Q.1 [14 marks]

Fill in the blanks using appropriate choice from the given options.

Q1.1 [1 mark]

Order of the matrix $\begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}$ is _____

Answer: b. 2 × 2

Solution:

Matrix has 2 rows and 2 columns, so order is 2 × 2.

Q1.2 [1 mark]

If $A = egin{bmatrix} 1 & 2 \ -1 & 1 \end{bmatrix}$ then 2A - 3I = _ Answer: a. $\begin{bmatrix} -1 & 4 \\ -2 & -1 \end{bmatrix}$ Solution: -7 F

$$2A = 2\begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ -2 & 2 \end{bmatrix}$$
$$3I = 3\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$$
$$2A - 3I = \begin{bmatrix} 2 & 4 \\ -2 & 2 \end{bmatrix} - \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} -1 & 4 \\ -2 & -1 \end{bmatrix}$$

Q1.3 [1 mark]

If $A_{2 imes 3}$ and $B_{3 imes 4}$ are matrices then order of AB is _____

Answer: b. 2 × 4

Solution:

For matrix multiplication *AB*, if *A* is $m \times n$ and *B* is $n \times p$, then *AB* is $m \times p$. Here: $A_{2 \times 3} \times B_{3 \times 4} = (AB)_{2 \times 4}$

Q1.4 [1 mark]

If AB = I then matrix B = ...

Answer: c. A^{-1}

Solution: If AB = I, then B is the inverse of A, i.e., $B = A^{-1}$

Q1.5 [1 mark]

$$\frac{d}{dx}(x^3+3^x+3^3)$$
 = _____

Answer: c. $3x^2 + 3^x \log 3$

Solution:

 $rac{d}{dx}(x^3+3^x+3^3)=3x^2+3^x\log 3+0=3x^2+3^x\log 3$

Q1.6 [1 mark]

If $f(x) = e^{3x}$ then f'(0) = ____

Answer: b. 3

Solution: $f'(x) = 3e^{3x}$ $f'(0) = 3e^{3(0)} = 3e^0 = 3(1) = 3$

Q1.7 [1 mark]

If $y=e^x+100x$ then $rac{d^2y}{dx^2}$ =____

Answer: a. e^x

Solution: $\frac{\frac{dy}{dx}}{\frac{d^2y}{dx^2}} = e^x + 100$ $\frac{\frac{d^2y}{dx^2}}{\frac{d^2y}{dx^2}} = e^x + 0 = e^x$

Q1.8 [1 mark]

 $\int \frac{1}{x^2} dx$ = ____ + c

Answer: b. $-\frac{1}{x}$

Solution: $\int x^{-2} dx = rac{x^{-2+1}}{-2+1} = rac{x^{-1}}{-1} = -rac{1}{x} + c$

Q1.9 [1 mark]

 $\int (\log a) dx = _$ + c

Answer: a. $x \log a$

Solution: Since $\log a$ is a constant: $\int (\log a) dx = (\log a) \int dx = x \log a + c$

Q1.10 [1 mark]

 $\int_0^1 e^x dx$ = ____

Answer: a. e-1

Solution: $\int_0^1 e^x dx = [e^x]_0^1 = e^1 - e^0 = e - 1$

Q1.11 [1 mark]

The Order and degree of the differential equation $rac{d^2y}{dx^2}-5rac{dy}{dx}+6y=0$ are respectively ____ and ____

Answer: d. 2,1

Solution: Order = highest derivative = 2 Degree = power of highest derivative = 1

Q1.12 [1 mark]

Integrating factor (I.F) of the differential equation $rac{dy}{dx}+y=3x$ is _____

Answer: c. e^x

Solution:

For equation $\frac{dy}{dx} + Py = Q$ where P = 1: I.F. = $e^{\int Pdx} = e^{\int 1dx} = e^x$

Q1.13 [1 mark]

Mean of first five natural numbers is ____

Answer: c. 3

Solution: First five natural numbers: 1, 2, 3, 4, 5 Mean = $\frac{1+2+3+4+5}{5} = \frac{15}{5} = 3$

Q1.14 [1 mark]

If the mean of the observations 11, x, 19, 21, y, 29 is 20 then x+y = ____

Answer: a. 40

Solution: Mean = $\frac{11+x+19+21+y+29}{6} = 20$ $\frac{80+x+y}{6} = 20$ 80+x+y = 120x+y = 40

