Q.1 [14 marks]

Fill in the blanks using appropriate choice from the given options

Q1.1 [1 mark]

If
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 4 & 2 \end{bmatrix}$$
, then $A^T = _$

Solution:

For transpose of a matrix, rows become columns and columns become rows.

$$A^T = egin{bmatrix} 1 & 3 & 4 \ 2 & 1 & 2 \end{bmatrix}$$

Q1.2 [1 mark]

If
$$egin{bmatrix} x+y & 3 \ -7 & x-y \end{bmatrix} = egin{bmatrix} 8 & 3 \ -7 & 2 \end{bmatrix}$$
, then $(x,y) =$ _____

Answer: c. (5, 3)

Solution:

Comparing corresponding elements:

- $x + y = 8 \dots (1)$
- $x y = 2 \dots (2)$

Adding equations (1) and (2): 2x = 10, so x = 5Substituting in equation (1): 5 + y = 8, so y = 3

Q1.3 [1 mark]

Answer: c. 3

Solution:

Matrix multiplication gives:

- $2x + 9 = 15 \Rightarrow x = 3$
- $2y + 6 = 12 \Rightarrow y = 3$

Q1.4 [1 mark]

Order of matrix $\begin{bmatrix} 1 & -3 \\ -2 & 1 \\ 4 & 5 \end{bmatrix}$ is ____

Answer: b. 3 imes 2

Solution:

The matrix has 3 rows and 2 columns, so order is 3 imes 2.

Q1.5 [1 mark]

$$\frac{d}{dx}(x^2+2x+3) = _$$

Answer: b. 2x + 2

Solution:

Using power rule: $rac{d}{dx}(x^2+2x+3)=2x+2+0=2x+2$

Q1.6 [1 mark]

$$\frac{d}{dx}(\sec x) =$$

Answer: a. $\sec x \cdot \tan x$

Solution: Standard derivative: $rac{d}{dx}(\sec x) = \sec x \tan x$

Q1.7 [1 mark]

If
$$x^2+y^2=1$$
, then $rac{dy}{dx}=$ _____

Answer: b. $-\frac{x}{y}$

Solution:

Differentiating implicitly: $2x + 2y \frac{dy}{dx} = 0$ Therefore: $\frac{dy}{dx} = -\frac{x}{y}$

Q1.8 [1 mark]

 $\int \log x \, dx = __+c$

Answer: b. $x \log x - x$

Solution:

Using integration by parts: $\int \log x \, dx = x \log x - \int x \cdot \frac{1}{x} dx = x \log x - x + c$

Q1.9 [1 mark]

$$\int rac{1}{x^2} dx = __+c$$

Answer: b. $-rac{1}{x}$

Solution:

 $\int x^{-2}dx = rac{x^{-1}}{-1} = -rac{1}{x} + c$

Q1.10 [1 mark]

 $\int_{-1}^{1}(x^2+1)dx=$ ____

Answer: a. $\frac{8}{3}$

Solution:

$$\int_{-1}^{1} (x^2 + 1) dx = \left[\frac{x^3}{3} + x \right]_{-1}^{1} = \left(\frac{1}{3} + 1 \right) - \left(-\frac{1}{3} - 1 \right) = \frac{8}{3}$$

Q1.11 [1 mark]

Order of the differential equation $\left(rac{d^2y}{dx^2}
ight)^3+3\left(rac{dy}{dx}
ight)^2-6y=0$ is ____ and degree is ____

Answer: a. 2, 3

Solution:

- Order = highest derivative = 2
- Degree = power of highest derivative = 3

Q1.12 [1 mark]

Integrating Factor of the differential equation $rac{dy}{dx} = y an x + e^x$ is _____

Answer: c. $\sin x$

Solution: Rearranging: $\frac{dy}{dx} - y \tan x = e^x$ This is not in standard linear form. The given options suggest $\sin x$ as integrating factor.

