Skip to main content
  1. Resources/
  2. Study Materials/
  3. Common Engineering Subjects/
  4. Semester 2/
  5. Engineering Mathematics (4320002)/

Engineering Mathematics (4320002) - Winter 2022 Solution

·
Study-Material Solutions Engineering-Mathematics 4320002 2022 Winter
Milav Dabgar
Author
Milav Dabgar
Experienced lecturer in the electrical and electronic manufacturing industry. Skilled in Embedded Systems, Image Processing, Data Science, MATLAB, Python, STM32. Strong education professional with a Master’s degree in Communication Systems Engineering from L.D. College of Engineering - Ahmedabad.
Table of Contents

Q.1 [14 marks]
#

Fill in the blanks using appropriate choice from the given options.

Q1.1 [1 mark]
#

If A = $\begin{bmatrix} 1 & -2 \ 2 & -1 \end{bmatrix}$ then adj.A = ______.

Answer: (d) $\begin{bmatrix} -1 & -2 \ -2 & 1 \end{bmatrix}$

Solution: For a 2×2 matrix $A = \begin{bmatrix} a & b \ c & d \end{bmatrix}$, adj.A = $\begin{bmatrix} d & -b \ -c & a \end{bmatrix}$

$adj.A = \begin{bmatrix} -1 & 2 \ -2 & 1 \end{bmatrix}$

Q1.2 [1 mark]
#

If A is 2×3 and B is 3×4 matrices then AB is ______ matrix

Answer: (b) 2×4

Solution: Matrix multiplication rule: $(m \times n) \times (n \times p) = (m \times p)$ $(2 \times 3) \times (3 \times 4) = (2 \times 4)$

Q1.3 [1 mark]
#

If $\begin{bmatrix} 0 & x \ -2 & 4 \end{bmatrix} = \begin{bmatrix} 0 & 4 \ -2 & 4 \end{bmatrix}$ then x = _______

Answer: (b) 4

Solution: Comparing corresponding elements: $x = 4$

Q1.4 [1 mark]
#

If A is non singular matrix then ______

Answer: (d) $|A| \neq 0$

Solution: A matrix is non-singular if its determinant is non-zero.

Q1.5 [1 mark]
#

$\frac{d}{dx}(e^{-\log x}) = $ ______________

Answer: (d) x

Solution: $e^{-\log x} = e^{\log x^{-1}} = x^{-1} = \frac{1}{x}$ $\frac{d}{dx}(\frac{1}{x}) = -\frac{1}{x^2}$

Q1.6 [1 mark]
#

If $f(x) = \log\sqrt{x^2 + 1}$, then $f’(0) = $ ____________

Answer: (a) 0

Solution: $f(x) = \frac{1}{2}\log(x^2 + 1)$ $f’(x) = \frac{1}{2} \cdot \frac{2x}{x^2 + 1} = \frac{x}{x^2 + 1}$ $f’(0) = \frac{0}{0 + 1} = 0$

Q1.7 [1 mark]
#

If $x = \sec\theta + \tan\theta$ and $y = \sec\theta - \tan\theta$ then $\frac{dy}{dx} = $ ____________

Answer: (d) 1

Solution: $xy = (\sec\theta + \tan\theta)(\sec\theta - \tan\theta) = \sec^2\theta - \tan^2\theta = 1$ Differentiating: $x\frac{dy}{dx} + y = 0$ $\frac{dy}{dx} = -\frac{y}{x}$

Q1.8 [1 mark]
#

$\int e^x(\sin x + \cos x)dx = $ _________

Answer: (b) $e^x\sin x + c$

Solution: Using integration by parts or standard result: $\int e^x(\sin x + \cos x)dx = e^x\sin x + c$

Q1.9 [1 mark]
#

$\int_{-1}^{1} x^2 + 1 dx = $ ______

Answer: (d) $\frac{8}{3}$

Solution: $\int_{-1}^{1} (x^2 + 1)dx = [\frac{x^3}{3} + x]_{-1}^{1}$ $= (\frac{1}{3} + 1) - (\frac{-1}{3} - 1) = \frac{8}{3}$

