Skip to main content
  1. Resources/
  2. Study Materials/
  3. Electronics & Communication Engineering/
  4. ECE Semester 2/

Digital Electronics (4321102) - Summer 2024 Solution

16 mins· ·
Study-Material Solutions Digital-Electronics 4321102 2024 Summer
Milav Dabgar
Author
Milav Dabgar
Experienced lecturer in the electrical and electronic manufacturing industry. Skilled in Embedded Systems, Image Processing, Data Science, MATLAB, Python, STM32. Strong education professional with a Master’s degree in Communication Systems Engineering from L.D. College of Engineering - Ahmedabad.
Table of Contents

Question 1(a) [3 marks]
#

Convert: (110101)₂ = ( ___ )₁₀ = ( ___ )₈ = ( ___ )₁₆

Answer:

Step-by-step conversion of (110101)₂:

Binary (110101)₂DecimalOctalHexadecimal
1×2⁵ + 1×2⁴ + 0×2³ + 1×2² + 0×2¹ + 1×2⁰32+16+0+4+0+1 = 536×8¹ + 5×8⁰ = 48+5 = 533×16¹ + 5×16⁰ = 48+5 = 35
(110101)₂(53)₁₀(65)₈(35)₁₆

Mnemonic: “Binary Digits Out Here” (BDOH) for Binary→Decimal→Octal→Hexadecimal conversion.

Question 1(b) [4 marks]
#

Perform: (i) (11101101)₂+(10101000)₂ (ii) (11011)₂(1010)₂*

Answer:

Table for binary addition and multiplication:

