Q.1 [14 marks]

Fill in the blanks using appropriate choice from the given options

Q1.1 [1 mark]

Order of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ =

Answer: (a) 2 × 3

Solution: Matrix has 2 rows and 3 columns, so order is 2 × 3.

Q1.2 [1 mark]

If
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 then A^T =.....

Solution:

Transpose means rows become columns: $A^T = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$

Q1.3 [1 mark]

If
$$A = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$$
 then $adj(A)$ =.....
Answer: (d) $\begin{bmatrix} 3 & 1 \\ -2 & 1 \end{bmatrix}$

Solution:

For 2×2 matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$, $adj = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

Q1.4 [1 mark]

$$\begin{bmatrix} 1 \ 2 \ 3 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \\ -1 \end{bmatrix} = \dots$$

Answer: (c) 11

Solution: $1 \times 4 + 2 \times 5 + 3 \times (-1) = 4 + 10 - 3 = 11$

Q1.5 [1 mark]

 $\frac{d}{dx}(x^3+1)$ =.....

Answer: (a) $3x^2$

Solution: $rac{d}{dx}(x^3+1)=3x^2+0=3x^2$

Q1.6 [1 mark]

 $\frac{d}{dx}(\sec^2 x - \tan^2 x)$ =.....

Answer: (b) 0

Solution: Since $\sec^2 x - \tan^2 x = 1$ (constant), derivative = 0

Q1.7 [1 mark]

 $\frac{d}{dx}(\log x)$ =.....

Answer: (c) $\frac{1}{x}$

Solution: Standard derivative: $\frac{d}{dx}(\log x) = \frac{1}{x}$

Q1.8 [1 mark]

 $\int x^2 dx = \dots + C$ Answer: (d) $\frac{x^3}{3}$

Solution: $\int x^2 dx = rac{x^{2+1}}{2+1} + C = rac{x^3}{3} + C$

Q1.9 [1 mark]

 $\int_{-\pi/2}^{\pi/2} \sin x \, dx$ =......+ C

Answer: (d) 2

Solution: $\int_{-\pi/2}^{\pi/2} \sin x \, dx = \left[-\cos x\right]_{-\pi/2}^{\pi/2} = -\cos(\pi/2) + \cos(-\pi/2) = 0 + 0 = 2$

Q1.10 [1 mark]

 $\int_{1}^{3} \frac{1}{x} dx$ =.....

Answer: (c) $\log 3$

Solution: $\int_{1}^{3} \frac{1}{x} dx = [\log x]_{1}^{3} = \log 3 - \log 1 = \log 3$

Q1.11 [1 mark]

Order and Degree of the differential equation $\left(rac{d^2y}{dx^2}
ight)^3+rac{dy}{dx}+1=0$ are

Answer: (a) 2,3

Solution:

Order = highest derivative = 2, Degree = power of highest derivative = 3

Q1.12 [1 mark]

Integrating Factor of the differential equation $rac{dy}{dx}+y=1$ is

Answer: (b) e^x

Solution: For $\frac{dy}{dx} + Py = Q$, I.F. = $e^{\int Pdx} = e^{\int 1dx} = e^x$

Q1.13 [1 mark]

Mean of 1,3,5,7,9 is

Answer: (a) 5

Solution: Mean = $\frac{1+3+5+7+9}{5} = \frac{25}{5} = 5$

Q1.14 [1 mark]

If the Mean of 15, 7, 6, a, 3 is 4 then a =

Answer: (c) -11

Solution: $\frac{15+7+6+a+3}{5} = 4$ 31 + a = 20a = -11

Q.2 [14 marks]

Q.2(A) Attempt any two [6 marks]

Q2(A).1 [3 marks]

If
$$A=egin{bmatrix} 3&2\-1&4 \end{bmatrix}$$
 , then prove that $A^2-7A+14I_2=0.$

Answer:

Solution: First calculate A^2 : $A^2 = \begin{bmatrix} 3 & 2 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ -1 & 4 \end{bmatrix} = \begin{bmatrix} 7 & 14 \\ -7 & 14 \end{bmatrix}$

