Skip to main content
  1. Resources/
  2. Study Materials/
  3. Common Engineering Subjects/
  4. Semester 1/

Mathematics-I (DI01000021) - Summer 2025 Solution

15 mins· ·
Study-Material Solutions Mathematics DI01000021 2025 Summer
Milav Dabgar
Author
Milav Dabgar
Experienced lecturer in the electrical and electronic manufacturing industry. Skilled in Embedded Systems, Image Processing, Data Science, MATLAB, Python, STM32. Strong education professional with a Master’s degree in Communication Systems Engineering from L.D. College of Engineering - Ahmedabad.
Table of Contents

Q.1 [14 marks]
#

Fill in the blanks/MCQs using appropriate choice from the given options

Q1.1 [1 mark]
#

$\log_3 1 = $ ____

Answer: d. 0

Solution: For any base $a > 0, a \neq 1$: $\log_a 1 = 0$ Therefore: $\log_3 1 = 0$

Q1.2 [1 mark]
#

If $f(x) = e^{x-1}$ then $f(1) = $ ____

Answer: c. 1

Solution: $f(x) = e^{x-1}$ $f(1) = e^{1-1} = e^0 = 1$

Q1.3 [1 mark]
#

$\log_5 125 = $ ____

Answer: b. 3

Solution: $\log_5 125 = \log_5 5^3 = 3$ Since $5^3 = 125$

Q1.4 [1 mark]
#

If $f(x) = x^3 - 7$ then $f(-2) = $ ____

Answer: c. -15

Solution: $f(x) = x^3 - 7$ $f(-2) = (-2)^3 - 7 = -8 - 7 = -15$

Q1.5 [1 mark]
#

Principal period of $\cos x$ is ____

Answer: c. $2\pi$

Solution: The cosine function repeats every $2\pi$ radians, so its principal period is $2\pi$.

Q1.6 [1 mark]
#

$150° = $ ____

Answer: a. $\frac{5\pi}{6}$

Solution: Converting degrees to radians: $150° = 150 \times \frac{\pi}{180} = \frac{5\pi}{6}$

Q1.7 [1 mark]
#

$\sin^{-1}x + \cos^{-1}x = $ ____

Answer: a. $\frac{\pi}{2}$

Solution: This is a standard identity: $\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}$ for $x \in [-1, 1]$

Q1.8 [1 mark]
#

(1,0,0) × (1,0,0) = ____

Answer: d. (0,0,0)

Solution: Cross product of any vector with itself is zero vector: $(1,0,0) \times (1,0,0) = (0,0,0)$

Q1.9 [1 mark]
#

If $\vec{a} = 4\hat{i} - 3\hat{j}$ then $|\vec{a}| = $ ____

Answer: b. 5

Solution: $|\vec{a}| = \sqrt{4^2 + (-3)^2} = \sqrt{16 + 9} = \sqrt{25} = 5$

Q1.10 [1 mark]
#

If a line makes an angle $45°$ with positive x-axis then slope of the line is ____

Answer: c. 1

Solution: Slope $m = \tan(45°) = 1$

Q1.11 [1 mark]
#

Radius of the circle $x^2 + y^2 = 4$ is ____

Answer: d. 2

Solution: Standard form: $x^2 + y^2 = r^2$ Comparing: $r^2 = 4$, so $r = 2$

Q1.12 [1 mark]
#

$\lim_{x \to 0} \frac{e^x - 1}{x} = $ ____

Answer: a. 1

Solution: This is a standard limit: $\lim_{x \to 0} \frac{e^x - 1}{x} = 1$

Q1.13 [1 mark]
#

$\lim_{x \to 0} \frac{\sin 3x}{x} = $ ____

Answer: d. 3

Solution: $\lim_{x \to 0} \frac{\sin 3x}{x} = \lim_{x \to 0} \frac{\sin 3x}{3x} \times 3 = 1 \times 3 = 3$

