Q.1 Fill in the blanks [14 marks]

Q1.1 [1 mark]

Order of the matrix $\begin{bmatrix} 2 & 5 \\ 7 & 8 \end{bmatrix}$ is _____

Answer: (d) 2 imes 2

Solution:

The matrix has 2 rows and 2 columns, so its order is 2 imes 2.

Q1.2 [1 mark]

 $\begin{bmatrix} 4 & 3 \\ 6 & 2 \end{bmatrix} + \begin{bmatrix} 1 & 5 \\ 5 & 8 \end{bmatrix} = \underline{\qquad}$ Answer: (a) $\begin{bmatrix} 5 & 8 \\ 11 & 10 \end{bmatrix}$

Solution:

Solution:

[4	3]	[1	5]	[4+1]	3+5	_ [5	8]
6	$2 \rfloor^{+}$	5	8	$= egin{bmatrix} 4+1 \ 6+5 \end{bmatrix}$	2+8	- [11	10

Q1.3 [1 mark]

Which of the following is a square matrix?

Answer: (c) $\begin{bmatrix} 1 & 3 \\ 5 & 4 \end{bmatrix}$

A square matrix has equal number of rows and columns. Only option (c) has 2 imes 2 dimensions.

Q1.4 [1 mark]

If A = [3] and B = [4] then $A \cdot B =$ _____

Answer: (b) 12

Solution: $A\cdot B=[3] imes [4]=[3 imes 4]=[12]=12$

Q1.5 [1 mark]

 $\frac{d}{dx}\sin x =$ _____

Answer: (d) $\cos x$

Solution: The derivative of $\sin x$ is $\cos x$.

Q1.6 [1 mark]

If
$$f(x) = x e^x$$
 then $f'(0) =$ _____

Answer: (b) 1

Solution:

Using product rule: $f'(x)=rac{d}{dx}(xe^x)=e^x+xe^x=e^x(1+x)$ $f'(0)=e^0(1+0)=1 imes 1=1$

Q1.7 [1 mark]

If $y=x^2$ then $rac{d^2y}{dx^2}=$ ______

Answer: (b) 2

Solution:

 $egin{aligned} y &= x^2 \ rac{dy}{dx} &= 2x \ rac{d^2y}{dx^2} &= 2 \end{aligned}$

Q1.8 [1 mark]

 $\int \cos x dx = \underline{\qquad} +c$

Answer: (a) $\sin x$

Solution:

 $\int \cos x dx = \sin x + c$

Q1.9 [1 mark]

 $\int_0^1 x dx =$ _____

Answer: (c) $\frac{1}{2}$

Solution:

 $\int_{0}^{1}xdx=\left[rac{x^{2}}{2}
ight]_{0}^{1}=rac{1^{2}}{2}-rac{0^{2}}{2}=rac{1}{2}$

Q1.10 [1 mark]

$$\int rac{1}{1+x^2} dx =$$
 _____+ c

Answer: (a) $an^{-1} x$

Solution: $\int rac{1}{1+x^2} dx = an^{-1} x + c$

Q1.11 [1 mark]

Order of differential equation $x \sin y + xy = x$ is _____

Answer: (b) 1

Solution:

The equation can be written as $\frac{dy}{dx} = \frac{1-xy}{\sin y}$. The highest order derivative is first order.

Q1.12 [1 mark]

Integration factor of $rac{dy}{dx} + y = x$ is _____

Answer: (d) e^x

Solution: For $\frac{dy}{dx} + Py = Q$, integration factor $= e^{\int Pdx} = e^{\int 1dx} = e^x$

Q1.13 [1 mark]

 $i^2 =$ ____

Answer: (b) -1

Solution: By definition, $i^2=-1$

Q1.14 [1 mark]

(2+3i)(2-3i) =

Answer: (c) 13

Solution: $(2+3i)(2-3i)=2^2-(3i)^2=4-9i^2=4-9(-1)=4+9=13$

Q.2(A) Attempt any two [6 marks]

Q2.1(A)(1) [3 marks]

If
$$A = egin{bmatrix} 2 & 5 \ -1 & 3 \end{bmatrix}$$
, $B = egin{bmatrix} 5 & 8 \ 4 & 6 \end{bmatrix}$ and $C = egin{bmatrix} 4 & 2 \ 1 & 5 \end{bmatrix}$ then find $2A + 3B - C$

