Skip to main content
  1. Resources/
  2. Study Materials/
  3. Electronics & Communication Engineering/
  4. ECE Semester 3/

Industrial Electronics (4331103) - Summer 2023 Solution

15 mins· ·
Study-Material Solutions Industrial-Electronics 4331103 2023 Summer
Milav Dabgar
Author
Milav Dabgar
Experienced lecturer in the electrical and electronic manufacturing industry. Skilled in Embedded Systems, Image Processing, Data Science, MATLAB, Python, STM32. Strong education professional with a Master’s degree in Communication Systems Engineering from L.D. College of Engineering - Ahmedabad.
Table of Contents

Question 1(a) [3 marks]
#

Draw and Explain the V-I Characteristics of TRIAC.

Answer: TRIAC (Triode for Alternating Current) is a bidirectional three-terminal semiconductor device that can conduct current in either direction when triggered.

Diagram:

      I
      ↑
      │        MT2
      │        /│\
      │       / │ \
      │      /  │  \
Quadrant III /   G   \ Quadrant I
      │    /    │    \
      │   /     │     \
──────┼──/──────┼──────\────→ V
      │ /       │       \
      │/        │        \
      │\        │        /
      │ \       │       /
      │  \      │      /
Quadrant IV \   │     / Quadrant II
      │    \    │    /
      │     \   │   /
      ↓      \  │  /
             \ │ /
              \│/
              MT1
  • Bidirectional operation: TRIAC conducts in both directions (positive and negative half cycles)
  • Quadrant operation: Functions in all four quadrants based on polarity of MT2 and gate
  • Triggering voltage: Breakdown occurs at ±VBO in either direction
  • Holding current: Minimum current to maintain conduction

Mnemonic: “Two Rectifiers In A Case”

Question 1(b) [4 marks]
#

Explain working of SCR using two transistor analogy.

Answer: SCR (Silicon Controlled Rectifier) can be represented as interconnected PNP and NPN transistors.

Diagram:

         Anode
           │
           │
         ┌─┴─┐
         │   │
     ┌───┤ P ├───┐
     │   │   │   │
     │   └───┘   │
     │           │
     │   ┌───┐   │
     └───┤ N ├───┘
         │   │
     ┌───┤   ├───┐
     │   └───┘   │
     │           │
     │   ┌───┐   │
     └───┤ P ├───┘
         │   │
         └─┬─┘
           │
           │
        Cathode
  • Two-transistor structure: PNP (Q1) and NPN (Q2) connected such that collector of each transistor drives the base of other
  • Regenerative feedback: Once both transistors start conducting, they keep each other in saturation
  • Triggering: Applying gate current to Q2 base starts the regenerative process
  • Latching: Once triggered, SCR remains ON even if gate signal is removed

Mnemonic: “Pull Neat Path”

Question 1(c) [7 marks]
#

Draw the circuit diagram of photo electric relay using LDR and explain it Working.

Answer: A photoelectric relay using LDR (Light Dependent Resistor) is a light-activated switching circuit.

Circuit Diagram:

     +Vcc
      │
      ├───────┐
      │       │
      R1      │
      │       │
      │       │
      ├───────┤
      │       │
      │      LDR
      │       │
      │       │
    ┌─┴─┐     │
    │ B │     │
 ───┤   ├─────┘
    │ C │
    └─┬─┘
      │
      │
      ├─────────┐
      │         │
      R2      Relay
      │         │
      │         │
      └─────────┴───── GND
  • Light sensing: LDR resistance decreases in presence of light
  • Transistor operation: When light falls on LDR, voltage at transistor base changes
  • Relay switching: Transistor conducts/cuts off based on light, activating/deactivating relay
  • Threshold adjustment: Potentiometer R1 sets light sensitivity level
  • Applications: Automatic street lights, burglar alarms, automatic door openers

Mnemonic: “Light Detects Readily”

Question 1(c OR) [7 marks]
#

Draw the gate pulse trigger circuit using UJT for SCR and explain its working.

