Skip to main content
  1. Resources/
  2. Study Materials/
  3. Electronics & Communication Engineering/
  4. ECE Semester 2/

Digital Electronics (4321102) - Winter 2023 Solution

15 mins· ·
Study-Material Solutions Digital-Electronics 4321102 2023 Winter
Milav Dabgar
Author
Milav Dabgar
Experienced lecturer in the electrical and electronic manufacturing industry. Skilled in Embedded Systems, Image Processing, Data Science, MATLAB, Python, STM32. Strong education professional with a Master’s degree in Communication Systems Engineering from L.D. College of Engineering - Ahmedabad.
Table of Contents

Question 1(a) [3 marks]
#

(726)₁₀ = (_________)₂

Answer:

Table: Decimal to Binary Conversion

StepCalculationRemainder
1726 ÷ 2 = 3630
2363 ÷ 2 = 1811
3181 ÷ 2 = 901
490 ÷ 2 = 450
545 ÷ 2 = 221
622 ÷ 2 = 110
711 ÷ 2 = 51
85 ÷ 2 = 21
92 ÷ 2 = 10
101 ÷ 2 = 01

Reading from bottom to top: (726)₁₀ = (1011010110)₂

Mnemonic: “Divide By Two, Read Remainders Up”

Question 1(b) [4 marks]
#

1) Convert binary number (10110101)₂ into gray number.

2) Convert gray number (10110110)gray into binary number.

Answer:

Binary to Gray Conversion:

Binary:   1 0 1 1 0 1 0 1
           ↓ ↓ ↓ ↓ ↓ ↓ ↓
XOR:      1⊕0 0⊕1 1⊕1 1⊕0 0⊕1 1⊕0 0⊕1
           ↓   ↓   ↓   ↓   ↓   ↓   ↓
Gray:     1   1   0   1   1   1   1

Therefore: (10110101)₂ = (1101111)gray

Gray to Binary Conversion:

Gray:     1 0 1 1 0 1 1 0
           ↓
Binary:   1
          1⊕0 = 1
          1⊕1 = 0
          0⊕1 = 1
          1⊕0 = 1
          1⊕1 = 0
          0⊕1 = 1
          1⊕0 = 1

Therefore: (10110110)gray = (10110101)₂

Mnemonic: “First bit same, rest XOR with previous binary”

Question 1(c) [7 marks]
#

Explain NAND as a universal gate.

Answer:

Diagram: NAND as Universal Gate

graph LR
    subgraph "NOT Gate using NAND"
    A1(A)-->N1((NAND))
    A1(A)-->N1
    N1-->Z1("A'")
    end

    subgraph "AND Gate using NAND"
    A2(A)-->N2((NAND))
    B2(B)-->N2
    N2-->N3((NAND))
    N2-->N3
    N3-->Z2("A·B")
    end
    
    subgraph "OR Gate using NAND"
    A3(A)-->N4((NAND))
    A3(A)-->N4
    B3(B)-->N5((NAND))
    B3(B)-->N5
    N4-->N6((NAND))
    N5-->N6
    N6-->Z3("A+B")
    end
  • Universal Property: NAND gate can implement any Boolean function without needing any other type of gate
  • NOT Implementation: Connecting both inputs of NAND together creates NOT gate
  • AND Implementation: NAND followed by another NAND creates AND gate
  • OR Implementation: Two NAND gates with single inputs, followed by NAND creates OR gate

Table: NAND Gate Implementations

Logic FunctionNAND Implementation
NOT(A)NAND(A,A)
AND(A,B)NAND(NAND(A,B),NAND(A,B))
OR(A,B)NAND(NAND(A,A),NAND(B,B))

Mnemonic: “NAND can STAND as All gates”

Question 1(c) OR [7 marks]
#

Explain NOR as a universal gate.