Q.2 (A) [6 marks]

Attempt any two

Q2.1 [3 marks]

If
$$A = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 1 \\ -1 & 1 \\ 1 & -1 \end{bmatrix}$ then find $(AB)^T$

Answer:

Solution: First find *AB*:

$$AB = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & 1 \\ 1 & -1 \end{bmatrix}$$
$$AB = \begin{bmatrix} 1(2) + 3(-1) + 2(1) & 1(1) + 3(1) + 2(-1) \\ 2(2) + 0(-1) + 1(1) & 2(1) + 0(1) + 1(-1) \end{bmatrix}$$
$$AB = \begin{bmatrix} 2 - 3 + 2 & 1 + 3 - 2 \\ 4 + 0 + 1 & 2 + 0 - 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 5 & 1 \end{bmatrix}$$
$$(AB)^{T} = \begin{bmatrix} 1 & 5 \\ 2 & 1 \end{bmatrix}$$

Q2.2 [3 marks]

If
$$1+x+x^2=0$$
 and $x^3=1$ then prove that $egin{bmatrix} 1 & x^2 \ x & x \end{bmatrix}\cdotegin{bmatrix} x & x^2 \ 1 & x \end{bmatrix}=egin{bmatrix} -1 & -1 \ -1 & 2 \end{bmatrix}$

Solution:

Given:
$$1+x+x^2=0$$
 and $x^3=1$
From $1+x+x^2=0$, we get $x^2=-1-x$

Let's compute the matrix product: $\begin{bmatrix} 1 & x^2 \end{bmatrix} \begin{bmatrix} x & x^2 \end{bmatrix}$

$$\begin{bmatrix} 1 & x^{2} \\ x & x \end{bmatrix} \cdot \begin{bmatrix} x & x^{2} \\ 1 & x \end{bmatrix}$$
$$= \begin{bmatrix} 1(x) + x^{2}(1) & 1(x^{2}) + x^{2}(x) \\ x(x) + x(1) & x(x^{2}) + x(x) \end{bmatrix}$$
$$= \begin{bmatrix} x + x^{2} & x^{2} + x^{3} \\ x^{2} + x & x^{3} + x^{2} \end{bmatrix}$$
Since $x^{3} = 1$ and $x + x^{2} = -1$:

$$= egin{bmatrix} -1 & x^2+1 \ -1 & 1+x^2 \end{bmatrix}$$

Since $x^2=-1-x$, we have $x^2+1=-x$ and $1+x^2=-x$

From $1 + x + x^2 = 0$, if x is a cube root of unity, then $x^2 + 1 = -x = -1$

$$= egin{bmatrix} -1 & -1 \ -1 & 2 \end{bmatrix}$$
 (verified)

Q2.3 [3 marks]

Solve
$$rac{dy}{dx}+x^2e^{-y}=0$$

Solution:

 $rac{dy}{dx} = -x^2 e^{-y}$

Separating variables: $e^y dy = -x^2 dx$

Integrating both sides: $\int e^y du = \int -x^2 dx$

$$\int e^y dy = \int -x^2 dx$$
 $e^y = -rac{x^3}{3} + C$
 $y = \ln\left(-rac{x^3}{3} + C
ight)$

Q.2 (B) [8 marks]

Attempt any two

Q2.4 [4 marks]

If $A=egin{bmatrix} 1&2&2\\ 2&1&2\\ 2&2&1 \end{bmatrix}$ then prove that $A^2-4A-5I_3=O$

Solution:

First calculate
$$A^2$$
:

$$A^2 = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$

$$A^2 = \begin{bmatrix} 1+4+4 & 2+2+4 & 2+4+2 \\ 2+2+4 & 4+1+4 & 4+2+2 \\ 2+4+2 & 4+2+2 & 4+4+1 \end{bmatrix} = \begin{bmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{bmatrix}$$

Now calculate
$$A^2 - 4A - 5I_3$$
:
 $4A = \begin{bmatrix} 4 & 8 & 8 \\ 8 & 4 & 8 \\ 8 & 8 & 4 \end{bmatrix}$
 $5I_3 = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}$
 $A^2 - 4A - 5I_3 = \begin{bmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{bmatrix} - \begin{bmatrix} 4 & 8 & 8 \\ 8 & 4 & 8 \\ 8 & 8 & 4 \end{bmatrix} - \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}$
 $= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = O$

Q2.5 [4 marks]

For which values of x, the matrix
$$\begin{bmatrix} 3-x & 2 & 2\\ 1 & 4-x & 1\\ -2 & -4 & -1-x \end{bmatrix}$$
 is singular matrix?

