


MICROPROCESSOR 8085

• Reference Book:
– Ramesh S. Goankar, “Microprocessor Architecture, 

Programming and Applications with 8085”, 5th Edition, 
Prentice Hall

• Week 1 – Basic Concept and Ideas about Microprocessor.
• Week 2 - Architecture of 8085
• Week 3 - Addressing Modes and Instruction set of 8085
• Week 4 – Interrupts of 8085
• Week 5 onwards – Peripherals.



Basic Concepts of Microprocessors
• Differences between:

– Microcomputer – a computer with a 
microprocessor as its CPU. Includes memory, I/O 
etc.

– Microprocessor – silicon chip which includes 
ALU, register circuits & control circuits

– Microcontroller – silicon chip which includes 
microprocessor, memory & I/O in a single 
package.



What is a Microprocessor?

• The word comes from the combination micro and 
processor. 
– Processor means a device that processes whatever. In 

this context processor means a device that processes 
numbers, specifically binary numbers, 0’s and 1’s.

• To process means to manipulate. It is a general term that 
describes all manipulation. Again in this content, it means to 
perform certain operations on the numbers that depend on the 
microprocessor’s design.



What about micro?

• Micro is a new addition. 
– In the late 1960’s, processors were built using discrete 

elements. 
• These devices performed the required operation, but were too 

large and too slow.

– In the early 1970’s the microchip was invented. All of 
the components that made up the processor were now 
placed on a single piece of silicon. The size became 
several thousand times smaller and the speed became 
several hundred times faster. The “Micro”Processor 
was born.



Was there ever a “mini”-
processor?

• No.
– It went directly from discrete elements to a 

single chip. However, comparing today’s 
microprocessors to the ones built in the early 
1970’s you find an extreme increase in the 
amount of integration.

• So, What is a microprocessor? 



Definition of the Microprocessor

The microprocessor is a programmable device
that takes in numbers, performs on them 
arithmetic or logical operations according to 
the program stored in memory and then 
produces other numbers as a result.



Definition (Contd.)
• Lets expand each of the underlined words:

– Programmable device: The microprocessor can perform 
different sets of operations on the data it receives depending 
on the sequence of instructions supplied in the given 
program.
By changing the program, the microprocessor manipulates 
the data in different ways.

– Instructions: Each microprocessor is designed to execute a 
specific group of operations. This group of operations is 
called an instruction set. This instruction set defines what the 
microprocessor can and cannot do.



Definition (Contd.)

– Takes in: The data that the microprocessor 
manipulates must come from somewhere. 

• It comes from what is called “input devices”. 
• These are devices that bring data into the system 

from the outside world. 
• These represent devices such as a keyboard, a 

mouse, switches, and the like.



Definition (Contd.)
– Numbers: The microprocessor has a very narrow view on life. It 

only understands binary numbers.

A binary digit is called a bit (which comes from binary digit). 

The microprocessor recognizes and processes a group of bits 
together. This group of bits is called a “word”.

The number of bits in a Microprocessor’s word, is a measure of its 
“abilities”.



Definition (Contd.)
– Words, Bytes, etc.

• The earliest microprocessor (the Intel 8088 and Motorola’s 
6800) recognized 8-bit words. 

– They processed information 8-bits at a time. That’s why they are 
called “8-bit processors”. They can handle large numbers, but in 
order to process these numbers, they broke them into 8-bit pieces 
and processed each group of 8-bits separately. 

• Later microprocessors (8086 and 68000) were designed with 
16-bit words.

– A group of 8-bits were referred to as a “half-word” or “byte”.
– A group of 4 bits is called a “nibble”.
– Also, 32 bit groups were given the name “long word”.

• Today, all processors manipulate at least 32 bits at a time and 
there exists microprocessors that can process 64, 80, 128 bits 

    i



Definition (Contd.)
– Arithmetic and Logic Operations: 

• Every microprocessor has arithmetic operations such as add 
and subtract as part of its instruction set. 

– Most microprocessors will have operations such as multiply and 
divide. 

– Some of the newer ones will have complex operations such as 
square root. 

• In addition, microprocessors have logic operations as well. 
Such as AND, OR, XOR, shift left, shift right, etc.

• Again, the number and types of operations define the 
microprocessor’s instruction set and depends on the specific 
microprocessor.



Definition (Contd.)

– Stored in memory :
• First, what is memory?

– Memory is the location where information is kept while not in 
current use. 

– Memory is a collection of storage devices. Usually, each storage 
device holds one bit. Also, in most kinds of memory, these 
storage devices are grouped into groups of 8. These 8 storage 
locations can only be accessed together. So, one can only read or 
write in terms of bytes to and form memory.

– Memory is usually measured by the number of bytes it can hold. 
It is measured in Kilos, Megas and lately Gigas. A Kilo in 
computer language is 210 =1024. So, a KB (KiloByte) is 1024 
bytes. Mega is 1024 Kilos and Giga is 1024 Mega.



Definition (Contd.)

– Stored in memory:
• When a program is entered into a computer, it is 

stored in memory. Then as the microprocessor starts 
to execute the instructions, it brings the instructions 
from memory one at a time.

• Memory is also used to hold the data.
– The microprocessor reads (brings in) the data from 

memory when it needs it and writes (stores) the results 
into memory when it is done.



Definition (Contd.)

– Produces: For the user to see the result of the 
execution of the program, the results must be 
presented in a human readable form. 

• The results must be presented on an output device.

• This can be the monitor, a paper from the printer, a 
simple LED or many other forms.



Memory

OutputInput

A Microprocessor-based system
From the above description, we can draw the 
following block diagram to represent a 
microprocessor-based system:



Inside The Microprocessor

• Internally, the microprocessor is made up of 
3 main units.
– The Arithmetic/Logic Unit (ALU) 
– The Control Unit.
– An array of registers for holding data while it is 

being manipulated.



Organization of a microprocessor-
based system

I/O
Input / Output

Memory

ROM   RAM

System Bus
ALU Register

Array

Control

• Let’s expand the picture a bit.



Memory
• Memory stores information such as instructions 

and data in binary format (0 and 1). It provides 
this information to the microprocessor whenever 
it is needed.

• Usually, there is a memory “sub-system” in a 
microprocessor-based system. This sub-system 
includes:
– The registers inside the microprocessor 
– Read Only Memory (ROM)

• used to store information that does not change.
– Random Access Memory (RAM) (also known as 

Read/Write Memory).
• used to store information supplied by the user. Such as 

programs and data.



Memory Map and Addresses
• The memory map is a picture representation 

of the address range and shows where the 
different memory chips are located within 
the address range.
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Memory

• To execute a program:
– the user enters its instructions in binary format into the 

memory.
– The microprocessor then reads these instructions and 

whatever data is needed from memory, executes the 
instructions and places the results either in memory or 
produces it on an output device.



The three cycle instruction 
execution model

• To execute a program, the microprocessor “reads” 
each instruction from memory, “interprets” it, then 
“executes” it.

• To use the right names for the cycles:
– The microprocessor fetches each instruction,
– decodes it,
– Then executes it.

• This sequence is continued until all instructions 
are performed.



Machine Language
• The number of bits that form the “word” of a 

microprocessor is fixed for that particular 
processor. 
– These bits define a maximum number of combinations. 

• For example an 8-bit microprocessor can have at most 28 = 256 
different combinations.

• However, in most microprocessors, not all of these 
combinations are used. 
– Certain patterns are chosen and assigned specific 

meanings. 
– Each of these patterns forms an instruction for the 

microprocessor. 
– The complete set of patterns makes up the 

microprocessor’s machine language.



The 8085 Machine Language

• The 8085 (from Intel) is an 8-bit microprocessor. 
– The 8085 uses a total of 246 bit patterns to form its 

instruction set.
– These 246 patterns represent only 74 instructions. 

• The reason for the difference is that some (actually most) 
instructions have multiple different formats.

– Because it is very difficult to enter the bit patterns 
correctly, they are usually entered in hexadecimal 
instead of binary.

• For example, the combination 0011 1100 which translates into 
“increment the number in the register called the accumulator”, 
is usually entered as 3C.



Assembly Language

• Entering the instructions using hexadecimal is quite 
easier than entering the binary combinations. 
– However, it still is difficult to understand what a program 

written in hexadecimal does.
– So, each company defines a symbolic code for the 

instructions.
– These codes are called “mnemonics”.
– The mnemonic for each instruction is usually a group of 

letters that suggest the operation performed.



Assembly Language

• Using the same example from before,
– 00111100 translates to 3C in hexadecimal (OPCODE)
– Its mnemonic is: “INR A”. 
– INR stands for “increment register” and A is short for 

accumulator.

• Another example is: 1000 0000,
– Which translates to 80 in hexadecimal. 
– Its mnemonic is “ADD B”. 
– “Add register B to the accumulator and keep the result in the 

accumulator”.



Assembly Language

• It is important to remember that a machine 
language and its associated assembly language are 
completely machine dependent.
– In other words, they are not transferable from one 

microprocessor to a different one. 

• For example, Motorolla has an 8-bit 
microprocessor called the 6800.
– The 8085 machine language is very different from that 

of the 6800. So is the assembly language.
– A program written for the 8085 cannot be executed on 

the 6800 and vice versa.



“Assembling” The Program

• How does assembly language get translated into 
machine language?
– There are two ways: 
– 1st there is “hand assembly”.

• The programmer translates each assembly language instruction 
into its equivalent hexadecimal code (machine language). Then 
the hexadecimal code is entered into memory.

– The other possibility is a program called an 
“assembler”, which does the translation automatically.



8085 Microprocessor
Architecture

• 8-bit general purpose µp
• Capable of addressing 64 k of memory
• Has 40 pins
• Requires +5 v power supply
• Can operate with 3 MHz clock
• 8085 upward compatible
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• System Bus – wires connecting memory & I/O to 
microprocessor
– Address Bus

• Unidirectional
• Identifying peripheral or memory location 

– Data Bus
• Bidirectional
• Transferring data

– Control Bus
• Synchronization signals
• Timing signals
• Control signal



Architecture of Intel 8085 Microprocessor



Intel 8085 Microprocessor
• Microprocessor consists of:

– Control unit: control microprocessor operations.
– ALU: performs data processing function.
– Registers: provide storage internal to CPU.
– Interrupts
– Internal data bus



The ALU

• In addition to the arithmetic & logic circuits, the 
ALU includes the accumulator, which is part of 
every arithmetic & logic operation.

• Also, the ALU includes a temporary register used 
for holding data temporarily during the execution 
of the operation. This temporary register is not 
accessible by the programmer.



• Registers
– General Purpose Registers

• B, C, D, E, H & L (8 bit registers)
• Can be used singly
• Or can be used as 16 bit register pairs

– BC, DE, HL
• H & L can be used as a data pointer (holds memory 

address)
– Special Purpose Registers

• Accumulator (8 bit register)
– Store 8 bit data
– Store the result of an operation
– Store 8 bit data during I/O transfer

Accumulator Flags
B C
D E
H L

Program Counter
Stack Pointer

DataAddress 816



• Flag Register
– 8 bit register – shows the status of the microprocessor before/after an 

operation
– S (sign flag), Z (zero flag), AC (auxillary carry flag), P (parity flag) & 

CY (carry flag)

– Sign Flag
• Used for indicating the sign of the data in the accumulator
• The sign flag is set if negative (1 – negative)
• The sign flag is reset if positive (0 –positive)

D7 D6 D5 D4 D3 D2 D1 D0

S Z X AC X P X CY



• Zero Flag
– Is set if result obtained after an operation is 0
– Is set following an increment or decrement operation of that register

• Carry Flag
– Is set if there is a carry or borrow from arithmetic operation

10110011
+   01001101

---------------
1   00000000

1011 0101
+   0110 1100

---------------
Carry 1   0010 0001

1011 0101
- 1100 1100

---------------
Borrow 1   1110 1001



• Auxillary Carry Flag
– Is set if there is a carry out of bit 3

• Parity Flag
– Is set if parity is even
– Is cleared if parity is odd



The Internal Architecture

• We have already discussed the general purpose 
registers, the Accumulator, and the flags.

• The Program Counter (PC)
– This is a register that is used to control the sequencing 

of the execution of instructions.
– This register always holds the address of the next 

instruction.
– Since it holds an address, it must be 16 bits wide. 



The Internal Architecture

• The Stack pointer
– The stack pointer is also a 16-bit register that is 

used to point into memory. 
– The memory this register points to is a special 

area called the stack.
– The stack is an area of memory used to hold 

data that will be retreived soon.
– The stack is usually accessed in a Last In First 

Out (LIFO) fashion.
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Non Programmable Registers

• Instruction Register & Decoder
– Instruction is stored in IR after fetched by processor
– Decoder decodes instruction in IR

Internal Clock generator
– 3.125 MHz internally
– 6.25 MHz externally



The Address and Data Busses

• The address bus has 8 signal lines A8 – A15
which are unidirectional.

• The other 8 address bits are multiplexed (time 
shared) with the 8 data bits.
– So, the bits AD0 – AD7 are bi-directional and serve as 

A0 – A7 and D0 – D7 at the same time.
• During the execution of the instruction, these lines carry the 

address bits during the early part, then during the late parts of 
the execution, they carry the 8 data bits.

– In order to separate the address from the data, we can 
use a latch to save the value before the function of the 
bits changes.



Demultiplexing AD7-AD0
– From the above description, it becomes obvious 

that the AD7– AD0 lines are serving a dual purpose
and that they need to be demultiplexed to get all the 
information.

– The high order bits of the address remain on the 
bus for three clock periods. However, the low order 
bits remain for only one clock period and they 
would be lost if they are not saved externally. Also, 
notice that the low order bits of the address 
disappear when they are needed most.

– To make sure we have the entire address for the 
full three clock cycles, we will use an external latch
to save the value of AD7– AD0 when it is carrying 
the address bits. We use the ALE signal to enable 
this latch.



Demultiplexing AD7-AD0

– Given that ALE operates as a pulse during T1, we will 
be able to latch the address. Then when ALE goes low, 
the address is saved and the AD7– AD0 lines can be 
used for their purpose as the bi-directional data lines.