Answer:

Diagram: NOR as Universal Gate

graph LR
    subgraph "NOT Gate using NOR"
    A1(A)-->N1((NOR))
    A1(A)-->N1
    N1-->Z1("A'")
    end

    subgraph "OR Gate using NOR"
    A2(A)-->N2((NOR))
    B2(B)-->N2
    N2-->N3((NOR))
    N2-->N3
    N3-->Z2("A+B")
    end
    
    subgraph "AND Gate using NOR"
    A3(A)-->N4((NOR))
    A3(A)-->N4
    B3(B)-->N5((NOR))
    B3(B)-->N5
    N4-->N6((NOR))
    N5-->N6
    N6-->Z3("A·B")
    end
  • Universal Property: NOR gate can implement any Boolean function without needing any other type of gate
  • NOT Implementation: Connecting both inputs of NOR together creates NOT gate
  • OR Implementation: NOR followed by another NOR creates OR gate
  • AND Implementation: Two NOR gates with single inputs, followed by NOR creates AND gate

Table: NOR Gate Implementations

Logic FunctionNOR Implementation
NOT(A)NOR(A,A)
OR(A,B)NOR(NOR(A,B),NOR(A,B))
AND(A,B)NOR(NOR(A,A),NOR(B,B))

Mnemonic: “NOR can form ALL logic cores”

Question 2(a) [3 marks]
#

(11011011)₂ X (110)₂ = (_________)₂

Answer:

Table: Binary Multiplication

    1 1 0 1 1 0 1 1
  ×         1 1 0
  ---------------
    1 1 0 1 1 0 1 1  (× 0)
  1 1 0 1 1 0 1 1    (× 1)
1 1 0 1 1 0 1 1      (× 1)
-----------------
1 0 0 0 0 0 0 0 1 1 0

Therefore: (11011011)₂ × (110)₂ = (10000001110)₂

Mnemonic: “Multiply each bit, shift left, add all rows”

Question 2(b) [4 marks]
#

Prove DeMorgan’s theorem.

Answer:

Table: DeMorgan’s Theorem Proof

ABA'B'A+B(A+B)'A’·B'
0011011
0110100
1001100
1100100

DeMorgan’s Theorems:

  1. (A+B)’ = A’·B'
  2. (A·B)’ = A’+B'

Truth table proves that (A+B)’ = A’·B’ since both columns match.

Mnemonic: “Break the line, change the sign”

Question 2(c) [7 marks]
#

Explain full adder using logic circuit, Boolean equation and truth table.

Answer:

Diagram: Full Adder Circuit

graph LR
    A(A)-->XOR1(XOR)
    B(B)-->XOR1
    XOR1-->XOR2(XOR)
    Cin(Cin)-->XOR2
    XOR2-->Sum(Sum)

    A-->AND1(AND)
    B-->AND1
    AND1-->OR1(OR)
    
    A-->AND2(AND)
    Cin-->AND2
    AND2-->OR1
    
    B-->AND3(AND)
    Cin-->AND3
    AND3-->OR1
    
    OR1-->Cout(Cout)

Table: Full Adder Truth Table

ABCinSumCout
00000
00110
01010
01101
10010
10101
11001
11111
  • Boolean Equations:
    • Sum = A ⊕ B ⊕ Cin
    • Cout = (A·B) + (B·Cin) + (A·Cin)

Mnemonic: “Sum needs XOR three, Carry needs AND then OR”

Question 2(a) OR [3 marks]
#

Divide (11010010)₂ with (101)₂ = (_________)₂

Answer:

Table: Binary Division

            1 0 1 0 1 1
         ____________
101 ) 1 1 0 1 0 0 1 0
      1 0 1
      -----
        1 1 0
        1 0 1
        -----
          0 1 0
            0 0
          -----
            1 0 0
            1 0 1
            -----
              1 1 0
              1 0 1
              -----
                0 1 0
                  0 0
                -----
                  1 0
                   0
                 ----
                   0

Therefore: (11010010)₂ ÷ (101)₂ = (101011)₂ with remainder (0)₂

Mnemonic: “Divide like decimal, but use binary subtraction”

Question 2(b) OR [4 marks]
#

Simplify the Boolean expression Y = A’B+AB’+A’B’+AB

Answer:

Table: Boolean Simplification

StepExpressionRule Applied
1Y = A’B+AB’+A’B’+ABOriginal
2Y = A’(B+B’)+A(B’+B)Factoring
3Y = A’(1)+A(1)B+B’ = 1
4Y = A’+ASimplifying
5Y = 1A’+A = 1

Therefore: Y = 1 (Always TRUE)

Mnemonic: “Factor first, apply identities, combine like terms”

Question 2(c) OR [7 marks]
#

Explain full subtractor using logic circuit, boolean equation and truth table.