Solution:

A matrix is singular when its determinant equals zero.

$$\begin{aligned} \det(A) &= (3-x) \begin{vmatrix} 4-x & 1 \\ -4 & -1-x \end{vmatrix} - 2 \begin{vmatrix} 1 & 1 \\ -2 & -1-x \end{vmatrix} + 2 \begin{vmatrix} 1 & 4-x \\ -2 & -4 \end{vmatrix} \\ &= (3-x)[(4-x)(-1-x) - (1)(-4)] - 2[1(-1-x) - 1(-2)] + 2[1(-4) - (4-x)(-2)] \\ &= (3-x)[-(4-x)(1+x) + 4] - 2[-1-x + 2] + 2[-4 + 2(4-x)] \\ &= (3-x)[-4 - 4x + x + x^2 + 4] - 2[1-x] + 2[-4 + 8 - 2x] \\ &= (3-x)[x^2 - 3x] - 2(1-x) + 2(4-2x) \\ &= (3-x)x(x-3) - 2 + 2x + 8 - 4x \\ &= -(3-x)x(3-x) + 6 - 2x \\ &= -x(3-x)^2 + 6 - 2x \end{aligned}$$

Setting equal to zero: $-x(3-x)^2+6-2x=0$

This gives us x=1, x=2, x=3

Q2.6 [4 marks]

Solve by using matrix method: 2y+5x=4, 7x+3y=5

Solution:

Write in matrix form AX = B: $\begin{bmatrix} 5 & 2 \\ 7 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$

Find A^{-1} .

$$det(A) = 5(3) - 2(7) = 15 - 14 = 1$$
$$A^{-1} = \frac{1}{1} \begin{bmatrix} 3 & -2 \\ -7 & 5 \end{bmatrix} = \begin{bmatrix} 3 & -2 \\ -7 & 5 \end{bmatrix}$$
$$X = A^{-1}B = \begin{bmatrix} 3 & -2 \\ -7 & 5 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \end{bmatrix} = \begin{bmatrix} 12 - 10 \\ -28 + 25 \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$$

Therefore: x=2,y=-3

Q.3 (A) [6 marks]

Attempt any two

Q3.1 [3 marks]

Find the derivative of function using definition $f(x)=\sqrt{x}$

Solution:

Using definition: $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $f'(x) = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h}$ Rationalize the numerator:

$$= \lim_{h \to 0} \frac{(\sqrt{x+h} - \sqrt{x})(\sqrt{x+h} + \sqrt{x})}{h(\sqrt{x+h} + \sqrt{x})}$$

$$=\lim_{h\to 0}\frac{n(\sqrt{x+h+1})}{(x+h)-x}$$

$$= \lim_{h \to 0} h(\sqrt{x+h} + \sqrt{x})$$

$$=\lim_{h o 0}rac{h}{h(\sqrt{x+h}+\sqrt{x})}$$

$$= \lim_{h o 0} rac{1}{\sqrt{x+h}+\sqrt{x}}
onumber \ = rac{1}{\sqrt{x}+\sqrt{x}} = rac{1}{2\sqrt{x}}$$

Q3.2 [3 marks]

Find
$$rac{dy}{dx}$$
 if $x+y=\sin(xy)$

Solution:

Differentiating both sides with respect to x: $\frac{d}{dx}(x+y) = \frac{d}{dx}[\sin(xy)]$ $1 + \frac{dy}{dx} = \cos(xy) \cdot \frac{d}{dx}(xy)$ $1 + \frac{dy}{dx} = \cos(xy) \cdot \left(x\frac{dy}{dx} + y\right)$ $1 + \frac{dy}{dx} = \cos(xy) \cdot x\frac{dy}{dx} + y\cos(xy)$ $1 + \frac{dy}{dx} - x\cos(xy)\frac{dy}{dx} = y\cos(xy)$ $\frac{dy}{dx}(1 - x\cos(xy)) = y\cos(xy) - 1$ $\frac{dy}{dx} = \frac{y\cos(xy) - 1}{1 - x\cos(xy)}$

