Skip to main content
  1. Resources/
  2. Study Materials/
  3. Common Engineering Subjects/
  4. Semester 1/

Mathematics-I (DI01000021) - Winter 2024 Solution

16 mins· ·
Study-Material Solutions Mathematics DI01000021 2024 Winter
Milav Dabgar
Author
Milav Dabgar
Experienced lecturer in the electrical and electronic manufacturing industry. Skilled in Embedded Systems, Image Processing, Data Science, MATLAB, Python, STM32. Strong education professional with a Master’s degree in Communication Systems Engineering from L.D. College of Engineering - Ahmedabad.
Table of Contents

Q.1 [14 marks]
#

Fill in the blanks/MCQs using appropriate choice from the given options.

Q1.1 [1 mark]
#

$\begin{vmatrix} 5 & 1 \ 2 & 3 \end{vmatrix} = $ _______

Answer: b. 13

Solution: For 2×2 determinant $\begin{vmatrix} a & b \ c & d \end{vmatrix} = ad - bc$

$\begin{vmatrix} 5 & 1 \ 2 & 3 \end{vmatrix} = (5 \times 3) - (1 \times 2) = 15 - 2 = 13$

Q1.2 [1 mark]
#

If $\begin{vmatrix} x & 1 \ 2 & 1 \end{vmatrix} = 0$ then $x = $ _______

Answer: b. 2

Solution: $\begin{vmatrix} x & 1 \ 2 & 1 \end{vmatrix} = x \times 1 - 1 \times 2 = x - 2 = 0$

Therefore, $x = 2$

Q1.3 [1 mark]
#

If $f(x) = x^2$ then $f(-1) = $ _______

Answer: a. 1

Solution: $f(x) = x^2$ $f(-1) = (-1)^2 = 1$

Q1.4 [1 mark]
#

$\log_{10} 1 = $ _______

Answer: b. 0

Solution: By logarithm property: $\log_a 1 = 0$ for any base $a > 0$ Therefore, $\log_{10} 1 = 0$

Q1.5 [1 mark]
#

$\sin \frac{\pi}{2} + \cos \frac{\pi}{2} = $ _______

Answer: c. 1

Solution: $\sin \frac{\pi}{2} = 1$ and $\cos \frac{\pi}{2} = 0$ Therefore, $\sin \frac{\pi}{2} + \cos \frac{\pi}{2} = 1 + 0 = 1$

Q1.6 [1 mark]
#

$\tan^{-1}(1) = $ _______

Answer: a. $\frac{\pi}{4}$

Solution: $\tan \frac{\pi}{4} = 1$ Therefore, $\tan^{-1}(1) = \frac{\pi}{4}$

Q1.7 [1 mark]
#

$\frac{2\pi}{3}$ radian = _______ degree

Answer: d. 120

Solution: To convert radians to degrees: $\text{degrees} = \text{radians} \times \frac{180}{\pi}$ $\frac{2\pi}{3} \times \frac{180}{\pi} = \frac{2 \times 180}{3} = \frac{360}{3} = 120°$

Q1.8 [1 mark]
#

$\hat{i} \times \hat{j} = $ _______

Answer: c. $\hat{k}$

Solution: By right-hand rule for cross product: $\hat{i} \times \hat{j} = \hat{k}$

Q1.9 [1 mark]
#

$|\hat{i} + \hat{j} + \hat{k}| = $ _______

Answer: d. $\sqrt{3}$

Solution: $|\hat{i} + \hat{j} + \hat{k}| = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3}$

Q1.10 [1 mark]
#

Slope of line $2x + y - 3 = 0$ is _______

Answer: a. -2

Solution: Convert to slope-intercept form: $y = -2x + 3$ Slope = coefficient of $x = -2$

Q1.11 [1 mark]
#

Radius of circle $x^2 + y^2 = 81$ is _______

Answer: b. 9

Solution: Standard form: $x^2 + y^2 = r^2$ Here, $r^2 = 81$, so $r = 9$

Q1.12 [1 mark]
#

$\lim_{n \to \infty} \frac{1}{n} = $ _______

Answer: c. 0

Solution: As $n$ approaches infinity, $\frac{1}{n}$ approaches 0

Q1.13 [1 mark]
#

$\lim_{x \to 1} (x^2 + x + 1) = $ _______

Answer: a. 3

Solution: Direct substitution: $(1)^2 + (1) + 1 = 1 + 1 + 1 = 3$

Q1.14 [1 mark]
#

$\lim_{\theta \to 0} \frac{\tan \theta}{\theta} = $ _______

Answer: b. 1

Solution: This is a standard limit: $\lim_{\theta \to 0} \frac{\tan \theta}{\theta} = 1$

