# Question 1(a) [3 marks]

### Define (i) Node (ii) Branch and (iii) Loop for electronic network.

#### Answer:

#### Node:

- Junction point where two or more branches meet in a network
- Points where elements are connected together
- Current sum of all branches at a node equals zero

### Branch:

- Single element (R, L, or C) or path connecting two nodes
- Each branch has a specific current flowing through it
- Active branches contain sources; passive branches contain R, L, C

### Loop:

- Closed path in a network formed by connected branches
- No node is encountered more than once
- Used in loop analysis for solving networks

Mnemonic: "NBL: Nodes join, Branches connect, Loops circle"

# Question 1(b) [4 marks]

Three resistors of 200  $\Omega$ , 300  $\Omega$  and 500  $\Omega$  are connected in parallel across 100 V supply. Find (i) Current flowing through each resistor and Total current (ii) Equivalent Resistance

### Answer:

**Table of Calculations:** 

| Parameter             | Formula                                      | Calculation       | Result |
|-----------------------|----------------------------------------------|-------------------|--------|
| l <sub>1</sub> (200Ω) | I = V/R                                      | 100V/200Ω         | 0.5A   |
| l <sub>2</sub> (300Ω) | I = V/R                                      | 100V/300Ω         | 0.333A |
| l <sub>3</sub> (500Ω) | I = V/R                                      | 100V/500Ω         | 0.2A   |
| <sub>(tota</sub> l)   | <sub>1</sub> +  <sub>2</sub> +  <sub>3</sub> | 0.5+0.333+0.2     | 1.033A |
| R <sub>(e</sub> q)    | $1/R_{(q)} = 1/R_1 + 1/R_2 + 1/R_3$          | 1/200+1/300+1/500 | 96.77Ω |

Mnemonic: "Parallel paths divide current inversely with resistance"

# Question 1(c) [7 marks]

# Explain Series and Parallel connection for Capacitors

Answer:

### Capacitors in Series:



# **Table: Series Capacitors Properties**

| Property               | Formula                              | Description                            |
|------------------------|--------------------------------------|----------------------------------------|
| Equivalent Capacitance | $1/C_{(e}q) = 1/C_1 + 1/C_2 + 1/C_3$ | Always smaller than smallest capacitor |
| Charge                 | $Q = Q_1 = Q_2 = Q_3$                | Same on all capacitors                 |
| Voltage                | $V = V_1 + V_2 + V_3$                | Divides according to 1/C ratio         |
| Energy                 | $E = CV^2/2$                         | Distributed across capacitors          |

### Capacitors in Parallel:



# **Table: Parallel Capacitors Properties**

| Property               | Formula                      | Description                      |
|------------------------|------------------------------|----------------------------------|
| Equivalent Capacitance | $C_{(e}q) = C_1 + C_2 + C_3$ | Sum of individual capacitances   |
| Charge                 | $Q = Q_1 + Q_2 + Q_3$        | Distributes according to C value |
| Voltage                | $V = V_1 = V_2 = V_3$        | Same across all capacitors       |
| Energy                 | $E = CV^2/2$                 | Sum of individual energies       |

Mnemonic: "Series caps add reciprocally, parallel caps add directly"

# Question 1(c) OR [7 marks]

Explain Series and Parallel connection for Inductors.

Answer:

**Inductors in Series:** 



### **Table: Series Inductors Properties**

| Property              | Formula                      | Description                   |
|-----------------------|------------------------------|-------------------------------|
| Equivalent Inductance | $L_{(e}q) = L_1 + L_2 + L_3$ | Sum of individual inductances |
| Current               | $  =  _1 =  _2 =  _3$        | Same through all inductors    |
| Voltage               | $V = V_1 + V_2 + V_3$        | Divides according to L ratio  |
| Energy                | $E = LI^{2}/2$               | Sum of individual energies    |

**Inductors in Parallel:** 



# **Table: Parallel Inductors Properties**

| Property              | Formula                              | Description                           |
|-----------------------|--------------------------------------|---------------------------------------|
| Equivalent Inductance | $1/L_{(e}q) = 1/L_1 + 1/L_2 + 1/L_3$ | Always smaller than smallest inductor |
| Current               | $  =  _1 +  _2 +  _3$                | Divides according to 1/L ratio        |
| Voltage               | $V = V_1 = V_2 = V_3$                | Same across all inductors             |
| Energy                | $E = Ll^2/2$                         | Distributed across inductors          |

Mnemonic: "Series inductors add directly, parallel inductors add reciprocally"

# Question 2(a) [3 marks]

Classify network elements.