A15-A8

LatchAD7-AD0

D7- D0

A7- A0

8085

ALE



Demultiplexing the Bus AD7 – AD0

• The high order address  is placed on the address  bus and hold for 3 clk 
periods, 

• The low order address  is lost after the first clk period, this address  
needs to be hold however we need to use latch 

• The address  AD7 – AD0 is connected as inputs to the latch 74LS373. 
• The ALE signal is connected to the enable (G) pin of the latch and the 

OC – Output control – of the latch is grounded





The Overall Picture
• Putting all of the concepts together, we get:

A15-A8

LatchAD7-AD0

D7- D0

A7- A0

8085

ALE

IO/MRDWR

1K Byte
Memory

Chip

WRRD

CS

A9- A0

A15- A10
Chip Selection

Circuit



Introduction to 8085 Instructions



The 8085 Instructions
– Since the 8085 is an 8-bit device it can have up to  28 

(256) instructions. 
• However, the 8085 only uses 246 combinations that represent a 

total of 74 instructions.
– Most of the instructions have more than one format.

– These instructions can be grouped into five different 
groups:

• Data Transfer Operations
• Arithmetic Operations
• Logic Operations
• Branch Operations
• Machine Control Operations



Instruction and Data Formats

• Each instruction has two parts.
– The first part is the task or operation to be 

performed. 
• This part is called the “opcode” (operation code).

– The second part is the data to be operated on
• Called the “operand”.



Data Transfer Operations
– These operations simply COPY the data from the 

source to the destination.
– MOV, MVI, LDA, and STA

– They transfer:
• Data between registers.
• Data Byte to a register or memory location.
• Data between a memory location and a register.
• Data between an I\O Device and the accumulator.

– The data in the source is not changed.



The LXI instruction
• The 8085 provides an instruction to place 

the 16-bit data into the register pair in one 
step.

• LXI Rp, <16-bit address> (Load eXtended Immediate)

– The instruction LXI B 4000H will place the 
16-bit number 4000 into the register pair B, C. 

• The upper two digits are placed in the 1st  register of 
the pair and the lower two digits in the 2nd .

40 00LXI B 40 00H B C



The Memory “Register”

• Most of the instructions of the 8085 can use a 
memory location in place of a register.
– The memory location will become the “memory” register M.

• MOV M B
– copy the data from register B into a memory location.

– Which memory location?

• The memory location is identified by the contents 
of the HL register pair.
– The 16-bit contents of the HL register pair are treated

as a 16-bit address and used to identify the memory 
location.



Using the Other Register Pairs

– There is also an instruction for moving data from 
memory to the accumulator without disturbing the 
contents of the H and L register.

• LDAX Rp (LoaD Accumulator eXtended)

– Copy the 8-bit contents of the memory location identified by the 
Rp register pair into the Accumulator.

– This instruction only uses the BC or DE pair.
– It does not accept the HL pair.



Indirect Addressing Mode

• Using data in memory directly (without loading 
first into a Microprocessor’s register) is called 
Indirect Addressing.

• Indirect addressing uses the data in a register pair
as a 16-bit address to identify the memory location
being accessed.
– The HL register pair is always used in conjunction with 

the memory register “M”.
– The BC and DE register pairs can be used to load data 

into the Accumultor using indirect addressing.



Arithmetic Operations
– Addition (ADD, ADI):

– Any 8-bit number.
– The contents of a register.
– The contents of a memory location.

• Can be added to the contents of the accumulator and the result 
is stored in the accumulator.

– Subtraction (SUB, SUI):
– Any 8-bit number
– The contents of a register
– The contents of a memory location

• Can be subtracted from the contents of the accumulator. The 
result is stored in the accumulator.



Arithmetic Operations Related to 
Memory

• These instructions perform an arithmetic operation 
using the contents of a memory location while 
they are still in memory.
– ADD M

• Add the contents of M to the Accumulator
– SUB M

• Sub the contents of M from the Accumulator
– INR M / DCR M

• Increment/decrement the contents of the memory location in 
place.

– All of these use the contents of the HL register pair to 
identify the memory location being used.



Arithmetic Operations

– Increment (INR) and Decrement (DCR):
• The 8-bit contents of any memory location or any 

register can be directly incremented or decremented 
by 1. 

• No need to disturb the contents of the accumulator.



Manipulating Addresses

• Now that we have a 16-bit address in a register
pair, how do we manipulate it?
– It is possible to manipulate a 16-bit address stored in a

register pair as one entity using some special
instructions.

• INX Rp (Increment the 16-bit number in the register pair)
• DCX Rp (Decrement the 16-bit number in the register pair)

– The register pair is incremented or decremented as one 
entity. No need to worry about a carry from the lower 
8-bits to the upper. It is taken care of automatically.



Logic Operations
• These instructions perform logic operations on the 

contents of the accumulator.
– ANA, ANI, ORA, ORI, XRA and XRI

• Source: Accumulator and 
– An 8-bit number
– The contents of a register
– The contents of a memory location

• Destination: Accumulator

ANA R/M AND Accumulator With Reg/Mem
ANI     # AND Accumulator With an 8-bit number

ORA    R/M OR Accumulator With Reg/Mem
ORI      # OR Accumulator With an 8-bit number

XRA     R/M XOR Accumulator With Reg/Mem
XRI       # XOR Accumulator With an 8-bit number



Logic Operations

– Complement:
• 1’s complement of the contents of the accumulator.

CMA No operand



Additional Logic Operations

• Rotate
– Rotate the contents of the accumulator one 

position to the left or right.
– RLC Rotate the accumulator left.

Bit 7 goes to bit 0 AND the Carry flag.
– RAL Rotate the accumulator left through the carry.

Bit 7 goes to the carry and carry goes to bit 0.
– RRC Rotate the accumulator right.

Bit 0 goes to bit 7 AND the Carry flag.
– RAR Rotate the accumulator right through the carry.

Bit 0 goes to the carry and carry goes to bit 7.
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RLC vs. RLA

• RLC

• RAL

Accumulator

Carry Flag

7 6 5 4 3 2 1 0

Accumulator

Carry Flag

7 6 5 4 3 2 1 0



Logical Operations

• Compare
• Compare the contents of a register or memory location with the 

contents of the accumulator.
– CMP R/M Compare the contents of the register 

or memory location to the contents of 
the accumulator.

– CPI # Compare the 8-bit number to the 
contents of the accumulator.

• The compare instruction sets the flags (Z, Cy, and S).

• The compare is done using an internal subtraction that does not 
change the contents of the accumulator.

A – (R / M / #)



Branch Operations

• Two types:
– Unconditional branch.

• Go to a new location no matter what.

– Conditional branch.
• Go to a new location if the condition is true.



Unconditional Branch
– JMP Address

• Jump to the address specified (Go to).

– CALL Address
• Jump to the address specified but treat it as a subroutine.

– RET
• Return from a subroutine.

– The addresses supplied to all branch operations must be 
16-bits.



Conditional Branch
– Go to new location if a specified condition is met.

• JZ Address (Jump on Zero)
– Go to address specified if the Zero flag is set.

• JNZ Address (Jump on NOT Zero)
– Go to address specified if the Zero flag is not set.

• JC Address (Jump on Carry)
– Go to the address specified if the Carry flag is set.

• JNC Address (Jump on No Carry)
– Go to the address specified if the Carry flag is not set.

• JP Address (Jump on Plus)
– Go to the address specified if the Sign flag is not set

• JM Address (Jump on Minus)
– Go to the address specified if the Sign flag is set.



Machine Control

– HLT
• Stop executing the program.

– NOP
• No operation
• Exactly as it says, do nothing.
• Usually used for delay or to replace instructions 

during debugging.



Operand Types

• There are different ways for specifying the 
operand:
– There may not be an operand (implied operand)

• CMA
– The operand may be an 8-bit number (immediate data)

• ADI 4FH
– The operand may be an internal register (register)

• SUB B
– The operand may be a 16-bit address (memory address)

• LDA 4000H
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Instruction Size

• Depending on the operand type, the instruction 
may have different sizes. It will occupy a different 
number of memory bytes.
– Typically, all instructions occupy one byte only.
– The exception is any instruction that contains 

immediate data or a memory address.
• Instructions that include immediate data use two bytes.

– One for the opcode and the other for the 8-bit data.
• Instructions that include a memory address occupy three bytes.

– One for the opcode, and the other two for the 16-bit address.
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Instruction with Immediate Date

• Operation: Load an 8-bit number into the 
accumulator.

– MVI A, 32
• Operation: MVI A
• Operand: The number 32
• Binary Code:

0011 1110 3E 1st byte.
0011 0010 32 2nd   byte.



Instruction with a Memory 
Address

• Operation: go to address 2085.

– Instruction: JMP 2085
• Opcode: JMP
• Operand: 2085
• Binary code: 
1100 0011 C3 1st byte.
1000 0101     85 2nd byte
0010 0000     20 3rd byte



Addressing Modes

• The microprocessor has different ways of 
specifying the data for the instruction. These are 
called “addressing modes”.

• The 8085 has four addressing modes:
– Implied CMA
– Immediate MVI B, 45
– Direct LDA 4000
– Indirect LDAX B

• Load the accumulator with the contents of the memory location 
whose address is stored in the register pair BC).



Data Formats

• In an 8-bit microprocessor, data can be 
represented in one of four formats:

• ASCII
• BCD
• Signed Integer
• Unsigned Integer.

– It is important to recognize that the microprocessor 
deals with 0’s and 1’s.

• It deals with values as strings of bits. 
• It is the job of the user to add a meaning to these strings.



Data Formats

• Assume the accumulator contains the following 
value: 0100 0001.
– There are four ways of reading this value:

• It is an unsigned integer expressed in binary, the equivalent 
decimal number would be 65.

• It is a number expressed in BCD (Binary Coded Decimal) 
format. That would make it, 41.

• It is an ASCII representation of a letter. That would make it the 
letter A.

• It is a string of 0’s and 1’s where the 0th  and the 6th bits are set 
to 1 while all other bits are set to 0.

ASCII stands for American Standard Code for Information Interchange.





Counters & Time Delays



Counters

• A loop counter is set up by loading a register with 
a certain value 

• Then using the DCR (to decrement) and INR (to 
increment) the contents of the register are updated.

• A loop is set up with a conditional jump 
instruction that loops back or not depending on 
whether the count has reached the termination 
count.



Counters
• The operation of a loop counter can be 

described using the following flowchart.

Initialize

Update the count

Is this
Final

Count?

Body of loop

No

Yes



MVI C, 15H

LOOP DCR C

JNZ LOOP

Sample ALP for implementing a loop
Using DCR instruction



Using a Register Pair as a Loop 
Counter

• Using a single register, one can repeat a loop for a
maximum count of 255 times.

• It is possible to increase this count by using a
register pair for the loop counter instead of the
single register.
– A minor problem arises in how to test for the final

count since DCX and INX do not modify the flags.
– However, if the loop is looking for when the count

becomes zero, we can use a small trick by ORing the
two registers in the pair and then checking the zero flag.



Using a Register Pair as a Loop 
Counter

• The following is an example of a loop set 
up with a register pair as the loop counter.

LXI B, 1000H
LOOP DCX B

MOV A, C
ORA B
JNZ LOOP



Delays

• It was shown in Chapter 2 that each instruction 
passes through different combinations of Fetch, 
Memory Read, and Memory Write cycles.

• Knowing the combinations of cycles, one can 
calculate how long such an instruction would 
require to complete.

• The table in Appendix F of the book contains a 
column with the title B/M/T.
– B for Number of Bytes
– M for Number of Machine Cycles
– T for Number of T-State.



Delays

• Knowing how many T-States an instruction 
requires, and keeping in mind that a T-State is one 
clock cycle long, we can calculate the time using 
the following formula:

Delay = No. of T-States / Frequency

• For example a “MVI” instruction uses 7 T-States. 
Therefore, if the Microprocessor is running at 2 
MHz, the instruction would require 3.5 µSeconds 
to complete.



Delay loops
• We can use a loop to produce a certain 

amount of time delay in a program.

• The following is an example of a delay 
loop:

MVI C, FFH 7 T-States
LOOP DCR C 4 T-States

JNZ LOOP 10 T-States

• The first instruction initializes the loop counter and is 
executed only once requiring only 7 T-States.

• The following two instructions form a loop that 
requires 14 T-States to execute and is repeated 255 
times until C becomes 0.



Delay Loops (Contd.)

• We need to keep in mind though that in the last 
iteration of the loop, the JNZ instruction will fail and 
require only 7 T-States rather than the 10.

• Therefore, we must deduct 3 T-States from the total 
delay to get an accurate delay calculation.

• To calculate the delay, we use the following formula:
Tdelay = TO + TL

– Tdelay = total delay
– TO = delay outside the loop
– TL = delay of the loop

• TO is the sum of all delays outside the loop.



Delay Loops (Contd.)

• Using these formulas, we can calculate the 
time delay for the previous example:

• TO = 7 T-States
– Delay of the MVI instruction

• TL = (14 X 255) - 3 = 3567 T-States
– 14 T-States for the 2 instructions repeated 255 times 

(FF16 = 25510) reduced by the 3 T-States for the final 
JNZ.

 (   )      



Using a Register Pair as a Loop 
Counter

• Using a single register, one can repeat a loop for a
maximum count of 255 times.

• It is possible to increase this count by using a
register pair for the loop counter instead of the
single register.
– A minor problem arises in how to test for the final

count since DCX and INX do not modify the flags.
– However, if the loop is looking for when the count

becomes zero, we can use a small trick by ORing the
two registers in the pair and then checking the zero flag.



Using a Register Pair as a Loop 
Counter

• The following is an example of a delay loop 
set up with a register pair as the loop 
counter.

LXI B, 1000H 10 T-States
LOOP DCX B 6 T-States

MOV A, C 4 T-States
ORA B 4 T-States
JNZ LOOP 10 T-States



Using a Register Pair as a Loop 
Counter

• Using the same formula from before, we can 
calculate:

• TO = 10 T-States
– The delay for the LXI instruction

• TL = (24 X 4096) - 3 = 98301 T- States
– 24 T-States for the 4 instructions in the loop repeated 

4096 times (100016 = 409610) reduced by the 3 T-
States for the JNZ in the last iteration.