Q.2 (A) [6 marks]
#

Attempt any two

Q2.1 [3 marks]
#

Find the value of $\begin{vmatrix} 1 & 3 & 1 \ 2 & -1 & 0 \ 4 & -2 & 5 \end{vmatrix}$

Answer:

Solution: Using expansion along second row (has zero): $= -2\begin{vmatrix} 3 & 1 \ -2 & 5 \end{vmatrix} + (-1)\begin{vmatrix} 1 & 1 \ 4 & 5 \end{vmatrix} + 0$

$= -2(15 + 2) - 1(5 - 4)$ $= -2(17) - 1(1)$ $= -34 - 1 = -35$

Table:

StepCalculationResult
Minor 1$(3 \times 5) - (1 \times -2)$17
Minor 2$(1 \times 5) - (1 \times 4)$1
Final$-2(17) - 1(1)$-35

Q2.2 [3 marks]
#

If $f(x) = x^3 + 5$ then find $f(0)$, $f(1)$ and $f(-1)$

Answer:

Solution: Given: $f(x) = x^3 + 5$

$f(0) = (0)^3 + 5 = 0 + 5 = 5$ $f(1) = (1)^3 + 5 = 1 + 5 = 6$ $f(-1) = (-1)^3 + 5 = -1 + 5 = 4$

Table:

InputCalculationOutput
$f(0)$$0^3 + 5$5
$f(1)$$1^3 + 5$6
$f(-1)$$(-1)^3 + 5$4

Q2.3 [3 marks]
#

Prove that $\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) = \frac{\pi}{4}$

Answer:

Solution: Using formula: $\tan^{-1}a + \tan^{-1}b = \tan^{-1}\left(\frac{a+b}{1-ab}\right)$

Let $a = \frac{1}{2}$, $b = \frac{1}{3}$

$\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) = \tan^{-1}\left(\frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{2} \times \frac{1}{3}}\right)$

$= \tan^{-1}\left(\frac{\frac{5}{6}}{1 - \frac{1}{6}}\right) = \tan^{-1}\left(\frac{\frac{5}{6}}{\frac{5}{6}}\right) = \tan^{-1}(1) = \frac{\pi}{4}$

Hence proved.

Q.2 (B) [8 marks]
#

Attempt any two

Q2.1 [4 marks]
#

If $f(x) = \frac{x-1}{x+1}$ then prove that $f(x) \cdot f(-x) = 1$

Answer:

Solution: Given: $f(x) = \frac{x-1}{x+1}$

First find $f(-x)$: $f(-x) = \frac{(-x)-1}{(-x)+1} = \frac{-x-1}{-x+1} = \frac{-(x+1)}{-(x-1)} = \frac{x+1}{x-1}$

Now calculate $f(x) \cdot f(-x)$: $f(x) \cdot f(-x) = \frac{x-1}{x+1} \cdot \frac{x+1}{x-1} = \frac{(x-1)(x+1)}{(x+1)(x-1)} = 1$

Hence proved.

Q2.2 [4 marks]
#

If $\log\left(\frac{x+y}{2}\right) = \frac{1}{2}(\log x + \log y)$ then prove that $x = y$

Answer:

Solution: Given: $\log\left(\frac{x+y}{2}\right) = \frac{1}{2}(\log x + \log y)$

Using logarithm properties: $\frac{1}{2}(\log x + \log y) = \frac{1}{2}\log(xy) = \log\sqrt{xy}$

So: $\log\left(\frac{x+y}{2}\right) = \log\sqrt{xy}$

Taking antilog: $\frac{x+y}{2} = \sqrt{xy}$

Squaring both sides: $\left(\frac{x+y}{2}\right)^2 = xy$

$\frac{(x+y)^2}{4} = xy$

$(x+y)^2 = 4xy$

$x^2 + 2xy + y^2 = 4xy$

$x^2 - 2xy + y^2 = 0$

$(x-y)^2 = 0$

Therefore, $x = y$. Hence proved.