Answer:

Diagram: Full Subtractor Circuit

graph LR
    A(A)-->XOR1(XOR)
    B(B)-->XOR1
    XOR1-->XOR2(XOR)
    Bin(Bin)-->XOR2
    XOR2-->D(Difference)

    A(A)-->NOT1(NOT)
    NOT1-->AND1(AND)
    B-->AND1
    AND1-->OR1(OR)
    
    XOR1-->NOT2(NOT)
    NOT2-->AND2(AND)
    Bin-->AND2
    AND2-->OR1
    
    B-->AND3(AND)
    Bin-->AND3
    AND3-->OR1
    
    OR1-->Bout(Borrow Out)

Table: Full Subtractor Truth Table

ABBinDifferenceBout
00000
00111
01011
01101
10010
10100
11000
11111
  • Boolean Equations:
    • Difference = A ⊕ B ⊕ Bin
    • Bout = (A’·B) + (A’·Bin) + (B·Bin)

Mnemonic: “Difference uses triple XOR, Borrow when input is greater”

Question 3(a) [3 marks]
#

Using 2’s complement subtract (1011001)₂ from (1101101)₂.

Answer:

Table: 2’s Complement Subtraction

StepOperationResult
1Number to subtract:1011001
21’s complement:0100110
32’s complement:0100111
4(1101101) + (0100111) =10010100
5Discard carry:0010100

Therefore: (1101101)₂ - (1011001)₂ = (0010100)₂ = (20)₁₀

Mnemonic: “Flip bits, add one, then add numbers”

Question 3(b) [4 marks]
#

Simplify the Boolean equation using Karnaugh map (K’ map) method: F(A,B,C,D) = Σm(0,1,2,6,7,8,12,15)

Answer:

Table: Karnaugh Map

      CD      
AB    00  01  11  10
00    1   1   0   1
01    0   0   1   1
11    0   0   1   0
10    1   0   0   0

Diagram: K-map Grouping

1A001C1A00001B1B01A1B00

Group A: A’B’C’ (4 cells) Group B: BCD (3 cells) Group C: A’B’CD’ (1 cell)

Simplified expression: F(A,B,C,D) = A’B’C’ + BCD + A’B’CD'

Mnemonic: “Find largest groups of 2ⁿ, use minimal terms”

Question 3(c) [7 marks]
#

Explain 3 to 8 decoder using logic circuit and truth table.

Answer:

Diagram: 3-to-8 Decoder

graph TD
    A(A)-->NOT1(NOT)
    B(B)-->NOT2(NOT)
    C(C)-->NOT3(NOT)

    NOT1-->AND0(AND)
    NOT2-->AND0
    NOT3-->AND0
    AND0-->D0(D0)
    
    NOT1-->AND1(AND)
    NOT2-->AND1
    C-->AND1
    AND1-->D1(D1)
    
    NOT1-->AND2(AND)
    B-->AND2
    NOT3-->AND2
    AND2-->D2(D2)
    
    NOT1-->AND3(AND)
    B-->AND3
    C-->AND3
    AND3-->D3(D3)
    
    A-->AND4(AND)
    NOT2-->AND4
    NOT3-->AND4
    AND4-->D4(D4)
    
    A-->AND5(AND)
    NOT2-->AND5
    C-->AND5
    AND5-->D5(D5)
    
    A-->AND6(AND)
    B-->AND6
    NOT3-->AND6
    AND6-->D6(D6)
    
    A-->AND7(AND)
    B-->AND7
    C-->AND7
    AND7-->D7(D7)

Table: 3-to-8 Decoder Truth Table

InputsOutputs
ABCD0D1D2D3D4D5D6
0001000000
0010100000
0100010000
0110001000
1000000100
1010000010
1100000001
1110000000
  • Function: Activates one of 8 output lines based on 3-bit binary input
  • Applications: Memory addressing, data routing, instruction decoding
  • Boolean Equations: D0 = A’·B’·C’, D1 = A’·B’·C, etc.