Answer: UJT (Unijunction Transistor) provides reliable trigger pulses for SCR.

Circuit Diagram:

        +Vcc
         │
         │
         R1
         │
         │
    ┌────┴────┐
    │         │
    │        B2
    │    UJT  │
    │         │
    │    B1   │
    └────┬────┘
         │
         R3
         │
     ┌───┴────┐
     │        │
     C       SCR Gate
     │        │
     │        │
     └────────┴──── GND
  • RC timing: R1 and C form charging circuit that determines pulse frequency
  • UJT operation: UJT fires when capacitor voltage reaches peak point voltage
  • Pulse generation: UJT discharges capacitor producing sharp trigger pulse
  • SCR triggering: Pulse applied to SCR gate turns it ON at specific points in AC cycle
  • Frequency control: Adjusting R1 changes pulse frequency for phase control

Mnemonic: “Uniform Junctions Trigger”

Question 2(a) [3 marks]
#

State Triggering methods of SCR.

Answer:

Triggering MethodOperating PrincipleAdvantages
Gate TriggeringCurrent applied to gate terminalMost common, precise control
Thermal TriggeringTemperature rise causes leakageSimple, no external circuit
Light TriggeringPhotons create electron-hole pairsElectrical isolation, used in LASCRs
dv/dt TriggeringRapid voltage rise causes turn-onUseful for protection circuits
Forward Voltage TriggeringExceeding breakover voltageNo gate connection needed

Mnemonic: “Good Triggers Let Devices Fire”

Question 2(b) [4 marks]
#

What is Commutation of SCR? Explain class-E commutation.

Answer: Commutation is the process of turning OFF an SCR by reducing its anode current below holding current.

Class-E Commutation (Complementary Commutation):

              L1
    AC   ┌────┐────┐
Source   │    │    │
    ┌────┴─┐  │  ┌─┴────┐
    │      │  │  │      │
    │ SCR1 │  │  │ SCR2 │
    │      │  │  │      │
    └────┬─┘  │  └─┬────┘
         │    │    │
         └────┘────┘
              Load
  • Complementary switching: Uses another SCR in opposite half-cycle
  • Natural commutation: AC source crosses zero, anode current falls below holding current
  • Application: AC power control circuits, cycloconverters
  • Advantage: No additional commutation components required

Mnemonic: “Complementary Elements”

Question 2(c) [7 marks]
#

Draw and explain Snubber Circuit for SCR.

Answer: A snubber circuit protects SCR from voltage transients and dv/dt turn-on.

Circuit Diagram:

        ┌─────────┐
        │         │
AC   ┌──┴──┐     Rs    
Source│     │     ├───┐
  ┌───┤ SCR ├─────┘   │
  │   │     │         │
  │   └──┬──┘         │
  │      │          Cs│
  │      │            │
  │      │            │
  │      └────────────┘
  │
  └─────────────────── Load
  • RC network: Series resistor (Rs) and capacitor (Cs) connected across SCR
  • Transient suppression: Capacitor absorbs voltage spikes that could damage SCR
  • dv/dt protection: Prevents false triggering due to rapid voltage rise
  • Turn-off assistance: Helps in commutation by providing alternate current path
  • Component selection: Cs based on load current, Rs limits discharge current

Mnemonic: “Safely Neutralizes Unwanted Breakover”

Question 2(a OR) [3 marks]
#

Explain over current protection method of SCR.

Answer:

Protection MethodWorking PrincipleApplications
FusesMelts when current exceeds ratingSimple, economical protection
Circuit BreakersTrips on overload, can be resetReusable protection
Current Limiting ReactorsLimits fault current magnitudeIndustrial power control
Electronic Current LimitingSenses current and controls gatePrecise protection
Crowbar CircuitShorts power supply on overloadProtects sensitive loads

Mnemonic: “Fault Current Causes Equipment Damage”

Question 2(b OR) [4 marks]
#

Explain the working of opto-SCR.

Answer: An opto-SCR (or Light Activated SCR) combines a light source and SCR in an isolated package.