Q2.3 [4 marks]
#

Solve $\log(x+3) + \log(x-3) = \log 27$

Answer:

Solution: Given: $\log(x+3) + \log(x-3) = \log 27$

Using logarithm property: $\log a + \log b = \log(ab)$ $\log[(x+3)(x-3)] = \log 27$

Taking antilog: $(x+3)(x-3) = 27$

$x^2 - 9 = 27$

$x^2 = 36$

$x = \pm 6$

Check validity:

  • For $x = 6$: $x+3 = 9 > 0$ and $x-3 = 3 > 0$ ✓
  • For $x = -6$: $x+3 = -3 < 0$ (invalid for logarithm)

Therefore, $x = 6$

Q.3 (A) [6 marks]
#

Attempt any two

Q3.1 [3 marks]
#

Prove that $\frac{\sin\left(\frac{\pi}{2}+\theta\right)}{\cos(\pi-\theta)} + \frac{\tan(\pi-\theta)}{\cot\left(\frac{3\pi}{2}-\theta\right)} + \frac{\text{cosec}\left(\frac{\pi}{2}-\theta\right)}{\sec(\pi+\theta)} = -3$

Answer:

Solution: Using trigonometric identities:

$\sin\left(\frac{\pi}{2}+\theta\right) = \cos\theta$ $\cos(\pi-\theta) = -\cos\theta$ $\tan(\pi-\theta) = -\tan\theta$ $\cot\left(\frac{3\pi}{2}-\theta\right) = \tan\theta$ $\text{cosec}\left(\frac{\pi}{2}-\theta\right) = \sec\theta$ $\sec(\pi+\theta) = -\sec\theta$

Substituting: $\frac{\cos\theta}{-\cos\theta} + \frac{-\tan\theta}{\tan\theta} + \frac{\sec\theta}{-\sec\theta}$

$= -1 + (-1) + (-1) = -3$

Hence proved.

Q3.2 [3 marks]
#

Prove that $\tan 55° = \frac{\cos 10° + \sin 10°}{\cos 10° - \sin 10°}$

Answer:

Solution: We know that $\tan 55° = \tan(45° + 10°)$

Using formula: $\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$

$\tan 55° = \frac{\tan 45° + \tan 10°}{1 - \tan 45° \tan 10°} = \frac{1 + \tan 10°}{1 - \tan 10°}$

Now, $\tan 10° = \frac{\sin 10°}{\cos 10°}$

$\tan 55° = \frac{1 + \frac{\sin 10°}{\cos 10°}}{1 - \frac{\sin 10°}{\cos 10°}} = \frac{\cos 10° + \sin 10°}{\cos 10° - \sin 10°}$

Hence proved.

Q3.3 [3 marks]
#

If $\vec{a} = 2\hat{i} + 3\hat{j} + \hat{k}$, $\vec{b} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j} + \hat{k}$ then find $2\vec{a} + \vec{b} - \vec{c}$

Answer:

Solution: Given: $\vec{a} = 2\hat{i} + 3\hat{j} + \hat{k}$ $\vec{b} = \hat{i} + \hat{j} + \hat{k}$ $\vec{c} = 3\hat{i} + \hat{j} + \hat{k}$

$2\vec{a} = 2(2\hat{i} + 3\hat{j} + \hat{k}) = 4\hat{i} + 6\hat{j} + 2\hat{k}$

$2\vec{a} + \vec{b} - \vec{c} = (4\hat{i} + 6\hat{j} + 2\hat{k}) + (\hat{i} + \hat{j} + \hat{k}) - (3\hat{i} + \hat{j} + \hat{k})$

$= (4 + 1 - 3)\hat{i} + (6 + 1 - 1)\hat{j} + (2 + 1 - 1)\hat{k}$

$= 2\hat{i} + 6\hat{j} + 2\hat{k}$

Q.3 (B) [8 marks]
#

Attempt any two

Q3.1 [4 marks]
#

Prove that $\frac{\sin(x-y)}{\cos x \cos y} + \frac{\sin(y-z)}{\cos y \cos z} + \frac{\sin(z-x)}{\cos z \cos x} = 0$

Answer:

Solution: Using identity: $\sin(A-B) = \sin A \cos B - \cos A \sin B$

$\frac{\sin(x-y)}{\cos x \cos y} = \frac{\sin x \cos y - \cos x \sin y}{\cos x \cos y} = \tan x - \tan y$

Similarly: $\frac{\sin(y-z)}{\cos y \cos z} = \tan y - \tan z$ $\frac{\sin(z-x)}{\cos z \cos x} = \tan z - \tan x$

Adding all three: $(\tan x - \tan y) + (\tan y - \tan z) + (\tan z - \tan x) = 0$

Hence proved.