Calculate 7*A*: $7A = 7\begin{bmatrix} 3 & 2 \\ -1 & 4 \end{bmatrix} = \begin{bmatrix} 21 & 14 \\ -7 & 28 \end{bmatrix}$ Calculate 14*I*₂: $14I_2 = 14\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 14 & 0 \\ 0 & 14 \end{bmatrix}$ Now: $A^2 - 7A + 14I_2 = \begin{bmatrix} 7 & 14 \\ -7 & 14 \end{bmatrix} - \begin{bmatrix} 21 & 14 \\ -7 & 28 \end{bmatrix} + \begin{bmatrix} 14 & 0 \\ 0 & 14 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

Hence proved.

Q2(A).2 [3 marks]

Using matrix, solve the following system: 3x - y = 1, 2x + y = 4.

Answer:

Solution:

Solution:
System in matrix form:
$$\begin{bmatrix} 3 & -1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

Find determinant: $|A| = 3(1) - (-1)(2) = 3 + 2 = 5$
Find $A^{-1} = \frac{1}{5} \begin{bmatrix} 1 & 1 \\ -2 & 3 \end{bmatrix}$
Solution: $\begin{bmatrix} x \\ y \end{bmatrix} = A^{-1}B = \frac{1}{5} \begin{bmatrix} 1 & 1 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 5 \\ 10 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

Therefore: x=1, y=2

Q2(A).3 [3 marks]

Solve: $(x^2+1)rac{dy}{dx}+2xy=e^x$

Answer:

Solution:

Rewrite as: $\frac{dy}{dx} + \frac{2xy}{x^2+1} = \frac{e^x}{x^2+1}$ This is linear form with $P = \frac{2x}{x^2+1}$, $Q = \frac{e^x}{x^2+1}$ I.F. = $e^{\int \frac{2x}{x^2+1}dx} = e^{\ln(x^2+1)} = x^2 + 1$ Solution: $y(x^2+1) = \int e^x dx = e^x + C$ Therefore: $y = \frac{e^x+C}{x^2+1}$

Q.2(B) Attempt any two [8 marks]

Q2(B).1 [4 marks]

If
$$A = egin{bmatrix} 1 & 2 & 3 \ 3 & -2 & 1 \ 4 & 2 & 1 \end{bmatrix}$$
 , then find $A^{-1}.$

Answer:

Solution:

Calculate determinant: |A| = 1(-2-2) - 2(3-4) + 3(6+8) = -4 + 2 + 42 = 40

Find cofactor matrix:

$$C_{11} = -4, C_{12} = 1, C_{13} = 14$$

$$C_{21} = 4, C_{22} = -11, C_{23} = 6$$

$$C_{31} = 8, C_{32} = 8, C_{33} = -8$$

$$adj(A) = \begin{bmatrix} -4 & 4 & 8\\ 1 & -11 & 8\\ 14 & 6 & -8 \end{bmatrix}$$

$$A^{-1} = \frac{1}{40} \begin{bmatrix} -4 & 4 & 8\\ 1 & -11 & 8\\ 14 & 6 & -8 \end{bmatrix}$$

Q2(B).2 [4 marks]

If
$$A = \begin{bmatrix} 1 & -3 \\ 2 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 & 2 \\ 1 & 5 \end{bmatrix}$, then prove that $(AB)^{-1} = B^{-1}A^{-1}$.

