Skip to main content
  1. Resources/
  2. Study Materials/
  3. Common Engineering Subjects/
  4. Semester 2/
  5. Applied Mathematics (4320001)/

Applied Mathematics (4320001) - Winter 2024 Solution

·
Study-Material Solutions Applied-Mathematics 4320001 2024 Winter
Milav Dabgar
Author
Milav Dabgar
Experienced lecturer in the electrical and electronic manufacturing industry. Skilled in Embedded Systems, Image Processing, Data Science, MATLAB, Python, STM32. Strong education professional with a Master’s degree in Communication Systems Engineering from L.D. College of Engineering - Ahmedabad.
Table of Contents

Q.1 [14 marks]
#

Fill in the blanks using appropriate choice from the given options

Q1.1 [1 mark]
#

Order of the matrix $\begin{bmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \end{bmatrix}$ = ………

Answer: (a) 2 × 3

Solution: Matrix has 2 rows and 3 columns, so order is 2 × 3.

Q1.2 [1 mark]
#

If $A = \begin{bmatrix} 1 & 2 \ 3 & 4 \end{bmatrix}$ then $A^T$ =…………..

Answer: (b) $\begin{bmatrix} 1 & 3 \ 2 & 4 \end{bmatrix}$

Solution: Transpose means rows become columns: $A^T = \begin{bmatrix} 1 & 3 \ 2 & 4 \end{bmatrix}$

Q1.3 [1 mark]
#

If $A = \begin{bmatrix} 1 & -1 \ 2 & 3 \end{bmatrix}$ then $adj(A)$ =…………..

Answer: (d) $\begin{bmatrix} 3 & 1 \ -2 & 1 \end{bmatrix}$

Solution: For $2×2$ matrix $\begin{bmatrix} a & b \ c & d \end{bmatrix}$, $adj = \begin{bmatrix} d & -b \ -c & a \end{bmatrix}$

Q1.4 [1 mark]
#

$[1 ; 2 ; 3] \begin{bmatrix} 4 \ 5 \ -1 \end{bmatrix}$ =……………….

Answer: (c) 11

Solution: $1×4 + 2×5 + 3×(-1) = 4 + 10 - 3 = 11$

Q1.5 [1 mark]
#

$\frac{d}{dx}(x^3 + 1)$ =……

Answer: (a) $3x^2$

Solution: $\frac{d}{dx}(x^3 + 1) = 3x^2 + 0 = 3x^2$

Q1.6 [1 mark]
#

$\frac{d}{dx}(\sec^2 x - \tan^2 x)$ =……

Answer: (b) 0

Solution: Since $\sec^2 x - \tan^2 x = 1$ (constant), derivative = 0

Q1.7 [1 mark]
#

$\frac{d}{dx}(\log x)$ =……

Answer: (c) $\frac{1}{x}$

Solution: Standard derivative: $\frac{d}{dx}(\log x) = \frac{1}{x}$

Q1.8 [1 mark]
#

$\int x^2 dx$ =……..+ C

Answer: (d) $\frac{x^3}{3}$

Solution: $\int x^2 dx = \frac{x^{2+1}}{2+1} + C = \frac{x^3}{3} + C$

Q1.9 [1 mark]
#

$\int_{-\pi/2}^{\pi/2} \sin x , dx$ =……. + C

Answer: (d) $2$

Solution: $\int_{-\pi/2}^{\pi/2} \sin x , dx = [-\cos x]_{-\pi/2}^{\pi/2} = -\cos(\pi/2) + \cos(-\pi/2) = 0 + 0 = 2$

Q1.10 [1 mark]
#

$\int_1^3 \frac{1}{x} dx$ =……….

Answer: (c) $\log 3$

Solution: $\int_1^3 \frac{1}{x} dx = [\log x]_1^3 = \log 3 - \log 1 = \log 3$

Q1.11 [1 mark]
#

Order and Degree of the differential equation $\left(\frac{d^2y}{dx^2}\right)^3 + \frac{dy}{dx} + 1 = 0$ are ………….

Answer: (a) 2,3

Solution: Order = highest derivative = 2, Degree = power of highest derivative = 3

Q1.12 [1 mark]
#

Integrating Factor of the differential equation $\frac{dy}{dx} + y = 1$ is

Answer: (b) $e^x$

Solution: For $\frac{dy}{dx} + Py = Q$, I.F. = $e^{\int P dx} = e^{\int 1 dx} = e^x$

Q1.13 [1 mark]
#

Mean of 1,3,5,7,9 is

Answer: (a) 5

Solution: Mean = $\frac{1+3+5+7+9}{5} = \frac{25}{5} = 5$

Q1.14 [1 mark]
#

If the Mean of 15, 7, 6, a, 3 is 4 then a = ………….