 (  )      



Nested Loops

• Nested loops can be 
easily setup in 
Assembly language by 
using two registers for 
the two loop counters 
and updating the right 
register in the right 
loop.
– In the figure, the body of 

loop2 can be before or 
after loop1.

Initialize loop 1

Update the count1

Is this
Final

Count?

Body of loop 1

No

Yes

Initialize loop 2

Body of loop 2

Update the count 2

Is this
Final

Count?

No

Yes



Nested Loops for Delay

• Instead (or in conjunction with) Register Pairs, a 
nested loop structure can be used to increase the 
total delay produced.

MVI B, 10H 7 T-States
LOOP2 MVI C, FFH 7 T-States
LOOP1 DCR C 4 T-States

JNZ LOOP1 10 T-States
DCR B 4 T-States
JNZ LOOP2 10 T-States



Delay Calculation of Nested 
Loops

• The calculation remains the same except 
that it the formula must be applied 
recursively to each loop.
– Start with the inner loop, then plug that delay in 

the calculation of the outer loop.

• Delay of inner loop
– TO1 = 7 T-States

• MVI C, FFH instruction
– TL1 = (255 X 14) - 3 = 3567 T-States

• 14 T-States for the DCR C and JNZ instructions repeated 255 
times (FF16 = 25510) minus 3 for the final JNZ



Delay Calculation of Nested 
Loops

• Delay of outer loop
– TO2 = 7 T-States

• MVI B, 10H instruction
– TL1 = (16 X (14 + 3574)) - 3 = 57405 T-States

• 14 T-States for the DCR B and JNZ instructions and 3574 
T-States for loop1 repeated 16 times (1016 = 1610) minus 3 for the 
final JNZ.

– TDelay = 7 + 57405 = 57412 T-States

• Total Delay
– TDelay = 57412 X 0.5 µSec = 28.706 mSec



Increasing the delay

• The delay can be further increased by using 
register pairs for each of the loop counters 
in the nested loops setup.

• It can also be increased by adding dummy 
instructions (like NOP) in the body of the 
loop.





Representation of Various Control signals generated during 
Execution of an Instruction.

Following Buses and Control Signals must be shown in a 
Timing Diagram:

•Higher Order Address Bus.

•Lower Address/Data bus

•ALE

•RD

•WR

•IO/M

Timing Diagram



Instruction:

A000h   MOV A,B

Corresponding Coding:

A000h 78

Timing Diagram



Instruction:

A000h   MOV A,B

Corresponding Coding:

A000h 78

8085 Memory

OFC

Timing Diagram



78h00h

A15- A8 (Higher Order Address bus)

ALE

RD

WR

IO/M

T1                     T2                          T3                         T4Instruction:

A000h   MOV A,B

Corresponding Coding:

A000h 78

8085 Memory

OFC

Op-code fetch Cycle

A0h

Timing Diagram



Instruction:

A000h   MVI A,45h

Corresponding Coding:

A000h 3E

A001h 45

Timing Diagram



Instruction:

A000h   MVI A,45h

Corresponding Coding:

A000h 3E

A001h 45

8085 Memory

OFC

MEMR

Timing Diagram



3Eh00h 01h 45h

A0h

A15- A8 (Higher Order Address bus)

DA7-DA0 (Lower order address/data Bus)

ALE

RD

WR

IO/M

Op-Code Fetch Cycle Memory Read Cycle

T1                     T2                          T3                         T4                        T5                        T6                        T7

A0h

Instruction:

A000h   MVI A,45h

Corresponding Coding:

A000h 3E

A001h 45

Timing Diagram



Instruction:

A000h   LXI A,FO45h

Corresponding Coding:

A000h 21

A001h 45

A002h F0

Timing Diagram



Instruction:

A000h   LXI A,FO45h

Corresponding Coding:

A000h 21

A001h 45

A002h F0

Timing Diagram

8085 Memory

OFC

MEMR

MEMR



Timing Diagram

T1                     T2                          T3                         T4                        T5                        T6                        T7                        T8                         T9                        T10

21h 01h 45h 02h F0h

A0h A0h A0h

A15- A8 (Higher Order Address bus)

DA7-DA0 (Lower order address/data Bus)

ALE

RD

WR

IO/M

00h

Op-Code Fetch Cycle Memory Read Cycle Memory Read Cycle



Instruction:

A000h   MOV A,M

Corresponding Coding:

A000h 7E

Timing Diagram



8085 Memory

OFC

MEMR

Instruction:

A000h   MOV A,M

Corresponding Coding:

A000h 7E

Timing Diagram



7Eh00h L Reg Content Of M

Content Of Reg H

A15- A8 (Higher Order Address bus)

DA7-DA0 (Lower order address/data Bus)

ALE

RD

WR

IO/M

Op-Code Fetch Cycle Memory Read Cycle

T1                     T2                          T3                         T4                        T5                        T6                        T7

A0h

Timing Diagram

Instruction:

A000h   MOV A,M

Corresponding Coding:

A000h 7E



Instruction:

A000h   MOV M,A

Corresponding Coding:

A000h 77

Timing Diagram



Instruction:

A000h   MOV M,A

Corresponding Coding:

A000h 77

Timing Diagram

8085 Memory

OFC

MEMW



7Eh00h L Reg Content of Reg A

Content Of Reg H

A15- A8 (Higher Order Address bus)

DA7-DA0 (Lower order address/data Bus)

ALE

RD

WR

IO/M

Op-Code Fetch Cycle Memory Write Cycle

T1                     T2                          T3                         T4                        T5                   T6                        T7

A0h

Timing Diagram

Instruction:

A000h   MOV M,A

Corresponding Coding:

A000h 77



Chapter 9
Stack and Subroutines



The Stack

• The stack is an area of memory identified by the 
programmer for temporary storage of information.

• The stack is a LIFO structure.
– Last In First Out.

• The stack normally grows backwards into 
memory.
– In other words, the programmer 

defines the bottom of the stack 
and the stack grows up into 
reducing address range.

Memory

Bottom
of the
Stack

The Stack
grows 
backwards
into memory



The Stack

• Given that the stack grows backwards into 
memory, it is customary to place the bottom of the 
stack at the end of memory to keep it as far away 
from user programs as possible.

• In the 8085, the stack is defined by setting the SP 
(Stack Pointer) register.

LXI SP, FFFFH

• This sets the Stack Pointer to location FFFFH (end 
of memory for the 8085). 



Saving Information on the Stack

• Information is saved on the stack by PUSHing it 
on.
– It is retrieved from the stack by POPing it off.

• The 8085 provides two instructions: PUSH and 
POP for storing information on the stack and 
retrieving it back.
– Both PUSH and POP work with register pairs ONLY.



The PUSH Instruction

• PUSH B
– Decrement SP
– Copy the contents of register B to the memory 

location pointed to by SP
– Decrement SP
– Copy the contents of register C to the memory 

location pointed to by SP

B C

SPFFFF
FFFE
FFFD
FFFC
FFFB

F312

F3
12



The POP Instruction

• POP D
– Copy the contents of the memory location 

pointed to by the SP to register E
– Increment SP
– Copy the contents of the memory location 

pointed to by the SP to register D
– Increment SP

D E

SP
FFFF
FFFE
FFFD
FFFC
FFFB

F312

F3
12



Operation of the Stack

• During pushing, the stack operates in a 
“decrement then store” style.
– The stack pointer is decremented first, then the 

information is placed on the stack.

• During poping, the stack operates in a “use then 
increment” style.
– The information is retrieved from the top of the the 

stack and then the pointer is incremented.

• The SP pointer always points to “the top of the 
stack”.



LIFO

• The order of PUSHs and POPs must be opposite 
of each other in order to retrieve information back 
into its original location.

PUSH B
PUSH D
...
POP D
POP B
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The PSW Register Pair

• The 8085 recognizes one additional register pair 
called the PSW (Program Status Word).
– This register pair is made up of the Accumulator and 

the Flags registers.

• It is possible to push the PSW onto the stack, do 
whatever operations are needed, then POP it off of 
the stack.
– The result is that the contents of the Accumulator and 

the status of the Flags are returned to what they were 
before the operations were executed.



Subroutines

• A subroutine is a group of instructions that will be
used repeatedly in different locations of the
program.
– Rather than repeat the same instructions several times,

they can be grouped into a subroutine that is called
from the different locations.

• In Assembly language, a subroutine can exist
anywhere in the code.
– However, it is customary to place subroutines

separately from the main program.



Subroutines

• The 8085 has two instructions for dealing 
with subroutines.
– The CALL instruction is used to redirect 

program execution to the subroutine.
– The RTE insutruction is used to return the 

execution to the calling routine.



The CALL Instruction

• CALL 4000H
– Push the address of the instruction 

immediately following the CALL onto the 
stack

– Load the program counter with the 16-bit 
address supplied with the CALL instruction.

PC

SPFFFF
FFFE
FFFD
FFFC
FFFB

2 0 0 3

03
20

2000 CALL 4000
2003



The RTE Instruction

• RTE
– Retrieve the return address from the top of 

the stack
– Load the program counter with the return 

address. PC

FFFF
FFFE
FFFD
FFFC
FFFB

2 0 0 3

03
20

4014 . . .
4015 RTE SP



Cautions

• The CALL instruction places the return address at 
the two memory locations immediately before 
where the Stack Pointer is pointing.
– You must set the SP correctly BEFORE using the 

CALL instruction.

• The RTE instruction takes the contents of the two 
memory locations at the top of the stack and uses 
these as the return address.
– Do not modify the stack pointer in a subroutine. You 

will loose the return address.



Passing Data to a Subroutine

• In Assembly Language data is passed to a 
subroutine through registers.
– The data is stored in one of the registers by the calling 

program and the subroutine uses the value from the 
register.

• The other possibility is to use agreed upon 
memory locations.
– The calling program stores the data in the memory 

location and the subroutine retrieves the data from the 
location and uses it.



Call by Reference and Call by 
Value

• If the subroutine performs operations on the 
contents of the registers, then these modifications 
will be transferred back to the calling program 
upon returning from a subroutine.
– Call by reference

• If this is not desired, the subroutine should PUSH 
all the registers it needs on the stack on entry and 
POP them on return.
– The original values are restored before execution 

returns to the calling program.



Cautions with PUSH and POP

• PUSH and POP should be used in opposite order.

• There has to be as many POP’s as there are 
PUSH’s.
– If not, the RET statement will pick up the wrong 

information from the top of the stack and the program 
will fail.

• It is not advisable to place PUSH or POP inside a 
loop.



Conditional CALL and RTE 
Instructions

• The 8085 supports conditional CALL and 
conditional RTE instructions.
– The same conditions used with conditional JUMP 

instructions can be used.

– CC, call subroutine if Carry flag is set.
– CNC, call subroutine if Carry flag is not set
– RC, return from subroutine if Carry flag is set
– RNC, return from subroutine if Carry flag is not set
– Etc.



A Proper Subroutine

• According to Software Engineering practices, a 
proper subroutine:
– Is only entered with a CALL and exited with an RTE
– Has a single entry point

• Do not use a CALL statement to jump into different points of 
the same subroutine.

– Has a single exit point
• There should be one return statement from any subroutine.

• Following these rules, there should not be any 
confusion with PUSH and POP usage.
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The Design and Operation of Memory

Memory in a microprocessor system is where 
information (data and instructions) is kept. It can be 
classified into two main types:

 Main memory (RAM and ROM) 
 Storage memory (Disks , CD ROMs, etc.)

The simple view of RAM is that it is made up of registers that 
are made up of flip-flops (or memory elements). 
 The number of flip-flops in a “memory register” determines the size of 

the memory word.
ROM on the other hand uses diodes instead of the flip-flops 
to permanently hold the information.
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Accessing Information in Memory
For the microprocessor to access (Read or 
Write) information in memory (RAM or ROM), it 
needs to do the following:

Select the right memory chip (using part of the 
address bus).
Identify the memory location (using the rest of the 
address bus).
Access the data (using the data bus).
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Tri-State Buffers
An important circuit element that is used 
extensively in memory.
This buffer is a logic circuit that has three states:

Logic 0, logic1, and high impedance.
When this circuit is in high impedance mode it looks 
as if it is disconnected from the output completely.

The Output is Low The Output is High High Impedance



4

The Tri-State Buffer
This circuit has two inputs and one output.

The first input behaves like the normal input for the 
circuit.
The second input is an “enable”.
 If it is set high, the output follows the proper circuit 

behavior.
 If it is set low, the output looks like a wire connected to 

nothing.
Input Output

Enable

Input Output

Enable

OR
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The Basic Memory Element
The basic memory element is similar to a D 
latch.
This latch has an input where the data comes in. 
It has an enable input and an output on which 
data comes out.

QD

EN

Data Input Data Output

Enable
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The Basic Memory Element
However, this is not safe.

Data is always present on the input and the output is 
always set to the contents of the latch.
To avoid this, tri-state buffers are added at the input 
and output of the latch.

QD

EN

Data Input Data Output

Enable

WR RD
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The Basic Memory Element
The WR signal controls the input buffer.

The bar over WR means that this is an active low 
signal.
So, if WR is 0 the input data reaches the latch input.
If WR is 1 the input of the latch looks like a wire 
connected to nothing.

The RD signal controls the output in a similar 
manner.



8

A Memory “Register”
If we take four of these latches and connect 
them together, we would have a 4-bit memory 
register

WR

RD

EN

Q

D

EN

Q

D

EN

Q

D

EN

Q

D

EN

I0 I1 I2 I3

O0 O1 O2 O3
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A group of memory registers

Expanding on this 
scheme to add more 
memory registers we get 
the diagram to the right.

D

EN

Q D

EN

Q D

EN

Q D

EN

Q

D

EN

Q D

EN

Q D

EN

Q D

EN

Q

D

EN

Q D

EN

Q D

EN

Q D

EN

Q

D

EN

Q D

EN

Q D

EN

Q D

EN

Q

D0 D1 D2 D3

D0 D1 D2 D3

oooo

oooo

WR

RD
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Externally Initiated Operations
External devices can initiate (start) one of the 4 
following operations:

Reset
 All operations are stopped and the program counter is reset to 0000.

