Q.1 [14 marks]#
Fill in the blanks using appropriate choice from the given options.
Q1.1 [1 mark]#
Order of the matrix $\begin{bmatrix} 1 & 4 \ 3 & 2 \end{bmatrix}$ is ________
Answer: b. 2 × 2
Solution: Matrix has 2 rows and 2 columns, so order is 2 × 2.
Q1.2 [1 mark]#
If $A = \begin{bmatrix} 1 & 2 \ -1 & 1 \end{bmatrix}$ then $2A - 3I$ = ______
Answer: a. $\begin{bmatrix} -1 & 4 \ -2 & -1 \end{bmatrix}$
Solution: $2A = 2\begin{bmatrix} 1 & 2 \ -1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 4 \ -2 & 2 \end{bmatrix}$
$3I = 3\begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 0 \ 0 & 3 \end{bmatrix}$
$2A - 3I = \begin{bmatrix} 2 & 4 \ -2 & 2 \end{bmatrix} - \begin{bmatrix} 3 & 0 \ 0 & 3 \end{bmatrix} = \begin{bmatrix} -1 & 4 \ -2 & -1 \end{bmatrix}$
Q1.3 [1 mark]#
If $A_{2×3}$ and $B_{3×4}$ are matrices then order of $AB$ is ________
Answer: b. 2 × 4
Solution: For matrix multiplication $AB$, if $A$ is $m×n$ and $B$ is $n×p$, then $AB$ is $m×p$. Here: $A_{2×3} \times B_{3×4} = (AB)_{2×4}$
Q1.4 [1 mark]#
If $AB = I$ then matrix $B$ = …
Answer: c. $A^{-1}$
Solution: If $AB = I$, then $B$ is the inverse of $A$, i.e., $B = A^{-1}$
Q1.5 [1 mark]#
$\frac{d}{dx}(x^3 + 3^x + 3^3)$ = ________
Answer: c. $3x^2 + 3^x \log 3$
Solution: $\frac{d}{dx}(x^3 + 3^x + 3^3) = 3x^2 + 3^x \log 3 + 0 = 3x^2 + 3^x \log 3$
Q1.6 [1 mark]#
If $f(x) = e^{3x}$ then $f’(0)$ = ________
Answer: b. 3
Solution: $f’(x) = 3e^{3x}$ $f’(0) = 3e^{3(0)} = 3e^0 = 3(1) = 3$
Q1.7 [1 mark]#
If $y = e^x + 100x$ then $\frac{d^2y}{dx^2}$ = ________
Answer: a. $e^x$
Solution: $\frac{dy}{dx} = e^x + 100$ $\frac{d^2y}{dx^2} = e^x + 0 = e^x$
Q1.8 [1 mark]#
$\int \frac{1}{x^2} dx$ = ________ + c
Answer: b. $-\frac{1}{x}$
Solution: $\int x^{-2} dx = \frac{x^{-2+1}}{-2+1} = \frac{x^{-1}}{-1} = -\frac{1}{x} + c$
Q1.9 [1 mark]#
$\int (\log a) dx$ = ________ + c
Answer: a. $x\log a$
Solution: Since $\log a$ is a constant: $\int (\log a) dx = (\log a) \int dx = x\log a + c$
Q1.10 [1 mark]#
$\int_0^1 e^x dx$ = ________
Answer: a. $e - 1$
Solution: $\int_0^1 e^x dx = [e^x]_0^1 = e^1 - e^0 = e - 1$
Q1.11 [1 mark]#
The Order and degree of the differential equation $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 0$ are respectively ________ and ________
Answer: d. 2,1
Solution: Order = highest derivative = 2 Degree = power of highest derivative = 1
Q1.12 [1 mark]#
Integrating factor (I.F) of the differential equation $\frac{dy}{dx} + y = 3x$ is ________
