Question 1(a) [3 marks]#
Convert: (110101)₂ = ( ___ )₁₀ = ( ___ )₈ = ( ___ )₁₆
Answer:
Step-by-step conversion of (110101)₂:
Binary (110101)₂ | Decimal | Octal | Hexadecimal |
---|---|---|---|
1×2⁵ + 1×2⁴ + 0×2³ + 1×2² + 0×2¹ + 1×2⁰ | 32+16+0+4+0+1 = 53 | 6×8¹ + 5×8⁰ = 48+5 = 53 | 3×16¹ + 5×16⁰ = 48+5 = 35 |
(110101)₂ | (53)₁₀ | (65)₈ | (35)₁₆ |
Mnemonic: “Binary Digits Out Here” (BDOH) for Binary→Decimal→Octal→Hexadecimal conversion.
Question 1(b) [4 marks]#
Perform: (i) (11101101)₂+(10101000)₂ (ii) (11011)₂(1010)₂*
Answer:
Table for binary addition and multiplication:
(i) Binary Addition | (ii) Binary Multiplication |
---|---|
``` 11101101 | ``` 11011 |
+ 10101000 | × 1010 |
———- | ——- |
110010101``` | 00000 |
11011 | |
00000 | |
11011 | |
——– | |
11101110``` |
Decimal verification:
- (i) (11101101)₂ = 237, (10101000)₂ = 168, Sum = 405 = (110010101)₂
- (ii) (11011)₂ = 27, (1010)₂ = 10, Product = 270 = (11101110)₂
Mnemonic: “Carry Up Makes Sum” for addition and “Shift Left Add Product” for multiplication.
Question 1(c) [7 marks]#
(i) Convert: (48)₁₀ = ( ___ )₂ = ( ___ )₈ = ( ___ )₁₆ (ii) Subtract using 2’s Complement method: (1110)₂ – (1000)₂ (iii) Divide (1111101)₂ with (101)₂
Answer:
(i) Conversion Table:
Decimal (48)₁₀ | Binary | Octal | Hexadecimal |
---|---|---|---|
48÷2 = 24 rem 0 | 110000 | 60 | 30 |
24÷2 = 12 rem 0 | |||
12÷2 = 6 rem 0 | |||
6÷2 = 3 rem 0 | |||
3÷2 = 1 rem 1 | |||
1÷2 = 0 rem 1 | |||
(48)₁₀ | (110000)₂ | (60)₈ | (30)₁₆ |
(ii) Subtraction Table:
2’s Complement Method | Steps |
---|---|
(1110)₂ – (1000)₂ | 1. Find 2’s complement of (1000)₂ |
1’s complement of (1000)₂ | (0111)₂ |
2’s complement | (0111)₂ + 1 = (1000)₂ |
(1110)₂ + (1000)₂ | (10110)₂ |
Discard carry | (0110)₂ |
Result | (0110)₂ = 6₁₀ |
(iii) Division:
flowchart LR A["(1111101)₂ ÷ (101)₂"] --> B["101)1111101(11 quotient 101 ----- 100 000 ----- 1001 101 ----- 001 remainder"] B --> C["Quotient = (11)₂ Remainder = (1)₂"]
Mnemonic: “Division Drops Down Remainders” for long division process.
Question 1(c) OR [7 marks]#
Explain Codes: ASCII, BCD, Gray
Answer:
Table of Common Digital Codes:
Code | Description | Example |
---|---|---|
ASCII (American Standard Code for Information Interchange) | 7-bit code representing 128 characters including alphabets, numbers, and special symbols | A = 65 (1000001)₂ |
BCD (Binary Coded Decimal) | Represents each decimal digit (0-9) using 4 bits | 42 = 0100 0010 |
Gray Code | Binary code where adjacent numbers differ by only one bit | (0,1,3,2) = (00,01,11,10) |
Diagram: Gray Code Generation:
flowchart TB A["Binary Code"] --> B["Gray Code"] B --> C["MSB remains same Each bit XORed with previous"] D["Binary: 0011"] --> E["Gray: 0010"]
Mnemonic: “Always Binary Generates” - first letter of each code (ASCII, BCD, Gray).