Mnemonic: “One hot output at binary address”

Question 3(a) OR [3 marks]
#

Do as directed. 1) (101011010111)₂ = (___________)₈

Answer:

Table: Binary to Octal Conversion

Binary:    1 | 010 | 110 | 101 | 11
           ↓    ↓     ↓     ↓    ↓
Octal:     1    2     6     5    3

Therefore: (101011010111)₂ = (12653)₈

Mnemonic: “Group by threes, right to left”

Question 3(b) OR [4 marks]
#

Simplify the Boolean equation using Karnaugh map (K’ map) method: F(A,B,C,D) = Σm(1,3,5,7,8,9,10,11)

Answer:

Table: Karnaugh Map

      CD      
AB    00  01  11  10
00    0   1   1   0
01    0   1   1   0
11    0   0   0   0
10    1   1   1   1

Diagram: K-map Grouping

0001B1A1A01B1A1A01B0001B

Group A: A’CD (4 cells) Group B: AB’ (4 cells)

Simplified expression: F(A,B,C,D) = A’CD + AB'

Mnemonic: “Group powers of 2, minimize variables”

Question 3(c) OR [7 marks]
#

Explain 8 to 1 multiplexer using logic circuit and truth table.

Answer:

Diagram: 8-to-1 Multiplexer

graph TD
    D0(D0)-->AND0(AND)
    D1(D1)-->AND1(AND)
    D2(D2)-->AND2(AND)
    D3(D3)-->AND3(AND)
    D4(D4)-->AND4(AND)
    D5(D5)-->AND5(AND)
    D6(D6)-->AND6(AND)
    D7(D7)-->AND7(AND)

    S0(S0)-->NOT0(NOT)
    S1(S1)-->NOT1(NOT)
    S2(S2)-->NOT2(NOT)
    
    NOT0-->AND0
    NOT1-->AND0
    NOT2-->AND0
    
    S0-->AND1
    NOT1-->AND1
    NOT2-->AND1
    
    NOT0-->AND2
    S1-->AND2
    NOT2-->AND2
    
    S0-->AND3
    S1-->AND3
    NOT2-->AND3
    
    NOT0-->AND4
    NOT1-->AND4
    S2-->AND4
    
    S0-->AND5
    NOT1-->AND5
    S2-->AND5
    
    NOT0-->AND6
    S1-->AND6
    S2-->AND6
    
    S0-->AND7
    S1-->AND7
    S2-->AND7
    
    AND0-->OR1(OR)
    AND1-->OR1
    AND2-->OR1
    AND3-->OR1
    AND4-->OR1
    AND5-->OR1
    AND6-->OR1
    AND7-->OR1
    
    OR1-->Y(Output Y)

Table: 8-to-1 Multiplexer Truth Table

Select LinesOutput
S2S1S0Y
000D0
001D1
010D2
011D3
100D4
101D5
110D6
111D7
  • Function: Selects one of 8 input data lines and routes it to output
  • Applications: Data routing, function generation, parallel-to-serial conversion
  • Boolean Equation: Y = S2’·S1’·S0’·D0 + S2’·S1’·S0·D1 + … + S2·S1·S0·D7

Mnemonic: “Select bits route one input to output”

Question 4(a) [3 marks]
#

Draw the logic circuit for binary to gray convertor.

Answer:

Diagram: Binary to Gray Code Converter

graph LR
    B3(B3)-->G3(G3)
    B3-->XOR1(XOR)
    B2(B2)-->XOR1
    XOR1-->G2(G2)
    B2-->XOR2(XOR)
    B1(B1)-->XOR2
    XOR2-->G1(G1)
    B1-->XOR3(XOR)
    B0(B0)-->XOR3
    XOR3-->G0(G0)
  • Binary Inputs: B3, B2, B1, B0 (most to least significant bits)
  • Gray Outputs: G3, G2, G1, G0 (most to least significant bits)
  • Conversion Rule: G3 = B3, G2 = B3 ⊕ B2, G1 = B2 ⊕ B1, G0 = B1 ⊕ B0

Mnemonic: “First bit same, rest XOR neighbors”

Question 4(b) [4 marks]
#

Explain working of Serial in Serial out shift register.