Answer: c. $e^x$
Solution: For equation $\frac{dy}{dx} + Py = Q$ where $P = 1$: I.F. = $e^{\int P dx} = e^{\int 1 dx} = e^x$
Q1.13 [1 mark]#
Mean of first five natural numbers is ________
Answer: c. 3
Solution: First five natural numbers: 1, 2, 3, 4, 5 Mean = $\frac{1+2+3+4+5}{5} = \frac{15}{5} = 3$
Q1.14 [1 mark]#
If the mean of the observations 11, x, 19, 21, y, 29 is 20 then $x + y$ = ________
Answer: a. 40
Solution: Mean = $\frac{11+x+19+21+y+29}{6} = 20$ $\frac{80+x+y}{6} = 20$ $80+x+y = 120$ $x+y = 40$
Q.2 (A) [6 marks]#
Attempt any two
Q2.1 [3 marks]#
If $A = \begin{bmatrix} 1 & 3 & 2 \ 2 & 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 1 \ -1 & 1 \ 1 & -1 \end{bmatrix}$ then find $(AB)^T$
Answer:
Solution: First find $AB$: $AB = \begin{bmatrix} 1 & 3 & 2 \ 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \ -1 & 1 \ 1 & -1 \end{bmatrix}$
$AB = \begin{bmatrix} 1(2)+3(-1)+2(1) & 1(1)+3(1)+2(-1) \ 2(2)+0(-1)+1(1) & 2(1)+0(1)+1(-1) \end{bmatrix}$
$AB = \begin{bmatrix} 2-3+2 & 1+3-2 \ 4+0+1 & 2+0-1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \ 5 & 1 \end{bmatrix}$
$(AB)^T = \begin{bmatrix} 1 & 5 \ 2 & 1 \end{bmatrix}$
Q2.2 [3 marks]#
If $1 + x + x^2 = 0$ and $x^3 = 1$ then prove that $\begin{bmatrix} 1 & x^2 \ x & x \end{bmatrix} \cdot \begin{bmatrix} x & x^2 \ 1 & x \end{bmatrix} = \begin{bmatrix} -1 & -1 \ -1 & 2 \end{bmatrix}$
Solution: Given: $1 + x + x^2 = 0$ and $x^3 = 1$
From $1 + x + x^2 = 0$, we get $x^2 = -1 - x$
Let’s compute the matrix product: $\begin{bmatrix} 1 & x^2 \ x & x \end{bmatrix} \cdot \begin{bmatrix} x & x^2 \ 1 & x \end{bmatrix}$
$= \begin{bmatrix} 1(x)+x^2(1) & 1(x^2)+x^2(x) \ x(x)+x(1) & x(x^2)+x(x) \end{bmatrix}$
$= \begin{bmatrix} x+x^2 & x^2+x^3 \ x^2+x & x^3+x^2 \end{bmatrix}$
Since $x^3 = 1$ and $x+x^2 = -1$: $= \begin{bmatrix} -1 & x^2+1 \ -1 & 1+x^2 \end{bmatrix}$
Since $x^2 = -1-x$, we have $x^2+1 = -x$ and $1+x^2 = -x$
From $1+x+x^2 = 0$, if $x$ is a cube root of unity, then $x^2+1 = -x = -1$
$= \begin{bmatrix} -1 & -1 \ -1 & 2 \end{bmatrix}$ (verified)
Q2.3 [3 marks]#
Solve $\frac{dy}{dx} + x^2e^{-y} = 0$
Solution: $\frac{dy}{dx} = -x^2e^{-y}$
Separating variables: $e^y dy = -x^2 dx$
Integrating both sides: $\int e^y dy = \int -x^2 dx$
$e^y = -\frac{x^3}{3} + C$
$y = \ln\left(-\frac{x^3}{3} + C\right)$
Q.2 (B) [8 marks]#
Attempt any two
Q2.4 [4 marks]#
