Question 1(a) [3 marks]

Define: 1) Branch 2) Junction 3) Mesh

Answer:

- **Branch**: A branch is a single circuit element or a combination of elements connected between two nodes of a network.
- **Junction**: A junction (or node) is a point in a circuit where two or more circuit elements are connected together.
- Mesh: A mesh is a closed path in a network where no other closed path exists inside it.

Mnemonic: "BJM: Branches Join at junctions to Make meshes"

Question 1(b) [4 marks]

Write voltage division and current division rule with necessary circuit diagram

Answer:

Voltage Division Rule: In a series circuit, voltage across any component is proportional to its resistance.

- **Formula**: $V_1 = VS \times (R_1/(R_1+R_2))$
- **Application**: Used to find individual voltage drops across series components

Current Division Rule: In a parallel circuit, current through any branch is inversely proportional to its resistance.

- **Formula**: $I_1 = IS \times (R_2/(R_1+R_2))$
- Key concept: Current takes path of least resistance

Mnemonic: "VoSe CuPa: Voltage divides in Series, Current divides in Parallel"

Question 1(c) [7 marks]

Draw Graph and Tree for a network shown in fig(1). Show link currents on a graph. Also write Tie-set schedule for a tree of network shown in fig. (1)

Answer:

Graph of the Network:

Tree of the Network (shown with bold edges):

Link Currents (shown on remaining branches that are not part of the tree):

- Link 1: Branch 2 (BD)
- Link 2: Branch 6 (BC)
- Link 3: Branch 7 (AD)
- Link 4: Branch 5 (CD)

Tie-set Schedule:

Link/Tree Branch	Branch 1 (AB)	Branch 3 (AC)	Branch 4 (CD)	Branch 2 (BD)	Branch 6 (BC)	Branch 7 (AD)	Branch 5 (CD)
Link 1 (BD)	1	0	0	1	0	0	0
Link 2 (BC)	1	1	0	0	1	0	0
Link 3 (AD)	0	0	1	0	0	1	0
Link 4 (CD)	0	0	1	0	0	0	1

Mnemonic: "TGLT: Trees Generate Link-current Tie-sets"

Question 1(c) OR [7 marks]

Draw Graph and Tree for a network shown in fig(1). Show branch voltages on tree. Also write cut-set schedule for a tree of network shown on fig.(1)

Answer:

Graph of the Network:

Tree of the Network (shown with bold edges and branch voltages):

Cut-set Schedule:

Cut-set/Branch	Branch 1 (AB)	Branch 3 (AC)	Branch 4 (CD)	Branch 2 (BD)	Branch 6 (BC)	Branch 7 (AD)	Branch 5 (CD)
Cut-set 1 (AB)	1	0	0	-1	-1	0	0
Cut-set 2 (AC)	0	1	0	0	1	-1	0
Cut-set 3 (CD)	0	0	1	1	0	1	1

Mnemonic: "CGVS: Cut-sets Generate Voltage Sources"

Question 2(a) [3 marks]

Define: 1) Active and passive network 2)Unilateral and Bilateral network.

Answer:

- Active Network: A network containing one or more sources of EMF (voltage/current sources) that supply energy to the circuit.
- **Passive Network**: A network containing only passive elements like resistors, capacitors, and inductors with no energy sources.
- **Unilateral Network**: A network in which the properties and performance change when input and output terminals are interchanged.

• **Bilateral Network**: A network in which the properties and performance remain unchanged when input and output terminals are interchanged.

Diagram:

	Ne	twork Types	
Active: Contains	Passive: No sources	Unilateral: Diodes/Transistors	Bilateral: R, L, C elements

Mnemonic: "APUB: Active Provides energy, Unilateral Blocks reversal"

Question 2(b) [4 marks]

Write equation for Z parameter and derive Z11, Z12, Z21, Z22 from that equation.

