Question 1(a) [3 marks]

Define Active and Passive components.

Answer:

Active Components	Passive Components
• Require external power source to operate	• Do not need external power source
Can amplify and process electrical signals	Cannot amplify or process signals
• Examples: transistors, diodes, ICs	• Examples: resistors, capacitors, inductors

Mnemonic: "APE" - Active needs Power to Enhance signals

Question 1(b) [4 marks]

State types of capacitors based on materials used.

Answer:

Table: Types of Capacitors Based on Materials

Material Type	Capacitor Type	Typical Applications	
Ceramic	Ceramic disc, multilayer	Bypass, coupling, high frequency	
Plastic Film	Polyester, Polypropylene, Teflon	Timing, filtering, precision	
Electrolytic	Aluminum, Tantalum	Power supply, DC blocking, high capacitance	
Paper	Paper dielectric	Old equipment, not common now	
Mica	Silvered mica	High precision RF circuits	
Glass	Glass dielectric	High voltage applications	

Mnemonic: "CEPPMG" - Ceramic Electrolytic Paper Plastic Mica Glass

Question 1(c) [7 marks]

Explain resistor color coding technique with example.

Answer:

The resistor color code uses colored bands to indicate resistance value, tolerance, and reliability.

Table: Standard Resistor Color Code

Color	Digit Value	Multiplier	Tolerance
Black	0	×10º (1)	-
Brown	1	×10 ¹ (10)	±1%
Red	2	×10² (100)	±2%
Orange	3	×10 ³ (1,000)	-
Yellow	4	×10 ⁴ (10,000)	-
Green	5	×10 ⁵ (100,000)	±0.5%
Blue	6	×10 ⁶ (1,000,000)	±0.25%
Violet	7	×10 ⁷ (10,000,000)	±0.1%
Grey	8	×10 ⁸ (100,000,000)	±0.05%
White	9	×10 ⁹ (1,000,000,000)	-
Gold	-	×0.1 (0.1)	±5%
Silver	-	×0.01 (0.01)	±10%

Example 1: Red-Violet-Orange-Gold

- 1st band (Red) = 2
- 2nd band (Violet) = 7
- 3rd band (Orange) = ×1,000
- 4th band (Gold) = ±5% tolerance
- Value: $27 \times 1,000 = 27,000\Omega = 27k\Omega \pm 5\%$

Example 2: Brown-Black-Yellow-Silver

- 1st band (Brown) = 1
- 2nd band (Black) = 0
- 3rd band (Yellow) = ×10,000
- 4th band (Silver) = ±10% tolerance
- Value: $10 \times 10,000 = 100,000\Omega = 100k\Omega \pm 10\%$

Mnemonic: "BBROY Great Britain Very Good Wife" for colors 0-9 (Black Brown Red Orange Yellow Green Blue Violet Gray White)

Question 1(c) OR [7 marks]

Explain construction, working Characteristic and application of LDR.

Answer:

Light Dependent Resistor (LDR)

Aspect	Description
Construction	 Semiconductor material (cadmium sulfide) deposited in zigzag pattern Packaged in transparent case to allow light exposure Two terminals connected to the semiconductor
Working Principle	 Resistance decreases when light intensity increases Photons release electrons in semiconductor material More light = more free electrons = lower resistance
Characteristics	 High resistance in darkness (MΩ range) Low resistance in bright light (100-5000Ω) Non-linear response to light intensity Slow response time (tens of milliseconds)
Applications	 Automatic street lights Light meters in cameras Burglar alarm systems Automatic brightness control in displays

Mnemonic: "MOLD" - More light On, Less resistance Down

Question 2(a) [3 marks]

Classify Resistors based on materials.

