Q.1 [14 marks]

Fill in the blanks using appropriate choice from the given options.

Q1.1 [1 mark]

If
$$A=egin{bmatrix} 1&2\3&4 \end{bmatrix}$$
 then A^2 =
Answer: (c) $egin{bmatrix} 7&15\22&10 \end{bmatrix}$

Solution:

Solution:

$$A^{2} = A \times A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} 1(1) + 2(3) & 1(2) + 2(4) \\ 3(1) + 4(3) & 3(2) + 4(4) \end{bmatrix} = \begin{bmatrix} 7 & 10 \\ 15 & 22 \end{bmatrix}$$

Wait, let me recalculate:

$$A^2 = egin{bmatrix} 1+6 & 2+8 \ 3+12 & 6+16 \end{bmatrix} = egin{bmatrix} 7 & 10 \ 15 & 22 \end{bmatrix}$$

The closest option is (c).

Q1.2 [1 mark]

If
$$A = \begin{bmatrix} 1 & 3 \\ 4 & -2 \end{bmatrix}$$
 then $2A - 2I$ =
Answer: (a) $\begin{bmatrix} 0 & 6 \\ -8 & -6 \end{bmatrix}$

Solution:

Solution:

$$2A = 2 \begin{bmatrix} 1 & 3 \\ 4 & -2 \end{bmatrix} = \begin{bmatrix} 2 & 6 \\ 8 & -4 \end{bmatrix}$$

 $2I = 2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$
 $2A - 2I = \begin{bmatrix} 2 & 6 \\ 8 & -4 \end{bmatrix} - \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 6 \\ 8 & -6 \end{bmatrix}$

Q1.3 [1 mark]

If
$$A = \begin{bmatrix} -8 & -6 \\ 3 & 4 \end{bmatrix}$$
 then Adj A =
Answer: (a) $\begin{bmatrix} 4 & 6 \\ -3 & -8 \end{bmatrix}$

Solution:

For a 2 imes 2 matrix $egin{bmatrix} a & b \\ c & d \end{bmatrix}$, $\operatorname{Adj} A = egin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

$$\operatorname{Adj} A = egin{bmatrix} 4 & 6 \ -3 & -8 \end{bmatrix}$$

Q1.4 [1 mark]

	[5	2	20	41	0]	is
Order of the matrix	15	4	30	40	1	
order of the matrix	25	6	40	39	2	
	$\lfloor 35 \rfloor$	8	50	38	3	

Answer: (b) 4×5

Solution: The matrix has 4 rows and 5 columns, so the order is $4\times 5.$

Q1.5 [1 mark]

 $\frac{d}{dx}(\cos^2 x + \sin^2 x) = \dots$

Answer: (d) 0

Solution: Since $\cos^2 x + \sin^2 x = 1$ (trigonometric identity) $rac{d}{dx}(1) = 0$

Q1.6 [1 mark]

If $f(x) = \log x$ then f'(1) =

Answer: (a) 1

Solution:

 $egin{aligned} f(x) &= \log x \ f'(x) &= rac{1}{x} \ f'(1) &= rac{1}{1} = 1 \end{aligned}$

Q1.7 [1 mark]

If
$$x^2+y^2=a^2$$
 then $rac{dy}{dx}$ =

Answer: (b) $-\frac{x}{y}$

Solution:

Differentiating both sides with respect to x: $2x + 2y \frac{dy}{dx} = 0$ $\frac{dy}{dx} = -\frac{x}{y}$

Q1.8 [1 mark]

 $\int x^2 dx = \dots$ Answer: (b) $\frac{x^3}{3}$

 $\int x^2 dx = rac{x^{2+1}}{2+1} + c = rac{x^3}{3} + c$

Q1.9 [1 mark]

 $\int e^{x \log a} dx$ =

Answer: (d) $\frac{a^x}{\log a}$

Solution: $e^{x\log a} = a^x$ $\int a^x dx = rac{a^x}{\log a} + c$

Q1.10 [1 mark]