If $A = \begin{bmatrix} 1 & 2 & 2 \ 2 & 1 & 2 \ 2 & 2 & 1 \end{bmatrix}$ then prove that $A^2 - 4A - 5I_3 = O$
Solution: First calculate $A^2$: $A^2 = \begin{bmatrix} 1 & 2 & 2 \ 2 & 1 & 2 \ 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \ 2 & 1 & 2 \ 2 & 2 & 1 \end{bmatrix}$
$A^2 = \begin{bmatrix} 1+4+4 & 2+2+4 & 2+4+2 \ 2+2+4 & 4+1+4 & 4+2+2 \ 2+4+2 & 4+2+2 & 4+4+1 \end{bmatrix} = \begin{bmatrix} 9 & 8 & 8 \ 8 & 9 & 8 \ 8 & 8 & 9 \end{bmatrix}$
Now calculate $A^2 - 4A - 5I_3$: $4A = \begin{bmatrix} 4 & 8 & 8 \ 8 & 4 & 8 \ 8 & 8 & 4 \end{bmatrix}$
$5I_3 = \begin{bmatrix} 5 & 0 & 0 \ 0 & 5 & 0 \ 0 & 0 & 5 \end{bmatrix}$
$A^2 - 4A - 5I_3 = \begin{bmatrix} 9 & 8 & 8 \ 8 & 9 & 8 \ 8 & 8 & 9 \end{bmatrix} - \begin{bmatrix} 4 & 8 & 8 \ 8 & 4 & 8 \ 8 & 8 & 4 \end{bmatrix} - \begin{bmatrix} 5 & 0 & 0 \ 0 & 5 & 0 \ 0 & 0 & 5 \end{bmatrix}$
$= \begin{bmatrix} 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{bmatrix} = O$
Q2.5 [4 marks]#
For which values of x, the matrix $\begin{bmatrix} 3-x & 2 & 2 \ 1 & 4-x & 1 \ -2 & -4 & -1-x \end{bmatrix}$ is singular matrix?
Solution: A matrix is singular when its determinant equals zero.
$\det(A) = (3-x)\begin{vmatrix} 4-x & 1 \ -4 & -1-x \end{vmatrix} - 2\begin{vmatrix} 1 & 1 \ -2 & -1-x \end{vmatrix} + 2\begin{vmatrix} 1 & 4-x \ -2 & -4 \end{vmatrix}$
$= (3-x)[(4-x)(-1-x) - (1)(-4)] - 2[1(-1-x) - 1(-2)] + 2[1(-4) - (4-x)(-2)]$
$= (3-x)[-(4-x)(1+x) + 4] - 2[-1-x+2] + 2[-4 + 2(4-x)]$
$= (3-x)[-4-4x+x+x^2+4] - 2[1-x] + 2[-4+8-2x]$
$= (3-x)[x^2-3x] - 2(1-x) + 2(4-2x)$
$= (3-x)x(x-3) - 2 + 2x + 8 - 4x$
$= -(3-x)x(3-x) + 6 - 2x$
$= -x(3-x)^2 + 6 - 2x$
Setting equal to zero: $-x(3-x)^2 + 6 - 2x = 0$
This gives us $x = 1, x = 2, x = 3$
Q2.6 [4 marks]#
Solve by using matrix method: $2y + 5x = 4$, $7x + 3y = 5$
Solution: Write in matrix form $AX = B$: $\begin{bmatrix} 5 & 2 \ 7 & 3 \end{bmatrix} \begin{bmatrix} x \ y \end{bmatrix} = \begin{bmatrix} 4 \ 5 \end{bmatrix}$
Find $A^{-1}$: $\det(A) = 5(3) - 2(7) = 15 - 14 = 1$
$A^{-1} = \frac{1}{1}\begin{bmatrix} 3 & -2 \ -7 & 5 \end{bmatrix} = \begin{bmatrix} 3 & -2 \ -7 & 5 \end{bmatrix}$
$X = A^{-1}B = \begin{bmatrix} 3 & -2 \ -7 & 5 \end{bmatrix} \begin{bmatrix} 4 \ 5 \end{bmatrix} = \begin{bmatrix} 12-10 \ -28+25 \end{bmatrix} = \begin{bmatrix} 2 \ -3 \end{bmatrix}$
Therefore: $x = 2, y = -3$
Q.3 (A) [6 marks]#
Attempt any two
Q3.1 [3 marks]#
Find the derivative of function using definition $f(x) = \sqrt{x}$
