Q.1 Fill in the blanks [14 marks]#
Q1.1 [1 mark]#
If A = [1 2; 3 -1] then 4A = …
Answer: (b) [4 8; 12 -4]
Solution: $4A = 4 \begin{bmatrix} 1 & 2 \ 3 & -1 \end{bmatrix} = \begin{bmatrix} 4 & 8 \ 12 & -4 \end{bmatrix}$
Q1.2 [1 mark]#
Order of the matrix [1 1 2; -3 2 3] is …
Answer: (a) 2 × 3
Solution: Matrix has 2 rows and 3 columns, so order is 2 × 3.
Q1.3 [1 mark]#
If A = [1 1; 1 1] then A² = …
Answer: (d) [2 2; 2 2]
Solution: $A^2 = \begin{bmatrix} 1 & 1 \ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 2 \ 2 & 2 \end{bmatrix}$
Q1.4 [1 mark]#
If A = [2 -1; 3 4] then adjoint of A = …
Answer: (c) [4 1; -3 2]
Solution: For matrix A = [a b; c d], adj(A) = [d -b; -c a] adj(A) = [4 1; -3 2]
Q1.5 [1 mark]#
d/dx(tan x) = …
Answer: (d) sec²x
Solution: $\frac{d}{dx}(\tan x) = \sec^2 x$
Q1.6 [1 mark]#
d/dx(sin 5x) = …
Answer: (b) 5cos5x
Solution: $\frac{d}{dx}(\sin 5x) = 5\cos 5x$ (using chain rule)
Q1.7 [1 mark]#
If function y = f(x) is maximum at x = a then f’(a) = …
Answer: (c) 0
Solution: At maximum point, first derivative equals zero: f’(a) = 0
Q1.8 [1 mark]#
∫sin x dx = … + C
Answer: (a) -cos x
Solution: $\int \sin x , dx = -\cos x + C$
Q1.9 [1 mark]#
∫1/(x²+4) dx = … + C
Answer: (d) (1/2)tan⁻¹(x/2)
Solution: $\int \frac{1}{x^2+4} dx = \frac{1}{2}\tan^{-1}\left(\frac{x}{2}\right) + C$
Q1.10 [1 mark]#
∫₁² x² dx = …
Answer: (a) 7/3
Solution: $\int_1^2 x^2 dx = \left[\frac{x^3}{3}\right]_1^2 = \frac{8}{3} - \frac{1}{3} = \frac{7}{3}$
Q1.11 [1 mark]#
Order of differential equation (d³y/dx³)⁴ + dy/dx + 5y = 0 is …
Answer: (c) 3
Solution: Order is the highest derivative present = 3
Q1.12 [1 mark]#
Integrating factor of dy/dx + y/x = 1 is …
Answer: (b) x
Solution: I.F. = $e^{\int \frac{1}{x} dx} = e^{\ln x} = x$
Q1.13 [1 mark]#
Mean of 39,23,58,47,50,16,61 is …
Answer: (b) 42
Solution: Mean = $\frac{39+23+58+47+50+16+61}{7} = \frac{294}{7} = 42$
Q1.14 [1 mark]#
Mean of first five natural numbers is …
Answer: (a) 3
Solution: Mean = $\frac{1+2+3+4+5}{5} = \frac{15}{5} = 3$
Q.2 Attempt any two [14 marks total]#
Q2(A).1 [3 marks]#
If A = [1 3 5; -1 0 2; 4 3 6], B = [3 4 5; 5 4 3; 3 5 4], C = [1 2 1; 3 3 3; 4 5 6], find 3A+2B-4C
Solution: $3A = \begin{bmatrix} 3 & 9 & 15 \ -3 & 0 & 6 \ 12 & 9 & 18 \end{bmatrix}$