Q3.2 [4 marks]
#

Draw graph of $y = \cos x$ for $0 \leq x \leq \pi$

Answer:

Solution:

-101y0-------\--ππ-2-2-----------π-πx

Table of values:

x0π/4π/23π/4π
y1√2/20-√2/2-1

Q3.3 [4 marks]
#

Find equation of line passing through (1, 2) and (-3, 1)

Answer:

Solution: Given points: $(x_1, y_1) = (1, 2)$ and $(x_2, y_2) = (-3, 1)$

Slope: $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{1 - 2}{-3 - 1} = \frac{-1}{-4} = \frac{1}{4}$

Using point-slope form: $y - y_1 = m(x - x_1)$ $y - 2 = \frac{1}{4}(x - 1)$ $4(y - 2) = x - 1$ $4y - 8 = x - 1$ $x - 4y + 7 = 0$

Equation: $x - 4y + 7 = 0$

Q.4 (A) [6 marks]
#

Attempt any two

Q4.1 [3 marks]
#

Find unit vector perpendicular to $\vec{a} = \hat{i} - 3\hat{j} + \hat{k}$ and $\vec{b} = 2\hat{i} + \hat{j} + 2\hat{k}$

Answer:

Solution: Cross product: $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \ 1 & -3 & 1 \ 2 & 1 & 2 \end{vmatrix}$

$= \hat{i}[(-3)(2) - (1)(1)] - \hat{j}[(1)(2) - (1)(2)] + \hat{k}[(1)(1) - (-3)(2)]$ $= \hat{i}(-6-1) - \hat{j}(2-2) + \hat{k}(1+6)$ $= -7\hat{i} + 0\hat{j} + 7\hat{k}$

Magnitude: $|\vec{a} \times \vec{b}| = \sqrt{(-7)^2 + 0^2 + 7^2} = \sqrt{49 + 49} = 7\sqrt{2}$

Unit vector: $\hat{n} = \frac{-7\hat{i} + 7\hat{k}}{7\sqrt{2}} = \frac{-\hat{i} + \hat{k}}{\sqrt{2}}$

Q4.2 [3 marks]
#

Forces (1, 2, 1) and (2, -1, 3) act on a particle and the particle moves from point (2, 3, 1) to (4, 6, 2). Find the work done.

Answer:

Solution: Resultant force: $\vec{F} = (1, 2, 1) + (2, -1, 3) = (3, 1, 4)$

Displacement: $\vec{s} = (4, 6, 2) - (2, 3, 1) = (2, 3, 1)$

Work done: $W = \vec{F} \cdot \vec{s} = (3)(2) + (1)(3) + (4)(1) = 6 + 3 + 4 = 13$ units

Q4.3 [3 marks]
#

Show that lines $2x - 3y + 5 = 0$ and $8x - 12y - 3 = 0$ are parallel lines.

Answer:

Solution: For line $2x - 3y + 5 = 0$: slope $m_1 = \frac{2}{3}$ For line $8x - 12y - 3 = 0$: slope $m_2 = \frac{8}{12} = \frac{2}{3}$

Since $m_1 = m_2 = \frac{2}{3}$, the lines are parallel.

Table:

LineStandard FormSlope
Line 1$2x - 3y + 5 = 0$$\frac{2}{3}$
Line 2$8x - 12y - 3 = 0$$\frac{2}{3}$

Q.4 (B) [8 marks]
#

Attempt any two

Q4.1 [4 marks]
#

Show that angle between $\vec{a} = \hat{i} + \hat{j} - \hat{k}$ and $\vec{b} = 2\hat{i} - 2\hat{j} + \hat{k}$ is $\sin^{-1}\left(\frac{\sqrt{26}}{27}\right)$

Answer:

Solution: $\vec{a} \cdot \vec{b} = (1)(2) + (1)(-2) + (-1)(1) = 2 - 2 - 1 = -1$

$|\vec{a}| = \sqrt{1^2 + 1^2 + (-1)^2} = \sqrt{3}$ $|\vec{b}| = \sqrt{2^2 + (-2)^2 + 1^2} = \sqrt{9} = 3$