Interrupt
 The microprocessor’s operations are interrupted and the 

microprocessor executes what is called a “service routine”.
 This routine “handles” the interrupt, (perform the necessary 

operations). Then the microprocessor returns to its previous 
operations and continues.
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A group of Memory Registers
If we represent each memory location (Register) as 
a block we get the following

Input Buffers

Output Buffers

Memory Reg. 0

Memory Reg. 1

Memory Reg. 2

Memory Reg. 3

I0 I1 I2 I3

O0 O1 O2 O3

WR

EN0

EN1

EN2

EN3

RD



12

The Design of a Memory Chip
Using the RD and WR controls we can determine the 
direction of flow either into or out of memory. Then 
using the appropriate Enable input we enable an 
individual memory register.

What we have just designed is a memory with 4 
locations and each location has 4 elements (bits). This 
memory would be called 4 X 4 [Number of location X 
number of bits per location].
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The Enable Inputs
How do we produce these enable line?

Since we can never have more than one of these 
enables active at the same time, we can have them 
encoded to reduce the number of lines coming into 
the chip.
These encoded lines are the address lines for 
memory. 

Milav
Highlight

Milav
Highlight
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The Design of a Memory Chip
So, the previous diagram would now look like the 
following:

Input Buffers

Output Buffers

Memory Reg. 0

Memory Reg. 1

Memory Reg. 2

Memory Reg. 3

I0 I1 I2 I3

O0 O1 O2 O3

WR

RD

A
d
d
r
e
s
s

D
e
c
o
d
e
r

A1

A0



15

The Design of a Memory Chip
Since we have tri-state buffers on both the inputs 
and outputs of the flip flops, we can actually use 
one set of pins only.

The chip would now look like this:
Input Buffers

Output Buffers

Memory Reg. 0

Memory Reg. 1

Memory Reg. 2

Memory Reg. 3

WR

RD

A
d
d
r
e
s
s

D
e
c
o
d
e
r

A1

A0

D0

D1

D2

D3

D0

D1

D2

D3

A1

A0

RD WR
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The steps of writing into Memory
What happens when the programmer issues the 
STA instruction?

The microprocessor would turn on the WR control 
(WR = 0) and turn off the RD control (RD = 1).
The address is applied to the address decoder which 
generates a single Enable signal to turn on only 
one of the memory registers.
The data is then applied on the data lines and it is 
stored into the enabled register.
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Dimensions of Memory
Memory is usually measured by two numbers: its length 
and its width (Length X Width).

 The length is the total number of locations.
 The width is the number of bits in each location.

The length (total number of locations) is a function of the 
number of address lines.

# of memory locations = 2( # of address lines)

 So, a memory chip with 10 address lines would have 
210 = 1024 locations (1K)

 Looking at it from the other side, a memory chip with 4K locations 
would need 

Log2 4096=12 address lines
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The 8085 and Memory
The 8085 has 16 address lines. That means it can 
address 

216 = 64K memory locations. 
Then it will need 1 memory chip with 64 k locations, or 2 
chips with 32 K in each, or 4 with 16 K each or 16 of the 4 K 
chips, etc.

how would we use these address lines to control the 
multiple chips?
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Chip Select
Usually, each memory chip has a CS (Chip Select) 
input. The chip will only work if an active signal is 
applied on that input.

To allow the use of multiple chips in the make up of 
memory, we need to use a number of the address lines 
for the purpose of “chip selection”.

These address lines are decoded to generate the 2n

necessary CS inputs for the memory chips to be used.
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Chip Selection Example
Assume that we need to build a memory system 
made up of 4 of the 4 X 4 memory chips we 
designed earlier.

We will need to use 2 inputs and a decoder to 
identify which chip will be used at what time. 

The resulting design would now look like the one on 
the following slide.
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Chip Selection Example

CS

RD WR

A0

A1

CS

RD WR

A0

A1

CS

RD WR

A0

A1

CS

RD WR

A0

A1

2 X4

DecoderA3

A2

A1

A0

RD

WR

D1

D0
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Memory Map and Addresses
The memory map is a picture representation of 
the address range and shows where the different 
memory chips are located within the address 
range.

0000

FFFF

Ad
dr

es
s 

R
an

ge

RAM 1

RAM 2

RAM 3

RAM 4

EPROM
0000

3FFF
4400

5FFF
6000

8FFF
9000

A3FF
A400

F7FF

Address Range of EPROM Chip

Address Range of 1st RAM Chip

Address Range of 2nd RAM Chip

Address Range of 3rd RAM Chip

Address Range of 4th RAM Chip
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Address Range of a Memory Chip
The address range of a particular chip is the list of all 
addresses that are mapped to the chip.

An example for the address range and its relationship to the 
memory chips would be the Post Office Boxes in the post 
office.

• Each box has its unique number that is assigned sequentially. (memory 
locations)

• The boxes are grouped into groups. (memory chips)
• The first box in a group has the number immediately after the last box in 

the previous group.
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Address Range of a Memory Chip
The above example can be modified slightly to make it closer 
to our discussion on memory.

• Let’s say that this post office has only 1000 boxes. 
• Let’s also say that these are grouped into 10 groups of 100 boxes each. 

Boxes 0000 to 0099 are in group 0, boxes 0100 to 0199 are in group 1 
and so on.

We can look at the box number as if it is made up of two 
pieces:

• The group number and the box’s index within the group. 
• So, box number 436 is the 36th box in the 4th group.

The upper digit of the box number identifies the group and the lower two 
digits identify the box within the group.
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The 8085 and Address Ranges
The 8085 has 16 address lines. So, it can
address a total of 64K memory locations.

If we use memory chips with 1K locations each, then
we will need 64 such chips.
The 1K memory chip needs 10 address lines to
uniquely identify the 1K locations. (log21024 = 10)
That leaves 6 address lines which is the exact
number needed for selecting between the 64
different chips (log264 = 6).
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The 8085 and Address Ranges
Now, we can break up the 16-bit address of the 8085 
into two pieces:

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

Depending on the combination on the address lines A15 - A10 , the 
address range of the specified chip is determined.

Location Selection within the ChipChip Selection
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Chip Select Example
A chip that uses the combination A15 - A10 = 
001000 would have addresses that range from 
2000H to 23FFH.

Keep in mind that the 10 address lines on the chip gives a range of 
00 0000 0000 to 11 1111 1111 or 000H to 3FFH for each of the chips.
The memory chip in this example would require the following circuit on  its 
chip select input:

CS

A10

A11

A12

A13
A14

A15



28

Chip Select Example
If we change the above combination to the following:

Now the chip would have addresses ranging from: 2400 to 
27FF. 
Changing the combination of the address bits connected to 
the chip select changes the address range for the memory 
chip.

CS

A10

A11

A12
A13
A14

A15
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Chip Select Example
To illustrate this with a picture:
 in the first case, the memory chip occupies the piece of 

the memory map identified as before. 
 In the second case, it occupies the piece identified as 

after.
0000

2000

23FF

FFFF

0000

2400

27FF

FFFF

Before After
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High-Order vs. Low-Order Address Lines

The address lines from a microprocessor can be 
classified into two types:

High-Order
 Used for memory chip selection

Low-Order
 Used for location selection within a memory chip.

This classification is highly dependent on the 
memory system design.
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Data Lines
All of the above discussion has been regarding memory 
length. Lets look at memory width. 
We said that the width is the number of bits in each 
memory word. 

We have been assuming so far that our memory chips have 
the right width. 
What if they don’t?
 It is very common to find memory chips that have only 4 bits per 

location. How would you design a byte wide memory system using 
these chips?

 We use two chips for the same address range. One chip will supply 4 
of the data bits per address and the other chip supply the other 4 data 
bits for the same address.
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Data Lines
CS

A0
…
A9

CS CS

D0
…
D3

D4
…
D7



Interrupts



Interrupts

• Interrupt is a process where an external device can 
get the attention of the microprocessor.
– The process starts from the I/O device 
– The process is asynchronous.

• Interrupts can be classified into two types:
• Maskable (can be delayed)
• Non-Maskable (can not be delayed)

• Interrupts can also be classified into:
• Vectored (the address of the service routine is hard-wired)
• Non-vectored (the address of the service routine needs to be 

supplied externally)



Interrupts

• An interrupt is considered to be an emergency
signal.
– The Microprocessor should respond to it as soon as 

possible.

• When the Microprocessor receives an interrupt 
signal, it suspends the currently executing 
program and jumps to an Interrupt Service 
Routine (ISR) to respond to the incoming 
interrupt.
– Each interrupt will most probably have its own ISR.



Responding to Interrupts

• Responding to an interrupt may be immediate or 
delayed depending on whether the interrupt is 
maskable or non-maskable and whether interrupts 
are being masked or not.

• There are two ways of redirecting the execution to 
the ISR depending on whether the interrupt is 
vectored or non-vectored.
– The vector is already known to the Microprocessor
– The device will have to supply the vector to the 

Microprocessor



The 8085 Interrupts

• The maskable interrupt process in the 8085 is 
controlled by a single flip flop inside the 
microprocessor. This Interrupt Enable flip flop is 
controlled using the two instructions “EI” and 
“DI”.

• The 8085 has a single Non-Maskable interrupt.
– The non-maskable interrupt is not affected by the value 

of the Interrupt Enable flip flop.



The 8085 Interrupts 

• The 8085 has 5 interrupt inputs.
– The INTR input.

• The INTR input is the only non-vectored interrupt.
• INTR is maskable using the EI/DI instruction pair.

– RST 5.5, RST 6.5, RST 7.5 are all automatically 
vectored.

• RST 5.5, RST 6.5, and RST 7.5 are all maskable.

– TRAP is the only non-maskable interrupt in the 8085
• TRAP is also automatically vectored



The 8085 Interrupts

Interrupt name Maskable Vectored
INTR Yes No

RST 5.5 Yes Yes
RST 6.5 Yes Yes
RST 7.5 Yes Yes
TRAP No Yes



Interrupt Vectors and the Vector 
Table

• An interrupt vector is a pointer to where the ISR is 
stored in memory.

• All interrupts (vectored or otherwise) are mapped 
onto a memory area called the Interrupt Vector 
Table (IVT).
– The IVT is usually located in  memory page 00 (0000H 

- 00FFH).
– The purpose of the IVT is to hold the vectors that 

redirect the microprocessor to the right place when an 
interrupt arrives.

– The IVT is divided into several blocks. Each block is 
used by one of the interrupts to hold its “vector”



1. The interrupt process should be enabled using the 
EI instruction.

2. The 8085 checks for an interrupt during the 
execution of every instruction.

3. If there is an interrupt, the microprocessor will 
complete the executing instruction, and start a 
RESTART sequence.

4. The RESTART sequence resets the interrupt flip 
flop and activates the interrupt acknowledge signal
(INTA).

5. Upon receiving the INTA signal, the interrupting 
device is expected to return the op-code of one of 
the 8 RST instructions.

The 8085 Non-Vectored Interrupt 
Process



6. When the microprocessor executes the RST 
instruction received from the device, it saves the 
address of the next instruction on the stack and  
jumps to the appropriate entry in the IVT.

7. The IVT entry must redirect the microprocessor to 
the actual service routine.

8. The service routine must include the instruction EI
to re-enable the interrupt process.

9. At the end of the service routine, the RET
instruction returns the execution to where the 
program was interrupted.

The 8085 Non-Vectored Interrupt 
Process



The 8085 Non-Vectored Interrupt Process

• The 8085 recognizes 8 RESTART 
instructions: RST0 - RST7.
– each of these would send the 

execution to a predetermined 
hard-wired memory location:

Restart 
Instruction

Equivalent 
to

RST0 CALL 
0000H

RST1 CALL 
0008H

RST2 CALL 
0010H

RST3 CALL 
0018H

RST4 CALL 
0020H

RST5 CALL 
0028H

RST6 CALL 
0030H

RST7 CALL 
0038H



Restart Sequence

• The restart sequence is made up of three machine 
cycles
– In the 1st machine cycle:

• The microprocessor sends the INTA signal. 
• While INTA is active the microprocessor reads the data lines 

expecting to receive, from the interrupting device, the opcode 
for the specific RST instruction.

– In the 2nd and 3rd machine cycles:
• the 16-bit address of the next instruction is saved on the stack.
• Then the microprocessor jumps to the address associated with 

the specified RST instruction.



Restart Sequence

• The location in the IVT associated with the 
RST instruction can not hold the complete 
service routine.
– The routine is written somewhere else in 

memory.
– Only a JUMP instruction to the ISR’s location 

is kept in the IVT block. 



Hardware Generation of RST 
Opcode 

• How does the external device produce the 
opcode for the appropriate RST instruction?
– The opcode is simply a collection of bits.
– So, the device needs to set the bits of the data 

bus to the appropriate value in response to an 
INTA signal.



The following is an 
example of generating 
RST 5:

RST 5’s opcode is EF =

D           D
76543210
11101111

Hardware Generation of RST 
Opcode 



Hardware Generation of RST 
Opcode 

• During the interrupt acknowledge machine cycle, 
(the 1st machine cycle of the RST operation):
– The Microprocessor activates the INTA signal.
– This signal will enable the Tri-state buffers, which will 

place the value EFH on the data bus.
– Therefore, sending the Microprocessor the RST 5 

instruction.

• The RST 5 instruction is exactly equivalent to 
CALL 0028H



Issues in Implementing INTR 
Interrupts 

• How long must INTR remain high?
– The microprocessor checks the INTR line one clock 

cycle before the last T-state of each instruction.
– The interrupt process is Asynchronous.
– The INTR must remain active long enough to allow for 

the longest instruction.
– The longest instruction for the 8085 is the conditional 

CALL instruction which requires 18 T-states.

Therefore, the INTR must remain active for 17.5    
T-states.



Issues in Implementing INTR 
Interrupts 

• How long can the INTR remain high?
– The INTR line must be deactivated before the EI is 

executed. Otherwise, the microprocessor will be 
interrupted again.

– The worst case situation is when EI is the first 
instruction in the ISR.