Answer:

**Table: Classification of Network Elements** 

| Category                | Types       | Examples                             |
|-------------------------|-------------|--------------------------------------|
| Active vs Passive       | Active      | Voltage/current sources, transistors |
|                         | Passive     | Resistors, capacitors, inductors     |
| Linear vs Non-linear    | Linear      | Resistors, ideal sources             |
|                         | Non-linear  | Diodes, transistors                  |
| Bilateral vs Unilateral | Bilateral   | Resistors, capacitors, inductors     |
|                         | Unilateral  | Diodes, transistors                  |
| Lumped vs Distributed   | Lumped      | Discrete R, L, C components          |
|                         | Distributed | Transmission lines                   |

Mnemonic: "ALBU: Active/passive, Linear/non-linear, Bilateral/unilateral, lumped/distributed"

# Question 2(b) [4 marks]

Three resistances of 10, 30 and 70 ohms are connected in star. Find equivalent resistances in delta connection.

#### Answer:

#### **Diagram: Star to Delta Conversion**





### Table: Star-Delta Conversion Formulas and Calculations

| Delta Resistance | Formula                                                  | Calculation            | Result |
|------------------|----------------------------------------------------------|------------------------|--------|
| R <sub>12</sub>  | $(R_1 \times R_2 + R_2 \times R_3 + R_3 \times R_1)/R_3$ | (10×30+30×70+70×10)/70 | 47.14Ω |
| R <sub>23</sub>  | $(R_1 \times R_2 + R_2 \times R_3 + R_3 \times R_1)/R_1$ | (10×30+30×70+70×10)/10 | 330Ω   |
| R <sub>31</sub>  | $(R_1 \times R_2 + R_2 \times R_3 + R_3 \times R_1)/R_2$ | (10×30+30×70+70×10)/30 | 110Ω   |

Mnemonic: "Star-Delta: Product sum over opposite resistor"

# Question 2(c) [7 marks]

Explain  $\pi$  network.

Answer:

Diagram:  $\pi$  (Pi) Network



### Table: $\boldsymbol{\pi}$ Network Characteristics

| Parameter               | Description                                                                                    |
|-------------------------|------------------------------------------------------------------------------------------------|
| Structure               | Two shunt impedances ( $Z_3$ , $Z_2$ ) and one series impedance ( $Z_1$ )                      |
| Transmission Parameters | A = 1 + $Z_1/Z_2$ , B = $Z_1$ , C = $1/Z_2 + 1/Z_3 + Z_1/(Z_2 \times Z_3)$ , D = 1 + $Z_1/Z_3$ |
| Impedance Parameters    | $Z_{11} = Z_1 + Z_3, Z_{12} = Z_1, Z_{21} = Z_1, Z_{22} = Z_1 + Z_2$                           |
| Image Impedance         | $Z_0 \pi = \sqrt{(Z_1 Z_2 Z_3 / (Z_2 + Z_3))}$                                                 |
| Applications            | Matching networks, filters, attenuators                                                        |
| Conversion              | Can be converted to T-network                                                                  |

**Mnemonic:** " $\pi$  has two legs down, one branch across"

# Question 2(a) OR [3 marks]

### List the types of network.

#### Answer:

#### **Table: Types of Networks**

| Category               | Types                                      |
|------------------------|--------------------------------------------|
| Based on Linearity     | Linear Networks, Non-linear Networks       |
| Based on Elements      | Passive Networks, Active Networks          |
| Based on Parameters    | Time-variant, Time-invariant Networks      |
| Based on Configuration | T-Network, $\pi$ -Network, Lattice Network |
| Based on Ports         | One-port, Two-port, Multi-port Networks    |
| Based on Symmetry      | Symmetrical, Asymmetrical Networks         |
| Based on Reciprocity   | Reciprocal, Non-reciprocal Networks        |

Mnemonic: "LEPCPS: Linearity, Elements, Parameters, Configuration, Ports, Symmetry"

# Question 2(b) OR [4 marks]

Three resistances of 20, 50 and 100 ohms are connected in delta. Find equivalent resistances in star connection.

