

MICROPROCESSOR 8085

• Reference Book:
– Ramesh S. Goankar, “Microprocessor Architecture,

Programming and Applications with 8085”, 5th Edition,
Prentice Hall

• Week 1 – Basic Concept and Ideas about Microprocessor.
• Week 2 - Architecture of 8085
• Week 3 - Addressing Modes and Instruction set of 8085
• Week 4 – Interrupts of 8085
• Week 5 onwards – Peripherals.

Basic Concepts of Microprocessors
• Differences between:

– Microcomputer – a computer with a
microprocessor as its CPU. Includes memory, I/O
etc.

– Microprocessor – silicon chip which includes
ALU, register circuits & control circuits

– Microcontroller – silicon chip which includes
microprocessor, memory & I/O in a single
package.

What is a Microprocessor?

• The word comes from the combination micro and
processor.
– Processor means a device that processes whatever. In

this context processor means a device that processes
numbers, specifically binary numbers, 0’s and 1’s.

• To process means to manipulate. It is a general term that
describes all manipulation. Again in this content, it means to
perform certain operations on the numbers that depend on the
microprocessor’s design.

What about micro?

• Micro is a new addition.
– In the late 1960’s, processors were built using discrete

elements.
• These devices performed the required operation, but were too

large and too slow.

– In the early 1970’s the microchip was invented. All of
the components that made up the processor were now
placed on a single piece of silicon. The size became
several thousand times smaller and the speed became
several hundred times faster. The “Micro”Processor
was born.

Was there ever a “mini”-
processor?

• No.
– It went directly from discrete elements to a

single chip. However, comparing today’s
microprocessors to the ones built in the early
1970’s you find an extreme increase in the
amount of integration.

• So, What is a microprocessor?

Definition of the Microprocessor

The microprocessor is a programmable device
that takes in numbers, performs on them
arithmetic or logical operations according to
the program stored in memory and then
produces other numbers as a result.

Definition (Contd.)
• Lets expand each of the underlined words:

– Programmable device: The microprocessor can perform
different sets of operations on the data it receives depending
on the sequence of instructions supplied in the given
program.
By changing the program, the microprocessor manipulates
the data in different ways.

– Instructions: Each microprocessor is designed to execute a
specific group of operations. This group of operations is
called an instruction set. This instruction set defines what the
microprocessor can and cannot do.

Definition (Contd.)

– Takes in: The data that the microprocessor
manipulates must come from somewhere.

• It comes from what is called “input devices”.
• These are devices that bring data into the system

from the outside world.
• These represent devices such as a keyboard, a

mouse, switches, and the like.

Definition (Contd.)
– Numbers: The microprocessor has a very narrow view on life. It

only understands binary numbers.

A binary digit is called a bit (which comes from binary digit).

The microprocessor recognizes and processes a group of bits
together. This group of bits is called a “word”.

The number of bits in a Microprocessor’s word, is a measure of its
“abilities”.

Definition (Contd.)
– Words, Bytes, etc.

• The earliest microprocessor (the Intel 8088 and Motorola’s
6800) recognized 8-bit words.

– They processed information 8-bits at a time. That’s why they are
called “8-bit processors”. They can handle large numbers, but in
order to process these numbers, they broke them into 8-bit pieces
and processed each group of 8-bits separately.

• Later microprocessors (8086 and 68000) were designed with
16-bit words.

– A group of 8-bits were referred to as a “half-word” or “byte”.
– A group of 4 bits is called a “nibble”.
– Also, 32 bit groups were given the name “long word”.

• Today, all processors manipulate at least 32 bits at a time and
there exists microprocessors that can process 64, 80, 128 bits

 i

Definition (Contd.)
– Arithmetic and Logic Operations:

• Every microprocessor has arithmetic operations such as add
and subtract as part of its instruction set.

– Most microprocessors will have operations such as multiply and
divide.

– Some of the newer ones will have complex operations such as
square root.

• In addition, microprocessors have logic operations as well.
Such as AND, OR, XOR, shift left, shift right, etc.

• Again, the number and types of operations define the
microprocessor’s instruction set and depends on the specific
microprocessor.

Definition (Contd.)

– Stored in memory :
• First, what is memory?

– Memory is the location where information is kept while not in
current use.

– Memory is a collection of storage devices. Usually, each storage
device holds one bit. Also, in most kinds of memory, these
storage devices are grouped into groups of 8. These 8 storage
locations can only be accessed together. So, one can only read or
write in terms of bytes to and form memory.

– Memory is usually measured by the number of bytes it can hold.
It is measured in Kilos, Megas and lately Gigas. A Kilo in
computer language is 210 =1024. So, a KB (KiloByte) is 1024
bytes. Mega is 1024 Kilos and Giga is 1024 Mega.

Definition (Contd.)

– Stored in memory:
• When a program is entered into a computer, it is

stored in memory. Then as the microprocessor starts
to execute the instructions, it brings the instructions
from memory one at a time.

• Memory is also used to hold the data.
– The microprocessor reads (brings in) the data from

memory when it needs it and writes (stores) the results
into memory when it is done.

Definition (Contd.)

– Produces: For the user to see the result of the
execution of the program, the results must be
presented in a human readable form.

• The results must be presented on an output device.

• This can be the monitor, a paper from the printer, a
simple LED or many other forms.

Memory

OutputInput

A Microprocessor-based system
From the above description, we can draw the
following block diagram to represent a
microprocessor-based system:

Inside The Microprocessor

• Internally, the microprocessor is made up of
3 main units.
– The Arithmetic/Logic Unit (ALU)
– The Control Unit.
– An array of registers for holding data while it is

being manipulated.

Organization of a microprocessor-
based system

I/O
Input / Output

Memory

ROM RAM

System Bus
ALU Register

Array

Control

• Let’s expand the picture a bit.

Memory
• Memory stores information such as instructions

and data in binary format (0 and 1). It provides
this information to the microprocessor whenever
it is needed.

• Usually, there is a memory “sub-system” in a
microprocessor-based system. This sub-system
includes:
– The registers inside the microprocessor
– Read Only Memory (ROM)

• used to store information that does not change.
– Random Access Memory (RAM) (also known as

Read/Write Memory).
• used to store information supplied by the user. Such as

programs and data.

Memory Map and Addresses
• The memory map is a picture representation

of the address range and shows where the
different memory chips are located within
the address range.

0000

FFFF

Ad
dr

es
s

R
an

ge

RAM 1

RAM 2

RAM 3

RAM 4

EPROM
0000

3FFF
4400

5FFF
6000

8FFF
9000

A3FF
A400

F7FF

Address Range of EPROM Chip

Address Range of 1st RAM Chip

Address Range of 2nd RAM Chip

Address Range of 3rd RAM Chip

Address Range of 4th RAM Chip

Memory

• To execute a program:
– the user enters its instructions in binary format into the

memory.
– The microprocessor then reads these instructions and

whatever data is needed from memory, executes the
instructions and places the results either in memory or
produces it on an output device.

The three cycle instruction
execution model

• To execute a program, the microprocessor “reads”
each instruction from memory, “interprets” it, then
“executes” it.

• To use the right names for the cycles:
– The microprocessor fetches each instruction,
– decodes it,
– Then executes it.

• This sequence is continued until all instructions
are performed.

Machine Language
• The number of bits that form the “word” of a

microprocessor is fixed for that particular
processor.
– These bits define a maximum number of combinations.

• For example an 8-bit microprocessor can have at most 28 = 256
different combinations.

• However, in most microprocessors, not all of these
combinations are used.
– Certain patterns are chosen and assigned specific

meanings.
– Each of these patterns forms an instruction for the

microprocessor.
– The complete set of patterns makes up the

microprocessor’s machine language.

The 8085 Machine Language

• The 8085 (from Intel) is an 8-bit microprocessor.
– The 8085 uses a total of 246 bit patterns to form its

instruction set.
– These 246 patterns represent only 74 instructions.

• The reason for the difference is that some (actually most)
instructions have multiple different formats.

– Because it is very difficult to enter the bit patterns
correctly, they are usually entered in hexadecimal
instead of binary.