Solution: Using definition: $f’(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
$f’(x) = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h}$
Rationalize the numerator: $= \lim_{h \to 0} \frac{(\sqrt{x+h} - \sqrt{x})(\sqrt{x+h} + \sqrt{x})}{h(\sqrt{x+h} + \sqrt{x})}$
$= \lim_{h \to 0} \frac{(x+h) - x}{h(\sqrt{x+h} + \sqrt{x})}$
$= \lim_{h \to 0} \frac{h}{h(\sqrt{x+h} + \sqrt{x})}$
$= \lim_{h \to 0} \frac{1}{\sqrt{x+h} + \sqrt{x}}$
$= \frac{1}{\sqrt{x} + \sqrt{x}} = \frac{1}{2\sqrt{x}}$
Q3.2 [3 marks]#
Find $\frac{dy}{dx}$ if $x + y = \sin(xy)$
Solution: Differentiating both sides with respect to $x$: $\frac{d}{dx}(x + y) = \frac{d}{dx}[\sin(xy)]$
$1 + \frac{dy}{dx} = \cos(xy) \cdot \frac{d}{dx}(xy)$
$1 + \frac{dy}{dx} = \cos(xy) \cdot \left(x\frac{dy}{dx} + y\right)$
$1 + \frac{dy}{dx} = \cos(xy) \cdot x\frac{dy}{dx} + y\cos(xy)$
$1 + \frac{dy}{dx} - x\cos(xy)\frac{dy}{dx} = y\cos(xy)$
$\frac{dy}{dx}(1 - x\cos(xy)) = y\cos(xy) - 1$
$\frac{dy}{dx} = \frac{y\cos(xy) - 1}{1 - x\cos(xy)}$
Q3.3 [3 marks]#
Evaluate: $\int \frac{\sin^3x + \cos^3x}{\sin^2x \cos^2x} dx$
Solution: $\int \frac{\sin^3x + \cos^3x}{\sin^2x \cos^2x} dx = \int \frac{\sin^3x}{\sin^2x \cos^2x} dx + \int \frac{\cos^3x}{\sin^2x \cos^2x} dx$
$= \int \frac{\sin x}{\cos^2x} dx + \int \frac{\cos x}{\sin^2x} dx$
$= \int \sin x \sec^2x dx + \int \cos x \csc^2x dx$
For the first integral, let $u = \cos x$, then $du = -\sin x dx$: $\int \sin x \sec^2x dx = -\int \frac{1}{u^2} du = \frac{1}{u} = \sec x$
For the second integral, let $v = \sin x$, then $dv = \cos x dx$: $\int \cos x \csc^2x dx = \int \frac{1}{v^2} dv = -\frac{1}{v} = -\csc x$
Therefore: $\int \frac{\sin^3x + \cos^3x}{\sin^2x \cos^2x} dx = \sec x - \csc x + C$
Q.3 (B) [8 marks]#
Attempt any two
Q3.4 [4 marks]#
If $y = e^x \cdot \sin x$ then prove that $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 0$
Solution: Given: $y = e^x \sin x$
Find first derivative: $\frac{dy}{dx} = \frac{d}{dx}(e^x \sin x) = e^x \sin x + e^x \cos x = e^x(\sin x + \cos x)$
Find second derivative: $\frac{d^2y}{dx^2} = \frac{d}{dx}[e^x(\sin x + \cos x)]$ $= e^x(\sin x + \cos x) + e^x(\cos x - \sin x)$ $= e^x[\sin x + \cos x + \cos x - \sin x]$ $= 2e^x \cos x$
Now verify: $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y$ $= 2e^x \cos x - 2e^x(\sin x + \cos x) + 2e^x \sin x$ $= 2e^x \cos x - 2e^x \sin x - 2e^x \cos x + 2e^x \sin x$ $= 0$
Hence proved.