#### Answer:

**Diagram: Delta to Star Conversion** 





Table: Delta-Star Conversion Formulas and Calculations

| Star Resistance | Formula                                             | Calculation          | Result |
|-----------------|-----------------------------------------------------|----------------------|--------|
| R <sub>1</sub>  | $(R_{12} \times R_{31})/(R_{12} + R_{23} + R_{31})$ | (20×100)/(20+50+100) | 11.76Ω |
| R <sub>2</sub>  | $(R_{12} \times R_{23})/(R_{12} + R_{23} + R_{31})$ | (20×50)/(20+50+100)  | 5.88Ω  |
| R <sub>3</sub>  | $(R_{23} \times R_{31})/(R_{12} + R_{23} + R_{31})$ | (50×100)/(20+50+100) | 29.41Ω |

Mnemonic: "Delta-Star: Product of adjacent pairs over sum of all"

# Question 2(c) OR [7 marks]

### Explain T network.

### Answer:

### Diagram: T Network



### **Table: T Network Characteristics**

| Parameter               | Description                                                                         |
|-------------------------|-------------------------------------------------------------------------------------|
| Structure               | Two series impedances ( $Z_1$ , $Z_2$ ) and one shunt impedance ( $Z_3$ )           |
| Transmission Parameters | A = 1 + $Z_1/Z_3$ , B = $Z_1 + Z_2 + Z_1Z_2/Z_3$ , C = 1/ $Z_3$ , D = 1 + $Z_2/Z_3$ |
| Impedance Parameters    | $Z_{11} = Z_1 + Z_3, Z_{12} = Z_3, Z_{21} = Z_3, Z_{22} = Z_2 + Z_3$                |
| Image Impedance         | $Z_0T = \sqrt{(Z_1Z_2 + Z_1Z_3 + Z_2Z_3)}$                                          |
| Applications            | Matching networks, filters, attenuators                                             |
| Conversion              | Can be converted to π-network                                                       |

Mnemonic: "T has two arms across, one leg down"

# Question 3(a) [3 marks]

Explain Kirchhoff's law.

Answer:

#### Kirchhoff's Current Law (KCL):

- Sum of currents entering a node equals sum of currents leaving it
- Algebraic sum of currents at any node is zero
- $\sum I = 0$  (currents entering positive, leaving negative)

#### Kirchhoff's Voltage Law (KVL):

- Sum of voltage drops around any closed loop equals zero
- $\sum V = 0$  (voltage rises positive, drops negative)
- Based on conservation of energy

#### Diagram of Kirchhoff's Laws:





Mnemonic: "Current converges, Voltage voyages in a loop"

# Question 3(b) [4 marks]

Explain Nodal analysis.

Answer:

**Diagram: Nodal Analysis Concept** 



### Table: Nodal Analysis Method

| Step                     | Description                                           |
|--------------------------|-------------------------------------------------------|
| 1. Select reference node | Usually ground (0V)                                   |
| 2. Assign voltages       | Label remaining node voltages ( $V_1$ , $V_2$ , etc.) |
| 3. Apply KCL             | Write KCL equation at each non-reference node         |
| 4. Express currents      | Use Ohm's Law to express branch currents              |
| 5. Solve equations       | Find node voltages using simultaneous equations       |

#### Example: For nodes with voltages V<sub>1</sub> and V<sub>2</sub>:

- KCL at node 1: (V<sub>1</sub>-0)/R<sub>1</sub> + (V<sub>1</sub>-V<sub>2</sub>)/R<sub>2</sub> + I<sub>1</sub> = 0
- KCL at node 2:  $(V_2-V_1)/R_2 + (V_2-0)/R_3 + I_2 = 0$

Mnemonic: "Nodal needs KCL to analyze voltage"

# Question 3(c) [7 marks]

Use Thevenin's theorem to find current through the 5  $\Omega$  resistor for given circuit.