(i) Binary Addition(ii) Binary Multiplication
``` 11101101``` 11011
+ 10101000× 1010
———-——-
110010101```00000
11011
00000
11011
——–
11101110```

Decimal verification:

  • (i) (11101101)₂ = 237, (10101000)₂ = 168, Sum = 405 = (110010101)₂
  • (ii) (11011)₂ = 27, (1010)₂ = 10, Product = 270 = (11101110)₂

Mnemonic: “Carry Up Makes Sum” for addition and “Shift Left Add Product” for multiplication.

Question 1(c) [7 marks]
#

(i) Convert: (48)₁₀ = ( ___ )₂ = ( ___ )₈ = ( ___ )₁₆ (ii) Subtract using 2’s Complement method: (1110)₂ – (1000)₂ (iii) Divide (1111101)₂ with (101)₂

Answer:

(i) Conversion Table:

Decimal (48)₁₀BinaryOctalHexadecimal
48÷2 = 24 rem 01100006030
24÷2 = 12 rem 0
12÷2 = 6 rem 0
6÷2 = 3 rem 0
3÷2 = 1 rem 1
1÷2 = 0 rem 1
(48)₁₀(110000)₂(60)₈(30)₁₆

(ii) Subtraction Table:

2’s Complement MethodSteps
(1110)₂ – (1000)₂1. Find 2’s complement of (1000)₂
1’s complement of (1000)₂(0111)₂
2’s complement(0111)₂ + 1 = (1000)₂
(1110)₂ + (1000)₂(10110)₂
Discard carry(0110)₂
Result(0110)₂ = 6₁₀

(iii) Division:

flowchart LR
    A["(1111101)₂ ÷ (101)₂"] --> B["101)1111101(11 quotient
                                    101
                                    -----
                                    100
                                    000
                                    -----
                                    1001
                                    101
                                    -----
                                    001 remainder"]
    B --> C["Quotient = (11)₂
            Remainder = (1)₂"]

Mnemonic: “Division Drops Down Remainders” for long division process.

Question 1(c) OR [7 marks]
#

Explain Codes: ASCII, BCD, Gray

Answer:

Table of Common Digital Codes:

CodeDescriptionExample
ASCII (American Standard Code for Information Interchange)7-bit code representing 128 characters including alphabets, numbers, and special symbolsA = 65 (1000001)₂
BCD (Binary Coded Decimal)Represents each decimal digit (0-9) using 4 bits42 = 0100 0010
Gray CodeBinary code where adjacent numbers differ by only one bit(0,1,3,2) = (00,01,11,10)

Diagram: Gray Code Generation:

flowchart TB
    A["Binary Code"] --> B["Gray Code"]
    B --> C["MSB remains same
    Each bit XORed with previous"]
    D["Binary: 0011"] --> E["Gray: 0010"]

Mnemonic: “Always Binary Generates” - first letter of each code (ASCII, BCD, Gray).

Question 2(a) [3 marks]
#

Simplify using Boolean Algebra: Y = A B + A’ B + A’ B’ + A B’

Answer:

Step-by-step simplification:

StepExpressionBoolean Law
Y = A B + A’ B + A’ B’ + A B'Initial expression-
Y = A(B + B’) + A’(B + B')FactoringDistributive law
Y = A(1) + A’(1)Complement lawB + B’ = 1
Y = A + A'Simplification-
Y = 1Complement lawA + A’ = 1

Mnemonic: “Factor, Simplify, Finish” for Boolean simplification steps.

Question 2(b) [4 marks]
#

Simplify the following Boolean function using K-map: f(A,B,C,D) = Σm (0,3,4,6,8,11,12)

Answer:

K-map Solution:

    AB
CD  00 01 11 10
00  1  0  0  1
01  0  0  0  1  
11  0  1  0  0
10  0  0  1  0

Grouping:

  • Group 1: m(0,8) = A’C’D'
  • Group 2: m(4,12) = BD'
  • Group 3: m(3,11) = CD
  • Group 4: m(6) = A’B’CD'

Simplified expression: f(A,B,C,D) = A’C’D’ + BD’ + CD + A’B’CD'

Mnemonic: “Group Powers Of Two” for K-map grouping strategy.

Question 2(c) [7 marks]
#

Explain NOR gate as a universal gate with neat diagrams.

Answer:

NOR as Universal Gate:

FunctionImplementation using NORTruth Table
NOT Gate
NOT using NOR
A
0
1
AND Gate
AND using NOR