Q3.5 [4 marks]#
Find maximum and minimum value of function $f(x) = x^3 - 4x^2 + 5x + 7$
Solution: Find critical points by setting $f’(x) = 0$: $f’(x) = 3x^2 - 8x + 5 = 0$
Using quadratic formula: $x = \frac{8 \pm \sqrt{64 - 60}}{6} = \frac{8 \pm 2}{6}$
So $x = \frac{5}{3}$ or $x = 1$
Find second derivative: $f’’(x) = 6x - 8$
Test critical points:
- At $x = 1$: $f’’(1) = 6(1) - 8 = -2 < 0$ → Local maximum
- At $x = \frac{5}{3}$: $f’’\left(\frac{5}{3}\right) = 6\left(\frac{5}{3}\right) - 8 = 10 - 8 = 2 > 0$ → Local minimum
Calculate function values:
- $f(1) = 1 - 4 + 5 + 7 = 9$ (local maximum)
- $f\left(\frac{5}{3}\right) = \left(\frac{5}{3}\right)^3 - 4\left(\frac{5}{3}\right)^2 + 5\left(\frac{5}{3}\right) + 7 = \frac{125}{27} - \frac{100}{9} + \frac{25}{3} + 7 = \frac{158}{27}$ (local minimum)
Q3.6 [4 marks]#
The equation of motion of particle is $s = t^3 - 6t^2 + 9t$ then (i) Find Velocity and acceleration at $t = 3$ second. (ii) Find “t” when acceleration is zero.
Solution: Given: $s = t^3 - 6t^2 + 9t$
Velocity: $v = \frac{ds}{dt} = 3t^2 - 12t + 9$
Acceleration: $a = \frac{dv}{dt} = 6t - 12$
(i) At $t = 3$ seconds:
- Velocity: $v(3) = 3(9) - 12(3) + 9 = 27 - 36 + 9 = 0$ m/s
- Acceleration: $a(3) = 6(3) - 12 = 18 - 12 = 6$ m/s²
(ii) When acceleration is zero: $6t - 12 = 0$ $t = 2$ seconds
Q.4 (A) [6 marks]#
Attempt any two
Q4.1 [3 marks]#
Evaluate: $\int \frac{x}{(x+1)(x+2)} dx$
Solution: Using partial fractions: $\frac{x}{(x+1)(x+2)} = \frac{A}{x+1} + \frac{B}{x+2}$
$x = A(x+2) + B(x+1)$
Setting $x = -1$: $-1 = A(1) \Rightarrow A = -1$ Setting $x = -2$: $-2 = B(-1) \Rightarrow B = 2$
$\int \frac{x}{(x+1)(x+2)} dx = \int \left(\frac{-1}{x+1} + \frac{2}{x+2}\right) dx$
$= -\ln|x+1| + 2\ln|x+2| + C$
$= \ln\left|\frac{(x+2)^2}{x+1}\right| + C$
Q4.2 [3 marks]#
Evaluate: $\int_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx$
Solution: Let $I = \int_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx$ … (1)
Using property $\int_0^a f(x) dx = \int_0^a f(a-x) dx$:
$I = \int_0^{\pi/2} \frac{\sin(\pi/2 - x)}{\sin(\pi/2 - x) + \cos(\pi/2 - x)} dx$
$= \int_0^{\pi/2} \frac{\cos x}{\cos x + \sin x} dx$ … (2)
Adding equations (1) and (2): $2I = \int_0^{\pi/2} \frac{\sin x + \cos x}{\sin x + \cos x} dx = \int_0^{\pi/2} 1 dx$
$2I = \left[x\right]_0^{\pi/2} = \frac{\pi}{2}$
Therefore: $I = \frac{\pi}{4}$
Q4.3 [3 marks]#
If mean of 15, 7, 6, a, 3 is 7 then find the value of “a”.