$2B = \begin{bmatrix} 6 & 8 & 10 \ 10 & 8 & 6 \ 6 & 10 & 8 \end{bmatrix}$
$4C = \begin{bmatrix} 4 & 8 & 4 \ 12 & 12 & 12 \ 16 & 20 & 24 \end{bmatrix}$
$3A + 2B - 4C = \begin{bmatrix} 5 & 9 & 21 \ -5 & -4 & 0 \ 2 & -1 & 2 \end{bmatrix}$
Q2(A).2 [3 marks]#
If A = [7 5; -1 2], B = [1 -1; 3 2], show that (A+B)ᵀ = Aᵀ + Bᵀ
Solution: $A + B = \begin{bmatrix} 8 & 4 \ 2 & 4 \end{bmatrix}$
$(A + B)^T = \begin{bmatrix} 8 & 2 \ 4 & 4 \end{bmatrix}$
$A^T = \begin{bmatrix} 7 & -1 \ 5 & 2 \end{bmatrix}$, $B^T = \begin{bmatrix} 1 & 3 \ -1 & 2 \end{bmatrix}$
$A^T + B^T = \begin{bmatrix} 8 & 2 \ 4 & 4 \end{bmatrix}$
Hence proved: $(A + B)^T = A^T + B^T$
Q2(A).3 [3 marks]#
Solve the differential equation xy dy = (x+1)(y+1)dx
Solution: Separating variables: $\frac{y}{y+1} dy = \frac{x+1}{x} dx$
$\left(1 - \frac{1}{y+1}\right) dy = \left(1 + \frac{1}{x}\right) dx$
Integrating: $y - \ln|y+1| = x + \ln|x| + C$
Final answer: $y - x = \ln|y+1| + \ln|x| + C$
Q2(B).1 [4 marks]#
Find the inverse of matrix [3 1 2; 2 -3 -1; 1 2 1]
Solution: Let $A = \begin{bmatrix} 3 & 1 & 2 \ 2 & -3 & -1 \ 1 & 2 & 1 \end{bmatrix}$
$|A| = 3(-3-(-2)) - 1(2-(-1)) + 2(4-(-3)) = 3(-1) - 1(3) + 2(7) = -3 - 3 + 14 = 8$
Cofactors:
- C₁₁ = -1, C₁₂ = -3, C₁₃ = 7
- C₂₁ = 3, C₂₂ = 1, C₂₃ = -5
- C₃₁ = 5, C₃₂ = 7, C₃₃ = -11
$adj(A) = \begin{bmatrix} -1 & 3 & 5 \ -3 & 1 & 7 \ 7 & -5 & -11 \end{bmatrix}$
$A^{-1} = \frac{1}{8} \begin{bmatrix} -1 & 3 & 5 \ -3 & 1 & 7 \ 7 & -5 & -11 \end{bmatrix}$
Q2(B).2 [4 marks]#
Solve 3x - 2y = 8, 5x + 4y = 6 using matrix method
Solution: $\begin{bmatrix} 3 & -2 \ 5 & 4 \end{bmatrix} \begin{bmatrix} x \ y \end{bmatrix} = \begin{bmatrix} 8 \ 6 \end{bmatrix}$
$|A| = 3(4) - (-2)(5) = 12 + 10 = 22$
$A^{-1} = \frac{1}{22} \begin{bmatrix} 4 & 2 \ -5 & 3 \end{bmatrix}$
$\begin{bmatrix} x \ y \end{bmatrix} = \frac{1}{22} \begin{bmatrix} 4 & 2 \ -5 & 3 \end{bmatrix} \begin{bmatrix} 8 \ 6 \end{bmatrix} = \frac{1}{22} \begin{bmatrix} 44 \ -22 \end{bmatrix}$
Answer: x = 2, y = -1
Q2(B).3 [4 marks]#
If A = [1 2 1; 2 3 1; 1 2 2], find A·adj(A)
Solution: $|A| = 1(6-2) - 2(4-1) + 1(4-3) = 4 - 6 + 1 = -1$
For any matrix A: $A \cdot adj(A) = |A| \cdot I$
$A \cdot adj(A) = (-1) \begin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \ 0 & -1 & 0 \ 0 & 0 & -1 \end{bmatrix}$