Q1.14 [1 mark]
#

$\lim_{n \to \infty} \frac{5n + 4}{4n + 5} = $ ____

Answer: c. 5/4

Solution: $\lim_{n \to \infty} \frac{5n + 4}{4n + 5} = \lim_{n \to \infty} \frac{5 + \frac{4}{n}}{4 + \frac{5}{n}} = \frac{5}{4}$


Q.2 (A) [6 marks]
#

Attempt any two

Q2(A).1 [3 marks]
#

Find value: $\begin{vmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \ 7 & 8 & 9 \end{vmatrix}$

Answer: 0

Solution: $\begin{vmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \ 7 & 8 & 9 \end{vmatrix} = 1(5 \times 9 - 6 \times 8) - 2(4 \times 9 - 6 \times 7) + 3(4 \times 8 - 5 \times 7)$

$= 1(45 - 48) - 2(36 - 42) + 3(32 - 35)$ $= 1(-3) - 2(-6) + 3(-3)$ $= -3 + 12 - 9 = 0$

Q2(A).2 [3 marks]
#

Prove that: $\log\left(\frac{x^p}{x^q}\right) + \log\left(\frac{x^q}{x^r}\right) + \log\left(\frac{x^r}{x^p}\right) = 0$

Solution: LHS = $\log\left(\frac{x^p}{x^q}\right) + \log\left(\frac{x^q}{x^r}\right) + \log\left(\frac{x^r}{x^p}\right)$

Using logarithm properties: $= \log(x^p) - \log(x^q) + \log(x^q) - \log(x^r) + \log(x^r) - \log(x^p)$ $= p\log x - q\log x + q\log x - r\log x + r\log x - p\log x$ $= 0$ = RHS

Q2(A).3 [3 marks]
#

Find value: $\tan(75°)$

Answer: $2 + \sqrt{3}$

Solution: $\tan(75°) = \tan(45° + 30°)$

Using $\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$:

$\tan(75°) = \frac{\tan 45° + \tan 30°}{1 - \tan 45° \tan 30°} = \frac{1 + \frac{1}{\sqrt{3}}}{1 - 1 \times \frac{1}{\sqrt{3}}} = \frac{1 + \frac{1}{\sqrt{3}}}{1 - \frac{1}{\sqrt{3}}}$

$= \frac{\frac{\sqrt{3} + 1}{\sqrt{3}}}{\frac{\sqrt{3} - 1}{\sqrt{3}}} = \frac{\sqrt{3} + 1}{\sqrt{3} - 1} = \frac{(\sqrt{3} + 1)^2}{(\sqrt{3} - 1)(\sqrt{3} + 1)} = \frac{3 + 2\sqrt{3} + 1}{3 - 1} = \frac{4 + 2\sqrt{3}}{2} = 2 + \sqrt{3}$


Q.2 (B) [8 marks]
#

Attempt any two

Q2(B).1 [4 marks]
#

Prove that: $\frac{1}{\log_{12} 120} + \frac{1}{\log_2 120} + \frac{1}{\log_5 120} = 1$

Solution: Using change of base formula: $\frac{1}{\log_a b} = \log_b a$

LHS = $\log_{120} 12 + \log_{120} 2 + \log_{120} 5$

Using logarithm properties: $= \log_{120}(12 \times 2 \times 5) = \log_{120} 120 = 1$ = RHS

Q2(B).2 [4 marks]
#

Solve: $\begin{vmatrix} x & 1 & 1 \ 1 & 2 & 1 \ 0 & 0 & 3 \end{vmatrix} = 3$

Solution: Expanding along third row: $\begin{vmatrix} x & 1 & 1 \ 1 & 2 & 1 \ 0 & 0 & 3 \end{vmatrix} = 3 \begin{vmatrix} x & 1 \ 1 & 2 \end{vmatrix}$

$= 3(2x - 1) = 6x - 3$

Given: $6x - 3 = 3$ $6x = 6$ $x = 1$

Q2(B).3 [4 marks]
#

If $f(x) = \frac{1-x}{1+x}$ prove that: (i) $f(x) + f\left(\frac{1}{x}\right) = 0$ (ii) $f(x) \times f(-x) = 1$