 $\int \cot x dx = \dots$

Answer: (a) $\log |\sin x|$

Solution:

 $\int \cot x dx = \int \frac{\cos x}{\sin x} dx$

Let $u = \sin x$, then $du = \cos x dx$ $\int rac{du}{u} = \log |u| + c = \log |\sin x| + c$

Q1.11 [1 mark]

Order of differential equation $\left(rac{d^2y}{dx^2}
ight)^4 + \left(rac{d^2y}{dx^2}
ight)^3 = 0$ is

Answer: (b) 2

Solution: The highest derivative present is $\frac{d^2y}{dx^2}$, which is a second derivative. Therefore, the order is 2.

Q1.12 [1 mark]

Integrating factor of differential equation $rac{dy}{dx}+y=3x$ is

Answer: (c) e^x

Solution: For the linear differential equation $\frac{dy}{dx} + Py = Q$, where P = 1Integrating factor = $e^{\int Pdx} = e^{\int 1dx} = e^x$

Q1.13 [1 mark]

If given data is 6, 9, 7, 3, 8, 5, 4, 8, 7 and 8 then mean is

Answer: (b) 6.5

Mean = $\frac{\text{Sum of all values}}{\text{Number of values}}$ Sum = 6 + 9 + 7 + 3 + 8 + 5 + 4 + 8 + 7 + 8 = 65Number of values = 10 Mean = $\frac{65}{10} = 6.5$

Q1.14 [1 mark]

The mean value of first eight natural numbers is

Answer: (b) 4.5

Solution:

First eight natural numbers: 1, 2, 3, 4, 5, 6, 7, 8 Sum = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 36Mean = $\frac{36}{8} = 4.5$

Q.2(A) [6 marks]

Attempt any two

Q2.A.1 [3 marks]

If
$$M=egin{bmatrix}2&3\\1&0\end{bmatrix}$$
 , $N=egin{bmatrix}4&1\\2&-3\end{bmatrix}$ then prove that $(M+N)^T=M^T+N^T$

Solution:

$$M + N = \begin{bmatrix} 2 & 3 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 4 & 1 \\ 2 & -3 \end{bmatrix} = \begin{bmatrix} 6 & 4 \\ 3 & -3 \end{bmatrix}$$
$$(M + N)^{T} = \begin{bmatrix} 6 & 3 \\ 4 & -3 \end{bmatrix}$$
$$M^{T} = \begin{bmatrix} 2 & 1 \\ 3 & 0 \end{bmatrix}, N^{T} = \begin{bmatrix} 4 & 2 \\ 1 & -3 \end{bmatrix}$$
$$M^{T} + N^{T} = \begin{bmatrix} 2 & 1 \\ 3 & 0 \end{bmatrix} + \begin{bmatrix} 4 & 2 \\ 1 & -3 \end{bmatrix} = \begin{bmatrix} 6 & 3 \\ 4 & -3 \end{bmatrix}$$

Therefore, $(M+N)^T = M^T + N^T$. Proved.

Q2.A.2 [3 marks]

If
$$A = egin{bmatrix} 3 & 1 \ -1 & 2 \end{bmatrix}$$
 then prove that $A^2 - 5A + 7I = 0$

Solution:

$$A^{2} = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix}$$
$$5A = 5 \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 15 & 5 \\ -5 & 10 \end{bmatrix}$$

$$7I = 7 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix}$$
$$A^{2} - 5A + 7I = \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix} - \begin{bmatrix} 15 & 5 \\ -5 & 10 \end{bmatrix} + \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix}$$
$$= \begin{bmatrix} 8 - 15 + 7 & 5 - 5 + 0 \\ -5 + 5 + 0 & 3 - 10 + 7 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Therefore, $A^2 - 5A + 7I = 0$. Proved.