Answer:

Diagram: Serial-In Serial-Out Shift Register

graph LR
    Din(Data In)-->FF0(FF0)
    CLK(Clock)-->FF0
    CLK-->FF1(FF1)
    CLK-->FF2(FF2)
    CLK-->FF3(FF3)
    FF0-->FF1
    FF1-->FF2
    FF2-->FF3
    FF3-->Dout(Data Out)

Table: Serial-In Serial-Out Operation

Clock CycleFF0FF1FF2FF3Data Out
Initial00000
1 (Din=1)10000
2 (Din=0)01000
3 (Din=1)10100
4 (Din=1)11011
  • Operation: Data bits enter serially at input, shift through all flip-flops, and exit serially
  • Applications: Data transmission, time delay, serial-to-serial conversion
  • Features: Simple design, requires fewer I/O pins but more clock cycles

Mnemonic: “One bit in, shift all, one bit out”

Question 4(c) [7 marks]
#

Explain workings of D flip flop and JK flip flop using circuit diagram and truth table.

Answer:

Diagram: D Flip-Flop

graph LR
    D(D)-->DFF(D Flip-Flop)
    CLK(Clock)-->DFF
    DFF-->Q(Q)
    DFF-->Q'("Q'")

Table: D Flip-Flop Truth Table

DClockQ(next)
00
11

Diagram: JK Flip-Flop

graph LR
    J(J)-->JKFF(JK Flip-Flop)
    K(K)-->JKFF
    CLK(Clock)-->JKFF
    JKFF-->Q(Q)
    JKFF-->Q'("Q'")

Table: JK Flip-Flop Truth Table

JKClockQ(next)
00Q(no change)
010
101
11Q’ (toggle)
  • D Flip-Flop: Data (D) input is transferred to output Q at positive clock edge
  • JK Flip-Flop: More versatile with set (J), reset (K), hold and toggle capabilities
  • Applications: Storage elements, counters, registers, sequential circuits

Mnemonic: “D Does what D is, JK Juggles Keep-Toggle-Set”

Question 4(a) OR [3 marks]
#

Draw the logic circuit for gray to binary convertor.

Answer:

Diagram: Gray to Binary Code Converter

graph LR
    G3(G3)-->B3(B3)
    G3-->XOR1(XOR)
    G2(G2)-->XOR1
    XOR1-->B2(B2)
    XOR1-->XOR2(XOR)
    G1(G1)-->XOR2
    XOR2-->B1(B1)
    XOR2-->XOR3(XOR)
    G0(G0)-->XOR3
    XOR3-->B0(B0)
  • Gray Inputs: G3, G2, G1, G0 (most to least significant bits)
  • Binary Outputs: B3, B2, B1, B0 (most to least significant bits)
  • Conversion Rule: B3 = G3, B2 = B3 ⊕ G2, B1 = B2 ⊕ G1, B0 = B1 ⊕ G0

Mnemonic: “First bit same, rest XOR with previous result”

Question 4(b) OR [4 marks]
#

Explain working of Parallel in Parallel out shift register.

Answer:

Diagram: Parallel-In Parallel-Out Shift Register

graph LR
    D0(D0)-->FF0(FF0)
    D1(D1)-->FF1(FF1)
    D2(D2)-->FF2(FF2)
    D3(D3)-->FF3(FF3)
    CLK(Clock)-->FF0
    CLK-->FF1
    CLK-->FF2
    CLK-->FF3
    LOAD(Load)-->FF0
    LOAD-->FF1
    LOAD-->FF2
    LOAD-->FF3
    FF0-->Q0(Q0)
    FF1-->Q1(Q1)
    FF2-->Q2(Q2)
    FF3-->Q3(Q3)

Table: Parallel-In Parallel-Out Operation

LOADClockD0-D3Q0-Q3 (after clock)
110101010
0xxxx1010 (no change)
101010101
  • Operation: Data loaded in parallel, all bits simultaneously transferred to outputs
  • Applications: Data storage, buffering, temporary holding registers
  • Features: Fastest register type, requires most I/O pins, no bit shifting

Mnemonic: “All in, all out, all at once”

Question 4(c) OR [7 marks]
#

Explain workings of T flip flop and SR flip flop using circuit diagram and truth table.