Answer:

Table: Resistor Classification Based on Materials

Material Type	Characteristics	Examples	
Carbon Composition	Low cost, noisy, poor tolerance	General purpose resistors	
Carbon Film	Better stability than carbon composition	Audio equipment, general circuits	
Metal Film	Excellent stability, low noise	Precision circuits, instrumentation	
Metal Oxide	High stability, heat resistant	Power supplies, high-voltage circuits	
Wire Wound	High power rating, inductive	Power circuits, heating elements	
Thick & Thin Film	Small size, good stability	Surface mount applications	

Mnemonic: "CMMWTF" - Carbon Makes Much Wire To Form resistors

Question 2(b) [4 marks]

Calculate value of resistor for a given color code. – (i) Brown, Black, Yellow, Golden (ii) Yellow, Violet, Red, Silver

Answer:

Part (i): Brown, Black, Yellow, Golden

- 1st Band (Brown) = 1
- 2nd Band (Black) = 0
- 3rd Band (Yellow) = ×10,000
- 4th Band (Golden) = ±5% tolerance

Calculation:

Value = $10 \times 10,000 = 100,000\Omega = 100k\Omega \pm 5\%$

Part (ii): Yellow, Violet, Red, Silver

- 1st Band (Yellow) = 4
- 2nd Band (Violet) = 7
- 3rd Band (Red) = ×100
- 4th Band (Silver) = ±10% tolerance

Calculation:

Value = $47 \times 100 = 4,700\Omega = 4.7k\Omega \pm 10\%$

Mnemonic: "BBROY Great Britain Very Good Wife" for the color sequence 0-9

Question 2(c) [7 marks]

Illustrate construction and operation of Electrolytic capacitors.

Answer:

Electrolytic Capacitor Construction and Operation

Component	Description
Anode	Aluminum or tantalum foil with oxide layer (dielectric)
Cathode	Electrolyte (liquid, paste or solid) and metal foil
Separator	Paper soaked in electrolyte
Casing	Aluminum can with insulating sleeve
Terminals	Positive (+) and negative (-) leads

Operation Principle:

- 1. The oxide layer on the anode acts as an extremely thin dielectric
- 2. The large surface area and thin dielectric create high capacitance
- 3. When connected to DC voltage (with correct polarity), charges accumulate
- 4. Positive plate (+) attracts negative charges; negative plate (-) attracts positive charges

Key Characteristics:

- **Polarity**: Must be connected correctly (+/-)
- High capacitance: 1µF to thousands of µF
- Voltage limitations: Breakdown if exceeded
- Leakage current: Higher than other capacitor types

Mnemonic: "PAVE" - Polarized Aluminum with Very high capacitance and Electrolyte

Question 2(a) OR [3 marks]

State the importance of filter circuit in rectifier.

Answer:

Importance of Filter Circuit in Rectifier

Function	Description
Smoothing	Converts pulsating DC to smooth DC by reducing ripples
Voltage Stabilization	Maintains steady output voltage despite input fluctuations
Ripple Reduction	Decreases unwanted AC components in DC output
Load Protection	Protects electronic devices from voltage variations

Mnemonic: "SVRL" - Smoothens Voltage by Reducing ripples for Load

Question 2(b) OR [4 marks]

Differentiate between P type semiconductor and N type semiconductor.

Answer:

Table: P-type vs N-type Semiconductor

Characteristic	P-type Semiconductor	N-type Semiconductor	
Dopant used	Trivalent elements (B, Al, Ga)	Pentavalent elements (P, As, Sb)	
Majority carriers	brity carriers Holes (positive charge carriers) Electrons (negative charge carriers)		
Minority carriers	Electrons	Holes	
Conductivity	Due to movement of holes	Due to movement of electrons	
Energy level	Acceptor atoms near valence band	Donor atoms near conduction band	
Electrical charge	Overall neutral, but accepts electrons	Overall neutral, but donates electrons	

Mnemonic: "HELP-NED" - Holes Exist in Large quantities in P-type, Negative Electrons Dominate N-type

Question 2(c) OR [7 marks]

Illustrate working of Bridge Rectifier with waveforms.