Question 2(a) [3 marks]#
Simplify using Boolean Algebra: Y = A B + A’ B + A’ B’ + A B’
Answer:
Step-by-step simplification:
Step | Expression | Boolean Law |
---|---|---|
Y = A B + A’ B + A’ B’ + A B' | Initial expression | - |
Y = A(B + B’) + A’(B + B') | Factoring | Distributive law |
Y = A(1) + A’(1) | Complement law | B + B’ = 1 |
Y = A + A' | Simplification | - |
Y = 1 | Complement law | A + A’ = 1 |
Mnemonic: “Factor, Simplify, Finish” for Boolean simplification steps.
Question 2(b) [4 marks]#
Simplify the following Boolean function using K-map: f(A,B,C,D) = Σm (0,3,4,6,8,11,12)
Answer:
K-map Solution:
AB
CD 00 01 11 10
00 1 0 0 1
01 0 0 0 1
11 0 1 0 0
10 0 0 1 0
Grouping:
- Group 1: m(0,8) = A’C’D'
- Group 2: m(4,12) = BD'
- Group 3: m(3,11) = CD
- Group 4: m(6) = A’B’CD'
Simplified expression: f(A,B,C,D) = A’C’D’ + BD’ + CD + A’B’CD'
Mnemonic: “Group Powers Of Two” for K-map grouping strategy.
Question 2(c) [7 marks]#
Explain NOR gate as a universal gate with neat diagrams.
Answer:
NOR as Universal Gate:
Function | Implementation using NOR | Truth Table |
---|---|---|
NOT Gate | A | |
0 | ||
1 | ||
AND Gate | A B | |
0 0 | ||
0 1 | ||
1 0 | ||
1 1 | ||
OR Gate | A B | |
0 0 | ||
0 1 | ||
1 0 | ||
1 1 |
Diagram: NOR Implementation:
flowchart LR A["NOT: A -1>- A'"] B["AND: A --1>--| | 1>-- A•B B --1>--|"] C["OR: A --1>--| | |>-- A+B B --1>--|"]
Mnemonic: “NOT AND OR, NOR does more” for remembering NOR gate implementations.
Question 2(a) OR [3 marks]#
Draw logic circuit for Boolean expression: Y = (A + B’) . (A’ + B’) . (B + C)
Answer:
Logic Circuit Implementation:
flowchart LR A["A"] --> D["OR"] B["B'"] --> D D --> G["AND"] A1["A'"] --> E["OR"] B1["B'"] --> E E --> G B2["B"] --> F["OR"] C["C"] --> F F --> G G --> Y["Y"]
Truth Table Verification:
- Term 1: (A + B')
- Term 2: (A’ + B')
- Term 3: (B + C)
- Output: Y = Term1 • Term2 • Term3
Mnemonic: “Each Term Separately” for breaking complex expressions.
Question 2(b) OR [4 marks]#
State De-Morgan’s theorems and prove it.
Answer:
De-Morgan’s Theorems and Proof:
Theorem | Statement | Proof by Truth Table |
---|---|---|
Theorem 1 | (A•B)’ = A’ + B' | A B |
0 0 | ||
0 1 | ||
1 0 | ||
1 1 | ||
Theorem 2 | (A+B)’ = A’•B' | A B |
0 0 | ||
0 1 | ||
1 0 | ||
1 1 |
Diagram: De-Morgan’s Law Visualization:
flowchart TB A["(A•B)' = A'+B'"] --> B["Invert Operation AND → OR Invert Variables"] C["(A+B)' = A'•B'"] --> D["Invert Operation OR → AND Invert Variables"]
Mnemonic: “Break BAR, Change Operation, Invert Inputs” for applying De-Morgan’s law.
Question 2(c) OR [7 marks]#
Explain all the Logic Gates with the help of Symbol, Truth table and equation.