Q.3 Attempt any two [14 marks total]#
Q3(A).1 [3 marks]#
If y = log(sin x/(1+cos x)), find dy/dx
Solution: $y = \log(\sin x) - \log(1+\cos x)$
$\frac{dy}{dx} = \frac{1}{\sin x} \cdot \cos x - \frac{1}{1+\cos x} \cdot (-\sin x)$
$= \frac{\cos x}{\sin x} + \frac{\sin x}{1+\cos x}$
$= \cot x + \frac{\sin x}{1+\cos x}$
Using identity: $\frac{\sin x}{1+\cos x} = \tan(\frac{x}{2})$
Answer: $\frac{dy}{dx} = \cot x + \tan(\frac{x}{2})$
Q3(A).2 [3 marks]#
If y = sin(x+y), find dy/dx
Solution: Differentiating both sides: $\frac{dy}{dx} = \cos(x+y) \cdot \left(1 + \frac{dy}{dx}\right)$
$\frac{dy}{dx} = \cos(x+y) + \cos(x+y) \cdot \frac{dy}{dx}$
$\frac{dy}{dx} - \cos(x+y) \cdot \frac{dy}{dx} = \cos(x+y)$
$\frac{dy}{dx}[1 - \cos(x+y)] = \cos(x+y)$
Answer: $\frac{dy}{dx} = \frac{\cos(x+y)}{1-\cos(x+y)}$
Q3(A).3 [3 marks]#
Obtain ∫x²log x dx
Solution: Using integration by parts: ∫u dv = uv - ∫v du
Let u = log x, dv = x² dx Then du = (1/x) dx, v = x³/3
$\int x^2 \log x , dx = \log x \cdot \frac{x^3}{3} - \int \frac{x^3}{3} \cdot \frac{1}{x} dx$
$= \frac{x^3 \log x}{3} - \int \frac{x^2}{3} dx$
$= \frac{x^3 \log x}{3} - \frac{x^3}{9} + C$
Answer: $\frac{x^3}{3}(\log x - \frac{1}{3}) + C$
Q3(B).1 [4 marks]#
Motion equation s = 2t³ - 3t² - 12t + 7. Find s and t when acceleration is zero
Solution: $s = 2t^3 - 3t^2 - 12t + 7$
Velocity: $v = \frac{ds}{dt} = 6t^2 - 6t - 12$
Acceleration: $a = \frac{dv}{dt} = 12t - 6$
When acceleration = 0: $12t - 6 = 0$ $t = \frac{1}{2}$
At t = 1/2: $s = 2(\frac{1}{2})^3 - 3(\frac{1}{2})^2 - 12(\frac{1}{2}) + 7 = \frac{1}{4} - \frac{3}{4} - 6 + 7 = \frac{1}{2}$
Answer: t = 1/2, s = 1/2
Q3(B).2 [4 marks]#
If y = 2e³ˣ + 3e⁻²ˣ, prove d²y/dx² - dy/dx - 6y = 0
Solution: $y = 2e^{3x} + 3e^{-2x}$
$\frac{dy}{dx} = 6e^{3x} - 6e^{-2x}$
$\frac{d^2y}{dx^2} = 18e^{3x} + 12e^{-2x}$
Now: $\frac{d^2y}{dx^2} - \frac{dy}{dx} - 6y$
$= (18e^{3x} + 12e^{-2x}) - (6e^{3x} - 6e^{-2x}) - 6(2e^{3x} + 3e^{-2x})$
$= 18e^{3x} + 12e^{-2x} - 6e^{3x} + 6e^{-2x} - 12e^{3x} - 18e^{-2x}$
$= (18-6-12)e^{3x} + (12+6-18)e^{-2x} = 0$
Hence proved
Q3(B).3 [4 marks]#
Find maximum and minimum values of f(x) = x³ - 3x + 11
Solution: $f(x) = x^3 - 3x + 11$
$f’(x) = 3x^2 - 3 = 3(x^2 - 1) = 3(x-1)(x+1)$
Critical points: x = 1, x = -1
