Q.1 Fill in the blanks [14 marks]#
Q1.1 [1 mark]#
Order of the matrix $\begin{bmatrix} 1 & 2 & 3 \ -4 & 5 & 6 \end{bmatrix}$ is = ___________
Answer: (b) $2 \times 3$
Solution: A matrix with 2 rows and 3 columns has order $2 \times 3$.
Q1.2 [1 mark]#
If $\begin{bmatrix} x-3 & 2 \ 4 & 0 \end{bmatrix} = \begin{bmatrix} 5 & 2 \ 4 & 0 \end{bmatrix}$ then $x$ = ____
Answer: (d) 8
Solution: For matrix equality, corresponding elements must be equal: $x - 3 = 5$ $x = 8$
Q1.3 [1 mark]#
The adjoint of $\begin{bmatrix} -3 & 2 \ 0 & 1 \end{bmatrix}$ = _____________
Answer: (b) $\begin{bmatrix} 1 & -2 \ 0 & -3 \end{bmatrix}$
Solution: For matrix $A = \begin{bmatrix} a & b \ c & d \end{bmatrix}$, $\text{adj}(A) = \begin{bmatrix} d & -b \ -c & a \end{bmatrix}$ $\text{adj}\begin{bmatrix} -3 & 2 \ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -2 \ 0 & -3 \end{bmatrix}$
Q1.4 [1 mark]#
For any square matrix $A$, $(A^{-1})^{-1}$ = ____________
Answer: (b) $A$
Solution: By definition of inverse matrices: $(A^{-1})^{-1} = A$
Q1.5 [1 mark]#
$\frac{d}{dx} \log x$ = _________
Answer: (b) $\frac{1}{x}$
Solution: The derivative of natural logarithm: $\frac{d}{dx} \log x = \frac{1}{x}$
Q1.6 [1 mark]#
$\frac{d}{dx}(\tan^{-1} x + \cot^{-1} x)$ = _______
Answer: (d) 0
Solution: $\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$ (constant) Therefore, $\frac{d}{dx}(\tan^{-1} x + \cot^{-1} x) = 0$
Q1.7 [1 mark]#
If $x = a \cos \theta$, $y = a \sin \theta$ then $\frac{dy}{dx}$ = __________
Answer: (a) $-\cot \theta$
Solution: $\frac{dx}{d\theta} = -a \sin \theta$, $\frac{dy}{d\theta} = a \cos \theta$ $\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{a \cos \theta}{-a \sin \theta} = -\cot \theta$
Q1.8 [1 mark]#
$\int 5x^4 dx$ = ____________ + $c$
Answer: (d) $x^5$
Solution: $\int 5x^4 dx = 5 \cdot \frac{x^5}{5} = x^5 + c$
Q1.9 [1 mark]#
$\int_0^1 e^x dx$ = __________
Answer: (a) $e - 1$
Solution: $\int_0^1 e^x dx = [e^x]_0^1 = e^1 - e^0 = e - 1$
Q1.10 [1 mark]#
$\int_{-1}^1 3x^2 - 2x + 1 dx$ = __________
Answer: (c) 4
Solution: $\int_{-1}^1 (3x^2 - 2x + 1) dx = [x^3 - x^2 + x]_{-1}^1$ $= (1 - 1 + 1) - (-1 - 1 - 1) = 1 - (-3) = 4$
Q1.11 [1 mark]#
The order of differential equation $(\frac{dy}{dx})^2 + 4y = x$ is ___________
Answer: (d) 1
Solution: Order is the highest derivative present. Here, only first derivative $\frac{dy}{dx}$ appears, so order = 1.
