
Q1a: Define Microprocessor

Definition of a Microprocessor

A microprocessor is a single integrated circuit (IC) that incorporates the core functions of a computer's
central processing unit (CPU).

Key Points:

The "Brain" of a Computer: It executes instructions, performs calculations, and manages the
flow of data within a computer system.

Small and Powerful: Microprocessors pack millions or even billions of transistors into a tiny chip,
enabling complex processing in compact devices.

Essential for Modern Devices: They power a vast range of devices from smartphones and
laptops to cars, appliances, and industrial equipment.

Components: Typical components of a microprocessor include:

Arithmetic Logic Unit (ALU) - Performs arithmetic and logical operations

Control Unit (CU) - Decodes instructions and coordinates the operations of other units

Registers - Small, high-speed memory locations for temporary data storage

Q1b: Explain Flag register of 8085 microprocessor

The Flag Register

The Flag register in the 8085 is an 8-bit register, with only 5 bits actively used as flags. These flags act as
individual flip-flops that are set (1) or reset (0) to reflect specific conditions arising from arithmetic, logical,
and other operations performed by the ALU (Arithmetic and Logic Unit).

The 5 Flags:

1. Sign Flag (S):

Set (1) if the result of an operation is negative (the Most Significant Bit, or MSB, of the result is 1).

Reset (0) if the result is positive.

2. Zero Flag (Z):

Set (1) if the result of an operation is zero.

Reset (0) if the result is not zero.

3. Auxiliary Carry Flag (AC):

Set (1) if there is a carry-out from the lower nibble (lower 4 bits) into the upper nibble (upper 4
bits) of a result.

Used primarily in instructions that perform decimal arithmetic.

4. Parity Flag (P):

Set (1) if the result has even parity (contains an even number of 1s).

Reset (0) if the result has odd parity.

Microprocessor and Microcontroller (1333202) - Winter 2023 Solution by Milav Dabgar

No. 1 / 34

5. Carry Flag (CY):

Set (1) if there is a carry-out from the most significant bit (MSB) of a result during addition, or a
borrow during subtraction.

Reset (0) otherwise.

How the Flags are Used:

Conditional Jumps: Instructions like JZ (Jump if Zero), JNZ (Jump if Not Zero), JC (Jump if Carry), etc. use
the status of these flags to determine whether to branch to different parts of the program.

Decision Making: The processor can examine flag states to modify calculations or behaviors based on
previous operations.

Example:

Q1c: Explain format of instruction of 8085 microprocessor with
example

8085 Instruction Formats

Instructions in the 8085 microprocessor can be 1, 2, or 3 bytes long. The structure varies depending on the
specific instruction and the addressing modes used.

General Structure

Opcode (Operation Code): The first byte of an instruction. It specifies the operation to be performed
(e.g., MOV, ADD, JMP).

Operands (Optional): The second and third bytes, if present, provide data or addresses required by
the operation. Operands can be:

Registers: 8-bit registers within the 8085 (B, C, D, E, H, L, or the accumulator A).

Immediate Data: 8-bit or 16-bit data embedded directly into the instruction.

Memory Addresses: 16-bit addresses of memory locations.

8085 Instruction Examples

1. Single-Byte Instruction (No Operands):

Instruction: NOP (No Operation)

Opcode: 00000000

Explanation: Does nothing - the processor simply moves to the next instruction.

2. Two-Byte Instruction (Immediate Data):

Instruction: MVI A, 42H (Move Immediate to Accumulator)

Opcode: 00111110

; Assume the accumulator (A) holds the value 50

SUB B ; Subtract the value in register B from the accumulator
JZ LABEL ; If the result is zero, jump to the code section marked as LABEL

Microprocessor and Microcontroller (1333202) - Winter 2023 Solution by Milav Dabgar

No. 2 / 34

Operand: 42H (Hexadecimal value to be loaded)

Explanation: Loads the value 42H into the accumulator.

3. Three-Byte Instruction (16-bit Memory Address):

Instruction: LDA 2050H (Load Accumulator Direct)

Opcode: 00111010

Operand: 2050H (16-bit memory address)

Explanation: Loads the content of the memory location at address 2050H into the accumulator.

Addressing Modes

The way operands are specified determines the "addressing mode" of the instruction. The 8085 supports
modes like:

Register addressing: The operand is a register.

Direct addressing: The operand is a 16-bit memory address.

Immediate addressing: The operand is data within the instruction.

Register indirect addressing: The operand's address is held within a register pair.

Remember:

The specific format depends on the instruction and the addressing mode used.

Opcodes and addressing modes are how the 8085 interprets the bytes that make up an instruction.

Q1c: Explain function of ALU, Control Unit and CPU of 8085
microprocessor

1. ALU (Arithmetic Logic Unit)

Heart of Calculations: The ALU performs the core arithmetic and logical operations within the
microprocessor.

Operations:

Arithmetic: Addition, subtraction, increment, decrement, etc.

Logical: AND, OR, XOR, NOT, comparisons, etc.

Flags: Sets status flags (Carry, Zero, Sign, Parity) based on the results of its operations. These flags are
used for conditional branching and decision-making by the processor.

2. Control Unit

The Orchestrator: Governs the overall operation of the microprocessor.

Key Functions:

Instruction Decoding: Interprets the opcode of the current instruction fetched from memory.

Control Signal Generation: Produces control signals that synchronize and manage the actions of
all other units within the microprocessor (ALU, registers, memory interface, etc.).

Microprocessor and Microcontroller (1333202) - Winter 2023 Solution by Milav Dabgar

No. 3 / 34

Data Flow Management: Coordinates the movement of data between the ALU, registers, and
memory/I/O devices.

3. CPU (Central Processing Unit)

The Brain of the System: The CPU is the combination of the ALU and the Control Unit.

Responsibilities:

Instruction Execution: Fetches instructions from memory, decodes them using the control unit,
and executes them using the ALU and other components.

Program Control: Manages the flow of instructions within a program, including branching and
jumps based on conditions.

System Management: Handles communication with external devices and responds to
interrupts.

How They Work Together

1. The Control Unit fetches an instruction from memory.

2. The Control Unit decodes the instruction and generates the necessary control signals.

3. The ALU, if needed, performs the required arithmetic or logical operation.

4. Results may be stored in registers, written to memory, or sent to output devices.

5. The Control Unit directs the processor to fetch the next instruction, continuing the cycle.

Q2a: Explain function of ALE signal with diagram

What is the ALE Signal?

The ALE signal is a control signal generated by the 8085 microprocessor.

It is a positive-going pulse that occurs during the first clock cycle (T1 state) of each machine cycle.

Purpose of the ALE Signal

The primary function of the ALE signal is to demultiplex the lower-order address/data bus (AD0-AD7). This
bus is shared (multiplexed) to carry both:

1. Lower 8-bits of the Address (during T1 state): The 8085 needs to send out the 16-bit address of a
memory location or I/O port. The lower 8 bits of the address are carried on lines AD0-AD7.

2. Data (during subsequent states): The same lines are used to transmit or receive actual data to/from
the memory or I/O device.

How ALE Demultiplexes the Bus

1. T1 State:

The ALE signal goes high.

The 8085 places the lower 8 bits of the address on lines AD0-AD7.