Diagram:

      ┌───────────────┐
      │   ┌───┐       │
      │   │   │       │
 LED  │   │ ◄─┼───┐   │
Anode ├───┤LED│   │   │
      │   │   │   │   │
      │   └───┘   │   │
 LED  │           │   │
Cathode├───────────┘   │
      │               │
      │      ┌───┐    │
      │      │   │ SCR│
  SCR │      │ S ├───Anode
 Gate ├──────┤   │    │
      │      │ C │    │
      │      │ R │    │
  SCR │      └───┘    │
Cathode├───────────────┘
      │               │
      └───────────────┘
  • Electrical isolation: LED optically triggers SCR without electrical connection
  • Noise immunity: Immune to electrical noise and interference
  • High-voltage isolation: Separates control and power circuits
  • Applications: Industrial control, high-voltage switching

Mnemonic: “Light Activates Silicon Control”

Question 2(c OR) [7 marks]
#

What is force commutation? Explain any two.

Answer: Force commutation is artificially turning OFF an SCR by reducing its anode current below holding level.

1. Class A Commutation (Self-Commutation):

    ┌───┐
    │   │    L
    │   ├────┐─────┐
AC  │   │    │     │
Source┤   │    │   SCR
    │   │    │     │
    └───┘    C     │
              │     │
              └─────┘
                Load
  • LC resonant circuit: Parallel L-C across SCR creates oscillations
  • Reverse current: L-C circuit forces reverse current through SCR
  • Applications: Inverters, choppers

2. Class B Commutation (Resonant Pulse Commutation):

              Commutating
                Switch
    ┌───┐      ┌───┐
    │   │      │   │
AC  │   │    L │   │
Source┤   ├────┐─┴─┐
    │   │    │    │
    └───┘    │    │
            SCR   C
              │    │
              └────┘
               Load
  • External switch: Additional SCR or switch triggers commutation
  • Energy storage: L-C circuit stores energy then reverses SCR current
  • Applications: DC choppers, controlled rectifiers

Mnemonic: “Force Circuit Reversal”

Question 3(a) [3 marks]
#

Explain 1-φ full Wave bridge-controlled rectifier using four diodes & one SCR.

Answer: This circuit combines diodes and an SCR for controlled single-phase full-wave rectification.

Circuit Diagram:

         D1        D2
     ┌───┬───┐───┬───┐
     │   │   │   │   │
     │   ▼   │   ▼   │
     │       │       │
AC   │       │       │    Load
Source┤       │       ├───R───┐
     │       │       │       │
     │   ▲   │   ▲   │       │
     │   │   │   │   │       │
     └───┴───┘───┴───┘       │
         D3   SCR    D4       │
                             GND
  • Bridge configuration: Four diodes arranged in bridge with one replaced by SCR
  • Variable output: SCR controls conduction angle and thus output voltage
  • Economical design: Uses only one SCR instead of two or four
  • Efficiency: Higher than half-wave controlled rectifier

Mnemonic: “Blend Diodes Smartly”

Question 3(b) [4 marks]
#

What is Chopper? What are its application?

Answer:

AspectDescription
DefinitionDC-DC converter that converts fixed DC input to variable DC output
Working PrinciplePeriodically switches DC input ON/OFF at high frequency
TypesStep-down (Buck), Step-up (Boost), Buck-Boost, Cuk
Control MethodsPWM, Frequency modulation, Current-limit control
ApplicationsDC motor speed control, Battery chargers, UPS, Solar systems, Electric vehicles

Mnemonic: “Chops Current Perfectly”

Question 3(c) [7 marks]
#

Draw and explain the circuit diagram of static switch using SCR for 1-φ A.C. Load.

Answer: A static switch using SCR provides non-mechanical switching for AC loads.

