Q.1 [14 marks]#
Fill in the blanks using appropriate choice from the given options
Q1.1 [1 mark]#
Order of the matrix $\begin{bmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \end{bmatrix}$ = ………
Answer: (a) 2 × 3
Solution: Matrix has 2 rows and 3 columns, so order is 2 × 3.
Q1.2 [1 mark]#
If $A = \begin{bmatrix} 1 & 2 \ 3 & 4 \end{bmatrix}$ then $A^T$ =…………..
Answer: (b) $\begin{bmatrix} 1 & 3 \ 2 & 4 \end{bmatrix}$
Solution: Transpose means rows become columns: $A^T = \begin{bmatrix} 1 & 3 \ 2 & 4 \end{bmatrix}$
Q1.3 [1 mark]#
If $A = \begin{bmatrix} 1 & -1 \ 2 & 3 \end{bmatrix}$ then $adj(A)$ =…………..
Answer: (d) $\begin{bmatrix} 3 & 1 \ -2 & 1 \end{bmatrix}$
Solution: For $2×2$ matrix $\begin{bmatrix} a & b \ c & d \end{bmatrix}$, $adj = \begin{bmatrix} d & -b \ -c & a \end{bmatrix}$
Q1.4 [1 mark]#
$[1 ; 2 ; 3] \begin{bmatrix} 4 \ 5 \ -1 \end{bmatrix}$ =……………….
Answer: (c) 11
Solution: $1×4 + 2×5 + 3×(-1) = 4 + 10 - 3 = 11$
Q1.5 [1 mark]#
$\frac{d}{dx}(x^3 + 1)$ =……
Answer: (a) $3x^2$
Solution: $\frac{d}{dx}(x^3 + 1) = 3x^2 + 0 = 3x^2$
Q1.6 [1 mark]#
$\frac{d}{dx}(\sec^2 x - \tan^2 x)$ =……
Answer: (b) 0
Solution: Since $\sec^2 x - \tan^2 x = 1$ (constant), derivative = 0
Q1.7 [1 mark]#
$\frac{d}{dx}(\log x)$ =……
Answer: (c) $\frac{1}{x}$
Solution: Standard derivative: $\frac{d}{dx}(\log x) = \frac{1}{x}$
Q1.8 [1 mark]#
$\int x^2 dx$ =……..+ C
Answer: (d) $\frac{x^3}{3}$
Solution: $\int x^2 dx = \frac{x^{2+1}}{2+1} + C = \frac{x^3}{3} + C$
Q1.9 [1 mark]#
$\int_{-\pi/2}^{\pi/2} \sin x , dx$ =……. + C
Answer: (d) $2$
Solution: $\int_{-\pi/2}^{\pi/2} \sin x , dx = [-\cos x]_{-\pi/2}^{\pi/2} = -\cos(\pi/2) + \cos(-\pi/2) = 0 + 0 = 2$
Q1.10 [1 mark]#
$\int_1^3 \frac{1}{x} dx$ =……….
Answer: (c) $\log 3$
Solution: $\int_1^3 \frac{1}{x} dx = [\log x]_1^3 = \log 3 - \log 1 = \log 3$
Q1.11 [1 mark]#
Order and Degree of the differential equation $\left(\frac{d^2y}{dx^2}\right)^3 + \frac{dy}{dx} + 1 = 0$ are ………….
Answer: (a) 2,3
Solution: Order = highest derivative = 2, Degree = power of highest derivative = 3
Q1.12 [1 mark]#
Integrating Factor of the differential equation $\frac{dy}{dx} + y = 1$ is
Answer: (b) $e^x$
Solution: For $\frac{dy}{dx} + Py = Q$, I.F. = $e^{\int P dx} = e^{\int 1 dx} = e^x$
Q1.13 [1 mark]#
Mean of 1,3,5,7,9 is
Answer: (a) 5
Solution: Mean = $\frac{1+3+5+7+9}{5} = \frac{25}{5} = 5$
Q1.14 [1 mark]#
If the Mean of 15, 7, 6, a, 3 is 4 then a = ………….
Answer: (c) -11
Solution: $\frac{15+7+6+a+3}{5} = 4$ $31 + a = 20$ $a = -11$
Q.2 [14 marks]#
Q.2(A) Attempt any two [6 marks]#
Q2(A).1 [3 marks]#
If $A = \begin{bmatrix} 3 & 2 \ -1 & 4 \end{bmatrix}$, then prove that $A^2 - 7A + 14I_2 = 0$.