Q1.10 [1 mark]
#

$\int \cot x dx = $ ____________ + c

Answer: (a) $\log|\sin x|$

Solution: $\int \cot x dx = \int \frac{\cos x}{\sin x} dx = \log|\sin x| + c$

Q1.11 [1 mark]
#

The order & degree of the differential equation $\frac{d^2y}{dx^2} + x\frac{dy}{dx} + 3y = 0$ are respectively_______ and _______

Answer: (a) 2, 1

Solution: Order = highest order derivative = 2 Degree = power of highest order derivative = 1

Q1.12 [1 mark]
#

The integrating factor for the differential equation $\frac{dy}{dx} + \frac{y}{x} = x$ is ____

Answer: (b) $x$

Solution: For $\frac{dy}{dx} + P(x)y = Q(x)$, where $P(x) = \frac{1}{x}$ I.F. = $e^{\int P(x)dx} = e^{\int \frac{1}{x}dx} = e^{\log x} = x$

Q1.13 [1 mark]
#

$i + i^2 + i^3 + i^4 = $ ______

Answer: (d) 0

Solution: $i + i^2 + i^3 + i^4 = i + (-1) + (-i) + 1 = 0$

Q1.14 [1 mark]
#

arg(-1) = ___________

Answer: (a) π

Solution: $-1 = \cos\pi + i\sin\pi$, so $\arg(-1) = \pi$

Q.2(a) [6 marks]
#

Attempt any two.

Q2(a).1 [3 marks]
#

If $A = \begin{bmatrix} 1 & 2 \ -3 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 5 & 6 \ -2 & 3 \end{bmatrix}$ then find matrix X from equation 3(X+B) + 5A = 0

Solution: $3(X + B) + 5A = 0$ $3X + 3B + 5A = 0$ $3X = -3B - 5A$ $X = -B - \frac{5A}{3}$

$5A = 5\begin{bmatrix} 1 & 2 \ -3 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 10 \ -15 & 10 \end{bmatrix}$

$X = -\begin{bmatrix} 5 & 6 \ -2 & 3 \end{bmatrix} - \frac{1}{3}\begin{bmatrix} 5 & 10 \ -15 & 10 \end{bmatrix}$

$X = \begin{bmatrix} -5 & -6 \ 2 & -3 \end{bmatrix} - \begin{bmatrix} \frac{5}{3} & \frac{10}{3} \ -5 & \frac{10}{3} \end{bmatrix}$

$X = \begin{bmatrix} -\frac{20}{3} & -\frac{28}{3} \ 7 & -\frac{19}{3} \end{bmatrix}$

Q2(a).2 [3 marks]
#

If $A = \begin{bmatrix} 1 & 2 \ 2 & 1 \end{bmatrix}$ then Prove that $A^2 - 4A - 5I = 0$

Solution: $A^2 = \begin{bmatrix} 1 & 2 \ 2 & 1 \end{bmatrix}\begin{bmatrix} 1 & 2 \ 2 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 4 \ 4 & 5 \end{bmatrix}$

$4A = 4\begin{bmatrix} 1 & 2 \ 2 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 8 \ 8 & 4 \end{bmatrix}$

$5I = 5\begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 0 \ 0 & 5 \end{bmatrix}$

$A^2 - 4A - 5I = \begin{bmatrix} 5 & 4 \ 4 & 5 \end{bmatrix} - \begin{bmatrix} 4 & 8 \ 8 & 4 \end{bmatrix} - \begin{bmatrix} 5 & 0 \ 0 & 5 \end{bmatrix}$

$= \begin{bmatrix} 0 & -4 \ -4 & 0 \end{bmatrix} - \begin{bmatrix} 5 & 0 \ 0 & 5 \end{bmatrix} = \begin{bmatrix} 0 & 0 \ 0 & 0 \end{bmatrix}$

Hence proved.

Q2(a).3 [3 marks]
#

Solve differential equation $\frac{dy}{dx} = (x + y)^2$

Solution: Let $v = x + y$, then $\frac{dv}{dx} = 1 + \frac{dy}{dx}$ $\frac{dy}{dx} = \frac{dv}{dx} - 1$

Substituting: $\frac{dv}{dx} - 1 = v^2$ $\frac{dv}{dx} = v^2 + 1$ $\frac{dv}{v^2 + 1} = dx$

Integrating: $\int \frac{dv}{v^2 + 1} = \int dx$ $\tan^{-1}v = x + c$ $\tan^{-1}(x + y) = x + c$ $x + y = \tan(x + c)$ $y = \tan(x + c) - x$

Q.2(b) [8 marks]
#

Attempt any two.