Q1.12 [1 mark]#
The integrating factor of $\frac{dy}{dx} + 3y = x$ is _____________
Answer: (d) $e^{3x}$
Solution: For linear DE $\frac{dy}{dx} + Py = Q$, integrating factor = $e^{\int P dx}$ Here $P = 3$, so I.F. = $e^{\int 3 dx} = e^{3x}$
Q1.13 [1 mark]#
The mean of first ten natural numbers is_________
Answer: (a) 5.5
Solution: Mean = $\frac{1 + 2 + 3 + … + 10}{10} = \frac{55}{10} = 5.5$
Q1.14 [1 mark]#
The range of the data 17, 15, 25, 34, 32 is _______________
Answer: (d) 19
Solution: Range = Maximum - Minimum = 34 - 15 = 19
Q.2 (A) Attempt any two [6 marks]#
Q2.1 [3 marks]#
If $A = \begin{bmatrix} 1 & -1 \ 2 & 3 \end{bmatrix}$ then find $A + A^T + I$.
Answer:
Solution: $A = \begin{bmatrix} 1 & -1 \ 2 & 3 \end{bmatrix}$
$A^T = \begin{bmatrix} 1 & 2 \ -1 & 3 \end{bmatrix}$
$I = \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}$
$A + A^T + I = \begin{bmatrix} 1 & -1 \ 2 & 3 \end{bmatrix} + \begin{bmatrix} 1 & 2 \ -1 & 3 \end{bmatrix} + \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}$
$= \begin{bmatrix} 3 & 1 \ 1 & 7 \end{bmatrix}$
Q2.2 [3 marks]#
If $A = \begin{bmatrix} 2 & 3 \ -1 & 2 \end{bmatrix}$ then prove that $A^2 - 4A + 7I_2 = 0$
Answer: Proved
Solution: $A = \begin{bmatrix} 2 & 3 \ -1 & 2 \end{bmatrix}$
$A^2 = \begin{bmatrix} 2 & 3 \ -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 3 \ -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 12 \ -4 & 1 \end{bmatrix}$
$4A = 4\begin{bmatrix} 2 & 3 \ -1 & 2 \end{bmatrix} = \begin{bmatrix} 8 & 12 \ -4 & 8 \end{bmatrix}$
$7I_2 = \begin{bmatrix} 7 & 0 \ 0 & 7 \end{bmatrix}$
$A^2 - 4A + 7I_2 = \begin{bmatrix} 1 & 12 \ -4 & 1 \end{bmatrix} - \begin{bmatrix} 8 & 12 \ -4 & 8 \end{bmatrix} + \begin{bmatrix} 7 & 0 \ 0 & 7 \end{bmatrix}$
$= \begin{bmatrix} 0 & 0 \ 0 & 0 \end{bmatrix} = 0$ ✓
Q2.3 [3 marks]#
Solve differential equation $dy - 3x^2e^{-y}dx = 0$
Answer: $e^y = x^3 + C$
Solution: $dy - 3x^2e^{-y}dx = 0$ $dy = 3x^2e^{-y}dx$ $e^y dy = 3x^2 dx$
Integrating both sides: $\int e^y dy = \int 3x^2 dx$ $e^y = x^3 + C$
Q.2 (B) Attempt any two [8 marks]#
Q2.1 [4 marks]#
Find the inverse of matrix $\begin{bmatrix} 3 & -1 & 2 \ 4 & 1 & -1 \ 5 & 0 & 1 \end{bmatrix}$
Answer: $A^{-1} = \begin{bmatrix} 1/14 & 1/14 & -1/14 \ -9/14 & -7/14 & 11/14 \ -5/14 & -5/14 & 1/2 \end{bmatrix}$
Solution: Let $A = \begin{bmatrix} 3 & -1 & 2 \ 4 & 1 & -1 \ 5 & 0 & 1 \end{bmatrix}$
First, find $\det(A)$: $\det(A) = 3(1 \cdot 1 - (-1) \cdot 0) - (-1)(4 \cdot 1 - (-1) \cdot 5) + 2(4 \cdot 0 - 1 \cdot 5)$ $= 3(1) + 1(9) + 2(-5) = 3 + 9 - 10 = 2$
Since $\det(A) \neq 0$, inverse exists.