A B
0 0
0 1
1 0
1 1
OR Gate
OR using NOR
A B
0 0
0 1
1 0
1 1

Diagram: NOR Implementation:

flowchart LR
    A["NOT: A -1>- A'"]
    B["AND: A --1>--|
               |    1>-- A•B
         B --1>--|"]
    C["OR: A --1>--|
              |    |>-- A+B
        B --1>--|"]

Mnemonic: “NOT AND OR, NOR does more” for remembering NOR gate implementations.

Question 2(a) OR [3 marks]
#

Draw logic circuit for Boolean expression: Y = (A + B’) . (A’ + B’) . (B + C)

Answer:

Logic Circuit Implementation:

flowchart LR
    A["A"] --> D["OR"]
    B["B'"] --> D
    D --> G["AND"]
    A1["A'"] --> E["OR"]
    B1["B'"] --> E
    E --> G
    B2["B"] --> F["OR"]
    C["C"] --> F
    F --> G
    G --> Y["Y"]

Truth Table Verification:

  • Term 1: (A + B')
  • Term 2: (A’ + B')
  • Term 3: (B + C)
  • Output: Y = Term1 • Term2 • Term3

Mnemonic: “Each Term Separately” for breaking complex expressions.

Question 2(b) OR [4 marks]
#

State De-Morgan’s theorems and prove it.

Answer:

De-Morgan’s Theorems and Proof:

TheoremStatementProof by Truth Table
Theorem 1(A•B)’ = A’ + B'A B
0 0
0 1
1 0
1 1
Theorem 2(A+B)’ = A’•B'A B
0 0
0 1
1 0
1 1

Diagram: De-Morgan’s Law Visualization:

flowchart TB
    A["(A•B)' = A'+B'"] --> B["Invert Operation
                                AND → OR
                                Invert Variables"]
    C["(A+B)' = A'•B'"] --> D["Invert Operation
                                OR → AND
                                Invert Variables"]

Mnemonic: “Break BAR, Change Operation, Invert Inputs” for applying De-Morgan’s law.

Question 2(c) OR [7 marks]
#

Explain all the Logic Gates with the help of Symbol, Truth table and equation.

Answer:

Logic Gates Summary:

GateSymbolTruth TableEquationDescription
AND
AND
A BYY = A•B
0 00
0 10
1 00
1 11
OR
OR
A BYY = A+B
0 00
0 11
1 01
1 11
NOT
NOT
AYY = A'
01
10
NAND
NAND
A BYY = (A•B)'
0 01
0 11
1 01
1 10
NOR
NOR
A BYY = (A+B)'
0 01
0 10
1 00
1 10
XOR
XOR
A BYY = A⊕B
0 00
0 11
1 01
1 10
XNOR
XNOR
A BYY = (A⊕B)'
0 01
0 10
1 00
1 11

Mnemonic: “All Operations Need Necessary eXecution” (first letter of each gate - AND, OR, NOT, NAND, NOR, XOR).

Question 3(a) [3 marks]
#

Briefly explain 4:2 Encoder.

Answer:

4-to-2 Encoder Overview:

FunctionDescriptionTruth Table
4:2 EncoderConverts 4 input lines to 2 output linesI₀ I₁ I₂ I₃
Only one input active at a time1 0 0 0
Input position encoded in binary0 1 0 0
0 0 1 0
0 0 0 1

Diagram: 4:2 Encoder:

flowchart LR
    I0["I₀"] --> E["4:2 Encoder"]
    I1["I₁"] --> E
    I2["I₂"] --> E
    I3["I₃"] --> E
    E --> Y1["Y₁"]
    E --> Y0["Y₀"]

Mnemonic: “Input Position Creates Output” for encoder function.

Question 3(b) [4 marks]
#

Explain 4-bit Parallel adder using full adder blocks.

Answer:

4-bit Parallel Adder:

ComponentFunction
Full AdderAdds 3 bits (A, B, Carry-in) producing Sum and Carry-out
Parallel AdderConnects 4 full adders with carry propagation

Diagram: 4-bit Parallel Adder:

flowchart LR
    A0["A₀"] --> FA0["FA"]
    B0["B₀"] --> FA0
    C0["C₀=0"] --> FA0
    FA0 --> S0["S₀"]
    FA0 -- "C₁" --> FA1["FA"]

    A1["A₁"] --> FA1
    B1["B₁"] --> FA1
    FA1 --> S1["S₁"]
    FA1 -- "C₂" --> FA2["FA"]
    
    A2["A₂"] --> FA2
    B2["B₂"] --> FA2
    FA2 --> S2["S₂"] 
    FA2 -- "C₃" --> FA3["FA"]
    
    A3["A₃"] --> FA3
    B3["B₃"] --> FA3
    FA3 --> S3["S₃"]
    FA3 --> C4["C₄"]

Mnemonic: “Carry Always Passes Right” for the carry propagation in parallel adder.

Question 3(c) [7 marks]