Circuit Diagram:

              SCR1
             ┌──┐
     ┌───────┤  ├────┐
     │       └──┘    │
     │                │
AC   │                │   AC
Source┤                ├── Load
     │                │
     │       ┌──┐    │
     └───────┤  ├────┘
             └──┘
              SCR2
               │
               │
               │
          ┌────┴────┐
          │ Trigger │
          │ Circuit │
          └─────────┘
  • Antiparallel SCRs: Two SCRs connected in inverse parallel for bidirectional conduction
  • Gate control: Properly timed gate signals control power to load
  • Zero-crossing switching: SCRs naturally turn OFF at zero crossing
  • Applications: Heater control, motor soft-starting, lighting control
  • Advantages: No moving parts, silent operation, long life

Mnemonic: “Solid Switching Technology”

Question 3(a OR) [3 marks]
#

Explain basic principle of DC Chopper.

Answer:

ComponentFunction
Switching DeviceSCR, MOSFET, IGBT switches DC at high frequency
Control CircuitGenerates PWM gate signals to control ON/OFF time
Duty CycleRatio of ON time to total time period determines output
Output FilterSmooths chopped output to reduce ripple
Working PrincipleAverage voltage = Input voltage × Duty cycle

Mnemonic: “Direct Current Control”

Question 3(b OR) [4 marks]
#

Write short note on: Un-interrupted Power Supply (UPS).

Answer: UPS provides emergency power when main supply fails.

Block Diagram:

    ┌─────────┐    ┌─────────┐    ┌─────────┐
    │  Mains  │    │Rectifier │    │ Inverter│
    │  Input  ├────┤  & DC   ├────┤  & AC   ├─── Output
    │ (AC)    │    │ Section │    │ Section │    (AC)
    └─────────┘    └─────────┘    └─────────┘
                        │
                    ┌───┴───┐
                    │Battery │
                    │System  │
                    └───────┘
  • Backup power: Provides continuous power during outages
  • Types: Online, Offline, Line-interactive UPS
  • Protection: Against power surges, sags, and frequency variations
  • Applications: Computers, medical equipment, telecommunications

Mnemonic: “Uninterrupted Power Securely”

Question 3(c OR) [7 marks]
#

Draw the block diagram of SMPS and explain the function of each block.

Answer: Switched-Mode Power Supply converts AC to regulated DC efficiently.

Block Diagram:

    ┌─────────┐    ┌─────────┐    ┌─────────┐    ┌─────────┐    ┌─────────┐
    │  Mains  │    │  Input  │    │High-Freq│    │Output   │    │Output   │
    │  Input  ├────┤ Rectifier├────┤Switching├────┤Rectifier├────┤ Filter  ├─── DC Output
    │  (AC)   │    │& Filter │    │ Circuit │    │& Filter │    │         │
    └─────────┘    └─────────┘    └─────────┘    └─────────┘    └─────────┘
                                       │
                                  ┌────┴────┐
                                  │ Control │
                                  │ Circuit │
                                  └─────────┘
  • Input rectifier: Converts AC to unregulated DC
  • High-frequency switching: Converts DC to high-frequency AC using transistors
  • Transformer: Provides isolation and voltage scaling
  • Output rectifier: Converts high-frequency AC to DC
  • Filter: Smooths DC output to reduce ripple
  • Control circuit: Regulates output through feedback

Mnemonic: “Switch Mode Power System”

Question 4(a) [3 marks]
#

Draw the circuit diagram using TRIAC for speed control of 1-φ DC Shunt motor and Explain its working.

Answer: TRIAC-based speed control for a DC shunt motor provides efficient variable speed.

Circuit Diagram:

     ┌────────┐   ┌────────┐      ┌───────┐
AC   │        │   │        │      │ DC    │
Source┤ TRIAC  ├───┤ Bridge ├──────┤ Shunt │
     │        │   │Rectifier│      │ Motor │
     └────────┘   └────────┘      └───────┘
         │
     ┌───┴───┐
     │ DIAC  │
     │       │
     └───┬───┘
         │
     ┌───┴───┐
     │       │
     │   R   │
     │       │
     └───┬───┘
         │
     ┌───┴───┐
     │   C   │
     │       │
     └───────┘
  • Phase control: TRIAC varies effective voltage through phase angle control
  • Rectification: Bridge rectifier converts AC to DC for motor
  • Speed variation: Motor speed proportional to applied voltage
  • RC timing: RC network determines firing angle of TRIAC

Mnemonic: “TRIAC Regulates Speed”

Question 4(b) [4 marks]
#

Draw and explain the circuit diagram four stage sequential timer using IC-556.