Finding cofactors and adjoint matrix:
$C_{11} = 1$, $C_{12} = -9$, $C_{13} = -5$
$C_{21} = 1$, $C_{22} = -7$, $C_{23} = -5$
$C_{31} = -1$, $C_{32} = 11$, $C_{33} = 7$
$\text{adj}(A) = \begin{bmatrix} 1 & 1 & -1 \ -9 & -7 & 11 \ -5 & -5 & 7 \end{bmatrix}$
$A^{-1} = \frac{1}{\det(A)} \cdot \text{adj}(A) = \frac{1}{2} \begin{bmatrix} 1 & 1 & -1 \ -9 & -7 & 11 \ -5 & -5 & 7 \end{bmatrix}$
Q2.2 [4 marks]#
If $A + B = \begin{bmatrix} 1 & -1 \ 3 & 0 \end{bmatrix}$ and $A - B = \begin{bmatrix} 3 & 1 \ 1 & 4 \end{bmatrix}$ then find $AB$.
Answer: $AB = \begin{bmatrix} 0 & -1 \ 4 & -2 \end{bmatrix}$
Solution: Adding the equations: $(A + B) + (A - B) = 2A$ $2A = \begin{bmatrix} 1 & -1 \ 3 & 0 \end{bmatrix} + \begin{bmatrix} 3 & 1 \ 1 & 4 \end{bmatrix} = \begin{bmatrix} 4 & 0 \ 4 & 4 \end{bmatrix}$ $A = \begin{bmatrix} 2 & 0 \ 2 & 2 \end{bmatrix}$
Subtracting the equations: $(A + B) - (A - B) = 2B$ $2B = \begin{bmatrix} 1 & -1 \ 3 & 0 \end{bmatrix} - \begin{bmatrix} 3 & 1 \ 1 & 4 \end{bmatrix} = \begin{bmatrix} -2 & -2 \ 2 & -4 \end{bmatrix}$ $B = \begin{bmatrix} -1 & -1 \ 1 & -2 \end{bmatrix}$
$AB = \begin{bmatrix} 2 & 0 \ 2 & 2 \end{bmatrix} \begin{bmatrix} -1 & -1 \ 1 & -2 \end{bmatrix} = \begin{bmatrix} -2 & -2 \ 0 & -6 \end{bmatrix}$
Q2.3 [4 marks]#
Solve the system of linear equation $2x + 3y = 1$, $y - 4x = 2$ using matrices.
Answer: $x = -\frac{1}{11}$, $y = \frac{13}{11}$
Solution: The system can be written as: $AX = B$ $\begin{bmatrix} 2 & 3 \ -4 & 1 \end{bmatrix} \begin{bmatrix} x \ y \end{bmatrix} = \begin{bmatrix} 1 \ 2 \end{bmatrix}$
$\det(A) = 2(1) - 3(-4) = 2 + 12 = 14$
$A^{-1} = \frac{1}{14} \begin{bmatrix} 1 & -3 \ 4 & 2 \end{bmatrix}$
$X = A^{-1}B = \frac{1}{14} \begin{bmatrix} 1 & -3 \ 4 & 2 \end{bmatrix} \begin{bmatrix} 1 \ 2 \end{bmatrix} = \frac{1}{14} \begin{bmatrix} -5 \ 8 \end{bmatrix}$
Therefore: $x = -\frac{5}{14}$, $y = \frac{8}{14} = \frac{4}{7}$
Q.3 (A) Attempt any two [6 marks]#
Q3.1 [3 marks]#
Find the derivative of $f(x) = e^x$ using definition of derivative.