Answer:

Z-parameters define the relationship between port voltages and currents in a two-port network:

Equations:

- $V_1 = Z_{11}|_1 + Z_{12}|_2$
- $V_2 = Z_{21}I_1 + Z_{22}I_2$

Derivation:

- $Z_{11} = V_1/I_1$ (with $I_2 = 0$): Input impedance with output port open-circuited
- $Z_{12} = V_1/I_2$ (with $I_1 = 0$): Reverse transfer impedance with input port open-circuited
- $\mathbf{Z}_{21} = \mathbf{V}_2 / \mathbf{I}_1$ (with $\mathbf{I}_2 = 0$): Forward transfer impedance with output port open-circuited
- $Z_{22} = V_2/I_2$ (with $I_1 = 0$): Output impedance with input port open-circuited

Mnemonic: "Z Impedance: Open circuit gives correct Parameters"

Question 2(c) [7 marks]

Derive equation of characteristic impedance(ZOT) for a standard T network.

Answer:

For a standard T-network:

Derivation Steps:

- 1. For a symmetric T-network, $Z_1 = Z_2$
- 2. Under matched condition, input impedance equals characteristic impedance
- 3. $Z_{0t} = Z_1 + (Z_1 \times Z_3)/(Z_1 + Z_3)$
- 4. For balanced T-network where $Z_1 = Z_2 = Z/2$ and $Z_3 = Z$:
- 5. $Z_{ot} = Z/2 + (Z/2 \times Z)/(Z/2 + Z)$
- 6. $Z_{0t} = Z/2 + (Z^2/2)/(Z + Z/2)$
- 7. $Z_{0t} = Z/2 + (Z^2/2)/(3Z/2)$
- 8. $Z_{0t} = Z/2 + Z^2/3Z$
- 9. $Z_{0t} = Z/2 + Z/3$
- 10. $Z_{0t} = (3Z + 2Z)/6$
- 11. $Z_{0t} = \sqrt{(Z_1(Z_1 + 2Z_3)))}$

Final Equation: $Z_{0t} = \sqrt{(Z_1(Z_1 + 2Z_3)))}$

Mnemonic: "TO Impedance: Two arms Over middle branch"

Question 2(a) OR [3 marks]

Define: 1)Driving point impedance 2) Transfer impedance

Answer:

- **Driving Point Impedance**: The ratio of voltage to current at the same port/pair of terminals when all other independent sources are set to zero.
- **Transfer Impedance**: The ratio of voltage at one port to the current at another port when all other independent sources are set to zero.

Diagram:

Mnemonic: "DTSS: Driving at Terminal Same, Transfer at Separate"

Question 2(b) OR [4 marks]

Explain Kirchhoff's voltage law with example.

Answer:

Kirchhoff's Voltage Law (KVL): The algebraic sum of all voltages around any closed loop in a circuit is zero.

Mathematically: ∑V = 0 (around a closed loop)

Circuit Example:

If I = 1A, then:

- $V_1 = 1A \times 2\Omega = 2V$
- V₂ = 1A × 3Ω = 3V
- $V_3 = 1A \times 5\Omega = 5V$

Applying KVL: 10V - 2V - 3V - 5V = 0 ✓

Mnemonic: "VACZ: Voltages Around Closed loop are Zero"

Question 2(c) OR [7 marks]

Derive equation to convert $\boldsymbol{\pi}$ network into T network.

Answer:

 π Network to T Network Conversion:

Conversion Equations:

- 1. Za = (Ya × Yc) / Y∆
- 2. $Zb = (Yb \times Yc) / Y\Delta$
- 3. $Zc = (Ya \times Yb) / Y\Delta$

Where $Y\Delta = Ya + Yb + Yc$

Derivation:

- 1. Start with Y-parameters of π -network
- 2. Express Y-parameters in terms of branch admittances
- 3. Convert to Z-parameters using matrix inversion
- 4. Express T-network impedances in terms of Z-parameters
- 5. Simplify to get the conversion formulas above

Mnemonic: "PIE to TEA: Product over sum for opposite branch"

Question 3(a) [3 marks]

Explain Kirchhoff's current law with example.