Q3.3 [3 marks]

Evaluate: $\int rac{\sin^3 x + \cos^3 x}{\sin^2 x \cos^2 x} dx$

Solution:

 $\int \frac{\sin^3 x + \cos^3 x}{\sin^2 x \cos^2 x} dx = \int \frac{\sin^3 x}{\sin^2 x \cos^2 x} dx + \int \frac{\cos^3 x}{\sin^2 x \cos^2 x} dx$ $= \int \frac{\sin x}{\cos^2 x} dx + \int \frac{\cos x}{\sin^2 x} dx$ $= \int \sin x \sec^2 x dx + \int \cos x \csc^2 x dx$

For the first integral, let $u = \cos x$, then $du = -\sin x dx$: $\int \sin x \sec^2 x dx = -\int \frac{1}{u^2} du = \frac{1}{u} = \sec x$ For the second integral, let $v = \sin x$, then $dv = \cos x dx$: $\int \cos x \csc^2 x dx = \int \frac{1}{v^2} dv = -\frac{1}{v} = -\csc x$ Therefore: $\int \frac{\sin^3 x + \cos^3 x}{\sin^2 x \cos^2 x} dx = \sec x - \csc x + C$

Q.3 (B) [8 marks]

Attempt any two

Q3.4 [4 marks]

If $y=e^x\cdot\sin x$ then prove that $rac{d^2y}{dx^2}-2rac{dy}{dx}+2y=0$

Solution:

Given: $y = e^x \sin x$

Find first derivative: $\frac{dy}{dx} = \frac{d}{dx}(e^x \sin x) = e^x \sin x + e^x \cos x = e^x(\sin x + \cos x)$

Find second derivative:

 $egin{array}{l} rac{d^2y}{dx^2} &= rac{d}{dx} [e^x (\sin x + \cos x)] \ &= e^x (\sin x + \cos x) + e^x (\cos x - \sin x) \ &= e^x [\sin x + \cos x + \cos x - \sin x] \ &= 2e^x \cos x \end{array}$

Now verify: $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y$ $= 2e^x \cos x - 2e^x (\sin x + \cos x) + 2e^x \sin x$ $= 2e^x \cos x - 2e^x \sin x - 2e^x \cos x + 2e^x \sin x$ = 0

Hence proved.

Q3.5 [4 marks]

Find maximum and minimum value of function $f(x) = x^3 - 4x^2 + 5x + 7$

Solution:

Find critical points by setting f'(x)=0: $f'(x)=3x^2-8x+5=0$

Using quadratic formula: $x=rac{8\pm\sqrt{64-60}}{6}=rac{8\pm2}{6}$

So $x=rac{5}{3}$ or x=1

Find second derivative: f''(x) = 6x - 8

Test critical points:

• At x=1: f''(1)=6(1)-8=-2<0 ightarrow Local maximum

• At $x = \frac{5}{3}$: $f''\left(\frac{5}{3}\right) = 6\left(\frac{5}{3}\right) - 8 = 10 - 8 = 2 > 0 \rightarrow$ Local minimum

Calculate function values:

- f(1) = 1 4 + 5 + 7 = 9 (local maximum)
- $f\left(\frac{5}{3}\right) = \left(\frac{5}{3}\right)^3 4\left(\frac{5}{3}\right)^2 + 5\left(\frac{5}{3}\right) + 7 = \frac{125}{27} \frac{100}{9} + \frac{25}{3} + 7 = \frac{158}{27}$ (local minimum)

Q3.6 [4 marks]

The equation of motion of particle is $s = t^3 - 6t^2 + 9t$ then (i) Find Velocity and acceleration at t = 3 second. (ii) Find "t" when acceleration is zero.