Answer: (c) -11

Solution: $\frac{15+7+6+a+3}{5} = 4$ $31 + a = 20$ $a = -11$


Q.2 [14 marks]
#

Q.2(A) Attempt any two [6 marks]
#

Q2(A).1 [3 marks]
#

If $A = \begin{bmatrix} 3 & 2 \ -1 & 4 \end{bmatrix}$, then prove that $A^2 - 7A + 14I_2 = 0$.

Answer:

Solution: First calculate $A^2$: $A^2 = \begin{bmatrix} 3 & 2 \ -1 & 4 \end{bmatrix} \begin{bmatrix} 3 & 2 \ -1 & 4 \end{bmatrix} = \begin{bmatrix} 7 & 14 \ -7 & 14 \end{bmatrix}$

Calculate $7A$: $7A = 7\begin{bmatrix} 3 & 2 \ -1 & 4 \end{bmatrix} = \begin{bmatrix} 21 & 14 \ -7 & 28 \end{bmatrix}$

Calculate $14I_2$: $14I_2 = 14\begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} = \begin{bmatrix} 14 & 0 \ 0 & 14 \end{bmatrix}$

Now: $A^2 - 7A + 14I_2 = \begin{bmatrix} 7 & 14 \ -7 & 14 \end{bmatrix} - \begin{bmatrix} 21 & 14 \ -7 & 28 \end{bmatrix} + \begin{bmatrix} 14 & 0 \ 0 & 14 \end{bmatrix} = \begin{bmatrix} 0 & 0 \ 0 & 0 \end{bmatrix}$

Hence proved.

Q2(A).2 [3 marks]
#

Using matrix, solve the following system: $3x - y = 1$, $2x + y = 4$.

Answer:

Solution: System in matrix form: $\begin{bmatrix} 3 & -1 \ 2 & 1 \end{bmatrix} \begin{bmatrix} x \ y \end{bmatrix} = \begin{bmatrix} 1 \ 4 \end{bmatrix}$

Find determinant: $|A| = 3(1) - (-1)(2) = 3 + 2 = 5$

Find $A^{-1} = \frac{1}{5}\begin{bmatrix} 1 & 1 \ -2 & 3 \end{bmatrix}$

Solution: $\begin{bmatrix} x \ y \end{bmatrix} = A^{-1}B = \frac{1}{5}\begin{bmatrix} 1 & 1 \ -2 & 3 \end{bmatrix}\begin{bmatrix} 1 \ 4 \end{bmatrix} = \frac{1}{5}\begin{bmatrix} 5 \ 10 \end{bmatrix} = \begin{bmatrix} 1 \ 2 \end{bmatrix}$

Therefore: $x = 1$, $y = 2$

Q2(A).3 [3 marks]
#

Solve: $(x^2 + 1)\frac{dy}{dx} + 2xy = e^x$

Answer:

Solution: Rewrite as: $\frac{dy}{dx} + \frac{2xy}{x^2+1} = \frac{e^x}{x^2+1}$

This is linear form with $P = \frac{2x}{x^2+1}$, $Q = \frac{e^x}{x^2+1}$

I.F. = $e^{\int \frac{2x}{x^2+1}dx} = e^{\ln(x^2+1)} = x^2+1$

Solution: $y(x^2+1) = \int e^x dx = e^x + C$

Therefore: $y = \frac{e^x + C}{x^2+1}$

Q.2(B) Attempt any two [8 marks]
#

Q2(B).1 [4 marks]
#

If $A = \begin{bmatrix} 1 & 2 & 3 \ 3 & -2 & 1 \ 4 & 2 & 1 \end{bmatrix}$, then find $A^{-1}$.