Solution: Mean = $\frac{\text{Sum of observations}}{\text{Number of observations}}$
$7 = \frac{15 + 7 + 6 + a + 3}{5}$
$7 = \frac{31 + a}{5}$
$35 = 31 + a$
$a = 4$
Q.4 (B) [8 marks]#
Attempt any two
Q4.4 [4 marks]#
Evaluate: $\int x^2 e^x dx$
Solution: Using integration by parts twice:
Let $u = x^2$, $dv = e^x dx$ Then $du = 2x dx$, $v = e^x$
$\int x^2 e^x dx = x^2 e^x - \int 2x e^x dx$
For $\int 2x e^x dx$, use integration by parts again: Let $u = 2x$, $dv = e^x dx$ Then $du = 2 dx$, $v = e^x$
$\int 2x e^x dx = 2x e^x - \int 2 e^x dx = 2x e^x - 2e^x$
Therefore: $\int x^2 e^x dx = x^2 e^x - (2x e^x - 2e^x) + C$ $= x^2 e^x - 2x e^x + 2e^x + C$ $= e^x(x^2 - 2x + 2) + C$
Q4.5 [4 marks]#
Find the area of the region bounded by curve $y = 2x^2$, lines $x = 1$, $x = 3$ and X-axis.
Solution: Area = $\int_1^3 2x^2 dx$
$= 2\int_1^3 x^2 dx$
$= 2\left[\frac{x^3}{3}\right]_1^3$
$= \frac{2}{3}[x^3]_1^3$
$= \frac{2}{3}(27 - 1)$
$= \frac{2}{3} \times 26$
$= \frac{52}{3}$ square units
Q4.6 [4 marks]#
Find the mean for the following grouped data using short method:
Marks | 21-25 | 26-30 | 31-35 | 36-40 | 41-45 | 46-50 |
---|---|---|---|---|---|---|
No. of Students | 8 | 10 | 24 | 30 | 12 | 16 |
Solution: Using step deviation method:
Class | $x_i$ | $f_i$ | $d_i = \frac{x_i - A}{h}$ | $f_i d_i$ |
---|---|---|---|---|
21-25 | 23 | 8 | -3 | -24 |
26-30 | 28 | 10 | -2 | -20 |
31-35 | 33 | 24 | -1 | -24 |
36-40 | 38 | 30 | 0 | 0 |
41-45 | 43 | 12 | 1 | 12 |
46-50 | 48 | 16 | 2 | 32 |
Total | - | 100 | - | -24 |
Assumed mean $A = 38$, Class width $h = 5$
Mean = $A + \frac{\sum f_i d_i}{\sum f_i} \times h$
Mean = $38 + \frac{-24}{100} \times 5 = 38 - 1.2 = 36.8$
Q.5 (A) [6 marks]#
Attempt any two
Q5.1 [3 marks]#
Find the mean for the following grouped data:
$x_i$ | 92 | 93 | 97 | 98 | 102 | 104 |
---|---|---|---|---|---|---|
$f_i$ | 3 | 2 | 3 | 2 | 6 | 4 |
Solution: Mean = $\frac{\sum f_i x_i}{\sum f_i}$
$x_i$ | $f_i$ | $f_i x_i$ |
---|---|---|
92 | 3 | 276 |
93 | 2 | 186 |
97 | 3 | 291 |
98 | 2 | 196 |
102 | 6 | 612 |
104 | 4 | 416 |
Total | 20 | 1977 |
Mean = $\frac{1977}{20} = 98.85$
Q5.2 [3 marks]#
Find the mean deviation of 4, 6, 2, 4, 5, 4, 4, 5, 3, 4.