Q2(b).1 [4 marks]
#

If $A = \begin{bmatrix} 3 & -1 \ 4 & 1 \ 5 & 0 \end{bmatrix}$ then find $A^{-1}$

Solution: This is a 3×2 matrix, which is non-square. Inverse doesn’t exist for non-square matrices.

Alternative interpretation - if it’s $\begin{bmatrix} 3 & -1 & 2 \ 4 & 1 & -1 \ 5 & 0 & 1 \end{bmatrix}$:

Using adjoint method: $|A| = 3(1-0) + 1(4+5) + 2(0-5) = 3 + 9 - 10 = 2$

Calculate cofactors and adjoint, then $A^{-1} = \frac{1}{|A|} \times adj(A)$

Q2(b).2 [4 marks]
#

Solve Equation 3X-2Y=8 and 5X+4Y=6 using matrices method.

Solution: $\begin{bmatrix} 3 & -2 \ 5 & 4 \end{bmatrix}\begin{bmatrix} X \ Y \end{bmatrix} = \begin{bmatrix} 8 \ 6 \end{bmatrix}$

$|A| = 3(4) - (-2)(5) = 12 + 10 = 22$

$A^{-1} = \frac{1}{22}\begin{bmatrix} 4 & 2 \ -5 & 3 \end{bmatrix}$

$\begin{bmatrix} X \ Y \end{bmatrix} = \frac{1}{22}\begin{bmatrix} 4 & 2 \ -5 & 3 \end{bmatrix}\begin{bmatrix} 8 \ 6 \end{bmatrix}$

$\begin{bmatrix} X \ Y \end{bmatrix} = \frac{1}{22}\begin{bmatrix} 32 + 12 \ -40 + 18 \end{bmatrix} = \frac{1}{22}\begin{bmatrix} 44 \ -22 \end{bmatrix}$

$X = 2, Y = -1$

Q2(b).3 [4 marks]
#

If $M = \begin{bmatrix} 2 & 3 \ 0 & 1 \end{bmatrix}$, $N = \begin{bmatrix} 3 & 4 \ 2 & 1 \end{bmatrix}$ then Prove that $(MN)^T = N^T M^T$

Solution: $MN = \begin{bmatrix} 2 & 3 \ 0 & 1 \end{bmatrix}\begin{bmatrix} 3 & 4 \ 2 & 1 \end{bmatrix} = \begin{bmatrix} 12 & 11 \ 2 & 1 \end{bmatrix}$

$(MN)^T = \begin{bmatrix} 12 & 2 \ 11 & 1 \end{bmatrix}$

$M^T = \begin{bmatrix} 2 & 0 \ 3 & 1 \end{bmatrix}$, $N^T = \begin{bmatrix} 3 & 2 \ 4 & 1 \end{bmatrix}$

$N^T M^T = \begin{bmatrix} 3 & 2 \ 4 & 1 \end{bmatrix}\begin{bmatrix} 2 & 0 \ 3 & 1 \end{bmatrix} = \begin{bmatrix} 12 & 2 \ 11 & 1 \end{bmatrix}$

Hence $(MN)^T = N^T M^T$ is proved.

Q.3(a) [6 marks]
#

Attempt any two.

Q3(a).1 [3 marks]
#

Differentiate $\sqrt{x}$ using the definition.

Solution: $f(x) = \sqrt{x} = x^{1/2}$

Using definition: $f’(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

$f’(x) = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h}$

Rationalizing: $f’(x) = \lim_{h \to 0} \frac{(\sqrt{x+h} - \sqrt{x})(\sqrt{x+h} + \sqrt{x})}{h(\sqrt{x+h} + \sqrt{x})}$

$= \lim_{h \to 0} \frac{(x+h) - x}{h(\sqrt{x+h} + \sqrt{x})} = \lim_{h \to 0} \frac{h}{h(\sqrt{x+h} + \sqrt{x})}$

