Question 1(a) [3 marks]

Define following term: (1) Accuracy (2) Resolution (3) Error

Answer:

Term	Definition
Accuracy	The closeness of a measurement to the true value
Resolution	The smallest change in input that can be detected by an instrument
Error	The difference between measured value and true value

Mnemonic: "ARE precise: Accuracy shows Reality, Error shows deviation, Resolution shows detail."

Question 1(b) [4 marks]

Explain construction of unbounded strain gauge transducer with necessary diagram in detail. Also list application of it.

Answer:

An unbounded strain gauge consists of a fine wire wound in a grid pattern attached to a backing material.

- **Construction elements**: Fine resistance wire is looped back and forth on an insulating base material
- Working principle: Changes resistance when subjected to strain
- Applications: Weight measurement, pressure sensors, force sensors, structural health monitoring

Mnemonic: "WIRE Flexes: Wire grids Indicate Resistance changes from External stress."

Question 1(c) [7 marks]

Explain working of Schering Bridge with circuit diagram for balance condition. List its advantages, disadvantages and applications.

Answer:

Schering Bridge is an AC bridge used to measure unknown capacitance and its dissipation factor.

Balance condition:

Equation	Description
Cx = C2(R2/R1)	For capacitance calculation
Dx = R2(C2/Cx)	For dissipation factor

Advantages:

- High accuracy
- Direct reading of capacitance
- Wide measurement range

Disadvantages:

- Requires careful shielding
- Frequency dependent errors
- Complex to balance

Applications:

- Capacitor testing
- Insulation testing
- Dielectric material evaluation

Mnemonic: "SCUBA dive: Schering Calculates Unknown capacitance By Advanced circuit Designs In Various Equipment."

Question 1(c OR) [7 marks]

Explain working of Maxwell's bridge with circuit diagram for balance condition. List its advantages, disadvantages, and applications.

Answer:

Maxwell's bridge is used to measure unknown inductance in terms of known capacitance.

Balance condition:

Equation	Description
$Lx = C4 \cdot R2 \cdot R3$	For inductance calculation
Rx = R1·(R3/R2)	For resistance calculation

Advantages:

- Independent of frequency
- High accuracy for medium Q coils
- Easy to balance

Disadvantages:

- Not suitable for low Q coils
- Requires standard capacitor
- Limited range

Applications:

- Measuring inductors
- Audio frequency measurements
- Transformer testing

Mnemonic: "MAGIC bridge: Maxwell Analyses Great Inductors by Comparing bridge Elements."

Question 2(a) [3 marks]

Explain working of electronic multimeter with necessary diagram.

Answer:

Electronic multimeter converts various electrical parameters into proportional DC voltage for measurement.

- **Circuit elements**: Input selector \rightarrow Attenuator \rightarrow Converter \rightarrow Amplifier \rightarrow ADC \rightarrow Display
- **Measurement types**: DC voltage, AC voltage, Current, Resistance
- **Power source**: Battery powered for portability and safety

Mnemonic: "SACRED device: Signal Attenuated, Converted And Rectified for Electronic Display."

Question 2(b) [4 marks]

Differentiate between Digital Voltmeter over Analog Voltmeter.

Answer:

Parameter	Digital Voltmeter	Analog Voltmeter
Display type	Numeric LCD/LED display	Moving pointer on scale
Accuracy	Higher (±0.1% typical)	Lower (±2-5% typical)
Reading errors	No parallax error	Prone to parallax error
Resolution	Higher (can display 3-6 digits)	Limited by scale divisions
Input impedance	Very high (>10MΩ)	Lower (20-200kΩ/V)
Response time	Slower sampling rate	Instant response

Mnemonic: "PARIOS: Parallax-free, Accurate, Resolution high, Impedance high, Observation digital, Sampling rate."

Question 2(c) [7 marks]

Describe construction diagram of Energy meter and explain in detail.

Answer:

Energy meter measures electrical energy consumption over time in kilowatt-hours (kWh).

Components:

- Voltage coil: Creates flux proportional to voltage
- Current coil: Creates flux proportional to current
- Aluminum disc: Rotates due to eddy currents
- Counting mechanism: Registers disc rotations
- Permanent magnet: Acts as brake to control disc speed
- Adjustment systems: For calibration and accuracy

Working principle: Disc rotation speed is proportional to power consumption (V×I×cos Φ)

Mnemonic: "VADCR meter: Voltage And current Drive Counter through Rotations."

Question 2(a OR) [3 marks]

Explain working of clamp on Ammeter with necessary diagram.

Answer:

Clamp-on ammeter measures current without breaking the circuit by using electromagnetic induction.

- **Construction**: Split ferrite core with sensing coil
- Working principle: Current-carrying wire creates magnetic field \rightarrow induces voltage in sensing coil
- Advantages: Non-contact measurement, quick, safe

Mnemonic: "CICS: Clamping Induces Current Signal."