Answer:
Logic Gates Summary:
Gate | Symbol | Truth Table | Equation | Description |
---|---|---|---|---|
AND | A B | Y | Y = A•B | |
0 0 | 0 | |||
0 1 | 0 | |||
1 0 | 0 | |||
1 1 | 1 | |||
OR | A B | Y | Y = A+B | |
0 0 | 0 | |||
0 1 | 1 | |||
1 0 | 1 | |||
1 1 | 1 | |||
NOT | A | Y | Y = A' | |
0 | 1 | |||
1 | 0 | |||
NAND | A B | Y | Y = (A•B)' | |
0 0 | 1 | |||
0 1 | 1 | |||
1 0 | 1 | |||
1 1 | 0 | |||
NOR | A B | Y | Y = (A+B)' | |
0 0 | 1 | |||
0 1 | 0 | |||
1 0 | 0 | |||
1 1 | 0 | |||
XOR | A B | Y | Y = A⊕B | |
0 0 | 0 | |||
0 1 | 1 | |||
1 0 | 1 | |||
1 1 | 0 | |||
XNOR | A B | Y | Y = (A⊕B)' | |
0 0 | 1 | |||
0 1 | 0 | |||
1 0 | 0 | |||
1 1 | 1 |
Mnemonic: “All Operations Need Necessary eXecution” (first letter of each gate - AND, OR, NOT, NAND, NOR, XOR).
Question 3(a) [3 marks]#
Briefly explain 4:2 Encoder.
Answer:
4-to-2 Encoder Overview:
Function | Description | Truth Table |
---|---|---|
4:2 Encoder | Converts 4 input lines to 2 output lines | I₀ I₁ I₂ I₃ |
Only one input active at a time | 1 0 0 0 | |
Input position encoded in binary | 0 1 0 0 | |
0 0 1 0 | ||
0 0 0 1 |
Diagram: 4:2 Encoder:
flowchart LR I0["I₀"] --> E["4:2 Encoder"] I1["I₁"] --> E I2["I₂"] --> E I3["I₃"] --> E E --> Y1["Y₁"] E --> Y0["Y₀"]
Mnemonic: “Input Position Creates Output” for encoder function.
Question 3(b) [4 marks]#
Explain 4-bit Parallel adder using full adder blocks.
Answer:
4-bit Parallel Adder:
Component | Function |
---|---|
Full Adder | Adds 3 bits (A, B, Carry-in) producing Sum and Carry-out |
Parallel Adder | Connects 4 full adders with carry propagation |
Diagram: 4-bit Parallel Adder:
flowchart LR A0["A₀"] --> FA0["FA"] B0["B₀"] --> FA0 C0["C₀=0"] --> FA0 FA0 --> S0["S₀"] FA0 -- "C₁" --> FA1["FA"] A1["A₁"] --> FA1 B1["B₁"] --> FA1 FA1 --> S1["S₁"] FA1 -- "C₂" --> FA2["FA"] A2["A₂"] --> FA2 B2["B₂"] --> FA2 FA2 --> S2["S₂"] FA2 -- "C₃" --> FA3["FA"] A3["A₃"] --> FA3 B3["B₃"] --> FA3 FA3 --> S3["S₃"] FA3 --> C4["C₄"]
Mnemonic: “Carry Always Passes Right” for the carry propagation in parallel adder.
Question 3(c) [7 marks]#
Describe 8:1 Multiplexer with truth table, equation and circuit diagram.
Answer:
8:1 Multiplexer:
Component | Description | Function |
---|---|---|
8:1 MUX | Data selector with 8 inputs, 3 select lines, 1 output | Selects one of 8 inputs based on select lines |
Truth Table:
Select Lines | Output |
---|---|
S₂ S₁ S₀ | Y |
0 0 0 | D₀ |
0 0 1 | D₁ |
0 1 0 | D₂ |
0 1 1 | D₃ |
1 0 0 | D₄ |
1 0 1 | D₅ |
1 1 0 | D₆ |
1 1 1 | D₇ |
Boolean Equation: Y = S₂’·S₁’·S₀’·D₀ + S₂’·S₁’·S₀·D₁ + S₂’·S₁·S₀’·D₂ + S₂’·S₁·S₀·D₃ + S₂·S₁’·S₀’·D₄ + S₂·S₁’·S₀·D₅ + S₂·S₁·S₀’·D₆ + S₂·S₁·S₀·D₇
Diagram: 8:1 MUX:
flowchart LR D0["D₀"] --> MUX["8:1 MUX"] D1["D₁"] --> MUX D2["D₂"] --> MUX D3["D₃"] --> MUX D4["D₄"] --> MUX D5["D₅"] --> MUX D6["D₆"] --> MUX D7["D₇"] --> MUX S0["S₀"] --> MUX S1["S₁"] --> MUX S2["S₂"] --> MUX MUX --> Y["Y"]
Mnemonic: “Select Decides Data Output” for multiplexer operation.