Solution: Given: $f(x) = \frac{1-x}{1+x}$

(i) $f\left(\frac{1}{x}\right) = \frac{1-\frac{1}{x}}{1+\frac{1}{x}} = \frac{\frac{x-1}{x}}{\frac{x+1}{x}} = \frac{x-1}{x+1} = -\frac{1-x}{1+x} = -f(x)$

Therefore: $f(x) + f\left(\frac{1}{x}\right) = f(x) + (-f(x)) = 0$

(ii) $f(-x) = \frac{1-(-x)}{1+(-x)} = \frac{1+x}{1-x}$

$f(x) \times f(-x) = \frac{1-x}{1+x} \times \frac{1+x}{1-x} = 1$


Q.3 (A) [6 marks]
#

Attempt any two

Q3(A).1 [3 marks]
#

Prove that: $\frac{\sin(180° - x) + \cosec(180° - x) + \tan(180° + x)}{\cos(90° + x) + \sec(90° + x) + \cot(90° + x)} = -3$

Solution: Using trigonometric identities:

  • $\sin(180° - x) = \sin x$
  • $\cosec(180° - x) = \cosec x$
  • $\tan(180° + x) = \tan x$
  • $\cos(90° + x) = -\sin x$
  • $\sec(90° + x) = -\cosec x$
  • $\cot(90° + x) = -\tan x$

Numerator = $\sin x + \cosec x + \tan x$ Denominator = $-\sin x - \cosec x - \tan x = -(\sin x + \cosec x + \tan x)$

Therefore: $\frac{\sin x + \cosec x + \tan x}{-(\sin x + \cosec x + \tan x)} = -1 \neq -3$

Note: There appears to be an error in the problem statement or expected answer.

Q3(A).2 [3 marks]
#

Prove that: $\tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{2}\right) = 45°$

Solution: Using $\tan^{-1}A + \tan^{-1}B = \tan^{-1}\left(\frac{A+B}{1-AB}\right)$:

$\tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{2}\right) = \tan^{-1}\left(\frac{\frac{1}{3} + \frac{1}{2}}{1 - \frac{1}{3} \times \frac{1}{2}}\right)$

$= \tan^{-1}\left(\frac{\frac{5}{6}}{1 - \frac{1}{6}}\right) = \tan^{-1}\left(\frac{\frac{5}{6}}{\frac{5}{6}}\right) = \tan^{-1}(1) = 45°$

Q3(A).3 [3 marks]
#

Find out equation of the line whose X-intercept is 3 and Y-intercept is 2.

Solution: Using intercept form: $\frac{x}{a} + \frac{y}{b} = 1$

Where $a = 3$ (x-intercept) and $b = 2$ (y-intercept)

$\frac{x}{3} + \frac{y}{2} = 1$

Multiplying by 6: $2x + 3y = 6$


Q.3 (B) [8 marks]
#

Attempt any two

Q3(B).1 [4 marks]
#

Prove that: $\tan(70°) = \frac{\cos(25°) + \sin(25°)}{\cos(25°) - \sin(25°)}$

Solution: RHS = $\frac{\cos(25°) + \sin(25°)}{\cos(25°) - \sin(25°)}$

Dividing numerator and denominator by $\cos(25°)$:

$= \frac{1 + \tan(25°)}{1 - \tan(25°)}$

Using $\tan(45° + θ) = \frac{1 + \tan θ}{1 - \tan θ}$:

$= \tan(45° + 25°) = \tan(70°)$ = LHS

Q3(B).2 [4 marks]
#

Prove that: $\frac{\sin θ + \sin 2θ + \sin 3θ}{\cos θ + \cos 2θ + \cos 3θ} = \tan 2θ$

Solution: Using sum-to-product formulas:

Numerator: $\sin θ + \sin 3θ + \sin 2θ = 2\sin 2θ \cos θ + \sin 2θ = \sin 2θ(2\cos θ + 1)$

Denominator: $\cos θ + \cos 3θ + \cos 2θ = 2\cos 2θ \cos θ + \cos 2θ = \cos 2θ(2\cos θ + 1)$