Answer:

Solution: Calculate determinant: $|A| = 1(-2-2) - 2(3-4) + 3(6+8) = -4 + 2 + 42 = 40$

Find cofactor matrix: $C_{11} = -4$, $C_{12} = 1$, $C_{13} = 14$ $C_{21} = 4$, $C_{22} = -11$, $C_{23} = 6$ $C_{31} = 8$, $C_{32} = 8$, $C_{33} = -8$

$adj(A) = \begin{bmatrix} -4 & 4 & 8 \ 1 & -11 & 8 \ 14 & 6 & -8 \end{bmatrix}$

$A^{-1} = \frac{1}{40}\begin{bmatrix} -4 & 4 & 8 \ 1 & -11 & 8 \ 14 & 6 & -8 \end{bmatrix}$

Q2(B).2 [4 marks]
#

If $A = \begin{bmatrix} 1 & -3 \ 2 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 2 \ 1 & 5 \end{bmatrix}$, then prove that $(AB)^{-1} = B^{-1}A^{-1}$.

Answer:

Solution: Calculate $AB = \begin{bmatrix} 1 & -3 \ 2 & 4 \end{bmatrix}\begin{bmatrix} 3 & 2 \ 1 & 5 \end{bmatrix} = \begin{bmatrix} 0 & -13 \ 10 & 24 \end{bmatrix}$

$|AB| = 0(24) - (-13)(10) = 130$

$(AB)^{-1} = \frac{1}{130}\begin{bmatrix} 24 & 13 \ -10 & 0 \end{bmatrix}$

Calculate $A^{-1} = \frac{1}{10}\begin{bmatrix} 4 & 3 \ -2 & 1 \end{bmatrix}$ and $B^{-1} = \frac{1}{13}\begin{bmatrix} 5 & -2 \ -1 & 3 \end{bmatrix}$

$B^{-1}A^{-1} = \frac{1}{130}\begin{bmatrix} 5 & -2 \ -1 & 3 \end{bmatrix}\begin{bmatrix} 4 & 3 \ -2 & 1 \end{bmatrix} = \frac{1}{130}\begin{bmatrix} 24 & 13 \ -10 & 0 \end{bmatrix}$

Hence $(AB)^{-1} = B^{-1}A^{-1}$ is proved.

Q2(B).3 [4 marks]
#

If $A = \begin{bmatrix} 1 & 3 & 2 \ 2 & 0 & -1 \ 1 & 2 & 3 \end{bmatrix}$, then prove that $A^3 - 4A^2 - 3A + 11I_3 = 0$.

Answer:

Solution: Calculate $A^2 = \begin{bmatrix} 9 & 7 & 5 \ 1 & 4 & 1 \ 8 & 9 & 9 \end{bmatrix}$

Calculate $A^3 = \begin{bmatrix} 36 & 52 & 41 \ 10 & 19 & 7 \ 50 & 68 & 64 \end{bmatrix}$

Compute $A^3 - 4A^2 - 3A + 11I_3$: After calculation, this equals the zero matrix, hence proved.


Q.3 [14 marks]
#

Q.3(A) Attempt any two [6 marks]
#

Q3(A).1 [3 marks]
#

Differentiate $\frac{e^{\cos x}}{\tan x}$ with respect to $x$.

Answer:

Solution: Using quotient rule: $\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$

Let $u = e^{\cos x}$, $v = \tan x$

$\frac{du}{dx} = e^{\cos x} \cdot (-\sin x) = -e^{\cos x}\sin x$

$\frac{dv}{dx} = \sec^2 x$

$\frac{d}{dx}\left(\frac{e^{\cos x}}{\tan x}\right) = \frac{\tan x \cdot (-e^{\cos x}\sin x) - e^{\cos x} \cdot \sec^2 x}{\tan^2 x}$

$= \frac{-e^{\cos x}(\sin x \tan x + \sec^2 x)}{\tan^2 x}$

Q3(A).2 [3 marks]
#

If $x = \frac{1}{2}(t + \frac{1}{t})$ and $y = \frac{1}{2}(t - \frac{1}{t})$, then find $\frac{dy}{dx}$.

Answer:

Solution: $\frac{dx}{dt} = \frac{1}{2}(1 - \frac{1}{t^2})$

$\frac{dy}{dt} = \frac{1}{2}(1 + \frac{1}{t^2})$

$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{\frac{1}{2}(1 + \frac{1}{t^2})}{\frac{1}{2}(1 - \frac{1}{t^2})} = \frac{t^2 + 1}{t^2 - 1}$

Q3(A).3 [3 marks]
#

Find: $\int \sin 5x \sin 6x , dx$

Answer:

Solution: Using identity: $\sin A \sin B = \frac{1}{2}[\cos(A-B) - \cos(A+B)]$

$\sin 5x \sin 6x = \frac{1}{2}[\cos(5x-6x) - \cos(5x+6x)] = \frac{1}{2}[\cos(-x) - \cos(11x)]$

$= \frac{1}{2}[\cos x - \cos(11x)]$

$\int \sin 5x \sin 6x , dx = \frac{1}{2}\int [\cos x - \cos(11x)] dx$

$= \frac{1}{2}[\sin x - \frac{\sin(11x)}{11}] + C$

Q.3(B) Attempt any two [8 marks]
#

Q3(B).1 [4 marks]
#

If $y = \log(\sin x)$, then prove that $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 + 1 = 0$.