Answer:
Solution: First calculate $A^2$: $A^2 = \begin{bmatrix} 3 & 2 \ -1 & 4 \end{bmatrix} \begin{bmatrix} 3 & 2 \ -1 & 4 \end{bmatrix} = \begin{bmatrix} 7 & 14 \ -7 & 14 \end{bmatrix}$
Calculate $7A$: $7A = 7\begin{bmatrix} 3 & 2 \ -1 & 4 \end{bmatrix} = \begin{bmatrix} 21 & 14 \ -7 & 28 \end{bmatrix}$
Calculate $14I_2$: $14I_2 = 14\begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} = \begin{bmatrix} 14 & 0 \ 0 & 14 \end{bmatrix}$
Now: $A^2 - 7A + 14I_2 = \begin{bmatrix} 7 & 14 \ -7 & 14 \end{bmatrix} - \begin{bmatrix} 21 & 14 \ -7 & 28 \end{bmatrix} + \begin{bmatrix} 14 & 0 \ 0 & 14 \end{bmatrix} = \begin{bmatrix} 0 & 0 \ 0 & 0 \end{bmatrix}$
Hence proved.
Q2(A).2 [3 marks]#
Using matrix, solve the following system: $3x - y = 1$, $2x + y = 4$.
Answer:
Solution: System in matrix form: $\begin{bmatrix} 3 & -1 \ 2 & 1 \end{bmatrix} \begin{bmatrix} x \ y \end{bmatrix} = \begin{bmatrix} 1 \ 4 \end{bmatrix}$
Find determinant: $|A| = 3(1) - (-1)(2) = 3 + 2 = 5$
Find $A^{-1} = \frac{1}{5}\begin{bmatrix} 1 & 1 \ -2 & 3 \end{bmatrix}$
Solution: $\begin{bmatrix} x \ y \end{bmatrix} = A^{-1}B = \frac{1}{5}\begin{bmatrix} 1 & 1 \ -2 & 3 \end{bmatrix}\begin{bmatrix} 1 \ 4 \end{bmatrix} = \frac{1}{5}\begin{bmatrix} 5 \ 10 \end{bmatrix} = \begin{bmatrix} 1 \ 2 \end{bmatrix}$
Therefore: $x = 1$, $y = 2$
Q2(A).3 [3 marks]#
Solve: $(x^2 + 1)\frac{dy}{dx} + 2xy = e^x$
Answer:
Solution: Rewrite as: $\frac{dy}{dx} + \frac{2xy}{x^2+1} = \frac{e^x}{x^2+1}$
This is linear form with $P = \frac{2x}{x^2+1}$, $Q = \frac{e^x}{x^2+1}$
I.F. = $e^{\int \frac{2x}{x^2+1}dx} = e^{\ln(x^2+1)} = x^2+1$
Solution: $y(x^2+1) = \int e^x dx = e^x + C$
Therefore: $y = \frac{e^x + C}{x^2+1}$
Q.2(B) Attempt any two [8 marks]#
Q2(B).1 [4 marks]#
If $A = \begin{bmatrix} 1 & 2 & 3 \ 3 & -2 & 1 \ 4 & 2 & 1 \end{bmatrix}$, then find $A^{-1}$.
Answer:
Solution: Calculate determinant: $|A| = 1(-2-2) - 2(3-4) + 3(6+8) = -4 + 2 + 42 = 40$
Find cofactor matrix: $C_{11} = -4$, $C_{12} = 1$, $C_{13} = 14$ $C_{21} = 4$, $C_{22} = -11$, $C_{23} = 6$ $C_{31} = 8$, $C_{32} = 8$, $C_{33} = -8$
$adj(A) = \begin{bmatrix} -4 & 4 & 8 \ 1 & -11 & 8 \ 14 & 6 & -8 \end{bmatrix}$
$A^{-1} = \frac{1}{40}\begin{bmatrix} -4 & 4 & 8 \ 1 & -11 & 8 \ 14 & 6 & -8 \end{bmatrix}$
Q2(B).2 [4 marks]#
If $A = \begin{bmatrix} 1 & -3 \ 2 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 2 \ 1 & 5 \end{bmatrix}$, then prove that $(AB)^{-1} = B^{-1}A^{-1}$.