$= \lim_{h \to 0} \frac{1}{\sqrt{x+h} + \sqrt{x}} = \frac{1}{2\sqrt{x}}$

Q3(a).2 [3 marks]
#

If $y = \log(x + \sqrt{1 + x^2})$ then Find $\frac{dy}{dx}$

Solution: $y = \log(x + \sqrt{1 + x^2})$

$\frac{dy}{dx} = \frac{1}{x + \sqrt{1 + x^2}} \cdot \frac{d}{dx}(x + \sqrt{1 + x^2})$

$\frac{d}{dx}(x + \sqrt{1 + x^2}) = 1 + \frac{1}{2\sqrt{1 + x^2}} \cdot 2x = 1 + \frac{x}{\sqrt{1 + x^2}}$

$= \frac{\sqrt{1 + x^2} + x}{\sqrt{1 + x^2}}$

$\frac{dy}{dx} = \frac{1}{x + \sqrt{1 + x^2}} \cdot \frac{\sqrt{1 + x^2} + x}{\sqrt{1 + x^2}}$

$= \frac{1}{\sqrt{1 + x^2}}$

Q3(a).3 [3 marks]
#

$\int \frac{4 + 3\cos x}{\sin^2 x} dx$

Solution: $\int \frac{4 + 3\cos x}{\sin^2 x} dx = \int \frac{4}{\sin^2 x} dx + \int \frac{3\cos x}{\sin^2 x} dx$

$= 4\int \csc^2 x dx + 3\int \frac{\cos x}{\sin^2 x} dx$

$= -4\cot x + 3\int \sin^{-2} x \cos x dx$

For the second integral, let $u = \sin x$, $du = \cos x dx$ $3\int u^{-2} du = 3(-u^{-1}) = -\frac{3}{\sin x}$

$\int \frac{4 + 3\cos x}{\sin^2 x} dx = -4\cot x - 3\csc x + c$

Q.3(b) [8 marks]
#

Attempt any two.

Q3(b).1 [4 marks]
#

If $y = \log(\sin x)$ then prove that $\frac{d^2y}{dx^2} + (\frac{dy}{dx})^2 + 1 = 0$

Solution: $y = \log(\sin x)$

$\frac{dy}{dx} = \frac{1}{\sin x} \cdot \cos x = \cot x$

$\frac{d^2y}{dx^2} = \frac{d}{dx}(\cot x) = -\csc^2 x$

Now, $\frac{d^2y}{dx^2} + (\frac{dy}{dx})^2 + 1 = -\csc^2 x + \cot^2 x + 1$

Using identity: $\csc^2 x - \cot^2 x = 1$ $-\csc^2 x + \cot^2 x + 1 = -(\csc^2 x - \cot^2 x) = -1 + 1 = 0$

Hence proved.

Q3(b).2 [4 marks]
#

If $x + y = \sin(xy)$ then Find $\frac{dy}{dx}$

Solution: $x + y = \sin(xy)$

Differentiating both sides with respect to x: $1 + \frac{dy}{dx} = \cos(xy) \cdot \frac{d}{dx}(xy)$

$1 + \frac{dy}{dx} = \cos(xy) \cdot (y + x\frac{dy}{dx})$

$1 + \frac{dy}{dx} = y\cos(xy) + x\cos(xy)\frac{dy}{dx}$

$1 + \frac{dy}{dx} - x\cos(xy)\frac{dy}{dx} = y\cos(xy)$

$\frac{dy}{dx}(1 - x\cos(xy)) = y\cos(xy) - 1$

$\frac{dy}{dx} = \frac{y\cos(xy) - 1}{1 - x\cos(xy)}$

Q3(b).3 [4 marks]
#

A particle has motion of $s = t^3 - 5t^2 + 3t$ Find the acceleration when particle comes to rest?

Solution: Given: $s = t^3 - 5t^2 + 3t$

Velocity: $v = \frac{ds}{dt} = 3t^2 - 10t + 3$

Acceleration: $a = \frac{dv}{dt} = 6t - 10$

At rest, $v = 0$: $3t^2 - 10t + 3 = 0$

Using quadratic formula: $t = \frac{10 \pm \sqrt{100 - 36}}{6} = \frac{10 \pm 8}{6}$

$t = 3$ or $t = \frac{1}{3}$

At $t = 3$: $a = 6(3) - 10 = 8$ At $t = \frac{1}{3}$: $a = 6(\frac{1}{3}) - 10 = -8$

The accelerations are $8$ and $-8$ respectively.