#

Describe 8:1 Multiplexer with truth table, equation and circuit diagram.

Answer:

8:1 Multiplexer:

ComponentDescriptionFunction
8:1 MUXData selector with 8 inputs, 3 select lines, 1 outputSelects one of 8 inputs based on select lines

Truth Table:

Select LinesOutput
S₂ S₁ S₀Y
0 0 0D₀
0 0 1D₁
0 1 0D₂
0 1 1D₃
1 0 0D₄
1 0 1D₅
1 1 0D₆
1 1 1D₇

Boolean Equation: Y = S₂’·S₁’·S₀’·D₀ + S₂’·S₁’·S₀·D₁ + S₂’·S₁·S₀’·D₂ + S₂’·S₁·S₀·D₃ + S₂·S₁’·S₀’·D₄ + S₂·S₁’·S₀·D₅ + S₂·S₁·S₀’·D₆ + S₂·S₁·S₀·D₇

Diagram: 8:1 MUX:

flowchart LR
    D0["D₀"] --> MUX["8:1 MUX"]
    D1["D₁"] --> MUX
    D2["D₂"] --> MUX
    D3["D₃"] --> MUX
    D4["D₄"] --> MUX
    D5["D₅"] --> MUX
    D6["D₆"] --> MUX
    D7["D₇"] --> MUX
    S0["S₀"] --> MUX
    S1["S₁"] --> MUX
    S2["S₂"] --> MUX
    MUX --> Y["Y"]

Mnemonic: “Select Decides Data Output” for multiplexer operation.

Question 3(a) OR [3 marks]
#

Draw the logic circuit of half Subtractor and explain its working.

Answer:

Half Subtractor:

FunctionDescriptionTruth Table
Half SubtractorSubtracts two bits producing Difference and BorrowA B
0 0
0 1
1 0
1 1

Logic Circuit:

flowchart LR
    A["A"] --> XOR["⊕"]
    B["B"] --> XOR
    XOR --> D["D = A⊕B"]

    A1["A'"] --> AND["•"]
    B1["B"] --> AND
    AND --> Bout["Bout = A'•B"]

Equations:

  • Difference (D) = A ⊕ B
  • Borrow out (Bout) = A’ • B

Mnemonic: “Different Bits Borrow” for half subtractor operation.

Question 3(b) OR [4 marks]
#

Explain 3:8 Decoder with truth table and circuit diagram.

Answer:

3:8 Decoder:

FunctionDescriptionTruth Table (Partial)
3:8 DecoderConverts 3-bit binary input to 8 output linesA₂ A₁ A₀
Only one output active at a time0 0 0
0 0 1
1 1 1

Circuit Diagram:

flowchart LR
    A0["A₀"] --> Dec["3:8 Decoder"]
    A1["A₁"] --> Dec
    A2["A₂"] --> Dec
    Dec --> Y0["Y₀"]
    Dec --> Y1["Y₁"]
    Dec --> Y2["Y₂"]
    Dec --> Y3["Y₃"]
    Dec --> Y4["Y₄"]
    Dec --> Y5["Y₅"]
    Dec --> Y6["Y₆"]
    Dec --> Y7["Y₇"]

Equations:

  • Y₀ = A₂’ • A₁’ • A₀'
  • Y₁ = A₂’ • A₁’ • A₀
  • Y₇ = A₂ • A₁ • A₀

Mnemonic: “Binary Input Activates Output” for decoder operation.

Question 3(c) OR [7 marks]
#

Explain Gray to Binary code converter with truth table, equation and circuit diagram.

Answer:

Gray to Binary Converter:

FunctionDescriptionTable: Gray to Binary
Gray to BinaryConverts Gray code to Binary codeGray
MSB of binary equals MSB of gray0000
Each binary bit is XOR of current gray bit and previous binary bit0001
0011
0010
0110

Circuit Diagram:

flowchart LR
    G3["G₃"] --> B3["B₃"]
    G3 --> XOR1["⊕"]
    G2["G₂"] --> XOR1
    XOR1 --> B2["B₂"]
    XOR1 --> XOR2["⊕"]
    G1["G₁"] --> XOR2
    XOR2 --> B1["B₁"]
    XOR2 --> XOR3["⊕"]
    G0["G₀"] --> XOR3
    XOR3 --> B0["B₀"]

Equations:

  • B₃ = G₃
  • B₂ = G₃ ⊕ G₂
  • B₁ = B₂ ⊕ G₁
  • B₀ = B₁ ⊕ G₀

Mnemonic: “MSB Stays, Rest XOR” for Gray to Binary conversion.

Question 4(a) [3 marks]
#

Explain D flip flop with truth table and circuit diagram.

Answer:

D Flip-Flop:

FunctionDescriptionTruth Table
D Flip-FlopData/Delay flip-flopCLK
Q follows D at clock edge

Circuit Diagram:

flowchart LR
    D["D"] --> FF["D Flip-Flop"]
    CLK["Clock"] --> FF
    FF --> Q["Q"]
    FF --> Qnot["Q'"]

Characteristic Equation:

  • Q(next) = D

Mnemonic: “Data Delays one clock” for D flip-flop operation.

Question 4(b) [4 marks]
#

Explain working of Master Slave JK flip flop.

Answer:

Master-Slave JK Flip-Flop:

ComponentOperationTruth Table
MasterSamples inputs when CLK = 1J K
