable with a Poisson

distribution. The mean number of breakdowns per

month is two. Calculate the probability that the

number of breakdowns of the system in a month is

(a) two

(b) three

(c) one

(d) more than two

10 The probability of a computer failing in a system in a

given week is 0.03. In a system there are 150

computers.

(a) Use the binomial distribution to calculate the

probability that in a given week �ve computers

fail.

(b) Use the binomial distribution to calculate the

probability that in a given week more than two

computers fail.

(c) Use the Poisson approximation to calculate the

probability that in a given week four computers

fail.
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(d) Use the Poisson approximation to calculate the

probability that in a given week more than three

computers fail.

11 A random variable, t, has a uniform distribution, f (t),

given by

f (t) =

{
1
4 0 < t < 4

0 otherwise

Calculate the probability that

(a) 1 6 t 6 3 (b) 0.2 6 t 6 2.7

(c) |t| > 1 (d) |t| 6 1.5

12 The time, t, between failures for a particular type of

electrical component follows an exponential

distribution with a mean value of 24 weeks. Calculate

the probability that

(a) t > 24 (b) t < 22

13 The resistance of resistors is a random variable with a

normal distribution with a mean of 3 ohms and a

standard deviation of 0.1 ohm. Calculate the

probability that a resistor has a resistance of

(a) between 2.9 and 3.05 ohms

(b) more than 2.95 ohms

(c) less than 2.83 ohms

14 The capacitance of capacitors is a random variable

with a normal distribution, with a mean of 12 farads

and a standard deviation of 0.6 farads. In a batch of

300 capacitors how many would you expect to have

with capacitance

(a) between 11 and 12.3 farads

(b) more than 11.6 farads

(c) less than 12.8 farads?

15 A computer fails, on average, once every 4 months.

An engineering system uses nine computers, all of

which need to be working for the system to operate.

Calculate the probability that the system will fail

sometime during

(a) a 1 month period

(b) a 2 week period (i.e. half a month)

16 TheMTBF for a motor is 270 hours. When the motor

fails it takes 7 hours to repair. Calculate the

availability of the motor.

17 A system comprises four components in series. The

MTBF for each component is 170 hours, 200 hours,

250 hours and 210 hours. Calculate the reliability of

the system over a 100 hour period.

18 A system comprises two components in parallel. The

components have an MTBF of 150 hours and

170 hours. Calculate the probability the system will

fail in a 200 hour period.

Solutions

1 mean = 8.35; st. dev. = 1.1314

2 (a) 0.06 (b) 0.4 (c) 0.51 (d) 0.46

3 (a) 0.125 (b) 0.973 (c) 0.216

(d) 0.75 (e) 0.194

4 (a) 0.775 (b) 0.799

5 (a)
1

λ
(b)

1

λ

6 (a) 20 (b) 1680

7 (a) 35 (b) 19 900

8 (a) 1.4687 × 10−4 (b) 0.1835

(c) 0.7513 (d) 0.2487

9 (a) 0.2707 (b) 0.1804 (c) 0.2707

(d) 0.3233

10 (a) 0.1736 (b) 0.8307 (c) 0.1898

(d) 0.6577

11 (a) 0.5 (b) 0.625 (c) 0.75

(d) 0.375

12 (a) 0.3679 (b) 0.6002

13 (a) 0.5328 (b) 0.6915 (c) 0.0446

14 (a) 193 (b) 225 (c) 272

15 (a) 0.8946 (b) 0.6753

16 0.9747

17 0.1402

18 0.5093
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Appendix I REPRESENTING A CONTINUOUS FUNCTION AND A
SEQUENCE AS A SUM OF WEIGHTED IMPULSES

In this appendix we show how a continuous function, f (t), or a discrete sequence, f [k],

obtained by sampling this function, can be represented as a sum of weighted impulses.

Such a representation is important in the study of the z transform and the discrete Fourier

transform.

The delta function

The delta function is introduced in Chapter 2. For ease of reference we restate its devel-

opment here. The delta function δ(t), or unit impulse function, is the limit of a rectangle

function bounding an area of 1 unit, and located at the origin, as its width approaches

zero, and its height increases accordingly to ensure that the area remains 1. The enclosed

area is known as the strength, or the weight, of the impulse. This is illustrated in Fig-

ure AI.1. Note that the impulse is represented by an arrow and the height of the arrow

gives the strength of the impulse. If the impulse occurs at the point t = d, then this is

written δ(t−d). Further, by multiplying the delta function by a number A, to give Aδ(t),

we obtain the limit of a rectangle function bounding an area of A. This is an impulse of

strength A.

Sampling a continuous function

Now consider a function f (t) de�ned for t > 0 as shown in Figure AI.2. Suppose this

function is sampled at times t = 0,T, 2T, 3T, . . . , kT, . . . , to generate a sequence of

values f (0), f (T ), f (2T ), f (3T ), . . ., f (kT ), . . . , which we shall write as f [0], f [1],

f [2], f [3], . . . , f [k], . . . .

Note from the discussion above that the quantity f [0]δ(t) is the limit of a rectangle

function located at the origin and bounding an area equal to f [0].
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1–
h

0 0

d(t)

1

h

t t

as h      0

Figure AI.1

The limit of the rectangle function is the delta function.

t0 t0 T 2T 3T....... kT

f (T )

f (3T )
f (kT )f (t )

f (2T )f(0)

Figure AI.2

Sampling a continuous function f (t) gives the sequence f [k].

Similarly, f [1]δ(t − T ) is the limit of a rectangle function bounding an area equal to

f [1] and located at t = T .

In general f [k]δ(t − kT ) is the limit of a rectangle function bounding an area equal

to f [k] and located at t = kT .

The quantity

∞∑

k=0

f [k]δ(t − kT )

is a series of delta functions. The area bounded by these is given by

area = f [0] + f [1] + f [2] + · · · + f [k] + · · · , that is

∞∑

k=0

f [k] (AI.1)

Approximating the area under a curve

Now consider approximating the area under the continuous function f (t) by a series of

rectangular areas as shown in Figure AI.3. The �rst rectangle has width T and height

f (0) and so its area is T f (0). Using our sampling notation this may be written T f [0].

Similarly, the second rectangle has width T and height f (T ) and so its area is T f (T ).

Using the sampling notation this is written T f [1]. The third rectangle has area T f [2]

and so on. The total area is thus given by

area = T f [0] + T f [1] + T f [2] + · · · + T f [k] + · · · = T

∞∑

k=0

f [k] (AI.2)
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t0 t0 T 2T kT

T

f(t)

Figure AI.3

The area under f (t) can be approximated by a series of rectangular areas.

Now compare Equations (AI.1) and (AI.2). If we multiply the series of delta functions

by T we see that

T

∞∑

k=0

f [k]δ(t − kT )

will bound the same area as our approximation to the area under the graph of f (t). In

this sense we can regard

T

∞∑

k=0

f [k]δ(t − kT )

as an approximation to the function f (t). We will denote this approximation by f̃ (t).

In summary, a continuous function f (t) can be represented as a sum of weighted

impulses each of strength f [k] occurring at t = kT :

f̃ (t) = T

∞∑

k=0

f [k]δ(t − kT )

This representation can also be thought of as a way of expressing a discrete sequence of

values, f [k], as a continuous function f̃ (t). This is useful when studying the z transform

and the discrete Fourier transform. Sometimes it will be convenient to work without the

factor T , in which case we de�ne

f ∗(t) =

∞∑

k=0

f [k]δ(t − kT )

It should be remembered that when using this form, f ∗ needs to be multiplied by the

factor T in order to approximate the function f (t).

Appendix II THE GREEK ALPHABET

A α alpha I ι iota P ρ rho

B β beta K κ kappa 6 σ sigma

Ŵ γ gamma 3 λ lambda T τ tau

1 δ delta M µ mu Y υ upsilon

E ε epsilon N ν nu 8 φ phi

Z ζ zeta 4 ξ xi X χ chi

H η eta O o omicron 9 ψ psi

2 θ theta 5 π pi � ω omega
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Appendix III SI UNITS AND PREFIXES

Throughout this book SI units have been used. Below is a list of these units together with

their symbols.

Quantity SI unit Symbol

length metre m

mass kilogram kg

time second s

frequency hertz Hz

electric current ampere A

temperature kelvin K

energy joule J

force newton N

power watt W

electric charge coulomb C

potential difference volt V

resistance ohm �

capacitance farad F

inductance henry H

Prefix Symbol

1015 peta P

1012 tera T

109 giga G

106 mega M

103 kilo k

102 hecto h

101 deca da

10−1 deci d

10−2 centi c

10−3 milli m

10−6 micro m

10−9 nano n

10−12 pico p

10−15 femto f

Appendix IV THE BINOMIAL EXPANSION OF
(

n−N
n

)n

Consider the binomial expansion of

(
n− N

n

)n
.

(
n− N

n

)n
=

(
1 −

N

n

)n

= 1 + n

(
−
N

n

)
+
n(n− 1)

2!

(
−
N

n

)2

+
n(n− 1)(n− 2)

3!