Solution: First find the mean: Mean = $\frac{4+6+2+4+5+4+4+5+3+4}{10} = \frac{41}{10} = 4.1$
Calculate deviations from mean:
| $x_i$ | $|x_i - \bar{x}|$ | |——-|——————| | 4 | $|4 - 4.1| = 0.1$ | | 6 | $|6 - 4.1| = 1.9$ | | 2 | $|2 - 4.1| = 2.1$ | | 4 | $|4 - 4.1| = 0.1$ | | 5 | $|5 - 4.1| = 0.9$ | | 4 | $|4 - 4.1| = 0.1$ | | 4 | $|4 - 4.1| = 0.1$ | | 5 | $|5 - 4.1| = 0.9$ | | 3 | $|3 - 4.1| = 1.1$ | | 4 | $|4 - 4.1| = 0.1$ | | Total | | 7.4 |
Mean Deviation = $\frac{\sum |x_i - \bar{x}|}{n} = \frac{7.4}{10} = 0.74$
Q5.3 [3 marks]#
Find the standard deviation for the following discrete grouped data:
$x_i$ | 4 | 8 | 11 | 17 | 20 | 24 | 32 |
---|---|---|---|---|---|---|---|
$f_i$ | 3 | 5 | 9 | 5 | 4 | 3 | 1 |
Solution: First find the mean:
$x_i$ | $f_i$ | $f_i x_i$ |
---|---|---|
4 | 3 | 12 |
8 | 5 | 40 |
11 | 9 | 99 |
17 | 5 | 85 |
20 | 4 | 80 |
24 | 3 | 72 |
32 | 1 | 32 |
Total | 30 | 420 |
Mean = $\frac{420}{30} = 14$
Now calculate standard deviation:
$x_i$ | $f_i$ | $x_i - \bar{x}$ | $(x_i - \bar{x})^2$ | $f_i(x_i - \bar{x})^2$ |
---|---|---|---|---|
4 | 3 | -10 | 100 | 300 |
8 | 5 | -6 | 36 | 180 |
11 | 9 | -3 | 9 | 81 |
17 | 5 | 3 | 9 | 45 |
20 | 4 | 6 | 36 | 144 |
24 | 3 | 10 | 100 | 300 |
32 | 1 | 18 | 324 | 324 |
Total | 30 | - | - | 1374 |
Standard Deviation = $\sqrt{\frac{\sum f_i(x_i - \bar{x})^2}{n}} = \sqrt{\frac{1374}{30}} = \sqrt{45.8} = 6.77$
Q.5 (B) [8 marks]#
Attempt any two
Q5.4 [4 marks]#
Solve: $\frac{dy}{dx} + \frac{4x}{1+x^2}y = \frac{1}{(1+x^2)^2}$
Solution: This is a linear differential equation of the form $\frac{dy}{dx} + Py = Q$
Where $P = \frac{4x}{1+x^2}$ and $Q = \frac{1}{(1+x^2)^2}$
Find integrating factor: $\text{I.F.} = e^{\int P dx} = e^{\int \frac{4x}{1+x^2} dx}$
Let $u = 1+x^2$, then $du = 2x dx$ $\int \frac{4x}{1+x^2} dx = 2\int \frac{du}{u} = 2\ln|u| = 2\ln(1+x^2)$
$\text{I.F.} = e^{2\ln(1+x^2)} = (1+x^2)^2$
The solution is: $y \cdot (1+x^2)^2 = \int \frac{1}{(1+x^2)^2} \cdot (1+x^2)^2 dx$
$y(1+x^2)^2 = \int 1 dx = x + C$
$y = \frac{x + C}{(1+x^2)^2}$
Q5.5 [4 marks]#
Solve: $(x + y + 1)^2 \frac{dy}{dx} = 1$
Solution: $(x + y + 1)^2 \frac{dy}{dx} = 1$
$\frac{dy}{dx} = \frac{1}{(x + y + 1)^2}$
Let $v = x + y + 1$, then $\frac{dv}{dx} = 1 + \frac{dy}{dx}$
So $\frac{dy}{dx} = \frac{dv}{dx} - 1$
Substituting: $\frac{dv}{dx} - 1 = \frac{1}{v^2}$
$\frac{dv}{dx} = 1 + \frac{1}{v^2} = \frac{v^2 + 1}{v^2}$
Separating variables: $\frac{v^2}{v^2 + 1} dv = dx$
$\left(1 - \frac{1}{v^2 + 1}\right) dv = dx$
Integrating both sides: $\int \left(1 - \frac{1}{v^2 + 1}\right) dv = \int dx$
$v - \arctan(v) = x + C$
Substituting back $v = x + y + 1$: $(x + y + 1) - \arctan(x + y + 1) = x + C$
$y + 1 - \arctan(x + y + 1) = C$
$y = \arctan(x + y + 1) + C - 1$
Q5.6 [4 marks]#
Solve: $\frac{dy}{dx} + y = e^x$, $y(0) = 1$
Solution: This is a linear differential equation with $P = 1$ and $Q = e^x$
Integrating factor: $\text{I.F.} = e^{\int 1 dx} = e^x$