SlaveTransfers master output when CLK = 00 0
0 1
1 0
1 1

Diagram: Master-Slave JK:

flowchart LR
    J["J"] --> Master["Master JK"]
    K["K"] --> Master
    CLK["Clock"] --> Master
    CLK' --> Slave["Slave JK"]
    Master --> Slave
    Slave --> Q["Q"]
    Slave --> Q'["Q'"]

Working:

  • Master stage: Captures input during clock high
  • Slave stage: Updates output during clock low
  • Prevents race condition by separating input capture and output update

Mnemonic: “Master Samples, Slave Transfers” for master-slave operation.

Question 4(c) [7 marks]
#

Classify Shift Registers with the help of Block diagram and Explain any one of them in detail.

Answer:

Shift Register Classification:

TypeDescriptionFunction
SISOSerial In Serial OutData enters and exits serially, bit by bit
SIPOSerial In Parallel OutData enters serially, exits in parallel
PISOParallel In Serial OutData enters in parallel, exits serially
PIPOParallel In Parallel OutData enters and exits in parallel

SIPO Shift Register in Detail:

flowchart LR
    Din["Data In"] --> FF1["FF₁"]
    FF1 --> FF2["FF₂"]
    FF2 --> FF3["FF₃"]
    FF3 --> FF4["FF₄"]
    CLK["Clock"] --> FF1
    CLK --> FF2
    CLK --> FF3
    CLK --> FF4
    FF1 --> Q0["Q₀"]
    FF2 --> Q1["Q₁"]
    FF3 --> Q2["Q₂"]
    FF4 --> Q3["Q₃"]

Working of SIPO Shift Register:

  • Serial data enters at Data-In pin, one bit per clock cycle
  • Each flip-flop passes its content to the next on clock pulse
  • After 4 clock cycles, 4-bit data is stored in all flip-flops
  • Parallel output available from Q0-Q3 simultaneously

Timing Diagram for SIPO:

Clock   _|‾|_|‾|_|‾|_|‾|_
Data    ___|‾‾‾|___|‾‾‾|_
Q0      ___|‾‾‾|___|‾‾‾|_
Q1      _____|‾‾‾|___|‾‾
Q2      _______|‾‾‾|___
Q3      _________|‾‾‾|_

Mnemonic: “Serial Inputs Parallel Outputs” for SIPO operation.

Question 4(a) OR [3 marks]
#

Explain SR flip flop with truth table and circuit diagram.

Answer:

SR Flip-Flop:

FunctionDescriptionTruth Table
SR Flip-FlopSet-Reset flip-flopS R
Basic memory element0 0
0 1
1 0
1 1

Circuit Diagram:

flowchart LR
    S["S"] --> NOR1["≥1"]
    QN["Q'"] --> NOR1
    NOR1 --> Q["Q"]
    R["R"] --> NOR2["≥1"]
    Q --> NOR2
    NOR2 --> QN

Mnemonic: “Set to 1, Reset to 0” for SR flip-flop operation.

Question 4(b) OR [4 marks]
#

Describe JK flip flop with truth table and circuit diagram.

Answer:

JK Flip-Flop:

FunctionDescriptionTruth Table
JK Flip-FlopImproved SR flip-flopJ K
Resolves invalid condition0 0
0 1
1 0
1 1

Circuit Diagram:

flowchart LR
    J["J"] --> AND1["•"]
    Qn["Q'"] --> AND1
    AND1 --> OR["≥1"]
    K["K"] --> AND2["•"]
    Q["Q"] --> AND2
    AND2 --> OR
    OR --> FF["D FF"]
    CLK["Clock"] --> FF
    FF --> Q
    FF --> Qn

Characteristic Equation:

  • Q(next) = J•Q’ + K’•Q

Mnemonic: “Jump-Keep-Toggle” for JK flip-flop states (J=1 K=0: Jump to 1, J=0 K=0: Keep state, J=1 K=1: Toggle).

Question 4(c) OR [7 marks]
#

Describe 4-bit Asynchronous UP Counter with truth table and circuit diagram.

Answer:

4-bit Asynchronous UP Counter:

FunctionDescriptionCount Sequence
Asynchronous CounterAlso called ripple counter0000 → 0001 → 0010 → 0011
Clock drives only first FF0100 → 0101 → 0110 → 0111
Each FF triggered by previous FF output1000 → 1001 → 1010 → 1011
1100 → 1101 → 1110 → 1111

Circuit Diagram:

flowchart LR
    CLK["Clock"] --> JK1["JK FF₀"]
    J1["J=1"] --> JK1
    K1["K=1"] --> JK1
    JK1 --> Q0["Q₀"]
    JK1 --"Q₀"--> JK2["JK FF₁"]
    J2["J=1"] --> JK2
    K2["K=1"] --> JK2