(
−
N

n

)3

+ · · ·

= 1 − N +

(
n− 1

n

)
N2

2!
−

(
n− 1

n

)(
n− 2

n

)
N3

3!
+ · · ·

= 1 − N +

(
1 −

1

n

)
N2

2!
−

(
1 −

1

n

)(
1 −

2

n

)
N3

3!
+ · · ·

Suppose now we let n → ∞. We �nd

lim
n→∞

(
n− N

n

)n
= 1 − N +

N2

2!
−
N3

3!
+ · · ·

But this is the power series expansion of e−N (see Section 6.5). We conclude that

lim
n→∞

(
n− N

n

)n
= e−N

In particular, note that if N = −1

lim
n→∞

(
n+ 1

n

)n
= e
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absolute quantity 88

absorption laws 179, 185, 186

acceleration 690, 868

addition:

algebraic fraction 30--1

complex numbers 329

law of probability 909--13, 954

matrix 259--60

vectors 225--6, 336--7

adjoint matrix 281--2

algebra see Boolean algebra; matrix algebra

algebraic equations 627, 649

algebraic fractions 26--33

addition 30--1

division 29--30

equivalent fractions 27--8

expressing fraction in simplest form 28--9

multiplication 29--30

proper and improper fractions 27

resistors in parallel 32

subtraction 30--1

algebraic techniques 1--53

algebraic fractions see algebraic fractions

indices, laws of 2--11

dividing expressions 4--5

�rst law 2

fractional indices 8--11

multiple 7

multiplying expressions 2--4

negative indices 5, 6

positive indices 6

power density of signal transmitted by radio antenna 6

power dissipation in resistor 3--4

radar scattering 7--8

second law 4

skin depth, in radial conductor 9--10

third law, 8 7

inequalities, solution of 33--8

number bases see base, number

partial fractions see partial fractions

polynomial equations 20--6

current used by electric vehicle 21--3

of higher degree 24--5

quadratic equations 20--4

summation notation 46--50

Kirchhoff’s current law 47--8

Kirchhoff’s voltage law 48--9

alphabetic character stream, information content of 916

alternating current:

circuits 324

waveforms 134

Ampère’s circuital law 900

amplitude 581, 724, 744, 751--3

Fourier transform 766

modulation 767--8

trigonometric functions 133, 134, 135, 136

of wave 131

analog-to-digital converter 690

analogue simulation 603--5

analytical integration 457

analytical solutions 534, 618--19, 621--2

AND gate 184, 187, 188

angular acceleration 613

angular frequency 133, 134, 135, 136, 340

Fourier series 723--4, 753

fundamental 723--4

of wave 131

antennae 169--70

approximate solution 615

arbitrary constant 538, 589, 608

arbitrary function 876

arbitrary scaling constant 304

Argand diagram 332, 334, 337, 345--6, 351

argument:

of angle 333

of function 57--8

arithmetic mean (mean value) 938--40

arithmetic progressions 204

arithmetic series, �nite 209--10

armature current/voltage 612--13

arrays 1

arrows (signals) 661

associative laws 179, 186

associative matrix addition 260

associative matrix multiplication 264

asymptote 76--7, 81

Bode plot of transfer function with real poles and zeros

671--5

of graph 75

oblique 76

983
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attenuation 87, 88, 578

in step-index optical �bre 89--90

augmented matrix 309

autocorrelation 814, 815--16, 817

automated vehicles, routing 226--7

auxiliary equation 562--4, 572

particular integral 574

availability, in reliability 972

average information per event 916

average value:

of function 471--5

of periodic waveform 477--8

back substitution 287--90

backward wave 578--80

base, number 2, 11--20, 80

binary coded decimal 11, 17--20

binary system 11--14

decimal system 11

hexadecimal system 11, 14--17

seven-segment displays 18--19

‘bath tub’ curve 970

Bernoulli, J. 953

Bernoulli trials 953, 956, 959

Bessel functions 584, 586, 587--601

�rst kind of order one 591

�rst kind of order zero 589

in frequency modulation 598--601

and generating function 595--7

of higher order 592--3

Jacobi-Anger identities 597--8

modes of cylindrical microwave cavity 593--5

second kind of order one 591

second kind of order zero 589

tabulated values of 601

Bessel’s equations 584, 587--601

of higher order 592--3

of order one 589--91

of order zero 587--9

power series solution of 587--8, 590--1

biased circuit 379

binary coded decimal 11, 17--20

binary data stream:

entropy of 917

information content of 916

redundancy of 918

binary digits (bits) 11, 17

binary full-adder circuit 190--2

binary system 11--14

binary to decimal conversion 12

decimal to binary conversion 12--14

binary words 190--1

binomial distribution 953--7

mean and standard deviation 955

most likely number of successes 956

probability of k successes from n trials 954--5

binomial expansion 982

binomial theorem 214--18, 700, 717--18

Biot-Savart law 250

bit stream 915

bits (binary digits) 11, 17

block 627--8, 661

basic 661

delay 688--9

diagram 661, 663--4, 665, 688--94

Bode plot of linear circuit 96--7

Bode plot of transfer function with real poles and zeros

671--5

Boolean algebra 175, 183, 185--97

expressions 185, 187--8

laws of 185--7

logical equivalence 187--93

variables 185

bounded sequence 205

branch current 307--10

breakpoints 673, 674

byte 11, 17

capacitance 575, 637

of coaxial cable 448--50

mutual 102

between two parallel wires 102--3

capacitive reactance 435

capacitors 577, 637

with capacitance 435

current through 368--9

discharge of 82, 655

energy stored in 487--8

phasors 341--3

in series 484--5

voltage across 435

cardinal sine function 123--4

carrier 599

carrier signal 767

carry-out value 190

Cartesian components 232--40

line and multiple integrals 871

Cartesian coordinate system 160--1, 162, 166--7, 171

complex numbers 333--4

functions of more than one variable 823--5

three dimensions 157--8

two dimensions 154--7

vectors 240

Cartesian equations 169

Cartesian form 334

complex numbers 342

discrete Fourier transform 793

cathode ray tube, electrical potential inside 824

chain rule 389--91, 395, 463

character data stream, redundancy of 918

characteristic equation 299, 300--2

characteristic impedance 348

of coaxial cable 450--1

charged particle, movement in electric �eld 244--5
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chord 357--8

circuital law (Ampère) 900

circuits:

biased 379

binary full-adder 190--2

digital electronic 175

integrated 428

inverting 437

LC 572--3

LCR 560--1

linear 97

RC 535--6, 554--7

RL 544--5, 553--4, 651--2

RLC 109, 573--5

thyristor �ring 473--4

truth table for 187--8

circular (periodic) convolution 803--7

circular convolution theorem 807--12

circular correlation theorem 816--20

circular cross-correlation 815--16, 818--20

closed form (binomial theorem) 216

closed loop system with negative feedback 665

CMOS (complementary metal-oxide semiconductor) logic

192--3

co-domain 180--1

coaxial cable 576--8

capacitance of 448--50

characteristic impedance of 450--1

codes (communication theory) 918

coding theory 919

coef�cient:

damping 610

difference equations and the z transform 685--6

differential equations, linear constant 649--59

equating 40--1, 585, 586

Fourier 734, 739, 741--2, 748--50, 766

matrix 285, 289

polynomial 20

re	ection 581--2

cofactor of element 279, 282

column vector 233, 258--9, 261--2

n-component 612

p-component 612

r-component 612

combinations 950--2

common derivatives 372--4

common difference 204

common ratio 204--5, 211, 213

communication engineering 903

communication theory 915--19

commutative laws 179, 186, 191

commutative numbers 259--60

complement:

laws 179, 186, 189--90, 191

in probability 904

in set theory 178--9

complementary events 913--15

complementary function 558, 561--9, 572

inhomogeneous term appears in 575--83

particular integral 574--5

complementary metal-oxide semiconductor (CMOS) logic

192--3

completeness and periodic functions 733

completing the square 23, 37--8

complex frequency:

function 751

variable 636

complex notation and Fourier series 749--51

complex numbers 97, 324--55

addition 329

complex conjugate pairs 327

De Moivre’s theorem 344--51

division 330

in polar form 335

exponential form 337--8

Fourier series 751

graphical representation 332--3

imaginary part 325--6, 328--30, 334

and inverse Laplace transform 643--6

loci and regions of complex plane 351--3

modulus 333

multiplication 329--30

in polar form 335

operations with 328--30

phasors 340--4

polar form 333--6

Poynting vector 343--4

real part 326, 328--30, 334

subtraction 329

vectors and 336--7

complex plane 332

complex poles 668, 669

complex roots 24, 564, 567

complex translation theorem 714

component laws, differential equations 572, 577

composition, of functions 61--2

compound events 905--8, 954

compression, image and audio 795

computer software packages 73

Fourier transform 816--17

graph plotting 723

Laplace transform 675

see alsoMATLAB®

computer solutions for matrix algebra 319--21

concave down function 402--3, 415--17

concave up function 402--3, 415--17

conditional probability 919--25

conduction current 369

conjunction (AND gate) 184

conservative �elds 875--80

constant 689

arbitrary 538, 589, 608

arbitrary scaling 304

coef�cient differential equations, linear 627, 649--59
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constant (Continued)