Answer:

Kirchhoff's Current Law (KCL): The algebraic sum of all currents entering and leaving a node must equal zero.

Mathematically: ∑I = 0 (at any node)

Circuit Example:

Applying KCL at node B:

- Currents entering: $I_1 + I_2 = 5A + 2A = 7A$
- Currents leaving: $I_3 + I_4 = 3A + 4A = 7A$
- Therefore: $I_1 + I_2 I_3 I_4 = 5 + 2 3 4 = 0 \checkmark$

Mnemonic: "CuNoZ: Currents at Node are Zero"

Question 3(b) [4 marks]

Explain mesh analysis with required equations.

Answer:

Mesh Analysis: A circuit analysis technique that uses mesh currents as variables to solve a circuit with multiple loops.

Steps:

- 1. Identify all meshes (closed loops) in the circuit
- 2. Assign a mesh current to each mesh
- 3. Apply KVL to each mesh

4. Solve the resulting system of equations

Example Circuit:

Equations:

- Mesh 1: $V_1 = I_1R_1 + I_1R_2 I_2R_2$
- Mesh 2: $V_2 = I_2R_2 + I_2R_3 I_1R_2$

Mnemonic: "MILK: Mesh Is Loop with KVL"

Question 3(c) [7 marks]

State and explain Thevenin's theorem.

Answer:

Thevenin's Theorem: Any linear network with voltage and current sources can be replaced by an equivalent circuit consisting of a voltage source (VTH) in series with a resistance (RTH).

Steps to Find Thevenin Equivalent:

- 1. Remove the load from the terminals of interest
- 2. Calculate the open-circuit voltage (VOC) across these terminals (= VTH)
- 3. Calculate the resistance looking back into the circuit with all sources replaced by their internal resistances (= RTH)
- 4. The Thevenin equivalent consists of VTH in series with RTH

Example Application:

- Original complex circuit with load RL
- Remove RL and find VOC = VTH
- Deactivate sources and find RTH
- Reconnect RL to simplified Thevenin equivalent

Mnemonic: "TORV: Thevenin's Open-circuit Resistance and Voltage"

Question 3(a) OR [3 marks]

State and explain reciprocity theorem.

Answer:

Reciprocity Theorem: In a linear, bilateral network, if a voltage source in one branch produces a current in another branch, then the same voltage source, if placed in the second branch, will produce the same current in the first branch.

Mathematically: If a voltage V_1 in branch 1 produces current I_2 in branch 2, then voltage V_1 in branch 2 will produce current I_2 in branch 1.

Limitations: Applies only to networks with:

- Linear elements
- Bilateral elements (no diodes, transistors)
- Single independent source

Mnemonic: "RESWAP: REciprocity SWAPs Position with identical results"

Question 3(b) OR [4 marks]

Explain nodal analysis with required equations.

Answer:

Nodal Analysis: A circuit analysis technique that uses node voltages as variables to solve a circuit.

Steps:

- 1. Choose a reference node (ground)
- 2. Assign voltage variables to remaining nodes

- 3. Apply KCL at each non-reference node
- 4. Solve the resulting system of equations

Example Circuit:

Equations:

- Node 1: $I_1 = V_1G_1 + (V_1-V_2)G_3$
- Node 2: $I_2 = V_2G_2 + (V_2-V_1)G_3$

Mnemonic: "NKCV: Nodal uses KCL with Voltage variables"

Question 3(c) OR [7 marks]

State and prove maximum power transfer theorem.

Answer:

Maximum Power Transfer Theorem: A load connected to a source will extract maximum power when its resistance equals the internal resistance of the source.

Proof:

- 1. Current in the circuit: I = VS/(RS + RL)
- 2. Power delivered to load: $P = I^2RL = (VS^2RL)/(RS + RL)^2$
- 3. For maximum power, dP/dRL = 0
- 4. Solving: (VS²(RS + RL)² VS²RL·2(RS + RL))/(RS + RL)⁴ = 0
- 5. Simplifying: $(RS + RL)^2 = 2RL(RS + RL)$
- 6. Further simplifying: RS + RL = 2RL
- 7. Therefore: RS = RL

Maximum Power: Pmax = VS²/(4RS)

Mnemonic: "MaRLRS: Maximum power when load Resistance equals Source Resistance"

Question 4(a) [3 marks]

Why series resonance circuit act as voltage amplifier and parallel resonance circuit act as current amplifier?