    JK2 --> Q1["Q₁"]
    JK2 --"Q₁"--> JK3["JK FF₂"]
    J3["J=1"] --> JK3
    K3["K=1"] --> JK3
    JK3 --> Q2["Q₂"]
    JK3 --"Q₂"--> JK4["JK FF₃"]
    J4["J=1"] --> JK4
    K4["K=1"] --> JK4
    JK4 --> Q3["Q₃"]

Working:

  • First FF toggles on every clock pulse
  • Second FF toggles when first FF goes from 1 to 0
  • Third FF toggles when second FF goes from 1 to 0
  • Fourth FF toggles when third FF goes from 1 to 0

Mnemonic: “Ripple Carries Propagation Delay” for asynchronous counter operation.

Question 5(a) [3 marks]
#

Compare following logic families: TTL, CMOS, ECL

Answer:

Logic Families Comparison:

ParameterTTLCMOSECL
TechnologyBipolar transistorsMOSFETsBipolar transistors
Power ConsumptionMediumVery lowHigh
SpeedMediumLow-MediumVery high
Noise ImmunityMediumHighLow
Fan-out1050+25
Supply Voltage5V3-15V-5.2V

Mnemonic: “Technology Controls Many Electrical Characteristics” for comparing logic families.

Question 5(b) [4 marks]
#

Compare Combinational and Sequential Logic Circuits.

Answer:

Combinational vs Sequential Circuits:

ParameterCombinational CircuitsSequential Circuits
Output depends onCurrent inputs onlyCurrent inputs and previous state
MemoryNo memoryHas memory elements
FeedbackNo feedback pathsContains feedback paths
ExamplesAdders, MUX, DecodersFlip-flops, Counters, Registers
ClockNo clock requiredClock often required
Design approachTruth tables, K-mapsState diagrams, tables

Diagram: Comparison:

flowchart TB
    A["Combinational Logic"] --> B["Outputs = f(Current Inputs)"]
    C["Sequential Logic"] --> D["Outputs = f(Current Inputs, Previous State)"]

Mnemonic: “Current Only vs Memory States” for differentiating combinational and sequential circuits.

Question 5(c) [7 marks]
#

Define: Fan in, Fan out, Noise margin, Propagation delay, Power dissipation, Figure of merit, RAM

Answer:

Digital Electronics Key Definitions:

TermDefinitionTypical Values
Fan-inMaximum number of inputs a logic gate can handleTTL: 2-8, CMOS: 100+
Fan-outMaximum number of gate inputs that can be driven by a single outputTTL: 10, CMOS: 50
Noise marginMaximum noise voltage that can be added before causing errorTTL: 0.4V, CMOS: 1.5V
Propagation delayTime taken for change in input to cause change in outputTTL: 10ns, CMOS: 20ns
Power dissipationPower consumed by gate during operationTTL: 10mW, CMOS: 0.1mW
Figure of meritProduct of speed and power (lower is better)TTL: 100pJ, CMOS: 2pJ
RAMRandom Access Memory - temporary storage deviceTypes: SRAM, DRAM

Diagram: Digital Parameter Relationships:

flowchart TB
    A["Lower Propagation Delay"]--"Increases"-->B["Speed"]
    C["Lower Power Dissipation"]--"Increases"-->D["Efficiency"]
    B--"x"-->E["Figure of Merit"]
    D--"x"-->E

Mnemonic: “Fast Power Needs Proper Figure Ratings” for remembering the parameter terms.

Question 5(a) OR [3 marks]
#

Describe steps and the need of E-waste management of Digital ICs.

Answer:

E-waste Management for Digital ICs:

StepDescriptionImportance
CollectionSeparate collection of electronic wastePrevents improper disposal
SegregationSeparating ICs from other componentsEnables targeted recycling
DismantlingRemoval of hazardous partsReduces environmental harm
RecoveryExtracting valuable materials (gold, silicon)Conserves resources
Safe disposalProper disposal of non-recyclable partsPrevents pollution

Need for E-waste Management:

  • Hazardous Materials: ICs contain lead, mercury, cadmium
  • Resource Conservation: Recovers precious metals and rare materials