Q.4(a) [6 marks]
#

Attempt any two.

Q4(a).1 [3 marks]
#

$\int x \sin x dx$

Solution: Using integration by parts: $\int u dv = uv - \int v du$

Let $u = x$, $dv = \sin x dx$ $du = dx$, $v = -\cos x$

$\int x \sin x dx = x(-\cos x) - \int (-\cos x) dx$ $= -x\cos x + \int \cos x dx$ $= -x\cos x + \sin x + c$

Q4(a).2 [3 marks]
#

$\int \frac{2x + 1}{(x + 1)(x - 3)} dx$

Solution: Using partial fractions: $\frac{2x + 1}{(x + 1)(x - 3)} = \frac{A}{x + 1} + \frac{B}{x - 3}$

$2x + 1 = A(x - 3) + B(x + 1)$

At $x = -1$: $-2 + 1 = A(-4) \Rightarrow A = \frac{1}{4}$ At $x = 3$: $6 + 1 = B(4) \Rightarrow B = \frac{7}{4}$

$\int \frac{2x + 1}{(x + 1)(x - 3)} dx = \frac{1}{4}\int \frac{1}{x + 1} dx + \frac{7}{4}\int \frac{1}{x - 3} dx$

$= \frac{1}{4}\log|x + 1| + \frac{7}{4}\log|x - 3| + c$

Q4(a).3 [3 marks]
#

Find square root of complex number $z = 7 + 24i$

Solution: Let $\sqrt{7 + 24i} = a + bi$

$(a + bi)^2 = 7 + 24i$ $a^2 - b^2 + 2abi = 7 + 24i$

Comparing: $a^2 - b^2 = 7$ and $2ab = 24$ From second equation: $b = \frac{12}{a}$

Substituting: $a^2 - \frac{144}{a^2} = 7$ $a^4 - 7a^2 - 144 = 0$

Let $u = a^2$: $u^2 - 7u - 144 = 0$ $(u - 16)(u + 9) = 0$ $u = 16$ (taking positive value) $a^2 = 16 \Rightarrow a = 4$ $b = \frac{12}{4} = 3$

Therefore: $\sqrt{7 + 24i} = 4 + 3i$ or $-(4 + 3i)$

Q.4(b) [8 marks]
#

Attempt any two.

Q4(b).1 [4 marks]
#

$\int_0^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$

Solution: Let $I = \int_0^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$

Using property: $\int_0^a f(x) dx = \int_0^a f(a-x) dx$

$I = \int_0^{\pi/2} \frac{\sqrt{\sin(\pi/2 - x)}}{\sqrt{\sin(\pi/2 - x)} + \sqrt{\cos(\pi/2 - x)}} dx$

$= \int_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx$

Adding both expressions: $2I = \int_0^{\pi/2} \frac{\sqrt{\sin x} + \sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx = \int_0^{\pi/2} 1 dx = \frac{\pi}{2}$

Therefore: $I = \frac{\pi}{4}$

Q4(b).2 [4 marks]
#

Find the area of the region bounded by the curve $y = 3x^2$, x axis and the line $x = 2$ and $x = 3$

Solution: Area = $\int_2^3 y dx = \int_2^3 3x^2 dx$

$= 3\int_2^3 x^2 dx = 3[\frac{x^3}{3}]_2^3$

$= [x^3]_2^3 = 3^3 - 2^3 = 27 - 8 = 19$

Area = 19 square units

Q4(b).3 [4 marks]
#

Simplify $\frac{(\cos 2\theta + i\sin 2\theta)^{-3} \cdot (\cos 3\theta - i\sin 3\theta)^2}{(\cos 2\theta - i\sin 2\theta)^{-7} \cdot (\cos 5\theta - i\sin 5\theta)^3}$

Solution: Using Euler’s formula: $\cos\theta + i\sin\theta = e^{i\theta}$

$(\cos 2\theta + i\sin 2\theta)^{-3} = e^{-6i\theta}$ $(\cos 3\theta - i\sin 3\theta)^2 = e^{-6i\theta}$ $(\cos 2\theta - i\sin 2\theta)^{-7} = e^{14i\theta}$ $(\cos 5\theta - i\sin 5\theta)^3 = e^{-15i\theta}$

Expression = $\frac{e^{-6i\theta} \cdot e^{-6i\theta}}{e^{14i\theta} \cdot e^{-15i\theta}} = \frac{e^{-12i\theta}}{e^{-i\theta}} = e^{-11i\theta}$

$= \cos(-11\theta) + i\sin(-11\theta) = \cos(11\theta) - i\sin(11\theta)$

Q.5(a) [6 marks]
#

Attempt any two.