coef�cient equations 560--84

exponential 81

of integration 429

phase 581

time 82, 545

constant polynomial 71

continuous function 64--5, 361

and sequence representation as sum of weighted impulses

979--81

approximating area under a curve 980--1

delta function 979

sampling a continuous function 979--80

continuous integrand 491

continuous random variable 965--6

expected value 944--5

standard deviation 947

continuous signal sampling 702--4

continuous spectra 766

continuous variable 962, 963

control engineering 319

control systems 628

controller signal 693

converged series 211

convergence, radius of 218, 698

convergence criteria 212

converges sequence 205

convolution 647

circular (periodic) 803--7

linear 801--3, 809--11

theorem 647--9, 676, 772--8

circular 807--12

see also discrete convolution and correlation

coordinate frame 268

coordinate system 154--74

Cartesian see Cartesian coordinate system

electrode 156

polar see polar coordinates

polar curves 163--6

corner (derivatives) 371

correlation:

theorem 780--2

circular 816--20

see also discrete convolution and correlation

cosecant (cosec) 120, 434

hyperbolic 100

cosine (cos):

complex notation 749

complex numbers 333--4, 338--9

De Moivre’s theorem 344--50

de�nite and inde�nite integrals 445

differential equations 539

differentiation 391, 394, 420

discrete Fourier transform 795--7

�rst-order linear differential equations 547--9, 555

Fourier series 734--43

odd and even functions 740--3

functions 120--3

half-range series 746--8

hyperbolic (cosh) 100--1, 102--3

improper integrals 486, 488

integration, elementary 429--33, 438--9

integration by parts 458, 460

integration by substitution 464--5

Jacobi-Anger identities 598

Maclaurin series 525--6

modelling waves using 131--44

odd and even functions 726--7, 730--1

orthogonal functions 481--3

orthogonality relations 732--1

partial differential equations 825, 827

polar coordinates 160, 171

polar curves 164--5

second-order linear differential equations 541, 559--60,

564, 566--7, 571--3

Taylor polynomials 522

Taylor series 526--7

trigonometric equations 144, 146, 147, 148

trigonometric identities 125--30

trigonometric ratios 116--20

vectors 244

waves 734, 757

cosine (cos) periodic waveforms 723--4

cotangent (cot) 120, 434

hyperbolic 100

coupled difference equations 694

coupled equations 606--7

coupled �rst-order equations 607--8

coupled-tanks system 614--15

Cramer’s rule 280, 658

critical resistance 412

critically damped response 667

cross-correlation 780

circular 815--16, 818--20

linear 812--15

cubic equation 543

cubic polynomial 71

cumulative normal probabilities 967--8

current 577--8

alternating 134, 324

branch 307--10

conduction 369

density 892

direct 510

displacement 369

eddy 827

law see Kirchhoff’s current law

leakage 576--7

mesh 254, 307, 308--10

node 47--8, 310--12, 317--19

sinusoidal signals 136--7

through capacitor 368--9

used by electric vehicle 21--3

cusp (derivatives) 371
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cycle of sin t 131

cycles of logarithmic scale 94--5

cylindrical microwave cavities, modes of 593--5

cylindrical polar coordinates 166--70

decaying exponential 670

	uid 	ow along a pipe 167

helical antennae 169--70

damped sinusoidal signal 387--8

damping coef�cient 610

damping ratio 411--12

DCT-II 795

DCT-III 795

De Moivre’s theorem 344--51

De Morgan’s laws 179, 186, 191

decaying exponential 578

decibels (dB) 87

decimal system 11

deconvolution 810

de�nite integrals 442--51

degree 116, 117

of equation 20

of polynomial 71

delta function 111--12, 979, 980, 981

Dirac 480

discrete Fourier transform 787

Fourier transform 770--1

integral properties 489--91

Laplace transform 675--6

sifting property of 490

demodulation 817--18

demodulator 598

denominator 27--8, 29--30, 39, 75, 465

dependent variable 58, 59, 366

difference equations 682, 683, 684--5, 686--7

differential equations 535--7, 543, 550--2

derivable from a potential 875

derivatives 365, 370--2

common 372--4

higher see higher order derivatives

and Laplace transform 635--8

partial see partial derivatives

second see second-derivative

table 356

determinants 275--6, 278--81

to evaluate vector products 248--9

and vector products 279--80

deviation:

from mean 941

see also standard deviation

diagonal matrix 271

diagonally dominant, matrix of coef�cients 317

dielectric 82

difference, common 204

difference equations 175, 203, 681--98

block diagram representation 688--93

coef�cient 685--6

coupled 694

dependent and independent variables 682

discrete-time controller design 693--5

discrete-time �lter 689--90

homogeneous and inhomogeneous equations 684--5

linear and non-linear equations 683

low-pass �lter 696--7

non-recursive 684

numerical solution 695--8

order 684

recursive 684

rewriting 686--8

second-order 719

signal processing using a microprocessor 684--5

solution of difference equation 683

and z transform 718--20

differential calculus 357

differential equations 534--626, 638

analogue simulation 603--5

condition 538

coupled-tanks system 614--15

Euler’s method 616--19

�rst-order see �rst-order equations

�rst-order linear see �rst-order linear differential

equations

higher order equations 606--9, 625

Laplace transform 635, 659--61, 663

LC circuit with sinusoidal input 572--3

linear 536--7

linear constant coef�cient 627, 649--59

numerical methods 615--16

order 536

oscillating mass-spring system 565--6

parallel RLC circuit 573--5

RC charging circuit 535--6

RC circuit: zero-input response and zero-state response

554--8

RL circuit with ramp input 553--4

RL circuit with step input 544--5

Runge-Kutta method of fourth-order 623--5

second-order 538--9, 605, 610

second-order linear see second-order linear ordinary

differential equation

series solution of 584--6

solution of 537--9

standing waves on transmission lines 579--82

state-space models 609--15

voltage re	ection coef�cient 578--80

differentiation 356--85, 429, 457--8

applications see differentiation applications

common derivatives 372--4

current through capacitor 368--9

de�ned 366

derivatives, existence of 370--2

dynamic resistance of semiconductor diode 378--9

explicit 394

from �rst principles 366, 372
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differentiation (Continued)

	uid 	ow into tank 376--7

graphical approach to 357--8

implicit 394--7

limits and continuity 358--61

linear model for simple 	uid system 380--3

as linear operator 375--83

linearity 430

logarithmic 397--8

parametric 393--4

rate of change

at general point 364--9

at speci�c point 362--4

techniques see differentiation techniques

voltage across an inductor 368

differentiation applications 406--27

in	exion, points of 415--18

maximum points and minimum points see

maximum/minimum points

maximum power transfer 413--14

Newton-Raphson method 406, 418--23

risetime for second-order electrical system 411--13

series diode-resistor circuit 421--3

vectors 423--6

differentiation techniques 386--405

chain rule 389--91, 395

damped sinusoidal signal 387--8

higher derivatives 400--4

logarithmic differentiation 397--8

parametric differentiation 393--4

product rule 386--8, 397--8

quotient rule 388--9, 401

differentiator 691

digital computers 615

digital controller 694

digital electronic circuits 175

digital �ltering 692

digital signal processing 200, 692

diode equation 83--4

Dirac delta function 480

direct current electrical network 510

direct transmission matrix 612

Dirichlet conditions 735, 740

discontinuous function 64--5, 361

discrete, usage of term 175

discrete convolution and correlation 801--20

circular (periodic) convolution 803--7

circular convolution theorem 807--12

circular correlation theorem 816--20

circular cross-correlation 815--16, 818--20

convolution reverb 810--12

linear convolution 801--3, 809--11

linear cross-correlation 812--15

radar, use of correlation in 817--20

discrete cosine transform 795--801

de�nition and its inverse 795--801

truncation of set of samples 798--9

two-dimensional and image compression 799--801

discrete Fourier transform 783--7, 979, 981

de�nition 784--6

derivation 787--90

to estimate Fourier transform 790--1

inverse 786--7

matrix representation 792--3

properties 793--5

linearity 793

Parseval’s theorem 794

periodicity 793

Rayleigh’s theorem 794

discrete independent variable 202

discrete mathematics see Boolean algebra; set theory

discrete random variable 953, 957

expected value 943--4

standard deviation 946--7

discrete spectra 766

discrete-time:

controller design 693--5

data 688

�lter 689--90, 696

interval 702

discrete variable 962

disjoint sets 178

disjunction connective 183

disjunctive normal form 188

displacement:

current 369

vector 226, 227, 423

dissipation, power, in resistor 3--4

function to model 59

distance travelled by a particle 434

distance travelled by rocket 498

distributive laws 179, 186, 189, 191

divergence theorem 893, 895

divergent sequence 205

diverging integral 486--7

division:

algebraic fractions 29--30

complex numbers 330

indices 4--5

in polar form 335

domain (sets) 180--1

domain, function 58

doping 83

dot product 241

double integrals 880--5, 886--7, 891, 895

double the input rule 56--7, 61

dual modular redundancy 906

dummy variable, and integration 451

duty cycle 743--4

dynamic resistance, of semiconductor diode 378--9

dynamic systems 535

echelon form 290--1

eddy current losses 827
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eigenvalues and eigenvectors 294--307