An external latch (usually an 8282 or 8283 octal latch) connected to these lines "latches" or
captures this address information.

Microprocessor and Microcontroller (1333202) - Winter 2023 Solution by Milav Dabgar

No. 4 / 34

Feature Microprocessor Microcontroller

Complexity Less complex More complex

Instruction
Set

Larger and more versatile Smaller and more application-specific

Memory Requires external memory (RAM, ROM) Has built-in memory (RAM, ROM, Flash)

Peripherals
Requires external peripherals (e.g.,
display, I/O)

Has built-in peripherals (e.g., timers,
ADCs, DACs)

Cost Generally lower cost Generally higher cost

Applications General-purpose computing Embedded systems, specific tasks

Examples Intel 8085, Intel x86 Atmel AVR, PIC, ARM Cortex-M

2. Subsequent States (T2, T3, ...):

ALE goes low.

The lower-order address lines (AD0-AD7) are now free to be used as a data bus for transferring
data.

Diagram

A simple timing diagram can help visualize this:

Key Points:

The ALE signal is crucial for the 8085 to correctly interface with memory and I/O devices.

The external latch holds the lower order address bits, freeing the 8085 to continue its fetch or write
operation.

Q2b: Compare microprocessor and microcontroller

Q2c: Draw & explain block diagram of 8085 microprocessor

Block Diagram

 ______ ______
ALE | |_______| |______
 _____ _____
AD0-AD7 |Addr |_______| Data |________

 (T1) (T2, T3, ...)

Microprocessor and Microcontroller (1333202) - Winter 2023 Solution by Milav Dabgar

No. 5 / 34

Key Components and their Functions

1. Accumulator: An 8-bit register that's central to arithmetic and logical operations performed by the
ALU.

2. Arithmetic and Logic Unit (ALU): Performs arithmetic operations (addition, subtraction, etc.) and
logical operations (AND, OR, NOT, etc.). It sets flags (Carry, Zero, Sign, etc.) based on the results.

3. Temporary Register: A temporary holding location for data used during instruction execution.

4. Instruction Register: Holds the currently fetched instruction.

5. Instruction Decoder and Machine Cycle Encoder: Decodes the instruction in the instruction register
and generates control signals to coordinate the microprocessor's actions during a machine cycle.

6. Register Array: Contains six general purpose 8-bit registers (B, C, D, E, H, and L), which can be used
individually or in pairs (BC, DE, HL) for 16-bit operations.

7. Program Counter (PC): A 16-bit register that holds the memory address of the next instruction to be
fetched.

8. Stack Pointer (SP): A 16-bit register pointing to the top of the stack in memory. The stack is used for
storing return addresses of subroutines and temporarily storing data.

9. Timing and Control Unit: Generates timing and control signals for all operations within the
microprocessor and synchronizes with external devices.

10. Interrupt Control: Handles incoming interrupt requests (if any), acknowledging them and allowing
them to temporarily disrupt the current program execution.

Microprocessor and Microcontroller (1333202) - Winter 2023 Solution by Milav Dabgar

No. 6 / 34

11. Serial I/O Control: Facilitates serial input and output, useful for slower communication with certain
types of peripherals.

12. Address Bus (A8 - A15): The upper 8-bits of the 16-bit address bus, used to send the most significant
portion of an address.

13. Address/Data Bus (AD0 - AD7): A multiplexed bus. It carries the lower 8 bits of an address during the
beginning of a machine cycle and data during data transfer operations.

How it Works (Simplified)

1. Fetch: The PC provides an address; the instruction is fetched from memory and placed into the
Instruction Register.

2. Decode: The Instruction Decoder decodes the instruction to understand what needs to be done.

3. Execute: The Control Unit generates signals to coordinate the ALU, registers, and other components
as they perform the necessary operations.

4. Repeat: The process continues, fetching and executing instructions sequentially.

Q2a: Explain 16 bits registers of 8085 microprocessor

16-Bit Registers in the 8085

The 8085 microprocessor, while primarily an 8-bit processor, features several 16-bit registers that are
crucial for memory addressing and specific operations:

Program Counter (PC):

Holds the 16-bit memory address of the next instruction to be fetched and executed by the
processor.

Essential for maintaining the correct sequence of program execution.

Stack Pointer (SP):

Points to the current top of the stack in memory.

The stack is a Last-In, First-Out (LIFO) data structure used for storing return addresses during
subroutine calls, temporary data, and interrupt handling.

Register Pairs (BC, DE, HL):

While B, C, D, E, H, and L are individual 8-bit registers, they can be paired together to form 16-bit
registers:

BC

DE

HL

These register pairs allow for operations on 16-bit data and for holding 16-bit memory addresses.

Key Functions of 16-bit Registers

1. Memory Addressing: The 8085 has a 16-bit address bus, meaning it can address up to 64KB of
memory. The 16-bit registers are used to store and manipulate memory addresses for data storage
and retrieval.

Microprocessor and Microcontroller (1333202) - Winter 2023 Solution by Milav Dabgar

No. 7 / 34

2. Subroutine Calls and Returns: When a subroutine is called (using instructions like CALL), the
processor needs to store the address where it should return to after the subroutine is finished. The
Program Counter is pushed onto the stack for safekeeping.

3. Data Manipulation: Some instructions treat these register pairs as a single unit for performing 16-bit
operations (e.g., addition, loading immediate 16-bit values).

Q2b: Explain de-multiplexing lower order address and data lines
with diagram of 8085 microprocessor

Why Demultiplexing is Needed

The Intel 8085 utilizes a multiplexed address/data bus to reduce the number of pins required. The lower 8
lines (AD0-AD7) carry two types of information:

1. Address (during T1 state): During the first clock cycle of a machine cycle, these lines hold the lower 8
bits of a 16-bit memory or I/O address.

2. Data (during subsequent states): In the remaining clock cycles, those same lines transmit or receive
the actual data being sent to or from a memory location or I/O device.

Demultiplexing Process

Demultiplexing is the process of separating the address and data information so the 8085 and external
devices can operate correctly. Here's how it's achieved:

1. The ALE Signal: During the first clock cycle (T1), the 8085 asserts the ALE (Address Latch Enable)
control signal. This signal goes high.

2. External Latch: An external latch circuit (e.g., 8282 or 74LS373 octal latch) is connected to the AD0-
AD7 lines. When the ALE signal goes high, this latch captures and holds the lower 8 bits of the address.

3. Address Decoded: The latched lower-order address bits, along with the higher-order address bits (A8-
A15), provide the complete 16-bit address for memory or I/O devices.

4. Data Bus Freed: After the T1 state, the ALE signal goes low. The AD0-AD7 lines are now free to be
used as a data bus for the remainder of the machine cycle.

Diagram

Microprocessor and Microcontroller (1333202) - Winter 2023 Solution by Milav Dabgar

No. 8 / 34

Key Points

Demultiplexing enables the 8085 to interface with memory and I/O devices correctly by separating the
address and data functions of the same physical bus lines.

The ALE signal plays a crucial role in timing the latching of address information.

Q2c: Draw and explain pin diagram of 8085

Pin Diagram

Explanation of Pin Groups

1. Address Bus (A8-A15): The upper 8-bits of the 16-bit address bus used for addressing memory and
I/O devices.

2. Multiplexed Address/Data Bus (AD0-AD7): These pins serve two functions:

During the first clock state (T1), they carry the lower 8-bits of the address.

