Question 1(a) [3 marks]#
(726)₁₀ = (_________)₂
Answer:
Table: Decimal to Binary Conversion
Step | Calculation | Remainder |
---|---|---|
1 | 726 ÷ 2 = 363 | 0 |
2 | 363 ÷ 2 = 181 | 1 |
3 | 181 ÷ 2 = 90 | 1 |
4 | 90 ÷ 2 = 45 | 0 |
5 | 45 ÷ 2 = 22 | 1 |
6 | 22 ÷ 2 = 11 | 0 |
7 | 11 ÷ 2 = 5 | 1 |
8 | 5 ÷ 2 = 2 | 1 |
9 | 2 ÷ 2 = 1 | 0 |
10 | 1 ÷ 2 = 0 | 1 |
Reading from bottom to top: (726)₁₀ = (1011010110)₂
Mnemonic: “Divide By Two, Read Remainders Up”
Question 1(b) [4 marks]#
1) Convert binary number (10110101)₂ into gray number.
2) Convert gray number (10110110)gray into binary number.
Answer:
Binary to Gray Conversion:
Binary: 1 0 1 1 0 1 0 1
↓ ↓ ↓ ↓ ↓ ↓ ↓
XOR: 1⊕0 0⊕1 1⊕1 1⊕0 0⊕1 1⊕0 0⊕1
↓ ↓ ↓ ↓ ↓ ↓ ↓
Gray: 1 1 0 1 1 1 1
Therefore: (10110101)₂ = (1101111)gray
Gray to Binary Conversion:
Gray: 1 0 1 1 0 1 1 0
↓
Binary: 1
1⊕0 = 1
1⊕1 = 0
0⊕1 = 1
1⊕0 = 1
1⊕1 = 0
0⊕1 = 1
1⊕0 = 1
Therefore: (10110110)gray = (10110101)₂
Mnemonic: “First bit same, rest XOR with previous binary”
Question 1(c) [7 marks]#
Explain NAND as a universal gate.
Answer:
Diagram: NAND as Universal Gate
graph LR subgraph "NOT Gate using NAND" A1(A)-->N1((NAND)) A1(A)-->N1 N1-->Z1("A'") end subgraph "AND Gate using NAND" A2(A)-->N2((NAND)) B2(B)-->N2 N2-->N3((NAND)) N2-->N3 N3-->Z2("A·B") end subgraph "OR Gate using NAND" A3(A)-->N4((NAND)) A3(A)-->N4 B3(B)-->N5((NAND)) B3(B)-->N5 N4-->N6((NAND)) N5-->N6 N6-->Z3("A+B") end
- Universal Property: NAND gate can implement any Boolean function without needing any other type of gate
- NOT Implementation: Connecting both inputs of NAND together creates NOT gate
- AND Implementation: NAND followed by another NAND creates AND gate
- OR Implementation: Two NAND gates with single inputs, followed by NAND creates OR gate
Table: NAND Gate Implementations
Logic Function | NAND Implementation |
---|---|
NOT(A) | NAND(A,A) |
AND(A,B) | NAND(NAND(A,B),NAND(A,B)) |
OR(A,B) | NAND(NAND(A,A),NAND(B,B)) |
Mnemonic: “NAND can STAND as All gates”
Question 1(c) OR [7 marks]#
Explain NOR as a universal gate.