– Once the microprocessor starts to respond to an INTR 
interrupt, INTA becomes active (=0).

Therefore, INTR should be turned off as soon as the 
INTA signal is received.



Issues in Implementing INTR 
Interrupts

• Can the microprocessor be interrupted again 
before the completion of the ISR?
– As soon as the 1st interrupt arrives, all maskable 

interrupts are disabled. 
– They will only be enabled after the execution of the EI 

instruction.

Therefore, the answer is: “only if you allow it to”.
If the EI instruction is placed early in the ISR, other 

interrupt may occur before the ISR is done.



Multiple Interrupts & Priorities 

• How do we allow multiple devices to 
interrupt using the INTR line?
– The microprocessor can only respond to one 

signal on INTR at a time.
– Therefore, we must allow the signal from only 

one of the devices to reach the microprocessor.
– We must assign some priority to the different 

devices and allow their signals to reach the 
microprocessor according to the priority.



The Priority Encoder

• The solution is to use a circuit called the priority 
encoder (74366).
– This circuit has 8 inputs and 3 outputs.
– The inputs are assigned increasing priorities according 

to the increasing index of the input.
• Input 7 has highest priority and input 0 has the lowest.

– The 3 outputs carry the index of the highest priority 
active input.

– Figure 12.4 in the book shoes how this circuit can be 
used with a Tri-state buffer to implement an interrupt 
priority scheme.

• The figure in the textbook does not show the method for 
distributing the INTA signal back to the individual devices.



Multiple Interrupts & Priorities 

• Note that the opcodes for the different RST 
instructions follow a set pattern.

• Bit D5, D4  and D3 of the opcodes change in a binary 
sequence from RST 7 down to RST 0.

• The other bits are always 1.
• This allows the code generated by the 74366 to be used 

directly to choose the appropriate RST instruction.

• The one draw back to this scheme is that the only 
way to change the priority of the devices 
connected to the 74366 is to reconnect the 
hardware.



Multiple Interrupts and Priority
Dev. 7

Dev. 6

Dev. 5

Dev. 4

Dev. 3

Dev. 2

Dev. 1

Dev. 0

7
4
1
3
8

7
4
3
6
6

8
0
8
5

INTR Circuit
INTA Circuit

INTA
INTR

AD7
AD6
AD5
AD4
AD3
AD2
AD1
AD0

O7
O6
O5
O4

O3

O2

O1

O0

I7
I6
I5
I4
I3
I2
I1
I0 Tri –

State
BufferPriority

Encoder

+5 V

RST Circuit



The 8085 Maskable/Vectored 
Interrupts 

• The 8085 has 4 Masked/Vectored interrupt inputs.
– RST 5.5, RST 6.5, RST 7.5

• They are all maskable.
• They are automatically vectored according to the following 

table:

– The vectors for these interrupt fall in between the vectors for the 
RST instructions. That’s why they have names like RST 5.5 
(RST 5 and a half).

Interrupt Vector
RST 5.5 002CH

RST 6.5 0034H
RST 7.5 003CH



Masking RST 5.5, RST 6.5 and 
RST 7.5

• These three interrupts are masked at two 
levels:
– Through the Interrupt Enable flip flop and the 

EI/DI instructions.
• The Interrupt Enable flip flop controls the whole 

maskable interrupt process.
– Through individual mask flip flops that control 

the availability of the individual interrupts.
• These flip flops control the interrupts individually.



Maskable Interrupts

Interrupt
Enable

Flip Flop

INTR

RST 5.5

RST 6.5

RST 7.5

M 5.5

M 6.5

M 7.5

RST7.5 Memory



The 8085 Maskable/Vectored 
Interrupt Process

1. The interrupt process should be enabled using the 
EI instruction.

2. The 8085 checks for an interrupt during the 
execution of every instruction.

3. If there is an interrupt, and if the interrupt is 
enabled using the interrupt mask, the 
microprocessor will complete the executing 
instruction, and reset the interrupt flip flop.

4. The microprocessor then executes a call instruction 
that sends the execution to the appropriate location 
in the interrupt vector table.



The 8085 Maskable/Vectored 
Interrupt Process

5. When the microprocessor executes the call 
instruction, it saves the address of the next 
instruction on the stack.

6. The microprocessor jumps to the specific service 
routine.

7. The service routine must include the instruction EI
to re-enable the interrupt process.

8. At the end of the service routine, the RET
instruction returns the execution to where the 
program was interrupted.



Manipulating the Masks

• The Interrupt Enable flip flop is manipulated using 
the EI/DI instructions.

• The individual masks for RST 5.5, RST 6.5 and 
RST 7.5 are manipulated using the SIM
instruction.
– This instruction takes the bit pattern in the Accumulator 

and applies it to the interrupt mask enabling and 
disabling the specific interrupts.



How SIM Interprets the 
Accumulator

SD
O

SD
E

XX
X

R
7.

5
M

SE
M

7.
5

M
6.

5
M

5.
5

01234567

RST5.5 Mask
RST6.5 Mask
RST7.5 Mask

} 0 - Available
1 - Masked

Mask Set Enable
0 - Ignore bits 0-2
1 - Set the masks according

to bits 0-2

Force RST7.5 Flip Flop to resetNot Used

Enable Serial Data
0 - Ignore bit 7
1 - Send bit 7 to SOD pin

Serial Data Out



SIM and the Interrupt Mask
• Bit 0 is the mask for RST 5.5, bit 1 is the mask for 

RST 6.5 and bit 2 is the mask for RST 7.5.
• If the mask bit is 0, the interrupt is available.
• If the mask bit is 1, the interrupt is masked.

• Bit 3 (Mask Set Enable - MSE) is an enable for 
setting the mask.

• If it is set to 0 the mask is ignored and the old settings remain.
• If it is set to 1, the new setting are applied.
• The SIM instruction is used for multiple purposes and not only 

for setting interrupt masks.
– It is also used to control functionality such as Serial Data 

Transmission.
– Therefore, bit 3 is necessary to tell the microprocessor 

whether or not the interrupt masks should be modified



SIM and the Interrupt Mask
• The RST 7.5 interrupt is the only 8085 interrupt that has 

memory.
– If a signal on RST7.5 arrives while it is masked, a flip flop will 

remember the signal.
– When RST7.5 is unmasked, the microprocessor will be interrupted 

even if the device has removed the interrupt signal.
– This flip flop will be automatically reset when the microprocessor 

responds to an RST 7.5 interrupt.

• Bit 4 of the accumulator in the SIM instruction allows 
explicitly resetting the RST 7.5 memory even if the 
microprocessor did not respond to it.



SIM and the Interrupt Mask
• The SIM instruction can also be used to perform 

serial data transmission out of the 8085’s SOD 
pin.
– One bit at a time can be sent out serially over the SOD 

pin.

• Bit 6 is used to tell the microprocessor whether or 
not to perform serial data transmission

• If 0, then do not perform serial data transmission
• If 1, then do.

• The value to be sent out on SOD has to be placed 
in bit 7 of the accumulator.

• Bit 5 is not used by the SIM instruction



Using the SIM Instruction to Modify the 
Interrupt Masks

• Example: Set the interrupt masks so that 
RST5.5 is enabled, RST6.5 is masked, and 
RST7.5 is enabled.
– First, determine the contents of the accumulator

SD
O

SD
E

XX
X

R
7.

5
M

SE
M

7.
5

M
6.

5
M

5.
5- Enable 5.5 bit 0 = 0

- Disable 6.5 bit 1 = 1
- Enable 7.5 bit 2 = 0
- Allow setting the masks bit 3 = 1
- Don’t reset the flip flop bit 4 = 0
- Bit 5 is not used bit 5 = 0
- Don’t use serial data bit 6 = 0
- Serial data is ignored bit 7 = 0

0 1 00000 1

Contents of accumulator are: 0AH

EI ; Enable interrupts including INTR
MVI A, 0A ; Prepare the mask to enable RST 7.5, and 5.5, disable 6.5
SIM ; Apply the settings RST masks



Triggering Levels

• RST 7.5 is positive edge sensitive.
• When a positive edge appears on the RST7.5 line, a logic 1 is 

stored in the flip-flop as a “pending” interrupt.
• Since the value has been stored in the flip flop, the line does 

not have to be high when the microprocessor checks for the 
interrupt to be recognized.

• The line must go to zero and back to one before a new interrupt 
is recognized.

• RST 6.5 and RST 5.5 are level sensitive.
• The interrupting signal must remain present until the 

microprocessor checks for interrupts.



Determining the Current Mask 
Settings

• RIM instruction: Read Interrupt Mask 
– Load the accumulator with an 8-bit pattern 

showing the status of each interrupt pin and 
mask.

Interrupt Enable
Flip Flop

RST 5.5

RST 6.5

RST 7.5

M 5.5

M 6.5

M 7.5

RST7.5 Memory

SD
I

P7
.5

P6
.5

P5
.5 IE M

7.
5

M
6.

5
M

5.
5

01234567



How RIM sets the Accumulator’s 
different bits

SD
I

P7
.5

P6
.5

P5
.5 IE M

7.
5

M
6.

5
M

5.
5

01234567

RST5.5 Mask
RST6.5 Mask
RST7.5 Mask

} 0 - Available
1 - Masked

Interrupt Enable
Value of the Interrupt Enable
Flip Flop

Serial Data In

RST5.5 Interrupt Pending
RST6.5 Interrupt Pending
RST7.5 Interrupt Pending



The RIM Instruction and the 
Masks

• Bits 0-2 show the current setting of the mask for 
each of RST 7.5, RST 6.5 and RST 5.5

• They return the contents of the three mask flip flops.
• They can be used by a program to read the mask settings in 

order to modify only the right mask.

• Bit 3 shows whether the maskable interrupt 
process is enabled or not.

• It returns the contents of the Interrupt Enable Flip Flop.
• It can be used by a program to determine whether or not 

interrupts are enabled.



The RIM Instruction and the 
Masks

• Bits 4-6 show whether or not there are pending 
interrupts on RST 7.5, RST 6.5, and RST 5.5

• Bits 4 and 5 return the current value of the RST5.5 and RST6.5 
pins.

• Bit 6 returns the current value of the RST7.5 memory flip flop.

• Bit 7 is used for Serial Data Input.
• The RIM instruction reads the value of the SID pin on the 

microprocessor and returns it in this bit.



Pending Interrupts

• Since the 8085 has five interrupt lines, interrupts 
may occur during an ISR and remain pending.
– Using the RIM instruction, the programmer can read 

the status of the interrupt lines and find if there are any 
pending interrupts.

– The advantage is being able to find about interrupts on 
RST 7.5, RST 6.5, and RST 5.5 without having to 
enable low level interrupts like INTR.



Using RIM and SIM to set 
Individual Masks

• Example: Set the mask to enable RST6.5 without 
modifying the masks for RST5.5 and RST7.5.
– In order to do this correctly, we need to use the RIM 

instruction to find the current settings of the RST5.5 
and RST7.5 masks.

– Then we can use the SIM instruction to set the masks 
using this information.

– Given that both RIM and SIM use the Accumulator, we 
can use some logical operations to masks the un-needed 
values returned by RIM and turn them into the values 
needed by SIM.



SD
O

SD
E
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X

R
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5
M
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M

7.
5

M
6.

5
M

5.
5

0 0 00000 1

Using RIM and SIM to set 
Individual Masks

– Assume the RST5.5 and RST7.5 are enabled and the interrupt process 
is disabled.

RIM ; Read the current settings.

ORI 08H ; 0 0 0 0 1 0 0 0
; Set bit 4 for MSE.

ANI 0DH ; 0 0 0 0 1 1 0 1
; Turn off Serial Data, Don’t reset
; RST7.5 flip flop, and set the mask
; for RST6.5 off. Don’t cares are
; assumed to be 0.

SIM ; Apply the settings.

Accumulator

SD
I

P7
.5

P6
.5

P5
.5

IE M
7.

5
M

6.
5

M
5.

5

0 1 00000 0

0 1 00000 1

0 0 00000 1



TRAP 

• TRAP is the only non-maskable interrupt.
– It does not need to be enabled because it cannot be 

disabled.
• It has the highest priority amongst interrupts.
• It is edge and level sensitive.

– It needs to be high and stay high to be recognized.
– Once it is recognized, it won’t be recognized again until 

it goes low, then high again.

• TRAP is usually used for power failure and 
emergency shutoff.



Internal Interrupt Priority

• Internally, the 8085 implements an interrupt 
priority scheme.
– The interrupts are ordered as follows:

• TRAP
• RST 7.5
• RST 6.5
• RST 5.5
• INTR

– However, TRAP has lower priority than the HLD signal 
used for DMA.



The 8085 Interrupts
Interrupt 

Name Maskable Masking 
Method Vectored Memory Triggerin

g Method

INTR Yes DI / EI No No Level 
Sensitive

RST 5.5 / 
RST 6.5 Yes

DI / EI
SIM

Yes No Level 
Sensitive

RST 7.5 Yes
DI / EI
SIM

Yes Yes Edge 
Sensitive

TRAP No None Yes No
Level & 

Edge 
Sensitive



Additional Concepts and 
Processes

• Programmable Interrupt Controller 8259 A
– A programmable interrupt managing device

• It manages 8 interrupt requests.
• It can vector an interrupt anywhere in memory 

without additional H/W.
• It can support 8 levels of interrupt priorities.
• The priority scheme can be extended to 64 levels

using a hierarchy 0f 8259 device.



The Need for the 8259A

• The 8085 INTR interrupt scheme presented earlier 
has a few limitations:
– The RST instructions are all vectored to memory page 

00H, which is usually used for ROM.
– It requires additional hardware to produce the RST 

instruction opcodes.
– Priorities are set by hardware.

• Therefore, we need a device like the 8259A to 
expand the priority scheme and allow mapping to 
pages other than 00H.