During subsequent clock states, they serve as the data bus for data transfer.

3. Control and Status Signals

ALE (Address Latch Enable): Indicates that the AD0-AD7 lines contain a valid address.

RD (Read): Indicates a read operation from memory or I/O.

WR (Write): Indicates a write operation to memory or I/O.

Microprocessor and Microcontroller (1333202) - Winter 2023 Solution by Milav Dabgar

No. 9 / 34

IO/M (IO/Memory Select): Distinguishes between memory (IO/M = 0) and I/O (IO/M = 1)
operations.

S0, S1 (Status signals): These, along with IO/M, indicate the type of machine cycle (opcode fetch,
memory read, I/O write, etc.).

4. Power Supply and Clock

VCC: +5V power supply.

VSS: Ground (0V).

X1, X2: Connections for a crystal or external clock source to drive the internal clock generator.

CLK (OUT): Clock output signal for synchronizing external devices.

5. Interrupts

TRAP: Highest priority non-maskable interrupt.

RST 7.5, RST 6.5, RST 5.5: Maskable interrupts with decreasing priority.

INTR: General maskable interrupt.

INTA: Interrupt acknowledge signal sent by the 8085.

6. Serial I/O

SID (Serial Input Data): Input line for serial data.

SOD (Serial Output Data): Output line for serial data.

7. Reset

RESET IN: When low, resets the microprocessor, clearing the program counter and registers.

RESET OUT: Indicates that the microprocessor is being reset.

8. DMA (Direct Memory Access)

HOLD: Input from a DMA device to request control of buses.

HLDA: Acknowledge signal, indicating the 8085 has relinquished control of buses.

Q3a: Draw clock and reset circuit of 8051 microcontroller

Absolutely! Let's break down the clock and reset circuit of a typical 8051 microcontroller.

Clock Circuit

Crystal Oscillator: The foundation of the timing for the 8051 is a crystal oscillator connected to the
XTAL1 and XTAL2 pins of the microcontroller.

The crystal, along with small capacitors (usually in the 20-30pF range), provides a stable and
precise clock frequency.

Common crystal frequencies for 8051 systems are 11.0592 MHz or 12 MHz.

Internal Clock Generation: The 8051 has an internal clock generator that takes the external crystal
oscillator's signal and divides it down. This ensures that the microcontroller and its various
components operate at the correct internal clock speed.

Diagram

Microprocessor and Microcontroller (1333202) - Winter 2023 Solution by Milav Dabgar

No. 10 / 34

Reset Circuit

RC Network: A simple resistor-capacitor (RC) network is often used for the reset circuit.

When power is first applied, the capacitor begins to charge. This holds the RESET pin low for a
short period, guaranteeing the 8051 starts in a known state.

Once the capacitor voltage reaches a threshold, the RESET pin goes high, allowing the
microcontroller to begin executing code.

Supervisory Circuit (Optional): For more robust reset control, a dedicated supervisory circuit/IC
provides more precise monitoring of the power supply voltage. This ensures reliable resets if the
power supply fluctuates or becomes unstable.

Diagram

Microprocessor and Microcontroller (1333202) - Winter 2023 Solution by Milav Dabgar

No. 11 / 34

Explanation

1. Power On: When the system powers on, the capacitor of the reset circuit is initially discharged,
holding the RESET pin low.

2. Reset: This low level on the RESET pin forces the 8051 microcontroller into a reset state. Internal
registers are cleared, and the Program Counter begins at address 0000H.

3. Capacitor Charging: The capacitor in the reset circuit starts charging through the resistor.

4. Reset Released: Once the capacitor charges beyond the RESET pin's threshold voltage, the pin goes
high. The 8051 starts executing code from the beginning of its program memory.

5. Clock Stabilization: While the reset circuit is active, the crystal oscillator begins to oscillate and the
clock stabilizes. The 8051's internal clock generator uses this signal to provide the necessary timing for
the microcontroller's operation.

Key Points

The clock and reset circuits are essential for the correct initialization and operation of an 8051
microcontroller system.

Simple and inexpensive reset circuits can be designed using just a capacitor and resistor.

Supervisory circuits offer improved power monitoring and enhanced reset reliability.

Q3b: Explain internal RAM of 8051

Internal RAM Organization

The 8051 family of microcontrollers typically includes 128 bytes of internal RAM, although some derivatives
like the 8052 offer an extended 256 bytes. This internal RAM is organized into several distinct sections:

1. Register Banks (00H - 1FH):

Four banks of eight general-purpose registers (R0-R7).

Each bank can be selected using two bits in the Program Status Word (PSW) register.

Used for storing temporary data and intermediate results during calculations.

2. Bit-Addressable Area (20H to 2FH):

16 bytes of RAM where each bit can be individually addressed (128 individual bits in total).

Useful for storing single-bit variables (like flags or control signals).

3. General Purpose RAM (30H - 7FH):

The remaining 80 bytes of general-purpose RAM.

Used for variable storage, temporary data, and even as a small stack if needed.

Key Points

Speed: Internal RAM is extremely fast to access compared to external RAM, as it's located directly on
the microcontroller chip.

Limited Size: The internal RAM in 8051 is limited. Programs with larger data requirements often need
external RAM.

Microprocessor and Microcontroller (1333202) - Winter 2023 Solution by Milav Dabgar

No. 12 / 34

Flexibility: The bit-addressable area provides fine-grained control over individual bits, ideal for control
and status flags.

How Internal RAM Is Used

Arithmetic and Logical Operations: The register banks are heavily used by the ALU for arithmetic
and logical operations.

Temporary Storage: All sections of the internal RAM can be used for temporarily storing data during
calculation or program execution.

Stack: Although the 8051 has a dedicated hardware stack, the general-purpose RAM can also be used
as a stack area in constrained situations.

Flags and Control: The bit-addressable area often houses individual control flags and status bits for
the 8051 or its peripherals.

Example

Q3c: Explain block diagram of 8051

Detailed Block Diagram Breakdown

MOV R1, #50H ; Move the value 50H into register R1

ADD A, R1 ; Add the value in R1 to the accumulator
MOV 35H, A ; Store the result in general-purpose RAM location 35H
SETB PSW.2 ; Set bit 2 (Carry flag) in the Program Status Word

Microprocessor and Microcontroller (1333202) - Winter 2023 Solution by Milav Dabgar

No. 13 / 34

Central Processing Unit (CPU)

Accumulator: A core 8-bit register involved in most arithmetic and logical operations with the ALU.

B Register: A temporary register that can be used for multiplication, division, or as extra data storage.

Program Status Word (PSW): Holds important status flags like Carry, Overflow, Parity, and register
bank selection bits.

Stack Pointer (SP): An 8-bit register pointing to the current top of the stack in RAM.

Program Counter (PC): 16-bit register keeping track of the memory address of the next instruction to
be fetched.

Instruction Register: Holds the currently fetched instruction.

Instruction Decoder: Decodes the instruction in the instruction register, generating control signals
that orchestrate what happens within the other blocks.

Timing and Control: Governs the fetch-decode-execute cycle of the CPU, synchronizes actions, and
interfaces with external signals.