Therefore: $\frac{\sin 2θ(2\cos θ + 1)}{\cos 2θ(2\cos θ + 1)} = \frac{\sin 2θ}{\cos 2θ} = \tan 2θ$

Q3(B).3 [4 marks]
#

If $\vec{a} = (1,2,3)$, $\vec{b} = (4,0,0)$ and $\vec{c} = (2,0,1)$ find $2\vec{a} + 3\vec{b} - 5\vec{c}$

Solution: $2\vec{a} = 2(1,2,3) = (2,4,6)$ $3\vec{b} = 3(4,0,0) = (12,0,0)$ $5\vec{c} = 5(2,0,1) = (10,0,5)$

$2\vec{a} + 3\vec{b} - 5\vec{c} = (2,4,6) + (12,0,0) - (10,0,5)$ $= (2+12-10, 4+0-0, 6+0-5)$ $= (4,4,1)$


Q.4 (A) [6 marks]
#

Attempt any two

Q4(A).1 [3 marks]
#

If the vectors $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$ and $\vec{b} = 2\hat{i} + m\hat{j} - 4\hat{k}$ are perpendicular, find m.

Solution: For perpendicular vectors: $\vec{a} \cdot \vec{b} = 0$

$\vec{a} \cdot \vec{b} = (1)(2) + (-2)(m) + (3)(-4) = 2 - 2m - 12 = -10 - 2m$

Setting equal to zero: $-10 - 2m = 0$ $2m = -10$ $m = -5$

Q4(A).2 [3 marks]
#

Find the direction cosines and direction angles of the vector $\vec{a} = 5\hat{i} - 12\hat{k}$

Solution: $\vec{a} = 5\hat{i} + 0\hat{j} - 12\hat{k}$

Magnitude: $|\vec{a}| = \sqrt{5^2 + 0^2 + (-12)^2} = \sqrt{25 + 144} = \sqrt{169} = 13$

Direction cosines:

  • $l = \frac{5}{13}$
  • $m = \frac{0}{13} = 0$
  • $n = \frac{-12}{13}$

Direction angles:

  • $α = \cos^{-1}\left(\frac{5}{13}\right)$
  • $β = \cos^{-1}(0) = 90°$
  • $γ = \cos^{-1}\left(\frac{-12}{13}\right)$

Q4(A).3 [3 marks]
#

Find out equation of the circle having center at $(2, -3)$ and radius 3.

Solution: Standard form: $(x - h)^2 + (y - k)^2 = r^2$

Where $(h, k) = (2, -3)$ and $r = 3$

$(x - 2)^2 + (y + 3)^2 = 9$

Expanding: $x^2 - 4x + 4 + y^2 + 6y + 9 = 9$ $x^2 + y^2 - 4x + 6y + 4 = 0$


Q.4 (B) [8 marks]
#

Attempt any two

Q4(B).1 [4 marks]
#

Show that the angle between vectors $\vec{a} = \hat{i} + 2\hat{j}$ and $\vec{b} = \hat{i} + \hat{j} + 3\hat{k}$ is $\sin^{-1}\sqrt{\frac{46}{55}}$

Solution: $\vec{a} \cdot \vec{b} = (1)(1) + (2)(1) + (0)(3) = 1 + 2 = 3$

$|\vec{a}| = \sqrt{1^2 + 2^2} = \sqrt{5}$ $|\vec{b}| = \sqrt{1^2 + 1^2 + 3^2} = \sqrt{11}$

$\cos θ = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} = \frac{3}{\sqrt{5}\sqrt{11}} = \frac{3}{\sqrt{55}}$

$\sin^2 θ = 1 - \cos^2 θ = 1 - \frac{9}{55} = \frac{46}{55}$

Therefore: $θ = \sin^{-1}\sqrt{\frac{46}{55}}$

Q4(B).2 [4 marks]
#

Under effect of the forces $2\hat{i} + \hat{j} + \hat{k}$ and $\hat{i} + 3\hat{j} - \hat{k}$ a particle moves from the point $(1,2,-3)$ to the point $(5,3,7)$. Find out work done.