• For example, the combination 0011 1100 which translates into
“increment the number in the register called the accumulator”,
is usually entered as 3C.

Assembly Language

• Entering the instructions using hexadecimal is quite
easier than entering the binary combinations.
– However, it still is difficult to understand what a program

written in hexadecimal does.
– So, each company defines a symbolic code for the

instructions.
– These codes are called “mnemonics”.
– The mnemonic for each instruction is usually a group of

letters that suggest the operation performed.

Assembly Language

• Using the same example from before,
– 00111100 translates to 3C in hexadecimal (OPCODE)
– Its mnemonic is: “INR A”.
– INR stands for “increment register” and A is short for

accumulator.

• Another example is: 1000 0000,
– Which translates to 80 in hexadecimal.
– Its mnemonic is “ADD B”.
– “Add register B to the accumulator and keep the result in the

accumulator”.

Assembly Language

• It is important to remember that a machine
language and its associated assembly language are
completely machine dependent.
– In other words, they are not transferable from one

microprocessor to a different one.

• For example, Motorolla has an 8-bit
microprocessor called the 6800.
– The 8085 machine language is very different from that

of the 6800. So is the assembly language.
– A program written for the 8085 cannot be executed on

the 6800 and vice versa.

“Assembling” The Program

• How does assembly language get translated into
machine language?
– There are two ways:
– 1st there is “hand assembly”.

• The programmer translates each assembly language instruction
into its equivalent hexadecimal code (machine language). Then
the hexadecimal code is entered into memory.

– The other possibility is a program called an
“assembler”, which does the translation automatically.

8085 Microprocessor
Architecture

• 8-bit general purpose µp
• Capable of addressing 64 k of memory
• Has 40 pins
• Requires +5 v power supply
• Can operate with 3 MHz clock
• 8085 upward compatible

Pins

Frequency
Generator is
connected to

those pins

Power
Supply: +5 V

Address latch
Enable

Read

Write

Input/Output/
Memory

Multiplexed
Address Data

Bus

Address
Bus

• System Bus – wires connecting memory & I/O to
microprocessor
– Address Bus

• Unidirectional
• Identifying peripheral or memory location

– Data Bus
• Bidirectional
• Transferring data

– Control Bus
• Synchronization signals
• Timing signals
• Control signal

Architecture of Intel 8085 Microprocessor

Intel 8085 Microprocessor
• Microprocessor consists of:

– Control unit: control microprocessor operations.
– ALU: performs data processing function.
– Registers: provide storage internal to CPU.
– Interrupts
– Internal data bus

The ALU

• In addition to the arithmetic & logic circuits, the
ALU includes the accumulator, which is part of
every arithmetic & logic operation.

• Also, the ALU includes a temporary register used
for holding data temporarily during the execution
of the operation. This temporary register is not
accessible by the programmer.

• Registers
– General Purpose Registers

• B, C, D, E, H & L (8 bit registers)
• Can be used singly
• Or can be used as 16 bit register pairs

– BC, DE, HL
• H & L can be used as a data pointer (holds memory

address)
– Special Purpose Registers

• Accumulator (8 bit register)
– Store 8 bit data
– Store the result of an operation
– Store 8 bit data during I/O transfer

Accumulator Flags
B C
D E
H L

Program Counter
Stack Pointer

DataAddress 816

• Flag Register
– 8 bit register – shows the status of the microprocessor before/after an

operation
– S (sign flag), Z (zero flag), AC (auxillary carry flag), P (parity flag) &

CY (carry flag)

– Sign Flag
• Used for indicating the sign of the data in the accumulator
• The sign flag is set if negative (1 – negative)
• The sign flag is reset if positive (0 –positive)

D7 D6 D5 D4 D3 D2 D1 D0

S Z X AC X P X CY

• Zero Flag
– Is set if result obtained after an operation is 0
– Is set following an increment or decrement operation of that register

• Carry Flag
– Is set if there is a carry or borrow from arithmetic operation

10110011
+ 01001101

1 00000000

1011 0101
+ 0110 1100

Carry 1 0010 0001

1011 0101
- 1100 1100

Borrow 1 1110 1001

• Auxillary Carry Flag
– Is set if there is a carry out of bit 3

• Parity Flag
– Is set if parity is even
– Is cleared if parity is odd

The Internal Architecture

• We have already discussed the general purpose
registers, the Accumulator, and the flags.

• The Program Counter (PC)
– This is a register that is used to control the sequencing

of the execution of instructions.
– This register always holds the address of the next

instruction.
– Since it holds an address, it must be 16 bits wide.

The Internal Architecture

• The Stack pointer
– The stack pointer is also a 16-bit register that is

used to point into memory.
– The memory this register points to is a special

area called the stack.
– The stack is an area of memory used to hold

data that will be retreived soon.
– The stack is usually accessed in a Last In First

Out (LIFO) fashion.

Milav
Highlight

Non Programmable Registers

• Instruction Register & Decoder
– Instruction is stored in IR after fetched by processor
– Decoder decodes instruction in IR

Internal Clock generator
– 3.125 MHz internally
– 6.25 MHz externally

The Address and Data Busses

• The address bus has 8 signal lines A8 – A15
which are unidirectional.

• The other 8 address bits are multiplexed (time
shared) with the 8 data bits.
– So, the bits AD0 – AD7 are bi-directional and serve as

A0 – A7 and D0 – D7 at the same time.
• During the execution of the instruction, these lines carry the

address bits during the early part, then during the late parts of
the execution, they carry the 8 data bits.

– In order to separate the address from the data, we can
use a latch to save the value before the function of the
bits changes.

Demultiplexing AD7-AD0
– From the above description, it becomes obvious

that the AD7– AD0 lines are serving a dual purpose
and that they need to be demultiplexed to get all the
information.

– The high order bits of the address remain on the
bus for three clock periods. However, the low order
bits remain for only one clock period and they
would be lost if they are not saved externally. Also,
notice that the low order bits of the address
disappear when they are needed most.

– To make sure we have the entire address for the
full three clock cycles, we will use an external latch
to save the value of AD7– AD0 when it is carrying
the address bits. We use the ALE signal to enable
this latch.

Demultiplexing AD7-AD0

– Given that ALE operates as a pulse during T1, we will
be able to latch the address. Then when ALE goes low,
the address is saved and the AD7– AD0 lines can be
used for their purpose as the bi-directional data lines.

A15-A8

LatchAD7-AD0

D7- D0

A7- A0

8085

ALE

Demultiplexing the Bus AD7 – AD0

• The high order address is placed on the address bus and hold for 3 clk
periods,

• The low order address is lost after the first clk period, this address
needs to be hold however we need to use latch

• The address AD7 – AD0 is connected as inputs to the latch 74LS373.
• The ALE signal is connected to the enable (G) pin of the latch and the

OC – Output control – of the latch is grounded

The Overall Picture
• Putting all of the concepts together, we get:

A15-A8

LatchAD7-AD0

D7- D0

A7- A0

8085

ALE

IO/MRDWR

1K Byte
Memory

Chip

WRRD

CS

A9- A0

A15- A10
Chip Selection

Circuit

Introduction to 8085 Instructions

The 8085 Instructions
– Since the 8085 is an 8-bit device it can have up to 28

(256) instructions.
• However, the 8085 only uses 246 combinations that represent a

total of 74 instructions.
– Most of the instructions have more than one format.

– These instructions can be grouped into five different
groups:

• Data Transfer Operations
• Arithmetic Operations
• Logic Operations
• Branch Operations
• Machine Control Operations

Instruction and Data Formats

• Each instruction has two parts.
– The first part is the task or operation to be

performed.
• This part is called the “opcode” (operation code).

– The second part is the data to be operated on
• Called the “operand”.

Data Transfer Operations
– These operations simply COPY the data from the

source to the destination.
– MOV, MVI, LDA, and STA

– They transfer:
• Data between registers.
• Data Byte to a register or memory location.
• Data between a memory location and a register.
• Data between an I\O Device and the accumulator.

– The data in the source is not changed.

The LXI instruction
• The 8085 provides an instruction to place

the 16-bit data into the register pair in one
step.