#### Answer:

**Diagram: Original Circuit and Thevenin Equivalent** 

**Steps to Find Thevenin Equivalent:** 

#### **Table: Thevenin's Theorem Process and Calculations**

| Step                                   | Process                                  | Calculation                      | Result         |
|----------------------------------------|------------------------------------------|----------------------------------|----------------|
| 1. Remove load (5Ω)                    | Calculate open-circuit voltage<br>(Voc)  | Voc = Voltage divider<br>formula | Vth =<br>9.33V |
| 2. Replace voltage sources with shorts | Calculate equivalent<br>resistance (Req) | Req = 20Ω                        |                |
| 3. Draw Thevenin equivalent            | Connect Vth and Rth in series with load  |                                  |                |
| 4. Calculate load current              | I = Vth/(Rth+RL)                         | l = 9.33/(6.67+5)                | I = 0.8A       |

Mnemonic: "Thevenin transforms: Find Voc and Req, then calculate I"

# Question 3(a) OR [3 marks]

State and explain Maximum Power Transfer Theorem.

#### Answer:

#### Maximum Power Transfer Theorem:

- Maximum power is transferred from source to load when **load resistance equals source internal resistance** (RL = Rth)
- Only 50% efficiency is achieved at maximum power transfer
- Applies to DC and AC circuits (with complex impedances)

#### **Diagram: Maximum Power Transfer**



#### Formula: P = (Vth<sup>2</sup>×RL)/(Rth+RL)<sup>2</sup>

Mnemonic: "Match the load to the source for maximum power transfer"

# Question 3(b) OR [4 marks]

Explain method of drawing dual network using any circuit.

#### Answer:

Diagram: Original and Dual Network Example

```
Original:
              Dual:
              C1
R1
0---WWW----0
              0----||---0
C1
        R2
              L1
                      L2
0----
              0---WWW--0
   L1
                  R1
```

**Table: Dual Network Conversion Rules** 

| Original Element    | Dual Element        | Example                           |
|---------------------|---------------------|-----------------------------------|
| Series connection   | Parallel connection | Series $R \rightarrow Parallel C$ |
| Parallel connection | Series connection   | Parallel C $\rightarrow$ Series L |
| Voltage source      | Current source      | V source $\rightarrow$ I source   |
| Current source      | Voltage source      | I source $\rightarrow$ V source   |
| Resistor (R)        | Conductance (1/R)   | $R \rightarrow G (1/R)$           |
| Inductor (L)        | Capacitor (1/L)     | $L \rightarrow C (1/L)$           |
| Capacitor (C)       | Inductor (1/C)      | $C \rightarrow L (1/C)$           |

#### **Duality Process:**

- 1. Redraw network with meshes as nodes and nodes as meshes
- 2. Replace elements with their duals
- 3. Interchange series and parallel connections

**Mnemonic:** "Duality swaps: Series↔Parallel, V↔I, R↔G, L↔C"

# Question 3(c) OR [7 marks]

Find out Norton's equivalent circuit for the given network. Find out load current if (i)  $R_{(L)}$  = 3 K $\Omega$  (ii)  $R_{(L)}$  = 1.5  $\Omega$ 

### Answer:

**Diagram: Original Circuit and Norton Equivalent** 

| ++      |
|---------|
|         |
| 6V 9KΩ  |
|         |
| ++      |
|         |
| 3KΩ 6KΩ |
|         |
| ++      |
|         |
| RL      |
|         |
|         |
| -       |