Solution:

$$2A = 2\begin{bmatrix} 2 & 5\\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 10\\ -2 & 6 \end{bmatrix}$$
$$3B = 3\begin{bmatrix} 5 & 8\\ 4 & 6 \end{bmatrix} = \begin{bmatrix} 15 & 24\\ 12 & 18 \end{bmatrix}$$
$$2A + 3B = \begin{bmatrix} 4 & 10\\ -2 & 6 \end{bmatrix} + \begin{bmatrix} 15 & 24\\ 12 & 18 \end{bmatrix} = \begin{bmatrix} 19 & 34\\ 10 & 24 \end{bmatrix}$$
$$2A + 3B - C = \begin{bmatrix} 19 & 34\\ 10 & 24 \end{bmatrix} - \begin{bmatrix} 4 & 2\\ 1 & 5 \end{bmatrix} = \begin{bmatrix} 15 & 32\\ 9 & 19 \end{bmatrix}$$

Q2.1(A)(2) [3 marks]

If
$$M=egin{bmatrix} 1&4\\3&7 \end{bmatrix}$$
 and $N=egin{bmatrix} 6&9\\0&5 \end{bmatrix}$ then prove that $(M+N)^T=M^T+N^T$

Solution:

 $M + N = \begin{bmatrix} 1 & 4 \\ 3 & 7 \end{bmatrix} + \begin{bmatrix} 6 & 9 \\ 0 & 5 \end{bmatrix} = \begin{bmatrix} 7 & 13 \\ 3 & 12 \end{bmatrix}$ $(M + N)^{T} = \begin{bmatrix} 7 & 3 \\ 13 & 12 \end{bmatrix}$ $M^{T} = \begin{bmatrix} 1 & 3 \\ 4 & 7 \end{bmatrix}, N^{T} = \begin{bmatrix} 6 & 0 \\ 9 & 5 \end{bmatrix}$ $M^{T} + N^{T} = \begin{bmatrix} 1 & 3 \\ 4 & 7 \end{bmatrix} + \begin{bmatrix} 6 & 0 \\ 9 & 5 \end{bmatrix} = \begin{bmatrix} 7 & 3 \\ 13 & 12 \end{bmatrix}$

Hence, $(M+N)^T=M^T+N^T$ is proved.

Q2.1(A)(3) [3 marks]

Solve differential equation: $x rac{dy}{dx} + y = xy$

Solution:

$$egin{aligned} &xrac{dy}{dx}+y=xy\ &rac{dy}{dx}+rac{y}{x}=y\ &rac{dy}{dx}=y-rac{y}{x}=y\left(1-rac{1}{x}
ight)=y\left(rac{x-1}{x}
ight) \end{aligned}$$

Separating variables: $\frac{dy}{y} = \frac{x-1}{x} dx$

Integrating: $\ln|y|=\intrac{x-1}{x}dx=\intig(1-rac{1}{x}ig)dx=x-\ln|x|+C$ $y=Ae^{x-\ln|x|}=Arac{e^x}{x}$

Q.2(B) Attempt any two [8 marks]

Q2.1(B)(1) [4 marks]

Solve equations 2x + 3y = 8, 3x + 4y = 11 using matrix method

Solution:

Writing in matrix form:
$$AX = B$$

 $\begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 8 \\ 11 \end{bmatrix}$
Finding A^{-1} :
 $|A| = 2(4) - 3(3) = 8 - 9 = -1$
 $A^{-1} = \frac{1}{|A|} \begin{bmatrix} 4 & -3 \\ -3 & 2 \end{bmatrix} = \begin{bmatrix} -4 & 3 \\ 3 & -2 \end{bmatrix}$
 $X = A^{-1}B = \begin{bmatrix} -4 & 3 \\ 3 & -2 \end{bmatrix} \begin{bmatrix} 8 \\ 11 \end{bmatrix} = \begin{bmatrix} -32 + 33 \\ 24 - 22 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

Therefore: x = 1, y = 2

Q2.1(B)(2) [4 marks]