Question 2(b OR) [4 marks]

Differentiate between PMMC type Meter over Moving iron type Meter.

Answer:

Parameter	PMMC Type Meter	Moving Iron Type Meter
Operating principle	Magnetic field interaction	Magnetic attraction/repulsion
Current type	DC only	Both AC and DC
Scale	Uniform	Non-uniform (crowded at ends)
Accuracy	Higher (±0.5% typical)	Lower (±1-5% typical)
Damping	Eddy current damping	Air friction damping
Power consumption	Low	High
Frequency errors	Not applicable	Affected by frequency changes

Mnemonic: "PMMC is DAUPHIN: DC only, Accurate, Uniform scale, Power efficient, High sensitivity, Independent of frequency, Needs polarity."

Question 2(c OR) [7 marks]

Draw the block diagram and Explain working of Integrating type DVM with necessary diagram and waveform.

Answer:

Integrating type DVM converts input voltage to time through integration for high accuracy measurements.

Working principle:

- Input voltage is integrated for fixed time period
- Integrator output ramps up proportionally to input
- Reference voltage with opposite polarity discharges integrator
- Time taken for discharge is measured by counting clock pulses
- Count is proportional to input voltage

Waveforms:

Advantages:

- High noise rejection
- Good accuracy
- Excellent resolution
- Rejects common-mode noise

Mnemonic: "DIRT meter: Direct Integration Relates Time to measure voltage."

Question 3(a) [3 marks]

Differentiate between CRO over DSO.

Answer:

Parameter	CRO (Analog Oscilloscope)	DSO (Digital Storage Oscilloscope)
Signal processing	Analog throughout	Digital after ADC conversion
Storage capability	Cannot store waveforms	Can store multiple waveforms
Bandwidth	Typically lower	Higher (can exceed GHz)
Triggering	Basic trigger options	Advanced trigger capabilities
Analysis features	Limited	Extensive (FFT, measurements)
Display persistence	Phosphor persistence	Adjustable digital persistence

Mnemonic: "PASSED: Processing-Analog/digital, Storage-none/yes, Signal-raw/processed, Easy-basic/advanced, Display-phosphor/digital."

Question 3(b) [4 marks]

Explain CRO Screen.

Answer:

CRO screen displays electrical signals and consists of several important elements.

Components:

- Phosphor coating: Emits light when struck by electrons
- Graticule: Grid lines for measurement reference
- Scales: Calibrated markings for voltage/time
- Center reference point: (0,0) coordinate

• Intensity control: Adjusts brightness of display

Mnemonic: "PGSCR: Phosphor Glows when Struck, Creating Representation."

Question 3(c) [7 marks]

Explain Block diagram, working and advantage of CRO with necessary diagram.

Answer:

CRO (Cathode Ray Oscilloscope) visualizes electrical signals as waveforms.

Working principle:

- Electron gun: Generates electron beam
- Vertical system: Controls Y-axis deflection proportional to input signal
- Horizontal system: Sweeps beam across screen at constant rate
- **Trigger circuit**: Synchronizes horizontal sweep with input signal
- **CRT**: Displays electron beam movement on phosphor screen

Advantages:

- Real-time signal display
- Wide bandwidth
- High input impedance
- Versatile triggering options
- Multiple signal analysis

Mnemonic: "EARTH view: Electron beam Amplification Reveals Time-based Horizontal view."

Question 3(a OR) [3 marks]

Apply Lissajous pattern for frequency measurement and Phase angle measurement.

Answer:

Lissajous patterns are created when two sine waves are applied to X and Y inputs of CRO.

Pattern Type	Example	Measurement Formula
Frequency Measurement		fx/fy = ny/nx
Phase Angle Measurement		$sin(\phi) = A/B$

Frequency	Phase	
BB	В	
A A L	A A 	
fx/fy = 2/1	$sin(\phi) = sin/sin$	

- Frequency ratio: Count vertical tangent points / horizontal tangent points
- **Phase measurement**: $sin(\phi) = sin/sinmax$ where sin is pattern height at zero crossing
- Applications: Signal comparison, frequency calibration

Mnemonic: "LIPS patterns: Lissajous Indicates Phase and Sine frequency."

Question 3(b OR) [4 marks]

Explain Graticules in CRO. Also Explain its types.

Answer:

Graticules are reference grids on a CRO screen that help in measurement of waveform parameters.

Types of graticules:

Туре	Description	Application
Internal graticule	Etched on inside of CRT	Eliminates parallax error
External graticule	Separate transparent plate	Easy replacement
Electronic graticule	Generated electronically	Digital oscilloscopes
Special purpose	Custom markings for specific measurements	Specialized testing

Mnemonic: "GRIT: Graticules Render Important Time-voltage measurements."