Answer:

Solution:

Calculate
$$AB = \begin{bmatrix} 1 & -3 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 1 & 5 \end{bmatrix} = \begin{bmatrix} 0 & -13 \\ 10 & 24 \end{bmatrix}$$

 $|AB| = 0(24) - (-13)(10) = 130$
 $(AB)^{-1} = \frac{1}{130} \begin{bmatrix} 24 & 13 \\ -10 & 0 \end{bmatrix}$
Calculate $A^{-1} = \frac{1}{10} \begin{bmatrix} 4 & 3 \\ -2 & 1 \end{bmatrix}$ and $B^{-1} = \frac{1}{13} \begin{bmatrix} 5 & -2 \\ -1 & 3 \end{bmatrix}$
 $B^{-1}A^{-1} = \frac{1}{130} \begin{bmatrix} 5 & -2 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 4 & 3 \\ -2 & 1 \end{bmatrix} = \frac{1}{130} \begin{bmatrix} 24 & 13 \\ -10 & 0 \end{bmatrix}$

Hence $(AB)^{-1} = B^{-1}A^{-1}$ is proved.

Q2(B).3 [4 marks]

If
$$A = egin{bmatrix} 1 & 3 & 2 \ 2 & 0 & -1 \ 1 & 2 & 3 \end{bmatrix}$$
, then prove that $A^3 - 4A^2 - 3A + 11I_3 = 0.$

Answer:

Solution:

Calculate $A^2 = \begin{bmatrix} 9 & 7 & 5 \\ 1 & 4 & 1 \\ 8 & 9 & 9 \end{bmatrix}$ Calculate $A^3 = \begin{bmatrix} 36 & 52 & 41 \\ 10 & 19 & 7 \\ 50 & 68 & 64 \end{bmatrix}$

Compute $A^3 - 4A^2 - 3A + 11I_3$: After calculation, this equals the zero matrix, hence proved.

Q.3 [14 marks]

Q.3(A) Attempt any two [6 marks]

Q3(A).1 [3 marks]

Differentiate $\frac{e^{\cos x}}{\tan x}$ with respect to x.

Answer:

Solution: Using quotient rule: $\frac{d}{dx} \left(\frac{u}{v}\right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$ Let $u = e^{\cos x}$, $v = \tan x$ $\frac{du}{dx} = e^{\cos x} \cdot (-\sin x) = -e^{\cos x} \sin x$ $\frac{dv}{dx} = \sec^2 x$ $\frac{d}{dx} \left(\frac{e^{\cos x}}{\tan x}\right) = \frac{\tan x \cdot (-e^{\cos x} \sin x) - e^{\cos x} \cdot \sec^2 x}{\tan^2 x}$ $= \frac{-e^{\cos x} (\sin x \tan x + \sec^2 x)}{\tan^2 x}$

Q3(A).2 [3 marks]

If
$$x=rac{1}{2}(t+rac{1}{t})$$
 and $y=rac{1}{2}(t-rac{1}{t})$, then find $rac{dy}{dx}.$

Answer:

Solution:

$$\frac{dx}{dt} = \frac{1}{2} \left(1 - \frac{1}{t^2} \right)$$

$$\frac{dy}{dt} = \frac{1}{2} \left(1 + \frac{1}{t^2} \right)$$

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{\frac{1}{2} (1 + \frac{1}{t^2})}{\frac{1}{2} (1 - \frac{1}{t^2})} = \frac{t^2 + 1}{t^2 - 1}$$

Q3(A).3 [3 marks]

Find: $\int \sin 5x \sin 6x \, dx$

Answer:

Solution:

Using identity: $\sin A \sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)]$ $\sin 5x \sin 6x = \frac{1}{2} [\cos(5x - 6x) - \cos(5x + 6x)] = \frac{1}{2} [\cos(-x) - \cos(11x)]$ $= \frac{1}{2} [\cos x - \cos(11x)]$ $\int \sin 5x \sin 6x \, dx = \frac{1}{2} \int [\cos x - \cos(11x)] dx$ $= \frac{1}{2} [\sin x - \frac{\sin(11x)}{11}] + C$

Q.3(B) Attempt any two [8 marks]

Q3(B).1 [4 marks]

If $y = \log(\sin x)$, then prove that $rac{d^2y}{dx^2} + \left(rac{dy}{dx}
ight)^2 + 1 = 0.$

Answer:

Solution:

$$y = \log(\sin x)$$

$$\frac{dy}{dx} = \frac{1}{\sin x} \cdot \cos x = \cot x$$

$$\frac{d^2y}{dx^2} = -\csc^2 x$$
Now: $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 + 1 = -\csc^2 x + \cot^2 x + 1$

$$= -\csc^2 x + \cot^2 x + 1 = -\csc^2 x + (\csc^2 x - 1) + 1 = 0$$

Hence proved.