• LXI Rp, <16-bit address> (Load eXtended Immediate)

– The instruction LXI B 4000H will place the
16-bit number 4000 into the register pair B, C.

• The upper two digits are placed in the 1st register of
the pair and the lower two digits in the 2nd .

40 00LXI B 40 00H B C

The Memory “Register”

• Most of the instructions of the 8085 can use a
memory location in place of a register.
– The memory location will become the “memory” register M.

• MOV M B
– copy the data from register B into a memory location.

– Which memory location?

• The memory location is identified by the contents
of the HL register pair.
– The 16-bit contents of the HL register pair are treated

as a 16-bit address and used to identify the memory
location.

Using the Other Register Pairs

– There is also an instruction for moving data from
memory to the accumulator without disturbing the
contents of the H and L register.

• LDAX Rp (LoaD Accumulator eXtended)

– Copy the 8-bit contents of the memory location identified by the
Rp register pair into the Accumulator.

– This instruction only uses the BC or DE pair.
– It does not accept the HL pair.

Indirect Addressing Mode

• Using data in memory directly (without loading
first into a Microprocessor’s register) is called
Indirect Addressing.

• Indirect addressing uses the data in a register pair
as a 16-bit address to identify the memory location
being accessed.
– The HL register pair is always used in conjunction with

the memory register “M”.
– The BC and DE register pairs can be used to load data

into the Accumultor using indirect addressing.

Arithmetic Operations
– Addition (ADD, ADI):

– Any 8-bit number.
– The contents of a register.
– The contents of a memory location.

• Can be added to the contents of the accumulator and the result
is stored in the accumulator.

– Subtraction (SUB, SUI):
– Any 8-bit number
– The contents of a register
– The contents of a memory location

• Can be subtracted from the contents of the accumulator. The
result is stored in the accumulator.

Arithmetic Operations Related to
Memory

• These instructions perform an arithmetic operation
using the contents of a memory location while
they are still in memory.
– ADD M

• Add the contents of M to the Accumulator
– SUB M

• Sub the contents of M from the Accumulator
– INR M / DCR M

• Increment/decrement the contents of the memory location in
place.

– All of these use the contents of the HL register pair to
identify the memory location being used.

Arithmetic Operations

– Increment (INR) and Decrement (DCR):
• The 8-bit contents of any memory location or any

register can be directly incremented or decremented
by 1.

• No need to disturb the contents of the accumulator.

Manipulating Addresses

• Now that we have a 16-bit address in a register
pair, how do we manipulate it?
– It is possible to manipulate a 16-bit address stored in a

register pair as one entity using some special
instructions.

• INX Rp (Increment the 16-bit number in the register pair)
• DCX Rp (Decrement the 16-bit number in the register pair)

– The register pair is incremented or decremented as one
entity. No need to worry about a carry from the lower
8-bits to the upper. It is taken care of automatically.

Logic Operations
• These instructions perform logic operations on the

contents of the accumulator.
– ANA, ANI, ORA, ORI, XRA and XRI

• Source: Accumulator and
– An 8-bit number
– The contents of a register
– The contents of a memory location

• Destination: Accumulator

ANA R/M AND Accumulator With Reg/Mem
ANI # AND Accumulator With an 8-bit number

ORA R/M OR Accumulator With Reg/Mem
ORI # OR Accumulator With an 8-bit number

XRA R/M XOR Accumulator With Reg/Mem
XRI # XOR Accumulator With an 8-bit number

Logic Operations

– Complement:
• 1’s complement of the contents of the accumulator.

CMA No operand

Additional Logic Operations

• Rotate
– Rotate the contents of the accumulator one

position to the left or right.
– RLC Rotate the accumulator left.

Bit 7 goes to bit 0 AND the Carry flag.
– RAL Rotate the accumulator left through the carry.

Bit 7 goes to the carry and carry goes to bit 0.
– RRC Rotate the accumulator right.

Bit 0 goes to bit 7 AND the Carry flag.
– RAR Rotate the accumulator right through the carry.

Bit 0 goes to the carry and carry goes to bit 7.

Milav
Highlight

Milav
Highlight

Milav
Highlight

Milav
Highlight

RLC vs. RLA

• RLC

• RAL

Accumulator

Carry Flag

7 6 5 4 3 2 1 0

Accumulator

Carry Flag

7 6 5 4 3 2 1 0

Logical Operations

• Compare
• Compare the contents of a register or memory location with the

contents of the accumulator.
– CMP R/M Compare the contents of the register

or memory location to the contents of
the accumulator.

– CPI # Compare the 8-bit number to the
contents of the accumulator.

• The compare instruction sets the flags (Z, Cy, and S).

• The compare is done using an internal subtraction that does not
change the contents of the accumulator.

A – (R / M / #)

Branch Operations

• Two types:
– Unconditional branch.

• Go to a new location no matter what.

– Conditional branch.
• Go to a new location if the condition is true.

Unconditional Branch
– JMP Address

• Jump to the address specified (Go to).

– CALL Address
• Jump to the address specified but treat it as a subroutine.

– RET
• Return from a subroutine.

– The addresses supplied to all branch operations must be
16-bits.

Conditional Branch
– Go to new location if a specified condition is met.

• JZ Address (Jump on Zero)
– Go to address specified if the Zero flag is set.

• JNZ Address (Jump on NOT Zero)
– Go to address specified if the Zero flag is not set.

• JC Address (Jump on Carry)
– Go to the address specified if the Carry flag is set.

• JNC Address (Jump on No Carry)
– Go to the address specified if the Carry flag is not set.

• JP Address (Jump on Plus)
– Go to the address specified if the Sign flag is not set

• JM Address (Jump on Minus)
– Go to the address specified if the Sign flag is set.

Machine Control

– HLT
• Stop executing the program.

– NOP
• No operation
• Exactly as it says, do nothing.
• Usually used for delay or to replace instructions

during debugging.

Operand Types

• There are different ways for specifying the
operand:
– There may not be an operand (implied operand)

• CMA
– The operand may be an 8-bit number (immediate data)

• ADI 4FH
– The operand may be an internal register (register)

• SUB B
– The operand may be a 16-bit address (memory address)

• LDA 4000H

Milav
Highlight

Milav
Highlight

Milav
Highlight

Milav
Highlight

Milav
Highlight

Instruction Size

• Depending on the operand type, the instruction
may have different sizes. It will occupy a different
number of memory bytes.
– Typically, all instructions occupy one byte only.
– The exception is any instruction that contains

immediate data or a memory address.
• Instructions that include immediate data use two bytes.

– One for the opcode and the other for the 8-bit data.
• Instructions that include a memory address occupy three bytes.

– One for the opcode, and the other two for the 16-bit address.

Milav
Highlight

Milav
Highlight

Milav
Highlight

Instruction with Immediate Date

• Operation: Load an 8-bit number into the
accumulator.

– MVI A, 32
• Operation: MVI A
• Operand: The number 32
• Binary Code:

0011 1110 3E 1st byte.
0011 0010 32 2nd byte.

Instruction with a Memory
Address

• Operation: go to address 2085.

– Instruction: JMP 2085
• Opcode: JMP
• Operand: 2085
• Binary code:
1100 0011 C3 1st byte.
1000 0101 85 2nd byte
0010 0000 20 3rd byte

Addressing Modes

• The microprocessor has different ways of
specifying the data for the instruction. These are
called “addressing modes”.

• The 8085 has four addressing modes:
– Implied CMA
– Immediate MVI B, 45
– Direct LDA 4000
– Indirect LDAX B

• Load the accumulator with the contents of the memory location
whose address is stored in the register pair BC).

Data Formats

• In an 8-bit microprocessor, data can be
represented in one of four formats:

• ASCII
• BCD
• Signed Integer
• Unsigned Integer.

– It is important to recognize that the microprocessor
deals with 0’s and 1’s.

• It deals with values as strings of bits.
• It is the job of the user to add a meaning to these strings.

Data Formats

• Assume the accumulator contains the following
value: 0100 0001.
– There are four ways of reading this value:

• It is an unsigned integer expressed in binary, the equivalent
decimal number would be 65.

• It is a number expressed in BCD (Binary Coded Decimal)
format. That would make it, 41.