Answer:
Diagram: NOR as Universal Gate
graph LR subgraph "NOT Gate using NOR" A1(A)-->N1((NOR)) A1(A)-->N1 N1-->Z1("A'") end subgraph "OR Gate using NOR" A2(A)-->N2((NOR)) B2(B)-->N2 N2-->N3((NOR)) N2-->N3 N3-->Z2("A+B") end subgraph "AND Gate using NOR" A3(A)-->N4((NOR)) A3(A)-->N4 B3(B)-->N5((NOR)) B3(B)-->N5 N4-->N6((NOR)) N5-->N6 N6-->Z3("A·B") end
- Universal Property: NOR gate can implement any Boolean function without needing any other type of gate
- NOT Implementation: Connecting both inputs of NOR together creates NOT gate
- OR Implementation: NOR followed by another NOR creates OR gate
- AND Implementation: Two NOR gates with single inputs, followed by NOR creates AND gate
Table: NOR Gate Implementations
Logic Function | NOR Implementation |
---|---|
NOT(A) | NOR(A,A) |
OR(A,B) | NOR(NOR(A,B),NOR(A,B)) |
AND(A,B) | NOR(NOR(A,A),NOR(B,B)) |
Mnemonic: “NOR can form ALL logic cores”
Question 2(a) [3 marks]#
(11011011)₂ X (110)₂ = (_________)₂
Answer:
Table: Binary Multiplication
1 1 0 1 1 0 1 1
× 1 1 0
---------------
1 1 0 1 1 0 1 1 (× 0)
1 1 0 1 1 0 1 1 (× 1)
1 1 0 1 1 0 1 1 (× 1)
-----------------
1 0 0 0 0 0 0 0 1 1 0
Therefore: (11011011)₂ × (110)₂ = (10000001110)₂
Mnemonic: “Multiply each bit, shift left, add all rows”
Question 2(b) [4 marks]#
Prove DeMorgan’s theorem.
Answer:
Table: DeMorgan’s Theorem Proof
A | B | A' | B' | A+B | (A+B)' | A’·B' |
---|---|---|---|---|---|---|
0 | 0 | 1 | 1 | 0 | 1 | 1 |
0 | 1 | 1 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 1 | 1 | 0 | 0 |
1 | 1 | 0 | 0 | 1 | 0 | 0 |
DeMorgan’s Theorems:
- (A+B)’ = A’·B'
- (A·B)’ = A’+B'
Truth table proves that (A+B)’ = A’·B’ since both columns match.
Mnemonic: “Break the line, change the sign”
Question 2(c) [7 marks]#
Explain full adder using logic circuit, Boolean equation and truth table.
Answer:
Diagram: Full Adder Circuit
graph LR A(A)-->XOR1(XOR) B(B)-->XOR1 XOR1-->XOR2(XOR) Cin(Cin)-->XOR2 XOR2-->Sum(Sum) A-->AND1(AND) B-->AND1 AND1-->OR1(OR) A-->AND2(AND) Cin-->AND2 AND2-->OR1 B-->AND3(AND) Cin-->AND3 AND3-->OR1 OR1-->Cout(Cout)
Table: Full Adder Truth Table
A | B | Cin | Sum | Cout |
---|---|---|---|---|
0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 |
0 | 1 | 0 | 1 | 0 |
0 | 1 | 1 | 0 | 1 |
1 | 0 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 1 |
1 | 1 | 0 | 0 | 1 |
1 | 1 | 1 | 1 | 1 |
- Boolean Equations:
- Sum = A ⊕ B ⊕ Cin
- Cout = (A·B) + (B·Cin) + (A·Cin)
Mnemonic: “Sum needs XOR three, Carry needs AND then OR”
Question 2(a) OR [3 marks]#
Divide (11010010)₂ with (101)₂ = (_________)₂
Answer:
Table: Binary Division
1 0 1 0 1 1
____________
101 ) 1 1 0 1 0 0 1 0
1 0 1
-----
1 1 0
1 0 1
-----
0 1 0
0 0
-----
1 0 0
1 0 1
-----
1 1 0
1 0 1
-----
0 1 0
0 0
-----
1 0
0
----
0
Therefore: (11010010)₂ ÷ (101)₂ = (101011)₂ with remainder (0)₂
Mnemonic: “Divide like decimal, but use binary subtraction”
Question 2(b) OR [4 marks]#
Simplify the Boolean expression Y = A’B+AB’+A’B’+AB
Answer:
Table: Boolean Simplification
Step | Expression | Rule Applied |
---|---|---|
1 | Y = A’B+AB’+A’B’+AB | Original |
2 | Y = A’(B+B’)+A(B’+B) | Factoring |
3 | Y = A’(1)+A(1) | B+B’ = 1 |
4 | Y = A’+A | Simplifying |
5 | Y = 1 | A’+A = 1 |
Therefore: Y = 1 (Always TRUE)
Mnemonic: “Factor first, apply identities, combine like terms”
Question 2(c) OR [7 marks]#
Explain full subtractor using logic circuit, boolean equation and truth table.