Answer:

Diagram: T Flip-Flop

graph LR
    T(T)-->TFF(T Flip-Flop)
    CLK(Clock)-->TFF
    TFF-->Q(Q)
    TFF-->Q'("Q'")

Table: T Flip-Flop Truth Table

TClockQ(next)
0Q (no change)
1Q’ (toggle)

Diagram: SR Flip-Flop

graph LR
    S(S)-->SRFF(SR Flip-Flop)
    R(R)-->SRFF
    CLK(Clock)-->SRFF
    SRFF-->Q(Q)
    SRFF-->Q'("Q'")

Table: SR Flip-Flop Truth Table

SRClockQ(next)
00Q (no change)
010 (reset)
101 (set)
11Invalid
  • T Flip-Flop: Toggle flip-flop changes state when T=1, maintains state when T=0
  • SR Flip-Flop: Basic flip-flop with Set (S) and Reset (R) inputs
  • Applications: T flip-flops for counters and frequency dividers, SR for basic memory

Mnemonic: “T Toggles when True, SR Sets or Resets”

Question 5(a) [3 marks]
#

Compare TTL, CMOS and ECL logic families.

Answer:

Table: Comparison of Logic Families

ParameterTTLCMOSECL
Power ConsumptionMediumVery LowHigh
SpeedMediumLow-MediumVery High
Noise ImmunityMediumHighLow
Fan-out10>5025
Supply Voltage+5V+3V to +15V-5.2V
ComplexityMediumLowHigh
  • TTL: Transistor-Transistor Logic - Good balance of speed and power
  • CMOS: Complementary Metal-Oxide-Semiconductor - Low power, high density
  • ECL: Emitter-Coupled Logic - Highest speed, used in high-performance applications

Mnemonic: “TCE: TTL Compromises, CMOS Economizes, ECL Excels in speed”

Question 5(b) [4 marks]
#

Explain decade counter with the help of logic circuit diagram and truth table.

Answer:

Diagram: Decade Counter (BCD Counter)

graph LR
    CLK(Clock)-->JK0(JK FF0)
    JK0-->Q0(Q0)
    JK0-->Q0'("Q0'")
    Q0'-->JK1(JK FF1)
    JK1-->Q1(Q1)
    JK1-->Q1'("Q1'")
    Q1'-->JK2(JK FF2)
    JK2-->Q2(Q2)
    JK2-->Q2'("Q2'")
    Q2'-->JK3(JK FF3)
    JK3-->Q3(Q3)
    JK3-->Q3'("Q3'")
    Q3-->NAND1(NAND)
    Q1-->NAND1
    NAND1-->CLEAR(Clear)
    CLEAR-->JK0
    CLEAR-->JK1
    CLEAR-->JK2
    CLEAR-->JK3

Table: Decade Counter States

CountQ3Q2Q1Q0
00000
10001
20010
30011
40100
50101
60110
70111
81000
91001
00000
  • Function: Counts from 0 to 9 (decimal) and then resets to 0
  • Applications: Digital clocks, frequency dividers, BCD counters
  • Features: Auto-reset at count 10, synchronous with clock

Mnemonic: “Counts one Decade, resets after nine”

Question 5(c) [7 marks]
#

Give Classification of Memories in detail.

Answer:

Diagram: Memory Classification

graph TD
    M[Memory]-->PM[Primary Memory]
    M-->SM[Secondary Memory]

    PM-->RAM[RAM]
    PM-->ROM[ROM]
    
    RAM-->SRAM[Static RAM]
    RAM-->DRAM[Dynamic RAM]
    
    ROM-->MROM[Mask ROM]
    ROM-->PROM[Programmable ROM]
    ROM-->EPROM[Erasable PROM]
    ROM-->EEPROM[Electrically EPROM]
    
    EEPROM-->FLASH[Flash Memory]
    
    SM-->HD[Hard Disk]
    SM-->OD[Optical Disk]
    SM-->USB[USB Drives]
    SM-->SD[SD Cards]