Interfacing the 8259A to the 8085
Dev. 7

Dev. 6

Dev. 5

Dev. 4

Dev. 3

Dev. 2

Dev. 1

Dev. 0

8
2
5
9
A

8
0
8
5

INTA

INTR

AD7
AD6
AD5
AD4
AD3
AD2
AD1
AD0

I7
I6
I5
I4
I3
I2
I1
I0



Operating of the 8259A

• The 8259A requires the microprocessor to 
provide 2 control words to set up its operation. 
After that, the following sequence occurs:
1. One or more interrupts come in.
2. The 8259A resolves the interrupt priorities based on 

its internal settings
3. The 8259A sends an INTR signal to the 

microprocessor.
4. The microprocessor responds with an INTA signal 

and turns off the interrupt enable flip flop.
5. The 8259A responds by placing the op-code for the 

CALL instruction (CDH) on the data bus.



Operating of the 8259A
6. When the microprocessor receives the op-code for 

CALL instead of RST, it recognizes that the device 
will be sending 16 more bits for the address.

7. The microprocessor sends a second INTA signal.
8. The 8259A sends the high order byte of the ISR’s 

address.
9. The microprocessor sends a third INTA signal.
10. The 8259A sends the low order byte of the ISR’s 

address.
11. The microprocessor executes the CALL instruction

and jumps to the ISR.



Direct Memory Access

• This is a process where data is transferred between 
two peripherals directly without the involvement 
of the microprocessor.
– This process employs the HOLD pin on the 

microprocessor
• The external DMA controller sends a signal on the HOLD pin 

to the microprocessor.
• The microprocessor completes the current operation and sends 

a signal on HLDA and stops using the buses.
• Once the DMA controller is done, it turns off the HOLD signal 

and the microprocessor takes back control of the buses. 



Serial I/O and Data 
Communication



Basic Concepts in Serial I/O

• Interfacing requirements:
– Identify the device through a port number.

• Memory-mapped.
• Peripheral-mapped.

– Enable the device using the Read and Write control 
signals.

• Read for an input device.
• Write for an output device.

– Only one data line is used to transfer the information 
instead of the entire data bus.



Basic Concepts in Serial I/O

• Controlling the transfer of data:
– Microprocessor control.

• Unconditional, polling, status check, etc.

– Device control.
• Interrupt.



Synchronous Data Transmission

• The transmitter and receiver are synchronized.
– A sequence of synchronization signals is sent before the 

communication begins.

• Usually used for high speed transmission.
• More than 20 K bits/sec.

• Message based.
– Synchronization occurs at the beginning of a long 

message.



Asynchronous Data Transmission

• Transmission occurs at any time.

• Character based.
– Each character is sent separately.

• Generally used for low speed transmission.
– Less the 20 K bits/sec.



Asynchronous Data Transmission
• Follows agreed upon standards:

– The line is normally at logic one (mark).
• Logic 0 is known as space.

– The transmission begins with a start bit (low).
– Then the seven or eight bits representing the 

character are transmitted.
– The transmission is concluded with one or two 

stop bits.
D0 D1 D2 D3 D4 D5 D6 D7St

ar
t

Stop

Time
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Simplex and Duplex 
Transmission

• Simplex.
– One-way transmission.
– Only one wire is needed to connect the two devices
– Like communication from computer to a printer.

• Half-Duplex.
– Two-way transmission but one way at a time.
– One wire is sufficient.

• Full-Duplex.
– Data flows both ways at the same time.
– Two wires are needed.
– Like transmission between two computers.



Rate of Transmission

• For parallel transmission, all of the bits are sent at 
once.

• For serial transmission, the bits are sent one at a 
time.
– Therefore, there needs to be agreement on how “long” 

each bit stays on the line.

• The rate of transmission is usually measured in 
bits/second or baud.



Length of Each Bit

• Given a certain baud rate, how long should 
each bit last?
– Baud = bits / second.
– Seconds / bits = 1 /baud.
– At 1200 baud, a bit lasts 1/1200 = 0.83 m Sec.



Transmitting a Character

• To send the character A over a serial 
communication line at a baud rate of 56.6 K:
– ASCII for A is 41H = 01000001.
– Must add a start bit and two stop bits:

• 11 01000001 0
– Each bit should last 1/56.6K = 17.66 µ Sec.

• Known as bit time.
– Set up a delay loop for 17.66 µ Sec and set the 

transmission line to the different bits for the duration of 
the loop.



Error Checking
• Various types of errors may occur during 

transmission.
– To allow checking for these errors, additional 

information is transmitted with the data.

• Error checking techniques:
– Parity Checking.
– Checksum.

• These techniques are for error checking not 
correction.
– They only indicate that an error has occurred. 
– They do not indicate where or what the correct 

information is.



Parity Checking

• Make the number of 1’s in the data Odd or Even.
– Given that ASCII is a 7-bit code, bit D7 is used to carry 

the parity information.

– Even Parity
• The transmitter counts the number of ones in the data. If there 

is an odd number of 1’s, bit D7 is set to 1 to make the total 
number of 1’s even.

• The receiver calculates the parity of the received message, it 
should match bit D7.

– If it doesn’t match, there was an error in the transmission.



Checksum

• Used when larger blocks of data are being 
transmitted.

• The transmitter adds all of the bytes in the 
message without carries. It then calculates the 2’s 
complement of the result and send that as the last 
byte.

• The receiver adds all of the bytes in the message 
including the last byte. The result should be 0.
– If it isn’t an error has occurred.



RS 232

• A communication standard for connecting 
computers to printers, modems, etc.
– The most common communication standard.
– Defined in the 1950’s.
– It uses voltages between +15 and –15 V.
– Restricted to speeds less than 20 K baud.
– Restricted to distances of less than 50 feet (15 m).

• The original standard uses 25 wires to connect the 
two devices.
– However, in reality only three of these wires are 

needed.



Software-Controlled Serial 
Transmission

• The main steps involved in serially transmitting a 
character are:
– Transmission line is at logic 1 by default.
– Transmit a start bit for one complete bit length.
– Transmit the character as a stream of bits with 

appropriate delay.
– Calculate parity and transmit it if needed.
– Transmit the appropriate number of stop bits.
– Transmission line returns to logic 1.



Serial Transmission
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Flowchart of Serial Transmission 
Set up Bit Counter

Set bit D0 of A to 0 (Start Bit)

Wait Bit Time

Get character into A

Wait Bit Time

Rotate A Left
Decrement Bit Counter

Last Bit?

Add Parity
Send Stop Bit(s)

Yes

No



Software-Controlled Serial 
Reception

• The main steps involved in serial reception are:
– Wait for a low to appear on the transmission line.

• Start bit

– Read the value of the line over the next 8 bit lengths.
• The 8 bits of the character.

– Calculate parity and compare it to bit 8 of the character.
• Only if parity checking is being used.

– Verify the reception of the appropriate number of stop 
bits.



Serial Reception
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Flowchart of Serial Reception
Read Input Port

Start Bit?

Yes

No

Wait for Half Bit Time

Bit Still 
Low?

Yes

No

Start Bit Counter

Wait Bit Time
Read Input Port

Decrement Counter

Last Bit?

Check Parity
Wait for Stop Bits

Yes

No



The 8085 Serial I/O Lines

• The 8085 Microprocessor has two serial I/O 
pins:
– SOD – Serial Output Data
– SID – Serial Input Data

• Serial input and output is controlled using 
the RIM and SIM instructions respectively.



SIM and Serial Output
• As was discussed in Chapter 12, the SIM 

instruction has dual use. 
– It is used for controlling the maskable interrupt 

process 
– For the serial output process.

• The figure below shows how SIM uses the 
accumulator for Serial Output.

SD
O

SD
E

XX
X

R
7.

5
M

SE
M

7.
5

M
6.

5
M

5.
5

01234567

0 – Disable SOD
1 – Enable SOD

Serial Output Data



RIM and Serial Input

• Again, the RIM instruction has dual use
– Reading the current settings of the Interrupt 

Masks
– Serial Data Input

• The figure below shows how the RIM 
instruction uses the Accumulator for Serial 
Input

SD
I

P7
.5

P6
.5

P5
.5 IE M

7.
5

M
6.

5
M

5.
5

01234567

Serial Input Data



Ports?

• Using the SOD and SID pins, the user 
would not need to bother with setting up 
input and output ports.
– The two pins themselves can be considered as 

the ports.
– The instructions SIM and RIM are similar to 

the OUT and IN instructions except that they 
only deal with the 1-bit SOD and SID ports.



Example
• Transmit an ASCII character stored in 

register B using the SOD line.
SODDATA MVI C, 0BH ; Set up counter for 11 bits

XRA A ; Clear the Carry flag
NXTBIT MVI A, 80H ; Set D7 =1

RAR ; Bring Carry into D7 and set D6 to 1
SIM ; Output D7 (Start bit)
CALL BITTIME
STC ; Set Carry to 1
MOV A, B ; Place character in A
RAR ; Shift D0 of the character to the carry

Shift 1 into bit D7
MOV B, A ; Save the interim result
DCR C ; decrement bit counter
JNZ NXTBIT
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PORT 
A

EN

PORT 

C

EN

PORT 
B

EN

CONTROL 
REGISTER

EN

INTE
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00
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CL
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CONTROL WORD

D7  D6  D5  D4  D3  D2   D1    D0

0/1

BSR MODE

BIT SET/RESET

FOR PORT C

NO EFFECT ON I/O

MODE

I/O MODE

MODE 0

SIMPLE I/O FOR 
PORTS 

A, B AND C

MODE 1

HANDSHAKE 
I/O FOR 
PORTS  A 
AND/OR  B 

PORT C BITS 
ARE USED 
FOR 
HANDSHAKE

MODE 2

BIDIRECTI
ONAL  
DATA  BUS 
FOR PORT 
A 

PORT B 
EITHER IN 
MODE 0 OR 
1

PORT C 
BITS ARE 
USED FOR 
HANDSHAK
E
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GROUP
A

PORT
A
(8)

GROUP
B

PORT
B
(8)

GROUPA
PORT C
UPPER

(4)

GROUPB
PORT C
LOWER

(4)

GROUP
A

CON-
TROL

GROUP
B

CON-
TROL

READ/
WRITE

CONTROL 
LOGIC

DATA
BUS

BUFFER

BIDIRECTION
AL DATA BUS

D1,D0

RD
WR

A1
A0

RESET

8-BIT 
INTERNAL 
DATA BUS

CS

I/O
PA7-PA0

I/O

PC7-PC4

I/O

PC3-
PC0

I/O

PB7-
PB0

+5V

GND
POWER 
SUPPLIES

8255A
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Control Word Format for    
I/O Mode

D7 D6  D5 D4 D3 D2 D1 D0

PORT CL (PC3-PC0)
1= INPUT;0= OUTPUT

PORT B
1= INPUT;0= OUTPUT

MODE SELECTION
0=MODE0; 1=MODE 1

1= I/O Mode
0= BSR Mode

Group B

Group A

PORT CU (PC7-PC4)

1= INPUT; 0=OUTPUT

PORT A

1= INPUT; 0=OUTPUT

MODE  SELECTION

00= MODE 0;01= MODE 1;1X= MODE 2
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8255A

A1

A0

RD

WR

RESET

PA7

PA0

PC7

PC4

PC3

PC0

PB7

PB0

CS
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Mode 0 ( Simple Input or 
Output )

PROBLEM 1)

 Interface 8255a to a 8085 microprocessor using I/O-mapped -
I/O technique so that Port a have address 80H in the system.

 Determine addresses of Ports B,C and control register.
 Write an ALP to configure port A and port CL as output ports 

and port B and port CU as input ports in mode 0.
 Connect DIP switches connected to the to input ports and 

LEDs to the output ports .
 Read switch positions connected to port A and turn on the 

respective LEDs of port b. Read switch positions of port CL and 
display the reading at port CU



1

BSR (Bit Set/Reset )  Mode 

BSR control word

D7 D6 D5 D4 D3 D2 D1 D0

0       X         X              X BIT SELECT S/R

BSR Mode

Not used, 

Generally reset to 0 

000 = Bit 0 

001 = Bit 1 

010 = Bit 2

011 = Bit 3

100 = Bit 4 

101 = Bit 5

110 = Bit 6

111 = Bit 7

1= Set

0 = Reset



1

Problem 2)

 Write an ALP to set bits PC7 and PC 3 
and reset them after 10 ms in BSR 
mode. 
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Mode 1: Input or Output with 
Handshake

PC4

PC5

PC3

PC2

PC1

PC0

Port A Input

Port B Input

STBA

IBFA

INTRA

STBB

IBFB

INTRB

INTEA

INTEB

I/OPC 6,7

RD

PA7-PA0

PB7-PB0

Port A with 
Handshake 

Signal

Port b with 

Handshake 

Signal

Port A & Port B as 
Input in Mode 1 
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Control word – mode 1 input

D7 D6 D5 D4 D3 D2 D1 D0

x111101 1/0

I/O 
Mode

Port A

Mode 1

Port A 
Input

Port B 

Input

Port B

Mode 1

PC6,7

1=Input; 
0=Output
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Status Word – Mode 1 input

D7 D6 D5 D4 D3 D2 D1 D0

INTRBIBFBINTEAIBFAI/OI/O INTRA INTEB
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STB

IBF

INTR

RD

Input from 
peripheral

v
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PC7

PC6

PC3

PC2

PC1

PC0

OBFA

ACKA

INTRA

OBFB

ACKB

INTRB

INTEA

INTEB

I/OPC 4,5

WR

PA7-PA0

PB7-PB0

Port A with 
Handshake 

Signal

Port b with 

Handshake 

Signal

Port A Output

Port B Output

Port A & B  as Output

In Mode 1
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Control word – mode 1 Output

D7 D6 D5 D4 D3 D2 D1 D0

x010101 1/0

I/O 
Mode

Port A

Mode 1

Port A 
Output

Port B 

Output

Port B

Mode 1

PC4,5

1=Input; 
0=Output
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Status Word – Mode 1 Output

D7 D6 D5 D4 D3 D2 D1 D0

INTRBOBFBI/OI/OINTEaOBFA INTRA INTEB
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WR

OBF

INTR

ACK

output
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Status

Initialize Ports

Read port
C for status

Is
Peripheral
Ready?

Interrupt

Initialize Ports

Enable INTE

No

yes

Continue

No
Yes

Continue
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Problem 3)

 Initialize 8255A in mode 1 to configure Port 
A as an input port and Port B as an output 
port.