Answer: IC-556 dual timer can be configured as a multi-stage sequential timer.

Circuit Diagram:

    Vcc
     │
     ├─────┬─────┬─────┬─────┐
     │     │     │     │     │
    R1    R2    R3    R4    │
     │     │     │     │     │
     ├─────┴─────┴─────┴─────┤
     │                       │
     │       IC-556          │
     │                       │
     ├───┬───┬───┬───────────┤
     │   │   │   │           │
     C1  C2  C3  C4          │
     │   │   │   │           │
     └───┴───┴───┴───────────┘
         │   │   │
         O1  O2  O3  O4
  • Dual timer IC: IC-556 contains two 555 timer circuits
  • Cascaded configuration: Output of one stage triggers the next
  • Timing control: RC time constants determine duration of each stage
  • Applications: Industrial sequencing, process control, automation

Mnemonic: “Sequential Steps Timed Precisely”

Question 4(c) [7 marks]
#

Explain induction heating.

Answer: Induction heating is a non-contact heating process using electromagnetic induction.

Diagram:

    ┌───────────────┐
    │ High-Frequency│
    │ Power Supply  │
    └───────┬───────┘
            │
    ┌───────┴───────┐
    │    Induction  │
    │     Coil      │
    └───────┬───────┘
            │
    ┌───────┴───────┐
    │   Workpiece   │
    │  (Conductive  │
    │   Material)   │
    └───────────────┘
PrincipleDescription
Electromagnetic InductionAC in coil creates alternating magnetic field
Eddy CurrentsMagnetic field induces currents in workpiece
Resistive HeatingEddy currents generate heat due to material resistance
Skin EffectCurrent concentrates near surface at high frequencies
ApplicationsHeat treatment, melting, forging, brazing, cooking

Mnemonic: “Induced Heating Efficiently”

Question 4(a OR) [3 marks]
#

Draw and explain three stage IC555 timer circuit.

Answer: A three-stage timer using IC555 provides sequential timing operations.

Circuit Diagram:

                Vcc
                 │
         ┌───────┴───────┐
         │ Reset         │
    ┌────┤4          8├──┐
    │    │             │  │
    │ ┌──┤2  IC555   3├──┴────┐
    │ │  │             │      │
   R1│ │  │7            │      │
    │ │  │             │     R4
    │ │  │6            │      │
    ├─┘  │             │      │
    │   C1            C2     │
    │    │             │      │
    └────┴──────┬──────┴──────┘
                │
                O1
  • Monostable mode: Each stage operates in monostable mode with fixed time delay
  • Cascaded connection: Output of first timer triggers second, and so on
  • Timing components: R-C network determines time delay of each stage
  • Applications: Automatic sequencing, process timing, industrial control

Mnemonic: “Time Intervals Created”

Question 4(b OR) [4 marks]
#

Explain the principle of dielectric heating.

Answer:

PrincipleDescription
High-Frequency Electric FieldMaterial placed between electrodes with RF voltage (1-100 MHz)
Molecular FrictionDipole molecules vibrate/rotate trying to align with alternating field
Heat GenerationInternal friction between molecules generates heat uniformly
Non-Conductive MaterialsEffective for heating non-conductive materials (plastics, wood, food)
ApplicationsPlastic welding, wood drying, food processing (microwave ovens)

Mnemonic: “Dielectric Energy Heats”

Question 4(c OR) [7 marks]
#

Make comparison between Induction heating and Dielectric heating.