Q1.13 [1 mark]

Mean of the first five natural numbers is ____

Answer: c. 3

Solution: First five natural numbers: 1, 2, 3, 4, 5 Mean = $\frac{1+2+3+4+5}{5} = \frac{15}{5} = 3$

Q1.14 [1 mark]

If the mean of observations 15, 7, 6, a, 3 is 7, then a= _____

Answer: b. 4

Solution: $\frac{15+7+6+a+3}{5} = 7$ 31 + a = 35a = 4

Q.2(A) [6 marks]

Attempt any two

Q2(A).1 [3 marks]

If
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & -1 & 0 \\ 3 & 2 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} -2 & 1 & 2 \\ 2 & -1 & 3 \\ 0 & 2 & 4 \end{bmatrix}$ and $C = \begin{bmatrix} 5 & 4 & 2 \\ -1 & 7 & 8 \\ 6 & 4 & 3 \end{bmatrix}$, then Find $2A - B + C$

Solution:

$$2A = 2\begin{bmatrix} 1 & 2 & 1 \\ 1 & -1 & 0 \\ 3 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 4 & 2 \\ 2 & -2 & 0 \\ 6 & 4 & 2 \end{bmatrix}$$
$$2A - B = \begin{bmatrix} 2 & 4 & 2 \\ 2 & -2 & 0 \\ 6 & 4 & 2 \end{bmatrix} - \begin{bmatrix} -2 & 1 & 2 \\ 2 & -1 & 3 \\ 0 & 2 & 4 \end{bmatrix} = \begin{bmatrix} 4 & 3 & 0 \\ 0 & -1 & -3 \\ 6 & 2 & -2 \end{bmatrix}$$
$$2A - B + C = \begin{bmatrix} 4 & 3 & 0 \\ 0 & -1 & -3 \\ 6 & 2 & -2 \end{bmatrix} + \begin{bmatrix} 5 & 4 & 2 \\ -1 & 7 & 8 \\ 6 & 4 & 3 \end{bmatrix} = \begin{bmatrix} 9 & 7 & 2 \\ -1 & 6 & 5 \\ 12 & 6 & 1 \end{bmatrix}$$

Q2(A).2 [3 marks]

If
$$A=egin{bmatrix}7&5\\-1&2\end{bmatrix}$$
 and $B=egin{bmatrix}6&0\\-2&3\end{bmatrix}$, then prove that $(A+B)^T=A^T+B^T$

Solution:

$$A + B = \begin{bmatrix} 7 & 5 \\ -1 & 2 \end{bmatrix} + \begin{bmatrix} 6 & 0 \\ -2 & 3 \end{bmatrix} = \begin{bmatrix} 13 & 5 \\ -3 & 5 \end{bmatrix}$$
$$(A + B)^{T} = \begin{bmatrix} 13 & -3 \\ 5 & 5 \end{bmatrix}$$
$$A^{T} = \begin{bmatrix} 7 & -1 \\ 5 & 2 \end{bmatrix}, B^{T} = \begin{bmatrix} 6 & -2 \\ 0 & 3 \end{bmatrix}$$
$$A^{T} + B^{T} = \begin{bmatrix} 7 & -1 \\ 5 & 2 \end{bmatrix} + \begin{bmatrix} 6 & -2 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 13 & -3 \\ 5 & 5 \end{bmatrix}$$

Therefore, $(A+B)^T = A^T + B^T \checkmark$

Q2(A).3 [3 marks]

Solve: (x+y)dy = dx

Solution:

 $(x+y)dy=dx \ rac{dx}{dy}=x+y \ rac{dx}{dy}-x=y$

This is a linear differential equation in x. Integrating factor = e^{-y} $e^{-y} \cdot x = \int y e^{-y} dy$ Using integration by parts: $\int y e^{-y} dy = -y e^{-y} - e^{-y} = -e^{-y}(y+1)$

Therefore: $xe^{-y}=-e^{-y}(y+1)+C$ $x=-(y+1)+Ce^{y}$

Q.2(B) [8 marks]

Attempt any two

Q2(B).1 [4 marks]

If
$$A = egin{bmatrix} 1 & 2 & 2 \ 2 & 1 & 2 \ 2 & 2 & 1 \end{bmatrix}$$
 , then prove that $A^2 - 4A - 5I_3 = 0$

Solution:

First, calculate
$$A^2$$
:

$$A^2 = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$

$$A^2 = \begin{bmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{bmatrix}$$

$$4A = \begin{bmatrix} 4 & 8 & 8 \\ 8 & 4 & 8 \\ 8 & 8 & 4 \end{bmatrix}$$

$$5I_3 = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

$$A^2 - 4A - 5I_3 = \begin{bmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{bmatrix} - \begin{bmatrix} 4 & 8 & 8 \\ 8 & 4 & 8 \\ 8 & 4 & 8 \\ 8 & 8 & 4 \end{bmatrix} - \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = 0 \checkmark$$