Question 3(a) OR [3 marks]#
Draw the logic circuit of half Subtractor and explain its working.
Answer:
Half Subtractor:
Function | Description | Truth Table |
---|---|---|
Half Subtractor | Subtracts two bits producing Difference and Borrow | A B |
0 0 | ||
0 1 | ||
1 0 | ||
1 1 |
Logic Circuit:
flowchart LR A["A"] --> XOR["⊕"] B["B"] --> XOR XOR --> D["D = A⊕B"] A1["A'"] --> AND["•"] B1["B"] --> AND AND --> Bout["Bout = A'•B"]
Equations:
- Difference (D) = A ⊕ B
- Borrow out (Bout) = A’ • B
Mnemonic: “Different Bits Borrow” for half subtractor operation.
Question 3(b) OR [4 marks]#
Explain 3:8 Decoder with truth table and circuit diagram.
Answer:
3:8 Decoder:
Function | Description | Truth Table (Partial) |
---|---|---|
3:8 Decoder | Converts 3-bit binary input to 8 output lines | A₂ A₁ A₀ |
Only one output active at a time | 0 0 0 | |
0 0 1 | ||
… | ||
1 1 1 |
Circuit Diagram:
flowchart LR A0["A₀"] --> Dec["3:8 Decoder"] A1["A₁"] --> Dec A2["A₂"] --> Dec Dec --> Y0["Y₀"] Dec --> Y1["Y₁"] Dec --> Y2["Y₂"] Dec --> Y3["Y₃"] Dec --> Y4["Y₄"] Dec --> Y5["Y₅"] Dec --> Y6["Y₆"] Dec --> Y7["Y₇"]
Equations:
- Y₀ = A₂’ • A₁’ • A₀'
- Y₁ = A₂’ • A₁’ • A₀
- …
- Y₇ = A₂ • A₁ • A₀
Mnemonic: “Binary Input Activates Output” for decoder operation.
Question 3(c) OR [7 marks]#
Explain Gray to Binary code converter with truth table, equation and circuit diagram.
Answer:
Gray to Binary Converter:
Function | Description | Table: Gray to Binary |
---|---|---|
Gray to Binary | Converts Gray code to Binary code | Gray |
MSB of binary equals MSB of gray | 0000 | |
Each binary bit is XOR of current gray bit and previous binary bit | 0001 | |
0011 | ||
0010 | ||
0110 | ||
… |
Circuit Diagram:
flowchart LR G3["G₃"] --> B3["B₃"] G3 --> XOR1["⊕"] G2["G₂"] --> XOR1 XOR1 --> B2["B₂"] XOR1 --> XOR2["⊕"] G1["G₁"] --> XOR2 XOR2 --> B1["B₁"] XOR2 --> XOR3["⊕"] G0["G₀"] --> XOR3 XOR3 --> B0["B₀"]
Equations:
- B₃ = G₃
- B₂ = G₃ ⊕ G₂
- B₁ = B₂ ⊕ G₁
- B₀ = B₁ ⊕ G₀
Mnemonic: “MSB Stays, Rest XOR” for Gray to Binary conversion.
Question 4(a) [3 marks]#
Explain D flip flop with truth table and circuit diagram.
Answer:
D Flip-Flop:
Function | Description | Truth Table |
---|---|---|
D Flip-Flop | Data/Delay flip-flop | CLK |
Q follows D at clock edge | ↑ | |
↑ |
Circuit Diagram:
flowchart LR D["D"] --> FF["D Flip-Flop"] CLK["Clock"] --> FF FF --> Q["Q"] FF --> Qnot["Q'"]
Characteristic Equation:
- Q(next) = D
Mnemonic: “Data Delays one clock” for D flip-flop operation.
Question 4(b) [4 marks]#
Explain working of Master Slave JK flip flop.