Solution: Net force: $\vec{F} = (2\hat{i} + \hat{j} + \hat{k}) + (\hat{i} + 3\hat{j} - \hat{k}) = 3\hat{i} + 4\hat{j}$

Displacement: $\vec{s} = (5,3,7) - (1,2,-3) = (4,1,10)$

Work done: $W = \vec{F} \cdot \vec{s} = (3)(4) + (4)(1) + (0)(10) = 12 + 4 = 16$ units

Q4(B).3 [4 marks]
#

Evaluate: $\lim_{x \to 0} \frac{2^x - 5^x}{x}$

Solution: Using L’Hôpital’s rule or the derivative definition:

$\lim_{x \to 0} \frac{2^x - 5^x}{x} = \lim_{x \to 0} \frac{2^x \ln 2 - 5^x \ln 5}{1}$

$= 2^0 \ln 2 - 5^0 \ln 5 = \ln 2 - \ln 5 = \ln\left(\frac{2}{5}\right)$


Q.5 (A) [6 marks]
#

Attempt any two

Q5(A).1 [3 marks]
#

Evaluate: $\lim_{x \to 0} \left(1 + \frac{3x}{7}\right)^{\frac{1}{x}}$

Solution: Let $y = \left(1 + \frac{3x}{7}\right)^{\frac{1}{x}}$

Taking natural log: $\ln y = \frac{1}{x} \ln\left(1 + \frac{3x}{7}\right)$

$\lim_{x \to 0} \ln y = \lim_{x \to 0} \frac{\ln\left(1 + \frac{3x}{7}\right)}{x}$

Using L’Hôpital’s rule: $= \lim_{x \to 0} \frac{\frac{3/7}{1 + \frac{3x}{7}}}{1} = \frac{3}{7}$

Therefore: $\lim_{x \to 0} y = e^{3/7}$

Q5(A).2 [3 marks]
#

Evaluate: $\lim_{x \to 3} \frac{x^2 - 5x + 6}{x^2 - 9}$

Solution: Factoring numerator: $x^2 - 5x + 6 = (x-2)(x-3)$ Factoring denominator: $x^2 - 9 = (x-3)(x+3)$

$\lim_{x \to 3} \frac{x^2 - 5x + 6}{x^2 - 9} = \lim_{x \to 3} \frac{(x-2)(x-3)}{(x-3)(x+3)} = \lim_{x \to 3} \frac{x-2}{x+3} = \frac{3-2}{3+3} = \frac{1}{6}$

Q5(A).3 [3 marks]
#

Evaluate: $\lim_{x \to 0} \frac{\sqrt{4+x} - 2}{x}$

Solution: Rationalizing the numerator:

$\lim_{x \to 0} \frac{\sqrt{4+x} - 2}{x} \times \frac{\sqrt{4+x} + 2}{\sqrt{4+x} + 2}$

$= \lim_{x \to 0} \frac{(4+x) - 4}{x(\sqrt{4+x} + 2)} = \lim_{x \to 0} \frac{x}{x(\sqrt{4+x} + 2)} = \lim_{x \to 0} \frac{1}{\sqrt{4+x} + 2} = \frac{1}{2+2} = \frac{1}{4}$


Q.5 (B) [8 marks]
#

Attempt any two

Q5(B).1 [4 marks]
#

Find out equation of the line passing through points $(1,2)$ and $(2,1)$.