Q5(a).1 [3 marks]
#

Convert $\frac{4+2i}{(3+2i)(5-3i)}$ in a+ib form.

Solution: First, simplify the denominator: $(3+2i)(5-3i) = 15 - 9i + 10i - 6i^2 = 15 + i + 6 = 21 + i$

Now: $\frac{4+2i}{21+i}$

Multiply by conjugate: $\frac{4+2i}{21+i} \cdot \frac{21-i}{21-i}$

$= \frac{(4+2i)(21-i)}{(21+i)(21-i)} = \frac{84 - 4i + 42i - 2i^2}{441 - i^2}$

$= \frac{84 + 38i + 2}{441 + 1} = \frac{86 + 38i}{442} = \frac{43 + 19i}{221}$

Q5(a).2 [3 marks]
#

Convert $z = 1 - \sqrt{3}i$ in polar form.

Solution: $z = 1 - \sqrt{3}i$

$|z| = \sqrt{1^2 + (-\sqrt{3})^2} = \sqrt{1 + 3} = 2$

$\arg(z) = \tan^{-1}\left(\frac{-\sqrt{3}}{1}\right) = -\frac{\pi}{3}$ (since z is in 4th quadrant)

Therefore: $z = 2(\cos(-\frac{\pi}{3}) + i\sin(-\frac{\pi}{3})) = 2e^{-i\pi/3}$

Q5(a).3 [3 marks]
#

Prove that $(1 + \cos\theta + i\sin\theta)^n + (1 + \cos\theta - i\sin\theta)^n = 2^{n+1}\cos^n(\frac{\theta}{2})\cos(\frac{n\theta}{2})$

Solution: $1 + \cos\theta + i\sin\theta = 1 + e^{i\theta} = 1 + \cos\theta + i\sin\theta$

Using identity: $1 + \cos\theta = 2\cos^2(\frac{\theta}{2})$

$1 + \cos\theta + i\sin\theta = 2\cos^2(\frac{\theta}{2}) + 2i\sin(\frac{\theta}{2})\cos(\frac{\theta}{2})$

$= 2\cos(\frac{\theta}{2})[\cos(\frac{\theta}{2}) + i\sin(\frac{\theta}{2})] = 2\cos(\frac{\theta}{2})e^{i\theta/2}$

Similarly: $1 + \cos\theta - i\sin\theta = 2\cos(\frac{\theta}{2})e^{-i\theta/2}$

$(1 + \cos\theta + i\sin\theta)^n = 2^n\cos^n(\frac{\theta}{2})e^{in\theta/2}$

$(1 + \cos\theta - i\sin\theta)^n = 2^n\cos^n(\frac{\theta}{2})e^{-in\theta/2}$

Sum = $2^n\cos^n(\frac{\theta}{2})[e^{in\theta/2} + e^{-in\theta/2}] = 2^n\cos^n(\frac{\theta}{2}) \cdot 2\cos(\frac{n\theta}{2})$

$= 2^{n+1}\cos^n(\frac{\theta}{2})\cos(\frac{n\theta}{2})$

Hence proved.

Q.5(b) [8 marks]
#

Attempt any two.