• It is an ASCII representation of a letter. That would make it the
letter A.

• It is a string of 0’s and 1’s where the 0th and the 6th bits are set
to 1 while all other bits are set to 0.

ASCII stands for American Standard Code for Information Interchange.

Counters & Time Delays

Counters

• A loop counter is set up by loading a register with
a certain value

• Then using the DCR (to decrement) and INR (to
increment) the contents of the register are updated.

• A loop is set up with a conditional jump
instruction that loops back or not depending on
whether the count has reached the termination
count.

Counters
• The operation of a loop counter can be

described using the following flowchart.

Initialize

Update the count

Is this
Final

Count?

Body of loop

No

Yes

MVI C, 15H

LOOP DCR C

JNZ LOOP

Sample ALP for implementing a loop
Using DCR instruction

Using a Register Pair as a Loop
Counter

• Using a single register, one can repeat a loop for a
maximum count of 255 times.

• It is possible to increase this count by using a
register pair for the loop counter instead of the
single register.
– A minor problem arises in how to test for the final

count since DCX and INX do not modify the flags.
– However, if the loop is looking for when the count

becomes zero, we can use a small trick by ORing the
two registers in the pair and then checking the zero flag.

Using a Register Pair as a Loop
Counter

• The following is an example of a loop set
up with a register pair as the loop counter.

LXI B, 1000H
LOOP DCX B

MOV A, C
ORA B
JNZ LOOP

Delays

• It was shown in Chapter 2 that each instruction
passes through different combinations of Fetch,
Memory Read, and Memory Write cycles.

• Knowing the combinations of cycles, one can
calculate how long such an instruction would
require to complete.

• The table in Appendix F of the book contains a
column with the title B/M/T.
– B for Number of Bytes
– M for Number of Machine Cycles
– T for Number of T-State.

Delays

• Knowing how many T-States an instruction
requires, and keeping in mind that a T-State is one
clock cycle long, we can calculate the time using
the following formula:

Delay = No. of T-States / Frequency

• For example a “MVI” instruction uses 7 T-States.
Therefore, if the Microprocessor is running at 2
MHz, the instruction would require 3.5 µSeconds
to complete.

Delay loops
• We can use a loop to produce a certain

amount of time delay in a program.

• The following is an example of a delay
loop:

MVI C, FFH 7 T-States
LOOP DCR C 4 T-States

JNZ LOOP 10 T-States

• The first instruction initializes the loop counter and is
executed only once requiring only 7 T-States.

• The following two instructions form a loop that
requires 14 T-States to execute and is repeated 255
times until C becomes 0.

Delay Loops (Contd.)

• We need to keep in mind though that in the last
iteration of the loop, the JNZ instruction will fail and
require only 7 T-States rather than the 10.

• Therefore, we must deduct 3 T-States from the total
delay to get an accurate delay calculation.

• To calculate the delay, we use the following formula:
Tdelay = TO + TL

– Tdelay = total delay
– TO = delay outside the loop
– TL = delay of the loop

• TO is the sum of all delays outside the loop.

Delay Loops (Contd.)

• Using these formulas, we can calculate the
time delay for the previous example:

• TO = 7 T-States
– Delay of the MVI instruction

• TL = (14 X 255) - 3 = 3567 T-States
– 14 T-States for the 2 instructions repeated 255 times

(FF16 = 25510) reduced by the 3 T-States for the final
JNZ.

 ()

Using a Register Pair as a Loop
Counter

• Using a single register, one can repeat a loop for a
maximum count of 255 times.

• It is possible to increase this count by using a
register pair for the loop counter instead of the
single register.
– A minor problem arises in how to test for the final

count since DCX and INX do not modify the flags.
– However, if the loop is looking for when the count

becomes zero, we can use a small trick by ORing the
two registers in the pair and then checking the zero flag.

Using a Register Pair as a Loop
Counter

• The following is an example of a delay loop
set up with a register pair as the loop
counter.

LXI B, 1000H 10 T-States
LOOP DCX B 6 T-States

MOV A, C 4 T-States
ORA B 4 T-States
JNZ LOOP 10 T-States

Using a Register Pair as a Loop
Counter

• Using the same formula from before, we can
calculate:

• TO = 10 T-States
– The delay for the LXI instruction

• TL = (24 X 4096) - 3 = 98301 T- States
– 24 T-States for the 4 instructions in the loop repeated

4096 times (100016 = 409610) reduced by the 3 T-
States for the JNZ in the last iteration.

 ()

Nested Loops

• Nested loops can be
easily setup in
Assembly language by
using two registers for
the two loop counters
and updating the right
register in the right
loop.
– In the figure, the body of

loop2 can be before or
after loop1.

Initialize loop 1

Update the count1

Is this
Final

Count?

Body of loop 1

No

Yes

Initialize loop 2

Body of loop 2

Update the count 2

Is this
Final

Count?

No

Yes

Nested Loops for Delay

• Instead (or in conjunction with) Register Pairs, a
nested loop structure can be used to increase the
total delay produced.

MVI B, 10H 7 T-States
LOOP2 MVI C, FFH 7 T-States
LOOP1 DCR C 4 T-States

JNZ LOOP1 10 T-States
DCR B 4 T-States
JNZ LOOP2 10 T-States

Delay Calculation of Nested
Loops

• The calculation remains the same except
that it the formula must be applied
recursively to each loop.
– Start with the inner loop, then plug that delay in

the calculation of the outer loop.

• Delay of inner loop
– TO1 = 7 T-States

• MVI C, FFH instruction
– TL1 = (255 X 14) - 3 = 3567 T-States

• 14 T-States for the DCR C and JNZ instructions repeated 255
times (FF16 = 25510) minus 3 for the final JNZ

Delay Calculation of Nested
Loops

• Delay of outer loop
– TO2 = 7 T-States

• MVI B, 10H instruction
– TL1 = (16 X (14 + 3574)) - 3 = 57405 T-States

• 14 T-States for the DCR B and JNZ instructions and 3574
T-States for loop1 repeated 16 times (1016 = 1610) minus 3 for the
final JNZ.

– TDelay = 7 + 57405 = 57412 T-States

• Total Delay
– TDelay = 57412 X 0.5 µSec = 28.706 mSec

Increasing the delay

• The delay can be further increased by using
register pairs for each of the loop counters
in the nested loops setup.

• It can also be increased by adding dummy
instructions (like NOP) in the body of the
loop.

Representation of Various Control signals generated during
Execution of an Instruction.

Following Buses and Control Signals must be shown in a
Timing Diagram:

•Higher Order Address Bus.

•Lower Address/Data bus

•ALE

•RD

•WR

•IO/M

Timing Diagram

Instruction:

A000h MOV A,B

Corresponding Coding:

A000h 78

Timing Diagram

Instruction:

A000h MOV A,B

Corresponding Coding:

A000h 78

8085 Memory

OFC

Timing Diagram

78h00h

A15- A8 (Higher Order Address bus)

ALE

RD

WR

IO/M

T1 T2 T3 T4Instruction:

A000h MOV A,B

Corresponding Coding:

A000h 78

8085 Memory

OFC

Op-code fetch Cycle

A0h

Timing Diagram

Instruction:

A000h MVI A,45h

Corresponding Coding:

A000h 3E

A001h 45

Timing Diagram

Instruction:

A000h MVI A,45h

Corresponding Coding:

A000h 3E

A001h 45

8085 Memory

OFC

MEMR

Timing Diagram

3Eh00h 01h 45h

A0h

A15- A8 (Higher Order Address bus)

DA7-DA0 (Lower order address/data Bus)

ALE

RD

WR

IO/M

Op-Code Fetch Cycle Memory Read Cycle

T1 T2 T3 T4 T5 T6 T7

A0h

Instruction:

A000h MVI A,45h

Corresponding Coding:

A000h 3E

A001h 45

Timing Diagram

Instruction:

A000h LXI A,FO45h

Corresponding Coding:

A000h 21

A001h 45

A002h F0

Timing Diagram

Instruction:

A000h LXI A,FO45h

Corresponding Coding:

A000h 21

A001h 45

A002h F0

Timing Diagram

8085 Memory

OFC

MEMR

MEMR

Timing Diagram

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

21h 01h 45h 02h F0h

A0h A0h A0h

A15- A8 (Higher Order Address bus)

DA7-DA0 (Lower order address/data Bus)

ALE

RD

WR

IO/M

00h

Op-Code Fetch Cycle Memory Read Cycle Memory Read Cycle

Instruction:

A000h MOV A,M

Corresponding Coding:

A000h 7E

Timing Diagram

8085 Memory

OFC

MEMR

Instruction:

A000h MOV A,M

Corresponding Coding:

A000h 7E

Timing Diagram

7Eh00h L Reg Content Of M

Content Of Reg H

A15- A8 (Higher Order Address bus)

DA7-DA0 (Lower order address/data Bus)

ALE

RD

WR

IO/M

Op-Code Fetch Cycle Memory Read Cycle

T1 T2 T3 T4 T5 T6 T7

A0h

Timing Diagram

Instruction:

A000h MOV A,M

Corresponding Coding:

A000h 7E

Instruction:

A000h MOV M,A

Corresponding Coding:

A000h 77

Timing Diagram

Instruction:

A000h MOV M,A

Corresponding Coding:

A000h 77

Timing Diagram

8085 Memory

OFC

MEMW

7Eh00h L Reg Content of Reg A

Content Of Reg H

A15- A8 (Higher Order Address bus)

DA7-DA0 (Lower order address/data Bus)

ALE

RD

WR

IO/M

Op-Code Fetch Cycle Memory Write Cycle

T1 T2 T3 T4 T5 T6 T7

A0h

Timing Diagram

Instruction:

A000h MOV M,A

Corresponding Coding:

A000h 77

Chapter 9
Stack and Subroutines

The Stack

• The stack is an area of memory identified by the
programmer for temporary storage of information.

• The stack is a LIFO structure.
– Last In First Out.

• The stack normally grows backwards into
memory.
– In other words, the programmer

defines the bottom of the stack
and the stack grows up into
reducing address range.

Memory

Bottom
of the
Stack

The Stack
grows
backwards
into memory

The Stack

• Given that the stack grows backwards into
memory, it is customary to place the bottom of the
stack at the end of memory to keep it as far away
from user programs as possible.

• In the 8085, the stack is defined by setting the SP
(Stack Pointer) register.

LXI SP, FFFFH

• This sets the Stack Pointer to location FFFFH (end
of memory for the 8085).

Saving Information on the Stack

• Information is saved on the stack by PUSHing it
on.
– It is retrieved from the stack by POPing it off.

• The 8085 provides two instructions: PUSH and
POP for storing information on the stack and
retrieving it back.
– Both PUSH and POP work with register pairs ONLY.

The PUSH Instruction

• PUSH B
– Decrement SP
– Copy the contents of register B to the memory

location pointed to by SP
– Decrement SP
– Copy the contents of register C to the memory

location pointed to by SP

B C

SPFFFF
FFFE
FFFD
FFFC
FFFB

F312

F3
12

The POP Instruction

• POP D
– Copy the contents of the memory location

pointed to by the SP to register E
– Increment SP
– Copy the contents of the memory location

pointed to by the SP to register D
– Increment SP

D E

SP
FFFF
FFFE
FFFD
FFFC
FFFB

F312

F3
12

Operation of the Stack

• During pushing, the stack operates in a
“decrement then store” style.
– The stack pointer is decremented first, then the

information is placed on the stack.

• During poping, the stack operates in a “use then
increment” style.
– The information is retrieved from the top of the the

stack and then the pointer is incremented.

• The SP pointer always points to “the top of the
stack”.

LIFO

• The order of PUSHs and POPs must be opposite
of each other in order to retrieve information back
into its original location.

PUSH B
PUSH D
...
POP D
POP B

Milav
Highlight

The PSW Register Pair

• The 8085 recognizes one additional register pair
called the PSW (Program Status Word).
– This register pair is made up of the Accumulator and

the Flags registers.

• It is possible to push the PSW onto the stack, do
whatever operations are needed, then POP it off of
the stack.
– The result is that the contents of the Accumulator and

the status of the Flags are returned to what they were
before the operations were executed.

Subroutines

• A subroutine is a group of instructions that will be
used repeatedly in different locations of the
program.
– Rather than repeat the same instructions several times,

they can be grouped into a subroutine that is called
from the different locations.

• In Assembly language, a subroutine can exist
anywhere in the code.
– However, it is customary to place subroutines

separately from the main program.

Subroutines

• The 8085 has two instructions for dealing
with subroutines.
– The CALL instruction is used to redirect

program execution to the subroutine.
– The RTE insutruction is used to return the

execution to the calling routine.

The CALL Instruction

• CALL 4000H
– Push the address of the instruction

immediately following the CALL onto the
stack

– Load the program counter with the 16-bit
address supplied with the CALL instruction.

PC

SPFFFF
FFFE
FFFD
FFFC
FFFB

2 0 0 3

03
20

2000 CALL 4000
2003

The RTE Instruction

• RTE
– Retrieve the return address from the top of

the stack
– Load the program counter with the return

address. PC

FFFF
FFFE
FFFD
FFFC
FFFB

2 0 0 3

03
20

4014 . . .
4015 RTE SP

Cautions

• The CALL instruction places the return address at
the two memory locations immediately before
where the Stack Pointer is pointing.
– You must set the SP correctly BEFORE using the

CALL instruction.

• The RTE instruction takes the contents of the two
memory locations at the top of the stack and uses
these as the return address.
– Do not modify the stack pointer in a subroutine. You

will loose the return address.

Passing Data to a Subroutine

• In Assembly Language data is passed to a
subroutine through registers.
– The data is stored in one of the registers by the calling

program and the subroutine uses the value from the
register.

• The other possibility is to use agreed upon
memory locations.
– The calling program stores the data in the memory

location and the subroutine retrieves the data from the
location and uses it.

Call by Reference and Call by
Value

• If the subroutine performs operations on the
contents of the registers, then these modifications
will be transferred back to the calling program
upon returning from a subroutine.
– Call by reference

• If this is not desired, the subroutine should PUSH
all the registers it needs on the stack on entry and
POP them on return.
– The original values are restored before execution

returns to the calling program.

Cautions with PUSH and POP

• PUSH and POP should be used in opposite order.

• There has to be as many POP’s as there are
PUSH’s.
– If not, the RET statement will pick up the wrong

information from the top of the stack and the program
will fail.

• It is not advisable to place PUSH or POP inside a
loop.

Conditional CALL and RTE
Instructions

• The 8085 supports conditional CALL and
conditional RTE instructions.
– The same conditions used with conditional JUMP

instructions can be used.

– CC, call subroutine if Carry flag is set.
– CNC, call subroutine if Carry flag is not set
– RC, return from subroutine if Carry flag is set
– RNC, return from subroutine if Carry flag is not set
– Etc.

A Proper Subroutine

• According to Software Engineering practices, a
proper subroutine:
– Is only entered with a CALL and exited with an RTE
– Has a single entry point

• Do not use a CALL statement to jump into different points of
the same subroutine.

– Has a single exit point
• There should be one return statement from any subroutine.

• Following these rules, there should not be any
confusion with PUSH and POP usage.

1

The Design and Operation of Memory

Memory in a microprocessor system is where
information (data and instructions) is kept. It can be
classified into two main types:

 Main memory (RAM and ROM)
 Storage memory (Disks , CD ROMs, etc.)

The simple view of RAM is that it is made up of registers that
are made up of flip-flops (or memory elements).
 The number of flip-flops in a “memory register” determines the size of

the memory word.
ROM on the other hand uses diodes instead of the flip-flops
to permanently hold the information.

2

Accessing Information in Memory
For the microprocessor to access (Read or
Write) information in memory (RAM or ROM), it
needs to do the following:

Select the right memory chip (using part of the
address bus).
Identify the memory location (using the rest of the
address bus).
Access the data (using the data bus).

3

Tri-State Buffers
An important circuit element that is used
extensively in memory.
This buffer is a logic circuit that has three states:

Logic 0, logic1, and high impedance.
When this circuit is in high impedance mode it looks
as if it is disconnected from the output completely.