Question 3(c OR) [7 marks]

Describe Block diagram, working and advantage of Digital storage oscilloscope (DSO).

Answer:

Digital Storage Oscilloscope (DSO) digitizes signals for storage, processing, and display.

Working principle:

- Acquisition: Signal is sampled at high rate by ADC
- **Storage**: Digital values stored in memory
- Processing: Digital signal processing enhances analysis
- **Display**: Reconstructed signal shown on screen
- **Triggering**: Advanced digital triggering options

Advantages:

- Signal storage capability
- Pre-trigger viewing
- One-shot signal capture
- Advanced measurements
- Deep memory for long captures
- Digital filtering and analysis

• Network connectivity

Mnemonic: "SAMPLE: Storage And Memory Preserves Long-term Events."

Question 4(a) [3 marks]

Differentiate RTD and Thermistor.

Answer:

Parameter	RTD (Resistance Temperature Detector)	Thermistor
Material	Platinum, Nickel, Copper	Metal oxides, semiconductors
Resistance-temperature relation	Linear, positive coefficient	Non-linear, usually negative coefficient
Temperature range	-200°C to +850°C	-50°C to +300°C
Sensitivity	Lower (0.00385 $\Omega/\Omega/^{\circ}C$ typical)	Higher (3-5% per °C typical)
Accuracy	Higher	Lower
Response time	Slower	Faster

Mnemonic: "RTD is PLAINS: Platinum, Linear, Accurate, Industrial range, Narrow sensitivity, Stable."

Question 4(b) [4 marks]

Explain Optical encoder with its output waveform.

Answer:

Optical encoder converts mechanical motion to digital pulses using light interruption through a coded disc.

Output waveforms:

- Components: Light source, coded disc, photodetector
- Types: Incremental (pulses) or absolute (unique position code)
- Applications: Position measurement, speed detection, motion control

Mnemonic: "DROPS: Disc Rotation Outputs Pulse Signals."

Question 4(c) [7 marks]

Describe Thermocouple with working principle, types and application.

Answer:

Thermocouple is a temperature sensor that operates on the Seebeck effect, generating voltage proportional to temperature difference.

Working principle:

- Two dissimilar metals joined at one end (hot junction)
- Temperature difference between hot and cold junctions generates voltage
- Voltage is proportional to temperature difference

Types of thermocouples:

Туре	Materials	Temperature Range	Application
Туре К	Chromel-Alumel	-200°C to +1350°C	General purpose, oxidizing atmosphere
Туре Ј	Iron-Constantan	-40°C to +750°C	Reducing atmosphere, vacuum
Туре Е	Chromel- Constantan	-200°C to +900°C	Cryogenic, higher output
Туре Т	Copper-Constantan	-250°C to +350°C	Low temperatures, food industry
Туре R/S	Platinum-Rhodium	0°C to +1700°C	High temperature, laboratory

Applications: Industrial furnaces, engines, chemical processing, food processing, research

Mnemonic: "SHOVE theory: Seebeck Hot-cold Output Voltage Equals Temperature."

Question 4(a OR) [3 marks]

Differentiate active and passive transducers.

Answer:

Parameter	Active Transducers	Passive Transducers
Energy conversion	Convert physical quantity directly to electrical output	Require external power source
Output signal	Self-generating	Modulate external energy
Examples	Thermocouple, Piezoelectric, Photovoltaic	RTD, Strain gauge, LVDT
Sensitivity	Generally lower	Generally higher
Circuit complexity	Simpler	More complex
Power requirement	No external power needed	External power required

Mnemonic: "SIMPLE difference: Self-powered Is Main Principle of Leading Energy transducers."

Question 4(b OR) [4 marks]

Explain Capacitive Transducer with necessary diagram in detail. Also list application of it.

Answer:

Capacitive transducer works on the principle of change in capacitance due to physical displacement.

	Fixed	Dioloctrio			
Capacitance Measuring Circuit	Fixed	Dielectric	Movable		Physical Parameter

Working principle:

- Capacitance C = $\varepsilon_0 \varepsilon_r A/d$
- Varies with change in: area (A), distance (d), or dielectric constant (ε_r)
- Displacement changes the capacitance
- Measured using bridge circuit or oscillator

Applications:

- Pressure measurement
- Liquid level sensing
- Humidity sensors
- Displacement measurement
- Accelerometers

Mnemonic: "CADAP: Capacitance Alters with Distance, Area, or Permittivity."

Question 4(c OR) [7 marks]

Explain LVDT Transducer operation, construction with necessary diagram in detail. Also list advantage, disadvantage and application of LVDT.

Answer:

LVDT (Linear Variable Differential Transformer) is an electromechanical transducer that converts linear displacement into electrical output.