If
$$A = egin{bmatrix} 3 & 2 \ 1 & 4 \end{bmatrix}$$
 and $B = egin{bmatrix} 1 & 2 \ 0 & 1 \end{bmatrix}$ then prove that $(AB)^T = B^T A^T$

Solution:

$$AB = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 8 \\ 1 & 6 \end{bmatrix}$$
$$(AB)^{T} = \begin{bmatrix} 3 & 1 \\ 8 & 6 \end{bmatrix}$$
$$A^{T} = \begin{bmatrix} 3 & 1 \\ 2 & 4 \end{bmatrix}, B^{T} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$$
$$B^{T}A^{T} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 8 & 6 \end{bmatrix}$$

Hence, $(AB)^T = B^T A^T$ is proved.

Q2.1(B)(3) [4 marks]

If
$$A = egin{bmatrix} 2 & 3 \ -1 & 2 \end{bmatrix}$$
 then prove that $A^2 - 4A + 7I = O$

Solution:

$$A^{2} = \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 12 \\ -4 & 1 \end{bmatrix}$$
$$4A = 4 \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 8 & 12 \\ -4 & 8 \end{bmatrix}$$
$$7I = 7 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix}$$
$$A^{2} - 4A + 7I = \begin{bmatrix} 1 & 12 \\ -4 & 1 \end{bmatrix} - \begin{bmatrix} 8 & 12 \\ -4 & 8 \end{bmatrix} + \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = O$$

Hence proved.

Q.3(A) Attempt any two [6 marks]

Q3.1(A)(1) [3 marks]

Find derivative of $f(x)=e^x$ using definition of differentiation

Solution:

Using definition: $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $f'(x) = \lim_{h \to 0} \frac{e^{x+h} - e^x}{h} = \lim_{h \to 0} \frac{e^x \cdot e^h - e^x}{h}$ $= \lim_{h \to 0} \frac{e^x (e^h - 1)}{h} = e^x \lim_{h \to 0} \frac{e^h - 1}{h}$ Since $\lim_{h o 0} rac{e^h - 1}{h} = 1$ Therefore: $f'(x) = e^x$

Q3.1(A)(2) [3 marks]

If $y = \log(\sin x)$ then find $rac{dy}{dx}$

Solution:

 $y = \log(\sin x)$

Using chain rule: $\frac{dy}{dx} = \frac{1}{\sin x} \cdot \frac{d}{dx} (\sin x) = \frac{1}{\sin x} \cdot \cos x = \frac{\cos x}{\sin x} = \cot x$

Q3.1(A)(3) [3 marks]

Evaluate: $\int \left(4x^3+3x^2+rac{2}{x}
ight)dx$

Solution:

$$egin{aligned} &\int ig(4x^3+3x^2+rac{2}{x}ig)dx\ &=\int 4x^3dx+\int 3x^2dx+\int rac{2}{x}dx\ &=4\cdotrac{x^4}{4}+3\cdotrac{x^3}{3}+2\ln|x|+C\ &=x^4+x^3+2\ln|x|+C \end{aligned}$$

Q.3(B) Attempt any two [8 marks]

Q3.1(B)(1) [4 marks]

If $y=e^{ an x}+\log(\sin x)$ then find $rac{dy}{dx}$

Solution:

 $y = e^{\tan x} + \log(\sin x)$ $\frac{dy}{dx} = \frac{d}{dx} [e^{\tan x}] + \frac{d}{dx} [\log(\sin x)]$ For first term: $\frac{d}{dx} [e^{\tan x}] = e^{\tan x} \cdot \sec^2 x$ For second term: $\frac{d}{dx} [\log(\sin x)] = \frac{1}{\sin x} \cdot \cos x = \cot x$ Therefore: $\frac{dy}{dx} = e^{\tan x} \sec^2 x + \cot x$

Q3.1(B)(2) [4 marks]

The equation of motion of a particle is $s=t^4+3t$. Find its velocity and acceleration at t=2 sec

Solution:

Given: $s = t^4 + 3t$ Velocity: $v = \frac{ds}{dt} = 4t^3 + 3$ At t = 2: $v = 4(2)^3 + 3 = 4(8) + 3 = 32 + 3 = 35$ units/sec Acceleration: $a=rac{dv}{dt}=rac{d^2s}{dt^2}=12t^2$ At t=2: $a=12(2)^2=12(4)=48$ units/sec 2