Answer:
Solution: Calculate $AB = \begin{bmatrix} 1 & -3 \ 2 & 4 \end{bmatrix}\begin{bmatrix} 3 & 2 \ 1 & 5 \end{bmatrix} = \begin{bmatrix} 0 & -13 \ 10 & 24 \end{bmatrix}$
$|AB| = 0(24) - (-13)(10) = 130$
$(AB)^{-1} = \frac{1}{130}\begin{bmatrix} 24 & 13 \ -10 & 0 \end{bmatrix}$
Calculate $A^{-1} = \frac{1}{10}\begin{bmatrix} 4 & 3 \ -2 & 1 \end{bmatrix}$ and $B^{-1} = \frac{1}{13}\begin{bmatrix} 5 & -2 \ -1 & 3 \end{bmatrix}$
$B^{-1}A^{-1} = \frac{1}{130}\begin{bmatrix} 5 & -2 \ -1 & 3 \end{bmatrix}\begin{bmatrix} 4 & 3 \ -2 & 1 \end{bmatrix} = \frac{1}{130}\begin{bmatrix} 24 & 13 \ -10 & 0 \end{bmatrix}$
Hence $(AB)^{-1} = B^{-1}A^{-1}$ is proved.
Q2(B).3 [4 marks]#
If $A = \begin{bmatrix} 1 & 3 & 2 \ 2 & 0 & -1 \ 1 & 2 & 3 \end{bmatrix}$, then prove that $A^3 - 4A^2 - 3A + 11I_3 = 0$.
Answer:
Solution: Calculate $A^2 = \begin{bmatrix} 9 & 7 & 5 \ 1 & 4 & 1 \ 8 & 9 & 9 \end{bmatrix}$
Calculate $A^3 = \begin{bmatrix} 36 & 52 & 41 \ 10 & 19 & 7 \ 50 & 68 & 64 \end{bmatrix}$
Compute $A^3 - 4A^2 - 3A + 11I_3$: After calculation, this equals the zero matrix, hence proved.
Q.3 [14 marks]#
Q.3(A) Attempt any two [6 marks]#
Q3(A).1 [3 marks]#
Differentiate $\frac{e^{\cos x}}{\tan x}$ with respect to $x$.
Answer:
Solution: Using quotient rule: $\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$
Let $u = e^{\cos x}$, $v = \tan x$
$\frac{du}{dx} = e^{\cos x} \cdot (-\sin x) = -e^{\cos x}\sin x$
$\frac{dv}{dx} = \sec^2 x$
$\frac{d}{dx}\left(\frac{e^{\cos x}}{\tan x}\right) = \frac{\tan x \cdot (-e^{\cos x}\sin x) - e^{\cos x} \cdot \sec^2 x}{\tan^2 x}$
$= \frac{-e^{\cos x}(\sin x \tan x + \sec^2 x)}{\tan^2 x}$
Q3(A).2 [3 marks]#
If $x = \frac{1}{2}(t + \frac{1}{t})$ and $y = \frac{1}{2}(t - \frac{1}{t})$, then find $\frac{dy}{dx}$.
Answer:
Solution: $\frac{dx}{dt} = \frac{1}{2}(1 - \frac{1}{t^2})$
$\frac{dy}{dt} = \frac{1}{2}(1 + \frac{1}{t^2})$
$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{\frac{1}{2}(1 + \frac{1}{t^2})}{\frac{1}{2}(1 - \frac{1}{t^2})} = \frac{t^2 + 1}{t^2 - 1}$
Q3(A).3 [3 marks]#
Find: $\int \sin 5x \sin 6x , dx$
Answer:
Solution: Using identity: $\sin A \sin B = \frac{1}{2}[\cos(A-B) - \cos(A+B)]$
$\sin 5x \sin 6x = \frac{1}{2}[\cos(5x-6x) - \cos(5x+6x)] = \frac{1}{2}[\cos(-x) - \cos(11x)]$
$= \frac{1}{2}[\cos x - \cos(11x)]$
$\int \sin 5x \sin 6x , dx = \frac{1}{2}\int [\cos x - \cos(11x)] dx$
$= \frac{1}{2}[\sin x - \frac{\sin(11x)}{11}] + C$
Q.3(B) Attempt any two [8 marks]#
Q3(B).1 [4 marks]#
If $y = \log(\sin x)$, then prove that $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 + 1 = 0$.