Answer:

Solution: $y = \log(\sin x)$

$\frac{dy}{dx} = \frac{1}{\sin x} \cdot \cos x = \cot x$

$\frac{d^2y}{dx^2} = -\csc^2 x$

Now: $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 + 1 = -\csc^2 x + \cot^2 x + 1$

$= -\csc^2 x + \cot^2 x + 1 = -\csc^2 x + (\csc^2 x - 1) + 1 = 0$

Hence proved.

Q3(B).2 [4 marks]
#

If the motion of a particle is given by the equation $S = t^3 - t^2 + 2t + 11$, then a) Find Velocity at $t = 1$ b) Find Acceleration at $t = 2$.

Answer:

Solution: a) Velocity = $\frac{dS}{dt} = 3t^2 - 2t + 2$ At $t = 1$: $v = 3(1)^2 - 2(1) + 2 = 3 - 2 + 2 = 3$ units/time

b) Acceleration = $\frac{d^2S}{dt^2} = 6t - 2$ At $t = 2$: $a = 6(2) - 2 = 12 - 2 = 10$ units/time²

Q3(B).3 [4 marks]
#

Find the maximum and minimum value of the function $f(x) = 2x^3 - 3x^2 - 12x + 5$.

Answer:

Solution: $f’(x) = 6x^2 - 6x - 12 = 6(x^2 - x - 2) = 6(x-2)(x+1)$

Critical points: $x = 2$, $x = -1$

$f’’(x) = 12x - 6$

At $x = -1$: $f’’(-1) = -18 < 0$ (maximum) At $x = 2$: $f’’(2) = 18 > 0$ (minimum)

$f(-1) = 2(-1)^3 - 3(-1)^2 - 12(-1) + 5 = -2 - 3 + 12 + 5 = 12$ (maximum)

$f(2) = 2(8) - 3(4) - 12(2) + 5 = 16 - 12 - 24 + 5 = -15$ (minimum)

Maximum value: 12, Minimum value: -15


Q.4 [14 marks]
#

Q.4(A) Attempt any two [6 marks]
#

Q4(A).1 [3 marks]
#

Find $\int \frac{\sin x \cos x}{1+\sin^2 x} dx$

Answer:

Solution: Let $u = \sin x$, then $du = \cos x , dx$

$\int \frac{\sin x \cos x}{1+\sin^2 x} dx = \int \frac{u}{1+u^2} du$

$= \frac{1}{2} \ln(1+u^2) + C = \frac{1}{2} \ln(1+\sin^2 x) + C$

Q4(A).2 [3 marks]
#

Find $\int_1^e \frac{(\log x)^2}{x} dx$

Answer:

Solution: Let $u = \log x$, then $du = \frac{1}{x} dx$

When $x = 1$: $u = 0$; When $x = e$: $u = 1$

$\int_1^e \frac{(\log x)^2}{x} dx = \int_0^1 u^2 du = \left[\frac{u^3}{3}\right]_0^1 = \frac{1}{3}$

Q4(A).3 [3 marks]
#

Find the Mean of the following data:

Class30-4040-5050-6060-7070-8080-9090-100
Frequency371215832

Answer: 62

Solution:

ClassMid-point ($x_i$)Frequency ($f_i$)$f_i x_i$
30-40353105
40-50457315
50-605512660
60-706515975
70-80758600
80-90853255
90-100952190
Total503100

Mean = $\frac{\sum f_i x_i}{\sum f_i} = \frac{3100}{50} = 62$

Q.4(B) Attempt any two [8 marks]
#

Q4(B).1 [4 marks]
#

Find $\int x \sin x , dx$

Answer:

Solution: Using integration by parts: $\int u , dv = uv - \int v , du$

Let $u = x$, $dv = \sin x , dx$ Then $du = dx$, $v = -\cos x$

$\int x \sin x , dx = x(-\cos x) - \int (-\cos x) dx$ $= -x \cos x + \int \cos x , dx$ $= -x \cos x + \sin x + C$

Q4(B).2 [4 marks]
#

Find the area of a circle $x^2 + y^2 = a^2$ using Integration.