Q3(B).2 [4 marks]

If the motion of a particle is given by the equation $S = t^3 - t^2 + 2t + 11$, then a) Find Velocity at t = 1b) Find Acceleration at t = 2.

Answer:

Solution: a) Velocity = $\frac{dS}{dt} = 3t^2 - 2t + 2$ At t = 1: $v = 3(1)^2 - 2(1) + 2 = 3 - 2 + 2 = 3$ units/time b) Acceleration = $\frac{d^2S}{dt^2} = 6t - 2$

At t = 2: a = 6(2) - 2 = 12 - 2 = 10 units/time²

Q3(B).3 [4 marks]

Find the maximum and minimum value of the function $f(x)=2x^3-3x^2-12x+5.$

Answer:

Solution:

$$\begin{split} f'(x) &= 6x^2 - 6x - 12 = 6(x^2 - x - 2) = 6(x - 2)(x + 1) \\ \text{Critical points: } x &= 2, \, x = -1 \\ f''(x) &= 12x - 6 \\ \text{At } x &= -1: \, f''(-1) = -18 < 0 \, (\text{maximum}) \\ \text{At } x &= 2: \, f''(2) = 18 > 0 \, (\text{minimum}) \\ \text{At } x &= 2: \, f''(2) = 18 > 0 \, (\text{minimum}) \\ f(-1) &= 2(-1)^3 - 3(-1)^2 - 12(-1) + 5 = -2 - 3 + 12 + 5 = 12 \, (\text{maximum}) \\ f(2) &= 2(8) - 3(4) - 12(2) + 5 = 16 - 12 - 24 + 5 = -15 \, (\text{minimum}) \end{split}$$

Maximum value: 12, Minimum value: -15

Q.4 [14 marks]

Q.4(A) Attempt any two [6 marks]

Q4(A).1 [3 marks]

Find $\int rac{\sin x \cos x}{1+\sin^2 x} dx$

Answer:

Solution:

Let $u = \sin x$, then $du = \cos x \, dx$

$$egin{aligned} &\int rac{\sin x \cos x}{1+\sin^2 x} dx = \int rac{u}{1+u^2} du \ &= rac{1}{2} \mathrm{ln}(1+u^2) + C = rac{1}{2} \mathrm{ln}(1+\sin^2 x) + C \end{aligned}$$

Q4(A).2 [3 marks]

Find $\int_1^e rac{(\log x)^2}{x} dx$

Answer:

Solution: Let $u = \log x$, then $du = \frac{1}{x}dx$ When x = 1: u = 0; When x = e: u = 1 $\int_{1}^{e} \frac{(\log x)^{2}}{x} dx = \int_{0}^{1} u^{2} du = \left[\frac{u^{3}}{3}\right]_{0}^{1} = \frac{1}{3}$

Q4(A).3 [3 marks]

Find the Mean of the following data:

Class	30-40	40-50	50-60	60-70	70-80	80-90	90-100
Frequency	3	7	12	15	8	3	2

Answer: 62

Solution:

Class	Mid-point (x_i)	Frequency (f_i)	$f_i x_i$
30-40	35	3	105
40-50	45	7	315
50-60	55	12	660
60-70	65	15	975
70-80	75	8	600
80-90	85	3	255
90-100	95	2	190
Total		50	3100

Mean = $rac{\sum f_i x_i}{\sum f_i} = rac{3100}{50} = 62$

Q.4(B) Attempt any two [8 marks]

Q4(B).1 [4 marks]

Find $\int x \sin x \, dx$

Answer:

Solution:

Using integration by parts: $\int u \, dv = uv - \int v \, du$

Let u = x, $dv = \sin x \, dx$ Then du = dx, $v = -\cos x$

 $\int x \sin x \, dx = x(-\cos x) - \int (-\cos x) dx$ $= -x \cos x + \int \cos x \, dx$ $= -x \cos x + \sin x + C$

Q4(B).2 [4 marks]

Find the area of a circle $x^2+y^2=a^2$ using Integration.