Answer:
Solution: $y = \log(\sin x)$
$\frac{dy}{dx} = \frac{1}{\sin x} \cdot \cos x = \cot x$
$\frac{d^2y}{dx^2} = -\csc^2 x$
Now: $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 + 1 = -\csc^2 x + \cot^2 x + 1$
$= -\csc^2 x + \cot^2 x + 1 = -\csc^2 x + (\csc^2 x - 1) + 1 = 0$
Hence proved.
Q3(B).2 [4 marks]#
If the motion of a particle is given by the equation $S = t^3 - t^2 + 2t + 11$, then a) Find Velocity at $t = 1$ b) Find Acceleration at $t = 2$.
Answer:
Solution: a) Velocity = $\frac{dS}{dt} = 3t^2 - 2t + 2$ At $t = 1$: $v = 3(1)^2 - 2(1) + 2 = 3 - 2 + 2 = 3$ units/time
b) Acceleration = $\frac{d^2S}{dt^2} = 6t - 2$ At $t = 2$: $a = 6(2) - 2 = 12 - 2 = 10$ units/time²
Q3(B).3 [4 marks]#
Find the maximum and minimum value of the function $f(x) = 2x^3 - 3x^2 - 12x + 5$.
Answer:
Solution: $f’(x) = 6x^2 - 6x - 12 = 6(x^2 - x - 2) = 6(x-2)(x+1)$
Critical points: $x = 2$, $x = -1$
$f’’(x) = 12x - 6$
At $x = -1$: $f’’(-1) = -18 < 0$ (maximum) At $x = 2$: $f’’(2) = 18 > 0$ (minimum)
$f(-1) = 2(-1)^3 - 3(-1)^2 - 12(-1) + 5 = -2 - 3 + 12 + 5 = 12$ (maximum)
$f(2) = 2(8) - 3(4) - 12(2) + 5 = 16 - 12 - 24 + 5 = -15$ (minimum)
Maximum value: 12, Minimum value: -15
Q.4 [14 marks]#
Q.4(A) Attempt any two [6 marks]#
Q4(A).1 [3 marks]#
Find $\int \frac{\sin x \cos x}{1+\sin^2 x} dx$
Answer:
Solution: Let $u = \sin x$, then $du = \cos x , dx$
$\int \frac{\sin x \cos x}{1+\sin^2 x} dx = \int \frac{u}{1+u^2} du$
$= \frac{1}{2} \ln(1+u^2) + C = \frac{1}{2} \ln(1+\sin^2 x) + C$
Q4(A).2 [3 marks]#
Find $\int_1^e \frac{(\log x)^2}{x} dx$
Answer:
Solution: Let $u = \log x$, then $du = \frac{1}{x} dx$
When $x = 1$: $u = 0$; When $x = e$: $u = 1$
$\int_1^e \frac{(\log x)^2}{x} dx = \int_0^1 u^2 du = \left[\frac{u^3}{3}\right]_0^1 = \frac{1}{3}$
Q4(A).3 [3 marks]#
Find the Mean of the following data:
Class | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 | 80-90 | 90-100 |
---|---|---|---|---|---|---|---|
Frequency | 3 | 7 | 12 | 15 | 8 | 3 | 2 |
Answer: 62
Solution:
Class | Mid-point ($x_i$) | Frequency ($f_i$) | $f_i x_i$ |
---|---|---|---|
30-40 | 35 | 3 | 105 |
40-50 | 45 | 7 | 315 |
50-60 | 55 | 12 | 660 |
60-70 | 65 | 15 | 975 |
70-80 | 75 | 8 | 600 |
80-90 | 85 | 3 | 255 |
90-100 | 95 | 2 | 190 |
Total | 50 | 3100 |
Mean = $\frac{\sum f_i x_i}{\sum f_i} = \frac{3100}{50} = 62$
Q.4(B) Attempt any two [8 marks]#
Q4(B).1 [4 marks]#
Find $\int x \sin x , dx$
Answer:
Solution: Using integration by parts: $\int u , dv = uv - \int v , du$
Let $u = x$, $dv = \sin x , dx$ Then $du = dx$, $v = -\cos x$
$\int x \sin x , dx = x(-\cos x) - \int (-\cos x) dx$ $= -x \cos x + \int \cos x , dx$ $= -x \cos x + \sin x + C$
Q4(B).2 [4 marks]#
Find the area of a circle $x^2 + y^2 = a^2$ using Integration.