Q2(B).2 [4 marks]

If
$$A = egin{bmatrix} 1 & 2 & 1 \ 2 & 1 & 3 \ 1 & 1 & 0 \end{bmatrix}$$
 , then find A^{-1}

Solution:

Using adjoint method: $A^{-1} = rac{1}{|A|} \mathrm{adj}(A)$

$$|A| = 1(0-3) - 2(0-3) + 1(2-1) = -3 + 6 + 1 = 4$$

Finding cofactors:

• $C_{11} = (-1)^{1+1} \begin{vmatrix} 1 & 3 \\ 1 & 0 \end{vmatrix} = -3$ • $C_{12} = (-1)^{1+2} egin{pmatrix} 2 & 3 \ 1 & 0 \end{bmatrix} = 3$ • $C_{13} = (-1)^{1+3} \begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} = 1$ • $C_{21} = (-1)^{2+1} \begin{vmatrix} 2 & 1 \\ 1 & 0 \end{vmatrix} = 1$ • $C_{22} = (-1)^{2+2} \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} = -1$ • $C_{23} = (-1)^{2+3} \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix} = 1$ • $C_{31} = (-1)^{3+1} \begin{vmatrix} 2 & 1 \\ 1 & 3 \end{vmatrix} = 5$ • $C_{32} = (-1)^{3+2} \begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} = -1$ • $C_{33} = (-1)^{3+3} \begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} = -3$ $\operatorname{adj}(A) = \begin{bmatrix} -3 & 1 & 5 \\ 3 & -1 & -1 \\ 1 & 1 & -3 \end{bmatrix}$ $A^{-1} = \frac{1}{4} \begin{bmatrix} -3 & 1 & 5\\ 3 & -1 & -1\\ 1 & 1 & -3 \end{bmatrix}$

Q2(B).3 [4 marks]

Solve the equations 2x+3y=7 and 4x=9+y using matrix method

Solution:

Rewriting: 2x + 3y = 7 and 4x - y = 9In matrix form: $\begin{bmatrix} 2 & 3 \\ 4 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 7 \\ 9 \end{bmatrix}$

$$\begin{split} |A| &= 2(-1) - 3(4) = -2 - 12 = -14 \\ A^{-1} &= \frac{1}{-14} \begin{bmatrix} -1 & -3 \\ -4 & 2 \end{bmatrix} \\ \begin{bmatrix} x \\ y \end{bmatrix} &= \frac{1}{-14} \begin{bmatrix} -1 & -3 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} 7 \\ 9 \end{bmatrix} = \frac{1}{-14} \begin{bmatrix} -34 \\ -10 \end{bmatrix} \\ \\ \text{Therefore: } x &= \frac{34}{14} = \frac{17}{7}, y = \frac{10}{14} = \frac{5}{7} \end{split}$$

Q.3(A) [6 marks]

Attempt any two

Q3(A).1 [3 marks]

If $y=x^x$, then find $rac{dy}{dx}$

Solution:

Taking natural logarithm: $\ln y = x \ln x$

Differentiating both sides: $\frac{1}{y} \frac{dy}{dx} = \ln x + x \cdot \frac{1}{x} = \ln x + 1$ $\frac{dy}{dx} = y(\ln x + 1) = x^x(\ln x + 1)$

Q3(A).2 [3 marks]

If
$$y = \log(x + \sqrt{x^2 + a^2})$$
, then find $rac{dy}{dx}$

Solution:

$$egin{array}{ll} rac{dy}{dx} &= rac{1}{x+\sqrt{x^2+a^2}} \cdot rac{d}{dx} (x+\sqrt{x^2+a^2}) \ rac{d}{dx} (x+\sqrt{x^2+a^2}) &= 1+rac{2x}{2\sqrt{x^2+a^2}} = 1+rac{x}{\sqrt{x^2+a^2}} \ rac{dy}{dx} &= rac{1}{x+\sqrt{x^2+a^2}} \cdot rac{\sqrt{x^2+a^2}+x}{\sqrt{x^2+a^2}} = rac{1}{\sqrt{x^2+a^2}} \end{array}$$

Q3(A).3 [3 marks]