The Output is Low The Output is High High Impedance

4

The Tri-State Buffer
This circuit has two inputs and one output.

The first input behaves like the normal input for the
circuit.
The second input is an “enable”.
 If it is set high, the output follows the proper circuit

behavior.
 If it is set low, the output looks like a wire connected to

nothing.
Input Output

Enable

Input Output

Enable

OR

5

The Basic Memory Element
The basic memory element is similar to a D
latch.
This latch has an input where the data comes in.
It has an enable input and an output on which
data comes out.

QD

EN

Data Input Data Output

Enable

6

The Basic Memory Element
However, this is not safe.

Data is always present on the input and the output is
always set to the contents of the latch.
To avoid this, tri-state buffers are added at the input
and output of the latch.

QD

EN

Data Input Data Output

Enable

WR RD

7

The Basic Memory Element
The WR signal controls the input buffer.

The bar over WR means that this is an active low
signal.
So, if WR is 0 the input data reaches the latch input.
If WR is 1 the input of the latch looks like a wire
connected to nothing.

The RD signal controls the output in a similar
manner.

8

A Memory “Register”
If we take four of these latches and connect
them together, we would have a 4-bit memory
register

WR

RD

EN

Q

D

EN

Q

D

EN

Q

D

EN

Q

D

EN

I0 I1 I2 I3

O0 O1 O2 O3

9

A group of memory registers

Expanding on this
scheme to add more
memory registers we get
the diagram to the right.

D

EN

Q D

EN

Q D

EN

Q D

EN

Q

D

EN

Q D

EN

Q D

EN

Q D

EN

Q

D

EN

Q D

EN

Q D

EN

Q D

EN

Q

D

EN

Q D

EN

Q D

EN

Q D

EN

Q

D0 D1 D2 D3

D0 D1 D2 D3

oooo

oooo

WR

RD

10

Externally Initiated Operations
External devices can initiate (start) one of the 4
following operations:

Reset
 All operations are stopped and the program counter is reset to 0000.

Interrupt
 The microprocessor’s operations are interrupted and the

microprocessor executes what is called a “service routine”.
 This routine “handles” the interrupt, (perform the necessary

operations). Then the microprocessor returns to its previous
operations and continues.

11

A group of Memory Registers
If we represent each memory location (Register) as
a block we get the following

Input Buffers

Output Buffers

Memory Reg. 0

Memory Reg. 1

Memory Reg. 2

Memory Reg. 3

I0 I1 I2 I3

O0 O1 O2 O3

WR

EN0

EN1

EN2

EN3

RD

12

The Design of a Memory Chip
Using the RD and WR controls we can determine the
direction of flow either into or out of memory. Then
using the appropriate Enable input we enable an
individual memory register.

What we have just designed is a memory with 4
locations and each location has 4 elements (bits). This
memory would be called 4 X 4 [Number of location X
number of bits per location].

13

The Enable Inputs
How do we produce these enable line?

Since we can never have more than one of these
enables active at the same time, we can have them
encoded to reduce the number of lines coming into
the chip.
These encoded lines are the address lines for
memory.

Milav
Highlight

Milav
Highlight

14

The Design of a Memory Chip
So, the previous diagram would now look like the
following:

Input Buffers

Output Buffers

Memory Reg. 0

Memory Reg. 1

Memory Reg. 2

Memory Reg. 3

I0 I1 I2 I3

O0 O1 O2 O3

WR

RD

A
d
d
r
e
s
s

D
e
c
o
d
e
r

A1

A0

15

The Design of a Memory Chip
Since we have tri-state buffers on both the inputs
and outputs of the flip flops, we can actually use
one set of pins only.

The chip would now look like this:
Input Buffers

Output Buffers

Memory Reg. 0

Memory Reg. 1

Memory Reg. 2

Memory Reg. 3

WR

RD

A
d
d
r
e
s
s

D
e
c
o
d
e
r

A1

A0

D0

D1

D2

D3

D0

D1

D2

D3

A1

A0

RD WR

16

The steps of writing into Memory
What happens when the programmer issues the
STA instruction?

The microprocessor would turn on the WR control
(WR = 0) and turn off the RD control (RD = 1).
The address is applied to the address decoder which
generates a single Enable signal to turn on only
one of the memory registers.
The data is then applied on the data lines and it is
stored into the enabled register.

17

Dimensions of Memory
Memory is usually measured by two numbers: its length
and its width (Length X Width).

 The length is the total number of locations.
 The width is the number of bits in each location.

The length (total number of locations) is a function of the
number of address lines.

of memory locations = 2(# of address lines)

 So, a memory chip with 10 address lines would have
210 = 1024 locations (1K)

 Looking at it from the other side, a memory chip with 4K locations
would need

Log2 4096=12 address lines

18

The 8085 and Memory
The 8085 has 16 address lines. That means it can
address

216 = 64K memory locations.
Then it will need 1 memory chip with 64 k locations, or 2
chips with 32 K in each, or 4 with 16 K each or 16 of the 4 K
chips, etc.

how would we use these address lines to control the
multiple chips?

19

Chip Select
Usually, each memory chip has a CS (Chip Select)
input. The chip will only work if an active signal is
applied on that input.

To allow the use of multiple chips in the make up of
memory, we need to use a number of the address lines
for the purpose of “chip selection”.

These address lines are decoded to generate the 2n

necessary CS inputs for the memory chips to be used.

20

Chip Selection Example
Assume that we need to build a memory system
made up of 4 of the 4 X 4 memory chips we
designed earlier.

We will need to use 2 inputs and a decoder to
identify which chip will be used at what time.

The resulting design would now look like the one on
the following slide.

21

Chip Selection Example

CS

RD WR

A0

A1

CS

RD WR

A0

A1

CS

RD WR

A0

A1

CS

RD WR

A0

A1

2 X4

DecoderA3

A2

A1

A0

RD

WR

D1

D0

22

Memory Map and Addresses
The memory map is a picture representation of
the address range and shows where the different
memory chips are located within the address
range.

0000

FFFF

Ad
dr

es
s

R
an

ge

RAM 1

RAM 2

RAM 3

RAM 4

EPROM
0000

3FFF
4400

5FFF
6000

8FFF
9000

A3FF
A400

F7FF

Address Range of EPROM Chip

Address Range of 1st RAM Chip

Address Range of 2nd RAM Chip

Address Range of 3rd RAM Chip

Address Range of 4th RAM Chip

23

Address Range of a Memory Chip
The address range of a particular chip is the list of all
addresses that are mapped to the chip.

An example for the address range and its relationship to the
memory chips would be the Post Office Boxes in the post
office.

• Each box has its unique number that is assigned sequentially. (memory
locations)

• The boxes are grouped into groups. (memory chips)
• The first box in a group has the number immediately after the last box in

the previous group.

24

Address Range of a Memory Chip
The above example can be modified slightly to make it closer
to our discussion on memory.

• Let’s say that this post office has only 1000 boxes.
• Let’s also say that these are grouped into 10 groups of 100 boxes each.

Boxes 0000 to 0099 are in group 0, boxes 0100 to 0199 are in group 1
and so on.

We can look at the box number as if it is made up of two
pieces:

• The group number and the box’s index within the group.
• So, box number 436 is the 36th box in the 4th group.

The upper digit of the box number identifies the group and the lower two
digits identify the box within the group.

25

The 8085 and Address Ranges
The 8085 has 16 address lines. So, it can
address a total of 64K memory locations.

If we use memory chips with 1K locations each, then
we will need 64 such chips.
The 1K memory chip needs 10 address lines to
uniquely identify the 1K locations. (log21024 = 10)
That leaves 6 address lines which is the exact
number needed for selecting between the 64
different chips (log264 = 6).

26

The 8085 and Address Ranges
Now, we can break up the 16-bit address of the 8085
into two pieces:

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

Depending on the combination on the address lines A15 - A10 , the
address range of the specified chip is determined.

Location Selection within the ChipChip Selection

27

Chip Select Example
A chip that uses the combination A15 - A10 =
001000 would have addresses that range from
2000H to 23FFH.