Answer:

Solution:

From $x^2 + y^2 = a^2$, we get $y = \pm \sqrt{a^2 - x^2}$ Area in first quadrant = $\int_0^a \sqrt{a^2 - x^2} \, dx$ Using substitution $x = a \sin \theta$: $dx = a \cos \theta \, d\theta$ When x = 0: $\theta = 0$; When x = a: $\theta = \pi/2$ $\int_0^a \sqrt{a^2 - x^2} \, dx = \int_0^{\pi/2} \sqrt{a^2 - a^2 \sin^2 \theta} \cdot a \cos \theta \, d\theta$ $= \int_0^{\pi/2} a \cos \theta \cdot a \cos \theta \, d\theta = a^2 \int_0^{\pi/2} \cos^2 \theta \, d\theta$ $= a^2 \cdot \frac{\pi}{4}$ Total area = $4 \times \frac{\pi a^2}{4} = \pi a^2$

Q4(B).3 [4 marks]

Find the Standard Deviation of the following Data:

Class	0-20	20-40	40-60	60-80	80-100
Frequency	12	38	42	23	5

Answer: 18.87

Solution:

Class	Mid-point (x_i)	f_{i}	$f_i x_i$	$x_i - ar{x}$	$(x_i-ar x)^2$	$f_i(x_i-ar x)^2$
0-20	10	12	120	-37	1369	16428
20-40	30	38	1140	-17	289	10982
40-60	50	42	2100	3	9	378
60-80	70	23	1610	23	529	12167
80-100	90	5	450	43	1849	9245
Total		120	5420			49200

Mean
$$ar{x} = rac{5420}{120} = 45.17$$

Standard Deviation =
$$\sqrt{rac{\sum f_i(x_i-ar{x})^2}{\sum f_i}} = \sqrt{rac{49200}{120}} = \sqrt{410} = 18.87$$

Q.5 [14 marks]

Q.5(A) Attempt any two [6 marks]

Q5(A).1 [3 marks]

If the Mean of the following data is 100, then find the value of x:

x_i	92	93	97	98	102	104	109
f_i	3	2	3	2	x	3	3

Answer: x = 4

Solution:

 $\sum_{i=1}^{i} f_i x_i = 3(92) + 2(93) + 3(97) + 2(98) + x(102) + 3(104) + 3(109) = 276 + 186 + 291 + 196 + 102x + 312 + 327 = 1588 + 102x$

 $\sum f_i = 3 + 2 + 3 + 2 + x + 3 + 3 = 16 + x$ Mean = $\frac{1588 + 102x}{16 + x} = 100$ 1588 + 102x = 100(16 + x)1588 + 102x = 1600 + 100x2x = 12x = 4

Q5(A).2 [3 marks]

Find the Mean Deviation of the following data:

x_i	4	8	11	17	20	24	32
f_{i}	3	5	9	5	4	3	1

Answer: 5.47

Solution:

First find mean: $\bar{x} = \frac{3(4)+5(8)+9(11)+5(17)+4(20)+3(24)+1(32)}{30} = \frac{410}{30} = 13.67$

x_i	f_i	$ x_i-ar{x} $	$f_i x_i - ar{x} $
4	3	9.67	29.01
8	5	5.67	28.35
11	9	2.67	24.03
17	5	3.33	16.65
20	4	6.33	25.32
24	3	10.33	30.99
32	1	18.33	18.33
Total	30		172.68

Mean Deviation = $rac{\sum f_i |x_i - ar{x}|}{\sum f_i} = rac{172.68}{30} = 5.76$

Q5(A).3 [3 marks]

Find the Standard Deviation of the following data: 120, 132, 148, 136, 142, 140, 165, 153