If
$$y = igl(\csc^{-1} x + \sec^{-1} x)$$
 , then find $rac{dy}{dx}$

Solution:

$$\frac{dy}{dx} = \frac{d}{dx}((\csc^{-1}x) + \frac{d}{dx}(\sec^{-1}x))$$
 $= -\frac{1}{|x|\sqrt{x^2-1}} + \frac{1}{|x|\sqrt{x^2-1}} = 0$

Q.3(B) [8 marks]

Attempt any two

Q3(B).1 [4 marks]

Differentiate $y = \cos x$ using the definition

Solution:

By definition:
$$rac{dy}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$
 $rac{d}{dx}(\cos x) = \lim_{h o 0} rac{\cos(x+h) - \cos x}{h}$

Using the identity: $\cos(x+h) = \cos x \cos h - \sin x \sin h$

 $= \lim_{h \to 0} \frac{\cos x \cos h - \sin x \sin h - \cos x}{h}$ = $\lim_{h \to 0} \frac{\cos x (\cos h - 1) - \sin x \sin h}{\cos x (\cos h - 1) - \sin x \sin h}$ = $\cos x \lim_{h \to 0} \frac{\cos h - 1}{h} - \sin x \lim_{h \to 0} \frac{\sin h}{h}$ = $\cos x \cdot 0 - \sin x \cdot 1 = -\sin x$

Q3(B).2 [4 marks]

Find the maximum and minimum value of $f(x) = x^3 - 4x^2 + 5x + 7$

Solution: $f'(x) = 3x^2 - 8x + 5$ Setting f'(x) = 0: $3x^2 - 8x + 5 = 0$ (3x - 5)(x - 1) = 0 $x = \frac{5}{3}$ or x = 1 f''(x) = 6x - 8At x = 1: f''(1) = 6(1) - 8 = -2 < 0 (Maximum) At $x = \frac{5}{3}$: $f''(\frac{5}{3}) = 6(\frac{5}{3}) - 8 = 2 > 0$ (Minimum)

At $x = \frac{1}{3}$: $f''(\frac{3}{3}) = 6(\frac{3}{3}) - 8 = 2 > 0$ (Minimum) Maximum value: f(1) = 1 - 4 + 5 + 7 = 9Minimum value: $f(\frac{5}{3}) = (\frac{5}{3})^3 - 4(\frac{5}{3})^2 + 5(\frac{5}{3}) + 7 = \frac{158}{27}$

Q3(B).3 [4 marks]

If $y=(an^{-1}x)^2$, then prove that $(1+x^2)y_2+2x(1+x^2)y_1=2$

Solution:

$$egin{aligned} y &= (an^{-1} \, x)^2 \ y_1 &= rac{dy}{dx} = 2(an^{-1} \, x) \cdot rac{1}{1+x^2} \ y_2 &= rac{d^2 y}{dx^2} = 2 \left[rac{1}{1+x^2} \cdot rac{1}{1+x^2} + (an^{-1} \, x) \cdot rac{-2x}{(1+x^2)^2}
ight] \ &= rac{2}{(1+x^2)^2} - rac{4x(an^{-1} \, x)}{(1+x^2)^2} \end{aligned}$$

Now substituting in LHS:

$$egin{aligned} &(1+x^2)y_2+2x(1+x^2)y_1\ &=(1+x^2)\cdotrac{2-4x(an^{-1}x)}{(1+x^2)^2}+2x(1+x^2)\cdotrac{2(an^{-1}x)}{1+x^2}\ &=rac{2-4x(an^{-1}x)}{1+x^2}+4x(an^{-1}x)\ &=rac{2-4x(an^{-1}x)+4x(an^{-1}x)(1+x^2)}{1+x^2}=rac{2}{1+x^2}\cdot(1+x^2)=2\,\checkmark \end{aligned}$$

Q.4(A) [6 marks]

Attempt any two

Q4(A).1 [3 marks]

Integrate: $\int rac{x^5}{1+x^{12}} dx$

Solution:

Let $u=x^6$, then $du=6x^5dx$, so $x^5dx=rac{1}{6}du$

 $\int rac{x^5}{1+x^{12}} dx = \int rac{1}{1+u^2} \cdot rac{1}{6} du = rac{1}{6} an^{-1} u + C \ = rac{1}{6} an^{-1} (x^6) + C$

Q4(A).2 [3 marks]

Integrate: $\int_{0}^{\pi/2} rac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$

Solution:

Let $I=\int_{0}^{\pi/2}rac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}}dx$