eigenvalues 297--303, 305

eigenvectors 303--6

linear homogeneous equations 294--7

electric charge density 900

electric displacement, electric �eld strength and

240--1

electric �eld:

of electrostatic dipole 529--31

movement of charged particle in 244--5

strength, and electric displacement 240--1

work done by 869

electric 	ux 857--8, 893, 900

electrical components:

multiple, testing 914--15

reliability 911--12

electrical networks, analysis of 307--12

electrical potential inside a cathode ray tube 824

electrode coordinates 156

electromagnetism and vector calculus 864--6

electronic chips, manufactured, acceptability of

925--6

electronic circuits, digital 175

electronic thermometer measuring oven temperature

656--7

electrostatic dipole, electric �eld of 529--31

electrostatic potential 241, 854--5, 863

electrostatics theory 900

elements 176, 259

of area 882

cofactor of 279, 282

minor of 278--9

of system 661

empty set 178, 910

energy 798

stored in capacitor 487--8

used by electric motor 447

engineering functions 54--114

argument of function 57--8

composition of 61--2

continuous function 64--5

discontinuous function 64--5

exponential functions 80--4

graph of function 58--9

hyperbolic functions see hyperbolic functions

inverse of function 62--4

logarithm functions see logarithm functions

many-to-one functions 60--1

numbers and intervals 55--6

one-to-many function 60

one-to-one functions 60--1

parametric de�nition 61

periodic function 65--6

piecewise continuous functions 64--5

polynomial functions 70--4

power dissipated in resistor 59

rational functions 75--9

saw-tooth waveform 66--7

square waveform 67

triangular waveform 66

entropy 916--19

of binary data stream 917

of signal consisting of three characters 917

equal sets 177

equating coef�cients 40--1, 585, 586

equations:

algebraic 627, 649

auxiliary 562--4, 572, 574

Bessel’s see Bessel’s equations

Cartesian 169

characteristic 299, 300--2

circle, centre on the origin 163, 164

coupled 606--7

coupled difference 694

coupled �rst-order 607--8

cubic 543

degree of 20

difference see difference equations

differential see differential equations

diode 83--4

exact 547--9

family of 587

�rst-order see �rst-order equations

higher order 606--9, 625

homogeneous 558--60, 684--6

inconsistent 288

inhomogeneous 558--60, 572--3

Laplace 833--4, 862, 863

linear 163, 164, 220, 536--7, 683, 685

non-linear 219--22, 536--7, 683, 685

non-recursive 691

output 614

partial differential 832--5, 862

Poisson’s 863

quadratic 20--4, 103, 325--6

second-order 684, 685, 696

separable 541

simple 540--1

simultaneous see simultaneous equations

state 609, 613

state-space 615

third-order 684, 685

transmission 834

trigonometric 144--50

wave 833

zero order 684

equipotential surface 245

equivalent fractions 27--8

equivalent resistance 77--8

error-correcting code 291

error signal 693

error term 521

Euler’s method 616--19, 623

improved 620--2
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Euler’s relations 339, 749

differential equations 564, 566

discrete Fourier transform 787

Fourier transform 760, 771--2

even functions 726--32

exact equations 547--9

exact solution 616, 617--18, 620--1, 624

exclusive OR gate 189

expansion along the �rst row 278

expected value 943--5, 946--7, 955, 959, 962

experiment and binomial distribution 953

explicit differentiation 394

exponent see power

exponent, de�ned 80

exponential constant 81

exponential decay 81

exponential distribution 962--3

exponential expressions 80

exponential form, of complex number 337--8

exponential functions 80--4, 728

diode equation 83--4

discharge of capacitor 82

see also logarithm functions

exponential growth 81

exponential term 669, 670, 671

factorial notation 55

factorization 20--1, 28--9, 39

factory production line, quality control on 907--8

failure in a single trial 953

Faraday, M. 240

Faraday’s law 368, 865

feedback:

loop, negative, elimination of 662--8

negative 436

path 689

Fibonacci sequence 203

�eld:

irrotational 860

line and multiple integrals 876

solenoidal 857

�lters 722

digital 692

discrete-time 689--90, 696

high pass 689

low pass 689, 696--7

�nal value theorem 634, 657

�nite sequences 801, 809, 813

�nite series 209

arithmetic 209--10

geometric 211

�rst condition (differential equations) 539

�rst-derivative 417

Laplace transform 635

Taylor polynomials 508--9

test 407, 411

�rst law of indices 3

�rst-order equations 540--5, 573, 606--8, 685

coupled 607--8

difference equations 696

Laplace transform 656

separation of variables 541--5

simplest 540--1

�rst-order linear differential equations 547--57

exact equations 547--9

integrating factor method 550--7

separation of variables 549

�rst-order Taylor polynomial 509--13

direct current electrical network 510

gravity feed water supply 510--11

linearity 509--13

power dissipation in resistor 511--12

�rst-order Taylor polynomials, in two variables 835--7

�rst shift theorem 632--3, 719, 768

Fourier transform 762--4

z transform 711--12

	uid 	ow:

across a surface 890--2

along a pipe 167

coupled-tanks system 614--15

into tank 376--7

	ux 891

folding (signal processing) 775

forward wave 578--80

Fourier analysis 482, 745

Fourier coef�cients 734, 739, 741--2, 748--50, 766

Fourier components 752, 754--5

Fourier series 722--56, 723--4, 728, 731--42, 746, 749--50

complex notation 749--51

frequency response of linear system 751--5

half-range series 745--8

low-pass �lter 752--5

odd and even functions 726--32, 740--4

Parseval’s theorem 748--9

periodic waveforms 723--6

spectrum of pulse width:

modulation controlled solar charger 743--4

Fourier synthesis 734

Fourier transform 749, 757--822

amplitude modulation 767--8

convolution and convolution theorem 774--82

de�nitions 758--61

of delta function 770--1

discrete cosine transform 795--81

fast 785

integration 480

inverse 758--9, 774

and Laplace transform 772--4

pair 758

periodic functions 771--2

properties 761--6

�rst shift theorem 762--4

linearity 761--2

second shift theorem 764--5
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spectra 766--8

t-w duality principle 768--70, 771

see also discrete convolution and correlation; discrete

Fourier transform

fourth-order Taylor polynomials 518

fractional dead time 972

fractional indices 8--11

fractions:

algebraic see algebraic fractions

equivalent 27--8

expressing, in simplest form 28--9

improper 27, 43--4

negative 35--6

partial see partial fractions

positive 35--7

proper 27

free variables 288--9

free vectors 225

frequency 132, 724

angular see angular frequency

component, zero 736

domain 722, 766

Fourier series 723

natural 411

resonant 343, 411, 594

response of a system 636--7

response of linear system 751--5

sinusoidal steady-state 636--7

spectrum 744

variable, generalized 636

frequency modulation (FM), Bessel functions in 598--601

full-wave recti�er 106--7

function:

average value of 471--5

orthogonal 480--3

root mean square value of 475--9

function handle 61

functions of several variables 823--48

dependent variable 823--4

eddy current losses 827

electrical potential inside a cathode ray tube 824

�rst-order Taylor polynomial in two variables 835--7

functions of more than one variable 823--5

higher order derivatives 829--32

independent variables 823--4, 825

maximum and minimum points of a function of two

variables 841--6

partial derivatives 825--9

partial differential equations 832--5

power dissipated in a variable resistor 824

second-order Taylor polynomial in two variables 837--40

Taylor series in two variables 840

gain/attenuation 87, 88, 578

Gauss-Seidel method 314--17

Gaussian elimination 286--94, 306, 307, 309

augmented matrix 287--91, 292

back substitution 287--90

row operations 287--90

Gauss’s theorem 448, 857--8, 864, 893, 900

general solution 537

complementary function 558--9

difference equations 683

differential equation 584--5

�rst-order linear differential equations 547

higher order equations 607--8

particular integral 578

second-order differential equation 538, 561--4, 566--8,

569--70

generalized frequency variable 636

generating function 509

Bessel functions and 595--7

geometric progressions 204--5

geometric series:

�nite 211

in�nite 212--13

gradient 620

of chord 357--8

of solution 616

of tangent 366--7, 508

graph, of function 58--9

graphics calculators 73, 723

gravitational �eld, work done by 868--9

gravity feed water supply 510--11

Greek alphabet 981

Green’s theorem 895

half-range cosine series 746--8

half-range Fourier series 745--8

half-range sine series 746

half-wave dipole, radiation patterns of 172--3

half-wave recti�er 107

Hall effect, in semiconductor 251--2

harmonics 723

components 724

even 744

fundamental or �rst 723

nth 744

odd 736, 744

second 723

waves 725, 734

helical antennae 169--70

hexadecimal system 11, 14--17

binary to hexadecimal conversion 16--17

conversion to decimal 14--15

decimal to hexadecimal conversion 15--16

high pass �lter 689

higher order derivatives 400--4, 829--32

�fth 402

�rst 400--2

fourth 402, 503--4, 831

mixed 831

second 400--2, 831

third 402, 831
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higher order equations 606--9, 625

homogeneous equations 558--60, 572, 684--6

linear 294--7

horizontal axis turbines 73

horizontal shift 138--44

horizontal strips 881--4

hyperbolic functions 100--4

capacitance between two parallel wires 102--3

cosecant (cosech) 100

cosine (cosh) 100--1

cotangent (coth) 100

identities 101

inverse 102

sine (sinh) 100--1

i and j components of r 233

identity

hyperbolic function 101

Jacobi-Anger 597--8

laws 179, 186, 189--90, 191

matrix 271--2, 274, 284, 292--3

trigonometric 125--30

imaginary axis 670, 709

imaginary axis (y axis) 332

imaginary parts 578, 669

complex numbers 325--6, 334, 348

implicit differentiation 394--7

impossible event 910

improper fraction 27, 43--4

improper integrals 480, 483--9

impulse response 112, 676, 810--12

impulse train 111--12

inclusive OR gate 189

inconsistent equations 288

increment (rate of change at a speci�c point) 363

inde�nite integrals 442--51

independent events 925--30

independent solution 568

independent variable 58, 59, 366, 374

difference equations 682, 683, 684--5, 686, 691

differential equations 535--7, 540--1, 543, 550--2

discrete 202, 682

integration 429, 431--2

indices, laws of see under algebraic techniques

inductor 577

phasors 341

inequalities, solution of 33--8

inertia, moment of 612, 613

in�nite integrand 483, 486

in�nite limits of integration 483

in�nite series 209, 211--12

geometric, sum of 212--13

in	exion, points of 415--18

information content:

of alphabetic character stream 916

of binary data stream 916

information per event 915

inhomogeneous equations 294, 558--60, 569--70, 572--3

difference equations 684--6

inhomogeneous term, in complementary function

575--83

initial conditions 539, 542, 556--7, 566

analogue simulation 604--5

difference equations 686, 696

differential equations 616

Laplace transform 659

particular integral 578

zero 660, 663

initial values 696

input:

matrix 612

sequence 685, 689, 691, 697

signal 661, 669

to system 659--61

transfer functions 663, 665

vector 612

voltage 676

integers 55, 345

non-negative 682

positive 55, 214--16

integrals 438, 460, 463, 480, 490

differential equations 541--2

diverging 486--7

double 880--5, 886--7, 891, 895

improper 480, 483--9

inde�nite/de�nite 442--51

in�nite limits 483

inner 881--3, 886

Laplace transform 628, 635--8

limits 443, 446, 488

lower limits 443--5

odd and even functions 730--1

outer 881--3

periodic functions 677--8

scalar 493

second-order linear ordinary differential equation

569--75

Simpson’s rule 502

surface 889--95, 896, 898

trapezium rule 499--500

triple 885--6, 889, 893

upper limits 443--5

volume 889--95

see also line integrals and multiple integrals

integrands 458, 465, 480

continuous 491

in�nite 483, 488

integrating factor 551, 552

integrating factor method 550--7

integration 428--56, 480--95

analytical 457

applications of see integration applications

capacitance of coaxial cable 448--50

capacitors in series 484--5
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characteristic impedance of coaxial cable 450--1

constant of 429

delta function, integral properties of 489--91

differential equations 542

distance travelled by a particle 434

elementary 429--41

electronic integrators 435--7

energy stored in capacitor 487--8

energy used by electric motor 447

improprer integrals 483--9

integrals, de�nite and inde�nite 442--51

limits 491

as linear operator 432--4

linearity 438

numerical see numerical integration

orthogonal functions 480--3

of piecewise continuous functions 491--2

region of 880

techniques see integration techniques

of trigonometric functions 437--9

vectors 493

voltage across a capacitor 435

integration applications 471--9

average value and r.m.s. value of periodic waveform

477--8

average value of function 471--5

load resistor 476--7

root mean square value of function 475--9

saw-tooth waveform 472--3

thyristor �ring circuit 473--4

integration techniques 457--70

by parts 457--63

by substitution 463--6

using partial fractions 466--8

integrator 604--5

circuits 428

intersection (set theory) 178

intervals 56

closed 56

of convergence 218

open 56

semi-open 56

inverse:

of function 62--4

of matrix 285

using row operations 292--3

of 3 × 3 matrix 281--2

trigonometric functions 121--3

of 2 × 2 matrix 274--7

�nding 275--6

orthogonal matrix 276

inverse square law 6

inverters 188

inverting circuit 437

irrational number 55

irrotational vector �eld 860

isotropic antenna 6

iteration 420

of non-linear equations, sequences arising from 219--22

simple 220

Jacobi-Anger identities 597--8

Jacobi’s method 313--14, 315--16

Kirchhoff’s current law 310

algebraic techniques 47--8

complex numbers 342

Kirchhoff’s voltage law 72, 308

algebraic techniques 48--9

complex numbers 342

differential equations 535, 544, 560, 572, 577

differentiation 413

Fourier series 752

integration 435, 485

Laplace transform 655

Kraus, J. 169

Kronecker delta sequence 202, 203, 698

Laplace equation 862, 863

three-dimensional 833--4

Laplace transform 411, 627--80, 681--2, 706, 709, 759, 774

asymptotic Bode plot of transfer function with real poles

and zeros 671--5

of common functions (look-up table) 629--30

convolution theorem 647--9

de�nition 628

delta function 675--6

of derivatives and integrals 635--8

discharge of a capacitor 655

electronic thermometer measuring oven temperature

656--7

and Fourier transform 772--4

frequency response of a system 636--7

integration 480

inverse 627, 638--41

using complex numbers 643--6

using partial fractions 641--3

linear constant coef�cient differential equations 649--59

linearity 631--2

partial differential equations 833

periodic functions 677--8

poles, zeros and s plane 668--75

rule 1 670

rule 2 670

rule 3 670--5

position control system 665--8

properties 631--5

�nal value theorem 634

�rst shift theorem 632--3

linearity 631--2

second shift theorem 633--4

RL circuit with ramp input 651--2

rule 1: combining two transfer functions in series

661--2
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Laplace transform (Continued)

rule 2: eliminating negative feedback loop 662--8

transfer functions 659--68, 752

transport lag 664--6, 664--5

voltage across a capacitor 636

and z transform, relationship between 704--9

LCR circuit 560--1

leakage, current 576--7

left-hand limits 360

lifespan, electrical components 911

limit sequence 205

limit 5 sequence 206

limits 463

differentiation 358--61

of integrals 443, 446, 486

integration 491

left-hand 360

right-hand 360

line integrals and multiple integrals 867--902

conservative �elds 875--80

line integral around closed loop 877--9

potential function 875--7

divergence theorem 895

double integrals 880--5, 886--7, 891

electric charge enclosed in a region 890

electric current density 892

electric �eld, work done by 869

electric 	ux and Gauss’s law 893

evaluation of line integrals in three dimensions

873--5

evaluation of line integrals in two dimensions 871--3

	uid 	ow across a surface 890

gravitational �eld, work done by 868--9

Green’s theorem 886--7

line integrals 867--71

mass of a solid object 889

Maxwell’s equations in integral form 899--900

simple volume and surface integrals 889--95

Stokes’ theorem 896--9

three-dimensional line integrals 873--5

triple integrals 885--6, 889

two-dimensional line integrals 871--3

line spectra 766

linear circuit, Bode plot of 96--7

linear combination 237

of sinusoids 723

linear constant coef�cient:

differential equations 627, 649--59

linear convolution 801--3, 809--11

linear cross-correlation 812--15

linear equations 163, 164, 220, 536--7, 683, 685

linear factors 39--41

equating coef�cients 40--1

evaluation using speci�c value of x 40

Laplace transform 651, 668

repeated 39, 41--2

linear homogeneous equations 294--7

linear models for simple 	uid system 380--3

linear operator:

differentiation as 375--83

integration as 432--4

Laplace transform 638

linear polynomial 71

linear scale 94

linear system:

frequency response 751--5

Taylor polynomials 511

linear time-invariant system 560--1

linearity:

differential equations 536--7

of differentiation 430

discrete Fourier transform 793

�rst-order Taylor polynomial 509--13

Fourier transform 761--2

integration 438

Laplace transform 631--2

z transform and difference equations 710, 718--19

linearly dependent vectors 238

linearly independent functions 558

linearly independent vectors 238

lines of force 240

linking process control computers 948--9

load:

line 422

resistor 476--7, 655

voltage waveform 473--4

log-linear graph 92

log-linear scales 92--4

log-log graph 94--6

log-log plot 92--3

log-log scales 92--4

log scale 92

logarithm functions 85--100, 187--93

attenuation in a step-index optical �bre 89--90

decibels in radio frequency engineering 88--9

delta function 111--12

exponential functions and 91--2

logarithms 85--7

modulus function 104--8

ramp function 108

reference levels see reference levels

signal ratios and decibels 87--8

unit impulse function 111--12

unit step function 108--10

logarithmic differentiation 397--8

logarithmic frequency scale 672

logarithmic scale 94

logarithms 85--7

laws 86, 398, 433, 672

natural 85, 89

logical equivalence:

AND gate 184, 187, 188

binary full-adder circuit design 190--2

connective 183
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exclusive OR gate 189