Memory

Internal RAM (128 bytes):

Register Banks 0-3: Four sets of eight 8-bit general-purpose registers (R0-R7).

Bit-addressable area (20h-2Fh): 16 bytes with individually addressable bits.

Microprocessor and Microcontroller (1333202) - Winter 2023 Solution by Milav Dabgar

No. 14 / 34

General-purpose area (30h-7Fh): Remaining 80 bytes of RAM for data and variables.

Internal ROM (typically 4KB): Non-volatile memory for storing the 8051's program code.

Input/Output (I/O)

Ports 0 through 3 (P0 - P3): Four bi-directional 8-bit I/O ports that can be individually configured as
input or output.

Timers/Counters

Timer/Counter 0 and 1 (T0, T1): 16-bit timers/counters with various modes of operation (counting
external events, generating time intervals, etc.).

Serial Port (UART)

TXD: Transmit Data: The line used for sending serial data out from the 8051.

RXD: Receive Data: The line used for receiving serial data into the 8051.

SBUF: Serial Data Buffer: A temporary register for holding data during serial transmission or
reception.

Interrupts

External Interrupts (INT0, INT1): Triggered by signals on external pins.

Timer Interrupts (TF0, TF1): Triggered when the timers/counters overflow or reach a specific value.

Serial Interrupt (RI, TI): Triggered by events related to UART transmission/reception.

Interrupt Control Logic: Handles enabling/disabling, prioritizing, and managing these interrupts.

Additional Notes

Bus Structure: Notice the internal data bus that connects the CPU, memory, and I/O blocks.
Instructions and data flow along this bus under the control of the CPU.

Reset: The RESET input initializes the 8051, setting registers and the Program Counter to their starting
states.

Oscillator: The XTAL1 and XTAL2 inputs are for connecting the crystal and other components that
form the clock circuit for the microcontroller.

Q3a: Explain different timer modes of 8051 microcontroller

Mode 0: 13-Bit Timer

Configuration: The timer register is split into two parts:

Five high-order bits (THx)

Eight low-order bits (TLx), with the top 3 bits of TLx written as zeroes.

Operation: The 5 bits of TLx are automatically incremented. When TLx overflows, it increments THx.
This forms a 13-bit timer.

Use Cases: Often used for event counting or generating baud rates in serial communication,
particularly when interfacing with legacy systems.

Microprocessor and Microcontroller (1333202) - Winter 2023 Solution by Milav Dabgar

No. 15 / 34

Mode 1: 16-Bit Timer

Configuration: The full 16-bits of the Timer register (THx and TLx) function as a single timer unit.

Operation: Each clock pulse increments the entire register.

Use Cases General-purpose time delays, long interval measurements, anything requiring 16-bit
precision timing.

Mode 2: 8-Bit Auto-Reload Timer

Configuration:

THx holds a fixed reload value.

TLx operates as the 8-bit timer.

Operation:

TLx counts up. When it overflows, it's automatically reloaded with the value stored in THx.

This creates a recurring time interval.

Use Cases: Generating fixed, predictable time delays or timing periodic events.

Mode 3: Split 8-bit Timers

Configuration:

Timer 0 is split into two independent 8-bit timers/counters: TL0 and TH0.

Timer 1 remains as a 16-bit timer if needed.

Operation:

TL0 and TH0 function as two separate timers, often with TL0 used as a timer and TH0 used as a
counter.

Use Cases:

Situations requiring two independent timers

Generating baud rates (TL0) while counting external events (TH0)

Key Control Registers

TMOD (Timer Mode): This register selects the operating mode for Timer 0 and Timer 1.

TCON (Timer Control): Contains flags and start/stop control bits for the timers.

How to Select a Mode

Mode selection depends on:

Timing Precision: 16-bit vs. 8-bit

Recurring Intervals: Auto-reload mode vs. manual restart.

Number of Timers Needed: Split timer mode provides two independent 8-bit timers if needed within
Timer 0.

Q3b: Explain function of DPTR and PC

Microprocessor and Microcontroller (1333202) - Winter 2023 Solution by Milav Dabgar

No. 16 / 34

DPTR (Data Pointer)

Type: 16-bit register, often visualized as two conjoined 8-bit registers DPH (Higher Byte) and DPL
(Lower Byte).

Primary Function: Pointing to memory locations within the 8051's data memory space. This includes
both the internal and external RAM.

Key Uses of DPTR

1. Accessing External Memory: The 8051 can access up to 64KB of external data memory. The DPTR
holds the address when instructions like these are used:

MOVX A,@DPTR (Read a byte from external RAM pointed to by DPTR)

MOVX @DPTR,A (Write a byte to external RAM pointed to by DPTR)

2. Lookup Tables and Buffers: DPTR can be used to conveniently access data stored within tables or
buffers located in memory. You can change the value in DPTR to point to different areas of these data
structures.

3. Passing Parameters: If a function or subroutine requires data stored in memory, the memory
address can be passed using the DPTR register.

PC (Program Counter)

Type: 16-bit Register

Primary Function: Keeping track of the memory address of the next instruction to be executed by the
8051's CPU.

How PC Works

1. Fetch: The PC provides the address from which the next instruction is fetched from program memory
(ROM).

2. Increment: After the instruction is fetched, the PC is automatically incremented to point to the next
sequential instruction, ensuring instructions are normally executed in order.

3. Modifiying Program Flow: Instructions like jumps, calls, and returns alter the value in the PC,
changing the execution flow of the program.

Key Points

DPTR is primarily for data; PC is for code: DPTR is designed for accessing data in memory, while PC
is for tracking instructions in the program memory.

PC mostly automatic; DPTR is programmer-controlled: The PC increments automatically with
regular program execution, while the programmer generally controls and sets the value in DPTR.

Q3c: Explain interrupts of 8051 microcontroller

What is an Interrupt?

An interrupt is an event that temporarily suspends the normal execution of a program and forces the
8051 to execute a special routine called an Interrupt Service Routine (ISR).

Microprocessor and Microcontroller (1333202) - Winter 2023 Solution by Milav Dabgar

No. 17 / 34

Interrupts allow the microcontroller to respond quickly to important events (e.g., button presses, timer
overflow, data received) without needing to constantly poll for them in the main code.

Types of Interrupts in the 8051

1. External Interrupts:

INT0 (Pin P3.2): Triggered by a low-to-high transition on the INT0 pin.

INT1 (Pin P3.3): Triggered by a low-to-high transition on the INT1 pin.

2. Timer Interrupts:

TF0 (Timer 0 Overflow): Triggered when Timer 0 overflows.

TF1 (Timer 1 Overflow): Triggered when Timer 1 overflows.

3. Serial Interrupt:

RI/TI (Receive Interrupt/Transmit Interrupt): Triggered when the serial port finishes receiving
a byte (RI) or transmitting a byte (TI).

Interrupt Process

1. Trigger: An interrupt source (external pin, timer overflow, etc.) is triggered.

2. Completion of Current Instruction: The 8051 completes executing its current instruction.

3. Saving State: The microcontroller automatically pushes the current Program Counter (PC) onto the
stack.

4. Jump to ISR: The 8051 jumps to the pre-determined memory address of the corresponding Interrupt
Service Routine (ISR).