 Assuming that an A-to-d converter is 
connected with port A as an interrupt I/O
and a printer is connected with port B as a 
status check I/O  



8086 MICROPROCESSOR



Pinouts

I-46



8086 Pins
The 8086 comes in a 40 pin package which means that some pins have
more than one use or are multiplexed.  The packaging technology of time
limited the number of pin that could be used.

In particular, the address lines 0 - 15 are multiplexed with data lines 0-15,
address lines 16-19 are multiplexed with status lines.  These pins are

AD0 - AD15,  A16/S3 - A19/S6

The 8086 has one other pin that is multiplexed and this is BHE’/S7. 
BHE stands for Byte High Enable.  This is an active low signal that is 
asserted when there is data on the upper half of the data bus.

The 8086 has two modes of operation that changes the function of some pins.
The SDK-86 uses the 8086 in the minimum mode with the MN/MX’ pin tied  to
5 volts.  This is a simple single processor mode.  The IBM PC uses an 8088 
in the maximum mode with the MN/MX” pin tied to ground.  This is the mode 
required for a coprocessor like the 8087.
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8086 Pins
In the minimum mode the following pins are available.

HOLD When this pin is high, another master is requesting control of the 
local bus, e.g., a DMA controller.

HLDA HOLD Acknowledge: the 8086 signals that it is going to float 
the local bus.

WR’ Write: the processor is performing a write memory or I/O operation.

M/IO’ Memory or I/O operation.

DT/R’ Data Transmit or Receive.

DEN’ Data Enable: data is on the multiplexed address/data pins.

ALE Address Latch Enable: the address is on the address/data pins.
This signal is used to capture the address in latches to establish the 
address bus.

INTA’ Interrupt acknowledge:  acknowledges external interrupt requests.
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8086 Pins
The following are pins are available in both minimum and maximum modes.

VCC + 5 volt power supply pin.

GND Ground

RD’ READ: the processor is performing a read memory or I/O operation. 

READY Acknowledgement from wait-state logic that the data transfer will 
be completed.

RESET Stops processor and restarts execution from FFFF:0.  Must be high
for 4 clocks.  CS = 0FFFFH, IP = DS = SS = ES = Flags = 0000H, no
other registers are affected.

TEST’ The WAIT instruction waits for this pin to go low.  Used with 8087.

NMI Non Maskable Interrupt: transition from low  to high causes an
interrupt.  Used for emergencies such as power failure.

INTR Interrupt request: masked by the IF bit in FLAG  register.

CLK Clock: 33% duty cycle, i.e., high 1/3 the time.
I-49



• 16-bit Arithmetic Logic Unit

• 16-bit data bus  (8088 has 8-bit data bus)

• 20-bit address bus - 220 = 1,048,576 = 1 meg 

The address refers to a byte in memory.  In the 8088, these bytes come in on 
the 8-bit data bus.  In the 8086, bytes at even addresses come in on the low 
half of the data bus (bits 0-7) and bytes at odd addresses come in on the upper 
half of the data bus (bits 8-15).

The 8086 can read a 16-bit word at an even address in one operation and at an 
odd address in two operations.  The 8088 needs two operations in either case.

The least significant byte of a word on an 8086 family microprocessor is at the 
lower address.

I-8
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8086 Architecture
• The 8086 has two parts, the Bus Interface Unit (BIU) and the 
Execution Unit (EU).

• The BIU fetches instructions, reads and writes data, and computes the 
20-bit address.

• The EU decodes and executes the instructions using the 16-bit ALU.

• The BIU contains the following registers:

IP - the Instruction Pointer
CS - the Code Segment Register
DS - the Data Segment Register
SS - the Stack Segment Register
ES - the Extra Segment Register

The BIU fetches instructions using the CS and IP, written CS:IP, to contruct
the 20-bit address.  Data is fetched using a segment register (usually the DS) 
and an effective address (EA) computed by the EU depending on the 
addressing mode.
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8086 Block Diagram
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8086 Architecture
The EU contains the following 16-bit registers:

AX - the Accumulator
BX - the Base Register
CX - the Count Register
DX - the Data Register
SP - the Stack Pointer   \ defaults to stack segment
BP - the Base Pointer    /      
SI - the Source Index Register
DI - the Destination Register

These are referred to as general-purpose registers, although, as seen by
their names, they often have a special-purpose use for some instructions.

The AX, BX, CX, and DX registers can be considers as two 8-bit registers, a 
High byte and a Low byte.  This allows byte operations and compatibility with 
the previous generation of 8-bit processors, the 8080 and 8085.  8085 source 
code could be translated in 8086 code and assembled.  The 8-bit registers are:

AX --> AH,AL
BX --> BH,BL
CX --> CH,CL
DX --> DH,DL

I-11



Flag Register

 NT IOPL OF DF IF TF ZFSF  AF PF CF 

015

 Control Flags  Status Flags

IF: Interrupt enable flag
DF: Direction flag
TF: Trap flag

CF: Carry flag
PF: Parity flag
AF: Auxiliary carry flag
ZF: Zero flag
SF: Sign flag
OF: Overflow flag
NT: Nested task flag
IOPL: Input/output privilege level

 Flag register contains information reflecting the current status of a
microprocessor. It also contains information which controls the 
operation of the microprocessor.    



Flags Commonly Tested During the Execution of 
Instructions

 There are five flag bits that are commonly tested during the execution 
of instructions   

 Sign Flag (Bit 7), SF:     0 for positive number and 1 for negative number  

 Zero Flag (Bit 6), ZF:    If the ALU output is 0, this bit is set (1); otherwise,
it is 0  

 Carry Flag (Bit 0), CF:  It contains the carry generated during the execution   

 Auxiliary Carry, AF:     Depending on the width of ALU inputs, this flag 
(Bit 4)             bit contains the carry generated at bit 3 (or, 7, 15)

of the 8088 ALU    

 Parity Flag (bit2), PF:   It is set (1) if the output of the ALU has even number 
of ones; otherwise it is zero



Direction Flag
 Direction Flag (DF) is used to control the way SI and DI are adjusted during the

execution of a string instruction   

— DF=0, SI and DI will auto-increment during the execution; otherwise, SI and DI 
auto-decrement

— Instruction to set DF:   STD;  Instruction to clear DF:  CLD

— Example:

CLD
MOV CX, 5
REP MOVSB

At the beginning of execution,
DS=0510H and SI=0000H

53
48
4F
50
50
45

S
H

O
P
P

52
E
R

0510:0000
0510:0001
0510:0002

0510:0003
0510:0004
0510:0005
0510:0006

DS  :  SI

Source String

SI CX=5

SI CX=4

SI CX=3

SI CX=2
SI CX=1

SI CX=0



8086 Programmer’s Model
ES
CS
SS
DS
IP

AH
BH
CH
DH

AL
BL
CL
DL

SP
BP
SI
DI

FLAGS

AX
BX
CX
DX

Extra Segment
Code Segment
Stack Segment
Data Segment
Instruction Pointer

Accumulator
Base Register
Count Register
Data Register
Stack Pointer
Base Pointer
Source Index Register
Destination Index Register

I-13

BIU registers
(20 bit adder)

EU registers
16 bit arithmetic



Memory Address Calculation

 Segment addresses must be stored 
in segment registers 

 Offset is derived from the combination
of pointer registers, the Instruction 
Pointer (IP), and immediate values  

0000

+
Segment address

Offset

Memory address

 Examples 

3 4 8 A 0
4 2 1 4
8 A B 43

CS
IP +

Instruction address

5 0 0 0 0
F F E 0
F F E 05

SS
SP +

Stack address

1 2 3 4 0
0 0 2 2
2 3 6 21

DS
DI +

Data address



EEE/CSE 226

Segment
Registers

CODE

STACK

DATA

EXTRA

MEMORY

Address
0H

0FFFFFH

64K Data
Segment

64K Code
Segment

Segments are < or = 64K,
can overlap, start at an address
that ends in 0H. 

Segments

← CS:0

I-14

Segment Starting address is segment
register value shifted 4 places to the  left.



CODE

DATA

STACK

EXTRA

0100H

0B200H

0CF00H

0FF00H

DS:

SS:

ES:

CS:

01000H

0B2000H

0CF000H

0FF000H

10FFFH

0C1FFFH

0DEFFFH

0FFFFFH

0HSegment 
Registers

Memory Segments

Segments are < or = 64K and can overlap.

8086 Memory Terminology

I-15
Note that the Code segment is < 64K since 0FFFFFH is the highest address.



The Code Segment

Memory
Segment Register

Offset

Physical or
Absolute Address

0

+

CS:

IP

0400H

0056H

4000H

4056H

0400

0056

04056H

The offset is the distance in bytes from the start of the segment.
The offset is given by the IP for the Code Segment.
Instructions are always fetched with using  the CS register.

I-16

CS:IP = 400:56
Logical Address

0H

0FFFFFH

The physical address  is also called the absolute address.



The Stack Segment

Memory
Segment Register

Offset

Physical Address

+

SS:

SP

0A00

0100

0A000H

0A100H

0A00 0

0100

0A100H

The stack is always referenced with respect to the stack segment register.
The stack grows toward decreasing memory locations.
The SP points to the last or top item on the stack.

PUSH - pre-decrement the SP
POP   - post-increment the SP

The offset is given by the SP register.
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SS:SP

0H

0FFFFFH



The Data Segment

Memory
Segment Register

Offset

Physical Address

+

DS:

EA

05C0

0050

05C00H

05C50H

05C0 0

0050

05C50H

Data is usually fetched with respect to the DS register.
The effective address (EA) is the offset.
The EA depends on the addressing mode.
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DS:EA

0H

0FFFFFH



8086 memory Organization



Even addresses are on the low half 
of the data bus (D0-D7).

Odd addresses are on the upper
half of the data bus (D8-D15).

A0 = 0 when data is on the low
half of the data bus.

BHE’ = 0 when data is on the upper
half of the data bus.



MAX and MIN Modes

• In minmode, the 9 signals correspond to 
control signals that are needed to operate 
memory and I/O devices connected to the 
8088. 

• In maxmode, the 9 signals change their 
functions; the 8088 now requires the use of 
the 8288 bus controller to generate 
memory and I/O read/write signals. 



Why MIN and MAX modes?

• Minmode signals can be directly decoded 
by memory and I/O circuits, resulting in a 
system with minimal hardware 
requirements.

• Maxmode systems are more complicated, 
but obtain the new signals that allow for bus 
grants (e.g. DMA), and the use of an 8087 
coprocessor.



The 9 pins (min)

• **ALE: address latch enable (AD0 – AD7)
• **DEN: data enable (connect/disc. buffer)
• **WR: write (writing indication)
• *HOLD 
• *HDLA: hold acknowledge
• *INTA: interrupt acknowledge
• IO/M: memory access or I/O access 
• DT/R: data transmit / receive (direction)
• SSO: status



The 9 pins (max)

• S0, S1, S2: status
• *RQ/GT0, RQ/GT1: request/grant
• *LOCK: locking the control of the sys. bus 
• *QS1, QS0: queue status (tracking of 

internal instruction queue).
• HIGH



Instruction Types

Data transfer instructions

 String instructions

Arithmetic instructions

 Bit manipulation instructions

 Loop and jump instructions

 Subroutine and interrupt instructions

 Processor control instructions



Addressing Modes

 Immediate addressing MOV AL, 12H
 Register addressing MOV AL, BL
 Direct addressing MOV [500H], AL
 Register Indirect addressing MOV DL, [SI]
 Based addressing MOV AX, [BX+4]
 Indexed addressing MOV [DI-8], BL
 Based indexed addressing MOV [BP+SI], AH
 Based indexed with displacement addressing MOV CL, [BX+DI+2]

Exceptions

 String addressing

 Port addressing   (e.g. IN AL, 79H)

Addressing Modes Examples



Data Transfer Instructions
 MOV Destination, Source

— Move data from source to destination;  e.g. MOV [DI+100H], AH

 For 80x86 family, directly moving data from one memory location to 
another memory location is not allowed

MOV  [SI],  [5000H]

When the size of data is not clear, assembler directives are used

MOV  [SI],  0

 BYTE PTR MOV  BYTE PTR  [SI],  12H
 WORD PTR MOV  WORD PTR [SI], 12H
 DWORD PTR MOV  DWORD PTR [SI], 12H 

— It does not modify flags

You can not move an immediate data to segment register by MOV

MOV DS, 1234H  



Instructions for Stack Operations
 What is a Stack ?

— A stack is a collection of memory locations. It always follows the rule of 
last-in-firs-out

— Generally, SS and SP are used to trace where is the latest date written into stack    

 PUSH  Source
— Push data (word) onto stack
— It does not modify flags
— For Example: PUSH AX    (assume ax=1234H, SS=1000H, SP=2000H 

before PUSH AX)

1000:2000

1000:1FFF

1000:1FFE

1000:1FFD

??

??

??

??

1000:2000

1000:1FFF

1000:1FFE

1000:1FFD

??

12

34

??

SS:SP

SS:SP

Before PUSH AX, SP = 2000H After PUSH AX, SP = 1FFEH AX

12 34

 Decrementing the stack pointer during a  push is a standard way of implementing stacks in hardware 



Instructions for Stack Operations
 PUSHF   

— Push the values of the flag register onto stack
— It does not modify flags

 POP   Destination

1000:2000

1000:1FFF

1000:1FFE

1000:1FFD

EC

12

34

??

1000:2000

1000:1FFF

1000:1FFE

1000:1FFD

EC

12

34

??