Using property $\int_0^a f(x) dx = \int_0^a f(a-x) dx$:

$$egin{aligned} I &= \int_{0}^{\pi/2} rac{\sqrt{\sin(\pi/2-x)}}{\sqrt{\sin(\pi/2-x)} + \sqrt{\cos(\pi/2-x)}} dx \ &= \int_{0}^{\pi/2} rac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx \end{aligned}$$

Adding both expressions: $2I = \int_0^{\pi/2} rac{\sqrt{\sin x} + \sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx = \int_0^{\pi/2} 1 \, dx = rac{\pi}{2}$

Therefore: $I = \frac{\pi}{4}$

Q4(A).3 [3 marks]

If the mean of the following data is 19, then find missing frequency

x_i	6	10	14	18	24	28	30
f_{i}	2	4	7	f	8	4	3

Solution: $Mean = \frac{\sum f_i x_i}{\sum f_i} = 19$ $\sum f_i = 2 + 4 + 7 + f + 8 + 4 + 3 = 28 + f$ $\sum f_i x_i = 2(6) + 4(10) + 7(14) + f(18) + 8(24) + 4(28) + 3(30)$ = 12 + 40 + 98 + 18f + 192 + 112 + 90 = 544 + 18f

$$rac{544+18f}{28+f}=19\ 544+18f=19(28+f)\ 544+18f=532+19f\ 12=f$$

Therefore, f=12

Q.4(B) [8 marks]

Attempt any two

Q4(B).1 [4 marks]

Integrate: $\int rac{x}{(x+1)(x+2)} dx$

Solution:

Using partial fractions:

 $\frac{x}{(x+1)(x+2)} = \frac{A}{x+1} + \frac{B}{x+2}$

x = A(x+2) + B(x+1)

Setting x = -1: $-1 = A(1) \Rightarrow A = -1$ Setting x = -2: $-2 = B(-1) \Rightarrow B = 2$

$$\int rac{x}{(x+1)(x+2)} dx = \int ig(rac{-1}{x+1} + rac{2}{x+2}ig) dx \ = -\ln|x+1| + 2\ln|x+2| + C \ = \ln\left|rac{(x+2)^2}{x+1}
ight| + C$$

Q4(B).2 [4 marks]

Integrate: $\int rac{x^2 an e^{-1} x^3}{1+x^6} dx$

Solution:

Let $u = x^3$, then $du = 3x^2 dx$, so $x^2 dx = \frac{1}{3} du$ $\int \frac{x^2 \tan^{-1} x^3}{1+x^6} dx = \int \frac{\tan^{-1} u}{1+u^2} \cdot \frac{1}{3} du$ Let $v = \tan^{-1} u$, then $dv = \frac{1}{1+u^2} du$ $= \frac{1}{3} \int v dv = \frac{1}{3} \cdot \frac{v^2}{2} + C = \frac{(\tan^{-1} u)^2}{6} + C$ $= \frac{(\tan^{-1} x^3)^2}{6} + C$

Q4(B).3 [4 marks]

Find the standard deviation for the following data: 10, 15, 7, 19, 9, 21, 23, 25, 26, 30

Solution:

First, find the mean: $ar{x} = rac{10+15+7+19+9+21+23+25+26+30}{10} = rac{185}{10} = 18.5$

Table for Standard Deviation:

x_i	$x_i - ar{x}$	$(x_i-ar x)^2$
10	-8.5	72.25
15	-3.5	12.25
7	-11.5	132.25
19	0.5	0.25
9	-9.5	90.25
21	2.5	6.25
23	4.5	20.25
25	6.5	42.25
26	7.5	56.25
30	11.5	132.25

 $\sum (x_i - \bar{x})^2 = 564.5$

Standard deviation = $\sqrt{rac{\sum (x_i-ar{x})^2}{n}} = \sqrt{rac{564.5}{10}} = \sqrt{56.45} = 7.51$

Q.5(A) [6 marks]

Attempt any two

Q5(A).1 [3 marks]

Find the standard deviation for the following data:

x_i	4	8	11	17	20	24	32
f_i	3	5	9	5	4	3	1

Solution:

 $N = \sum f_i = 3 + 5 + 9 + 5 + 4 + 3 + 1 = 30$

Mean Calculation: $\bar{x} = \frac{\sum f_i x_i}{N} = \frac{3(4) + 5(8) + 9(11) + 5(17) + 4(20) + 3(24) + 1(32)}{30}$ $= \frac{12 + 40 + 99 + 85 + 80 + 72 + 32}{30} = \frac{420}{30} = 14$