$f’’(x) = 6x$
At x = 1: f’’(1) = 6 > 0 → Local minimum At x = -1: f’’(-1) = -6 < 0 → Local maximum
$f(1) = 1 - 3 + 11 = 9$ (minimum) $f(-1) = -1 + 3 + 11 = 13$ (maximum)
Answer: Maximum = 13 at x = -1, Minimum = 9 at x = 1
Q.4 Attempt any two [14 marks total]#
Q4(A).1 [3 marks]#
Obtain ∫sin 5x sin 6x dx
Solution: Using identity: $\sin A \sin B = \frac{1}{2}[\cos(A-B) - \cos(A+B)]$
$\sin 5x \sin 6x = \frac{1}{2}[\cos(5x-6x) - \cos(5x+6x)]$
$= \frac{1}{2}[\cos(-x) - \cos(11x)] = \frac{1}{2}[\cos x - \cos(11x)]$
$\int \sin 5x \sin 6x , dx = \frac{1}{2} \int [\cos x - \cos(11x)] dx$
$= \frac{1}{2}[\sin x - \frac{\sin(11x)}{11}] + C$
Answer: $\frac{1}{2}\sin x - \frac{\sin(11x)}{22} + C$
Q4(A).2 [3 marks]#
Obtain ∫(1+x)eˣ/cos²(xeˣ) dx
Solution: Let $u = xe^x$, then $du = (1+x)e^x dx$
The integral becomes: $\int \frac{du}{\cos^2 u} = \int \sec^2 u , du = \tan u + C$
Substituting back: $= \tan(xe^x) + C$
Answer: $\tan(xe^x) + C$
Q4(A).3 [3 marks]#
Find standard deviation for data: 6,7,10,12,13,4,8,12
Solution: Data: 6, 7, 10, 12, 13, 4, 8, 12 n = 8
Mean = $\frac{6+7+10+12+13+4+8+12}{8} = \frac{72}{8} = 9$
x | x-9 | (x-9)² |
---|---|---|
6 | -3 | 9 |
7 | -2 | 4 |
10 | 1 | 1 |
12 | 3 | 9 |
13 | 4 | 16 |
4 | -5 | 25 |
8 | -1 | 1 |
12 | 3 | 9 |
Σ(x-9)² = 74
Standard deviation = $\sqrt{\frac{\sum(x-\bar{x})^2}{n}} = \sqrt{\frac{74}{8}} = \sqrt{9.25} = 3.04$
Answer: σ = 3.04
Q4(B).1 [4 marks]#
Obtain ∫(2x+1)/[(x+1)(x-3)] dx
Solution: Using partial fractions: $\frac{2x+1}{(x+1)(x-3)} = \frac{A}{x+1} + \frac{B}{x-3}$
$2x+1 = A(x-3) + B(x+1)$
When x = -1: $2(-1)+1 = A(-4) \Rightarrow -1 = -4A \Rightarrow A = \frac{1}{4}$
When x = 3: $2(3)+1 = B(4) \Rightarrow 7 = 4B \Rightarrow B = \frac{7}{4}$
$\int \frac{2x+1}{(x+1)(x-3)} dx = \frac{1}{4}\int \frac{1}{x+1} dx + \frac{7}{4}\int \frac{1}{x-3} dx$
$= \frac{1}{4}\ln|x+1| + \frac{7}{4}\ln|x-3| + C$
Answer: $\frac{1}{4}\ln|x+1| + \frac{7}{4}\ln|x-3| + C$
Q4(B).2 [4 marks]#
Obtain ∫₀^(π/2) √(cot x)/(√(cot x) + √(tan x)) dx
Solution: Let $I = \int_0^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx$
Using property: $\int_0^a f(x) dx = \int_0^a f(a-x) dx$
$I = \int_0^{\pi/2} \frac{\sqrt{\cot(\pi/2-x)}}{\sqrt{\cot(\pi/2-x)} + \sqrt{\tan(\pi/2-x)}} dx$