Answer:

ParameterInduction HeatingDielectric Heating
Basic PrincipleElectromagnetic inductionHigh-frequency electric field
Suitable MaterialsConductive materials (metals)Non-conductive materials (plastics, wood)
Frequency Range1 kHz to 1 MHz1 MHz to 1 GHz
Heating MechanismEddy currents and hysteresisMolecular friction (dipole rotation)
Heat DistributionSurface heating (skin effect)Volumetric (uniform throughout)
Efficiency80-90% for magnetic materials50-70% depending on material
ApplicationsMetal melting, forging, heat treatmentPlastic welding, food processing, drying
EquipmentInduction coil, work pieceElectrodes, dielectric material

Mnemonic: “ICED” - Induction Conductive, Eddy currents; Dielectric, Dipoles

Question 5(a) [3 marks]
#

Explain Construction and working of Universal Motor.

Answer: Universal motor operates on both AC and DC power sources.

Diagram:

       ┌───┐
       │   │
       │   │
       │   │
 ┌─────┴───┴─────┐
 │  Field Winding │
 │   ┌─────┐     │
 │   │     │     │
 │   │Rotor│     │
 │   │     │     │
 │   └─────┘     │
 │               │
 └───────────────┘
      Brushes
  • Series connection: Field winding in series with armature winding
  • Construction: Stator with field winding, rotor with commutator and brushes
  • Operating principle: Same direction torque on both AC and DC
  • Characteristics: High starting torque, high speed at low load
  • Applications: Portable tools, household appliances, blenders

Mnemonic: “Universally Motorized”

Question 5(b) [4 marks]
#

Draw and explain the construction of DC servo motor.

Answer: DC servo motor provides precise position or speed control.

Diagram:

     ┌─────────────┐
     │  Permanent  │
     │   Magnet    │
     │   Stator    │
     │   ┌─────┐   │
     │   │     │   │
     │   │Rotor│   │
     │   │     │   │
     │   └─────┘   │
     │             │
     └─────┬───────┘
           │
     ┌─────┴─────┐
     │  Encoder  │
     │  Feedback │
     └───────────┘
  • Construction: Permanent magnet stator, lightweight rotor, feedback device
  • Control system: Closed-loop control with position/velocity feedback
  • Low inertia: Allows quick response and precise positioning
  • Applications: Robotics, CNC machines, positioning systems
  • Features: High torque-to-inertia ratio, fast response, accuracy

Mnemonic: “Servo System Control”

Question 5(c) [7 marks]
#

Draw the block diagram of Programmable logic Control (PLC) and explain the Function of each block.

Answer: PLC is an industrial digital computer for automation control.

Block Diagram:

    ┌─────────────┐    ┌─────────────┐    ┌─────────────┐
    │             │    │             │    │             │
    │   Input     │    │  Central    │    │   Output    │
    │   Modules   ├────┤ Processing  ├────┤   Modules   │
    │             │    │   Unit      │    │             │
    └─────────────┘    └──────┬──────┘    └─────────────┘
                              │
         ┌───────────────────┼───────────────────┐
         │                   │                   │
    ┌────┴─────┐       ┌─────┴─────┐       ┌────┴─────┐
    │  Memory  │       │Programming│       │  Power   │
    │  Unit    │       │  Device   │       │  Supply  │
    └──────────┘       └───────────┘       └──────────┘
  • CPU (Central Processing Unit): Executes program, processes I/O data, makes decisions
  • Input modules: Convert field signals (sensors, switches) to digital signals for CPU
  • Output modules: Convert CPU commands to actuator signals (motors, valves)
  • Memory unit: Stores program and data (ROM for OS, RAM for user program)
  • Programming device: PC or console for program development and monitoring
  • Power supply: Provides regulated power to PLC components

Mnemonic: “Programs Logic Completely”

Question 5(a OR) [3 marks]
#

Draw and explain the construction of Stepper motor.

Answer: Stepper motor rotates in discrete steps for precise positioning.