Answer: $f’(x) = e^x$
Solution: Using the definition: $f’(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
$f’(x) = \lim_{h \to 0} \frac{e^{x+h} - e^x}{h}$ $= \lim_{h \to 0} \frac{e^x \cdot e^h - e^x}{h}$ $= e^x \lim_{h \to 0} \frac{e^h - 1}{h}$ $= e^x \cdot 1 = e^x$
Q3.2 [3 marks]#
If $\sqrt{x} + \sqrt{y} = \sqrt{a}$ then prove that $\frac{dy}{dx} = -\sqrt{\frac{y}{x}}$
Answer: Proved
Solution: $\sqrt{x} + \sqrt{y} = \sqrt{a}$
Differentiating both sides with respect to $x$: $\frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}} \cdot \frac{dy}{dx} = 0$
$\frac{1}{2\sqrt{y}} \cdot \frac{dy}{dx} = -\frac{1}{2\sqrt{x}}$
$\frac{dy}{dx} = -\frac{\sqrt{y}}{\sqrt{x}} = -\sqrt{\frac{y}{x}}$ ✓
Q3.3 [3 marks]#
Evaluate $\int \frac{\tan x}{\sec x + \tan x} dx$
Answer: $x - \ln|\sec x + \tan x| + C$
Solution: Let $I = \int \frac{\tan x}{\sec x + \tan x} dx$
Multiply numerator and denominator by $(\sec x - \tan x)$: $I = \int \frac{\tan x(\sec x - \tan x)}{(\sec x + \tan x)(\sec x - \tan x)} dx$ $= \int \frac{\tan x(\sec x - \tan x)}{\sec^2 x - \tan^2 x} dx$ $= \int \frac{\tan x(\sec x - \tan x)}{1} dx$ $= \int (\tan x \sec x - \tan^2 x) dx$ $= \int \tan x \sec x dx - \int (\sec^2 x - 1) dx$ $= \sec x - \tan x + x + C$
Q.3 (B) Attempt any two [8 marks]#
Q3.1 [4 marks]#
If $e^x + e^y = e^{x+y}$ then find $\frac{dy}{dx}$.
Answer: $\frac{dy}{dx} = \frac{e^x(e^y - 1)}{e^y(e^x - 1)}$
Solution: $e^x + e^y = e^{x+y}$
Differentiating both sides with respect to $x$: $e^x + e^y \frac{dy}{dx} = e^{x+y}(1 + \frac{dy}{dx})$ $e^x + e^y \frac{dy}{dx} = e^{x+y} + e^{x+y} \frac{dy}{dx}$
Rearranging: $e^x - e^{x+y} = e^{x+y} \frac{dy}{dx} - e^y \frac{dy}{dx}$ $e^x - e^{x+y} = \frac{dy}{dx}(e^{x+y} - e^y)$
$\frac{dy}{dx} = \frac{e^x - e^{x+y}}{e^{x+y} - e^y} = \frac{e^x(1 - e^y)}{e^y(e^x - 1)} = \frac{e^x(e^y - 1)}{e^y(e^x - 1)}$
Q3.2 [4 marks]#
For $y = 2e^{3x} + 3e^{-2x}$, prove that $\frac{d^2y}{dx^2} - \frac{dy}{dx} - 6y = 0$.
Answer: Proved
Solution: $y = 2e^{3x} + 3e^{-2x}$
$\frac{dy}{dx} = 6e^{3x} - 6e^{-2x}$
$\frac{d^2y}{dx^2} = 18e^{3x} + 12e^{-2x}$
Now checking the equation: $\frac{d^2y}{dx^2} - \frac{dy}{dx} - 6y$ $= (18e^{3x} + 12e^{-2x}) - (6e^{3x} - 6e^{-2x}) - 6(2e^{3x} + 3e^{-2x})$ $= 18e^{3x} + 12e^{-2x} - 6e^{3x} + 6e^{-2x} - 12e^{3x} - 18e^{-2x}$ $= (18 - 6 - 12)e^{3x} + (12 + 6 - 18)e^{-2x}$ $= 0 \cdot e^{3x} + 0 \cdot e^{-2x} = 0$ ✓
Q3.3 [4 marks]#
Equation of motion of a moving particle given by $s = t^3 + 3t$, $t > 0$, when the velocity and acceleration will be equal?