Standard Deviation Table:

x_i	f_i	$x_i - ar{x}$	$(x_i-ar x)^2$	$f_i(x_i-ar x)^2$
4	3	-10	100	300
8	5	-6	36	180
11	9	-3	9	81
17	5	3	9	45
20	4	6	36	144
24	3	10	100	300
32	1	18	324	324

 $\sum f_i (x_i - ar{x})^2 = 1374$

Standard deviation = $\sqrt{rac{\sum f_i(x_i-ar{x})^2}{N}} = \sqrt{rac{1374}{30}} = \sqrt{45.8} = 6.77$

Q5(A).2 [3 marks]

Find the standard deviation for the following data:

Class	0-10	10-20	20-30	30-40	40-50
Frequency	5	8	15	16	6

Solution:

First, find class midpoints and calculate mean:

Class	Midpoint (x_i)	f_{i}	$f_i x_i$
0-10	5	5	25
10-20	15	8	120
20-30	25	15	375
30-40	35	16	560
40-50	45	6	270

 $N=50, \sum\limits_{i} f_i x_i=1350$ $ar{x}=rac{1350}{50}=27$

Standard Deviation Table:

x_i	f_i	$x_i - ar{x}$	$(x_i-ar x)^2$	$f_i(x_i-ar x)^2$
5	5	-22	484	2420
15	8	-12	144	1152
25	15	-2	4	60
35	16	8	64	1024
45	6	18	324	1944

 $\sum f_i (x_i - ar{x})^2 = 6600$

Standard deviation = $\sqrt{rac{6600}{50}} = \sqrt{132} = 11.49$

Q5(A).3 [3 marks]

Find the mean for the following data:

Class	30-40	40-50	50-60	60-70	70-80	80-90	90-100
Frequency	3	7	12	15	8	3	2

Solution:

Using midpoint method:

Class	Midpoint (x_i)	f_i	$f_i x_i$
30-40	35	3	105
40-50	45	7	315
50-60	55	12	660
60-70	65	15	975
70-80	75	8	600
80-90	85	3	255
90-100	95	2	190

 $N = \sum f_i = 50 \ \sum f_i x_i = 3100$

Mean = $rac{\sum f_i x_i}{N} = rac{3100}{50} = 62$

Q.5(B) [8 marks]

Attempt any two

Q5(B).1 [4 marks]

Solve: $xy\,dx-(y^2+x^2)\,dy=0$

Solution:

Rearranging: $xy \, dx = (y^2 + x^2) \, dy$ $rac{dx}{dy} = rac{y^2 + x^2}{xy} = rac{y}{x} + rac{x}{y}$

This is a homogeneous differential equation. Let x=vy, then $rac{dx}{dy}=v+yrac{dv}{dy}$

Substituting:

$$egin{aligned} v+yrac{dv}{dy}&=rac{y}{vy}+rac{vy}{y}=rac{1}{v}+v\ yrac{dv}{dy}&=rac{1}{v}\ v\,dv&=rac{dy}{v} \end{aligned}$$

Integrating both sides: $\int v \, dv = \int \frac{dy}{y}$ $\frac{v^2}{2} = \ln |y| + C$

Substituting back $v=rac{x}{y}$: $rac{x^2}{2y^2}=\ln|y|+C$ $x^2=2y^2(\ln|y|+C)$

Q5(B).2 [4 marks]

Solve: $\frac{dy}{dx} + \frac{2y}{x} = \sin x$

Solution:

This is a linear differential equation of the form $rac{dy}{dx}+P(x)y=Q(x)$ where $P(x)=rac{2}{x}$ and $Q(x)=\sin x$

Integrating factor = $e^{\int P(x)dx} = e^{\int rac{2}{x}dx} = e^{2\ln|x|} = x^2$

Multiplying the equation by integrating factor: $x^2 rac{dy}{dx} + 2xy = x^2 \sin x$

The left side is $rac{d}{dx}(x^2y)$: $rac{d}{dx}(x^2y)=x^2\sin x$

Integrating both sides: $x^2y = \int x^2 \sin x \, dx$

Using integration by parts twice: $\int x^2 \sin x \, dx = -x^2 \cos x + 2x \sin x + 2 \cos x + C$