$\cos\theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} = \frac{-1}{\sqrt{3} \times 3} = \frac{-1}{3\sqrt{3}}$

$\sin^2\theta = 1 - \cos^2\theta = 1 - \frac{1}{27} = \frac{26}{27}$

Therefore, $\sin\theta = \frac{\sqrt{26}}{3\sqrt{3}} = \frac{\sqrt{26}}{\sqrt{27}}$

Hence, $\theta = \sin^{-1}\left(\frac{\sqrt{26}}{\sqrt{27}}\right)$

Q4.2 [4 marks]
#

If $\vec{a} = (1, 1, 1)$, $\vec{b} = (2, 0, 1)$ and $\vec{c} = (-2, 1, 0)$ then find $\vec{a} \cdot (\vec{b} \times \vec{c})$

Answer:

Solution: First find $\vec{b} \times \vec{c}$: $\vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \ 2 & 0 & 1 \ -2 & 1 & 0 \end{vmatrix}$

$= \hat{i}(0 \times 0 - 1 \times 1) - \hat{j}(2 \times 0 - 1 \times (-2)) + \hat{k}(2 \times 1 - 0 \times (-2))$ $= \hat{i}(-1) - \hat{j}(2) + \hat{k}(2)$ $= -\hat{i} - 2\hat{j} + 2\hat{k}$

Now find $\vec{a} \cdot (\vec{b} \times \vec{c})$: $\vec{a} \cdot (\vec{b} \times \vec{c}) = (1, 1, 1) \cdot (-1, -2, 2)$ $= (1)(-1) + (1)(-2) + (1)(2) = -1 - 2 + 2 = -1$

Q4.3 [4 marks]
#

Evaluate $\lim_{\theta \to 0} \frac{\sin 4\theta}{\theta}$

Answer:

Solution: $\lim_{\theta \to 0} \frac{\sin 4\theta}{\theta} = \lim_{\theta \to 0} \frac{\sin 4\theta}{4\theta} \times 4$

Using standard limit $\lim_{x \to 0} \frac{\sin x}{x} = 1$:

Let $u = 4\theta$, then as $\theta \to 0$, $u \to 0$

$\lim_{\theta \to 0} \frac{\sin 4\theta}{4\theta} = \lim_{u \to 0} \frac{\sin u}{u} = 1$

Therefore, $\lim_{\theta \to 0} \frac{\sin 4\theta}{\theta} = 4 \times 1 = 4$

Q.5 (A) [6 marks]
#

Attempt any two

Q5.1 [3 marks]
#

Evaluate $\lim_{x \to 9} \frac{x^2 - 81}{x - 9}$

Answer:

Solution: Direct substitution gives $\frac{0}{0}$ form.

Factor the numerator: $x^2 - 81 = (x-9)(x+9)$

$\lim_{x \to 9} \frac{x^2 - 81}{x - 9} = \lim_{x \to 9} \frac{(x-9)(x+9)}{x-9}$

$= \lim_{x \to 9} (x+9) = 9 + 9 = 18$

Q5.2 [3 marks]
#

Evaluate $\lim_{x \to \infty} \left(1 + \frac{3}{x}\right)^{2x}$

Answer:

Solution: Let $y = \left(1 + \frac{3}{x}\right)^{2x}$

Taking natural logarithm: $\ln y = 2x \ln\left(1 + \frac{3}{x}\right)$

As $x \to \infty$, $\frac{3}{x} \to 0$

Using $\ln(1+u) \approx u$ for small $u$: $\ln y = 2x \times \frac{3}{x} = 6$

Therefore, $y = e^6$

Q5.3 [3 marks]
#

Evaluate $\lim_{x \to 1} \frac{x - 1}{x^2 + x - 2}$

Answer:

Solution: Factor the denominator: $x^2 + x - 2 = (x+2)(x-1)$

$\lim_{x \to 1} \frac{x - 1}{x^2 + x - 2} = \lim_{x \to 1} \frac{x-1}{(x+2)(x-1)}$

$= \lim_{x \to 1} \frac{1}{x+2} = \frac{1}{1+2} = \frac{1}{3}$

Q.5 (B) [8 marks]
#

Attempt any two

Q5.1 [4 marks]
#

Find the equation of line passing through the point (2, -3) and having slope 4.