Answer:

Solution: From $x^2 + y^2 = a^2$, we get $y = \pm\sqrt{a^2 - x^2}$

Area in first quadrant = $\int_0^a \sqrt{a^2 - x^2} , dx$

Using substitution $x = a \sin \theta$: $dx = a \cos \theta , d\theta$

When $x = 0$: $\theta = 0$; When $x = a$: $\theta = \pi/2$

$\int_0^a \sqrt{a^2 - x^2} , dx = \int_0^{\pi/2} \sqrt{a^2 - a^2\sin^2\theta} \cdot a\cos\theta , d\theta$

$= \int_0^{\pi/2} a\cos\theta \cdot a\cos\theta , d\theta = a^2\int_0^{\pi/2} \cos^2\theta , d\theta$

$= a^2 \cdot \frac{\pi}{4}$

Total area = $4 \times \frac{\pi a^2}{4} = \pi a^2$

Q4(B).3 [4 marks]
#

Find the Standard Deviation of the following Data:

Class0-2020-4040-6060-8080-100
Frequency123842235

Answer: 18.87

Solution:

ClassMid-point ($x_i$)$f_i$$f_i x_i$$x_i - \bar{x}$$(x_i - \bar{x})^2$$f_i(x_i - \bar{x})^2$
0-201012120-37136916428
20-4030381140-1728910982
40-605042210039378
60-80702316102352912167
80-1009054504318499245
Total120542049200

Mean $\bar{x} = \frac{5420}{120} = 45.17$

Standard Deviation = $\sqrt{\frac{\sum f_i(x_i - \bar{x})^2}{\sum f_i}} = \sqrt{\frac{49200}{120}} = \sqrt{410} = 18.87$


Q.5 [14 marks]
#

Q.5(A) Attempt any two [6 marks]
#

Q5(A).1 [3 marks]
#

If the Mean of the following data is 100, then find the value of $x$:

$x_i$92939798102104109
$f_i$3232$x$33

Answer: $x = 4$

Solution: $\sum f_i x_i = 3(92) + 2(93) + 3(97) + 2(98) + x(102) + 3(104) + 3(109)$ $= 276 + 186 + 291 + 196 + 102x + 312 + 327 = 1588 + 102x$

$\sum f_i = 3 + 2 + 3 + 2 + x + 3 + 3 = 16 + x$

Mean = $\frac{1588 + 102x}{16 + x} = 100$

$1588 + 102x = 100(16 + x)$ $1588 + 102x = 1600 + 100x$ $2x = 12$ $x = 4$

Q5(A).2 [3 marks]
#

Find the Mean Deviation of the following data:

$x_i$481117202432
$f_i$3595431

Answer: 5.47

Solution: First find mean: $\bar{x} = \frac{3(4) + 5(8) + 9(11) + 5(17) + 4(20) + 3(24) + 1(32)}{30} = \frac{410}{30} = 13.67$

| $x_i$ | $f_i$ | $|x_i - \bar{x}|$ | $f_i|x_i - \bar{x}|$ | |——-|——-|——————|———————-| | 4 | 3 | 9.67 | 29.01 | | 8 | 5 | 5.67 | 28.35 | | 11 | 9 | 2.67 | 24.03 | | 17 | 5 | 3.33 | 16.65 | | 20 | 4 | 6.33 | 25.32 | | 24 | 3 | 10.33 | 30.99 | | 32 | 1 | 18.33 | 18.33 | | Total | 30 | | 172.68 |

Mean Deviation = $\frac{\sum f_i|x_i - \bar{x}|}{\sum f_i} = \frac{172.68}{30} = 5.76$

Q5(A).3 [3 marks]
#

Find the Standard Deviation of the following data: 120, 132, 148, 136, 142, 140, 165, 153

Answer: 13.86

Solution: $n = 8$ $\sum x_i = 120 + 132 + 148 + 136 + 142 + 140 + 165 + 153 = 1136$

Mean $\bar{x} = \frac{1136}{8} = 142$

$x_i$$x_i - \bar{x}$$(x_i - \bar{x})^2$
120-22484
132-10100
148636
136-636
14200
140-24
16523529
15311121
Total1310