Answer:

Series Resonance as Voltage Amplifier:

- At resonance, series circuit impedance is minimum (just R)
- Voltage across L or C can be much larger than source voltage
- Voltage magnification factor = $Q = XL/R = 1/R \sqrt{(L/C)}$
- Voltage across L or C = Q × Source voltage

Parallel Resonance as Current Amplifier:

- At resonance, parallel circuit impedance is maximum
- Current in L or C can be much larger than source current
- Current magnification factor = $Q = R/XL = R_{(C/L)}$
- Current through L or C = Q × Source current

Table:

Circuit Type	Impedance at Resonance	Amplification
Series	Minimum (R only)	Voltage (VL or VC = Q×VS)
Parallel	Maximum (R²/r)	Current (IL or IC = Q×IS)

Mnemonic: "SeVoPa: Series Voltage, Parallel current amplification"

Question 4(b) [4 marks]

Derive equation of Q of coil.

Answer:

Q-factor of a Coil:

Derivation:

- 1. Q-factor is defined as: Q = Energy stored / Energy dissipated per cycle
- 2. Energy stored in inductor = $(1/2)LI^2$
- 3. Power dissipated in resistor = I^2R
- 4. Energy dissipated per cycle = Power × Time period = $I^2R \times (1/f)$
- 5. Therefore: $Q = ((1/2)Ll^2) / (l^2R \times (1/f))$
- 6. Simplifying: Q = $2\pi \times (1/2)Ll^2 \times f/(l^2R)$
- 7. Q = $2\pi f \times L / R = \omega L / R$

Final Equation: $Q = \omega L / R = 2\pi f L / R = XL / R$

Mnemonic: "QualityEDR: Quality equals Energy stored Divided by energy lost per Radian"

Question 4(c) [7 marks]

Derive equation of series resonance frequency for series R-L-C circuit.

Answer:

Series R-L-C Circuit:

Derivation:

- 1. Impedance of series RLC circuit: Z = R + j(XL XC)
- 2. Where: XL = ω L and XC = 1/ ω C
- 3. At resonance, XL = XC (inductive and capacitive reactances are equal)
- 4. Therefore: $\omega L = 1/\omega C$
- 5. Solving for ω : $\omega^2 = 1/LC$
- 6. Resonant frequency: $\omega_0 = 1/\sqrt{(LC)}$
- 7. In terms of frequency f: $f_0 = 1/(2\pi \sqrt{LC})$

Characteristics at Resonance:

- Impedance is minimum (purely resistive: Z = R)
- Current is maximum (I = V/R)
- Power factor is unity (circuit appears resistive)
- Voltages across L and C are equal and opposite

Mnemonic: "RES: Reactances Equal at Series resonance"

Question 4(a) OR [3 marks]

What is coupled circuits? Define self-inductance and mutual inductance.

Answer:

Coupled Circuits: Two or more circuits that are magnetically linked such that energy can be transferred between them through their mutual magnetic field.

Self-inductance (L): The property of a circuit whereby a change in current produces a self-induced EMF in the same circuit.

 $L = \Phi/I$ (ratio of magnetic flux to the current producing it)

Mutual inductance (M): The property of a circuit whereby a change in current in one circuit induces an EMF in another circuit.

M = Φ_{21}/I_1 (ratio of flux in circuit 2 due to current in circuit 1)

Mnemonic: "SiMu: Self in Mine, Mutual in Yours"

Question 4(b) OR [4 marks]

Derive equation for co-efficient of coupling (K).