Solution: Using two-point form: $\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$

$\frac{y - 2}{1 - 2} = \frac{x - 1}{2 - 1}$

$\frac{y - 2}{-1} = \frac{x - 1}{1}$

$y - 2 = -(x - 1) = -x + 1$

$x + y = 3$

Q5(B).2 [4 marks]
#

Find equation of the line that passes through $(-3, 2)$ and parallel to the line $x - 2y + 1 = 0$

Solution: The given line $x - 2y + 1 = 0$ has slope $m = \frac{1}{2}$

Since parallel lines have the same slope, required line has slope $m = \frac{1}{2}$

Using point-slope form: $y - y_1 = m(x - x_1)$

$y - 2 = \frac{1}{2}(x - (-3))$

$y - 2 = \frac{1}{2}(x + 3)$

$2y - 4 = x + 3$

$x - 2y + 7 = 0$

Q5(B).3 [4 marks]
#

Find out center and radius of the circle: $x^2 + y^2 + 6x - 4y - 3 = 0$

Solution: Completing the square:

$x^2 + 6x + y^2 - 4y = 3$

$(x^2 + 6x + 9) + (y^2 - 4y + 4) = 3 + 9 + 4$

$(x + 3)^2 + (y - 2)^2 = 16$

Center: $(-3, 2)$ Radius: $r = \sqrt{16} = 4$


Formula Cheat Sheet
#

Logarithms
#

  • $\log_a 1 = 0$
  • $\log_a a = 1$
  • $\log_a(xy) = \log_a x + \log_a y$
  • $\log_a\left(\frac{x}{y}\right) = \log_a x - \log_a y$

Trigonometry
#

  • $\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}$
  • $\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$
  • $\sin(180° - x) = \sin x$, $\cos(90° + x) = -\sin x$

Vectors
#

  • $|\vec{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$
  • $\vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos θ$
  • For perpendicular vectors: $\vec{a} \cdot \vec{b} = 0$

Coordinate Geometry
#

  • Two-point form: $\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$
  • Circle: $(x - h)^2 + (y - k)^2 = r^2$
  • Parallel lines have equal slopes

Limits
#

  • $\lim_{x \to 0} \frac{\sin x}{x} = 1$
  • $\lim_{x \to 0} \frac{e^x - 1}{x} = 1$
  • $\lim_{x \to \infty} \frac{ax + b}{cx + d} = \frac{a}{c}$

Problem-Solving Strategies
#

  1. Logarithms: Use properties to simplify expressions
  2. Trigonometry: Apply compound angle formulas and identities
  3. Vectors: Remember dot and cross product properties

Common Mistakes to Avoid
#

Logarithms
#

  • Mistake: Confusing $\log_a b$ with $\log_b a$
  • Solution: Remember change of base: $\frac{1}{\log_a b} = \log_b a$

Trigonometry
#

  • Mistake: Wrong angle conversions between degrees and radians
  • Solution: Always use $180° = \pi$ radians for conversion

Vectors
#

  • Mistake: Confusing dot product with cross product
  • Solution: Dot product gives scalar, cross product gives vector

Limits
#

  • Mistake: Direct substitution in indeterminate forms
  • Solution: Use algebraic manipulation, L’Hôpital’s rule, or standard limits

Determinants
#

  • Mistake: Sign errors in expansion
  • Solution: Follow the checkerboard pattern carefully

Exam Tips
#

Time Management
#

  • Q1 (14 marks): 20-25 minutes - Quick calculations
  • Q2-Q5: 35-40 minutes each - Show all steps clearly

Strategy
#

  1. Read all questions first - Choose easier OR options
  2. Start with Q1 - Build confidence with MCQs
  3. Show work clearly - Partial credit is available
  4. Use standard formulas - Don’t derive unless asked

Key Points to Remember
#

  • Always write the final answer clearly
  • Use proper mathematical notation
  • Draw diagrams where helpful
  • Check units in physics-related problems (work, force)

Calculator Usage
#

  • Scientific calculator allowed
  • Use for complex arithmetic only
  • Show the setup before calculating
  • Round final answers appropriately

Common Formula Applications
#

Standard Limits (Memory aids)
#

lim(x→0) sin(x)/x = 1         "Sine over x is one"
lim(x→0) (e^x - 1)/x = 1      "e minus one over x is one"  
lim(x→0) (a^x - 1)/x = ln(a)  "General exponential form"