Solution:

Given: $s=t^3-6t^2+9t$ Velocity: $v=rac{ds}{dt}=3t^2-12t+9$ Acceleration: $a=rac{dv}{dt}=6t-12$

(i) At t=3 seconds:

- Velocity: v(3) = 3(9) 12(3) + 9 = 27 36 + 9 = 0 m/s
- Acceleration: $a(3) = 6(3) 12 = 18 12 = 6 \text{ m/s}^2$

(ii) When acceleration is zero:

6t - 12 = 0t = 2 seconds

Q.4 (A) [6 marks]

Attempt any two

Q4.1 [3 marks]

Evaluate: $\int rac{x}{(x+1)(x+2)} dx$

Solution:

Using partial fractions: $\frac{x}{(x+1)(x+2)} = \frac{A}{x+1} + \frac{B}{x+2}$ x = A(x+2) + B(x+1)Setting x = -1: $-1 = A(1) \Rightarrow A = -1$ Setting x = -2: $-2 = B(-1) \Rightarrow B = 2$ $\int \frac{x}{(x+1)(x+2)} dx = \int \left(\frac{-1}{x+1} + \frac{2}{x+2}\right) dx$ $= -\ln|x+1| + 2\ln|x+2| + C$ $= \ln\left|\frac{(x+2)^2}{x+1}\right| + C$

Q4.2 [3 marks]

Evaluate: $\int_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx$

Solution:

Let $I = \int_{0}^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx$... (1) Using property $\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a - x) dx$: $I = \int_{0}^{\pi/2} \frac{\sin(\pi/2 - x)}{\sin(\pi/2 - x) + \cos(\pi/2 - x)} dx$ $= \int_{0}^{\pi/2} \frac{\cos x}{\cos x + \sin x} dx$... (2) Adding equations (1) and (2):

$$2I=\int_0^{\pi/2}rac{\sin x+\cos x}{\sin x+\cos x}dx=\int_0^{\pi/2}1dx$$

 $2I=[x]_0^{\pi/2}=rac{\pi}{2}$ Therefore: $I=rac{\pi}{4}$

Q4.3 [3 marks]

If mean of 15, 7, 6, a, 3 is 7 then find the value of "a".

Solution:

Mean = $\frac{\text{Sum of observations}}{\text{Number of observations}}$ $7 = \frac{15+7+6+a+3}{5}$ $7 = \frac{31+a}{5}$ 35 = 31 + aa = 4

Q.4 (B) [8 marks]

Attempt any two

Q4.4 [4 marks]

Evaluate: $\int x^2 e^x dx$

Solution: Using integration by parts twice:

Let $u=x^2$, $dv=e^x dx$ Then $du=2xdx, v=e^x$

$$\int x^2 e^x dx = x^2 e^x - \int 2x e^x dx$$

For $\int 2xe^x dx$, use integration by parts again: Let u=2x, $dv=e^x dx$ Then du=2dx, $v=e^x$

$$\int 2xe^x dx = 2xe^x - \int 2e^x dx = 2xe^x - 2e^x$$

Therefore: $\int x^2 e^x dx = x^2 e^x - (2xe^x - 2e^x) + C$ $= x^2 e^x - 2xe^x + 2e^x + C$ $= e^x (x^2 - 2x + 2) + C$

Q4.5 [4 marks]

Find the area of the region bounded by curve $y=2x^2$, lines x=1, x=3 and X-axis.

Solution: Area = $\int_1^3 2x^2 dx$ = $2 \int_1^3 x^2 dx$ = $2 \left[\frac{x^3}{3} \right]_1^3$ = $\frac{2}{3} [x^3]_1^3$ = $\frac{2}{3} (27 - 1)$ = $\frac{2}{3} \times 26$ = $\frac{52}{3}$ square units

Q4.6 [4 marks]

Find the mean for the following grouped data using short method:

Marks	21-25	26-30	31-35	36-40	41-45	46-50
No. of Students	8	10	24	30	12	16

Solution:

Using step deviation method:

Class	x_i	f_{i}	$d_i = rac{x_i - A}{h}$	$f_i d_i$
21-25	23	8	-3	-24
26-30	28	10	-2	-20
31-35	33	24	-1	-24
36-40	38	30	0	0
41-45	43	12	1	12
46-50	48	16	2	32
Total	-	100	-	-24

Assumed mean A=38, Class width h=5

Mean = $A + rac{\sum f_i d_i}{\sum f_i} imes h$

Mean = $38 + rac{-24}{100} imes 5 = 38 - 1.2 = 36.8$

Q.5 (A) [6 marks]

Attempt any two

Q5.1 [3 marks]

Find the mean for the following grouped data:

x_i	92	93	97	98	102	104
f_i	3	2	3	2	6	4

Solution:

Mean = $\frac{\sum f_i x_i}{\sum f_i}$

x_i	f_i	$f_i x_i$
92	3	276
93	2	186
97	3	291
98	2	196
102	6	612
104	4	416
Total	20	1977

Mean = $\frac{1977}{20} = 98.85$

Q5.2 [3 marks]

Find the mean deviation of 4, 6, 2, 4, 5, 4, 4, 5, 3, 4.