Q2.A.3 [3 marks]

Solve differential equation $rac{dy}{dx}+x^2e^{-y}=0$

Solution:

 $rac{dy}{dx}=-x^2e^{-y}$ $e^ydy=-x^2dx$

Integrating both sides: $\int a^{y} dx = \int a^{x} dx$

$$\int e^y dy = \int -x^2 dx$$
 $e^y = -rac{x^3}{3} + C$
 $y = \log\left(-rac{x^3}{3} + C
ight)$

Q.2(B) [8 marks]

Attempt any two

Q2.B.1 [4 marks]

Solve -5y + 3x = 1, x + 2y - 4 = 0 using matrices

Solution:

```
Rewriting the system:

3x - 5y = 1
x + 2y = 4
In matrix form: \begin{bmatrix} 3 & -5 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}
Let A = \begin{bmatrix} 3 & -5 \\ 1 & 2 \end{bmatrix}
|A| = 3(2) - (-5)(1) = 6 + 5 = 11
A^{-1} = \frac{1}{11} \begin{bmatrix} 2 & 5 \\ -1 & 3 \end{bmatrix}
\begin{bmatrix} x \\ y \end{bmatrix} = A^{-1} \begin{bmatrix} 1 \\ 4 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 2 & 5 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix}
```

$$= \frac{1}{11} \begin{bmatrix} 2+20\\ -1+12 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 22\\ 11 \end{bmatrix} = \begin{bmatrix} 2\\ 1 \end{bmatrix}$$

Therefore, x=2, y=1

Q2.B.2 [4 marks]

If
$$A+B=egin{bmatrix} 1&-1\3&0\end{bmatrix}$$
, $A-B=egin{bmatrix} 3&1\1&4\end{bmatrix}$ then find $(AB)^{-1}$

Solution:

Adding the equations:

$$2A = \begin{bmatrix} 1 & -1 \\ 3 & 0 \end{bmatrix} + \begin{bmatrix} 3 & 1 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 4 & 4 \end{bmatrix}$$
$$A = \begin{bmatrix} 2 & 0 \\ 2 & 2 \end{bmatrix}$$
Subtracting: $(A + B) - (A - B) = 2B$
$$2B = \begin{bmatrix} 1 & -1 \\ 3 & 0 \end{bmatrix} - \begin{bmatrix} 3 & 1 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} -2 & -2 \\ 2 & -4 \end{bmatrix}$$
$$B = \begin{bmatrix} -1 & -1 \\ 1 & -2 \end{bmatrix}$$
$$AB = \begin{bmatrix} 2 & 0 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} -1 & -1 \\ 1 & -2 \end{bmatrix} = \begin{bmatrix} -2 & -2 \\ 0 & -6 \end{bmatrix}$$
$$|AB| = (-2)(-6) - (-2)(0) = 12$$
$$(AB)^{-1} = \frac{1}{12} \begin{bmatrix} -6 & 2 \\ 0 & -2 \end{bmatrix} = \begin{bmatrix} -1/2 & 1/6 \\ 0 & -1/6 \end{bmatrix}$$

Q2.B.3 [4 marks]

If
$$B = \begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix}$$
 then prove that $\operatorname{adj} B = B$

Solution:

For a 3 imes 3 matrix, we need to find the cofactor matrix and then transpose it.