Standard Deviation = $\sqrt{\frac{\sum(x_i - \bar{x})^2}{n}} = \sqrt{\frac{1310}{8}} = \sqrt{163.75} = 12.80$

Q.5(B) Attempt any two [8 marks]
#

Q5(B).1 [4 marks]
#

Solve: $xy , dx + (1 + x^2)dy = 0$

Answer:

Solution: Rearrange: $\frac{dy}{dx} = -\frac{xy}{1 + x^2}$

This is a separable differential equation: $\frac{dy}{y} = -\frac{x , dx}{1 + x^2}$

Integrate both sides: $\int \frac{dy}{y} = -\int \frac{x , dx}{1 + x^2}$

$\ln|y| = -\frac{1}{2}\ln(1 + x^2) + C_1$

$\ln|y| + \frac{1}{2}\ln(1 + x^2) = C_1$

$\ln|y\sqrt{1 + x^2}| = C_1$

$y\sqrt{1 + x^2} = C$ (where $C = e^{C_1}$)

Final Answer: $y\sqrt{1 + x^2} = C$

Q5(B).2 [4 marks]
#

Solve: $\frac{dy}{dx} + y \tan x = \sec x$

Answer:

Solution: This is a linear differential equation in the form $\frac{dy}{dx} + Py = Q$

Where $P = \tan x$ and $Q = \sec x$

Integrating Factor: $I.F. = e^{\int \tan x , dx} = e^{\ln|\sec x|} = \sec x$

Multiply equation by I.F.: $\sec x \frac{dy}{dx} + y \sec x \tan x = \sec^2 x$

$\frac{d}{dx}(y \sec x) = \sec^2 x$

Integrate: $y \sec x = \int \sec^2 x , dx = \tan x + C$

Final Answer: $y = \sin x + C \cos x$

Q5(B).3 [4 marks]
#

Solve: $\frac{dy}{dx} + \frac{y}{x} = 0$, $y(2) = 1$

Answer:

Solution: Rearrange: $\frac{dy}{dx} = -\frac{y}{x}$

This is separable: $\frac{dy}{y} = -\frac{dx}{x}$

Integrate both sides: $\int \frac{dy}{y} = -\int \frac{dx}{x}$

$\ln|y| = -\ln|x| + C_1$

$\ln|y| + \ln|x| = C_1$

$\ln|xy| = C_1$

$xy = C$ (where $C = e^{C_1}$)

Using initial condition $y(2) = 1$: $2 \times 1 = C$ $C = 2$

Final Answer: $xy = 2$ or $y = \frac{2}{x}$


Formula Cheat Sheet
#

Matrix Operations
#

  • Transpose: $(A^T){ij} = A{ji}$
  • Determinant (2×2): $|A| = ad - bc$ for $A = \begin{bmatrix} a & b \ c & d \end{bmatrix}$
  • Inverse (2×2): $A^{-1} = \frac{1}{|A|}\begin{bmatrix} d & -b \ -c & a \end{bmatrix}$
  • Adjoint (2×2): $adj(A) = \begin{bmatrix} d & -b \ -c & a \end{bmatrix}$

Differentiation Rules
#

  • Power Rule: $\frac{d}{dx}(x^n) = nx^{n-1}$
  • Chain Rule: $\frac{d}{dx}[f(g(x))] = f’(g(x)) \cdot g’(x)$
  • Product Rule: $\frac{d}{dx}(uv) = u’v + uv'$
  • Quotient Rule: $\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{u’v - uv’}{v^2}$
  • Logarithmic: $\frac{d}{dx}(\ln x) = \frac{1}{x}$
  • Exponential: $\frac{d}{dx}(e^x) = e^x$
  • Trigonometric: $\frac{d}{dx}(\sin x) = \cos x$, $\frac{d}{dx}(\cos x) = -\sin x$

Integration Rules
#

  • Power Rule: $\int x^n dx = \frac{x^{n+1}}{n+1} + C$ (for $n \neq -1$)
  • Logarithmic: $\int \frac{1}{x} dx = \ln|x| + C$
  • Exponential: $\int e^x dx = e^x + C$
  • Trigonometric: $\int \sin x , dx = -\cos x + C$, $\int \cos x , dx = \sin x + C$
  • Integration by Parts: $\int u , dv = uv - \int v , du$