Since $\cot(\pi/2-x) = \tan x$ and $\tan(\pi/2-x) = \cot x$:
$I = \int_0^{\pi/2} \frac{\sqrt{\tan x}}{\sqrt{\tan x} + \sqrt{\cot x}} dx$
Adding both expressions: $2I = \int_0^{\pi/2} \frac{\sqrt{\cot x} + \sqrt{\tan x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx = \int_0^{\pi/2} 1 , dx = \frac{\pi}{2}$
Answer: $I = \frac{\pi}{4}$
Q4(B).3 [4 marks]#
Find mean deviation for grouped data
xᵢ | 4 | 8 | 11 | 17 | 20 | 24 | 32 |
---|---|---|---|---|---|---|---|
fᵢ | 3 | 5 | 9 | 5 | 4 | 3 | 1 |
Solution: N = Σfᵢ = 3+5+9+5+4+3+1 = 30
Mean = $\frac{\sum f_i x_i}{N} = \frac{3(4)+5(8)+9(11)+5(17)+4(20)+3(24)+1(32)}{30}$
$= \frac{12+40+99+85+80+72+32}{30} = \frac{420}{30} = 14$
| xᵢ | fᵢ | |xᵢ-14| | fᵢ|xᵢ-14| | |—-|—-|———|———–| | 4 | 3 | 10 | 30 | | 8 | 5 | 6 | 30 | | 11 | 9 | 3 | 27 | | 17 | 5 | 3 | 15 | | 20 | 4 | 6 | 24 | | 24 | 3 | 10 | 30 | | 32 | 1 | 18 | 18 |
Σfᵢ|xᵢ-14| = 174
Mean deviation = $\frac{\sum f_i |x_i - \bar{x}|}{N} = \frac{174}{30} = 5.8$
Answer: Mean deviation = 5.8
Q.5 Attempt any two [14 marks total]#
Q5(A).1 [3 marks]#
Find mean deviation for grouped data
Class | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 | 80-90 | 90-100 |
---|---|---|---|---|---|---|---|
Freq | 3 | 7 | 12 | 15 | 8 | 3 | 2 |
Solution:
Class | Mid-value | fᵢ | fᵢxᵢ |
---|---|---|---|
30-40 | 35 | 3 | 105 |
40-50 | 45 | 7 | 315 |
50-60 | 55 | 12 | 660 |
60-70 | 65 | 15 | 975 |
70-80 | 75 | 8 | 600 |
80-90 | 85 | 3 | 255 |
90-100 | 95 | 2 | 190 |
N = 50, Σfᵢxᵢ = 3100
Mean = 3100/50 = 62
| Class | xᵢ | fᵢ | |xᵢ-62| | fᵢ|xᵢ-62| | |——-|—-|—-|———|———–| | 30-40 | 35 | 3 | 27 | 81 | | 40-50 | 45 | 7 | 17 | 119 | | 50-60 | 55 | 12 | 7 | 84 | | 60-70 | 65 | 15 | 3 | 45 | | 70-80 | 75 | 8 | 13 | 104 | | 80-90 | 85 | 3 | 23 | 69 | | 90-100| 95 | 2 | 33 | 66 |
Mean deviation = 568/50 = 11.36
Answer: Mean deviation = 11.36
Q5(A).2 [3 marks]#
Find standard deviation for given data
Class | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 |
---|---|---|---|---|---|---|---|---|---|
Freq | 2 | 1 | 12 | 29 | 25 | 12 | 10 | 4 | 5 |
Solution: N = 100, Mean = (2×60 + 1×61 + … + 5×68)/100 = 6380/100 = 63.8
xᵢ | fᵢ | (xᵢ-63.8) | (xᵢ-63.8)² | fᵢ(xᵢ-63.8)² |
---|---|---|---|---|
60 | 2 | -3.8 | 14.44 | 28.88 |
61 | 1 | -2.8 | 7.84 | 7.84 |
62 | 12 | -1.8 | 3.24 | 38.88 |