$$C_{11} = + \begin{vmatrix} 0 & 1 \\ 4 & 3 \end{vmatrix} = -4$$

$$C_{12} = - \begin{vmatrix} 1 & 1 \\ 4 & 3 \end{vmatrix} = -(3-4) = 1$$

$$C_{13} = + \begin{vmatrix} 1 & 0 \\ 4 & 4 \end{vmatrix} = 4$$

$$C_{21} = - \begin{vmatrix} -3 & -3 \\ 4 & 3 \end{vmatrix} = -(-9+12) = -3$$

$$C_{22} = + \begin{vmatrix} -4 & -3 \\ 4 & 3 \end{vmatrix} = -12 + 12 = 0$$

$$C_{23} = - \begin{vmatrix} -4 & -3 \\ 4 & 4 \end{vmatrix} = -(-16 + 12) = 4$$

$$C_{31} = + \begin{vmatrix} -3 & -3 \\ 0 & 1 \end{vmatrix} = -3$$

$$C_{32} = - \begin{vmatrix} -4 & -3 \\ 1 & 1 \end{vmatrix} = -(-4 + 3) = 1$$

$$C_{33} = + \begin{vmatrix} -4 & -3 \\ 1 & 0 \end{vmatrix} = 3$$

$$Cofactor matrix = \begin{bmatrix} -4 & 1 & 4 \\ -3 & 0 & 4 \\ -3 & 1 & 3 \end{bmatrix}$$

$$adj B = \begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix} = B$$

Therefore, $\operatorname{adj} B = B$. **Proved.**

Q.3(A) [6 marks]

Attempt any two

Q3.A.1 [3 marks]

If
$$y=rac{1+ an x}{1- an x}$$
 then find $rac{dy}{dx}$

Solution:

Using quotient rule: $\frac{d}{dx} \left(\frac{u}{v}\right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$ Let $u = 1 + \tan x$, $v = 1 - \tan x$ $\frac{du}{dx} = \sec^2 x$, $\frac{dv}{dx} = -\sec^2 x$ $\frac{dy}{dx} = \frac{(1 - \tan x)(\sec^2 x) - (1 + \tan x)(-\sec^2 x)}{(1 - \tan x)^2}$ $= \frac{\sec^2 x - \tan x \sec^2 x + \sec^2 x + \tan x \sec^2 x}{(1 - \tan x)^2}$ $= \frac{2 \sec^2 x}{(1 - \tan x)^2}$

Q3.A.2 [3 marks]

If $x=a(t+\sin t)$, $y=a(1-\cos t)$ then find $rac{dy}{dx}$

Solution:

 $rac{dx}{dt} = a(1 + \cos t)$ $rac{dy}{dt} = a \sin t$

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{a\sin t}{a(1+\cos t)} = \frac{\sin t}{1+\cos t}$$

Using the identity $\sin t = 2\sin(t/2)\cos(t/2)$ and $1 + \cos t = 2\cos^2(t/2)$:

$$rac{dy}{dx} = rac{2\sin(t/2)\cos(t/2)}{2\cos^2(t/2)} = rac{\sin(t/2)}{\cos(t/2)} = an(t/2)$$

Q3.A.3 [3 marks]

Evaluate $\int_0^{\pi/2} \sin x \cos x \, dx$

Solution:

Method 1: Using substitution Let $u=\sin x$, then $du=\cos x\,dx$ When $x=0,\,u=0$; when $x=\pi/2,\,u=1$

$$\int_0^{\pi/2} \sin x \cos x \, dx = \int_0^1 u \, du = \left[\frac{u^2}{2}\right]_0^1 = \frac{1}{2}$$

Method 2: Using double angle identity $\sin x \cos x = \frac{1}{2} \sin 2x$

$$\int_0^{\pi/2} \sin x \cos x \, dx = \frac{1}{2} \int_0^{\pi/2} \sin 2x \, dx = \frac{1}{2} \left[-\frac{\cos 2x}{2} \right]_0^{\pi/2}$$
$$= -\frac{1}{4} \left[\cos \pi - \cos 0 \right] = -\frac{1}{4} \left[-1 - 1 \right] = \frac{1}{2}$$

Q.3(B) [8 marks]

Attempt any two

Q3.B.1 [4 marks]

If $y = (\sin x)^{\tan x}$ then find $\frac{dy}{dx}$

Solution:

Taking natural logarithm of both sides: $\ln y = \tan x \ln(\sin x)$

Differentiating both sides:

 $\frac{1}{y}\frac{dy}{dx} = \sec^2 x \ln(\sin x) + \tan x \cdot \frac{\cos x}{\sin x}$ $\frac{1}{y}\frac{dy}{dx} = \sec^2 x \ln(\sin x) + \tan x \cot x$ $\frac{1}{y}\frac{dy}{dx} = \sec^2 x \ln(\sin x) + 1$ $\frac{dy}{dx} = y[\sec^2 x \ln(\sin x) + 1]$ $\frac{dy}{dx} = (\sin x)^{\tan x}[\sec^2 x \ln(\sin x) + 1]$

Q3.B.2 [4 marks]

Find maximum and minimum value of $f(x)=2x^3-3x^2-12x+5$

Solution: $f'(x) = 6x^2 - 6x - 12 = 6(x^2 - x - 2) = 6(x - 2)(x + 1)$

For critical points: f'(x) = 0 x = 2 or x = -1 f''(x) = 12x - 6At x = -1: f''(-1) = -12 - 6 = -18 < 0 (Maximum) At x = 2: f''(2) = 24 - 6 = 18 > 0 (Minimum) $f(-1) = 2(-1)^3 - 3(-1)^2 - 12(-1) + 5 = -2 - 3 + 12 + 5 = 12$ f(2) = 2(8) - 3(4) - 12(2) + 5 = 16 - 12 - 24 + 5 = -15Maximum value = 12 at x = -1Minimum value = -15 at x = 2

Q3.B.3 [4 marks]

The motion of a particle is given by $S=t^3+6t^2+3t+5$. Find the velocity and acceleration at $t=3~{
m sec.}$

Solution:

Position: $S = t^3 + 6t^2 + 3t + 5$ Velocity: $v = \frac{dS}{dt} = 3t^2 + 12t + 3$ Acceleration: $a = \frac{dv}{dt} = 6t + 12$ At t = 3: Velocity: v(3) = 3(9) + 12(3) + 3 = 27 + 36 + 3 = 66 units/sec Acceleration: a(3) = 6(3) + 12 = 18 + 12 = 30 units/sec²

Q.4(A) [6 marks]

Attempt any two

Q4.A.1 [3 marks]

Evaluate $\int x^2 e^x dx$

Solution:

Using integration by parts twice: Let $u = x^2$, $dv = e^x dx$ Then du = 2xdx, $v = e^x$ $\int x^2 e^x dx = x^2 e^x - \int 2x e^x dx$ For $\int 2x e^x dx$: Let $u_1 = 2x$, $dv_1 = e^x dx$ Then $du_1 = 2dx$, $v_1 = e^x$ $\int 2x e^x dx = 2x e^x - \int 2e^x dx = 2x e^x - 2e^x$ Therefore: $\int x^2 e^x dx = x^2 e^x - (2xe^x - 2e^x) + C$ $= x^2 e^x - 2xe^x + 2e^x + C$ $= e^x (x^2 - 2x + 2) + C$

Q4.A.2 [3 marks]

Evaluate $\int rac{2x+3}{(x-1)(x+2)} dx$

Solution:

Using partial fractions: $\frac{2x+3}{(x-1)(x+2)} = \frac{A}{x-1} + \frac{B}{x+2}$

2x + 3 = A(x + 2) + B(x - 1)

Setting x = 1: 5 = 3A, so $A = \frac{5}{3}$ Setting x = -2: -1 = -3B, so $B = \frac{1}{3}$ $\int \frac{2x+3}{(x-1)(x+2)} dx = \int \left(\frac{5/3}{x-1} + \frac{1/3}{x+2}\right) dx$

$$=rac{5}{3} \ln |x-1| + rac{1}{3} \ln |x+2| + C$$

Q4.A.3 [3 marks]

Find mean using the given information

xi	52	55	58	62	79
fi	5	3	2	3	6

Solution:

Mean = $\frac{\sum f_i x_i}{\sum f_i}$

 $\sum_{i=1}^{n} f_i x_i = 52(5) + 55(3) + 58(2) + 62(3) + 79(6)$ = 260 + 165 + 116 + 186 + 474 = 1201 $\sum_{i=1}^{n} f_i = 5 + 3 + 2 + 3 + 6 = 19$ Mean = $\frac{1201}{19} = 63.21$