Q3.1(B)(3) [4 marks]

Find the maximum and minimum value of the function $f(x)=2x^3-3x^2-12x+5$

Solution:

$$\begin{split} f(x) &= 2x^3 - 3x^2 - 12x + 5 \\ f'(x) &= 6x^2 - 6x - 12 = 6(x^2 - x - 2) = 6(x - 2)(x + 1) \\ \text{For critical points: } f'(x) &= 0 \\ 6(x - 2)(x + 1) &= 0 \\ x &= 2 \text{ or } x = -1 \\ f''(x) &= 12x - 6 \\ \text{At } x &= -1: f''(-1) = 12(-1) - 6 = -18 < 0 \text{ (Maximum)} \\ \text{At } x &= 2: f''(2) = 12(2) - 6 = 18 > 0 \text{ (Minimum)} \\ f(-1) &= 2(-1)^3 - 3(-1)^2 - 12(-1) + 5 = -2 - 3 + 12 + 5 = 12 \text{ (Maximum)} \\ f(2) &= 2(8) - 3(4) - 12(2) + 5 = 16 - 12 - 24 + 5 = -15 \text{ (Minimum)} \\ \text{Maximum value: } 12 \text{ at } x = -1 \end{split}$$

Minimum value: -15 at x = 2

Q.4(A) Attempt any two [6 marks]

Q4.1(A)(1) [3 marks]

Evaluate: $\int x e^x dx$

Solution:

Using integration by parts: $\int u dv = uv - \int v du$

Let u = x, $dv = e^x dx$ Then du = dx, $v = e^x$

 $\int xe^x dx = x \cdot e^x - \int e^x dx = xe^x - e^x + C = e^x(x-1) + C$

Q4.1(A)(2) [3 marks]

Evaluate: $\int \frac{dx}{\sqrt{9-4x^2}}$

Solution:

 $\int \frac{dx}{\sqrt{9-4x^2}} = \int \frac{dx}{\sqrt{9(1-\frac{4x^2}{9})}} = \int \frac{dx}{3\sqrt{1-(\frac{2x}{3})^2}}$ Let $\frac{2x}{3} = \sin\theta$, then $x = \frac{3\sin\theta}{2}$, $dx = \frac{3\cos\theta}{2}d\theta$ $= \int \frac{\frac{3\cos\theta}{2}d\theta}{3\sqrt{1-\sin^2\theta}} = \int \frac{\frac{3\cos\theta}{2}d\theta}{3\cos\theta} = \int \frac{1}{2}d\theta = \frac{\theta}{2} + C$

$$= \frac{1}{2} \sin^{-1} \left(\frac{2x}{3}\right) + C$$

Q4.1(A)(3) [3 marks]

Find complex conjugate of $\frac{1-i}{1+i}$

Solution:

$$\frac{1-i}{1+i} = \frac{(1-i)(1-i)}{(1+i)(1-i)} = \frac{(1-i)^2}{1-i^2} = \frac{1-2i+i^2}{1-(-1)} = \frac{1-2i-1}{2} = \frac{-2i}{2} = -i$$

Complex conjugate of -i is $\overline{-i} = i$

Q.4(B) Attempt any two [8 marks]

Q4.1(B)(1) [4 marks]

Evaluate: $\int_{0}^{\pi/2} rac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx$

Solution:

Let
$$I=\int_{0}^{\pi/2}rac{\sqrt{\cos x}}{\sqrt{\cos x}+\sqrt{\sin x}}dx$$

Using property: $\int_0^a f(x) dx = \int_0^a f(a-x) dx$

$$I = \int_{0}^{\pi/2} rac{\sqrt{\cos(\pi/2-x)}}{\sqrt{\cos(\pi/2-x)} + \sqrt{\sin(\pi/2-x)}} dx = \int_{0}^{\pi/2} rac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$$

Adding both expressions:

$$2I = \int_{0}^{\pi/2} rac{\sqrt{\cos x} + \sqrt{\sin x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx = \int_{0}^{\pi/2} 1 dx = rac{\pi}{2}$$