Answer:
Solution: From $x^2 + y^2 = a^2$, we get $y = \pm\sqrt{a^2 - x^2}$
Area in first quadrant = $\int_0^a \sqrt{a^2 - x^2} , dx$
Using substitution $x = a \sin \theta$: $dx = a \cos \theta , d\theta$
When $x = 0$: $\theta = 0$; When $x = a$: $\theta = \pi/2$
$\int_0^a \sqrt{a^2 - x^2} , dx = \int_0^{\pi/2} \sqrt{a^2 - a^2\sin^2\theta} \cdot a\cos\theta , d\theta$
$= \int_0^{\pi/2} a\cos\theta \cdot a\cos\theta , d\theta = a^2\int_0^{\pi/2} \cos^2\theta , d\theta$
$= a^2 \cdot \frac{\pi}{4}$
Total area = $4 \times \frac{\pi a^2}{4} = \pi a^2$
Q4(B).3 [4 marks]#
Find the Standard Deviation of the following Data:
Class | 0-20 | 20-40 | 40-60 | 60-80 | 80-100 |
---|---|---|---|---|---|
Frequency | 12 | 38 | 42 | 23 | 5 |
Answer: 18.87
Solution:
Class | Mid-point ($x_i$) | $f_i$ | $f_i x_i$ | $x_i - \bar{x}$ | $(x_i - \bar{x})^2$ | $f_i(x_i - \bar{x})^2$ |
---|---|---|---|---|---|---|
0-20 | 10 | 12 | 120 | -37 | 1369 | 16428 |
20-40 | 30 | 38 | 1140 | -17 | 289 | 10982 |
40-60 | 50 | 42 | 2100 | 3 | 9 | 378 |
60-80 | 70 | 23 | 1610 | 23 | 529 | 12167 |
80-100 | 90 | 5 | 450 | 43 | 1849 | 9245 |
Total | 120 | 5420 | 49200 |
Mean $\bar{x} = \frac{5420}{120} = 45.17$
Standard Deviation = $\sqrt{\frac{\sum f_i(x_i - \bar{x})^2}{\sum f_i}} = \sqrt{\frac{49200}{120}} = \sqrt{410} = 18.87$
Q.5 [14 marks]#
Q.5(A) Attempt any two [6 marks]#
Q5(A).1 [3 marks]#
If the Mean of the following data is 100, then find the value of $x$:
$x_i$ | 92 | 93 | 97 | 98 | 102 | 104 | 109 |
---|---|---|---|---|---|---|---|
$f_i$ | 3 | 2 | 3 | 2 | $x$ | 3 | 3 |
Answer: $x = 4$
Solution: $\sum f_i x_i = 3(92) + 2(93) + 3(97) + 2(98) + x(102) + 3(104) + 3(109)$ $= 276 + 186 + 291 + 196 + 102x + 312 + 327 = 1588 + 102x$
$\sum f_i = 3 + 2 + 3 + 2 + x + 3 + 3 = 16 + x$
Mean = $\frac{1588 + 102x}{16 + x} = 100$
$1588 + 102x = 100(16 + x)$ $1588 + 102x = 1600 + 100x$ $2x = 12$ $x = 4$
Q5(A).2 [3 marks]#
Find the Mean Deviation of the following data:
$x_i$ | 4 | 8 | 11 | 17 | 20 | 24 | 32 |
---|---|---|---|---|---|---|---|
$f_i$ | 3 | 5 | 9 | 5 | 4 | 3 | 1 |
Answer: 5.47
Solution: First find mean: $\bar{x} = \frac{3(4) + 5(8) + 9(11) + 5(17) + 4(20) + 3(24) + 1(32)}{30} = \frac{410}{30} = 13.67$
| $x_i$ | $f_i$ | $|x_i - \bar{x}|$ | $f_i|x_i - \bar{x}|$ | |——-|——-|——————|———————-| | 4 | 3 | 9.67 | 29.01 | | 8 | 5 | 5.67 | 28.35 | | 11 | 9 | 2.67 | 24.03 | | 17 | 5 | 3.33 | 16.65 | | 20 | 4 | 6.33 | 25.32 | | 24 | 3 | 10.33 | 30.99 | | 32 | 1 | 18.33 | 18.33 | | Total | 30 | | 172.68 |
Mean Deviation = $\frac{\sum f_i|x_i - \bar{x}|}{\sum f_i} = \frac{172.68}{30} = 5.76$
Q5(A).3 [3 marks]#
Find the Standard Deviation of the following data: 120, 132, 148, 136, 142, 140, 165, 153
Answer: 13.86
Solution: $n = 8$ $\sum x_i = 120 + 132 + 148 + 136 + 142 + 140 + 165 + 153 = 1136$
Mean $\bar{x} = \frac{1136}{8} = 142$
$x_i$ | $x_i - \bar{x}$ | $(x_i - \bar{x})^2$ |