Answer:
Diagram: Full Subtractor Circuit
graph LR A(A)-->XOR1(XOR) B(B)-->XOR1 XOR1-->XOR2(XOR) Bin(Bin)-->XOR2 XOR2-->D(Difference) A(A)-->NOT1(NOT) NOT1-->AND1(AND) B-->AND1 AND1-->OR1(OR) XOR1-->NOT2(NOT) NOT2-->AND2(AND) Bin-->AND2 AND2-->OR1 B-->AND3(AND) Bin-->AND3 AND3-->OR1 OR1-->Bout(Borrow Out)
Table: Full Subtractor Truth Table
A | B | Bin | Difference | Bout |
---|---|---|---|---|
0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 1 |
0 | 1 | 0 | 1 | 1 |
0 | 1 | 1 | 0 | 1 |
1 | 0 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 0 | 0 |
1 | 1 | 1 | 1 | 1 |
- Boolean Equations:
- Difference = A ⊕ B ⊕ Bin
- Bout = (A’·B) + (A’·Bin) + (B·Bin)
Mnemonic: “Difference uses triple XOR, Borrow when input is greater”
Question 3(a) [3 marks]#
Using 2’s complement subtract (1011001)₂ from (1101101)₂.
Answer:
Table: 2’s Complement Subtraction
Step | Operation | Result |
---|---|---|
1 | Number to subtract: | 1011001 |
2 | 1’s complement: | 0100110 |
3 | 2’s complement: | 0100111 |
4 | (1101101) + (0100111) = | 10010100 |
5 | Discard carry: | 0010100 |
Therefore: (1101101)₂ - (1011001)₂ = (0010100)₂ = (20)₁₀
Mnemonic: “Flip bits, add one, then add numbers”
Question 3(b) [4 marks]#
Simplify the Boolean equation using Karnaugh map (K’ map) method: F(A,B,C,D) = Σm(0,1,2,6,7,8,12,15)
Answer:
Table: Karnaugh Map
CD
AB 00 01 11 10
00 1 1 0 1
01 0 0 1 1
11 0 0 1 0
10 1 0 0 0
Diagram: K-map Grouping
Group A: A’B’C’ (4 cells) Group B: BCD (3 cells) Group C: A’B’CD’ (1 cell)
Simplified expression: F(A,B,C,D) = A’B’C’ + BCD + A’B’CD'
Mnemonic: “Find largest groups of 2ⁿ, use minimal terms”
Question 3(c) [7 marks]#
Explain 3 to 8 decoder using logic circuit and truth table.
Answer:
Diagram: 3-to-8 Decoder
graph TD A(A)-->NOT1(NOT) B(B)-->NOT2(NOT) C(C)-->NOT3(NOT) NOT1-->AND0(AND) NOT2-->AND0 NOT3-->AND0 AND0-->D0(D0) NOT1-->AND1(AND) NOT2-->AND1 C-->AND1 AND1-->D1(D1) NOT1-->AND2(AND) B-->AND2 NOT3-->AND2 AND2-->D2(D2) NOT1-->AND3(AND) B-->AND3 C-->AND3 AND3-->D3(D3) A-->AND4(AND) NOT2-->AND4 NOT3-->AND4 AND4-->D4(D4) A-->AND5(AND) NOT2-->AND5 C-->AND5 AND5-->D5(D5) A-->AND6(AND) B-->AND6 NOT3-->AND6 AND6-->D6(D6) A-->AND7(AND) B-->AND7 C-->AND7 AND7-->D7(D7)
Table: 3-to-8 Decoder Truth Table
Inputs | Outputs | ||||||||
---|---|---|---|---|---|---|---|---|---|
A | B | C | D0 | D1 | D2 | D3 | D4 | D5 | D6 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
- Function: Activates one of 8 output lines based on 3-bit binary input
- Applications: Memory addressing, data routing, instruction decoding
- Boolean Equations: D0 = A’·B’·C’, D1 = A’·B’·C, etc.