Answer:
Master-Slave JK Flip-Flop:
Component | Operation | Truth Table |
---|---|---|
Master | Samples inputs when CLK = 1 | J K |
Slave | Transfers master output when CLK = 0 | 0 0 |
0 1 | ||
1 0 | ||
1 1 |
Diagram: Master-Slave JK:
flowchart LR J["J"] --> Master["Master JK"] K["K"] --> Master CLK["Clock"] --> Master CLK' --> Slave["Slave JK"] Master --> Slave Slave --> Q["Q"] Slave --> Q'["Q'"]
Working:
- Master stage: Captures input during clock high
- Slave stage: Updates output during clock low
- Prevents race condition by separating input capture and output update
Mnemonic: “Master Samples, Slave Transfers” for master-slave operation.
Question 4(c) [7 marks]#
Classify Shift Registers with the help of Block diagram and Explain any one of them in detail.
Answer:
Shift Register Classification:
Type | Description | Function |
---|---|---|
SISO | Serial In Serial Out | Data enters and exits serially, bit by bit |
SIPO | Serial In Parallel Out | Data enters serially, exits in parallel |
PISO | Parallel In Serial Out | Data enters in parallel, exits serially |
PIPO | Parallel In Parallel Out | Data enters and exits in parallel |
SIPO Shift Register in Detail:
flowchart LR Din["Data In"] --> FF1["FF₁"] FF1 --> FF2["FF₂"] FF2 --> FF3["FF₃"] FF3 --> FF4["FF₄"] CLK["Clock"] --> FF1 CLK --> FF2 CLK --> FF3 CLK --> FF4 FF1 --> Q0["Q₀"] FF2 --> Q1["Q₁"] FF3 --> Q2["Q₂"] FF4 --> Q3["Q₃"]
Working of SIPO Shift Register:
- Serial data enters at Data-In pin, one bit per clock cycle
- Each flip-flop passes its content to the next on clock pulse
- After 4 clock cycles, 4-bit data is stored in all flip-flops
- Parallel output available from Q0-Q3 simultaneously
Timing Diagram for SIPO:
Clock _|‾|_|‾|_|‾|_|‾|_
Data ___|‾‾‾|___|‾‾‾|_
Q0 ___|‾‾‾|___|‾‾‾|_
Q1 _____|‾‾‾|___|‾‾
Q2 _______|‾‾‾|___
Q3 _________|‾‾‾|_
Mnemonic: “Serial Inputs Parallel Outputs” for SIPO operation.
Question 4(a) OR [3 marks]#
Explain SR flip flop with truth table and circuit diagram.
Answer:
SR Flip-Flop:
Function | Description | Truth Table |
---|---|---|
SR Flip-Flop | Set-Reset flip-flop | S R |
Basic memory element | 0 0 | |
0 1 | ||
1 0 | ||
1 1 |
Circuit Diagram:
flowchart LR S["S"] --> NOR1["≥1"] QN["Q'"] --> NOR1 NOR1 --> Q["Q"] R["R"] --> NOR2["≥1"] Q --> NOR2 NOR2 --> QN
Mnemonic: “Set to 1, Reset to 0” for SR flip-flop operation.
Question 4(b) OR [4 marks]#
Describe JK flip flop with truth table and circuit diagram.
Answer:
JK Flip-Flop:
Function | Description | Truth Table |
---|---|---|
JK Flip-Flop | Improved SR flip-flop | J K |
Resolves invalid condition | 0 0 | |
0 1 | ||
1 0 | ||
1 1 |
Circuit Diagram:
flowchart LR J["J"] --> AND1["•"] Qn["Q'"] --> AND1 AND1 --> OR["≥1"] K["K"] --> AND2["•"] Q["Q"] --> AND2 AND2 --> OR OR --> FF["D FF"] CLK["Clock"] --> FF FF --> Q FF --> Qn
Characteristic Equation:
- Q(next) = J•Q’ + K’•Q
Mnemonic: “Jump-Keep-Toggle” for JK flip-flop states (J=1 K=0: Jump to 1, J=0 K=0: Keep state, J=1 K=1: Toggle).
Question 4(c) OR [7 marks]#
Describe 4-bit Asynchronous UP Counter with truth table and circuit diagram.