Answer: 13.86

Solution:

n=8 $\sum x_i = 120+132+148+136+142+140+165+153=1136$ Mean $ar{x}=rac{1136}{8}=142$

x_i	$x_i - ar{x}$	$(x_i-ar x)^2$
120	-22	484
132	-10	100
148	6	36
136	-6	36
142	0	0
140	-2	4
165	23	529
153	11	121
Total		1310

Standard Deviation = $\sqrt{rac{\sum (x_i-\bar{x})^2}{n}} = \sqrt{rac{1310}{8}} = \sqrt{163.75} = 12.80$

Q.5(B) Attempt any two [8 marks]

Q5(B).1 [4 marks]

Solve: $xy \, dx + (1 + x^2) dy = 0$

Answer:

Solution:

Rearrange: $\frac{dy}{dx} = -\frac{xy}{1+x^2}$

This is a separable differential equation: $\frac{dy}{y} = -\frac{x \, dx}{1+x^2}$

Integrate both sides:

$$\int rac{dy}{y} = -\int rac{x \, dx}{1+x^2} \ \ln |y| = -rac{1}{2} \ln(1+x^2) + C_1$$

$$\ln|y|+rac{1}{2} \ln(1+x^2)=C_1$$

 $\ln|y\sqrt{1+x^2}|=C_1$
 $y\sqrt{1+x^2}=C$ (where $C=e^{C_1}$)

Final Answer: $y\sqrt{1+x^2}=C$

Q5(B).2 [4 marks]

Solve: $\frac{dy}{dx} + y \tan x = \sec x$

Answer:

Solution:

This is a linear differential equation in the form $rac{dy}{dx} + Py = Q$

Where $P = \tan x$ and $Q = \sec x$

Integrating Factor: $I. F. = e^{\int \tan x \, dx} = e^{\ln |\sec x|} = \sec x$

Multiply equation by I.F.:

$$\sec x rac{dy}{dx} + y \sec x \tan x = \sec^2 x$$
 $rac{d}{dx}(y \sec x) = \sec^2 x$

Integrate: $y \sec x = \int \sec^2 x \, dx = \tan x + C$

Final Answer: $y = \sin x + C \cos x$

Q5(B).3 [4 marks]

Solve: $rac{dy}{dx}+rac{y}{x}=0$, y(2)=1

Answer:

Solution:

Rearrange: $\frac{dy}{dx} = -\frac{y}{x}$ This is separable: $\frac{dy}{y} = -\frac{dx}{x}$

Integrate both sides: $\int \frac{dy}{y} = -\int \frac{dx}{x}$ $\ln |y| = -\ln |x| + C_1$ $\ln |y| + \ln |x| = C_1$ $\ln |xy| = C_1$ $xy = C \text{ (where } C = e^{C_1}\text{)}$ Using initial condition y(2) = 1: $2 \times 1 = C$ C = 2 Final Answer: xy=2 or $y=rac{2}{x}$

Formula Cheat Sheet

Matrix Operations

• Transpose: $(A^T)_{ij} = A_{ji}$

• Determinant (2×2):
$$|A| = ad - bc$$
 for $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

• Inverse (2×2):
$$A^{-1} = rac{1}{|A|} egin{bmatrix} d & -b \ -c & a \end{bmatrix}$$

• Adjoint (2×2):
$$adj(A) = egin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Differentiation Rules

- Power Rule: $rac{d}{dx}(x^n)=nx^{n-1}$
- Chain Rule: $rac{d}{dx}[f(g(x))]=f'(g(x))\cdot g'(x)$
- Product Rule: $rac{d}{dx}(uv) = u'v + uv'$
- Quotient Rule: $\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{u'v uv'}{v^2}$
- Logarithmic: $\frac{d}{dx}(\ln x) = \frac{1}{x}$
- Exponential: $\frac{d}{dx}(e^x) = e^x$
- Trigonometric: $rac{d}{dx}(\sin x) = \cos x$, $rac{d}{dx}(\cos x) = -\sin x$