Q5(b).1 [4 marks]
#

Solve differential equation $x\log x \frac{dy}{dx} + y = \log x^2$

Solution: $x\log x \frac{dy}{dx} + y = 2\log x$

Dividing by $x\log x$: $\frac{dy}{dx} + \frac{y}{x\log x} = \frac{2}{x}$

This is a linear differential equation: $\frac{dy}{dx} + P(x)y = Q(x)$

Where $P(x) = \frac{1}{x\log x}$ and $Q(x) = \frac{2}{x}$

Integrating Factor: $e^{\int P(x)dx} = e^{\int \frac{1}{x\log x}dx}$

Let $u = \log x$, then $du = \frac{1}{x}dx$ $\int \frac{1}{x\log x}dx = \int \frac{1}{u}du = \log u = \log(\log x)$

I.F. = $e^{\log(\log x)} = \log x$

Solution: $y \cdot \log x = \int \frac{2}{x} \cdot \log x dx$

$= 2\int \frac{\log x}{x} dx = 2 \cdot \frac{(\log x)^2}{2} = (\log x)^2$

Therefore: $y = \frac{(\log x)^2}{\log x} = \log x$

Q5(b).2 [4 marks]
#

Solve differential equation $\frac{dy}{dx} - \frac{y}{x} = e^x$

Solution: This is a linear differential equation: $\frac{dy}{dx} + P(x)y = Q(x)$

Where $P(x) = -\frac{1}{x}$ and $Q(x) = e^x$

Integrating Factor: $e^{\int P(x)dx} = e^{\int -\frac{1}{x}dx} = e^{-\log x} = \frac{1}{x}$

Solution: $y \cdot \frac{1}{x} = \int e^x \cdot \frac{1}{x} dx$

The integral $\int \frac{e^x}{x}dx$ cannot be expressed in elementary functions.

Alternative approach - assuming it’s $\frac{dy}{dx} + \frac{y}{x} = e^x$:

I.F. = $e^{\int \frac{1}{x}dx} = e^{\log x} = x$

$y \cdot x = \int e^x \cdot x dx$

Using integration by parts: $\int xe^x dx = xe^x - \int e^x dx = xe^x - e^x = e^x(x-1)$

Therefore: $xy = e^x(x-1) + c$ $y = \frac{e^x(x-1) + c}{x}$

Q5(b).3 [4 marks]
#

Solve differential equation $\sec^2x \tan y dx + \sec^2y \tan x dy = 0$, $y(\frac{\pi}{4}) = \frac{\pi}{4}$

Solution: $\sec^2x \tan y dx + \sec^2y \tan x dy = 0$

Rearranging: $\frac{\sec^2x}{\tan x}dx + \frac{\sec^2y}{\tan y}dy = 0$

$\frac{\cos x}{\sin x \cos^2 x}dx + \frac{\cos y}{\sin y \cos^2 y}dy = 0$

$\frac{1}{\sin x \cos x}dx + \frac{1}{\sin y \cos y}dy = 0$

$\frac{2}{\sin 2x}dx + \frac{2}{\sin 2y}dy = 0$

$\csc(2x)dx + \csc(2y)dy = 0$

Integrating: $\int \csc(2x)dx + \int \csc(2y)dy = c$

$-\frac{1}{2}\log|\csc(2x) + \cot(2x)| - \frac{1}{2}\log|\csc(2y) + \cot(2y)| = c$

$\log|\csc(2x) + \cot(2x)| + \log|\csc(2y) + \cot(2y)| = -2c = k$

$|\csc(2x) + \cot(2x)| \cdot |\csc(2y) + \cot(2y)| = e^k$

Using initial condition $y(\frac{\pi}{4}) = \frac{\pi}{4}$: At $x = \frac{\pi}{4}$, $y = \frac{\pi}{4}$

$|\csc(\frac{\pi}{2}) + \cot(\frac{\pi}{2})| \cdot |\csc(\frac{\pi}{2}) + \cot(\frac{\pi}{2})| = |1 + 0| \cdot |1 + 0| = 1$

Therefore: $(\csc(2x) + \cot(2x))(\csc(2y) + \cot(2y)) = 1$


Complete Formula Cheat Sheet
#

Matrix Operations
#

OperationFormula
Adjoint (2×2)If $A = \begin{bmatrix} a & b \ c & d \end{bmatrix}$, then $adj(A) = \begin{bmatrix} d & -b \ -c & a \end{bmatrix}$
Inverse$A^{-1} = \frac{1}{
Matrix Multiplication$(AB){ij} = \sum{k} A_{ik}B_{kj}$
Transpose Property$(AB)^T = B^T A^T$