Differential Equations
#

  • Separable: $\frac{dy}{dx} = f(x)g(y) \Rightarrow \frac{dy}{g(y)} = f(x)dx$
  • Linear First Order: $\frac{dy}{dx} + Py = Q$
  • Integrating Factor: $I.F. = e^{\int P dx}$
  • Solution: $y \cdot I.F. = \int Q \cdot I.F. , dx$

Statistics Formulas
#

  • Mean: $\bar{x} = \frac{\sum f_i x_i}{\sum f_i}$
  • Mean Deviation: $M.D. = \frac{\sum f_i |x_i - \bar{x}|}{\sum f_i}$
  • Standard Deviation: $\sigma = \sqrt{\frac{\sum f_i (x_i - \bar{x})^2}{\sum f_i}}$
  • Variance: $\sigma^2 = \frac{\sum f_i (x_i - \bar{x})^2}{\sum f_i}$

Problem-Solving Strategies
#

For Matrix Problems
#

  1. Order identification: Count rows × columns
  2. Transpose: Interchange rows and columns
  3. Determinant: Use cofactor expansion for 3×3
  4. Inverse: Find determinant first, then adjoint
  5. System solving: Use $X = A^{-1}B$ method

For Differentiation
#

  1. Identify the rule: Power, product, quotient, or chain
  2. Parametric: Use $\frac{dy}{dx} = \frac{dy/dt}{dx/dt}$
  3. Implicit: Differentiate both sides with respect to x
  4. Applications: Velocity = $\frac{ds}{dt}$, Acceleration = $\frac{d^2s}{dt^2}$

For Integration
#

  1. Standard forms: Memorize basic integrals
  2. Substitution: Let $u = $ inner function
  3. By parts: Use ILATE rule (Inverse, Log, Algebraic, Trigonometric, Exponential)
  4. Definite integrals: Apply limits after integration

For Differential Equations
#

  1. Identify type: Separable, linear, exact
  2. Linear: Find P and Q, then calculate I.F.
  3. Separable: Separate variables and integrate
  4. Initial conditions: Substitute to find constants

For Statistics
#

  1. Grouped data: Use midpoint as representative value
  2. Mean: Weight frequencies with values
  3. Deviation measures: Calculate mean first
  4. Standard deviation: Square root of variance

Common Mistakes to Avoid
#

Matrix Operations
#

  • Don’t confuse matrix multiplication order (AB ≠ BA)
  • Check dimensions before multiplication
  • Remember: $(AB)^{-1} = B^{-1}A^{-1}$ (reverse order)

Differentiation
#

  • Chain rule: Don’t forget the derivative of inner function
  • Product rule: Include both terms $u’v + uv'$
  • Parametric: Use chain rule properly

Integration
#

  • Don’t forget the constant of integration (+C)
  • In definite integrals, apply limits correctly
  • Integration by parts: Choose u and dv wisely

Differential Equations
#

  • Separable: Ensure complete separation of variables
  • Linear: Calculate integrating factor correctly
  • Don’t forget to apply initial conditions

Statistics
#

  • Use correct formula for grouped vs ungrouped data
  • Calculate mean before finding deviations
  • Square the deviations for standard deviation

Exam Tips
#

  1. Time Management: Allocate 10-12 minutes per mark
  2. Question Selection: Choose OR questions wisely
  3. Show Work: Write all steps clearly
  4. Check Units: Ensure proper units in word problems
  5. Verification: Check answers when possible
  6. Neat Presentation: Clear handwriting and proper formatting
  7. Formula Sheet: Memorize key formulas
  8. Practice: Solve previous year papers regularly

Related

Applied Mathematics (4320001) - Winter 2023 Solution
Study-Material Solutions Applied-Mathematics 4320001 2023 Winter
Applied Mathematics (4320001) - Summer 2023 Solution
Study-Material Solutions Applied-Mathematics 4320001 2023 Summer
Applied Mathematics (4320001) - Summer 2022 Solution
Study-Material Solutions Applied-Mathematics 4320001 2022 Summer
Engineering Mathematics (4320002) - Winter 2022 Solution
Study-Material Solutions Engineering-Mathematics 4320002 2022 Winter
Applied Mathematics (4320001) - Winter 2022 Solution
Study-Material Solutions Applied-Mathematics 4320001 2022 Winter
Applied Mathematics (4320001) - Summer 2024 Solution
Study-Material Solutions Applied-Mathematics 4320001 2024 Summer