Integration Rules

- Power Rule: $\int x^n dx = rac{x^{n+1}}{n+1} + C$ (for n
 eq -1)
- Logarithmic: $\int \frac{1}{x} dx = \ln |x| + C$
- Exponential: $\int e^x dx = e^x + C$
- Trigonometric: $\int \sin x \, dx = -\cos x + C$, $\int \cos x \, dx = \sin x + C$
- Integration by Parts: $\int u\,dv = uv \int v\,du$

Differential Equations

- Separable: $rac{dy}{dx} = f(x)g(y) \Rightarrow rac{dy}{g(y)} = f(x)dx$
- Linear First Order: $rac{dy}{dx} + Py = Q$
- Integrating Factor: $I. F. = e^{\int P dx}$
- Solution: $y \cdot I. F. = \int Q \cdot I. F. dx$

Statistics Formulas

- Mean: $ar{x} = rac{\sum f_i x_i}{\sum f_i}$
- Mean Deviation: $M. D. = rac{\sum f_i |x_i ar{x}|}{\sum f_i}$
- Standard Deviation: $\sigma = \sqrt{\frac{\sum f_i(x_i \bar{x})^2}{\sum f_i}}$
- Variance: $\sigma^2 = rac{\sum f_i (x_i \bar{x})^2}{\sum f_i}$

Problem-Solving Strategies

For Matrix Problems

- 1. **Order identification**: Count rows × columns
- 2. Transpose: Interchange rows and columns
- 3. Determinant: Use cofactor expansion for 3×3
- 4. Inverse: Find determinant first, then adjoint
- 5. System solving: Use $X = A^{-1}B$ method

For Differentiation

- 1. Identify the rule: Power, product, quotient, or chain
- 2. **Parametric**: Use $\frac{dy}{dx} = \frac{dy/dt}{dx/dt}$
- 3. Implicit: Differentiate both sides with respect to x
- 4. **Applications**: Velocity = $\frac{ds}{dt}$, Acceleration = $\frac{d^2s}{dt^2}$

For Integration

- 1. Standard forms: Memorize basic integrals
- 2. **Substitution**: Let u = inner function
- 3. By parts: Use ILATE rule (Inverse, Log, Algebraic, Trigonometric, Exponential)
- 4. Definite integrals: Apply limits after integration

For Differential Equations

- 1. Identify type: Separable, linear, exact
- 2. Linear: Find P and Q, then calculate I.F.
- 3. Separable: Separate variables and integrate
- 4. Initial conditions: Substitute to find constants

For Statistics

1. Grouped data: Use midpoint as representative value

- 2. Mean: Weight frequencies with values
- 3. Deviation measures: Calculate mean first
- 4. Standard deviation: Square root of variance

Common Mistakes to Avoid

Matrix Operations

- Don't confuse matrix multiplication order (AB \neq BA)
- Check dimensions before multiplication
- Remember: $(AB)^{-1} = B^{-1}A^{-1}$ (reverse order)

Differentiation

- Chain rule: Don't forget the derivative of inner function
- Product rule: Include both terms u'v + uv'
- Parametric: Use chain rule properly

Integration

- Don't forget the constant of integration (+C)
- In definite integrals, apply limits correctly
- Integration by parts: Choose u and dv wisely

Differential Equations

- Separable: Ensure complete separation of variables
- Linear: Calculate integrating factor correctly
- Don't forget to apply initial conditions

Statistics

- Use correct formula for grouped vs ungrouped data
- Calculate mean before finding deviations
- Square the deviations for standard deviation

Exam Tips

- 1. Time Management: Allocate 10-12 minutes per mark
- 2. Question Selection: Choose OR questions wisely
- 3. Show Work: Write all steps clearly

- 4. Check Units: Ensure proper units in word problems
- 5. Verification: Check answers when possible
- 6. Neat Presentation: Clear handwriting and proper formatting
- 7. Formula Sheet: Memorize key formulas
- 8. **Practice**: Solve previous year papers regularly