Answer:

Coefficient of Coupling (k):

Derivation:

- 1. The mutual inductance (M) between two coils depends on:
 - Self-inductances of the coils (L₁ and L₂)
 - Physical arrangement (proximity and orientation)
- 2. Maximum possible mutual inductance: $M_{m_{ax}} = \sqrt{(L_1 L_2)}$
- 3. Coefficient of coupling is defined as: $k = M/M_{m_{ax}}$
- 4. Therefore: $k = M/\sqrt{(L_1L_2)}$

Characteristics:

- k ranges from 0 (no coupling) to 1 (perfect coupling)
- k depends on geometry, orientation, and medium
- Typical transformers: k = 0.95 to 0.99
- Air-core coils: k = 0.01 to 0.5

Mnemonic: "KMutual: K Measures Mutual linkage proportion"

Question 4(c) OR [7 marks]

A series RLC circuit has R=30 Ω , L=0.5H, and C=5 μ F. Calculate (i) series resonance frequency (2) Q Factor (3)BW

Answer:

Given:

- Resistance, $R = 30\Omega$
- Inductance, L = 0.5H
- Capacitance, $C = 5\mu F = 5 \times 10^{-6} F$

Calculations:

(i) Series Resonance Frequency:

- $f_0 = 1/(2\pi \sqrt{LC})$
- $f_0 = 1/(2\pi \sqrt{(0.5 \times 5 \times 10^{-6})})$
- $f_0 = 1/(2\pi \sqrt{2.5 \times 10^{-6}})$
- $f_0 = 1/(2\pi \times 1.58 \times 10^{-3})$
- $f_0 = 1/(9.9 \times 10^{-3})$
- f₀ = 100.76 Hz
- f₀ ≈ 100 Hz

(ii) Q Factor:

- $Q = (1/R)\sqrt{(L/C)}$
- $Q = (1/30)\sqrt{(0.5/(5\times10^{-6}))}$
- Q = (1/30) \/(100,000)
- Q = (1/30) × 316.23
- Q = 10.54

(iii) Bandwidth (BW):

- BW = f_0/Q
- BW = 100.76/10.54
- BW = 9.56 Hz

Table:

Parameter	Formula	Value
Resonant Frequency (f ₀)	1/(2π ./ (LC))	100 Hz
Quality Factor (Q)	(1/R)√(L/C)	10.54
Bandwidth (BW)	f _o /Q	9.56 Hz

Mnemonic: "RQB: Resonance Quality determines Bandwidth"

Question 5(a) [3 marks]

Classify various types of attenuators.

Answer:

Attenuators: Network of resistors designed to reduce (attenuate) signal level without distortion.

Types of Attenuators:

Based on configuration:

- **T-type**: Three resistor T-shaped configuration
- **π-type**: Three resistor π-shaped configuration
- **Bridged-T**: T-type with a resistor bridging across
- Lattice: Balanced configuration with four resistors

Based on symmetry:

- Symmetrical: Equal input and output impedance
- Asymmetrical: Different input and output impedance

Mnemonic: "ATP Fixed: Attenuator Types include Pad, Tee, Lattice"

Question 5(b) [4 marks]

Derive relation between attenuator and neper.

Answer:

Relationship between Attenuation and Neper:

- **Attenuation (α)**: Ratio of input voltage (or current) to output voltage (or current), expressed in different units.
- Neper (Np): Natural logarithmic unit of ratios, used mainly in transmission line theory.

Derivation:

- 1. For a voltage ratio V_1/V_2 :
 - Attenuation in Nepers = $\ln(V_1/V_2)$
 - Attenuation in Decibels = $20\log_{10}(V_1/V_2)$
- 2. For a power ratio P_1/P_2 :
 - Attenuation in Nepers = $(1/2)\ln(P_1/P_2)$
 - Attenuation in Decibels = $10\log_{10}(P_1/P_2)$
- 3. Relationship between dB and Neper:

- 1 Neper = 8.686 dB
- 1 dB = 0.115 Neper

Table:

Unit	Voltage Ratio	Power Ratio
Neper (Np)	$ln(V_1/V_2)$	(1/2)In(P ₁ /P ₂)
Decibel (dB)	20log ₁₀ (V ₁ /V ₂)	10log ₁₀ (P ₁ /P ₂)

Mnemonic: "NED: Neper Equals Decibel divided by 8.686"

Question 5(c) [7 marks]

Derive equations of R1 and R2 for symmetrical T attenuator.