Therefore: $I = \frac{\pi}{4}$

Q4.1(B)(2) [4 marks]

Find the area of circle $x^2+y^2=a^2$ using integration

Solution:

For circle $x^2+y^2=a^2$, we have $y=\pm\sqrt{a^2-x^2}$

Area of circle = 4 imes Area in first quadrant $=4\int_0^a \sqrt{a^2-x^2}dx$

Let $x=a\sin heta$, $dx=a\cos heta d heta$ When x=0, heta=0; when x=a, $heta=\pi/2$

$$=4\int_{0}^{\pi/2}\sqrt{a^{2}-a^{2}\sin^{2}\theta}\cdot a\cos\theta d\theta$$

= $4\int_{0}^{\pi/2}a\cos\theta\cdot a\cos\theta d\theta$
= $4a^{2}\int_{0}^{\pi/2}\cos^{2}\theta d\theta$
= $4a^{2}\cdot\frac{\pi}{4}=\pi a^{2}$

Q4.1(B)(3) [4 marks]

Simplify: $\frac{(\cos 3\theta + i\sin 3\theta)^4 \cdot (\cos \theta - i\sin \theta)^5}{(\cos 2\theta - i\sin 2\theta)^3 \cdot (\cos 12\theta + i\sin 12\theta)}$

Solution:

Using De Moivre's theorem: $(\cos heta + i \sin heta)^n = \cos n heta + i \sin n heta$

Numerator: $(\cos 3\theta + i \sin 3\theta)^4 \cdot (\cos \theta - i \sin \theta)^5$ = $(\cos 12\theta + i \sin 12\theta) \cdot (\cos(-5\theta) + i \sin(-5\theta))$ = $\cos(12\theta - 5\theta) + i \sin(12\theta - 5\theta)$ = $\cos 7\theta + i \sin 7\theta$ Denominator: $(\cos 2\theta - i \sin 2\theta)^3 \cdot (\cos 12\theta + i \sin 12\theta)$ = $(\cos(-6\theta) + i \sin(-6\theta)) \cdot (\cos 12\theta + i \sin 12\theta)$ = $\cos(-6\theta + 12\theta) + i \sin(-6\theta + 12\theta)$ = $\cos 6\theta + i \sin 6\theta$ Result: $\frac{\cos 7\theta + i \sin 7\theta}{\cos 6\theta + i \sin 6\theta} = \cos(7\theta - 6\theta) + i \sin(7\theta - 6\theta) = \cos \theta + i \sin \theta$

Q.5(A) Attempt any two [6 marks]

Q5.1(A)(1) [3 marks]

If (3x-7)+2iy=5y+(5+x)i then find value of x and y

Solution:

(3x - 7) + 2iy = 5y + (5 + x)i

Comparing real and imaginary parts:

Real parts: 3x - 7 = 5y ... (1) Imaginary parts: 2y = 5 + x ... (2)

From equation (2): x=2y-5 ... (3)

Substituting (3) in (1): 3(2y-5) - 7 = 5y 6y - 15 - 7 = 5y 6y - 22 = 5yy = 22

From (3): x = 2(22) - 5 = 44 - 5 = 39

Therefore: x=39, y=22

Q5.1(A)(2) [3 marks]

Convert $z=1+\sqrt{3}i$ into polar form

Solution:

 $\begin{aligned} z &= 1 + \sqrt{3}i \\ \text{Modulus: } |z| &= \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{1+3} = \sqrt{4} = 2 \\ \text{Argument: } \arg(z) &= \tan^{-1}\left(\frac{\sqrt{3}}{1}\right) = \tan^{-1}(\sqrt{3}) = \frac{\pi}{3} \\ \text{Polar form: } z &= |z|(\cos\theta + i\sin\theta) = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right) \end{aligned}$

Q5.1(A)(3) [3 marks]

Express $rac{4+2i}{(3+2i)(5-3i)}$ in a+ib form

Solution:

First, simplify denominator:

 $\begin{aligned} (3+2i)(5-3i) &= 15 - 9i + 10i - 6i^2 = 15 + i - 6(-1) = 15 + i + 6 = 21 + i \\ \frac{4+2i}{21+i} &= \frac{(4+2i)(21-i)}{(21+i)(21-i)} = \frac{84 - 4i + 42i - 2i^2}{21^2 - i^2} = \frac{84 + 38i + 2}{441 + 1} = \frac{86 + 38i}{442} \\ &= \frac{86}{442} + \frac{38}{442}i = \frac{43}{221} + \frac{19}{221}i \end{aligned}$

Q.5(B) Attempt any two [8 marks]

Q5.1(B)(1) [4 marks]

Solve differential equation: $rac{dy}{dx}+2y=3e^x$

Solution:

This is a first-order linear differential equation of the form $rac{dy}{dx} + Py = Q$

Here: P=2, $Q=3e^x$

Integration factor: $\mu = e^{\int P dx} = e^{\int 2 dx} = e^{2x}$

Multiplying equation by μ : $e^{2x} rac{dy}{dx} + 2e^{2x}y = 3e^{2x} \cdot e^x = 3e^{3x}$

This gives:
$$rac{d}{dx}(ye^{2x})=3e^{3x}$$

Integrating both sides: $ye^{2x} = \int 3e^{3x} dx = 3 \cdot rac{e^{3x}}{3} + C = e^{3x} + C$

Therefore: $y=rac{e^{3x}+C}{e^{2x}}=e^x+Ce^{-2x}$

Q5.1(B)(2) [4 marks]

Solve differential equation: $rac{dy}{dx} = (x+y)^2$

Solution:

Let
$$v=x+y$$
, then $rac{dv}{dx}=1+rac{dy}{dx}$
So $rac{dy}{dx}=rac{dv}{dx}-1$

Substituting in the original equation: $dv = 1 - x^2$

$$rac{\mathrm{d} v}{\mathrm{d} x} - 1 = v^2 \ rac{\mathrm{d} v}{\mathrm{d} x} = v^2 + 1$$

Separating variables: $rac{dv}{v^2+1}=dx$

Integrating both sides:

Substituting back: x+y= an(x+C)Therefore: y= an(x+C)-x

Q5.1(B)(3) [4 marks]

Solve differential equation: $rac{dy}{dx}+rac{y}{x}=e^x$, y(0)=2

Solution:

This is a first-order linear differential equation: $rac{dy}{dx}+rac{y}{x}=e^x$

Here: $P=rac{1}{x}$, $Q=e^{x}$

Integration factor: $\mu = e^{\int rac{1}{x} dx} = e^{\ln |x|} = |x| = x$ (for x > 0)

Multiplying equation by $\mu=x$: $xrac{dy}{dx}+y=xe^x$

This gives: $rac{d}{dx}(xy)=xe^x$

Integrating both sides using integration by parts: $xy = \int x e^x dx$

For $\int xe^x dx$: Let u = x, $dv = e^x dx$ Then du = dx, $v = e^x$ $\int xe^x dx = xe^x - \int e^x dx = xe^x - e^x = e^x(x-1)$ So: $xy = e^x(x-1) + C$ $y = \frac{e^x(x-1)+C}{x}$

Using initial condition y(0) = 2:

This presents a problem as we have division by zero. The equation needs to be solved more carefully near x=0.

For the general solution: $y = e^x \left(1 - \frac{1}{x}\right) + \frac{C}{x}$

Formula Cheat Sheet

Matrix Operations

- Matrix addition: $(A + B)_{ij} = A_{ij} + B_{ij}$
- Matrix multiplication: $(AB)_{ij} = \sum_k A_{ik} B_{kj}$
- Transpose: $(A^T)_{ij} = A_{ji}$
- Inverse of 2×2 matrix: $A^{-1} = \frac{1}{|A|} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ where $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

Differentiation Formulas

- $\frac{d}{dx}(x^n) = nx^{n-1}$
- $\frac{d}{dx}(e^x) = e^x$
- $\frac{d}{dx}(\sin x) = \cos x$
- $\frac{d}{dx}(\cos x) = -\sin x$
- $\frac{d}{dx}(\tan x) = \sec^2 x$
- $\frac{d}{dx}(\ln x) = \frac{1}{x}$
- Product rule: (uv)' = u'v + uv'
- Chain rule: $rac{d}{dx}f(g(x))=f'(g(x))\cdot g'(x)$