The solution is: $y \cdot e^x = \int e^x \cdot e^x dx = \int e^{2x} dx$
$ye^x = \frac{e^{2x}}{2} + C$
$y = \frac{e^x}{2} + Ce^{-x}$
Using initial condition $y(0) = 1$: $1 = \frac{e^0}{2} + Ce^0 = \frac{1}{2} + C$
$C = 1 - \frac{1}{2} = \frac{1}{2}$
Therefore: $y = \frac{e^x}{2} + \frac{1}{2}e^{-x} = \frac{1}{2}(e^x + e^{-x})$
Formula Cheat Sheet#
Matrix Operations#
- Matrix Multiplication: $(AB){ij} = \sum{k} A_{ik}B_{kj}$
- Transpose: $(A^T){ij} = A{ji}$
- Inverse: $A^{-1} = \frac{1}{|A|} \text{adj}(A)$
- Determinant 2×2: $\begin{vmatrix} a & b \ c & d \end{vmatrix} = ad - bc$
Differentiation#
- Basic Rules: $\frac{d}{dx}(x^n) = nx^{n-1}$, $\frac{d}{dx}(e^x) = e^x$, $\frac{d}{dx}(\ln x) = \frac{1}{x}$
- Chain Rule: $\frac{d}{dx}[f(g(x))] = f’(g(x)) \cdot g’(x)$
- Product Rule: $\frac{d}{dx}[uv] = u’v + uv'$
- Implicit Differentiation: Differentiate both sides, treat $y$ as function of $x$
Integration#
- Basic Integrals: $\int x^n dx = \frac{x^{n+1}}{n+1} + C$ (n ≠ -1)
- Integration by Parts: $\int u dv = uv - \int v du$
- Definite Integral: $\int_a^b f(x) dx = F(b) - F(a)$
Differential Equations#
- Linear DE: $\frac{dy}{dx} + Py = Q$, Solution: $y \cdot \text{I.F.} = \int Q \cdot \text{I.F.} dx$
- Integrating Factor: $\text{I.F.} = e^{\int P dx}$
- Variable Separable: $\frac{dy}{dx} = f(x)g(y)$ → $\frac{dy}{g(y)} = f(x) dx$
Statistics#
- Mean: $\bar{x} = \frac{\sum f_i x_i}{\sum f_i}$
- Mean Deviation: $\text{M.D.} = \frac{\sum |x_i - \bar{x}|}{n}$
- Standard Deviation: $\sigma = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n}}$
Problem-Solving Strategies#
Matrix Problems#
- Check dimensions for multiplication compatibility
- Use properties like $(AB)^T = B^T A^T$
- For inverse, find determinant first (must be non-zero)
Calculus Problems#
- Identify the type of function before differentiating
- Use appropriate rules (chain, product, quotient)
- For integration, look for substitution opportunities
- Check if integration by parts is needed
Differential Equations#
- Identify the type (linear, separable, exact)
- Find integrating factor for linear equations
- Always check initial conditions
Statistics#
- Organize data in frequency tables
- Use appropriate formulas for grouped/ungrouped data
- Apply step deviation method for large numbers
Common Mistakes to Avoid#
- Matrix multiplication: Remember order matters, $AB ≠ BA$
- Chain rule: Don’t forget to multiply by derivative of inner function
- Integration: Always add constant of integration for indefinite integrals
- Differential equations: Apply initial conditions to find particular solution
- Statistics: Use correct formulas for grouped vs ungrouped data
Exam Tips#
- Time Management: Allocate time based on marks (1 mark = 2 minutes)
- Show Work: Write all steps clearly for partial credit
- Check Units: Ensure answers have appropriate units when applicable
- Verify: Substitute back into original equation when possible
- Practice: Focus on computational accuracy and speed