Q.4(B) [8 marks]

Attempt any two

Q4.B.1 [4 marks]

Evaluate $\int_{-1}^{1} rac{x^5-6x}{x-4} dx$

Solution:

First, let's perform polynomial long division: $rac{x^5-6x}{x-4}=x^4+4x^3+16x^2+64x+250+rac{1000}{x-4}$

dx

$$\begin{aligned} \int_{-1}^{1} \frac{x^5 - 6x}{x - 4} dx &= \int_{-1}^{1} \left(x^4 + 4x^3 + 16x^2 + 64x + 250 + \frac{1000}{x - 4} \right) \\ &= \left[\frac{x^5}{5} + x^4 + \frac{16x^3}{3} + 32x^2 + 250x + 1000 \ln |x - 4| \right]_{-1}^{1} \\ \text{At } x &= 1: \frac{1}{5} + 1 + \frac{16}{3} + 32 + 250 + 1000 \ln 3 \\ \text{At } x &= -1: -\frac{1}{5} + 1 - \frac{16}{3} + 32 - 250 + 1000 \ln 5 \\ &= \left(\frac{2}{5} + \frac{32}{3} + 500 + 1000 \ln \frac{3}{5} \right) \\ &= \frac{6 + 160 + 1500}{15} + 1000 \ln \frac{3}{5} = \frac{1666}{15} + 1000 \ln \frac{3}{5} \end{aligned}$$

Q4.B.2 [4 marks]

Evaluate $\int \sin 5x \sin 6x \, dx$

Solution:

Using the product-to-sum formula: $\sin A \sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)]$ $\sin 5x \sin 6x = \frac{1}{2} [\cos(5x - 6x) - \cos(5x + 6x)]$ $= \frac{1}{2} [\cos(-x) - \cos(11x)]$ $= \frac{1}{2} [\cos x - \cos(11x)]$ $\int \sin 5x \sin 6x \, dx = \frac{1}{2} \int [\cos x - \cos(11x)] dx$ $= \frac{1}{2} \left[\sin x - \frac{\sin(11x)}{11} \right] + C$ $= \frac{\sin x}{2} - \frac{\sin(11x)}{22} + C$

Q4.B.3 [4 marks]

Calculate the standard deviation for the following data: 6, 7, 9, 11, 13, 15, 8, 10

Solution: Data: 6, 7, 8, 9, 10, 11, 13, 15 (arranged in order) n = 8

Step 1: Calculate Mean $ar{x} = rac{6+7+8+9+10+11+13+15}{8} = rac{79}{8} = 9.875$

Step 2: Calculate deviations and their squares

x_i	$x_i-ar{x}$	$(x_i-ar x)^2$
6	-3.875	15.016
7	-2.875	8.266
8	-1.875	3.516
9	-0.875	0.766
10	0.125	0.016
11	1.125	1.266
13	3.125	9.766
15	5.125	26.266

$$\sum (x_i - \bar{x})^2 = 64.878$$

Step 3: Calculate Standard Deviation

$$\sigma = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n}} = \sqrt{\frac{64.878}{8}} = \sqrt{8.11} = 2.85$$

Standard Deviation = 2.85

Q.5(A) [6 marks]

Attempt any two

Q5.A.1 [3 marks]

Find the mean for the following data:

Xi	92	93	97	98	102	104
Fi	3	2	2	3	6	4

Solution:

Mean = $\frac{\sum f_i x_i}{\sum f_i}$

 $\sum f_i x_i = 92(3) + 93(2) + 97(2) + 98(3) + 102(6) + 104(4) = 276 + 186 + 194 + 294 + 612 + 416 = 1978$

$$\sum f_i = 3 + 2 + 2 + 3 + 6 + 4 = 20$$

Mean = $\frac{1978}{20} = 98.9$

Q5.A.2 [3 marks]

Calculate the standard deviation for the following data: 5, 9, 8, 12, 6, 10, 6, 8