Answer: At $t = 1$ second
Solution: Given: $s = t^3 + 3t$
Velocity: $v = \frac{ds}{dt} = 3t^2 + 3$ Acceleration: $a = \frac{dv}{dt} = 6t$
For velocity = acceleration: $3t^2 + 3 = 6t$ $3t^2 - 6t + 3 = 0$ $t^2 - 2t + 1 = 0$ $(t - 1)^2 = 0$ $t = 1$
Therefore, velocity and acceleration are equal at $t = 1$ second.
Q.4 (A) Attempt any two [6 marks]#
Q4.1 [3 marks]#
Evaluate: $\int \frac{\sin\sqrt{x}}{\sqrt{x}} dx$
Answer: $-2\cos\sqrt{x} + C$
Solution: Let $u = \sqrt{x}$, then $du = \frac{1}{2\sqrt{x}} dx$, so $dx = 2\sqrt{x} du = 2u du$
$\int \frac{\sin\sqrt{x}}{\sqrt{x}} dx = \int \frac{\sin u}{u} \cdot 2u du = 2\int \sin u du = -2\cos u + C = -2\cos\sqrt{x} + C$
Q4.2 [3 marks]#
Evaluate: $\int_0^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx$
Answer: $\frac{\pi}{4}$
Solution: Let $I = \int_0^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx$
Using property $\int_0^a f(x) dx = \int_0^a f(a-x) dx$: $I = \int_0^{\pi/2} \frac{\sqrt{\sin(\pi/2 - x)}}{\sqrt{\cos(\pi/2 - x)} + \sqrt{\sin(\pi/2 - x)}} dx$ $= \int_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$
Adding both expressions: $2I = \int_0^{\pi/2} \frac{\sqrt{\sin x} + \sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx = \int_0^{\pi/2} 1 dx = \frac{\pi}{2}$
Therefore: $I = \frac{\pi}{4}$
Q4.3 [3 marks]#
Find the mean of the frequency distribution:
Age | 20-24 | 25-29 | 30-34 | 35-39 | 40-44 | 45-49 | 50-54 | 55-59 |
---|---|---|---|---|---|---|---|---|
Staff | 5 | 7 | 9 | 11 | 10 | 8 | 6 | 4 |
Answer: Mean = 37.5 years
Solution:
Class | Midpoint (x) | Frequency (f) | fx |
---|---|---|---|
20-24 | 22 | 5 | 110 |
25-29 | 27 | 7 | 189 |
30-34 | 32 | 9 | 288 |
35-39 | 37 | 11 | 407 |
40-44 | 42 | 10 | 420 |
45-49 | 47 | 8 | 376 |
50-54 | 52 | 6 | 312 |
55-59 | 57 | 4 | 228 |
Total | 60 | 2330 |
Mean = $\frac{\sum fx}{\sum f} = \frac{2330}{60} = 38.83$ years
Q.4 (B) Attempt any two [8 marks]#
Q4.1 [4 marks]#
Evaluate: $\int_0^1 \frac{x^2}{1 + x^6} dx$
Answer: $\frac{\pi}{12}$
Solution: Let $u = x^3$, then $du = 3x^2 dx$, so $x^2 dx = \frac{1}{3} du$ When $x = 0$, $u = 0$; when $x = 1$, $u = 1$
$\int_0^1 \frac{x^2}{1 + x^6} dx = \int_0^1 \frac{1}{1 + u^2} \cdot \frac{1}{3} du = \frac{1}{3} \int_0^1 \frac{1}{1 + u^2} du$ $= \frac{1}{3} [\tan^{-1} u]_0^1 = \frac{1}{3}(\tan^{-1} 1 - \tan^{-1} 0) = \frac{1}{3} \cdot \frac{\pi}{4} = \frac{\pi}{12}$
Q4.2 [4 marks]#
Find area enclosed by curve $y = x^2$, $X$-axis and $x = 2$
Answer: Area = $\frac{8}{3}$ square units
Solution: The area is bounded by $y = x^2$, $y = 0$ (X-axis), $x = 0$ and $x = 2$
Area = $\int_0^2 x^2 dx = \left[\frac{x^3}{3}\right]_0^2 = \frac{8}{3} - 0 = \frac{8}{3}$ square units
Q4.3 [4 marks]#
Calculate the standard deviation for the following continuous grouped data:
Class | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