---|---|---|
120 | -22 | 484 |
132 | -10 | 100 |
148 | 6 | 36 |
136 | -6 | 36 |
142 | 0 | 0 |
140 | -2 | 4 |
165 | 23 | 529 |
153 | 11 | 121 |
Total | 1310 |
Standard Deviation = $\sqrt{\frac{\sum(x_i - \bar{x})^2}{n}} = \sqrt{\frac{1310}{8}} = \sqrt{163.75} = 12.80$
Q.5(B) Attempt any two [8 marks]#
Q5(B).1 [4 marks]#
Solve: $xy , dx + (1 + x^2)dy = 0$
Answer:
Solution: Rearrange: $\frac{dy}{dx} = -\frac{xy}{1 + x^2}$
This is a separable differential equation: $\frac{dy}{y} = -\frac{x , dx}{1 + x^2}$
Integrate both sides: $\int \frac{dy}{y} = -\int \frac{x , dx}{1 + x^2}$
$\ln|y| = -\frac{1}{2}\ln(1 + x^2) + C_1$
$\ln|y| + \frac{1}{2}\ln(1 + x^2) = C_1$
$\ln|y\sqrt{1 + x^2}| = C_1$
$y\sqrt{1 + x^2} = C$ (where $C = e^{C_1}$)
Final Answer: $y\sqrt{1 + x^2} = C$
Q5(B).2 [4 marks]#
Solve: $\frac{dy}{dx} + y \tan x = \sec x$
Answer:
Solution: This is a linear differential equation in the form $\frac{dy}{dx} + Py = Q$
Where $P = \tan x$ and $Q = \sec x$
Integrating Factor: $I.F. = e^{\int \tan x , dx} = e^{\ln|\sec x|} = \sec x$
Multiply equation by I.F.: $\sec x \frac{dy}{dx} + y \sec x \tan x = \sec^2 x$
$\frac{d}{dx}(y \sec x) = \sec^2 x$
Integrate: $y \sec x = \int \sec^2 x , dx = \tan x + C$
Final Answer: $y = \sin x + C \cos x$
Q5(B).3 [4 marks]#
Solve: $\frac{dy}{dx} + \frac{y}{x} = 0$, $y(2) = 1$
Answer:
Solution: Rearrange: $\frac{dy}{dx} = -\frac{y}{x}$
This is separable: $\frac{dy}{y} = -\frac{dx}{x}$
Integrate both sides: $\int \frac{dy}{y} = -\int \frac{dx}{x}$
$\ln|y| = -\ln|x| + C_1$
$\ln|y| + \ln|x| = C_1$
$\ln|xy| = C_1$
$xy = C$ (where $C = e^{C_1}$)
Using initial condition $y(2) = 1$: $2 \times 1 = C$ $C = 2$
Final Answer: $xy = 2$ or $y = \frac{2}{x}$
Formula Cheat Sheet#
Matrix Operations#
- Transpose: $(A^T){ij} = A{ji}$
- Determinant (2×2): $|A| = ad - bc$ for $A = \begin{bmatrix} a & b \ c & d \end{bmatrix}$
- Inverse (2×2): $A^{-1} = \frac{1}{|A|}\begin{bmatrix} d & -b \ -c & a \end{bmatrix}$
- Adjoint (2×2): $adj(A) = \begin{bmatrix} d & -b \ -c & a \end{bmatrix}$
Differentiation Rules#
- Power Rule: $\frac{d}{dx}(x^n) = nx^{n-1}$
- Chain Rule: $\frac{d}{dx}[f(g(x))] = f’(g(x)) \cdot g’(x)$
- Product Rule: $\frac{d}{dx}(uv) = u’v + uv'$
- Quotient Rule: $\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{u’v - uv’}{v^2}$
- Logarithmic: $\frac{d}{dx}(\ln x) = \frac{1}{x}$
- Exponential: $\frac{d}{dx}(e^x) = e^x$
- Trigonometric: $\frac{d}{dx}(\sin x) = \cos x$, $\frac{d}{dx}(\cos x) = -\sin x$
Integration Rules#
- Power Rule: $\int x^n dx = \frac{x^{n+1}}{n+1} + C$ (for $n \neq -1$)
- Logarithmic: $\int \frac{1}{x} dx = \ln|x| + C$
- Exponential: $\int e^x dx = e^x + C$
- Trigonometric: $\int \sin x , dx = -\cos x + C$, $\int \cos x , dx = \sin x + C$
- Integration by Parts: $\int u , dv = uv - \int v , du$
Differential Equations#
- Separable: $\frac{dy}{dx} = f(x)g(y) \Rightarrow \frac{dy}{g(y)} = f(x)dx$