Keep in mind that the 10 address lines on the chip gives a range of
00 0000 0000 to 11 1111 1111 or 000H to 3FFH for each of the chips.
The memory chip in this example would require the following circuit on its
chip select input:

CS

A10

A11

A12

A13
A14

A15

28

Chip Select Example
If we change the above combination to the following:

Now the chip would have addresses ranging from: 2400 to
27FF.
Changing the combination of the address bits connected to
the chip select changes the address range for the memory
chip.

CS

A10

A11

A12
A13
A14

A15

29

Chip Select Example
To illustrate this with a picture:
 in the first case, the memory chip occupies the piece of

the memory map identified as before.
 In the second case, it occupies the piece identified as

after.
0000

2000

23FF

FFFF

0000

2400

27FF

FFFF

Before After

30

High-Order vs. Low-Order Address Lines

The address lines from a microprocessor can be
classified into two types:

High-Order
 Used for memory chip selection

Low-Order
 Used for location selection within a memory chip.

This classification is highly dependent on the
memory system design.

31

Data Lines
All of the above discussion has been regarding memory
length. Lets look at memory width.
We said that the width is the number of bits in each
memory word.

We have been assuming so far that our memory chips have
the right width.
What if they don’t?
 It is very common to find memory chips that have only 4 bits per

location. How would you design a byte wide memory system using
these chips?

 We use two chips for the same address range. One chip will supply 4
of the data bits per address and the other chip supply the other 4 data
bits for the same address.

32

Data Lines
CS

A0
…
A9

CS CS

D0
…
D3

D4
…
D7

Interrupts

Interrupts

• Interrupt is a process where an external device can
get the attention of the microprocessor.
– The process starts from the I/O device
– The process is asynchronous.

• Interrupts can be classified into two types:
• Maskable (can be delayed)
• Non-Maskable (can not be delayed)

• Interrupts can also be classified into:
• Vectored (the address of the service routine is hard-wired)
• Non-vectored (the address of the service routine needs to be

supplied externally)

Interrupts

• An interrupt is considered to be an emergency
signal.
– The Microprocessor should respond to it as soon as

possible.

• When the Microprocessor receives an interrupt
signal, it suspends the currently executing
program and jumps to an Interrupt Service
Routine (ISR) to respond to the incoming
interrupt.
– Each interrupt will most probably have its own ISR.

Responding to Interrupts

• Responding to an interrupt may be immediate or
delayed depending on whether the interrupt is
maskable or non-maskable and whether interrupts
are being masked or not.

• There are two ways of redirecting the execution to
the ISR depending on whether the interrupt is
vectored or non-vectored.
– The vector is already known to the Microprocessor
– The device will have to supply the vector to the

Microprocessor

The 8085 Interrupts

• The maskable interrupt process in the 8085 is
controlled by a single flip flop inside the
microprocessor. This Interrupt Enable flip flop is
controlled using the two instructions “EI” and
“DI”.

• The 8085 has a single Non-Maskable interrupt.
– The non-maskable interrupt is not affected by the value

of the Interrupt Enable flip flop.

The 8085 Interrupts

• The 8085 has 5 interrupt inputs.
– The INTR input.

• The INTR input is the only non-vectored interrupt.
• INTR is maskable using the EI/DI instruction pair.

– RST 5.5, RST 6.5, RST 7.5 are all automatically
vectored.

• RST 5.5, RST 6.5, and RST 7.5 are all maskable.

– TRAP is the only non-maskable interrupt in the 8085
• TRAP is also automatically vectored

The 8085 Interrupts

Interrupt name Maskable Vectored
INTR Yes No

RST 5.5 Yes Yes
RST 6.5 Yes Yes
RST 7.5 Yes Yes
TRAP No Yes

Interrupt Vectors and the Vector
Table

• An interrupt vector is a pointer to where the ISR is
stored in memory.

• All interrupts (vectored or otherwise) are mapped
onto a memory area called the Interrupt Vector
Table (IVT).
– The IVT is usually located in memory page 00 (0000H

- 00FFH).
– The purpose of the IVT is to hold the vectors that

redirect the microprocessor to the right place when an
interrupt arrives.

– The IVT is divided into several blocks. Each block is
used by one of the interrupts to hold its “vector”

1. The interrupt process should be enabled using the
EI instruction.

2. The 8085 checks for an interrupt during the
execution of every instruction.

3. If there is an interrupt, the microprocessor will
complete the executing instruction, and start a
RESTART sequence.

4. The RESTART sequence resets the interrupt flip
flop and activates the interrupt acknowledge signal
(INTA).

5. Upon receiving the INTA signal, the interrupting
device is expected to return the op-code of one of
the 8 RST instructions.

The 8085 Non-Vectored Interrupt
Process

6. When the microprocessor executes the RST
instruction received from the device, it saves the
address of the next instruction on the stack and
jumps to the appropriate entry in the IVT.

7. The IVT entry must redirect the microprocessor to
the actual service routine.

8. The service routine must include the instruction EI
to re-enable the interrupt process.

9. At the end of the service routine, the RET
instruction returns the execution to where the
program was interrupted.

The 8085 Non-Vectored Interrupt
Process

The 8085 Non-Vectored Interrupt Process

• The 8085 recognizes 8 RESTART
instructions: RST0 - RST7.
– each of these would send the

execution to a predetermined
hard-wired memory location:

Restart
Instruction

Equivalent
to

RST0 CALL
0000H

RST1 CALL
0008H

RST2 CALL
0010H

RST3 CALL
0018H

RST4 CALL
0020H

RST5 CALL
0028H

RST6 CALL
0030H

RST7 CALL
0038H

Restart Sequence

• The restart sequence is made up of three machine
cycles
– In the 1st machine cycle:

• The microprocessor sends the INTA signal.
• While INTA is active the microprocessor reads the data lines

expecting to receive, from the interrupting device, the opcode
for the specific RST instruction.

– In the 2nd and 3rd machine cycles:
• the 16-bit address of the next instruction is saved on the stack.
• Then the microprocessor jumps to the address associated with

the specified RST instruction.

Restart Sequence

• The location in the IVT associated with the
RST instruction can not hold the complete
service routine.
– The routine is written somewhere else in

memory.
– Only a JUMP instruction to the ISR’s location

is kept in the IVT block.

Hardware Generation of RST
Opcode

• How does the external device produce the
opcode for the appropriate RST instruction?
– The opcode is simply a collection of bits.
– So, the device needs to set the bits of the data

bus to the appropriate value in response to an
INTA signal.

The following is an
example of generating
RST 5:

RST 5’s opcode is EF =

D D
76543210
11101111

Hardware Generation of RST
Opcode

Hardware Generation of RST
Opcode

• During the interrupt acknowledge machine cycle,
(the 1st machine cycle of the RST operation):
– The Microprocessor activates the INTA signal.
– This signal will enable the Tri-state buffers, which will

place the value EFH on the data bus.
– Therefore, sending the Microprocessor the RST 5

instruction.

• The RST 5 instruction is exactly equivalent to
CALL 0028H

Issues in Implementing INTR
Interrupts

• How long must INTR remain high?
– The microprocessor checks the INTR line one clock

cycle before the last T-state of each instruction.
– The interrupt process is Asynchronous.
– The INTR must remain active long enough to allow for

the longest instruction.
– The longest instruction for the 8085 is the conditional

CALL instruction which requires 18 T-states.

Therefore, the INTR must remain active for 17.5
T-states.

Issues in Implementing INTR
Interrupts

• How long can the INTR remain high?
– The INTR line must be deactivated before the EI is

executed. Otherwise, the microprocessor will be
interrupted again.

– The worst case situation is when EI is the first
instruction in the ISR.

– Once the microprocessor starts to respond to an INTR
interrupt, INTA becomes active (=0).

Therefore, INTR should be turned off as soon as the
INTA signal is received.

Issues in Implementing INTR
Interrupts

• Can the microprocessor be interrupted again
before the completion of the ISR?
– As soon as the 1st interrupt arrives, all maskable

interrupts are disabled.
– They will only be enabled after the execution of the EI

instruction.

Therefore, the answer is: “only if you allow it to”.
If the EI instruction is placed early in the ISR, other

interrupt may occur before the ISR is done.