Diagram:

      ┌───────────┐
      │           │
      │  Stator   │
      │  ┌─────┐  │
      │  │     │  │
      │  │Rotor│  │
      │  │     │  │
      │  └─────┘  │
      │           │
      └───────────┘
          Phases
  • Stator: Contains multiple coil windings (phases)
  • Rotor: Permanent magnet or variable reluctance type
  • Types: Permanent magnet, variable reluctance, hybrid
  • Step angle: Typically 1.8° (200 steps/rev) or 0.9° (400 steps/rev)
  • Applications: Printers, disk drives, robotics, CNC machines

Mnemonic: “Steps Precisely Moved”

Question 5(b OR) [4 marks]
#

Draw explain solid state circuit to control DC shunt Motor Speed.

Answer: Solid-state circuit provides efficient and smooth DC motor speed control.

Circuit Diagram:

     +Vdc
      │
      │           ┌──────┐
      ├───────────┤ Field │
      │           │ Winding│
      │           └──────┘
      │
    ┌─┴─┐
    │   │     ┌──────┐
    │PWM├─────┤ MOSFET│    ┌──────┐
    │   │     │Driver │────┤MOSFET│
    └───┘     └──────┘     │      │
                          ┌┴──────┴┐
                          │Armature│
                          │Winding │
                          └────────┘
  • PWM controller: Generates variable duty cycle pulses to control speed
  • MOSFET driver: Provides gate drive to power MOSFET
  • Power MOSFET: Controls current through armature winding
  • Feedback: Tachogenerator or encoder provides speed feedback
  • Advantages: Efficient, smooth control, wide speed range

Mnemonic: “Power With MOSFET”

Question 5(c OR) [7 marks]
#

Explain the Working of VFD (Variable Frequency Drive).

Answer: VFD controls AC motor speed by varying frequency and voltage.

Block Diagram:

    ┌─────────┐    ┌─────────┐    ┌─────────┐    ┌─────────┐
    │  AC     │    │Rectifier │    │DC Link  │    │Inverter │    ┌─────────┐
    │  Input  ├────┤ Circuit  ├────┤Capacitor├────┤ Circuit ├────┤   AC    │
    │         │    │         │    │         │    │         │    │  Motor   │
    └─────────┘    └─────────┘    └─────────┘    └─────────┘    └─────────┘
                                       │
                                  ┌────┴────┐
                                  │ Control │
                                  │ Circuit │
                                  └─────────┘
ComponentFunction
RectifierConverts AC input to DC (diode bridge or active front end)
DC LinkFilters DC and stores energy (capacitors, sometimes inductors)
InverterConverts DC to variable frequency AC (IGBTs with PWM)
Control CircuitRegulates frequency/voltage based on speed requirement
Braking CircuitDissipates regenerative energy during deceleration
  • Speed control: Motor speed proportional to frequency (RPM = 120f/P)
  • Torque control: Maintains V/f ratio for constant torque
  • Energy savings: Reduces energy consumption at lower speeds
  • Applications: Pumps, fans, conveyors, process control
  • Features: Soft start, overcurrent protection, regenerative braking

Mnemonic: “Vary Frequency, Drive motor”

Related

Antenna and Wave Propagation (4341106) - Summer 2023 Solution
20 mins
Study-Material Solutions Antenna Wave-Propagation 4341106 2023 Summer
Electronic Measurements and Instruments (4331102) - Summer 2023 Solution
22 mins
Study-Material Solutions Electronic-Measurements 4331102 2023 Summer
Electronic Circuits & Networks (4331101) - Summer 2023 Solution
17 mins
Study-Material Solutions Electronic-Circuits Networks 4331101 2023 Summer
Linear Integrated Circuit (4341105) - Summer 2023 Solution
18 mins
Study-Material Solutions Linear-Integrated-Circuit 4341105 2023 Summer
Digital Communication (4341102) - Summer 2023 Solution
20 mins
Study-Material Solutions Digital-Communication 4341102 2023 Summer
Microprocessor and Microcontroller (4341101) - Summer 2023 Solution
23 mins
Study-Material Solutions Microprocessor 4341101 2023 Summer