Answer:

Bridge Rectifier Working Principle

Component	Function
Diodes (D1-D4)	Four diodes arranged in bridge configuration
Input	AC voltage from transformer secondary
Output	Pulsating DC voltage across load resistor
Operation	Converts both halves of AC cycle to same polarity

Working in Positive Half Cycle:

- Diodes D1 and D3 conduct
- Diodes D2 and D4 are reverse biased (off)
- Current flows: AC+ \rightarrow D1 \rightarrow Load \rightarrow D3 \rightarrow AC-

Working in Negative Half Cycle:

- Diodes D2 and D4 conduct
- Diodes D1 and D3 are reverse biased (off)
- Current flows: AC- \rightarrow D2 \rightarrow Load \rightarrow D4 \rightarrow AC+

Waveforms:

Advantages:

- Utilizes both half cycles of AC input
- Higher output voltage and efficiency compared to half-wave
- No center-tapped transformer required

Mnemonic: "FBRO" - Four diodes, Both cycles, Rectified Output

Question 3(a) [3 marks]

Define (1) PIV (2) Ripple Factor.

Answer:

Term	Definition
PIV (Peak Inverse Voltage)	 Maximum voltage a diode can withstand in reverse bias condition Important rating to prevent diode breakdown Must be higher than maximum reverse voltage in circuit
Ripple Factor (r)	 Measure of effectiveness of a rectifier filter Ratio of RMS value of AC component to DC component in output Lower ripple factor indicates better filtering

Formula: Ripple Factor (r) = $V_{(r^{ms})_a,k} / V_{(c)}^{dc}$

Mnemonic: "PIR" - Peak Inverse voltage Restricts, Ripple indicates Rectification quality

Question 3(b) [4 marks]

Illustrate VI characteristics of PN junction diode.

Answer:

V-I Characteristics of PN Junction Diode

Region	Behavior	Characteristics
Forward Bias	Conducts current easily	 Exponential increase in current after threshold Threshold voltage: ~0.7V for silicon, ~0.3V for germanium
Reverse Bias	Blocks current	 Very small leakage current (μA) Breakdown at reverse breakdown voltage

	Small	leakage	current
		Breakdo	own
		Ļ	

Key Points:

- Forward threshold: ~0.7V for Si, ~0.3V for Ge
- Forward region: High conductivity
- Reverse region: Very high resistance
- Breakdown region: Sudden increase in reverse current

Mnemonic: "FBRL" - Forward Bias Resists Little, reverse blocks lots

Question 3(c) [7 marks]

Explain the working of capacitor input and choke input filter with waveforms.

Answer:

1. Capacitor Input Filter

Component	Function
Capacitor	Connected in parallel with load resistance
Working Principle	 Charges during voltage peaks Discharges during voltage dips Acts as charge reservoir
Waveforms	Reduces ripple significantlyOutput has slight discharge slope

Advantages:

- Higher DC output voltage
- Simple and economical
- Good ripple reduction

Limitations:

- Poor voltage regulation
- High peak diode currents
- Suitable for low current applications

2. Choke Input Filter

Component	Function
Inductor (Choke)	Connected in series with load
Capacitor	Connected in parallel with load
Working Principle	Inductor opposes current changesCapacitor smooths remaining ripples
Waveforms	More constant currentLower but more stable output voltage

Advantages:

- Better voltage regulation
- Lower peak diode currents
- Suitable for high current applications

Limitations:

- Lower DC output voltage
- More expensive
- Bulkier than capacitor filter

Waveform Comparison:

Mnemonic: "VOICE" - Voltage Output Is Constant with Either filter, but choke gives better regulation

Question 3(a) OR [3 marks]

State the function and importance of Zener diode.

Answer:

Function and Importance of Zener Diode

Function	Description
Voltage Regulation	Maintains constant output voltage despite input variations
Voltage Reference	Provides precise reference voltage in circuits
Voltage Protection	Prevents voltage spikes from damaging circuits
Voltage Limiting	Clips signal voltages to predetermined levels
Waveform Clipping	Shapes waveforms by limiting voltage levels

Mnemonic: "VPRVW" - Voltage Protection, Regulation, and Voltage Waveform control

Question 3(b) OR [4 marks]

Describe Light emitting diode (LED) with its characteristic.