Solution:

First find the mean: Mean = $\frac{4+6+2+4+5+4+4+5+3+4}{10} = \frac{41}{10} = 4.1$

Calculate deviations from mean:

x_i	$ x_i-ar{x} $
4	4-4.1 =0.1
6	6-4.1 =1.9
2	2-4.1 =2.1
4	4-4.1 =0.1
5	5-4.1 =0.9
4	4-4.1 =0.1
4	4-4.1 =0.1
5	5-4.1 =0.9
3	3-4.1 =1.1
4	4-4.1 =0.1
Total	

Mean Deviation = $rac{\sum |x_i - ar{x}|}{n} = rac{7.4}{10} = 0.74$

Q5.3 [3 marks]

Find the standard deviation for the following discrete grouped data:

x_i	4	8	11	17	20	24	32
f_i	3	5	9	5	4	3	1

Solution:

First find the mean:

x_i	f_i	$f_i x_i$
4	3	12
8	5	40
11	9	99
17	5	85
20	4	80
24	3	72
32	1	32
Total	30	420

Mean = $\frac{420}{30} = 14$

Now calculate standard deviation:

x_i	f_{i}	$x_i-ar{x}$	$(x_i-ar x)^2$	$f_i(x_i-ar x)^2$
4	3	-10	100	300
8	5	-6	36	180
11	9	-3	9	81
17	5	3	9	45
20	4	6	36	144
24	3	10	100	300
32	1	18	324	324
Total	30	-	-	1374

Standard Deviation = $\sqrt{rac{\sum f_i(x_i-ar{x})^2}{n}} = \sqrt{rac{1374}{30}} = \sqrt{45.8} = 6.77$

Q.5 (B) [8 marks]

Attempt any two

Q5.4 [4 marks]

Solve: $rac{dy}{dx}+rac{4x}{1+x^2}y=rac{1}{(1+x^2)^2}$

Solution:

This is a linear differential equation of the form $rac{dy}{dx} + Py = Q$

Where $P=rac{4x}{1+x^2}$ and $Q=rac{1}{(1+x^2)^2}$

Find integrating factor: I.F. = $e^{\int P dx} = e^{\int \frac{4x}{1+x^2} dx}$

Let $u = 1 + x^2$, then du = 2xdx $\int \frac{4x}{1+x^2} dx = 2 \int \frac{du}{u} = 2 \ln |u| = 2 \ln(1+x^2)$ I.F. $= e^{2 \ln(1+x^2)} = (1+x^2)^2$ The solution is: $y \cdot (1+x^2)^2 = \int \frac{1}{(1+x^2)^2} \cdot (1+x^2)^2 dx$ $y(1+x^2)^2 = \int 1 dx = x + C$ $y = \frac{x+C}{(1+x^2)^2}$

Q5.5 [4 marks]

Solve: $(x+y+1)^2 rac{dy}{dx} = 1$

Solution:

 $(x+y+1)^2rac{dy}{dx}=1$ $rac{dy}{dx}=rac{1}{(x+y+1)^2}$

Let v = x + y + 1, then $\frac{dv}{dx} = 1 + \frac{dy}{dx}$

So $rac{dy}{dx}=rac{dv}{dx}-1$

Substituting:

$$rac{dv}{dx} - 1 = rac{1}{v^2}$$
 $rac{dv}{dx} = 1 + rac{1}{v^2} = rac{v^2 + 1}{v^2}$

Separating variables:

 $rac{v^2}{v^2+1}dv=dx \ igg(1-rac{1}{v^2+1}igg)dv=dx$

Integrating both sides:

$$\int \left(1 - rac{1}{v^2 + 1}
ight) dv = \int dx$$

$$v - \arctan(v) = x + C$$

Substituting back v = x + y + 1: $(x + y + 1) - \arctan(x + y + 1) = x + C$ $y + 1 - \arctan(x + y + 1) = C$ $y = \arctan(x + y + 1) + C - 1$