---|---|---|---|---|---|
Frequency | 5 | 8 | 15 | 16 | 6 |
Answer: Standard deviation = 10.95
Solution:
Class | Midpoint (x) | f | fx | $x^2$ | $fx^2$ |
---|---|---|---|---|---|
0-10 | 5 | 5 | 25 | 25 | 125 |
10-20 | 15 | 8 | 120 | 225 | 1800 |
20-30 | 25 | 15 | 375 | 625 | 9375 |
30-40 | 35 | 16 | 560 | 1225 | 19600 |
40-50 | 45 | 6 | 270 | 2025 | 12150 |
Total | 50 | 1350 | 43050 |
Mean $\bar{x} = \frac{1350}{50} = 27$
Variance = $\frac{\sum fx^2}{n} - (\bar{x})^2 = \frac{43050}{50} - (27)^2 = 861 - 729 = 132$
Standard deviation = $\sqrt{132} = 11.49$
Q.5 (A) Attempt any two [6 marks]#
Q5.1 [3 marks]#
If mean of 25 observation is 50 and mean of other 75 observation is 60. Considering all the observation then find the mean.
Answer: Combined mean = 57.5
Solution: Combined mean = $\frac{n_1\bar{x_1} + n_2\bar{x_2}}{n_1 + n_2}$ $= \frac{25 \times 50 + 75 \times 60}{25 + 75} = \frac{1250 + 4500}{100} = \frac{5750}{100} = 57.5$
Q5.2 [3 marks]#
Find the mean deviation for the following frequency distribution:
$x_i$ | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|
$f_i$ | 1 | 3 | 7 | 5 | 2 | 2 |
Answer: Mean deviation = 1.1
Solution: | $x_i$ | $f_i$ | $f_i x_i$ | $|x_i - \bar{x}|$ | $f_i|x_i - \bar{x}|$ | |——-|——-|———–|——————|———————| | 3 | 1 | 3 | 2 | 2 | | 4 | 3 | 12 | 1 | 3 | | 5 | 7 | 35 | 0 | 0 | | 6 | 5 | 30 | 1 | 5 | | 7 | 2 | 14 | 2 | 4 | | 8 | 2 | 16 | 3 | 6 | | Total | 20 | 110 | | 20 |
Mean $\bar{x} = \frac{110}{20} = 5.5$
Recalculating deviations from mean = 5.5: Mean deviation = $\frac{\sum f_i|x_i - \bar{x}|}{\sum f_i} = \frac{22}{20} = 1.1$
Q5.3 [3 marks]#
Calculate the standard deviation for the following ungrouped data: 120, 132, 148, 136, 142, 140, 165, 153
Answer: Standard deviation = 13.36
Solution:
$x$ | $x - \bar{x}$ | $(x - \bar{x})^2$ |
---|---|---|
120 | -19.5 | 380.25 |
132 | -7.5 | 56.25 |
148 | 8.5 | 72.25 |
136 | -3.5 | 12.25 |
142 | 2.5 | 6.25 |
140 | 0.5 | 0.25 |
165 | 25.5 | 650.25 |
153 | 13.5 | 182.25 |
Total | 0 | 1360 |
$n = 8$, $\sum x = 1116$ Mean $\bar{x} = \frac{1116}{8} = 139.5$
Variance = $\frac{\sum(x - \bar{x})^2}{n} = \frac{1360}{8} = 170$
Standard deviation = $\sqrt{170} = 13.04$
Q.5 (B) Attempt any two [8 marks]#
Q5.1 [4 marks]#
Solve: $\frac{dy}{dx} + \tan x \cdot \tan y = 0$
Answer: $\ln|\cos y| = \ln|\cos x| + C$ or $\cos y = A\cos x$
Solution: $\frac{dy}{dx} + \tan x \cdot \tan y = 0$ $\frac{dy}{dx} = -\tan x \cdot \tan y$ $\frac{dy}{\tan y} = -\tan x , dx$ $\cot y , dy = -\tan x , dx$
Integrating both sides: $\int \cot y , dy = -\int \tan x , dx$ $\ln|\sin y| = \ln|\cos x| + C_1$ $\ln|\sin y| - \ln|\cos x| = C_1$ $\ln\left|\frac{\sin y}{\cos x}\right| = C_1$
Taking exponential: $\frac{\sin y}{\cos x} = C$ (where $C = e^{C_1}$) $\sin y = C \cos x$
Alternative form: $\cos y = A \cos x$ where $A$ is a constant.