Answer:
4-bit Asynchronous UP Counter:
Function | Description | Count Sequence |
---|---|---|
Asynchronous Counter | Also called ripple counter | 0000 → 0001 → 0010 → 0011 |
Clock drives only first FF | 0100 → 0101 → 0110 → 0111 | |
Each FF triggered by previous FF output | 1000 → 1001 → 1010 → 1011 | |
1100 → 1101 → 1110 → 1111 |
Circuit Diagram:
flowchart LR CLK["Clock"] --> JK1["JK FF₀"] J1["J=1"] --> JK1 K1["K=1"] --> JK1 JK1 --> Q0["Q₀"] JK1 --"Q₀"--> JK2["JK FF₁"] J2["J=1"] --> JK2 K2["K=1"] --> JK2 JK2 --> Q1["Q₁"] JK2 --"Q₁"--> JK3["JK FF₂"] J3["J=1"] --> JK3 K3["K=1"] --> JK3 JK3 --> Q2["Q₂"] JK3 --"Q₂"--> JK4["JK FF₃"] J4["J=1"] --> JK4 K4["K=1"] --> JK4 JK4 --> Q3["Q₃"]
Working:
- First FF toggles on every clock pulse
- Second FF toggles when first FF goes from 1 to 0
- Third FF toggles when second FF goes from 1 to 0
- Fourth FF toggles when third FF goes from 1 to 0
Mnemonic: “Ripple Carries Propagation Delay” for asynchronous counter operation.
Question 5(a) [3 marks]#
Compare following logic families: TTL, CMOS, ECL
Answer:
Logic Families Comparison:
Parameter | TTL | CMOS | ECL |
---|---|---|---|
Technology | Bipolar transistors | MOSFETs | Bipolar transistors |
Power Consumption | Medium | Very low | High |
Speed | Medium | Low-Medium | Very high |
Noise Immunity | Medium | High | Low |
Fan-out | 10 | 50+ | 25 |
Supply Voltage | 5V | 3-15V | -5.2V |
Mnemonic: “Technology Controls Many Electrical Characteristics” for comparing logic families.
Question 5(b) [4 marks]#
Compare Combinational and Sequential Logic Circuits.
Answer:
Combinational vs Sequential Circuits:
Parameter | Combinational Circuits | Sequential Circuits |
---|---|---|
Output depends on | Current inputs only | Current inputs and previous state |
Memory | No memory | Has memory elements |
Feedback | No feedback paths | Contains feedback paths |
Examples | Adders, MUX, Decoders | Flip-flops, Counters, Registers |
Clock | No clock required | Clock often required |
Design approach | Truth tables, K-maps | State diagrams, tables |
Diagram: Comparison:
flowchart TB A["Combinational Logic"] --> B["Outputs = f(Current Inputs)"] C["Sequential Logic"] --> D["Outputs = f(Current Inputs, Previous State)"]
Mnemonic: “Current Only vs Memory States” for differentiating combinational and sequential circuits.
Question 5(c) [7 marks]#
Define: Fan in, Fan out, Noise margin, Propagation delay, Power dissipation, Figure of merit, RAM
Answer:
Digital Electronics Key Definitions:
Term | Definition | Typical Values |
---|---|---|
Fan-in | Maximum number of inputs a logic gate can handle | TTL: 2-8, CMOS: 100+ |
Fan-out | Maximum number of gate inputs that can be driven by a single output | TTL: 10, CMOS: 50 |
Noise margin | Maximum noise voltage that can be added before causing error | TTL: 0.4V, CMOS: 1.5V |
Propagation delay | Time taken for change in input to cause change in output | TTL: 10ns, CMOS: 20ns |
Power dissipation | Power consumed by gate during operation | TTL: 10mW, CMOS: 0.1mW |
Figure of merit | Product of speed and power (lower is better) | TTL: 100pJ, CMOS: 2pJ |
RAM | Random Access Memory - temporary storage device | Types: SRAM, DRAM |
Diagram: Digital Parameter Relationships:
flowchart TB A["Lower Propagation Delay"]--"Increases"-->B["Speed"] C["Lower Power Dissipation"]--"Increases"-->D["Efficiency"] B--"x"-->E["Figure of Merit"] D--"x"-->E
Mnemonic: “Fast Power Needs Proper Figure Ratings” for remembering the parameter terms.