Mnemonic: “One hot output at binary address”
Question 3(a) OR [3 marks]#
Do as directed. 1) (101011010111)₂ = (___________)₈
Answer:
Table: Binary to Octal Conversion
Binary: 1 | 010 | 110 | 101 | 11
↓ ↓ ↓ ↓ ↓
Octal: 1 2 6 5 3
Therefore: (101011010111)₂ = (12653)₈
Mnemonic: “Group by threes, right to left”
Question 3(b) OR [4 marks]#
Simplify the Boolean equation using Karnaugh map (K’ map) method: F(A,B,C,D) = Σm(1,3,5,7,8,9,10,11)
Answer:
Table: Karnaugh Map
CD
AB 00 01 11 10
00 0 1 1 0
01 0 1 1 0
11 0 0 0 0
10 1 1 1 1
Diagram: K-map Grouping
Group A: A’CD (4 cells) Group B: AB’ (4 cells)
Simplified expression: F(A,B,C,D) = A’CD + AB'
Mnemonic: “Group powers of 2, minimize variables”
Question 3(c) OR [7 marks]#
Explain 8 to 1 multiplexer using logic circuit and truth table.
Answer:
Diagram: 8-to-1 Multiplexer
graph TD D0(D0)-->AND0(AND) D1(D1)-->AND1(AND) D2(D2)-->AND2(AND) D3(D3)-->AND3(AND) D4(D4)-->AND4(AND) D5(D5)-->AND5(AND) D6(D6)-->AND6(AND) D7(D7)-->AND7(AND) S0(S0)-->NOT0(NOT) S1(S1)-->NOT1(NOT) S2(S2)-->NOT2(NOT) NOT0-->AND0 NOT1-->AND0 NOT2-->AND0 S0-->AND1 NOT1-->AND1 NOT2-->AND1 NOT0-->AND2 S1-->AND2 NOT2-->AND2 S0-->AND3 S1-->AND3 NOT2-->AND3 NOT0-->AND4 NOT1-->AND4 S2-->AND4 S0-->AND5 NOT1-->AND5 S2-->AND5 NOT0-->AND6 S1-->AND6 S2-->AND6 S0-->AND7 S1-->AND7 S2-->AND7 AND0-->OR1(OR) AND1-->OR1 AND2-->OR1 AND3-->OR1 AND4-->OR1 AND5-->OR1 AND6-->OR1 AND7-->OR1 OR1-->Y(Output Y)
Table: 8-to-1 Multiplexer Truth Table
Select Lines | Output | ||
---|---|---|---|
S2 | S1 | S0 | Y |
0 | 0 | 0 | D0 |
0 | 0 | 1 | D1 |
0 | 1 | 0 | D2 |
0 | 1 | 1 | D3 |
1 | 0 | 0 | D4 |
1 | 0 | 1 | D5 |
1 | 1 | 0 | D6 |
1 | 1 | 1 | D7 |
- Function: Selects one of 8 input data lines and routes it to output
- Applications: Data routing, function generation, parallel-to-serial conversion
- Boolean Equation: Y = S2’·S1’·S0’·D0 + S2’·S1’·S0·D1 + … + S2·S1·S0·D7
Mnemonic: “Select bits route one input to output”
Question 4(a) [3 marks]#
Draw the logic circuit for binary to gray convertor.
Answer:
Diagram: Binary to Gray Code Converter
graph LR B3(B3)-->G3(G3) B3-->XOR1(XOR) B2(B2)-->XOR1 XOR1-->G2(G2) B2-->XOR2(XOR) B1(B1)-->XOR2 XOR2-->G1(G1) B1-->XOR3(XOR) B0(B0)-->XOR3 XOR3-->G0(G0)
- Binary Inputs: B3, B2, B1, B0 (most to least significant bits)
- Gray Outputs: G3, G2, G1, G0 (most to least significant bits)
- Conversion Rule: G3 = B3, G2 = B3 ⊕ B2, G1 = B2 ⊕ B1, G0 = B1 ⊕ B0
Mnemonic: “First bit same, rest XOR neighbors”
Question 4(b) [4 marks]#
Explain working of Serial in Serial out shift register.