NAND gate 185, 192--3

NOR gate 184--5

NOT gate 184

OR gate see OR gate

realization of logical gates 198--9

lossless line 578

lossy compression 799

low pass �lter 689, 692

analogue 752--5

digital 696--7

lower bound 56, 499, 504

lowest common denominator (l.c.d.) 30

m-�les 61

Maclaurin series 524--31

magnetic �eld:

due to moving charge 250

intensity 249--50

strength 249--50

magnetic 	ux 900

magnitude:

of phasor 340

of vector 225

many-to-one functions 60--1, 122

maps 180

mark time 743

mass 610--11

mass-spring system, oscillating 565--6

mathematical model 54

MATLAB® 1--2, 58, 320--1, 615, 785, 790, 808--9

toolboxes 67

matrices 1

matrix algebra 257--328

addition 259--60

adjoint matrix 281--2

augmented matrix 309

computer solutions for 319--21

de�nitions 258--9

determinants 275--6, 278--81

Cramer’s rule 280

and vector products 279--80

diagonal matrix 271

direct transmission 612

eigenvalues and eigenvectors see eigenvalues and

eigenvectors

electrical networks, analysis of 307--12

Gaussian elimination see Gaussian elimination

identity matrix 271--2, 292--3

input 612

inverse of 2 × 2 matrix 274--7

�nding 275--6

orthogonal matrix 276

inverse of 3 × 3 matrix 281--2

multiplication 261--4, 285

non-singular matrix 276

output 612

representation 792--3

robot coordinate frames 268

scalar multiplication 260--1

simultaneous equations and 283--6

simultaneous equations, iterative techniques for solution

of 312--19

singular matrix 276, 282

skew symmetric matrix 272--3

square matrix 271, 272--3, 275, 300

state 612

subtraction 259--60

symmetric matrix 272

translation and rotation of vectors 267--71

transpose of matrix 272

Vandermonde matrix 291--2

maximum/minimum points 406--15, 824--5

�rst-derivative test 407, 411

of a function of two variables 841--6

local maximum 406--7

local minimum 406--7

second-derivative test 410, 412

turning points 407--9, 412, 414

Maxwell’s equations 864--6

in integral form 899--900

mean 964

deviation and binomial distribution 955

time between failures (MTBF) 970, 973, 975

value (arithmetic mean) 938--40

mesh current 307, 308--10

vector 254

microwave cavities 593--5

minimization laws 179, 185, 186

minimum points see maximum/minimum points

minor of element 278--9

mixed partial derivatives 862

modelling systems 566

modulation index 599

modulation signal 767

modulus:

of complex number 333

function 104--8

of vector 225

moment of inertia 612, 613

moving average �lter 692

multipath-induced fading 142

multiple integrals see line integrals and multiple integrals

multiplication:

algebraic fractions 29--30

complex numbers 329--30

indices 2--4

law 919--25, 926, 954

matrix 261--4

in polar form 335

scalar 260--1

mutual capacitance 102

mutually exclusive events: addition law of probability

909--13
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n-component column vector 612

n-type metal-oxide semiconductor (NMOS) transistors

192--3

n-type semiconductor 83, 251

NAND gate 185, 192--3

natural frequency 411

natural logarithms 85, 89

natural numbers 55

negative feedback 436

negative number 325

neper (Np) 89

Newton-Raphson method 221, 406, 418--23

Newton’s Second Law 610, 613

nibble 17

NMOS (n-type metal-oxide semiconductor) transistors

192--3

node 47--8

reference 310

voltages/currents 47--8, 310--12, 317--19

non-linear equations 219--22, 536--7, 683, 685

non-linear system, in Taylor polynomials 511

non-negative number 333

non-periodic function 757--8

non-rectangular region 880, 884

non-recursive equations 691

non-singular matrix 276

non-standard normal 966--9

non-trivial solution 294--6, 298--300

non-uniform failure rates 976

non-zero initial value of state vector 660

NOR gate 184--5

normal distribution 963--9

non-standard normal 966--9

standard normal 964--6

normalized sinc function 123, 124--5

norms 254

NOT gate 184

nth-order Taylor polynomial 517--21

numbers 55--6

commutative 259--60

complex see complex numbers

numerator 27--8, 29--30, 75, 465

numerical integration 457, 496--506

distance travelled by rocket 498

energy dissipation in resistor 502--3

Simpson’s rule 500--5

trapezium rule 496--500, 502

numerical methods, and differential equations 615--16

numerical solution 220, 534, 617--18, 695--8

oblique asymptote 76

odd and even functions 726--32, 740--4

integral properties 730--1

Ohm’s law 3, 55

differential equations 535, 544

differentiation 413

	uid equivalent 614

Fourier series 752

integration 436, 487

Laplace transform 655

phasor form 341

polynomial functions 71--2

Taylor polynomials 510

one-to-many function 60

one-to-one functions 60--1, 122

operating point 379--80

OR gate 183, 184--5, 187, 188, 192

exclusive 189

inclusive 189

truth table 183

order 258, 263, 587

difference equations and the z transform 684

differential equations 536

of objects 949

of system 609

ordinary differential equations see differential equations

origin (coordinate systems) 154

orthogonal functions 480--3

orthogonal matrix 276

orthogonal vectors 232, 242

oscillate sequence 205

oscillating mass-spring system 565--6

oscillatory term 669

output 663, 665

equation 614

matrix 612

reduction 436

sequence 685, 689, 691, 697

signal 661, 669

to system 659--61

variables 614

vector 612

voltage 676

overdamped response 666--7

overshooting 666

p-component column vector 612

p-n junction 83

p-type metal-oxide semiconductor (PMOS) transistor

192--3

p-type semiconductor 83, 251

padding signals with zeros 809--11

parallel system 975--7

parallel vectors 242

parallelogram 336--7

parameters 393, 587

functions 61

parametric differentiation 393--4

Parseval’s theorem 748--9, 794

partial derivatives 825--9, 835

�rst-order 825, 829, 833, 835--7, 842--5

fourth-order 840

line and multiple integrals 886

mixed 862



Index 997

second-order 829--30, 833, 838--40, 842--5

third-order 840

vector calculus 854

partial differential equations 832--5, 862

partial fractions 39--45

improper fractions 43--4

and integration 466--8

linear factors 39--41

quadratic factors 42--3

repeated linear factors 39, 41--2

partial fractions:

inverse Laplace transform 641--3, 644--5, 651, 653--4,

656

Laplace transform 666

z transform 716--17, 720

partial sums sequence 212

particular integral function 558

particular solution 538, 556, 563--4, 575

parts, integration by 457--63

Pascal’s triangle 214--15

period 131

of function 65

periodic convolution see circular (periodic) convolution

periodic extension 746--7

periodic functions 65--6, 131--2, 725, 733

Fourier transform 766, 771--2

Laplace transform 677--8

periodic waveforms 477--8, 723--6, 752

periodicity and discrete Fourier

transform 793

permeability, of conductor 10

permittivity of free space 102, 858

permutations 948--50, 951--2

phase 136, 724, 751--3

angle 132, 133, 138--9, 723

constant 581

Fourier transform 766

phasors 340--4

capacitor 341--3

inductor 341

magnitude of 340

reference 340

resistor 341

pick and place robot 159--60

piecewise continuous functions 64--5, 648, 780

integration of 491--2

place sign 279

PMOS (p-type metal-oxide semiconductor) transistor 192--3

Poisson distribution 957--61, 962

Poisson process 959

Poisson’s equation 863

polar coordinates 159--63, 333--4

cylindrical see cylindrical polar coordinates

pick and place robot 159--60

spherical 170--3

polar curves 163--6

equation of circle, centre on the origin 163, 164

equation of line 163, 164

and radiation patterns from antennas 164--5

polar form 333--6, 338, 345--6

poles 706--9

complex 668, 669

dominant 670

of function 76

Laplace transform 668--75

at the origin 673

positions 667

real 668, 669

stable complex 671

system 668

polynomial:

coef�cients 20

constant 71

cubic 71

of degree 2 300

of degree n--d 43--4

degree of 71

equations see under algebraic techniques

expression 70

functions 70--4

non-ideal voltage source 72--3

Ohm’s law 71--2

wind power turbines 73

linear 71

quadratic 71

quartic 71

Taylor see Taylor polynomials

position control system (servo-system) 108, 665--8

position vector 423--4

positive integers 55

positive number 325

postmultiplying 263

potential function 875--7

potential theory 833

potentiometer 604--5

power:

dissipation in resistor 3--4, 511--12, 824

function to model 59

gain 87

series 218--19, 337--8

supply to a computer 906

power density 6

power series solution, of Bessel’s equation 587--8,

590--1

Poynting vector 343--4

premultiplying 263, 272

primary route (permutations) 948--9

probability 903--32

acceptability of manufactured electronic chips 925--6

of acceptable components 928--9

addition law 909--13, 954

alphabetic character stream, information content

of 916

binary data stream, information content of 916
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probability (Continued)