Question 5(a) OR [3 marks]#
Describe steps and the need of E-waste management of Digital ICs.
Answer:
E-waste Management for Digital ICs:
Step | Description | Importance |
---|---|---|
Collection | Separate collection of electronic waste | Prevents improper disposal |
Segregation | Separating ICs from other components | Enables targeted recycling |
Dismantling | Removal of hazardous parts | Reduces environmental harm |
Recovery | Extracting valuable materials (gold, silicon) | Conserves resources |
Safe disposal | Proper disposal of non-recyclable parts | Prevents pollution |
Need for E-waste Management:
- Hazardous Materials: ICs contain lead, mercury, cadmium
- Resource Conservation: Recovers precious metals and rare materials
- Environmental Protection: Prevents soil and water contamination
- Health Safety: Reduces exposure to toxic substances
Mnemonic: “Collection Starts Dismantling Recovery Safely” for e-waste management steps.
Question 5(b) OR [4 marks]#
Explain working of Ring Counter with circuit diagram.
Answer:
Ring Counter:
Function | Description | Count Sequence |
---|---|---|
Ring Counter | Circular shift register with single 1 | 1000 → 0100 → 0010 → 0001 → 1000 |
Only one flip-flop is set at any time | ||
N flip-flops for N states |
Circuit Diagram:
flowchart LR CLK["Clock"] --> FF1["FF₁"] CLK --> FF2["FF₂"] CLK --> FF3["FF₃"] CLK --> FF4["FF₄"] FF4 --> FF1 FF1 --> Q1["Q₁"] FF1 --> FF2 FF2 --> Q2["Q₂"] FF2 --> FF3 FF3 --> Q3["Q₃"] FF3 --> FF4 FF4 --> Q4["Q₄"] CLR["Preset"] --> FF1 CLR --> FF2 CLR --> FF3 CLR --> FF4
Working:
- Initialization: First FF set to 1, others to 0
- Operation: Single 1 rotates through all flip-flops
- Applications: Sequencers, controllers, timing circuits
Mnemonic: “One Bit Rotates Only” for ring counter operation.
Question 5(c) OR [7 marks]#
Classify: (i) Memories (ii) Different Logic Families
Answer:
(i) Memory Classification:
Type | Subtypes | Characteristics |
---|---|---|
RAM | SRAM | - Static RAM - Fast, expensive - Uses flip-flops - No refresh needed |
DRAM | - Dynamic RAM - Slower, cheaper - Uses capacitors - Needs periodic refresh | |
ROM | PROM | - Programmable ROM - One-time programmable |
EPROM | - Erasable PROM - UV light erasable - Multiple reprogramming | |
EEPROM | - Electrically Erasable PROM - Electrical erasure - Byte-level erasure | |
Flash | - EEPROM variant - Block-level erasure - Non-volatile |
(ii) Logic Families Classification:
Technology | Families | Characteristics |
---|---|---|
Bipolar | TTL | - Transistor-Transistor Logic - Medium speed - 5V operation |
ECL | - Emitter-Coupled Logic - Very high speed - High power consumption | |
I²L | - Integrated Injection Logic - High density | |
MOS | NMOS | - N-channel MOSFET - Simpler fabrication |
PMOS | - P-channel MOSFET - Lower performance | |
CMOS | - Complementary MOS - Low power consumption - High noise immunity | |
Hybrid | BiCMOS | - Combines Bipolar and CMOS - High speed with low power |
Memory Classification Diagram:
flowchart TB MEM["Semiconductor Memories"] MEM --> RAM["Random Access Memory (Volatile)"] MEM --> ROM["Read Only Memory (Non-volatile)"] RAM --> SRAM["SRAM (Static)"] RAM --> DRAM["DRAM (Dynamic)"] ROM --> PROM["PROM (One-time)"] ROM --> EPROM["EPROM (UV Erasable)"] ROM --> EEPROM["EEPROM (Electrical Erasable)"]
Mnemonic: “Remember Simple Division: Programmable Erasable Electrical” for memory types (RAM-SRAM-DRAM, PROM-EPROM-EEPROM).