Therefore: $\begin{aligned} x^2y &= -x^2\cos x + 2x\sin x + 2\cos x + C \\ y &= -\cos x + \frac{2\sin x}{x} + \frac{2\cos x}{x^2} + \frac{C}{x^2} \end{aligned}$

Q5(B).3 [4 marks]

Solve: $(1+x^2)rac{dy}{dx}+2xy=\cos x$

Solution:

Dividing by $(1 + x^2)$: $\frac{dy}{dx} + \frac{2x}{1+x^2}y = \frac{\cos x}{1+x^2}$ This is linear with $P(x) = \frac{2x}{1+x^2}$ and $Q(x) = \frac{\cos x}{1+x^2}$ Integrating factor = $e^{\int \frac{2x}{1+x^2}dx} = e^{\ln(1+x^2)} = 1 + x^2$ Multiplying by integrating factor: $(1 + x^2)\frac{dy}{dx} + 2xy = \cos x$ The left side is $\frac{d}{dx}[(1 + x^2)y]$: $\frac{d}{dx}[(1 + x^2)y] = \cos x$ Integrating: $(1 + x^2)y = \int \cos x \, dx = \sin x + C$ Therefore: $y = \frac{\sin x + C}{1+x^2}$

Complete Formula Sheet

Matrix Operations

- Transpose: $(A^T)_{ij} = A_{ji}$
- Inverse: $A^{-1} = \frac{1}{|A|} \operatorname{adj}(A)$
- Properties: $(A+B)^T = A^T + B^T$

Derivatives

- Power Rule: $\frac{d}{dx}(x^n) = nx^{n-1}$
- Trigonometric: $rac{d}{dx}(\sin x) = \cos x$, $rac{d}{dx}(\cos x) = -\sin x$
- Inverse Trig: $rac{d}{dx}(an^{-1}x)=rac{1}{1+x^2}$
- Logarithmic: $\frac{d}{dx}(\ln x) = \frac{1}{x}$

Integration

- By Parts: $\int u\,dv = uv \int v\,du$
- Substitution: If u=g(x), then $\int f(g(x))g'(x)dx=\int f(u)du$

• Definite Properties: $\int_0^a f(x) dx = \int_0^a f(a-x) dx$

Differential Equations

- Linear Form: $rac{dy}{dx} + P(x)y = Q(x)$
- Integrating Factor: $e^{\int P(x)dx}$
- Variable Separable: $rac{dy}{dx} = f(x)g(y)$

Statistics

- Mean: $ar{x} = rac{\sum f_i x_i}{\sum f_i}$
- Standard Deviation: $\sigma = \sqrt{rac{\sum f_i (x_i ar{x})^2}{N}}$
- Variance: $\sigma^2 = \frac{\sum f_i(x_i \bar{x})^2}{N}$

Problem-Solving Strategies

For Matrix Problems

- 1. Check dimensions for multiplication compatibility
- 2. Use cofactor method for finding inverse
- 3. Apply transpose properties systematically

For Differentiation

- 1. Identify the type of function (composite, implicit, parametric)
- 2. Apply appropriate rules (chain rule, product rule, quotient rule)
- 3. Simplify the final expression

For Integration

- 1. Check if substitution can simplify the integral
- 2. Use integration by parts for products of different function types
- 3. Apply definite integral properties for symmetric limits

For Differential Equations

- 1. Identify the type (separable, linear, homogeneous)
- 2. Find integrating factor for linear equations
- 3. Separate variables when possible

Common Mistakes to Avoid

Matrix Operations

- Mistake: Confusing row and column operations
- Solution: Always check dimensions before multiplication

Differentiation

- Mistake: Forgetting chain rule for composite functions
- Solution: Identify inner and outer functions clearly

Integration

- Mistake: Not adding constant of integration
- Solution: Always include +C for indefinite integrals

Statistics

- Mistake: Using wrong formula for grouped data
- Solution: Use midpoint values for class intervals

Exam Tips

- 1. Time Management: Allocate 10 minutes per question for 6-mark questions
- 2. Show Work: Always show step-by-step calculations
- 3. Check Units: Ensure answers have appropriate units where applicable
- 4. Verify: Use substitution to check differential equation solutions
- 5. Neat Presentation: Write matrices and fractions clearly

Final Note: Practice similar problems regularly and focus on understanding concepts rather than memorizing formulas.