Answer:

Light Emitting Diode (LED) Characteristics

Characteristic	Description
Construction	 P-N junction made from direct bandgap semiconductors Common materials: GaAs, GaP, AlGaInP, InGaN
Working Principle	Electroluminescence: electrons recombine with holesEnergy released as photons (light)
Forward Voltage	• Red: 1.8-2.1V • Green: 2.0-3.0V • Blue/White: 3.0-3.5V
Colors Available	 Depends on semiconductor material Red, green, yellow, blue, white, IR, UV
I-V Characteristics	 Conducts when forward biased above threshold Requires current-limiting resistor Damaged by reverse bias above 5V
Applications	 Indicators, displays, lighting, optocouplers

|--|

Mnemonic: "CRAVE" - Current Regulated And Voltage Emits light

Question 3(c) OR [7 marks]

Illustrate the working of capacitor input and choke input filter.

Answer:

Capacitor Input Filter:

Component	Function
Circuit Structure	Capacitor connected in parallel with load
Operation	 Capacitor charges to peak voltage Discharges slowly through load when voltage drops Acts as reservoir of charge
Performance	 Good ripple reduction Higher output voltage Poor regulation under varying loads

Circuit Diagram:

Choke Input Filter:

Component	Function
Circuit Structure	Inductor (choke) in series, capacitor in parallel
Operation	 Inductor opposes change in current Smooths current flow Capacitor further filters voltage ripples
Performance	 Better voltage regulation Lower output voltage Good for high-current applications

Circuit Diagram:

Comparison:

Parameter	Capacitor Input	Choke Input
Output Voltage	Higher (≈1.4Vm)	Lower (≈0.9Vm)
Ripple Factor	Higher	Lower
Voltage Regulation	Poor	Good
Diode Current	High peak currents	Lower peak currents
Cost & Size	Lower, smaller	Higher, larger
Applications	Low current needs	High current needs

Mnemonic: "CHEER" - Capacitor Holds Energy, inductor Ensures Regulated current

Question 4(a) [3 marks]

Discuss characteristics of PN junction diode.

Answer:

Characteristics of PN Junction Diode

Characteristic	Description
Forward Bias	 Conducts when voltage > threshold (0.7V for Si, 0.3V for Ge) Current increases exponentially with voltage Low resistance state
Reverse Bias	 Blocks current flow Small leakage current (μA) High resistance state
Breakdown	 Occurs at specific reverse voltage Current increases rapidly Can damage diode if current not limited
Temperature Effects	 Forward voltage decreases with temperature Reverse leakage current doubles every 10°C
Capacitance	Junction capacitance varies with applied voltageHigher in forward bias

Mnemonic: "FRBCT" - Forward conducts, Reverse blocks, Breakdown destroys, Capacitance changes, Temperature affects

Question 4(b) [4 marks]

Compare between P-N junction diode and Zener diode.

Answer:

Table: P-N Junction Diode vs. Zener Diode

Parameter	P-N Junction Diode	Zener Diode
Symbol	▶ <	\blacktriangleright < \blacktriangleright
Forward Operation	Conducts above 0.7V	Conducts above 0.7V (similar)
Reverse Operation	Blocks current until breakdown	Designed to operate in controlled breakdown
Breakdown Voltage	Higher, not specified precisely	Lower, precisely specified (2-200V)
Reverse Breakdown	Destructive if not limited	Non-destructive, used for operation
Applications	Rectification, switching	Voltage regulation, protection
Doping Level	Normal doping	Heavily doped to control breakdown

Mnemonic: "FORBAR" - Forward Operation is Regular, Breakdown Application is the Real difference

Question 4(c) [7 marks]

Illustrate the function of Zener diode as a voltage regulator.