### **Table: Norton's Theorem Process and Calculations**

| Step                                   | Process                                  | Calculation            | Result |
|----------------------------------------|------------------------------------------|------------------------|--------|
| 1. Calculate short-circuit             | Short load terminals and find current    | lsc = Source current   | ln =   |
| current (lsc)                          |                                          | through short          | 0.5mA  |
| 2. Calculate Norton<br>resistance (Rn) | Replace sources with internal resistance | Rn = 9KΩ               |        |
| 3. Draw Norton equivalent              | Connect In and Rn in parallel            |                        |        |
| 4. Calculate load current              | I = In × Rn/(Rn + RL)                    | I = 0.5mA × 3KΩ/(3KΩ + | l =    |
| (RL = 3KΩ)                             |                                          | 3KΩ)                   | 0.25mA |
| 5. Calculate load current              | I = In × Rn/(Rn + RL)                    | l = 0.5mA × 3KΩ/(3KΩ + | l =    |
| (RL = 1.5Ω)                            |                                          | 1.5Ω)                  | 0.33mA |

Mnemonic: "Norton needs Isc and Req to make a current source"

# Question 4(a) [3 marks]

## Derive the equation of Quality factor Q for a coil.

Answer:

### **Diagram: Coil Equivalent Circuit**

R L 0----www----000000----0

### Derivation of Q factor for a coil:

### Table: Q Factor Derivation for Coil

| Step              | Expression               | Explanation                         |
|-------------------|--------------------------|-------------------------------------|
| 1. Impedance      | $Z = R + j\omega L$      | Complex impedance of coil           |
| 2. Reactive power | $PX = (\omega L)I^2$     | Power stored in inductor            |
| 3. Real power     | $PR = RI^2$              | Power dissipated in resistance      |
| 4. Quality factor | Q = PX/PR                | Ratio of stored to dissipated power |
| 5. Substitution   | $Q = (\omega L)I^2/RI^2$ | Substitute expressions              |
| 6. Final equation | $Q = \omega L/R$         | Simplify to get Q factor            |

**Mnemonic:** "Quality coils: ωL/R shows energy saving ability"

# Question 4(b) [4 marks]

# A series RLC circuit has R = 50 $\Omega$ , L = 0.2 H and C = 10 $\mu$ F. Calculate (i) Q factor, (ii) BW, (iii) Upper cut off and lower cut off frequencies.

### Answer:

### **Diagram: Series RLC Circuit**



### **Table: Calculations for Series RLC Circuit**

| Parameter                      | Formula           | Calculation                       | Result    |
|--------------------------------|-------------------|-----------------------------------|-----------|
| Resonant frequency (fr)        | fr = 1/(2π√LC)    | 1/(2π√(0.2×10×10 <sup>-6</sup> )) | 112.5 Hz  |
| Quality factor (Q)             | Q = (1/R)√(L/C)   | (1/50)√(0.2/10×10 <sup>-6</sup> ) | 28.28     |
| Bandwidth (BW)                 | BW = fr/Q         | 112.5/28.28                       | 3.98 Hz   |
| Lower cutoff $(f_1)$           | $f_1 = fr - BW/2$ | 112.5 - 3.98/2                    | 110.51 Hz |
| Upper cutoff (f <sub>2</sub> ) | $f_2 = fr + BW/2$ | 112.5 + 3.98/2                    | 114.49 Hz |

Mnemonic: "Q defines BW, which sets cutoff frequencies"

# Question 4(c) [7 marks]

Explain Mutual Inductance along with Co-efficient of mutual inductance. Also derive the equation of K.

Answer:

Diagram: Mutual Inductance Between Two Coils



#### Mutual Inductance (M):

- When current in one coil induces voltage in nearby coil
- Coupling between coils depends on position, orientation, and medium
- Mutual inductance M in henries (H)

#### **Table: Mutual Inductance Equations**

| Parameter                | Formula                  | Description                                           |
|--------------------------|--------------------------|-------------------------------------------------------|
| Induced voltage          | $v_2 = M(di_1/dt)$       | Voltage induced in coil 2 due to current in coil 1    |
| Mutual inductance        | $M = k \sqrt{(L_1 L_2)}$ | Mutual inductance related to self-inductances         |
| Coupling coefficient (k) | $k=M/\surd(L_1L_2)$      | Measure of coupling between coils ( $0 \le k \le 1$ ) |
| Total inductance         | $Lt = L_1 + L_2 \pm 2M$  | Total inductance depends on direction of coupling     |