Answer:
Diagram: Serial-In Serial-Out Shift Register
graph LR Din(Data In)-->FF0(FF0) CLK(Clock)-->FF0 CLK-->FF1(FF1) CLK-->FF2(FF2) CLK-->FF3(FF3) FF0-->FF1 FF1-->FF2 FF2-->FF3 FF3-->Dout(Data Out)
Table: Serial-In Serial-Out Operation
Clock Cycle | FF0 | FF1 | FF2 | FF3 | Data Out |
---|---|---|---|---|---|
Initial | 0 | 0 | 0 | 0 | 0 |
1 (Din=1) | 1 | 0 | 0 | 0 | 0 |
2 (Din=0) | 0 | 1 | 0 | 0 | 0 |
3 (Din=1) | 1 | 0 | 1 | 0 | 0 |
4 (Din=1) | 1 | 1 | 0 | 1 | 1 |
- Operation: Data bits enter serially at input, shift through all flip-flops, and exit serially
- Applications: Data transmission, time delay, serial-to-serial conversion
- Features: Simple design, requires fewer I/O pins but more clock cycles
Mnemonic: “One bit in, shift all, one bit out”
Question 4(c) [7 marks]#
Explain workings of D flip flop and JK flip flop using circuit diagram and truth table.
Answer:
Diagram: D Flip-Flop
graph LR D(D)-->DFF(D Flip-Flop) CLK(Clock)-->DFF DFF-->Q(Q) DFF-->Q'("Q'")
Table: D Flip-Flop Truth Table
D | Clock | Q(next) |
---|---|---|
0 | ↑ | 0 |
1 | ↑ | 1 |
Diagram: JK Flip-Flop
graph LR J(J)-->JKFF(JK Flip-Flop) K(K)-->JKFF CLK(Clock)-->JKFF JKFF-->Q(Q) JKFF-->Q'("Q'")
Table: JK Flip-Flop Truth Table
J | K | Clock | Q(next) |
---|---|---|---|
0 | 0 | ↑ | Q(no change) |
0 | 1 | ↑ | 0 |
1 | 0 | ↑ | 1 |
1 | 1 | ↑ | Q’ (toggle) |
- D Flip-Flop: Data (D) input is transferred to output Q at positive clock edge
- JK Flip-Flop: More versatile with set (J), reset (K), hold and toggle capabilities
- Applications: Storage elements, counters, registers, sequential circuits
Mnemonic: “D Does what D is, JK Juggles Keep-Toggle-Set”
Question 4(a) OR [3 marks]#
Draw the logic circuit for gray to binary convertor.
Answer:
Diagram: Gray to Binary Code Converter
graph LR G3(G3)-->B3(B3) G3-->XOR1(XOR) G2(G2)-->XOR1 XOR1-->B2(B2) XOR1-->XOR2(XOR) G1(G1)-->XOR2 XOR2-->B1(B1) XOR2-->XOR3(XOR) G0(G0)-->XOR3 XOR3-->B0(B0)
- Gray Inputs: G3, G2, G1, G0 (most to least significant bits)
- Binary Outputs: B3, B2, B1, B0 (most to least significant bits)
- Conversion Rule: B3 = G3, B2 = B3 ⊕ G2, B1 = B2 ⊕ G1, B0 = B1 ⊕ G0
Mnemonic: “First bit same, rest XOR with previous result”
Question 4(b) OR [4 marks]#
Explain working of Parallel in Parallel out shift register.
Answer:
Diagram: Parallel-In Parallel-Out Shift Register
graph LR D0(D0)-->FF0(FF0) D1(D1)-->FF1(FF1) D2(D2)-->FF2(FF2) D3(D3)-->FF3(FF3) CLK(Clock)-->FF0 CLK-->FF1 CLK-->FF2 CLK-->FF3 LOAD(Load)-->FF0 LOAD-->FF1 LOAD-->FF2 LOAD-->FF3 FF0-->Q0(Q0) FF1-->Q1(Q1) FF2-->Q2(Q2) FF3-->Q3(Q3)
Table: Parallel-In Parallel-Out Operation
LOAD | Clock | D0-D3 | Q0-Q3 (after clock) |
---|---|---|---|
1 | ↑ | 1010 | 1010 |
0 | ↑ | xxxx | 1010 (no change) |
1 | ↑ | 0101 | 0101 |
- Operation: Data loaded in parallel, all bits simultaneously transferred to outputs
- Applications: Data storage, buffering, temporary holding registers
- Features: Fastest register type, requires most I/O pins, no bit shifting
Mnemonic: “All in, all out, all at once”
Question 4(c) OR [7 marks]#
Explain workings of T flip flop and SR flip flop using circuit diagram and truth table.