Integration Formulas

- $\int x^n dx = rac{x^{n+1}}{n+1} + C$ (for n
 eq -1)
- $\int \frac{1}{x} dx = \ln |x| + C$
- $\int e^x dx = e^x + C$
- $\int \sin x dx = -\cos x + C$
- $\int \cos x dx = \sin x + C$
- $\int \sec^2 x dx = \tan x + C$
- $\int \frac{1}{1+x^2} dx = \tan^{-1} x + C$
- $\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1} x + C$

Differential Equations

- First-order linear: $\frac{dy}{dx} + Py = Q$
- Integration factor: $\mu = e^{\int P dx}$
- Solution: $y = \frac{1}{\mu} \left[\int \mu Q dx + C \right]$
- Variable separable: $rac{dy}{dx} = f(x)g(y) o rac{dy}{g(y)} = f(x)dx$

Complex Numbers

- $i^2 = -1$, $i^3 = -i$, $i^4 = 1$
- Modulus: $|a+bi|=\sqrt{a^2+b^2}$
- Argument: $rg(a+bi)= an^{-1}\left(rac{b}{a}
 ight)$
- Polar form: $z = r(\cos heta + i \sin heta)$
- De Moivre's theorem: $(\cos heta+i\sin heta)^n=\cos n heta+i\sin n heta$

Problem-Solving Strategies

Matrix Problems

- 1. Always check dimensions before performing operations
- 2. For matrix equations: Use inverse method $X = A^{-1}B$
- 3. For transpose properties: Use $(AB)^T = B^T A^T$
- 4. For matrix powers: Calculate step by step, look for patterns

Differentiation Problems

- 1. Identify the type: Product, quotient, chain rule, or implicit
- 2. For complex functions: Break down using appropriate rules
- 3. For applications: Remember $v = \frac{ds}{dt}$, $a = \frac{dv}{dt}$
- 4. For maxima/minima: Find critical points where $f^{\prime}(x)=0$

Integration Problems

- 1. Recognize standard forms first
- 2. For substitution: Look for f'(x) when f(x) appears
- 3. For integration by parts: Choose u as LIATE (Log, Inverse trig, Algebraic, Trig, Exponential)
- 4. For definite integrals: Use fundamental theorem or properties

Differential Equations

- 1. Identify the type: Linear, separable, or exact
- 2. For linear equations: Find integration factor systematically
- 3. For separable equations: Separate variables completely before integrating
- 4. Always check initial conditions if given

Complex Numbers

- 1. For operations: Convert to a+bi form first
- 2. For polar form: Calculate modulus and argument carefully
- 3. For powers: Use De Moivre's theorem
- 4. For division: Multiply by conjugate of denominator

Common Mistakes to Avoid

Matrix Operations

- **X** Don't assume AB = BA (matrix multiplication is not commutative)
- X Don't forget to check if matrices can be multiplied (inner dimensions must match)

• X Don't confuse transpose with inverse

Differentiation

- X Don't forget the chain rule for composite functions
- X Don't mix up $rac{d}{dx}(\sin x) = \cos x$ and $rac{d}{dx}(\cos x) = -\sin x$
- X Don't forget to use product rule when multiplying functions

Integration

- **X Don't forget** the constant of integration +C
- X Don't confuse indefinite and definite integrals
- X Don't forget to substitute limits properly in definite integrals

Complex Numbers

- X Don't forget $i^2 = -1$ when expanding
- X Don't confuse modulus with real part
- X Don't forget to rationalize denominators with complex numbers

Exam Tips

Time Management

- Spend 2-3 minutes reading the entire paper first
- Attempt easier questions first to build confidence
- Reserve 15 minutes at the end for review

Writing Strategy

- Show all steps clearly partial marks are often awarded
- Draw diagrams where helpful especially for geometry problems
- Write final answers clearly and box them if possible

Calculation Tips

- Double-check arithmetic many marks are lost due to calculation errors
- Use calculator efficiently but don't become dependent on it
- Cross-verify answers using different methods when possible

Question Selection

• In OR questions, choose the one you're most confident about

- Don't spend too much time on any single question
- If stuck, move on and return later with fresh perspective

Good luck with your exam preparation!