SP

SP

Before POP, SP = 1FFEH After POP AX,   SP = 2000H AX

12 34

— Pop word off stack
— It does not modify flags
— For example:     POP   AX

 POPF   
— Pop word from the stack to the flag register
— It  modifies all flags



Data Transfer Instructions
 SAHF   

 LAHF   

— Store data in AH to the low 8 bits of the flag register
— It modifies flags: AF, CF, PF, SF, ZF

— Copies bits 0-7 of the flags register into AH
— It does not modify flags 

 LDS Destination Source

— Load 4-byte data (pointer) in memory to two 16-bit registers
— Source operand gives the memory location  
— The first two bytes are copied to the register specified in the destination operand;

the second two bytes are copied to register DS 
— It does not modify flags

 LES Destination Source
— It is identical to LDS except that the second two bytes are copied to ES
— It does not modify flags  



Data Transfer Instructions
 LEA Destination Source

— Transfers the offset address of source (must be a memory location) to the 
destination register

— It does not modify flags 

 XCHG Destination Source

— It exchanges the content of destination and source
— One operand must be a microprocessor register, the other one can be a register 

or a memory location 
— It does not modify flags 

 XLAT 

— Replace the data in AL with a data in a user defined look-up table
— BX stores the beginning address of the table
— At the beginning of the execution, the number in AL is used as the 

index of the look-up table 
— It does not modify flags 



String Instructions
 String is a collection of bytes, words, or long-words that can be up to 64KB 

in length   

 String instructions can have at most two operands. One is referred to as source
string and the other one is called destination string  
— Source string must locate in Data Segment and SI register points to the current

element of the source string 
— Destination string must locate in Extra Segment and DI register points to the current

element of the destination string 

53
48
4F
50
50
45

S
H

O
P
P

52
E
R

0510:0000
0510:0001
0510:0002

0510:0003
0510:0004
0510:0005
0510:0006

53
48
4F
50
50
49

S
H

O
P
P

4E
I
N

02A8:2000
02A8:2001
02A8:2002

02A8:2003
02A8:2004
02A8:2005
02A8:2006

DS  :  SI ES  :  DI

Source String Destination String



Repeat Prefix Instructions
 REP String Instruction

— The prefix instruction makes the microprocessor repeatedly execute the string instruction
until CX decrements to 0 (During the execution, CX is decreased by one when the string
instruction is executed one time). 

— For Example:

MOV CX, 5
REP MOVSB

By the above two instructions, the microprocessor will execute MOVSB 5 times.

— Execution flow of REP MOVSB::

While (CX!=0)
{

CX = CX –1;
MOVSB;

}

Check_CX:  If CX!=0 Then
CX = CX –1;
MOVSB;
goto Check_CX;

end if

OR



String Instructions
 MOVSB (MOVSW)   

— Move byte (word) at memory location DS:SI to memory location ES:DI and 
update SI and DI according to DF and the width of the data being transferred

— It does not modify flags
—Example:

53
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E
R

0510:0000
0510:0001
0510:0002

0510:0003
0510:0004
0510:0005
0510:0006

0300:0100
DS  :  SI ES  :  DI

Source String Destination String

MOV  AX, 0510H
MOV DS, AX
MOV SI, 0
MOV AX, 0300H
MOV ES, AX
MOV DI, 100H
CLD
MOV CX, 5
REP MOVSB



String Instructions
 CMPSB (CMPSW)   

— Compare bytes (words) at memory locations DS:SI and ES:DI; 
update SI and DI according to DF and the width of the data being compared

— It modifies flags
—Example:

Assume: ES = 02A8H
DI = 2000H
DS = 0510H
SI = 0000H

CLD
MOV CX, 9
REPZ CMPSB

What’s the values of CX after
The execution? 

53
48
4F
50
50
45

S
H

O
P
P

52
E
R

0510:0000
0510:0001
0510:0002

0510:0003
0510:0004
0510:0005
0510:0006

02A8:2000

DS  :  SI
ES  :  DI

Source String Destination String

02A8:2001
02A8:2002

02A8:2003
02A8:2004
02A8:2005
02A8:2006

53
48
4F
50
50
49

S
H

O
P
P

4E
I
N



String Instructions
 SCASB (SCASW)   

— Move byte (word) in AL (AX) and at memory location ES:DI;  
update DI according to DF and the width of the data being compared

— It modifies flags

 LODSB (LODSW)   

— Load byte (word) at memory location DS:SI to AL (AX);  
update SI according to DF and the width of the data being transferred

— It does not modify flags

 STOSB (STOSW)   

— Store byte (word) at in AL (AX) to memory location ES:DI;  
update DI according to DF and the width of the data being transferred

— It does not modify flags



Repeat Prefix Instructions
 REPZ String Instruction

— Repeat the execution of the string instruction until CX=0 or zero flag is clear

 REPNZ String Instruction
— Repeat the execution of the string instruction until CX=0 or zero flag is set

 REPE String Instruction
— Repeat the execution of the string instruction until CX=0 or zero flag is clear

 REPNE String Instruction
— Repeat the execution of the string instruction until CX=0 or zero flag is set



Loops and Conditional Jumps
All loops and conditional jumps are SHORT jumps, i.e., the target must 
be in the range of an 8-bit signed displacement (-128 to +127). 

The displacement is the number that, when added to the IP, changes the
IP to point at the jump target.  Remember the IP is pointing at the next 
instruction when this occurs.

The loop instructions perform several operations at one time but do not
change any flags.

LOOP decrements CX and jumps if CX is not zero.
LOOPNZ or LOOPNE -- loop while not zero or not equal: decrements CX
and jumps if CX is not zero or the zero flag ZF = 0.
LOOPZ or LOOPE -- loop while zero or equal: decrements CX and jumps
if CX is zero or the zero flag ZF = 1.  

The conditional jump instructions often follow a compare CMP or TEST
instruction.  These two instructions only affect the FLAG register and not
the destination.  CMP does a SUBtract (dest - src) and TEST does an AND.

For example, if a CMP is followed by a JG (jump greater than), then the
jump is taken if the destination is greater than the source.
Test is used to see if a bit or bits are set in a word or byte such as when 
determining the status of a peripheral device.

I-39



Conditional Jumps
Name/Alt Meaning Flag setting
JE/JZ Jump equal/zero ZF = 1
JNE/JNZ     Jump not equal/zero ZF = 0
JL/JNGE     Jump less than/not greater than or = (SF xor OF) = 1
JNL/JGE     Jump not less than/greater than or = (SF xor OF) = 0
JG/JNLE     Jump greater than/not less than or = ((SF xor OF) or ZF) = 0
JNG/JLE     Jump not greater than/ less than or = ((SF xor OF) or ZF) = 1
JB/JNAE     Jump below/not above or equal CF = 1
JNB/JAE     Jump not below/above or equal CF = 0
JA/JNBE     Jump above/not below or equal (CF or ZF) = 0
JNA/JBE     Jump not above/ below or equal (CF or ZF) = 1

JS Jump on sign (jump negative) SF = 1
JNS Jump on not sign (jump positive) SF = 0
JO Jump on overflow OF = 1
JNO Jump on no overflow OF = 0
JP/JPE Jump parity/parity even PF = 1
JNP/JPO    Jump no parity/parity odd PF = 0

JCXZ Jump on CX = 0 ---
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8254 Internal Architecture

8
Counter

=0

Counter
=1

Counter
=2

Control
Word 

Register

Read/
Write
Logic

Data
Bus

Buffer

CLK 0
GATE 0
OUT 0

CLK 1
GATE 1
OUT 1

CLK 2
GATE 2
OUT 2

RD
WR

A0
A1

CS

D7-D0



THE CONTROL WORD REGISTER AND COUNTERS 
ARE SELECTED

ACCORDING TO THE SIGNALS ON LINE
A0 and A1 AS SHOWN BELOW

A1 A0 Selection

0 0 Counter 0
0 1 Counter 1
1 0 Counter 2
1 1 Control Register



8254 Control Word Format
SC1 SC0 RW1 RW0 M2 M1 M0 BCD

SC1 SC0

0 0 Select counter 0

0 1 Select counter 1

1 0 Select Counter 2

1 1 Read-Back command

RW1 RW0

0 0 Counter Latch Command

0 1 Read/Write least significant byte only

1 0 Read/Write most significant byte only

1 1 Read/Write least significant byte first,
Then the most significant byte.



0 Binary Counter 16-bits

1 Binary Coded Decimal (BCD) Counter

BCD:



M2 M1 M0

0 0 0 Mode 0

0 0 1 Mode 1

X 1 0 Mode 2

X 1 1 Mode 3

1 0 0 Mode 4

1 0 1 Mode 5



MODE 0 : Interrupt on terminal count

Clk

3 2 1 0WR

Output 
Interrupt



MODE 1 : HARDWARE-RETRIGGERABLE 
ONE-SHOT

Clk

WR 3 2 1 0

Output



MODE 2 : RATE GENERATOR CLOCK

3 2 1 0

Clk

WR 3

OUTPUT



MODE 3 : Square Wave Generator

Clk

4 2 4 2 4 2 4 2OUTPUT(n=4)

5 4 2 5 2 5 4 2OUTPUT(n=5)



MODE 4 : SOFTWARE TRIGGERED STROBE

In this mode OUT is initially high; it goes low for one 
clock period at the end of the count. The count must be

RELOADED -(UNLIKE MODE 2)
for subsequent outputs.



MODE 5 : HARWARE TRIGGERED STROBE

• This mode is similar to MODE 4 except that 
it is triggered by the rising pulse at the gate. 
Initially, the OUT is low and when the 
GATE pulse is triggered from low to high , 
the count begins. At the end of the count the 
OUT goes low for one clock period.



READ BACK COMMAND FORMAT:

• THIS FEATURE AVAILABLE ONLY IN 
8254 and not in 8253.

1 1 COU
NT

STAT
US

CNT2 CNT1 CNT0 0



Data Transfer 
Schemes



Why do we need data transfer 
schemes ?

• Availability of wide variety of I/O devices 
because of variations in manufacturing 
technologies e.g. electromechanical, electrical, 
mechanical, electronic etc. 

• Enormous variation in the range of speed.

• Wide variation in the format of data.
•



Classification of Data Transfer 
Schemes

Data transfer schemes

Programmed
Data transfer

DMA
Data transfer

Synchronous 
mode

Asynchronous 
mode

Interrupt 
Driven mode

Block
DMA  mode

Cycle stealing
DMA  mode



Programmed Data Transfer 
Scheme

• The data transfer takes place under the control 
of a program residing in the main memory.

• These programs are executed by the CPU 
when an I/O device is ready to transfer data.

• To transfer one byte of data, it  needs to 
execute several instructions.

• This scheme is very slow and thus suitable 
when small amount of data is to be transferred.



Synchronous Mode of Data 
Transfer

• Its used for I/O devices whose timing 
characteristics are fast enough to be 
compatible in speed with the communicating 
MPU.

• In this case the status of the I/O device is not 
checked before data transfer.

• The data transfer is executed using IN and 
OUT instructions.



• Memory compatible with MPU are available. 
Hence this method is invariably used with 
compatible memory devices.

• The I/O devices compatible in speed with 
MPU are usually not available. Hence this 
technique is rarely used in practice



Asynchronous Data Transfer
• This method of data transfer is also called 

Handshaking mode.

• This scheme is used when speed of I/O device 
does not match with that of MPU and the 
timing characteristics are not predictable.

• The MPU fist sends a request to the device and 
then keeps on checking its status.



• The data transfer instructions are executed 
only when the I/O device is ready to accept or 
supply data.

• Each data transfer is preceded by a requesting 
signal sent by MPU and READY signal from 
the device.



Disadvantages

• A lot of MPU time is wasted during looping to 
check the device status which may be 
prohibitive in many situations.

• Some simple devices may not have status 
signals. In such a case MPU  goes on checking 
whether data is available on the port or not. 



Interrupt Driven Data Transfer
• In this scheme the MPU initiates an I/O device 

to get ready and then it executes its main 
program instead of remaining in the loop to 
check the status of the device.

• When the device gets ready, it sends a signal 
to the MPU through a special input line called 
an interrupt line.

• The MPU answers the interrupt signal after 
executing the current instruction.



• The MPU saves the contents of the PC on the 
stack first and then takes up a subroutine called 
ISS (Interrupt Service Subroutine).

• After returning from ISS the MPU again loads 
the PC with the address that is just loaded in 
the stack and thus returns to the main program.

• It is efficient because precious time of MPU is 
not wasted while the I/O device gets ready.

• In this scheme the data transfer may also be 
initiated by the I/O device.



Multiple Interrupts

• The MPU has one interrupt level and several 
I/O devices to be connected to it which are 
attended in the order of priority.

• The MPU has several interrupt levels and one 
I/O device is to be connected to each interrupt 
level.



• The MPU has several interrupt levels and 
more than one I/O devices are to be 
connected to each interrupt level.

• The MPU executes multiple interrupts by 
using a device polling technique to know 
which device connected to which 
interrupt level has interrupted



Interrupts of 8085
On the basis of priority the interrupt signals are 
as follows

• TRAP
• RST 7.5
• RST6.5
• RST5.5
• INTR

These interrupts are implemented by the 
hardware



Interrupt Instructions
• EI ( Enable Interrupt) This instruction sets the 

interrupt enable Flip Flop to activate the interrupts.

• DI ( Disable Interrupt) This instruction resets the 
interrupt enable Flip Flop and deactivates all the 
interrupts except the non-maskable interrupt i.e. 
TRAP

• RESET This also resets the interrupt enable Flip 
Flop.



• SIM (Set Interrupt Mask) This enables\disables 
interrupts according to the bit pattern in 
accumulator obtained through masking.

• RIM (Read Interrupt Mask) This 
instruction helps the programmer to know the 
current status of pending interrupt.



Call Locations and Hex – codes 
for RST n

RST n Hex - code Call location
RST 0 C7 0000
RST 1 CF 0008
RST 2 D7 0010
RST 3 DF 0018
RST 4 E7 0020
RST 5 EF 0028
RST 6 F7 0030
RST 7 FF 0038

These instructions are implemented by the software



DMA Data Transfer scheme
• Data transfer from I/O device to memory or 

vice-versa is controlled by a DMA controller.
• This scheme is employed when large amount 

of data is to be transferred.
• The DMA requests the control of buses 

through the HOLD signal and the MPU 
acknowledges the request through HLDA 
signal and releases the control of buses to 
DMA.

• It’s a faster scheme and hence used for high 
speed printers.



In this scheme the I/O device withdraws 
the DMA request only after all the data 
bytes have been transferred.

Block mode of data transfer

Cycle stealing technique
In this scheme the bytes are divided into 
several parts and after transferring every part 
the control of buses is given back to MPU and 
later stolen back when MPU does not need it. 
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