Answer:

Solution: Using point-slope form: $y - y_1 = m(x - x_1)$

Given: $(x_1, y_1) = (2, -3)$ and slope $m = 4$

$y - (-3) = 4(x - 2)$ $y + 3 = 4x - 8$ $y = 4x - 11$

Equation: $y = 4x - 11$ or $4x - y - 11 = 0

Q5.2 [4 marks]
#

For what value of m, lines $7x + y - 1 = 0$ and $3x - my + 2 = 0$ are perpendicular to each other.

Answer:

Solution: For perpendicular lines, product of slopes = -1

For line $7x + y - 1 = 0$: slope $m_1 = -7$ For line $3x - my + 2 = 0$: slope $m_2 = \frac{3}{m}$

Condition: $m_1 \times m_2 = -1$ $(-7) \times \frac{3}{m} = -1$ $\frac{-21}{m} = -1$ $21 = m$

Therefore, $m = 21$

Table:

LineStandard FormSlope
Line 1$7x + y - 1 = 0$$-7$
Line 2$3x - my + 2 = 0$$\frac{3}{m}$

Verification: When $m = 21$, slopes are $-7$ and $\frac{3}{21} = \frac{1}{7}$ Product: $(-7) \times \frac{1}{7} = -1$ ✓

Q5.3 [4 marks]
#

Find the centre and radius of the circle $4x^2 + 4y^2 + 8x - 12y - 3 = 0$

Answer:

Solution: First, divide by 4 to get standard form: $x^2 + y^2 + 2x - 3y - \frac{3}{4} = 0$

Complete the square for x and y terms: $x^2 + 2x = (x+1)^2 - 1$ $y^2 - 3y = \left(y - \frac{3}{2}\right)^2 - \frac{9}{4}$

Substituting: $(x+1)^2 - 1 + \left(y - \frac{3}{2}\right)^2 - \frac{9}{4} - \frac{3}{4} = 0$

$(x+1)^2 + \left(y - \frac{3}{2}\right)^2 = 1 + \frac{9}{4} + \frac{3}{4} = 1 + 3 = 4$

Centre: $(-1, \frac{3}{2})$ Radius: $r = \sqrt{4} = 2$

Table:

ComponentValue
Centre (h,k)$(-1, \frac{3}{2})$
Radius2
Standard Form$(x+1)^2 + (y-\frac{3}{2})^2 = 4$

Formula Cheat Sheet
#

Determinants
#

  • 2×2 Determinant: $\begin{vmatrix} a & b \ c & d \end{vmatrix} = ad - bc$
  • 3×3 Determinant: Expand along any row/column

Functions & Logarithms
#

  • Basic: $\log_a 1 = 0$, $\log_a a = 1$
  • Properties: $\log(ab) = \log a + \log b$, $\log\left(\frac{a}{b}\right) = \log a - \log b$

Trigonometry
#

  • Basic Values: $\sin 0° = 0$, $\sin 30° = \frac{1}{2}$, $\sin 45° = \frac{\sqrt{2}}{2}$, $\sin 60° = \frac{\sqrt{3}}{2}$, $\sin 90° = 1$
  • Conversion: Radians to degrees: $\times \frac{180}{\pi}$
  • Identities: $\sin^2\theta + \cos^2\theta = 1$
  • Inverse: $\tan^{-1}(1) = \frac{\pi}{4}$

Vectors
#

  • Magnitude: $|\vec{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2}$
  • Dot Product: $\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z$
  • Cross Product: $\hat{i} \times \hat{j} = \hat{k}$, $\hat{j} \times \hat{k} = \hat{i}$, $\hat{k} \times \hat{i} = \hat{j}$
  • Work Done: $W = \vec{F} \cdot \vec{s}$

Coordinate Geometry
#

  • Slope: $m = \frac{y_2 - y_1}{x_2 - x_1}$
  • Point-Slope Form: $y - y_1 = m(x - x_1)$
  • Parallel Lines: Same slope
  • Perpendicular Lines: Product of slopes = -1
  • Circle: $(x-h)^2 + (y-k)^2 = r^2$

Limits
#

  • Standard Limits: $\lim_{x \to 0} \frac{\sin x}{x} = 1$, $\lim_{x \to 0} \frac{\tan x}{x} = 1$
  • Factorization: Use for $\frac{0}{0}$ forms
  • L’Hôpital’s Rule: For indeterminate forms