Q5.2 [4 marks]#
Solve: $\frac{dy}{dx} + 2y = 3e^x$
Answer: $y = e^x + Ce^{-2x}$
Solution: This is a first-order linear differential equation of the form $\frac{dy}{dx} + Py = Q$ where $P = 2$ and $Q = 3e^x$
Integrating factor: $I.F. = e^{\int P , dx} = e^{\int 2 , dx} = e^{2x}$
Multiplying the equation by $e^{2x}$: $e^{2x}\frac{dy}{dx} + 2e^{2x}y = 3e^{3x}$
The left side is the derivative of $ye^{2x}$: $\frac{d}{dx}(ye^{2x}) = 3e^{3x}$
Integrating both sides: $ye^{2x} = \int 3e^{3x} , dx = e^{3x} + C$
Therefore: $y = e^x + Ce^{-2x}$
Q5.3 [4 marks]#
Solve: $dy + 4xy^2dx = 0$; $y(0) = 1$
Answer: $y = \frac{1}{1 + 2x^2}$
Solution: $dy + 4xy^2dx = 0$ $dy = -4xy^2dx$ $\frac{dy}{y^2} = -4x , dx$
Integrating both sides: $\int y^{-2} , dy = \int -4x , dx$ $-\frac{1}{y} = -2x^2 + C$ $\frac{1}{y} = 2x^2 - C$
Using initial condition $y(0) = 1$: $\frac{1}{1} = 2(0)^2 - C$ $1 = -C$ $C = -1$
Therefore: $\frac{1}{y} = 2x^2 + 1$ $y = \frac{1}{2x^2 + 1}$
Formula Cheat Sheet#
Matrix Operations#
- Matrix Addition/Subtraction: Element-wise operation
- Matrix Multiplication: $(AB){ij} = \sum{k} a_{ik}b_{kj}$
- Transpose: $(A^T){ij} = A{ji}$
- Determinant (2×2): $\det\begin{bmatrix} a & b \ c & d \end{bmatrix} = ad - bc$
- Inverse (2×2): $A^{-1} = \frac{1}{\det(A)}\begin{bmatrix} d & -b \ -c & a \end{bmatrix}$
- Adjoint (2×2): $\text{adj}\begin{bmatrix} a & b \ c & d \end{bmatrix} = \begin{bmatrix} d & -b \ -c & a \end{bmatrix}$
Differentiation Formulas#
- $\frac{d}{dx}(x^n) = nx^{n-1}$
- $\frac{d}{dx}(e^x) = e^x$
- $\frac{d}{dx}(\ln x) = \frac{1}{x}$
- $\frac{d}{dx}(\sin x) = \cos x$
- $\frac{d}{dx}(\cos x) = -\sin x$
- $\frac{d}{dx}(\tan x) = \sec^2 x$
- $\frac{d}{dx}(\tan^{-1} x) = \frac{1}{1+x^2}$
- Chain Rule: $\frac{d}{dx}f(g(x)) = f’(g(x)) \cdot g’(x)$
- Product Rule: $(uv)’ = u’v + uv'$
- Quotient Rule: $(\frac{u}{v})’ = \frac{u’v - uv’}{v^2}$
Integration Formulas#
- $\int x^n , dx = \frac{x^{n+1}}{n+1} + C$ (for $n \neq -1$)
- $\int \frac{1}{x} , dx = \ln|x| + C$
- $\int e^x , dx = e^x + C$
- $\int \sin x , dx = -\cos x + C$
- $\int \cos x , dx = \sin x + C$
- $\int \sec^2 x , dx = \tan x + C$
- $\int \frac{1}{1+x^2} , dx = \tan^{-1} x + C$
- Integration by Parts: $\int u , dv = uv - \int v , du$
Differential Equations#
- Variable Separable: $\frac{dy}{dx} = f(x)g(y) \Rightarrow \frac{dy}{g(y)} = f(x)dx$
- Linear DE: $\frac{dy}{dx} + Py = Q$, Solution: $y \cdot I.F. = \int Q \cdot I.F. , dx$
- Integrating Factor: $I.F. = e^{\int P , dx}$
Statistics Formulas#