### **Derivation of Coupling Coefficient (k):**

- From M =  $k\sqrt{(L_1L_2)}$
- Rearranging:  $k = M/\sqrt{(L_1L_2)}$
- k = 1 for perfect coupling
- k = 0 for no coupling
- Typically 0.1 to 0.9 for real circuits

Mnemonic: "M measures magnetic linkage, k shows coupling quality"

# Question 4(a) OR [3 marks]

### Explain the types of coupling for coupled circuit.

Answer:

**Diagram: Types of Coupling** 



### **Table: Types of Coupling**

| Coupling Type       | Characteristics                       | Applications                    |
|---------------------|---------------------------------------|---------------------------------|
| Tight Coupling      | k > 0.5, high energy transfer         | Transformers                    |
| Loose Coupling      | k < 0.5, selective frequency response | RF tuning circuits              |
| Critical Coupling   | k adjusted for optimal bandwidth      | RF filters                      |
| Direct Coupling     | Components directly connected         | Audio amplifiers                |
| Inductive Coupling  | Magnetic field transfers energy       | Transformers, wireless charging |
| Capacitive Coupling | Electric field transfers energy       | Signal coupling between stages  |

Mnemonic: "TLCLIC: Tight, Loose, Critical, Direct, Inductive, Capacitive"

# Question 4(b) OR [4 marks]

A parallel resonant circuit having inductance of 10 mH with quality factor Q = 100, resonant frequency Fr = 50 KHz. Find out (i) Required capacitance C, (ii) Resistance R of the coil, (iii) BW.

Answer:

**Diagram: Parallel Resonant Circuit** 



**Table: Calculations for Parallel Resonant Circuit** 

| Parameter          | Formula                 | Calculation                                                         | Result      |
|--------------------|-------------------------|---------------------------------------------------------------------|-------------|
| Resonant frequency | fr = 1/(2π√LC)          | 50 kHz = 1/(2π√(10×10⁻³×C))                                         |             |
| Capacitance (C)    | $C = 1/(4\pi^2 fr^2 L)$ | $C = 1/(4\pi^2 \times (50 \times 10^3)^2 \times 10 \times 10^{-3})$ | C = 1.01 nF |
| Resistance (R)     | $Q = \omega L/R$        | 100 = 2π×50×10³×10×10⁻³/R                                           | R = 31.4 Ω  |
| Bandwidth (BW)     | BW = fr/Q               | BW = 50×10³/100                                                     | BW = 500 Hz |

Mnemonic: "Parallel resonance parameters: C from fr, R from Q, BW from fr/Q"

# Question 4(c) OR [7 marks]

Explain Band width and Selectivity of a series RLC circuit. Also establish the relation between Q factor and BW for series resonance circuit.

Answer:

Diagram: Frequency Response of Series RLC Circuit



#### Bandwidth (BW):

- Frequency range between half-power points
- At half-power points, impedance is  $\sqrt{2}$  times minimum value
- BW =  $f_2 f_1$ , where  $f_1$  and  $f_2$  are lower and upper cutoff frequencies

#### Selectivity:

- Ability to reject frequencies outside the bandwidth
- Higher Q means higher selectivity and narrower bandwidth
- Measured by steepness of response curve

#### **Table: Series RLC Bandwidth Parameters**

| Parameter          | Formula                         | Description                                      |
|--------------------|---------------------------------|--------------------------------------------------|
| Bandwidth (BW)     | $BW = f_2 - f_1$                | Difference between upper and lower cutoff points |
| Half-power points  | $Z = \sqrt{2} \times Z_{m_i n}$ | Points where power drops to half of maximum      |
| Resonant frequency | fr = 1/(2π√LC)                  | Center frequency                                 |
| Quality factor     | $Q = \omega_o L/R$              | Energy storage vs. dissipation ratio             |

#### **Derivation of Q-BW Relationship:**

- At resonance, impedance Z = R
- At cutoff frequencies,  $Z = \sqrt{2R}$
- This occurs when reactance XL XC =  $\pm R$
- At  $f_1: \omega L 1/\omega C = -R$
- At  $f_2$ :  $\omega L 1/\omega C = +R$
- Solving these equations:  $BW = R/2\pi L = fr/Q$
- Therefore, Q = fr/BW

Mnemonic: "Quality inversely proportional to bandwidth"

# Question 5(a) [3 marks]

Design a symmetrical T type attenuator to give attenuation of 60 dB and work in to the load of 500  $\Omega$  resistance.