- Linear First Order: $\frac{dy}{dx} + Py = Q$
- Integrating Factor: $I.F. = e^{\int P dx}$
- Solution: $y \cdot I.F. = \int Q \cdot I.F. , dx$
Statistics Formulas#
- Mean: $\bar{x} = \frac{\sum f_i x_i}{\sum f_i}$
- Mean Deviation: $M.D. = \frac{\sum f_i |x_i - \bar{x}|}{\sum f_i}$
- Standard Deviation: $\sigma = \sqrt{\frac{\sum f_i (x_i - \bar{x})^2}{\sum f_i}}$
- Variance: $\sigma^2 = \frac{\sum f_i (x_i - \bar{x})^2}{\sum f_i}$
Problem-Solving Strategies#
For Matrix Problems#
- Order identification: Count rows × columns
- Transpose: Interchange rows and columns
- Determinant: Use cofactor expansion for 3×3
- Inverse: Find determinant first, then adjoint
- System solving: Use $X = A^{-1}B$ method
For Differentiation#
- Identify the rule: Power, product, quotient, or chain
- Parametric: Use $\frac{dy}{dx} = \frac{dy/dt}{dx/dt}$
- Implicit: Differentiate both sides with respect to x
- Applications: Velocity = $\frac{ds}{dt}$, Acceleration = $\frac{d^2s}{dt^2}$
For Integration#
- Standard forms: Memorize basic integrals
- Substitution: Let $u = $ inner function
- By parts: Use ILATE rule (Inverse, Log, Algebraic, Trigonometric, Exponential)
- Definite integrals: Apply limits after integration
For Differential Equations#
- Identify type: Separable, linear, exact
- Linear: Find P and Q, then calculate I.F.
- Separable: Separate variables and integrate
- Initial conditions: Substitute to find constants
For Statistics#
- Grouped data: Use midpoint as representative value
- Mean: Weight frequencies with values
- Deviation measures: Calculate mean first
- Standard deviation: Square root of variance
Common Mistakes to Avoid#
Matrix Operations#
- Don’t confuse matrix multiplication order (AB ≠ BA)
- Check dimensions before multiplication
- Remember: $(AB)^{-1} = B^{-1}A^{-1}$ (reverse order)
Differentiation#
- Chain rule: Don’t forget the derivative of inner function
- Product rule: Include both terms $u’v + uv'$
- Parametric: Use chain rule properly
Integration#
- Don’t forget the constant of integration (+C)
- In definite integrals, apply limits correctly
- Integration by parts: Choose u and dv wisely
Differential Equations#
- Separable: Ensure complete separation of variables
- Linear: Calculate integrating factor correctly
- Don’t forget to apply initial conditions
Statistics#
- Use correct formula for grouped vs ungrouped data
- Calculate mean before finding deviations
- Square the deviations for standard deviation
Exam Tips#
- Time Management: Allocate 10-12 minutes per mark
- Question Selection: Choose OR questions wisely
- Show Work: Write all steps clearly
- Check Units: Ensure proper units in word problems
- Verification: Check answers when possible
- Neat Presentation: Clear handwriting and proper formatting
- Formula Sheet: Memorize key formulas
- Practice: Solve previous year papers regularly