Answer:
Diagram: T Flip-Flop
graph LR T(T)-->TFF(T Flip-Flop) CLK(Clock)-->TFF TFF-->Q(Q) TFF-->Q'("Q'")
Table: T Flip-Flop Truth Table
T | Clock | Q(next) |
---|---|---|
0 | ↑ | Q (no change) |
1 | ↑ | Q’ (toggle) |
Diagram: SR Flip-Flop
graph LR S(S)-->SRFF(SR Flip-Flop) R(R)-->SRFF CLK(Clock)-->SRFF SRFF-->Q(Q) SRFF-->Q'("Q'")
Table: SR Flip-Flop Truth Table
S | R | Clock | Q(next) |
---|---|---|---|
0 | 0 | ↑ | Q (no change) |
0 | 1 | ↑ | 0 (reset) |
1 | 0 | ↑ | 1 (set) |
1 | 1 | ↑ | Invalid |
- T Flip-Flop: Toggle flip-flop changes state when T=1, maintains state when T=0
- SR Flip-Flop: Basic flip-flop with Set (S) and Reset (R) inputs
- Applications: T flip-flops for counters and frequency dividers, SR for basic memory
Mnemonic: “T Toggles when True, SR Sets or Resets”
Question 5(a) [3 marks]#
Compare TTL, CMOS and ECL logic families.
Answer:
Table: Comparison of Logic Families
Parameter | TTL | CMOS | ECL |
---|---|---|---|
Power Consumption | Medium | Very Low | High |
Speed | Medium | Low-Medium | Very High |
Noise Immunity | Medium | High | Low |
Fan-out | 10 | >50 | 25 |
Supply Voltage | +5V | +3V to +15V | -5.2V |
Complexity | Medium | Low | High |
- TTL: Transistor-Transistor Logic - Good balance of speed and power
- CMOS: Complementary Metal-Oxide-Semiconductor - Low power, high density
- ECL: Emitter-Coupled Logic - Highest speed, used in high-performance applications
Mnemonic: “TCE: TTL Compromises, CMOS Economizes, ECL Excels in speed”
Question 5(b) [4 marks]#
Explain decade counter with the help of logic circuit diagram and truth table.
Answer:
Diagram: Decade Counter (BCD Counter)
graph LR CLK(Clock)-->JK0(JK FF0) JK0-->Q0(Q0) JK0-->Q0'("Q0'") Q0'-->JK1(JK FF1) JK1-->Q1(Q1) JK1-->Q1'("Q1'") Q1'-->JK2(JK FF2) JK2-->Q2(Q2) JK2-->Q2'("Q2'") Q2'-->JK3(JK FF3) JK3-->Q3(Q3) JK3-->Q3'("Q3'") Q3-->NAND1(NAND) Q1-->NAND1 NAND1-->CLEAR(Clear) CLEAR-->JK0 CLEAR-->JK1 CLEAR-->JK2 CLEAR-->JK3
Table: Decade Counter States
Count | Q3 | Q2 | Q1 | Q0 |
---|---|---|---|---|
0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 1 |
2 | 0 | 0 | 1 | 0 |
3 | 0 | 0 | 1 | 1 |
4 | 0 | 1 | 0 | 0 |
5 | 0 | 1 | 0 | 1 |
6 | 0 | 1 | 1 | 0 |
7 | 0 | 1 | 1 | 1 |
8 | 1 | 0 | 0 | 0 |
9 | 1 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 |
- Function: Counts from 0 to 9 (decimal) and then resets to 0
- Applications: Digital clocks, frequency dividers, BCD counters
- Features: Auto-reset at count 10, synchronous with clock
Mnemonic: “Counts one Decade, resets after nine”
Question 5(c) [7 marks]#
Give Classification of Memories in detail.