Construction:

- Primary coil in center
- Two secondary coils wound symmetrically
- Movable ferromagnetic core

• Signal conditioning circuitry

Operation:

- AC excitation energizes primary coil
- Core position determines magnetic coupling to secondaries
- Differential voltage output proportional to displacement
- Phase indicates direction of displacement

Advantages:

- Non-contact operation
- Infinite resolution
- High linearity
- Robust construction
- Long operational life
- Immunity to harsh environments

Disadvantages:

- Requires AC excitation
- Bulky compared to other sensors
- Affected by external magnetic fields
- Limited dynamic response

Applications:

- Precision measurement
- Hydraulic systems
- Aircraft controls
- Power plant controls
- Automated manufacturing

Mnemonic: "CDPOS sensor: Core Displacement Produces Output Signal."

Question 5(a) [3 marks]

Demonstrate working and principle of Semiconductor Temperature Sensor LM35.

Answer:

LM35 is an integrated circuit temperature sensor that outputs voltage linearly proportional to temperature in Celsius.

Working principle:

- Integrated circuit with built-in temperature-sensing element
- Linear output voltage: +10mV/°C
- Calibrated directly in Celsius
- Operating range: -55°C to +150°C

Circuit:

- Requires only power supply connection
- Output directly readable with voltmeter
- No external calibration needed

Mnemonic: "TEN mV TRICK: Temperature Escalation Noted in milliVolts: Ten Rise Indicates Celsius Kelvin."

Question 5(b) [4 marks]

Describe working of Harmonic distortion analyzer with necessary diagram.

Answer:

Harmonic distortion analyzer measures the harmonic content in signals to determine signal quality.

Working principle:

- Fundamental frequency is filtered out using notch filter
- Remaining harmonics are measured
- THD = (VRMS of harmonics)/(VRMS of fundamental)
- Expressed as percentage or dB

Operation steps:

- 1. Measure total signal RMS
- 2. Filter out fundamental
- 3. Measure remaining harmonics
- 4. Calculate THD ratio

Mnemonic: "FRONT analysis: Filter Removes Original Note Totally for Analyzing Leftover Signals."

Question 5(c) [7 marks]

Describe working of Spectrum Analyzer with necessary diagram in detail.

Answer:

Spectrum Analyzer displays signal amplitude versus frequency, showing the spectral composition of signals.

Working principle:

- Superheterodyne principle: Input signal mixed with local oscillator
- Sweep technique: LO frequency swept across range of interest
- **Resolution bandwidth**: Controlled by IF filter bandwidth
- Detection: Converts IF signal to amplitude information
- **Display**: Shows frequency domain representation

Types:

- Swept-tuned spectrum analyzer
- FFT-based spectrum analyzer
- Real-time spectrum analyzer

Applications:

- Signal analysis
- EMI/EMC testing
- Communication systems testing
- Harmonic analysis
- Modulation analysis

Mnemonic: "SAFER view: Sweep Analyzes Frequencies for Examining RF."

Question 5(a OR) [3 marks]

Explain analog transducer and digital transducer. Also explain primary transducer and secondary transducer.

Answer:

Transducer Type	Description
Analog Transducer	Produces continuous output signal proportional to input physical quantity
Digital Transducer	Produces discrete/binary output signal that represents input quantity
Primary Transducer	Directly converts physical quantity into electrical signal
Secondary Transducer	Converts output of primary transducer into another form

Mnemonic: "PADS: Primary And Digital/analog Secondary."

Question 5(b OR) [4 marks]

Explain working of Digital IC tester with necessary diagram in detail.

Answer:

Digital IC tester verifies functionality of integrated circuits by applying test patterns and analyzing responses.

Working principle:

- IC inserted in ZIF (Zero Insertion Force) socket
- Test parameters selected for IC type
- Pattern generator applies specific input signals
- Outputs compared with expected results
- Pass/fail indication displayed

Features:

- Tests TTL, CMOS, memory ICs
- Identifies unknown ICs
- Detects open/short circuits
- Function verification

Mnemonic: "TRIG test: Test, Run patterns, Identify faults, Generate report."

Question 5(c OR) [7 marks]

Explain working of function generator with necessary diagram in detail.

Answer:

Function generator produces various waveforms at different frequencies for testing electronic circuits.

Working principle:

• **Oscillator**: Generates basic waveform (usually triangle)

- Waveform shaper: Converts to sine, square, triangle, ramp
- Frequency control: Sets oscillation rate
- Amplitude control: Adjusts output voltage level
- DC offset: Adds bias to output signal
- Output amplifier: Provides low impedance output

Output waveforms:

Applications:

- Testing amplifiers
- Filter characterization
- Signal analysis
- Educational demonstrations
- Calibration reference

Mnemonic: "SWATOR: Sine Wave And Triangle OSCillator Renders signals."