5. ISR Execution: The ISR code executes, handling the event that triggered the interrupt.

6. Returning: After the ISR completes, a 'RETI' instruction pops the PC value from the stack, resuming the
original program flow.

Interrupt Control Registers

IE (Interrupt Enable): Enables or disables specific interrupts globally and individually within the
system.

IP (Interrupt Priority): Assigns priority levels to each interrupt source. If multiple interrupts occur
simultaneously, the one with higher priority is serviced first.

Key Points

Priority: The 8051 has a fixed interrupt priority structure (e.g., INT0 has the highest priority).

Masking: Interrupts can be turned on or off selectively using the IE register.

Nesting: Interrupts can potentially interrupt other interrupts, depending on their priority.

Example

Imagine an 8051 system monitoring a sensor. A timer interrupt might trigger periodically to read the sensor
value, while an external interrupt could signal a critical threshold being exceeded, requiring immediate
action.

Microprocessor and Microcontroller (1333202) - Winter 2023 Solution by Milav Dabgar

No. 18 / 34

Q4a: Explain data transfer instruction with example for 8051

Data Transfer Instructions in the 8051

These instructions move data between various registers, internal RAM, external RAM, and I/O ports of the
8051. Here's a breakdown of the key types:

1. Register-to-Register Transfers

MOV instruction: The most versatile data transfer instruction.

Examples:

MOV A, R5 - Copies the contents of register R5 into the accumulator.

MOV R2, #45H - Loads the immediate value 45H into register R2.

MOV P1, A - Copies the accumulator's contents to port P1 (output).

2. Direct Addressing

MOV instruction with 'direct' addressing mode: Accesses internal RAM or Special Function
Registers (SFRs).

Examples:

MOV 50H, A - Stores the value in the accumulator to internal RAM location 50H.

MOV ACC, 55H - Loads the byte from internal RAM location 55H into the accumulator.

MOV TMOD, #01H - Sets Timer 0 into mode 1.

3. Indirect Addressing

MOV instruction using registers as pointers: The register holds the address of the data.

Examples:

MOV A, @R0 - Copies the byte pointed to by register R0 into the accumulator.

MOV @R1, 33H - Stores the value 33H at the address pointed to by R1.

4. External Memory Transfers

MOVX instruction: Used to access external RAM.

Examples:

MOVX A, @DPTR – Copies a byte from external RAM (address in DPTR) into the accumulator.

MOVX @DPTR, A – Copies the contents of the accumulator into external RAM (address in DPTR).

5. Special Data Transfers

PUSH instruction: Pushes data onto the stack (internal RAM).

POP instruction: Pops data off the stack.

Example: Data Sorting Routine

Consider a simple routine to sort three numbers stored at internal RAM locations 40H, 41H, and 42H:

Microprocessor and Microcontroller (1333202) - Winter 2023 Solution by Milav Dabgar

No. 19 / 34

Q4b: List and explain different addressing modes of 8051
microcontroller

Key Addressing Modes in the 8051

1. Register Addressing

How it Works: The operand of the instruction directly specifies one of the 8051's registers (A, B,
R0-R7).

Example: MOV A, R2 (Copy the contents of R2 into the accumulator)

Fast and Efficient: No additional memory accesses are needed.

2. Direct Addressing

How it Works: The instruction contains an 8-bit address that directly points to a location in the
internal RAM or Special Function Registers (SFRs).

Example: MOV 45H, A (Store the value in the accumulator into internal RAM location 45H)

Accesses only first 256 bytes: Limited to accessing the lower portion of internal RAM and SFRs.

3. Indirect Addressing

How it Works: The instruction specifies a register (R0 or R1) that holds the memory address of
where the data actually resides.

Example: MOV A, @R0 (Copy the byte pointed to by the address in R0 into the accumulator).

Flexibility: Allows dynamic calculation of data locations.

4. Immediate Addressing

How it Works: The data to be used is embedded directly within the instruction itself. Preceded by
the '#' symbol.

Example: MOV A, #60H (Load the value 60H into the accumulator).

Convenient for constants: Useful for loading fixed values.

5. Base Relative Addressing (with DPTR)

How it Works: Used for accessing external RAM. The Data Pointer (DPTR) provides a 16-bit base
address, and an 8-bit offset within the instruction specifies a location relative to that base.

Example: MOVX A, @DPTR (Copy byte from external RAM pointed to by DPTR into the
accumulator)

COMPARE: MOV A, 40H ; Load the first number
 MOVC A, @A+DPTR ; Load the second number (assuming DPTR points to RAM)
 JC SWAP ; Jump to SWAP if the first is greater than the second

 MOV A, 41H ; Load the second number
 MOVC A, @A+DPTR ; Load the third number
 JC SWAP ; Jump to SWAP if the second is greater than the third
 ; ... (rest of your code)

SWAP: ; ... (Code to swap values)

Microprocessor and Microcontroller (1333202) - Winter 2023 Solution by Milav Dabgar

No. 20 / 34

Expanded Memory: Access up to 64KB of external memory

Important Notes

Different instructions support different combinations of addressing modes.

The chosen addressing mode affects the instruction's length and execution time.

Choosing the right addressing mode is a balance between flexibility and efficiency.

Q4c: Write a program to copy block of 8 data starting from location
100h to 200h

Here's an assembly program for the 8051 microcontroller to copy a block of 8 bytes of data from starting
location 100H to destination location 200H:

Explanation

1. ORG 0000H: This directive tells the assembler to place the code starting from memory location 0000H.

2. Initialization:

We load the Data Pointer (DPTR) with the starting address of the source block (100H).

Register R0 is loaded with the starting address of the destination block (200H).

Register R1 is initialized to 8, which is the number of bytes we want to copy.

3. COPY_LOOP:

MOVX A, @DPTR : Reads a byte from external RAM pointed to by DPTR and stores it in the
accumulator.

MOVX @R0, A : Writes the byte from the accumulator to external RAM pointed to by R0.

INC DPTR , INC R0 : Increment both DPTR and R0 to move to the next memory locations.

DJNZ R1, COPY_LOOP : Decrement R1 and jump back to the 'COPY_LOOP' label if R1 is not zero
(meaning we haven't copied all 8 bytes yet).

ORG 0000H ; Program starts at memory location 0000H

; Initialization

MOV DPTR, #100H ; Set DPTR to point to the source block (100H)
MOV R0, #200H ; Set R0 to point to the destination block (200H)
MOV R1, #08H ; Set R1 as the loop counter (8 bytes to copy)

COPY_LOOP:

MOVX A, @DPTR ; Read a byte from the source using DPTR
MOVX @R0, A ; Write the byte to the destination using R0
INC DPTR ; Increment DPTR to point to the next source byte
INC R0 ; Increment R0 to point to the next destination byte
DJNZ R1, COPY_LOOP ; Decrement R1 and jump if not zero

; End of Program (You can add more code here or an infinite loop)

END

Microprocessor and Microcontroller (1333202) - Winter 2023 Solution by Milav Dabgar

No. 21 / 34

4. END: Signifies the end of the assembly program.

Key Points

This assumes you have external RAM where you are storing the data.

You may need to adapt the addresses (100H and 200H) if your data is stored elsewhere.

Q4a: Write a program to add two bytes of data and store result in
R0 register

Here's the 8051 assembly code to add two bytes of data and store the result in register R0:

Explanation

1. Data Initialization:

MOV A, #56H : Loads the immediate value 56H (hexadecimal) into the accumulator (A register).