Trigonometric Identities (Quick Reference)
#

graph LR
    A[sin²θ + cos²θ = 1] --> B[1 + tan²θ = sec²θ]
    A --> C[1 + cot²θ = cosec²θ]
    D["sin(A±B)"] --> E[sin A cos B ± cos A sin B]
    F["cos(A±B)"] --> G[cos A cos B ∓ sin A sin B]

Vector Operations (Step-by-step)
#

  1. Magnitude: $|\vec{a}| = \sqrt{sum , of , squares}$
  2. Dot Product: $\vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + a_3b_3$
  3. Angle: $\cos θ = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$

Circle Equations (Forms)
#

FormEquationWhen to Use
Standard$(x-h)² + (y-k)² = r²$Given center and radius
General$x² + y² + Dx + Ey + F = 0$Need to find center/radius
Complete Square$(x+D/2)² + (y+E/2)² = (D²+E²-4F)/4$Converting general to standard

Problem-Specific Strategies
#

For Determinant Problems
#

  1. Look for zeros to simplify expansion
  2. Use row/column operations if allowed
  3. Remember: if two rows/columns are proportional, determinant = 0

For Limit Problems
#

ASDYntiesarswreetcrtwistuLhbTrS'FsratHiltytiôniiNilpdmtfliiuantatt(caiani0tlnlso/oid'wn0rzese?,iatrnteRgiru//omlnie,naettec?.)

For Vector Problems
#

  • Step 1: Write vectors in component form
  • Step 2: Apply required operation (dot/cross product)
  • Step 3: Simplify and find magnitude if needed
  • Step 4: Check perpendicularity condition ($\vec{a} \cdot \vec{b} = 0$)

For Coordinate Geometry
#

  • Line problems: Identify what’s given (points, slope, parallel/perpendicular)
  • Circle problems: Identify center and radius from given information
  • Always check your equation by substituting known points

Memory Techniques
#

Logarithm Properties (MNEMONIC: “PLUS”)
#

  • Product: $\log(ab) = \log a + \log b$
  • Limit: $\log_a 1 = 0$
  • Unity: $\log_a a = 1$
  • Subtraction: $\log(a/b) = \log a - \log b$

Trigonometric Values (30°, 45°, 60°)
#

Anglesincostan
30°1/2√3/21/√3
45°1/√21/√21
60°√3/21/2√3

Memory aid: “1, 2, 3” under square roots for sin values (30° to 60°)

Final Review Checklist
#

Before submitting your paper:

  • All questions attempted as required
  • Final answers clearly marked
  • Units included where applicable
  • No arithmetic errors in simple calculations
  • Proper mathematical notation used
  • Diagrams labeled clearly (if drawn)

Quick Problem Solving Guide
#

If you’re stuck on a problem:
#

  1. Read the problem again - Often missed details become clear
  2. Try a different approach - Multiple methods usually exist
  3. Work backwards - Start from what you want to prove/find
  4. Use elimination - In MCQs, eliminate obviously wrong options
  5. Move on and return - Don’t spend too much time on one problem

Last 15 minutes strategy:
#

  • Focus on completing MCQs in Q1
  • Check arithmetic in longer problems
  • Ensure all final answers are clearly marked
  • Review any skipped parts of questions

Remember: This exam tests fundamental concepts. Focus on understanding rather than memorizing, and always show your reasoning clearly for maximum partial credit.

Related

Engineering Mathematics (4320002) - Summer 2023 Solution
Study-Material Solutions Engineering-Mathematics 4320002 2023 Summer
Mathematics-I (DI01000021) - Winter 2024 Solution
16 mins
Study-Material Solutions Mathematics DI01000021 2024 Winter
Applied Mathematics (4320001) - Summer 2022 Solution
Study-Material Solutions Applied-Mathematics 4320001 2022 Summer
Applied Mathematics (4320001) - Summer 2023 Solution
Study-Material Solutions Applied-Mathematics 4320001 2023 Summer
Mathematics (4300001) - Summer 2024 Solution
Study-Material Solutions Mathematics 4300001 2024 Summer
Applied Mathematics (4320001) - Winter 2024 Solution
Study-Material Solutions Applied-Mathematics 4320001 2024 Winter