Problem-Solving Strategies
#

For Determinants:
#

  1. Choose the row/column with most zeros for expansion
  2. Use cofactor expansion systematically
  3. Check calculations by expanding along different rows

For Functions:
#

  1. Direct substitution first
  2. Use function properties and definitions
  3. Check domain restrictions

For Trigonometry:
#

  1. Convert all angles to same unit (degrees or radians)
  2. Use standard angle values
  3. Apply appropriate identities
  4. Simplify step by step

For Vectors:
#

  1. Write components clearly
  2. Use right-hand rule for cross products
  3. Check units and directions
  4. Verify with geometric interpretation

For Coordinate Geometry:
#

  1. Plot points when possible
  2. Use appropriate formulas based on given information
  3. Check parallel/perpendicular conditions
  4. Complete the square for circles

For Limits:
#

  1. Try direct substitution first
  2. Factor polynomials for $\frac{0}{0}$ forms
  3. Use standard limit formulas
  4. Apply L’Hôpital’s rule for indeterminate forms

Common Mistakes to Avoid
#

Determinants:
#

  • ❌ Wrong sign in calculations
  • ✅ Follow cofactor signs carefully: $(-1)^{i+j}$

Logarithms:
#

  • ❌ $\log(a+b) = \log a + \log b$ (WRONG)
  • ✅ $\log(ab) = \log a + \log b$ (CORRECT)

Trigonometry:
#

  • ❌ Mixing degrees and radians
  • ✅ Convert to same unit first

Vectors:
#

  • ❌ $\vec{a} \times \vec{b} = \vec{b} \times \vec{a}$ (WRONG)
  • ✅ $\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a})$ (CORRECT)

Slopes:
#

  • ❌ Confusing parallel and perpendicular conditions
  • ✅ Parallel: same slope, Perpendicular: product = -1

Limits:
#

  • ❌ Direct substitution without checking indeterminate forms
  • ✅ Check for $\frac{0}{0}$ or $\frac{\infty}{\infty}$ first

Exam Tips
#

Time Management:
#

  • Spend 2 minutes per mark (14 marks = 28 minutes for Q1)
  • Start with familiar questions
  • Leave difficult problems for the end

Calculation Tips:
#

  • Show all steps clearly
  • Use tables for organized presentation
  • Double-check arithmetic
  • Write final answers clearly

Writing Strategy:
#

  • Write given information first
  • State formulas before using them
  • Include units where applicable
  • Box or underline final answers

Last-Minute Checks:
#

  • Verify all calculations
  • Check if answers are reasonable
  • Ensure all parts are attempted
  • Review question requirements

Mnemonic for Standard Angles: “Some People Have Curly Brown Hair Through Proper Brushing”

  • Sin 0° = 0, Pi/6 = 1/2, Half = √2/2, Cos complement, etc.

Remember: Mathematics is about understanding patterns, not memorizing formulas. Practice regularly and think step by step!


Quick Reference Table
#

TopicKey FormulaExample
Determinant 2×2$ad - bc$$\begin{vmatrix} 2 & 3 \ 1 & 4 \end{vmatrix} = 8-3 = 5$
Slope$\frac{y_2-y_1}{x_2-x_1}$Points (1,2), (3,8): $m = \frac{8-2}{3-1} = 3$
Distance$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$Between (0,0), (3,4): $d = 5$
Circle$(x-h)^2+(y-k)^2=r^2$Center (1,2), radius 3
Limit$\lim_{x \to a} f(x)$Direct substitution or factoring

Final Tip: Keep practicing and stay confident! 🎯

Related

Mathematics (4300001) - Summer 2024 Solution
Study-Material Solutions Mathematics 4300001 2024 Summer
Mathematics (4300001) - Winter 2023 Solution
Study-Material Solutions Mathematics 4300001 2023 Winter
Mathematics (4300001) - Winter 2022 Solution
Study-Material Solutions Mathematics 4300001 2022 Winter
Mathematics (4300001) - Summer 2022 Solution
Study-Material Solutions Mathematics 4300001 2022 Summer
Applied Mathematics (4320001) - Summer 2024 Solution
Study-Material Solutions Applied-Mathematics 4320001 2024 Summer
Applied Mathematics (4320001) - Winter 2022 Solution
Study-Material Solutions Applied-Mathematics 4320001 2022 Winter