MOV B, #23H : Loads the immediate value 23H into register B.

2. Addition:

ADD A, B : Adds the value in register B to the value in the accumulator. The result remains in the
accumulator.

3. Storing the Result:

MOV R0, A : Moves the value from the accumulator (which holds the sum) into register R0.

Important Points

You can replace the MOV instructions with ways to get data from other sources (memory, user input,
etc.).

Make sure that the sum of your two data bytes can fit into 8 bits to avoid overflow.

Q4b: Explain indexed addressing mode with example

What is Indexed Addressing Mode?

Combination: Indexed addressing mode combines the use of a base register and an offset to
calculate the effective address of data.

Base Register: Can be either the Data Pointer (DPTR) or the Program Counter (PC).

; Data initialization - you might load these from memory in a real program

MOV A, #56H ; Load the first byte of data into the accumulator
MOV B, #23H ; Load the second byte of data into register B

; Addition

ADD A, B ; Add the value in register B to the accumulator
MOV R0, A ; Store the result (which is now in the accumulator) into R0

; End of program (you might do something with the result or add an infinite loop here)

END

Microprocessor and Microcontroller (1333202) - Winter 2023 Solution by Milav Dabgar

No. 22 / 34

Offset: The accumulator (A) holds the offset value.

Purpose: Primarily used to access elements within data structures like arrays or lookup tables located
in program memory (ROM).

How Indexed Addressing Works

1. The base register (DPTR or PC) is loaded with the starting address of the data structure (e.g., the array).

2. The accumulator (A) is loaded with an offset indicating the position of a specific element relative to the
base address.

3. The effective address is calculated by adding the contents of the base register and the accumulator.

4. The instruction accesses the data at this calculated effective address.

Example: Accessing an Array Element

Suppose you have an array of bytes stored in program memory starting at address 2000H. Here's how to
access the 5th element using indexed addressing:

Explanation of the Example

MOV DPTR, #2000H: Sets the DPTR as the base register pointing to the beginning of the array.

MOV A, #04H: Loads accumulator with offset 4, indicating we want the 5th element (remember: zero-
based indexing).

MOVC A, @A+DPTR:

The 8051 adds the offset in A (4) to the base address in DPTR (2000H), resulting in the effective
address 2004H.

The 'MOVC' instruction fetches the byte from program memory location 2004H and loads it into
the accumulator.

Key Points

Indexed addressing requires ROM access, so the source operand can only be program memory.

It makes sequentially accessing elements within arrays or tables convenient.

Q4c: Explain stack operation of 8051 microcontroller, PUSH and
POP instruction

The Stack in the 8051

Purpose: A Last-In, First-Out (LIFO) data structure residing in the internal RAM.

Stack Pointer (SP): A dedicated 8-bit register that always points to the current top of the stack.

MOV DPTR, #2000H ; Load DPTR with the base address of the array

MOV A, #04H ; Load offset (index 4, since arrays are zero-based)

; Accessing the 5th element (assuming you want to load it into the accumulator)

MOVC A, @A+DPTR ; Calculate effective address and fetch the data

Microprocessor and Microcontroller (1333202) - Winter 2023 Solution by Milav Dabgar

No. 23 / 34

Growth: The 8051 stack grows downward in memory. The SP is decremented when data is pushed,
and incremented when data is popped.

PUSH Instruction

1. Decrement Stack Pointer: The SP is decremented by one.

2. Write Data: The byte to be pushed is written to the internal RAM location now pointed to by the SP.

Example:

POP Instruction

1. Read Data: The byte pointed to by the SP is read from internal RAM.

2. Increment Stack Pointer: The SP is incremented by one.

Example:

Common Uses of the Stack

Temporary Storage: Storing the contents of registers during calculations when there aren't enough
registers available.

Subroutine Calls: When a subroutine (function) is called using the 'CALL' instruction, the return
address (next instruction after the call) is automatically pushed onto the stack. The 'RET' instruction
pops this return address, so execution continues correctly.

Interrupt Handling: When an interrupt occurs, the 8051 automatically pushes the Program Counter
(PC) onto the stack, allowing seamless return to the interrupted code after the interrupt service
routine.

Important Points

Stack Size: The 8051's internal RAM for the stack is limited; it's crucial to prevent stack overflow.

Initialization: The SP is initialized to 07H when the 8051 resets; your code often needs to set it to a
custom location.

Example: Swapping Two Numbers

MOV R5, #37H ; Load the value 37H into register R5

PUSH R5 ; Push the contents of R5 onto the stack

POP R6 ; Pop the top value from the stack into register R6

Microprocessor and Microcontroller (1333202) - Winter 2023 Solution by Milav Dabgar

No. 24 / 34

Q5a: Explain branching instruction with example

What are Branching Instructions?

Branching instructions, often also called jump instructions, allow you to alter the normal sequential flow of
program execution. They cause the Program Counter (PC) to jump to a different memory location, breaking
the usual 'execute the next instruction' pattern.

Types of Branching Instructions

1. Unconditional Branching

LJMP (Long Jump): Jumps to the specified 16-bit address.

Example: LJMP 2050H (jumps to memory location 2050H)

2. Conditional Branching

These depend on the status of flags (Carry, Parity, Overflow, etc.) set by previous
operations

Examples:

JC LABEL (Jump if Carry flag is set)

JNC LABEL (Jump if Carry flag is not set)

JZ LABEL (Jump if Zero flag is set)

JNZ LABEL (Jump if Zero flag is not set)

3. Short Jump (Relative Jump)

SJMP: Jumps to an address within a limited range relative (+127 or -128 bytes) to the current
instruction.

Example: SJMP LOOP_START (jumps to a label relatively nearby)

Example: Conditional Loop

Explanation

MOV SP, #70H ; Initialize Stack Pointer (assuming safe RAM space)

MOV A, #25H ; Load the first number into the accumulator
PUSH A ; Push the first number onto the stack

MOV A, #30H ; Load the second number into the accumulator
PUSH A ; Push the second number onto the stack

POP B ; Pop the top (second) number into register B
POP A ; Pop the original (first) number into the accumulator

MOV R0, #10 ; Initialize a counter
LOOP:

 ; ... some code here ...
 DJNZ R0, LOOP ; Decrement and jump if not zero

Microprocessor and Microcontroller (1333202) - Winter 2023 Solution by Milav Dabgar

No. 25 / 34

1. The counter register R0 is loaded with 10.

2. The code in the LOOP section executes.

3. DJNZ R0, LOOP

Decrements R0 by one.

If the Zero flag is NOT set (R0 is not zero), jumps back to the LOOP label.

Key Points

Branching instructions are core to creating loops, decision structures (if-else), and subroutines within
programs.

The destination of a jump can be an explicit address (e.g., LJMP 2050H) or often a label that the
assembler translates to the correct address.

Q5b: Interface 8 leds with 8051 microcontroller and write a
program to turn on and off

Hardware Setup

1. 8 LEDs: Choose standard LEDs considering the current requirements of the 8051's I/O ports.

2. Current-Limiting Resistors: Calculate the appropriate resistor values for your specific LEDs to
prevent damage (search for an online "LED resistor calculator" if needed).