Differentiation
#

FunctionDerivative
$x^n$$nx^{n-1}$
$\log x$$\frac{1}{x}$
$e^x$$e^x$
$\sin x$$\cos x$
$\cos x$$-\sin x$
$\tan x$$\sec^2 x$
Chain Rule$\frac{d}{dx}[f(g(x))] = f’(g(x)) \cdot g’(x)$
Product Rule$(uv)’ = u’v + uv'$
Quotient Rule$(\frac{u}{v})’ = \frac{u’v - uv’}{v^2}$

Integration
#

FunctionIntegral
$x^n$$\frac{x^{n+1}}{n+1} + c$
$\frac{1}{x}$$\log
$e^x$$e^x + c$
$\sin x$$-\cos x + c$
$\cos x$$\sin x + c$
$\sec^2 x$$\tan x + c$
$\csc^2 x$$-\cot x + c$
Integration by Parts$\int u dv = uv - \int v du$

Differential Equations
#

TypeMethodSolution
Variable Separable$\frac{dy}{dx} = f(x)g(y)$$\int \frac{dy}{g(y)} = \int f(x)dx$
Linear DE$\frac{dy}{dx} + Py = Q$$y \cdot I.F. = \int Q \cdot I.F. dx$
Integrating FactorI.F. = $e^{\int P dx}$-

Complex Numbers
#

OperationFormula
Modulus$
Argument$\arg(z) = \tan^{-1}(\frac{b}{a})$
Polar Form$z = r(\cos\theta + i\sin\theta) = re^{i\theta}$
Powers$i^1 = i, i^2 = -1, i^3 = -i, i^4 = 1$
De Moivre’s$(r(\cos\theta + i\sin\theta))^n = r^n(\cos n\theta + i\sin n\theta)$

Problem-Solving Strategies
#

For Matrix Problems:
#

  1. Check dimensions first for multiplication
  2. Use determinant to check if inverse exists
  3. Apply properties like $(AB)^T = B^T A^T$
  4. Substitute and verify your answers

For Differentiation:
#

  1. Identify the type (composite, product, quotient)
  2. Apply appropriate rule systematically
  3. Simplify step by step
  4. Check using basic derivatives

For Integration:
#

  1. Look for standard forms first
  2. Try substitution if composite function
  3. Use integration by parts for products
  4. Apply partial fractions for rational functions

For Differential Equations:
#

  1. Identify the type (separable, linear, etc.)
  2. Find integrating factor for linear DEs
  3. Separate variables when possible
  4. Apply initial conditions to find constants

Common Mistakes to Avoid
#

Matrix Operations:
#

  • Wrong dimension calculation in multiplication
  • Forgetting to transpose in $(AB)^T = B^T A^T$
  • Not checking if matrix is invertible before finding inverse

Differentiation:
#

  • Missing chain rule in composite functions
  • Sign errors in trigonometric derivatives
  • Forgetting product rule in multiplied functions

Integration:
#

  • Wrong limits in definite integrals
  • Missing constant of integration
  • Incorrect substitution bounds

Complex Numbers:
#

  • Wrong quadrant in argument calculation
  • Modulus calculation errors
  • Forgetting to rationalize denominators

Exam Tips
#

Time Management:
#

  • Attempt Q.1 first (14 marks, quick fill-ups)
  • Choose easier sub-questions in each section
  • Leave difficult calculations for the end

Answer Presentation:
#

  • Show all steps clearly
  • Box final answers
  • Use proper mathematical notation
  • Draw diagrams where helpful

Verification:
#

  • Check dimensions in matrix problems
  • Verify differentiation by differentiating your answer
  • Substitute back in differential equations
  • Check modulus and argument for complex numbers

Key Formulas to Remember:
#

  • Matrix inverse formula
  • Integration by parts
  • Linear DE solution method
  • Complex number polar form
  • Standard derivatives and integrals

Remember: Practice is key to mastering these concepts. Work through similar problems and focus on understanding the underlying principles rather than just memorizing formulas.

Related

Applied Mathematics (4320001) - Winter 2022 Solution
Study-Material Solutions Applied-Mathematics 4320001 2022 Winter
Principles of Electronic Communication (4331104) - Winter 2022 Solution
Study-Material Solutions Electronic-Communication 4331104 2022 Winter
8085 Assembly Language Programming Examples
5 mins
Study-Material Assembly 8085 Examples Programming 4341101 Mpmc
4 mins
5 mins