- Mean: $\bar{x} = \frac{\sum x_i}{n}$ (ungrouped), $\bar{x} = \frac{\sum f_i x_i}{\sum f_i}$ (grouped)
- Mean Deviation: $M.D. = \frac{\sum |x_i - \bar{x}|}{n}$ (ungrouped), $M.D. = \frac{\sum f_i |x_i - \bar{x}|}{\sum f_i}$ (grouped)
- Standard Deviation: $\sigma = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n}}$ (ungrouped)
- Variance: $\sigma^2 = \frac{\sum (x_i - \bar{x})^2}{n}$
- Range: Maximum value - Minimum value
- Combined Mean: $\bar{x} = \frac{n_1\bar{x_1} + n_2\bar{x_2}}{n_1 + n_2}$
Problem-Solving Strategies#
Matrix Problems#
- Check dimensions before operations
- Calculate determinant first to check if inverse exists
- Use cofactor method for 3×3 matrix inverse
- Set up equations properly for system solving
Differentiation Problems#
- Identify the type (implicit, parametric, composite)
- Apply appropriate rules (chain, product, quotient)
- Simplify step by step
- Check units in application problems
Integration Problems#
- Try standard forms first
- Use substitution when inner function derivative is present
- Apply integration by parts for products
- Check limits carefully in definite integrals
Differential Equations#
- Identify the type (separable, linear, homogeneous)
- Apply appropriate method
- Use initial conditions to find constants
- Verify solution by substitution
Statistics Problems#
- Organize data in tabular form
- Calculate systematically using formulas
- Use class midpoints for grouped data
- Double-check calculations
Common Mistakes to Avoid#
- Matrix multiplication: Remember it’s not commutative ($AB \neq BA$)
- Chain rule: Don’t forget to multiply by derivative of inner function
- Integration limits: Be careful with sign changes
- Differential equations: Always include constant of integration
- Statistics: Use correct formulas for grouped vs ungrouped data
- Arithmetic errors: Double-check all calculations
- Units: Maintain proper units throughout calculations
Exam Tips#
- Read questions carefully - understand what’s being asked
- Show all steps - partial credit is often awarded
- Use proper mathematical notation
- Check your answers when possible
- Manage time effectively - attempt questions you’re confident about first
- Use formulas correctly - refer to the formula sheet
- For optional questions - choose the ones you can solve completely
- In statistics problems - organize data clearly before calculations
- For differential equations - verify your solution satisfies the original equation
- Practice numerical problems - accuracy in calculations is crucial