Answer:
Diagram: Memory Classification
graph TD M[Memory]-->PM[Primary Memory] M-->SM[Secondary Memory] PM-->RAM[RAM] PM-->ROM[ROM] RAM-->SRAM[Static RAM] RAM-->DRAM[Dynamic RAM] ROM-->MROM[Mask ROM] ROM-->PROM[Programmable ROM] ROM-->EPROM[Erasable PROM] ROM-->EEPROM[Electrically EPROM] EEPROM-->FLASH[Flash Memory] SM-->HD[Hard Disk] SM-->OD[Optical Disk] SM-->USB[USB Drives] SM-->SD[SD Cards]
Table: Memory Types Comparison
Memory Type | Volatility | Read/Write | Access Speed | Typical Use |
---|---|---|---|---|
SRAM | Volatile | R/W | Very Fast | Cache memory |
DRAM | Volatile | R/W | Fast | Main memory |
ROM | Non-volatile | Read-only | Medium | BIOS, firmware |
PROM | Non-volatile | Write-once | Medium | Permanent programs |
EPROM | Non-volatile | Erasable UV | Medium | Upgradable firmware |
EEPROM | Non-volatile | Electrically erasable | Medium | Configuration data |
Flash | Non-volatile | Block erasable | Medium-Fast | Storage devices |
- RAM (Random Access Memory): Temporary, volatile working memory
- ROM (Read Only Memory): Permanent, non-volatile program storage
- Characteristics: Access time, data retention, capacity, cost per bit
Mnemonic: “RAM Vanishes, ROM Remains”
Question 5(a) OR [3 marks]#
Define: Fan out, Fan in and Figure of merit.
Answer:
Table: Digital Logic Parameters
Parameter | Definition | Typical Values |
---|---|---|
Fan-out | Number of standard loads a gate output can drive | TTL: 10, CMOS: >50 |
Fan-in | Number of inputs a logic gate can handle | TTL: 8, CMOS: 100+ |
Figure of Merit | Speed-power product (propagation delay × power consumption) | Lower is better |
- Fan-out: Maximum number of gate inputs that can be connected to a gate output
- Fan-in: Maximum number of inputs available on a single logic gate
- Figure of Merit: Quality factor for comparing different logic families
Mnemonic: “Out drives many, In accepts many, Merit measures goodness”
Question 5(b) OR [4 marks]#
Explain asynchronous up counter with the help of logic circuit diagram and truth table.
Answer:
Diagram: 4-bit Asynchronous Up Counter
graph LR CLK(Clock)-->TFF0(T FF0) TFF0-->Q0(Q0) TFF0-->Q0'("Q0'") Q0-->TFF1(T FF1) TFF1-->Q1(Q1) TFF1-->Q1'("Q1'") Q1-->TFF2(T FF2) TFF2-->Q2(Q2) TFF2-->Q2'("Q2'") Q2-->TFF3(T FF3) TFF3-->Q3(Q3) TFF3-->Q3'("Q3'") CLR(Clear)-->TFF0 CLR-->TFF1 CLR-->TFF2 CLR-->TFF3
Table: 4-bit Asynchronous Counter States
Count | Q3 | Q2 | Q1 | Q0 |
---|---|---|---|---|
0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 1 |
2 | 0 | 0 | 1 | 0 |
… | .. | .. | .. | .. |
14 | 1 | 1 | 1 | 0 |
15 | 1 | 1 | 1 | 1 |
- Operation: Each flip-flop triggers the next when transitioning from 1 to 0
- Features: Simple design but suffers from propagation delay (ripple)
- Applications: Frequency division, basic counting applications
Mnemonic: “Ripples Up, Each bit triggers Next”
Question 5(c) OR [7 marks]#
Describe steps and the need of E-waste Management of Digital ICs.
Answer:
Diagram: E-waste Management Cycle
graph TD C[Collection]-->S[Sorting] S-->D[Disassembly] D-->R[Recycling] R-->M[Material Recovery] M-->N[New Products] N-->C
Table: E-waste Management Steps
Step | Description | Importance |
---|---|---|
Collection | Gathering obsolete ICs | Prevents improper disposal |
Sorting | Categorizing by type | Enables efficient processing |
Disassembly | Separating components | Facilitates material recovery |
Recycling | Processing materials | Reduces environmental impact |
Material Recovery | Extracting valuable metals | Conserves resources |
Safe Disposal | Handling toxic components | Prevents contamination |
- Need for E-waste Management:
- Environmental Protection: Prevents toxic substances from leaching into soil/water
- Resource Conservation: Recovers valuable metals like gold, silver, copper
- Health Safety: Reduces exposure to hazardous materials like lead, mercury
- Legal Compliance: Follows regulations regarding electronic waste
Mnemonic: “Collect, Sort, Disassemble, Recycle, Recover, Reuse”