#### Answer:

**Diagram: Symmetrical T-type Attenuator** 



#### **Table: Attenuator Design**

| Parameter       | Formula                 | Calculation             | Result                 |
|-----------------|-------------------------|-------------------------|------------------------|
| Attenuation (N) | N = 10^(dB/20)          | 10^(60/20)              | N = 1000               |
| Z <sub>0</sub>  | Given                   | 500 Ω                   | 500 Ω                  |
| R <sub>1</sub>  | $R_1 = 2Z_0(N-1)/(N+1)$ | 2×500×(1000-1)/(1000+1) | R <sub>1</sub> = 998 Ω |
| R <sub>2</sub>  | $R_2 = Z_0(N+1)/(N-1)$  | 500×(1000+1)/(1000-1)   | R <sub>2</sub> = 0.5 Ω |

**Mnemonic:** "T attenuator: R<sub>1</sub> series divides, R<sub>2</sub> shunts"

# Question 5(b) [4 marks]

Compare Band pass and Band stop filters.

Answer:

Diagram: Band Pass vs Band Stop Response



### Table: Comparison of Band Pass and Band Stop Filters

| Parameter              | Band Pass Filter                                 | Band Stop Filter                                 |  |
|------------------------|--------------------------------------------------|--------------------------------------------------|--|
| Frequency<br>Response  | Passes frequencies within specific band          | Rejects frequencies within specific band         |  |
| Circuit Structure      | Series & parallel resonant circuits              | Series & parallel resonant circuits              |  |
| Cut-off<br>Frequencies | Has lower ( $f_1$ ) and upper ( $f_2$ ) cut-offs | Has lower ( $f_1$ ) and upper ( $f_2$ ) cut-offs |  |
| Bandwidth              | $BW = f_2 - f_1$                                 | $BW = f_2 - f_1$                                 |  |
| Applications           | Radio tuning, audio equalization                 | Noise elimination, harmonic suppression          |  |
| Implementation         | Series/parallel combination of HPF & LPF         | Parallel/series combination of HPF & LPF         |  |
| Phase Response         | 0° at resonance                                  | 180° at resonance                                |  |

Mnemonic: "Pass the middle or Stop the middle"

# Question 5(c) [7 marks]

#### Explain constant K Low Pass Filter.

#### Answer:

#### Diagram: Constant K Low Pass Filter T and $\pi$ Sections

| T-section: |     | π-sect | ion: |
|------------|-----|--------|------|
| L/2        | L/2 | L      |      |
| o0000o     |     | 000000 |      |
|            |     |        |      |
| (          | 2   | C/2    | C/2  |
|            |     |        |      |
|            |     |        |      |
| 00         |     | 0      | 0    |

#### **Constant K Low Pass Filter:**

- Passes frequencies below cutoff frequency (fc)
- Attenuates frequencies above fc
- "Constant K" means product of series and shunt impedances is constant at all frequencies ( $Z_1Z_2 = K^2$ )

#### Table: T and $\pi$ Section Parameters

| Parameter                | T-section            | π-section            |
|--------------------------|----------------------|----------------------|
| Series arm               | L/2 at each end      | L in center          |
| Shunt arm                | C in center          | C/2 at each end      |
| Cutoff frequency         | fc = 1/(π√LC)        | fc = 1/(π√LC)        |
| Characteristic impedance | $Z_0 = \sqrt{(L/C)}$ | $Z_0 = \sqrt{(L/C)}$ |
| Design equation for L    | $L = Z_0/\pi fc$     | $L = Z_0/\pi fc$     |
| Design equation for C    | $C = 1/(\pi fcZ_0)$  | C = 1/(πfcZ₀)        |

#### **Frequency Response:**

- Passes DC and low frequencies with minimal attenuation
- Attenuation increases rapidly above cutoff frequency
- Phase shift increases with frequency

Mnemonic: "Constant K LPF: L series blocks high, C shunt shorts high"

# Question 5(a) OR [3 marks]

Design a high pass filter with T section having a cut-off frequency of 2 KHz with a load resistance of 500  $\Omega$ .