Answer:

Zener Diode as Voltage Regulator

Component	Function
Zener Diode	Maintains constant voltage in breakdown region
Series Resistor (Rs)	Limits current and drops excess voltage
Load Resistor (RL)	Represents the circuit being powered

Working Principle:

- 1. Zener diode is connected in reverse bias
- 2. When input voltage rises above Zener voltage, diode conducts
- 3. Excess voltage is dropped across series resistor
- 4. Output voltage remains constant at Zener voltage

Circuit Diagram:

Regulation Cases:

Condition	Response
Input Voltage Increases	 More current through Zener More voltage dropped across Rs Output remains at Vz
Input Voltage Decreases	 Less current through Zener Less voltage dropped across Rs Output remains at Vz (until minimum operating voltage)
Load Current Increases	Less current through ZenerOutput voltage stable until minimum Zener current
Load Current Decreases	More current through ZenerOutput voltage remains stable

Limitations:

- Power dissipation in Zener and Rs
- Minimum input voltage requirement (Vin > Vz + Voltage drop across Rs)
- Limited current capability

Mnemonic: "VISOR" - Voltage In Stays Out Regulated

Question 4(a) OR [3 marks]

Discuss transistor in brief.

Answer:

Transistor Overview

Aspect	Description
Definition	 Semiconductor device that amplifies/switches electrical signals Three-terminal device: emitter, base, collector
Туреѕ	 Bipolar Junction Transistor (BJT): NPN, PNP Field Effect Transistor (FET): JFET, MOSFET
Working Principle	 Current/voltage controlled device Small base current controls larger collector current (BJT) Gate voltage controls channel conductivity (FET)
Applications	 Amplification: audio, RF, power Switching: digital circuits Oscillators and signal generation
Importance	Foundation of modern electronicsEnabled miniaturization of electronic devices

Mnemonic: "TAWAI" - Transistors Amplify, Work As switches, and are Integral to electronics

Question 4(b) OR [4 marks]

Derive relation between α and β for transistor amplifier.

Answer:

Relation Between α and β

Parameter	Definition	Formula
α (Alpha)	Common Base (CB) current gainRatio of collector current to emitter current	$\alpha = I_C/I_E$
β (Beta)	Common Emitter (CE) current gainRatio of collector current to base current	$\beta = I_C/I_B$

Derivation Steps:

1. We know that emitter current is the sum of base and collector currents:

 $\mathsf{I}_\mathsf{E} = \mathsf{I}_\mathsf{B} + \mathsf{I}_\mathsf{C}$

2. Alpha definition:

$$\alpha = I_C/I_E$$

3. Beta definition:

$$\beta = I_C/I_B$$

4. From step 1, we can write:

 $I_B = I_E - I_C$

- 5. Substituting into beta definition: $\beta = I_C/(I_E - I_C)$
- 6. Using alpha definition, $I_C = \alpha \times I_E$: $\beta = (\alpha \times I_F)/(I_F - \alpha \times I_F)$
- 7. Simplifying:

$$\beta = \alpha/(1 - \alpha)$$

8. Conversely, we can also express α in terms of β : $\alpha = \beta/(\beta + 1)$

Relationship Table:

α (Alpha)	β (Beta)
0.9	9
0.95	19
0.98	49
0.99	99
0.995	199

Mnemonic: "ABR" - Alpha and Beta are Related by $\alpha = \beta/(\beta+1)$ or $\beta = \alpha/(1-\alpha)$

Question 4(c) OR [7 marks]

Explain in detail the construction of NPN and PNP transistor.