Table: Memory Types Comparison

Memory TypeVolatilityRead/WriteAccess SpeedTypical Use
SRAMVolatileR/WVery FastCache memory
DRAMVolatileR/WFastMain memory
ROMNon-volatileRead-onlyMediumBIOS, firmware
PROMNon-volatileWrite-onceMediumPermanent programs
EPROMNon-volatileErasable UVMediumUpgradable firmware
EEPROMNon-volatileElectrically erasableMediumConfiguration data
FlashNon-volatileBlock erasableMedium-FastStorage devices
  • RAM (Random Access Memory): Temporary, volatile working memory
  • ROM (Read Only Memory): Permanent, non-volatile program storage
  • Characteristics: Access time, data retention, capacity, cost per bit

Mnemonic: “RAM Vanishes, ROM Remains”

Question 5(a) OR [3 marks]
#

Define: Fan out, Fan in and Figure of merit.

Answer:

Table: Digital Logic Parameters

ParameterDefinitionTypical Values
Fan-outNumber of standard loads a gate output can driveTTL: 10, CMOS: >50
Fan-inNumber of inputs a logic gate can handleTTL: 8, CMOS: 100+
Figure of MeritSpeed-power product (propagation delay × power consumption)Lower is better
  • Fan-out: Maximum number of gate inputs that can be connected to a gate output
  • Fan-in: Maximum number of inputs available on a single logic gate
  • Figure of Merit: Quality factor for comparing different logic families

Mnemonic: “Out drives many, In accepts many, Merit measures goodness”

Question 5(b) OR [4 marks]
#

Explain asynchronous up counter with the help of logic circuit diagram and truth table.

Answer:

Diagram: 4-bit Asynchronous Up Counter

graph LR
    CLK(Clock)-->TFF0(T FF0)
    TFF0-->Q0(Q0)
    TFF0-->Q0'("Q0'")
    Q0-->TFF1(T FF1)
    TFF1-->Q1(Q1)
    TFF1-->Q1'("Q1'")
    Q1-->TFF2(T FF2)
    TFF2-->Q2(Q2)
    TFF2-->Q2'("Q2'")
    Q2-->TFF3(T FF3)
    TFF3-->Q3(Q3)
    TFF3-->Q3'("Q3'")

    CLR(Clear)-->TFF0
    CLR-->TFF1
    CLR-->TFF2
    CLR-->TFF3

Table: 4-bit Asynchronous Counter States

CountQ3Q2Q1Q0
00000
10001
20010
........
141110
151111
  • Operation: Each flip-flop triggers the next when transitioning from 1 to 0
  • Features: Simple design but suffers from propagation delay (ripple)
  • Applications: Frequency division, basic counting applications

Mnemonic: “Ripples Up, Each bit triggers Next”

Question 5(c) OR [7 marks]
#

Describe steps and the need of E-waste Management of Digital ICs.

Answer:

Diagram: E-waste Management Cycle

graph TD
    C[Collection]-->S[Sorting]
    S-->D[Disassembly]
    D-->R[Recycling]
    R-->M[Material Recovery]
    M-->N[New Products]
    N-->C

Table: E-waste Management Steps

StepDescriptionImportance
CollectionGathering obsolete ICsPrevents improper disposal
SortingCategorizing by typeEnables efficient processing
DisassemblySeparating componentsFacilitates material recovery
RecyclingProcessing materialsReduces environmental impact
Material RecoveryExtracting valuable metalsConserves resources
Safe DisposalHandling toxic componentsPrevents contamination
  • Need for E-waste Management:
    • Environmental Protection: Prevents toxic substances from leaching into soil/water
    • Resource Conservation: Recovers valuable metals like gold, silver, copper
    • Health Safety: Reduces exposure to hazardous materials like lead, mercury
    • Legal Compliance: Follows regulations regarding electronic waste

Mnemonic: “Collect, Sort, Disassemble, Recycle, Recover, Reuse”

Related

Principles of Electronic Communication (4331104) - Winter 2022 Solution
19 mins
Study-Material Solutions Electronic-Communication 4331104 2022 Winter
8085 Assembly Language Programming Examples
5 mins
Study-Material Assembly 8085 Examples Programming 4341101 Mpmc