breakdowns on factory process line 971--2

character data stream, redundancy of 918

communication theory 915--19

complementary events 913--15

component, calculating 912

compound event 905--8

conditional 919--25

cumulative normal 967--8

electrical component reliability 911--12

electrical supply to a large factory, availability of 973

emergency calls to service engineer 958

entropy of binary data stream 917

entropy of signal consisting of three characters 917

events 904

of faulty components 926--8

independent events 925--30

machine breakdowns in workshop 958

mutually exclusive events 909--13

power supply to a computer 906

production line product fed by two machines 920--2

quality control on factory production line 907--8

redundancy of binary data stream 918

reliability of manufactured components 923--4

testing multiple electronic components 914--15

trial 904

unconditional 920, 923

workforce absentees 959--60

see also statistics and probability

product rule 543

differential equation 548, 551

differentiation 386--8, 397--8, 412

partial differential equations 827--8, 833

production engineering 903

projection (cylindrical polar coordinates) 166

proper fraction 27

proportional/integral/derivative (p.i.d.) controller 694

Pythagoras’s theorem 106, 141, 161, 233, 235--6, 333

quadratic approximation to diode characteristic

515--16

quadratic equations 20--4, 103, 325--6

quadratic expression 37

quadratic factors 39, 42--3

quadratic polynomial 71

quality control 903, 907--8

quantity, absolute 88

quartic polynomial 71

quotient rule 388--9, 401, 414

r-component column vector 612

radar:

and correlation 817--20

de�ned 8

scattering 7--8

radar cross-section (RCS) 8

radians 116, 117

radiation patterns:

of half-wave dipole 172--3

polar curves and 164--5

radio antenna, power density of signal transmitted by 6

radio-frequency (RF) engineering 579

decibels in 88--9

radius of convergence 218, 698

ramp function 108

random variables 934, 962, 968

continuous 944--5, 947, 965--6

discrete see discrete random variable

range, sets and functions 180

rate of change 357--8, 362--4

at general point 364--9

negative 365

positive 365

at speci�c point 362--4

rational functions 75--9

rational numbers 55, 176, 345

Rayleigh’s theorem 794

RC charging circuit 535--6

real axis (x axis) 332

real line 55--6

real numbers 55, 176, 181

real parts 578

complex numbers 326, 334, 348

negative 669, 670

real roots 24

real system 670

rectangle function 979--80

rectangular region 880--3

rectangular wave 743

recti�er:

de�ned 106

full-wave 106--7

half-wave 107

recurrence relations 203, 220

recursive difference equations 684

recursive �lter 689

recursive sequence 203

reduction formula 460--1

redundancy 917--19

Reed-Solomon codes 291

reference levels 88, 90--7

Bode plot of linear circuit 96--7

exponential and logarithm functions, connection between

91--2

log-linear and log-log graph paper 94--6

log-log and log-linear scales 92--4

logarithm functions 90--1

reference node 310

reference phasor 340

relation (sets and functions) 180--1

reliability engineering 903, 970--7

parallel system 975--7

series system 973--5

remainder of order n 522
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remainder term, Taylor’s formula and 521--4

repeated linear factors 39, 41--2

resistors 577

load 476--7

in parallel 32

phasors 341

power dissipation in 3--4, 511--12

function to model 59

resolving force into two perpendicular directions

227--8

resonant frequencies 343, 411, 594

resultant of two forces acting on a body 227

reverberation 810--12

reverse saturated diode 83

right-hand limits 360

right-handed screw rule 896

risetime 411--13

RL circuit with ramp input 651--2

RL circuit with step input 544--5

RLC circuit 109

parallel 573--5

robot coordinate frames 268

robot positions 237

root mean square (r.m.s.) 340, 471

value of function 475--9

value of periodic waveform 477--8

roots 20, 219--21, 563--4, 568, 668

complex 24, 564, 567

formula 21

real 24

routing, of automated vehicle 226--7

row 258--9, 261--2

operations 287--90, 292--3

vector 233

Runge-Kutta method of fourth-order 623--5

s domain 661, 665

s plane 668--75

mapping of to the z plane 706--9

saddle points 825, 842--5

sample space 904

sampled signal 690

sampling 202, 688

saw-tooth waveform 66--7, 472--3, 733--4, 742--3

scalar 224

�eld 240, 851--5, 856, 875, 889

integrals 493

multiple 230--1, 260--1

product 241--5, 870--1, 891

secant (sech) 120, 434

hyperbolic 100

second-derivative 416--17

difference equations 691

differential equations 536

Laplace transform 635

numerical integration 499

test 410, 412

second law of indices 4

second-order difference equations 719

second-order differential equations 538--9, 604, 610

second-order electrical systems, risetime for 411--13

second-order equations 573, 606--8, 684, 685, 696

second-order linear ordinary differential equation 558--84

complementary function 561--9

constant coef�cient equations 560--84

integrals 569--75

property 1 558

property 2 558--60

transmission lines 576--8

second-order system 610

second-order Taylor polynomials 513--17

second shift theorem 633--4, 665, 712--14, 716, 764--5

secondary route (permutations) 948--9

semiconductors 192--3

diode:

dynamic resistance of 378--9

ideal, operating point for 379--80

Hall effect in 251--2

n-type 83, 251

p-type 83, 251

separable equations 541

separation of variables 541--5, 549

sequences 200--9, 683, 688--9, 976

arithmetic progressions 204

binomial theorem 214--18

bounded sequence 205

converges sequence 205

divergent sequence 205

Fibonacci sequence 203

�nite sequence 801, 809, 813

geometric progressions 204--5

input sequence 685, 689, 691, 697

from iterative solution of non-linear equations 219--22

Kronecker delta sequence 202, 203

limit sequence 205

limit 5 sequence 206

oscillate sequence 205

output sequence 685, 689, 691, 697

partial sums sequence 212

recursive sequence 203

unbounded sequence 205

unit ramp sequence 699--700

unit step sequence 202, 699

see also series

series 200, 209--14

binomial theorem 214--18

converged 211

diode-resistor circuit 421--3

�nite 209

arithmetic, sum of 209--10

geometric, sum of 211

inductance series 576

in�nite 209, 211--12

geometric, sum of 212--13
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series (Continued)

power 218--19

sequence of partial sums 212

system series 973--5

see also sequences

servo-systems 665

set theory 55, 175--83

absorption laws 179, 185, 186

associative laws 179, 186

commutative laws 179, 186, 191

complement 178--9, 186, 189--90

De Morgan’s laws 179, 186, 191

disjoint sets 178

distributive laws 179, 186, 189, 191

empty set 178

empty sets 910

equal sets 177

identity laws 179, 186, 189--90, 191

intersection 178

logic 183--5

minimization laws 179, 185, 186

sets and functions 179--81

subsets 178

union 178

universal set 177

Venn diagrams 177, 178--9

seven-segment displays 18--19

shrinking interval method 363, 364, 372

SI units and pre�xes 982

side bands 601

sifting property, of delta function 490, 787--8

sigma notation 209

signals 133, 688

damped sinusoidal 387--8

input 661, 669, 697

output 661, 669

processing 200, 201

digital 200, 692

using a microprocessor 684--5

ratios, and decibels 87--8

sampling 690, 702--4

sequence 697

sinusoidal 751--2

sinusoidal current 136--7

sinusoidal modulating 599

sinusoidal voltage 134--5

of system 661

telescope drive 108

simple iteration 220

Simpson’s rule 500--5

simultaneous equations:

algebraic 658

direct methods 312

and iterative techniques 312--19

Gauss-Seidel method 314--17

Jacobi’s method 313--14, 315--16

and matrix algebra 283--6

sinc function 123--5, 744, 760

normalized 123, 124--5

zero crossing points 124--5

sine (sin) 115

complex numbers 333--4, 338--9

De Moivre’s theorem 344--50

de�nite and inde�nite integrals 444--5

differential equations 534, 537, 539

differentiation 387--9, 391, 394, 412, 420

elementary integration 432--3, 434, 438--9

�rst-order linear differential equations 547--8

Fourier transform 763, 766

functions 120--3

hyperbolic 100--1

improper integrals 486, 488

integration, elementary 429--33

integration by parts 458

integration by substitution 464

inverse function 122

Jacobi-Anger identities 598

Maclaurin series 525--6

modelling waves using 131--44

orthogonal functions 481--3

partial differential equations 826, 827

polar coordinates 160, 171

polar curves 164--5

root mean square value of function 475--6

second-order linear differential equations 541, 559--60,

564, 566--7, 571--3

series, half-range 746

Taylor polynomials 522--3

Taylor series 526--7

trigonometric equations 144, 145, 148, 149

trigonometric identities 125--30

trigonometric ratios 116--20

vectors 246--7, 857

waves 723, 734, 757

single loop industrial control system 693

single trial 953, 956

singular matrix 276, 282

sinusoidal functions 121

sinusoidal modulating signal 599

sinusoidal signals 751--2

current 136--7

damped 387--8

voltage 134--5

sinusoidal steady-state frequency 636--7

sinusoidal term 670--1

sinusoidal waveform 340

sinusoids 723

linear combination 723

skew symmetric matrix 272--3

skin depth, in radial conductor 9--10

slope (differentiation) 357

slotted line apparatus 582

small-angle approximations 219

smoothing the input signal 696
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solenoidal vector �eld 857

solution:

analytical 534, 618--19, 621--2

differential equations 537--9

exact 616, 617--18, 620--1, 624

general see general solution

independent 568

non-trivial 294--6, 298--300

numerical 220, 534, 617--18, 695--8

particular 538, 556, 563--4, 575

speci�c 683

trivial 294--6, 298

true 615

solve, de�ned 219

sonar 817, 820

speci�c solution 683

spectra:

continuous 766

discrete 766

Fourier transform 766--8

line 766

of pulse width modulation controlled solar charger 743--4

spherical polar coordinates 170--3

square matrix 271, 272--3, 275, 300

square the input rule 58--9, 61, 64

square wave input 753--4

square waveform 67

standard deviation 941--3, 964

binomial distribution 955

of a continuous random variable 947

of a discrete random variable 946--7

standard forms and Laplace transform 639--40

standard normal 964--6

standing waves on transmission lines 580--2

state equations 609, 613

state matrix 612

state-space equations 615

state-space models 603, 609--15, 660

for coupled-tanks system 614--15

for spring-mass-damper system 610--11

state variables 609--11, 613--14

state vector 254, 612

stationary points 842--5

stationary values 407

statistics and probability

binomial distribution 953--7

combinations 950--2

continuous random variable 944--5

continuous variable 933, 934, 936--8

discrete random variable 943--4

discrete variable 933, 934, 935

distributions 933--53

exponential distribution 962--3

linking process control computers 948--9

mean value (arithmetic mean) 938--40

normal distribution 963--9

permutations 948--50, 951--2

Poisson distribution 957--61

probability density functions 936--8

random variables 934

reliability engineering 970--7

standard deviation 941--3

of a continuous random variable 947

of a discrete random variable 946--7

uniform distribution 961

see also probability

steady-state error 657

steady-state response 556

step-index optical �bre, attenuation in 89--90

step input 411

step size 615, 616--18

Stokes’ theorem 896--9

straight line approximation 620

sub-intervals 936, 971

subscripts 46

subsets 178

substitution:

back 287--90

integration by 463--6

subsystems, parallel 976

subtraction:

algebraic fraction 30--1

complex numbers 329

matrix 259--60

vectors 228--30, 337

success in a single trial 953

sum to in�nity 213

summation notation 46--50

Kirchhoff’s current law 47--8

Kirchhoff’s voltage law 48--9

summer 604--5, 689

summing 890

point 661, 662

superposition principle 509

suppressed carrier amplitude modulation 768

surface integrals 889--95, 896, 898

symmetric matrix 272

t-w duality principle 768--70, 771

take-off point 661

‘take plus or minus the square root of the input’ 60, 64

‘take the positive square root of the input’ rule 60

tangent (tan) 115, 358

complex numbers 333--4

differential equations 543

functions 120--3

gradient of 366--7

hyperbolic 100

integration 430, 434, 464

line approximation see straight line approximation

polar coordinates 161--2

trigonometric equations 144, 147, 148

trigonometric identities 125--8

trigonometric ratios 116--20
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Taylor polynomials:

�rst-order see �rst-order Taylor polynomial

fourth-order 518, 840

non-linear system 511

of nth order 517--21

second-order 513--17, 837--40

third-order 518--19, 840

Taylor series 524--31

Taylor series expansion 617, 620, 623, 751

truncation 620

Taylor series in two variables 840

Taylor’s formula, and remainder term 521--4

telescope drive signal 108

third law of indices 7, 8

third-order equation 684, 685

third-order Taylor polynomials 518--19

thyristor �ring circuit 473--4

time:

constant 82, 545, 753

delay see transport lag

dependency 340

displacement 132, 133, 723

domain 340, 628, 661, 665

interval 689

linear time-invariant system 560--1

see also discrete-time

toolboxes 67

‘top-hat’ function 777

torque 613

transfer functions 609, 627--8, 637, 659--68, 669

Laplace transform 674--6

rule 1: combining two transfer functions in series 661--2

rule 2: eliminating a negative feedback loop 662--8

system 663

transform, discrete 795--801

transients 556, 669--71

response 659

transistors 192--3

transmission equation 834

transmission lines 576--8

transport lag 664--5

transverse wave 343

trapezium rule 496--500, 502

tree diagram 907, 912, 921, 923--4

triangle law 225--6, 228--30, 233, 336, 351

triangular waveform 66

trigonometric functions 115--53, 349

cosine function 120--3

degrees 116

equations, trigonometric 144--50

integration 431

integration of 437--9

inverse 121--3

radians 116

ratios, trigonometric 116--20

sinc function 123--5

sine function 120--3

tangent function 120--3

see also trigonometric identity

trigonometric identity 345, 348

Fourier series 724, 732

integration 481--3

trivial solution 294--6, 298

true solution 615

truth table 186--7

exclusive OR gate 189

full-adder circuit 191

AND gate 184

NAND gate 185

NOR gate 184

NOT gate 184

OR gate 183

turbines, wind 73

turning points 407--9, 412, 414

two ray propagation model 140--2

unbounded sequence 205

unconditional probability 920, 923

underdamped response 667

underdamped system 411

uniform distribution 961

union (set theory) 178

unit impulse function see delta function

unit ramp sequence 699--700

unit step:

function 108--10

functions 712

input 669

sequence 202, 699

unit vectors 231

universal set 177

upper bound 56, 499--500, 503--4

upper limits 484

of integrals 443--5

Vandermonde matrix 291--2

variables 58

Boolean 185

complex frequency 636

continuous 962, 963

dependent see dependent variable

discrete 962

dummy 451

free 288--9

generalized frequency 636

independent see independent variable

Laplace transform 637

output 614

random see random variables

separation of 541--5, 549

state 613--14

variance 941--2, 946--7, 958

vectors 1, 224--55

addition 225--6, 336--7
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calculus 849--66

curl 859--61, 861--4

divergence 856--9, 861--4

electric 	ux and Gauss’s law 857--8

and electromagnetism 864--6

electrostatic potential 854--5

gradient 861--4

partial differentiation of vectors 849--51, 852--3

Poisson’s equation 863

scalar �eld 861--2

scalar �eld gradient 851--5

vector �eld 861

Cartesian components 232--40

column 233, 258--9

and complex numbers 336--7

differentiation 423--6

displacement 226, 227, 423

electric �eld strength and electric displacement 240--1

electrostatic potential 241

equal 225

�eld 240, 244, 867

line and multiple integrals 890, 893

free 225

Hall effect in semiconductor 251--2

input 612, 615

integration of 493

linearly dependent 238

linearly independent 238

magnetic �eld due to moving charge 250

magnitude 225

mesh current 254

modulus 225

of n dimensions 253--4

negative 225

operator 852

orthogonal 232, 242

output 612

parallel 242

partial differentiation 849--51, 852--3

position 423--4

Poynting 343--4

product 246--53

applications of 249--53

determinants and 248--9, 279--80

magnetic 	ux density and magnetic �eld strength

249--50

resolving force into two perpendicular directions

227--8

resultant of two forces acting on a body 227

robot positions 237

routing of automated vehicle 226--7

row 233

scalar multiple 230--1

scalar product 241--5

state 254, 612

subtraction 228--30, 337

translation and rotation of 267--71

unit 231

work done by force 244

zero 236

Venn diagram 904, 906, 910, 914

Venn diagrams 177, 178--9

vertical strips 881--2, 884--5

very-large-scale integration (VLSI) 192--3

VHDL design languages 193

virtual earth 436

visual artefacts 800--1

voltage 577--8, 580--2

across a capacitor 636, 655

across an inductor 368

across capacitor 435

gain 88, 90

input 676

law see Kirchhoff’s voltage law

node 47--8, 310--12, 317--19

non-ideal source 72--3

output 676

re	ection coef�cient 578--80

saw-tooth waveform 66--7

sinusoidal signals 134--5

voltage controlled oscillator (VCO) 599

wave:

amplitude of 131

backward 578--80

combining 134--8

destructive interfering 142

equation 833

forward 578--80

input, square 753--4

modelling, using sine and cosine 131--47

number 138--44

rectangular 743

transverse 343

two-ray propagation model 140--2

waveforms 133

alternating current 134

periodic 477--8, 677--8, 723--6, 752

saw-tooth 66--7, 472--3

sawtooth 733--4, 742--3

sinusoidal 340

square 67

time dependency of 340

triangular 66

waveguides 593--5

wavelength 138--44

weighted impulses 112, 703--4, 979--81

whole numbers 176

wind power turbines 73

work done by force 244

world coordinate frame 268

x axis 58, 157, 159, 168, 171

sequences and series 220
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x coordinate 154--5

x-y plane 166, 169, 170, 171, 233, 336, 351

y axis 58, 157

matrix algebra 270--1

y coordinate 154--5

z axis 157, 167, 169, 171

z transforms 175, 200, 979, 981

continuous signal sampling 702--4

de�nition 698--702

and difference equations 718--20

and Laplace transform, relationship between 704--9

mapping the s plane to the z plane 706--9

properties of 709--15

complex translation theorem 714

direct inversion 717--18

�rst shift theorem 711--12

inversion 715--18

linearity 710

second shift theorem 712--14

zero frequency component 736

zero initial conditions 660, 663

zero-input response 554--7, 573, 575

zero order equations 684

zero real part 670

zero-state response 554--7, 573, 575

zero vector 236

zeros 668, 706, 709

Laplace transform 668--75

padding signals with 809--11
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