3. 8051 Microcontroller: We'll assume you have an 8051 development board with an I/O port (e.g., Port
1).

4. Connections:

Connect one leg of each LED to a separate pin on Port 1 of the 8051 (P1.0 to P1.7).

Connect the other leg of each LED through a current-limiting resistor to ground.

Programming (Assembly)

Here's a simple 8051 assembly program to repeatedly turn the LEDs on and then off with a delay:

ORG 0000H ; Program starts at address 0000H

MAIN_LOOP:

 MOV A, #FFH ; Set all port pins high (LEDs on)
 MOV P1, A ; Send data to Port 1
 CALL DELAY ; Call a delay subroutine

 MOV A, #00H ; Set all port pins low (LEDs off)
 MOV P1, A
 CALL DELAY

 SJMP MAIN_LOOP ; Jump back to the beginning

DELAY: ; Simple delay subroutine - adjust for desired time
 MOV R0, #200 ; Adjust these values for timing
 MOV R1, #150

Microprocessor and Microcontroller (1333202) - Winter 2023 Solution by Milav Dabgar

No. 26 / 34

Explanation

1. MAIN_LOOP:

MOV A, #FFH : Loads the accumulator with FFH (all bits 1), which will turn all LEDs on.

MOV P1, A : Sends this value to Port 1.

CALL DELAY : Calls a subroutine to create a delay.

MOV A, #00H : Loads the accumulator with 00H (all bits 0), which will turn all LEDs off.

SJMP MAIN_LOOP : Creates an infinite loop.

2. DELAY Subroutine:

Provides a simple software delay using nested loops. You might want a more precise timer-based
delay in a real application.

Key Points:

Port Choice: I used Port 1(P1); adapt the code if you connect the LEDs to a different port.

LED Polarity: If your LEDs light up in the opposite manner, reverse the logic (use 00H to turn them on
and FFH to turn them off)

Delay Adjustment: Modify the values in the DELAY subroutine to change the on and off duration.

Q5c: Interface LCD with 8051 microcontroller and write a program
to display “welcome”

Hardware Setup

LCD: We'll assume a standard 16x2 character LCD module with a common HD44780 compatible
controller.

Connections:

Data Pins (D0-D7): Connect to an 8051 I/O Port (e.g., Port 2)

Control Pins:

RS (Register Select): Connect to an 8051 pin (e.g., P1.0)

RW (Read/Write): Connect to an 8051 pin (e.g., P1.1)

E (Enable): Connect to an 8051 pin (e.g., P1.2)

Contrast Adjustment (Vo): Connect to a potentiometer for controlling display contrast.

Backlight (if present): Power according to its requirements.

Assembly Programming

Here's an 8051 assembly program to initialize the LCD and display "Welcome":

DLY_LOOP: DJNZ R1, DLY_LOOP

 DJNZ R0, DLY_LOOP
 RET ; Return from subroutine

END

Microprocessor and Microcontroller (1333202) - Winter 2023 Solution by Milav Dabgar

No. 27 / 34

ORG 0000H

; Constants

LCD_PORT EQU P2

RS_PIN EQU P1.0
RW_PIN EQU P1.1
E_PIN EQU P1.2

; --- LCD Initialization ---

LCD_INIT:

 MOV A, #38H ; Function set: 8-bit, 2 lines, 5x7 font
 CALL LCD_CMD
 MOV A, #0CH ; Display on, cursor off, no blinking
 CALL LCD_CMD
 MOV A, #01H ; Clear display
 CALL LCD_CMD
 MOV A, #06H ; Entry mode: Increment cursor
 CALL LCD_CMD
 RET

; --- Send Command to LCD ---

LCD_CMD:

 CLR RS_PIN
 CLR RW_PIN
 MOV LCD_PORT, A
 SETB E_PIN ; Pulse Enable
 CLR E_PIN
 CALL DELAY ; Small delay (important for LCD)
 RET

; --- Send Data (Character) to LCD ---

LCD_DATA:

 SETB RS_PIN
 CLR RW_PIN
 MOV LCD_PORT, A
 SETB E_PIN ; Pulse Enable
 CLR E_PIN
 CALL DELAY ; Small delay
 RET

; --- Simple Delay Subroutine ---

DELAY:

 MOV R5, #50 ; Adjust these for approximate delay
 DLOOP: MOV R6, #200
 DJNZ R6, DLOOP
 DJNZ R5, DLOOP
 RET

; -- Main Program --

MAIN:

 CALL LCD_INIT

Microprocessor and Microcontroller (1333202) - Winter 2023 Solution by Milav Dabgar

No. 28 / 34

Explanation

Constants: LCD_PORT is defined to make the code adaptable if your connections change.

Subroutines: These encapsulate the interaction details with the LCD (sending commands, sending
data), making the main program cleaner. You'll need to fill in the details of these subroutines
according to your LCD's datasheet.

Main Program:

Calls LCD_INIT to configure the LCD.

Sends commands to select the desired display mode (2 lines, 5x7 font) and clear the display.

Sends each character of the message "Welcome" to the LCD using LCD_DATA .

Key Points

LCD Datasheet: You MUST adapt the initialization and command sequences based on your specific
LCD module.

8051 Timing: You might need short delays within the subroutines to ensure the LCD processes
commands correctly.

Subroutine Implementation: The core logic of sending commands/data to the LCD involves setting
the RS/RW lines, placing data on the data port, and pulsing the Enable pin.

Q5a: Explain logical instruction with example

What are Logical Instructions?

Logical instructions perform bitwise operations on individual bits within registers or between a register and
an immediate value. These include:

AND: Bitwise logical AND operation.

OR: Bitwise logical OR operation.

XOR: Bitwise logical XOR (Exclusive OR) operation.

NOT: Bitwise inversion (Complement)

Rotate/Shift: Move bits within a register or memory location

 MOV A, #80H ; Set cursor to first line, first position
 CALL LCD_CMD

 MOV A, #'W' ; Load characters to send
 CALL LCD_DATA
 MOV A, #'e'
 CALL LCD_DATA
 MOV A, #'l'
 CALL LCD_DATA
 ; ... (Send rest of "come")

END ; Add an infinite loop if needed for display to stay

Microprocessor and Microcontroller (1333202) - Winter 2023 Solution by Milav Dabgar

No. 29 / 34

Input A Input B AND OR XOR

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

How they work

Each bit of the first operand is compared to the corresponding bit of the second operand according to the
following truth tables:

Key Takeaways:

AND: Outputs 1 only when both inputs are 1.

OR: Outputs 1 when at least one input is 1.

XOR: Outputs 1 when the inputs are different.

Examples

1. Masking Bits (AND)

2. Setting Bits (OR)

3. Toggling Bits (XOR)

4. Rotating Bits

Common Uses

MOV A, #53H ; A = 0101 0011

ANL A, #0FH ; AND with 0000 1111 (mask to keep only the lower 4 bits)

; A now holds 0000 0011

MOV A, #7BH ; A = 0111 1011

ORL A, #80H ; OR with 1000 0000 (set the most significant bit)

; A now holds 1111 1011

MOV A, #96H ; A = 1001 0110

XOR A, #05H ; XOR with 0000 0101 (toggle specific bits)

; A now holds 1001 0011

MOV A, #0AH ; A = 0000 1010

RL A ; Rotate left through carry (assume Carry flag is 0)
; A now holds 0001 0100

Microprocessor and Microcontroller (1333202) - Winter 2023 Solution by Milav Dabgar

No. 30 / 34

Testing if specific bits are set or clear.