63 | 29 | -0.8 | 0.64 | 18.56 |
64 | 25 | 0.2 | 0.04 | 1.00 |
65 | 12 | 1.2 | 1.44 | 17.28 |
66 | 10 | 2.2 | 4.84 | 48.40 |
67 | 4 | 3.2 | 10.24 | 40.96 |
68 | 5 | 4.2 | 17.64 | 88.20 |
Σfᵢ(xᵢ-x̄)² = 290
Standard deviation = √(290/100) = √2.9 = 1.70
Answer: σ = 1.70
Q5(A).3 [3 marks]#
Find mean for grouped data
Class | 0-20 | 20-40 | 40-60 | 60-80 | 80-100 | 100-120 |
---|---|---|---|---|---|---|
Freq | 26 | 31 | 35 | 42 | 82 | 71 |
Solution:
Class | Mid-value | fᵢ | fᵢxᵢ |
---|---|---|---|
0-20 | 10 | 26 | 260 |
20-40 | 30 | 31 | 930 |
40-60 | 50 | 35 | 1750 |
60-80 | 70 | 42 | 2940 |
80-100 | 90 | 82 | 7380 |
100-120 | 110 | 71 | 7810 |
N = 287, Σfᵢxᵢ = 21070
Mean = $\frac{\sum f_i x_i}{N} = \frac{21070}{287} = 73.42$
Answer: Mean = 73.42
Q5(B).1 [4 marks]#
Solve differential equation (x + y + 1)² dy/dx = 1
Solution: Let z = x + y + 1, then dz/dx = 1 + dy/dx So dy/dx = dz/dx - 1
Substituting: $z^2(dz/dx - 1) = 1$ $z^2 dz/dx - z^2 = 1$ $z^2 dz/dx = 1 + z^2$ $\frac{z^2}{1 + z^2} dz = dx$
Integrating: $\int \frac{z^2}{1 + z^2} dz = \int dx$
$\int \left(1 - \frac{1}{1 + z^2}\right) dz = x + C$
$z - \tan^{-1}z = x + C$
Substituting back z = x + y + 1: $(x + y + 1) - \tan^{-1}(x + y + 1) = x + C$
Answer: $y + 1 = \tan^{-1}(x + y + 1) + C$
Q5(B).2 [4 marks]#
Solve dy/dx + y/x = eˣ, y(0) = 2
Solution: This is a linear differential equation of the form dy/dx + P(x)y = Q(x)
Here P(x) = 1/x, Q(x) = eˣ
Integrating factor: $I.F. = e^{\int \frac{1}{x} dx} = e^{\ln|x|} = |x| = x$ (for x > 0)
Multiplying the equation by x: $x \frac{dy}{dx} + y = xe^x$
$\frac{d}{dx}(xy) = xe^x$
Integrating both sides: $xy = \int xe^x dx$
Using integration by parts for ∫xeˣ dx: Let u = x, dv = eˣ dx Then du = dx, v = eˣ
$\int xe^x dx = xe^x - \int e^x dx = xe^x - e^x = e^x(x-1)$
So: $xy = e^x(x-1) + C$ $y = \frac{e^x(x-1) + C}{x}$
Using initial condition y(0) = 2: As x → 0, we need to use L’Hôpital’s rule or series expansion.
From the original equation at x = 0: dy/dx = eˣ - y/x This suggests we need to be more careful with the initial condition.
Alternative approach: Since the equation has a singularity at x = 0, we solve in the neighborhood where x ≠ 0.
Answer: $y = \frac{e^x(x-1) + C}{x}$ where C is determined by boundary conditions.