  • Environmental Protection: Prevents soil and water contamination
  • Health Safety: Reduces exposure to toxic substances

Mnemonic: “Collection Starts Dismantling Recovery Safely” for e-waste management steps.

Question 5(b) OR [4 marks]
#

Explain working of Ring Counter with circuit diagram.

Answer:

Ring Counter:

FunctionDescriptionCount Sequence
Ring CounterCircular shift register with single 11000 → 0100 → 0010 → 0001 → 1000
Only one flip-flop is set at any time
N flip-flops for N states

Circuit Diagram:

flowchart LR
    CLK["Clock"] --> FF1["FF₁"]
    CLK --> FF2["FF₂"]
    CLK --> FF3["FF₃"]
    CLK --> FF4["FF₄"]
    FF4 --> FF1
    FF1 --> Q1["Q₁"]
    FF1 --> FF2
    FF2 --> Q2["Q₂"]
    FF2 --> FF3
    FF3 --> Q3["Q₃"]
    FF3 --> FF4
    FF4 --> Q4["Q₄"]
    CLR["Preset"] --> FF1
    CLR --> FF2
    CLR --> FF3
    CLR --> FF4

Working:

  • Initialization: First FF set to 1, others to 0
  • Operation: Single 1 rotates through all flip-flops
  • Applications: Sequencers, controllers, timing circuits

Mnemonic: “One Bit Rotates Only” for ring counter operation.

Question 5(c) OR [7 marks]
#

Classify: (i) Memories (ii) Different Logic Families

Answer:

(i) Memory Classification:

TypeSubtypesCharacteristics
RAMSRAM- Static RAM
- Fast, expensive
- Uses flip-flops
- No refresh needed
DRAM- Dynamic RAM
- Slower, cheaper
- Uses capacitors
- Needs periodic refresh
ROMPROM- Programmable ROM
- One-time programmable
EPROM- Erasable PROM
- UV light erasable
- Multiple reprogramming
EEPROM- Electrically Erasable PROM
- Electrical erasure
- Byte-level erasure
Flash- EEPROM variant
- Block-level erasure
- Non-volatile

(ii) Logic Families Classification:

TechnologyFamiliesCharacteristics
BipolarTTL- Transistor-Transistor Logic
- Medium speed
- 5V operation
ECL- Emitter-Coupled Logic
- Very high speed
- High power consumption
I²L- Integrated Injection Logic
- High density
MOSNMOS- N-channel MOSFET
- Simpler fabrication
PMOS- P-channel MOSFET
- Lower performance
CMOS- Complementary MOS
- Low power consumption
- High noise immunity
HybridBiCMOS- Combines Bipolar and CMOS
- High speed with low power

Memory Classification Diagram:

flowchart TB
    MEM["Semiconductor Memories"]
    MEM --> RAM["Random Access Memory (Volatile)"]
    MEM --> ROM["Read Only Memory (Non-volatile)"]
    RAM --> SRAM["SRAM (Static)"]
    RAM --> DRAM["DRAM (Dynamic)"]
    ROM --> PROM["PROM (One-time)"]
    ROM --> EPROM["EPROM (UV Erasable)"]
    ROM --> EEPROM["EEPROM (Electrical Erasable)"]

Mnemonic: “Remember Simple Division: Programmable Erasable Electrical” for memory types (RAM-SRAM-DRAM, PROM-EPROM-EEPROM).

Related

Antenna & Wave Propagation (4341106) - Summer 2024 Solution
20 mins
Study-Material Solutions Antenna Wave-Propagation 4341106 2024 Summer
Electronic Circuits & Applications (4321103) - Summer 2024 Solution
18 mins
Study-Material Solutions Electronic-Circuits 4321103 2024 Summer
Python Programming (1323203) - Summer 2024 Solution
19 mins
Study-Material Solutions Python 1323203 2024 Summer
Fundamentals of Electrical Engineering (4311101) - Summer 2024 Solution
18 mins
Study-Material Solutions Electrical-Engineering 4311101 2024 Summer
Linear Integrated Circuit (4341105) - Summer 2024 Solution
20 mins
Study-Material Solutions Linear-Integrated-Circuit 4341105 2024 Summer
Database Management System (1333204) - Summer 2024 Solution
20 mins
Study-Material Solutions Database 1333204 2024 Summer