Answer:

Construction of NPN and PNP Transistors

Parameter	NPN Transistor	PNP Transistor
Structure	N-type (Emitter)P-type (Base)N-type (Collector)	 P-type (Emitter) N-type (Base) P-type (Collector)
Symbol		
Materials	 Silicon or Germanium Emitter: Heavily doped N-type Base: Lightly doped P-type Collector: Moderately doped N-type 	 Silicon or Germanium Emitter: Heavily doped P-type Base: Lightly doped N-type Collector: Moderately doped P-type
Thickness	 Base: Very thin (1-10 μm) Collector: Thickest region 	 Base: Very thin (1-10 μm) Collector: Thickest region
Doping Level	Emitter: HighestBase: LowestCollector: Medium	Emitter: HighestBase: LowestCollector: Medium

NPN Transistor Construction:

```
Emitter (N) Base (P) Collector (N)
 v
         v
                 v
+____+
       +___+
             +----+
 N+ |
      P |
             N
                   +----+
       +---+
             +----+
  С
 Е
         В
```

PNP Transistor Construction:

Manufacturing Process:

- 1. Start with semiconductor substrate (N or P type)
- 2. Create layers through epitaxial growth
- 3. Form junctions through diffusion or ion implantation
- 4. Add metal contacts for terminals
- 5. Package in protective case

Mnemonic: "ENB-CPM" - Emitter has N in NPN, Collector is Proportionally Medium-doped

Question 5(a) [3 marks]

Explain e-waste in brief.

Answer:

Electronic Waste (E-Waste)

Aspect	Description
Definition	 Discarded electronic devices and equipment Contains both valuable materials and hazardous substances
Sources	 Computers, phones, TVs, appliances Circuit boards, batteries, displays Office equipment, medical devices
Concerns	 Contains toxic materials (lead, mercury, cadmium) Environmental contamination if improperly disposed Health risks to humans and wildlife
Importance	 Fastest growing waste stream globally Resource recovery potential (gold, silver, copper) Requires specialized handling

Mnemonic: "TECH" - Toxic Electronics Create Hazards when improperly disposed

Question 5(b) [4 marks]

Illustrate operation of NPN transistor with figure.

Answer:

NPN Transistor Operation

Symbol and Basic Operation:

Basic Operating Principle:

- Base-Emitter junction is forward biased
- Base-Collector junction is reverse biased
- Small base current controls larger collector current

Operating Mode	Biasing Conditions	Description
Active Mode	B-E: Forward biasedB-C: Reverse biased	 Normal amplification mode I_C = β × I_B
Cutoff Mode	B-E: Reverse biasedB-C: Reverse biased	Transistor OFFNo collector current
Saturation Mode	B-E: Forward biasedB-C: Forward biased	Transistor fully ONMaximum collector current

Current Flow in NPN Transistor:

- Electrons flow from emitter to collector
- Small base current controls larger collector current
- Amplification factor (β) = I_C/I_B

Mnemonic: "BECAN" - Base current Enables Collector-to-emitter current Amplification in NPN

Question 5(c) [7 marks]

Illustrate common emitter (CE) configuration of Transistor with input and output characteristics.

Answer:

Common Emitter (CE) Configuration

Component	Description
Circuit Configuration	 Emitter is common to both input and output Input between base and emitter Output between collector and emitter
Input Parameters	• Base current (I _B) • Base-emitter voltage (V _{BE})
Output Parameters	 Collector current (I_C) Collector-emitter voltage (V_{CE})

Circuit Diagram:

+Vcc | |

Input Characteristics:

- Plots I_B vs V_{BE} for different V_{CE} values
- Resembles forward-biased diode characteristic
- Threshold voltage ~0.7V for silicon transistors

Output Characteristics:

- Plots I_C vs V_{CE} for different I_B values
- Shows three regions: Active, Saturation, Cutoff

Characteristics:

- Current gain (β) = I_C/I_B (typically 50-200)
- Input resistance: 1-2 $k\Omega$
- Output resistance: 40-50 k Ω
- Phase shift: 180° between input and output

Mnemonic: "CASIO" - Common emitter Amplifies Signals with Inverted Output

Question 5(a) OR [3 marks]

State types of e-waste.