Answer:

Symmetrical T Attenuator:

Derivation:

- 1. For a symmetrical T-attenuator with characteristic impedance Z₀:
 - $\circ~$ Input and output impedance must both equal Z_0
 - Attenuation ratio N = $V_1/V_2 = I_2/I_1$
- 2. From circuit analysis:
 - $Z_0 = R_1 + (R_2(R_1))/(R_2+R_1)$
 - $N = (R_1 + R_2 + R_1)/R_2 = (2R_1 + R_2)/R_2$
- 3. Solving for R_1 and R_2 :
 - $R_1 = Z_0(N-1)/(N+1)$

•
$$R_2 = 2Z_0 N/(N^2-1)$$

4. For attenuation in dB (α):

• N = $10^{(\alpha/20)}$

- $R_1 = Z_0 \cdot tanh(\alpha/2)$
- $R_2 = Z_0/\sinh(\alpha)$

Final Equations:

- $R_1 = Z_0(N-1)/(N+1)$
- $R_2 = 2Z_0 N/(N^2-1)$

Mnemonic: "TSR: T-attenuator Symmetry Requires equal R1 values"

Question 5(a) OR [3 marks]

Draw circuit diagram of symmetrical Bridge T and symmetrical Lattice attenuator.

Answer:

Symmetrical Bridge-T Attenuator:

Symmetrical Lattice Attenuator:

Characteristics:

1. **Bridge-T**: Combines features of T and π attenuators, suitable for high-frequency applications

2. **Lattice**: Balanced configuration with excellent phase and frequency response, commonly used in balanced lines

Mnemonic: "BL-BA: Bridge Ladder, Balanced Attenuators"

Question 5(b) OR [4 marks]

Write classification of filter based on frequency with their frequency responses showing pass band and stop band.

Answer:

Classification of Filters Based on Frequency:

Frequency Responses:

1. Low Pass Filter: Passes frequencies below cutoff, attenuates above

2. High Pass Filter: Passes frequencies above cutoff, attenuates below

3. Band Pass Filter: Passes frequencies within a specific band

```
Gain |

1 | ****

| * ***

0 |***-----***--

|

+------

0 f1 f2 f →
```

4. Band Stop Filter: Rejects frequencies within a specific band

Mnemonic: "LHBBA: Low High Band-pass Band-stop All-pass"

Question 5(c) OR [7 marks]

Draw the circuit for T-section and π -section constant-K low pass filter and Derive equation of cut-off frequency.

Answer:

T-section Constant-K Low Pass Filter:

$\pi\mbox{-}section$ Constant-K Low Pass Filter:

Derivation of Cutoff Frequency:

- 1. For a constant-K filter:
 - $Z_1 \times Z_2 = R_0^2$ (characteristic impedance squared)
 - $Z_1 = j\omega L$ (series impedance)
 - $Z_2 = 1/j\omega C$ (shunt impedance)
- 2. Therefore:
 - $R_0^2 = Z_1 \times Z_2 = j\omega L \times 1/j\omega C = L/C$

- 3. Pass band condition:
 - $\circ -1 < Z_1/4Z_2 < 0$
 - $-1 < j\omega L/(4 \times 1/j\omega C) < 0$
 - $\circ -1 < -\omega^2 LC/4 < 0$
- 4. At cutoff frequency:
 - $\omega^{2}LC/4 = 1$
 - $\circ \omega c^2 = 4/LC$
 - $\omega c = 2/\sqrt{LC}$
 - fc = $\omega c/2\pi = 1/\pi \sqrt{LC}$

Final Equation:

• Cutoff frequency fc = $1/\pi \sqrt{(LC)}$

Mnemonic: "KCLP: Konstant-k Cutoff in Low Pass depends on L and C product"