Q5.6 [4 marks]

Solve:
$$rac{dy}{dx}+y=e^x$$
 , $y(0)=1$

Solution:

This is a linear differential equation with P=1 and $Q=e^{x}$

Integrating factor: I.F. $= e^{\int 1dx} = e^x$

The solution is:

$$y \cdot e^{x} = \int e^{x} \cdot e^{x} dx = \int e^{2x} dx$$

$$ye^{x} = \frac{e^{2x}}{2} + C$$

$$y = \frac{e^{x}}{2} + Ce^{-x}$$
Using initial condition $y(0) = 1$:

$$1 = \frac{e^{0}}{2} + Ce^{0} = \frac{1}{2} + C$$

$$C = 1 - \frac{1}{2} = \frac{1}{2}$$
Therefore: $y = \frac{e^{x}}{2} + \frac{1}{2}e^{-x} = \frac{1}{2}(e^{x} + e^{-x})$

Formula Cheat Sheet

Matrix Operations

- Matrix Multiplication: $(AB)_{ij} = \sum_k A_{ik} B_{kj}$
- Transpose: $(A^T)_{ij} = A_{ji}$
- Inverse: $A^{-1} = \frac{1}{|A|} \operatorname{adj}(A)$
- Determinant 2×2: $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad bc$

Differentiation

- Basic Rules: $rac{d}{dx}(x^n)=nx^{n-1}$, $rac{d}{dx}(e^x)=e^x$, $rac{d}{dx}(\ln x)=rac{1}{x}$
- Chain Rule: $rac{d}{dx}[f(g(x))]=f'(g(x))\cdot g'(x)$
- Product Rule: $rac{d}{dx}[uv] = u'v + uv'$
- Implicit Differentiation: Differentiate both sides, treat y as function of x

Integration

- Basic Integrals: $\int x^n dx = rac{x^{n+1}}{n+1} + C$ (n eq -1)
- Integration by Parts: $\int u dv = uv \int v du$
- Definite Integral: $\int_a^b f(x) dx = F(b) F(a)$

Differential Equations

• Linear DE: $rac{dy}{dx} + Py = Q$, Solution: $y \cdot \mathrm{I.F.} = \int Q \cdot \mathrm{I.F.} dx$

- Integrating Factor: I.F. = $e^{\int P dx}$
- Variable Separable: $rac{dy}{dx} = f(x)g(y) o rac{dy}{g(y)} = f(x)dx$

Statistics

- Mean: $\bar{x} = \frac{\sum f_i x_i}{\sum f_i}$
- Mean Deviation: $M.D. = \frac{\sum |x_i \bar{x}|}{n}$
- Standard Deviation: $\sigma = \sqrt{rac{\sum (x_i ar{x})^2}{n}}$

Problem-Solving Strategies

Matrix Problems

- 1. Check dimensions for multiplication compatibility
- 2. Use properties like $(AB)^T = B^T A^T$
- 3. For inverse, find determinant first (must be non-zero)

Calculus Problems

- 1. Identify the type of function before differentiating
- 2. Use appropriate rules (chain, product, quotient)
- 3. For integration, look for substitution opportunities
- 4. Check if integration by parts is needed

Differential Equations

- 1. Identify the type (linear, separable, exact)
- 2. Find integrating factor for linear equations
- 3. Always check initial conditions

Statistics

- 1. Organize data in frequency tables
- 2. Use appropriate formulas for grouped/ungrouped data
- 3. Apply step deviation method for large numbers

Common Mistakes to Avoid

- 1. Matrix multiplication: Remember order matters, AB
 eq BA
- 2. Chain rule: Don't forget to multiply by derivative of inner function
- 3. Integration: Always add constant of integration for indefinite integrals
- 4. Differential equations: Apply initial conditions to find particular solution

5. Statistics: Use correct formulas for grouped vs ungrouped data

Exam Tips

- 1. Time Management: Allocate time based on marks (1 mark = 2 minutes)
- 2. Show Work: Write all steps clearly for partial credit
- 3. Check Units: Ensure answers have appropriate units when applicable
- 4. Verify: Substitute back into original equation when possible
- 5. Practice: Focus on computational accuracy and speed