Manipulating flags (e.g., setting the Carry flag).

Isolating sections of data within a byte.

Implementing simple cryptographic functions.

Q5b: Interface 7 segment with 8051 microcontroller

Assumptions

Common Anode Display: The segments have a common positive connection. We'll control them by
sinking current (connecting to ground) through the 8051's pins.

Adapt the segment patterns if you have a Common Cathode display.

Single Digit: We'll interface a single digit display. This can be extended for multiple digits using
multiplexing techniques.

Connections: We'll assume you'll connect the 7-segment pins (a through g) to a port of the 8051 (e.g.,
Port 1).

Hardware Setup

1. 7-Segment Display: Choose a common anode 7-segment LED display.

2. Current-Limiting Resistors: Calculate and use resistors in series with each segment LED to prevent
damage. Search for a "LED resistor calculator" to find the right values.

3. Connections:

Connect the anodes of all segments (a through g) to the corresponding pins of Port 1 (P1.0
through P1.6) of the 8051.

Connect the common anode pin to the power supply (+5V).

Connect each segment's cathode through the resistor to ground.

Lookup Table

Create a lookup table in your program memory that maps the digit you want to display (0-9) to the
corresponding segment patterns:

Note: For a common anode display, '1' means the segment should be ON, so it's connected to ground.

Assembly Code Example

SEGMENT_PATTERNS:

 DB 0C0H ; Pattern for 0 (abcdefg)
 DB 0F9H ; Pattern for 1
 DB 0A4H ; Pattern for 2
 ; ... Add patterns for 3-9

ORG 0000H

; Assume display is connected to Port 1

Microprocessor and Microcontroller (1333202) - Winter 2023 Solution by Milav Dabgar

No. 31 / 34

Explanation

Table Usage: The code loads the digit to be displayed into R0, uses indirect addressing to get the
corresponding pattern from the lookup table, and sends it to the display port.

Multiplexing: If you have multiple 7-segment displays, you need to switch between them rapidly and
update the display port accordingly to create the illusion they are all on simultaneously.

Important:

Port Output: Ensure the port you use is configured as output.

Resistors: Don't forget the current-limiting resistors!

Q5c: Interface LM 35 with 8051 microcontroller and explain block
diagram of temperature controller

Interfacing LM35 with 8051

1. Connections:

Connect the Vout pin of the LM35 to one of the 8051's analog input channels (ADC).

Connect the VSS pin of the LM35 to ground.

Connect the VS pin of the LM35 to the power supply (+5V).

2. ADC Configuration:

Select the ADC channel connected to the LM35.

Set the ADC's resolution (e.g., 10-bit).

In your program, initiate the ADC conversion process.

3. Reading and Conversion:

After the conversion completes, read the digital value from the ADC data register.

The LM35 outputs 10mV per degree Celsius. To convert the digital ADC reading to temperature:

Scale the ADC value based on its resolution and reference voltage.

Divide by 10 to get the temperature in Celsius.

DISPLAY_PORT EQU P1

; ... (Segment patterns lookup table from above)

MAIN_LOOP:

 MOV R0, #2 ; Example: Load the digit 2 to display
 MOV A, @R0 ; Point to the segment pattern in the table
 ADD A, SEGMENT_PATTERNS ; Calculate the address
 MOVC A, @A+DPTR ; Fetch the segment pattern
 MOV DISPLAY_PORT, A ; Send the pattern to the display port

 ; ... (Add display refreshing if you want to multiplex multiple digits)
END

Microprocessor and Microcontroller (1333202) - Winter 2023 Solution by Milav Dabgar

No. 32 / 34

Code Snippet (Illustrative)

Block Diagram: Temperature Controller

Temperature Sensor (LM35): Measures the ambient temperature and generates an analog voltage
proportional to the temperature.

ADC (Analog-to-Digital Converter): Part of the 8051 microcontroller, it converts the analog voltage
from the LM35 into a digital value.

8051 Microcontroller:

Reads the temperature from the ADC.

Compares the measured temperature with a desired setpoint.

Generates control signals based on the comparison.

Control Output (Relay, etc.): Controls a device (e.g., heater, fan) to regulate the temperature. Could
be a simple on/off relay or more complex control like PWM.

Display (Optional): A display (LCD, 7-segment) to show the current temperature or setpoint.

How it Works

1. The LM35 senses temperature and sends the analog signal to the ADC.

; ... (ADC Initialization)

START_CONVERSION:

 SETB ADC_START_BIT ; Trigger ADC conversion
 JBC ADC_BUSY_BIT, START_CONVERSION ; Wait for conversion to complete

 MOV A, ADC_DATA_REG ; Read ADC result
 ; ... (Calculate temperature from ADC value)

Microprocessor and Microcontroller (1333202) - Winter 2023 Solution by Milav Dabgar

No. 33 / 34

2. The ADC converts the analog signal to a digital value.

3. The 8051 microcontroller reads this value, calculates the temperature, and compares it to the desired
setpoint.

4. If the temperature deviates from the setpoint, the 8051 sends control signals to turn a heater or cooler
on or off, aiming to bring the temperature back to the setpoint.

Microprocessor and Microcontroller (1333202) - Winter 2023 Solution by Milav Dabgar

No. 34 / 34

	Q1a: Define Microprocessor
	Q1b: Explain Flag register of 8085 microprocessor
	Q1c: Explain format of instruction of 8085 microprocessor with example
	Q1c: Explain function of ALU, Control Unit and CPU of 8085 microprocessor
	Q2a: Explain function of ALE signal with diagram
	Q2b: Compare microprocessor and microcontroller
	Q2c: Draw & explain block diagram of 8085 microprocessor
	Q2a: Explain 16 bits registers of 8085 microprocessor
	Q2b: Explain de-multiplexing lower order address and data lines with diagram of 8085 microprocessor
	Q2c: Draw and explain pin diagram of 8085
	Q3a: Draw clock and reset circuit of 8051 microcontroller
	Q3b: Explain internal RAM of 8051
	Q3c: Explain block diagram of 8051
	Q3a: Explain different timer modes of 8051 microcontroller
	Q3b: Explain function of DPTR and PC
	Q3c: Explain interrupts of 8051 microcontroller
	Q4a: Explain data transfer instruction with example for 8051
	Q4b: List and explain different addressing modes of 8051 microcontroller
	Q4c: Write a program to copy block of 8 data starting from location 100h to 200h
	Q4a: Write a program to add two bytes of data and store result in R0 register
	Q4b: Explain indexed addressing mode with example
	Q4c: Explain stack operation of 8051 microcontroller, PUSH and POP instruction
	Q5a: Explain branching instruction with example
	Q5b: Interface 8 leds with 8051 microcontroller and write a program to turn on and off
	Q5c: Interface LCD with 8051 microcontroller and write a program to display “welcome”
	Q5a: Explain logical instruction with example
	Q5b: Interface 7 segment with 8051 microcontroller
	Q5c: Interface LM 35 with 8051 microcontroller and explain block diagram of temperature controller