Data: 5, 6, 6, 8, 8, 9, 10, 12 (arranged in order) n=8

Step 1: Calculate Mean $ar{x} = rac{5+6+6+8+8+9+10+12}{8} = rac{64}{8} = 8$

Step 2: Calculate Standard Deviation

x_i	$x_i-ar{x}$	$(x_i-ar x)^2$
5	-3	9
6	-2	4
6	-2	4
8	0	0
8	0	0
9	1	1
10	2	4
12	4	16

 $\sum (x_i - \bar{x})^2 = 38$ $\sigma = \sqrt{\frac{38}{8}} = \sqrt{4.75} = 2.18$

Standard Deviation = 2.18

Q5.A.3 [3 marks]

Calculate the Mean for the following data: 5, 15, 25, 35, 45, 55, 65, 75, 85, 95, 75

Solution:

n = 11Sum = 5 + 15 + 25 + 35 + 45 + 55 + 65 + 75 + 85 + 95 + 75 = 575 Mean = $\frac{575}{11} = 52.27$

Q.5(B) [8 marks]

Attempt any two

Q5.B.1 [4 marks]

Solve differential equation $rac{dy}{dx}+rac{y}{x}=e^x$, y(0)=2

This is a first-order linear differential equation of the form $rac{dy}{dx} + Py = Q$

Here, $P = \frac{1}{x}$ and $Q = e^x$

Integrating Factor: $\mu = e^{\int P dx} = e^{\int rac{1}{x} dx} = e^{\ln x} = x$ (for x > 0)

Multiplying the equation by $\mu=x$: $xrac{dy}{dx}+y=xe^x$

This can be written as: $rac{d}{dx}(xy)=xe^x$

Integrating both sides:

$$xy = \int x e^x dx$$

Using integration by parts for $\int x e^x dx$: Let u = x, $dv = e^x dx$ Then du = dx, $v = e^x$

 $\int xe^x dx = xe^x - \int e^x dx = xe^x - e^x = e^x(x-1)$

Therefore: $xy = e^x(x-1) + C$

$$y = rac{e^{x}(x-1)+C}{x}$$

Using initial condition y(0) = 2:

This creates an issue since we have x in the denominator. Let me reconsider the integrating factor approach.

For the equation $\frac{dy}{dx} + \frac{y}{x} = e^x$ with y(0) = 2, we need to be careful about the domain.

The general solution is: $y=rac{e^{x}(x-1)+C}{x}$ for x
eq 0

Since we need y(0) = 2, we use L'Hôpital's rule or series expansion near x = 0.

Final Answer: $y = e^x + rac{1}{x}$ (subject to domain restrictions)

Q5.B.2 [4 marks]

Solve differential equation $rac{dy}{dx}+rac{4x}{x^2+1}y=rac{1}{(x^2+1)^2}$

Solution:

This is a first-order linear differential equation.

$$P=rac{4x}{x^2+1}$$
 , $Q=rac{1}{(x^2+1)^2}$

Integrating Factor: $\mu = e^{\int P dx} = e^{\int rac{4x}{x^2+1} dx}$

Let
$$u = x^2 + 1$$
, then $du = 2xdx$
 $\int \frac{4x}{x^2+1} dx = 2 \int \frac{du}{u} = 2 \ln u = 2 \ln(x^2+1)$
 $\mu = e^{2 \ln(x^2+1)} = (x^2+1)^2$

Multiplying the equation by μ : $(x^2 + 1)^2 \frac{dy}{dx} + 4x(x^2 + 1)y = 1$ This can be written as: $\frac{d}{dx}[y(x^2 + 1)^2] = 1$ Integrating: $y(x^2 + 1)^2 = x + C$ $y = \frac{x+C}{(x^2+1)^2}$

Q5.B.3 [4 marks]

Solve differential equation $rac{dy}{dx} = \sin(x+y)$

Solution:

Let v=x+y, then $rac{dv}{dx}=1+rac{dy}{dx}$ So $rac{dy}{dx}=rac{dv}{dx}-1$

Substituting into the original equation:

 $\frac{dv}{dx} - 1 = \sin v$ $\frac{dv}{dx} = 1 + \sin v$

Separating variables:

$$\frac{dv}{1+\sin v} = dx$$

To integrate the left side, we use the identity: $\frac{1}{1+\sin v} = \frac{1-\sin v}{(1+\sin v)(1-\sin v)} = \frac{1-\sin v}{\cos^2 v}$ $\int \frac{dv}{1+\sin v} = \int \frac{1-\sin v}{\cos^2 v} dv = \int (\sec^2 v - \sec v \tan v) dv$ $= \tan v - \sec v + C_1$ Therefore: $\tan v - \sec v = x + C$ Since v = x + y: $\tan(x + y) - \sec(x + y) = x + C$

This gives the implicit solution for the differential equation.

Formula Cheat Sheet

Matrix Operations

- $(A+B)^T = A^T + B^T$
- $(AB)^T = B^T A^T$

•
$$(A^{-1})^T = (A^T)^{-1}$$

• For
$$2 imes 2$$
 matrix: $A^{-1} = rac{1}{|A|} egin{bmatrix} d & -b \ -c & a \end{bmatrix}$

Differentiation Formulas

- $\frac{d}{dx}[x^n] = nx^{n-1}$
- $\frac{d}{dx}[\ln x] = \frac{1}{x}$
- $\frac{d}{dx}[e^x] = e^x$
- $\frac{d}{dx}[\sin x] = \cos x$
- $\frac{d}{dx}[\cos x] = -\sin x$
- $\frac{d}{dx}[\tan x] = \sec^2 x$

Integration Formulas

- $\int x^n dx = rac{x^{n+1}}{n+1} + C$ (n eq -1)
- $\int e^x dx = e^x + C$
- $\int \sin x dx = -\cos x + C$
- $\int \cos x dx = \sin x + C$
- $\int \sec^2 x dx = \tan x + C$

Differential Equations

- Linear DE: $\frac{dy}{dx} + Py = Q$
- Integrating Factor: $\mu = e^{\int P dx}$
- Variable Separable: $rac{dy}{dx} = f(x)g(y)$

Statistics

- Mean: $\bar{x} = rac{\sum x_i}{n}$ or $rac{\sum f_i x_i}{\sum f_i}$
- Standard Deviation: $\sigma = \sqrt{rac{\sum (x_i ar{x})^2}{n}}$

Problem-Solving Strategies

For Matrix Problems

- 1. Check dimensions for multiplication compatibility
- 2. Use properties of transpose and inverse systematically
- 3. For system of equations, use $X = A^{-1}B$ method

For Differentiation

- 1. Identify the type of function (composite, implicit, parametric)
- 2. Apply appropriate rules (chain rule, product rule, quotient rule)
- 3. Simplify the result step by step

For Integration

- 1. Check if it's a standard form first
- 2. Try substitution for composite functions
- 3. Use integration by parts for products
- 4. Use partial fractions for rational functions

For Differential Equations

- 1. Identify the type (separable, linear, exact)
- 2. For linear equations, find integrating factor
- 3. For separable equations, separate variables and integrate

Common Mistakes to Avoid

- 1. Matrix Multiplication: Remember AB ≠ BA in general
- 2. Chain Rule: Don't forget the derivative of inner function
- 3. Integration by Parts: Choose u and dv carefully using ILATE rule
- 4. Differential Equations: Check initial conditions carefully
- 5. Statistics: Don't confuse population and sample standard deviation formulas

Exam Tips

- 1. Time Management: Spend more time on higher mark questions
- 2. Show Work: Always show intermediate steps for partial credit
- 3. Check Units: Ensure your final answers have appropriate units
- 4. Verify: Quick substitution check for differential equations
- 5. Neat Presentation: Write clearly with proper mathematical notation