### Answer:

### **Diagram: High Pass T-section Filter**



### Table: High Pass Filter Design

| Parameter                 | Formula             | Calculation                                   | Result       |
|---------------------------|---------------------|-----------------------------------------------|--------------|
| Cutoff frequency (fc)     | Given               | 2 kHz                                         | 2 kHz        |
| Load resistance ( $R_0$ ) | Given               | 500 Ω                                         | 500 Ω        |
| Series capacitance (C/2)  | $C = 1/(\pi fcR_0)$ | $C = 1/(\pi \times 2 \times 10^3 \times 500)$ | C = 0.318 µF |
| Total capacitance (C)     | 2 × (C/2)           | 2 × 0.159 μF                                  | C = 0.318 µF |
| Shunt inductance (L)      | $L = R_0/(\pi fc)$  | L = 500/(π×2×10³)                             | L = 79.6 mH  |

Mnemonic: "High pass T: C blocks DC in series, L passes high in shunt"

# Question 5(b) OR [4 marks]

Give classification of filters.

Answer:

**Diagram: Filter Classification** 



### **Table: Classification of Filters**

| <b>Classification By</b> | Туреѕ                | Characteristics                           |
|--------------------------|----------------------|-------------------------------------------|
| Function                 | Low Pass             | Passes frequencies below cutoff           |
|                          | High Pass            | Passes frequencies above cutoff           |
|                          | Band Pass            | Passes frequencies within a band          |
|                          | Band Stop            | Rejects frequencies within a band         |
|                          | All Pass             | Passes all frequencies but modifies phase |
| Design                   | Passive              | Uses passive elements (R, L, C)           |
|                          | Active               | Uses active components (op-amps)          |
| Response                 | Butterworth          | Maximally flat response                   |
|                          | Chebyshev            | Ripple in passband, steeper rolloff       |
|                          | Bessel               | Linear phase response                     |
|                          | Elliptic             | Ripple in both passband and stopband      |
| Implementation           | Passive Filter Types | Constant-k, m-derived, composite          |

Mnemonic: "FLHBA: Function (Low/High/Band/All-pass), Design, Response, Implementation"

# Question 5(c) OR [7 marks]

Explain constant K High Pass Filter.

Answer:

### Diagram: Constant K High Pass Filter T and $\pi$ Sections



### **Constant K High Pass Filter:**

- Passes frequencies above cutoff frequency (fc)
- Attenuates frequencies below fc
- "Constant K" means product of series and shunt impedances is constant at all frequencies ( $Z_1Z_2 = K^2$ )

#### Table: T and $\pi$ Section Parameters

| Parameter                | T-section            | π-section            |
|--------------------------|----------------------|----------------------|
| Series arm               | C/2 at each end      | C in center          |
| Shunt arm                | L in center          | L/2 at each end      |
| Cutoff frequency         | fc = 1/(π√LC)        | fc = 1/(π√LC)        |
| Characteristic impedance | $Z_0 = \sqrt{(L/C)}$ | $Z_0 = \sqrt{(L/C)}$ |
| Design equation for L    | $L = Z_0/(\pi fc)$   | $L = Z_0/(\pi fc)$   |
| Design equation for C    | $C = 1/(\pi fcZ_0)$  | $C = 1/(\pi fcZ_0)$  |

### **Frequency Response:**

- Blocks DC and low frequencies
- Passes high frequencies with minimal attenuation
- Attenuation increases as frequency decreases below cutoff
- Phase shift approaches 0° at very high frequencies

Mnemonic: "Constant K HPF: C series blocks low, L shunt passes high"