Answer:

Types of Electronic Waste (E-Waste)

Category	Examples
IT & Telecommunications	 Computers, laptops, printers Mobile phones, tablets Servers, networking equipment
Consumer Electronics	 TVs, monitors, audio equipment DVD/Blu-ray players Cameras, video recorders
Home Appliances	 Refrigerators, washing machines Microwave ovens, air conditioners Small kitchen appliances
Lighting Equipment	Fluorescent lamps, LED lightsHigh-intensity discharge lamps
Electrical & Electronic Tools	Drills, saws, soldering equipmentLawn mowers, gardening tools
Medical Devices	Diagnostic equipmentTreatment equipmentLab equipment
Monitoring Instruments	Smoke detectorsThermostatsControl panels
Electronic Components	Circuit boardsBatteriesCables and wires

Mnemonic: "CLIMATE" - Computing, Lighting, Industrial, Medical, Appliances, Telecommunications, Electronic components

Question 5(b) OR [4 marks]

Illustrate different categories of Electronics waste.

Answer:

Categories of Electronic Waste

Category	Description	Examples	
Large Household Appliances	Bulky items with high metal contentOften contain refrigerants	 Refrigerators, freezers Washing machines Air conditioners 	
Small Household Appliances	I Household• Portable household devicesiances• Mixed material composition		
IT & Telecom Equipment	 Data processing/communication devices High precious metal content 	 Computers, laptops Printers, copying equipment Mobile phones, telecom equipment 	
Consumer Equipment	Entertainment/media devicesOften with display screens	• TVs, monitors • Audio/video equipment • Musical instruments	
Lighting Equipment	 Contains mercury and other metals Special handling required 	 Fluorescent lamps High-intensity discharge lamps LED lighting 	
Electrical & Electronic Tools• Portable or fixed power tools • High motor content		Drills, sawsSewing machinesConstruction equipment	
Toys & Sports Equipment	 Electronic games and recreational items Mixed plastic and electronic components 	 Video game consoles Electric trains/racing sets Exercise equipment with electronics 	
Medical Devices	 Specialized healthcare equipment Often contains valuable and hazardous materials 	 Diagnostic equipment Radiation therapy equipment Laboratory equipment 	

Mnemonic: "LIMCEST" - Large appliances, IT equipment, Medical devices, Consumer electronics, Electronic tools, Small appliances, Telecom equipment

Question 5(c) OR [7 marks]

Explain transistor as a switch in cutoff and saturation region.

Answer:

Transistor as a Switch

Region	State	Conditions	Characteristics
Cutoff Region	OFF	• V _{BE} < 0.7V • I _B ≈ 0	• I _C ≈ 0 • V _{CE} ≈ V _{CC} • High impedance
Saturation Region	ON	• V _{BE} > 0.7V • I _B > I _C /β	• $I_C \approx I_{C(sat)}$ • $V_{CE} \approx 0.2V$ • Low impedance

Circuit Diagram:

+Vcc |

Cutoff Operation (OFF State):

- Input voltage is below 0.7V (typically 0V)
- Base-emitter junction is not forward biased
- No base current flows ($I_B \approx 0$)
- No collector current flows (I_C \approx 0)
- Collector-emitter voltage is approximately V_{CC}
- Transistor acts as an open switch

Saturation Operation (ON State):

- Input voltage is above 0.7V
- Base-emitter junction is forward biased
- Sufficient base current flows ($I_B > I_C/\beta$)
- Collector current reaches maximum (I_{C(sat)})
- Collector-emitter voltage drops to minimum ($V_{CE(sat)} \approx 0.2V$)
- Transistor acts as a closed switch

Applications:

• Digital logic circuits

- Relay and motor drivers
- LED and lamp control
- Power converters
- Signal conditioning

Key Design Considerations:

- Base resistor (R_B) limits base current
- Collector resistor (R_C) limits collector current
- Saturation requires $I_B > I_C / \beta$ for reliable switching
- Fast switching requires consideration of charge storage effects

Mnemonic: "COSVL" - Cutoff means Off State with Vce Large, saturation means low Vce