Q5(B).3 [4 marks]#
Solve y dy/dx = √(1 + x² + y² + x²y²)
Solution: $y \frac{dy}{dx} = \sqrt{1 + x^2 + y^2 + x^2y^2}$
$y \frac{dy}{dx} = \sqrt{(1 + x^2)(1 + y^2)}$
$\frac{y dy}{\sqrt{1 + y^2}} = \sqrt{1 + x^2} dx$
Integrating both sides: $\int \frac{y dy}{\sqrt{1 + y^2}} = \int \sqrt{1 + x^2} dx$
For the left side, let u = 1 + y², then du = 2y dy: $\int \frac{y dy}{\sqrt{1 + y^2}} = \frac{1}{2} \int \frac{du}{\sqrt{u}} = \sqrt{u} = \sqrt{1 + y^2}$
For the right side: $\int \sqrt{1 + x^2} dx = \frac{x\sqrt{1 + x^2}}{2} + \frac{1}{2}\ln|x + \sqrt{1 + x^2}| + C$
Therefore: $\sqrt{1 + y^2} = \frac{x\sqrt{1 + x^2}}{2} + \frac{1}{2}\ln|x + \sqrt{1 + x^2}| + C$
Answer: $\sqrt{1 + y^2} = \frac{x\sqrt{1 + x^2}}{2} + \frac{1}{2}\ln|x + \sqrt{1 + x^2}| + C$
Formula Cheat Sheet#
Matrix Operations#
- $(A + B)^T = A^T + B^T$
- $(AB)^T = B^T A^T$
- $A \cdot adj(A) = |A| \cdot I$
- For 2×2 matrix $[a ; b; c ; d]$: $adj = [d ; -b; -c ; a]$
Differentiation Formulas#
- $\frac{d}{dx}(\sin x) = \cos x$
- $\frac{d}{dx}(\cos x) = -\sin x$
- $\frac{d}{dx}(\tan x) = \sec^2 x$
- $\frac{d}{dx}(\log x) = \frac{1}{x}$
- $\frac{d}{dx}(e^x) = e^x$
- Chain rule: $\frac{d}{dx}f(g(x)) = f’(g(x)) \cdot g’(x)$
Integration Formulas#
- $\int \sin x , dx = -\cos x + C$
- $\int \cos x , dx = \sin x + C$
- $\int \sec^2 x , dx = \tan x + C$
- $\int \frac{1}{x} dx = \ln|x| + C$
- $\int e^x dx = e^x + C$
- $\int \frac{1}{x^2 + a^2} dx = \frac{1}{a}\tan^{-1}(\frac{x}{a}) + C$
Differential Equations#
- Linear DE: $\frac{dy}{dx} + P(x)y = Q(x)$
- Integrating Factor: $I.F. = e^{\int P(x) dx}$
- Variable Separable: $\frac{dy}{dx} = f(x)g(y) \Rightarrow \frac{dy}{g(y)} = f(x)dx$
Statistics#
- Mean: $\bar{x} = \frac{\sum x_i}{n}$ (ungrouped), $\bar{x} = \frac{\sum f_i x_i}{\sum f_i}$ (grouped)
- Mean Deviation: $M.D. = \frac{\sum |x_i - \bar{x}|}{n}$
- Standard Deviation: $\sigma = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n}}$
Problem-Solving Strategies#
Matrix Problems#
- Always check dimensions before operations
- For inverse: Calculate determinant first, then adjoint
- For system of equations: Use $X = A^{-1}B$ where $AX = B$
Differentiation Problems#
- Identify the type: Chain rule, product rule, quotient rule
- For implicit differentiation: Differentiate both sides, collect dy/dx terms
- For parametric: Use $\frac{dy}{dx} = \frac{dy/dt}{dx/dt}$
Integration Problems#
- Try substitution if you see function and its derivative
- Use integration by parts for products (LIATE rule)
- For definite integrals: Check for symmetry properties
Differential Equations#
- Identify type: Separable, linear, exact
- For linear DE: Find integrating factor first
- Always verify your solution by substitution
Statistics Problems#
- Find mean first for deviation calculations
- Use grouped data formulas when data is in classes
- Create frequency table to organize calculations
Common Mistakes to Avoid#
- Matrix multiplication: Order matters (AB ≠ BA generally)
- Chain rule: Don’t forget to multiply by derivative of inner function
- Integration by parts: Choose u and dv carefully using LIATE
- Differential equations: Don’t forget the constant of integration
- Statistics: Use correct formula for grouped vs ungrouped data
Exam Tips#
- Read questions carefully - especially for OR questions
- Show all steps - partial marks are awarded
- Check units and signs in your final answers
- Verify solutions when possible by substitution
- Manage time wisely - attempt questions you’re confident about first
- Use standard formulas - memorize the formula sheet content
- For fill-in-blanks: Eliminate obviously wrong options first