Multiple Interrupts & Priorities

• How do we allow multiple devices to
interrupt using the INTR line?
– The microprocessor can only respond to one

signal on INTR at a time.
– Therefore, we must allow the signal from only

one of the devices to reach the microprocessor.
– We must assign some priority to the different

devices and allow their signals to reach the
microprocessor according to the priority.

The Priority Encoder

• The solution is to use a circuit called the priority
encoder (74366).
– This circuit has 8 inputs and 3 outputs.
– The inputs are assigned increasing priorities according

to the increasing index of the input.
• Input 7 has highest priority and input 0 has the lowest.

– The 3 outputs carry the index of the highest priority
active input.

– Figure 12.4 in the book shoes how this circuit can be
used with a Tri-state buffer to implement an interrupt
priority scheme.

• The figure in the textbook does not show the method for
distributing the INTA signal back to the individual devices.

Multiple Interrupts & Priorities

• Note that the opcodes for the different RST
instructions follow a set pattern.

• Bit D5, D4 and D3 of the opcodes change in a binary
sequence from RST 7 down to RST 0.

• The other bits are always 1.
• This allows the code generated by the 74366 to be used

directly to choose the appropriate RST instruction.

• The one draw back to this scheme is that the only
way to change the priority of the devices
connected to the 74366 is to reconnect the
hardware.

Multiple Interrupts and Priority
Dev. 7

Dev. 6

Dev. 5

Dev. 4

Dev. 3

Dev. 2

Dev. 1

Dev. 0

7
4
1
3
8

7
4
3
6
6

8
0
8
5

INTR Circuit
INTA Circuit

INTA
INTR

AD7
AD6
AD5
AD4
AD3
AD2
AD1
AD0

O7
O6
O5
O4

O3

O2

O1

O0

I7
I6
I5
I4
I3
I2
I1
I0 Tri –

State
BufferPriority

Encoder

+5 V

RST Circuit

The 8085 Maskable/Vectored
Interrupts

• The 8085 has 4 Masked/Vectored interrupt inputs.
– RST 5.5, RST 6.5, RST 7.5

• They are all maskable.
• They are automatically vectored according to the following

table:

– The vectors for these interrupt fall in between the vectors for the
RST instructions. That’s why they have names like RST 5.5
(RST 5 and a half).

Interrupt Vector
RST 5.5 002CH

RST 6.5 0034H
RST 7.5 003CH

Masking RST 5.5, RST 6.5 and
RST 7.5

• These three interrupts are masked at two
levels:
– Through the Interrupt Enable flip flop and the

EI/DI instructions.
• The Interrupt Enable flip flop controls the whole

maskable interrupt process.
– Through individual mask flip flops that control

the availability of the individual interrupts.
• These flip flops control the interrupts individually.

Maskable Interrupts

Interrupt
Enable

Flip Flop

INTR

RST 5.5

RST 6.5

RST 7.5

M 5.5

M 6.5

M 7.5

RST7.5 Memory

The 8085 Maskable/Vectored
Interrupt Process

1. The interrupt process should be enabled using the
EI instruction.

2. The 8085 checks for an interrupt during the
execution of every instruction.

3. If there is an interrupt, and if the interrupt is
enabled using the interrupt mask, the
microprocessor will complete the executing
instruction, and reset the interrupt flip flop.

4. The microprocessor then executes a call instruction
that sends the execution to the appropriate location
in the interrupt vector table.

The 8085 Maskable/Vectored
Interrupt Process

5. When the microprocessor executes the call
instruction, it saves the address of the next
instruction on the stack.

6. The microprocessor jumps to the specific service
routine.

7. The service routine must include the instruction EI
to re-enable the interrupt process.

8. At the end of the service routine, the RET
instruction returns the execution to where the
program was interrupted.

Manipulating the Masks

• The Interrupt Enable flip flop is manipulated using
the EI/DI instructions.

• The individual masks for RST 5.5, RST 6.5 and
RST 7.5 are manipulated using the SIM
instruction.
– This instruction takes the bit pattern in the Accumulator

and applies it to the interrupt mask enabling and
disabling the specific interrupts.

How SIM Interprets the
Accumulator

SD
O

SD
E

XX
X

R
7.

5
M

SE
M

7.
5

M
6.

5
M

5.
5

01234567

RST5.5 Mask
RST6.5 Mask
RST7.5 Mask

} 0 - Available
1 - Masked

Mask Set Enable
0 - Ignore bits 0-2
1 - Set the masks according

to bits 0-2

Force RST7.5 Flip Flop to resetNot Used

Enable Serial Data
0 - Ignore bit 7
1 - Send bit 7 to SOD pin

Serial Data Out

SIM and the Interrupt Mask
• Bit 0 is the mask for RST 5.5, bit 1 is the mask for

RST 6.5 and bit 2 is the mask for RST 7.5.
• If the mask bit is 0, the interrupt is available.
• If the mask bit is 1, the interrupt is masked.

• Bit 3 (Mask Set Enable - MSE) is an enable for
setting the mask.

• If it is set to 0 the mask is ignored and the old settings remain.
• If it is set to 1, the new setting are applied.
• The SIM instruction is used for multiple purposes and not only

for setting interrupt masks.
– It is also used to control functionality such as Serial Data

Transmission.
– Therefore, bit 3 is necessary to tell the microprocessor

whether or not the interrupt masks should be modified

SIM and the Interrupt Mask
• The RST 7.5 interrupt is the only 8085 interrupt that has

memory.
– If a signal on RST7.5 arrives while it is masked, a flip flop will

remember the signal.
– When RST7.5 is unmasked, the microprocessor will be interrupted

even if the device has removed the interrupt signal.
– This flip flop will be automatically reset when the microprocessor

responds to an RST 7.5 interrupt.

• Bit 4 of the accumulator in the SIM instruction allows
explicitly resetting the RST 7.5 memory even if the
microprocessor did not respond to it.

SIM and the Interrupt Mask
• The SIM instruction can also be used to perform

serial data transmission out of the 8085’s SOD
pin.
– One bit at a time can be sent out serially over the SOD

pin.

• Bit 6 is used to tell the microprocessor whether or
not to perform serial data transmission

• If 0, then do not perform serial data transmission
• If 1, then do.

• The value to be sent out on SOD has to be placed
in bit 7 of the accumulator.

• Bit 5 is not used by the SIM instruction

Using the SIM Instruction to Modify the
Interrupt Masks

• Example: Set the interrupt masks so that
RST5.5 is enabled, RST6.5 is masked, and
RST7.5 is enabled.
– First, determine the contents of the accumulator

SD
O

SD
E

XX
X

R
7.

5
M

SE
M

7.
5

M
6.

5
M

5.
5- Enable 5.5 bit 0 = 0

- Disable 6.5 bit 1 = 1
- Enable 7.5 bit 2 = 0
- Allow setting the masks bit 3 = 1
- Don’t reset the flip flop bit 4 = 0
- Bit 5 is not used bit 5 = 0
- Don’t use serial data bit 6 = 0
- Serial data is ignored bit 7 = 0

0 1 00000 1

Contents of accumulator are: 0AH

EI ; Enable interrupts including INTR
MVI A, 0A ; Prepare the mask to enable RST 7.5, and 5.5, disable 6.5
SIM ; Apply the settings RST masks

Triggering Levels

• RST 7.5 is positive edge sensitive.
• When a positive edge appears on the RST7.5 line, a logic 1 is

stored in the flip-flop as a “pending” interrupt.
• Since the value has been stored in the flip flop, the line does

not have to be high when the microprocessor checks for the
interrupt to be recognized.

• The line must go to zero and back to one before a new interrupt
is recognized.

• RST 6.5 and RST 5.5 are level sensitive.
• The interrupting signal must remain present until the

microprocessor checks for interrupts.

Determining the Current Mask
Settings

• RIM instruction: Read Interrupt Mask
– Load the accumulator with an 8-bit pattern

showing the status of each interrupt pin and
mask.

Interrupt Enable
Flip Flop

RST 5.5

RST 6.5

RST 7.5

M 5.5

M 6.5

M 7.5

RST7.5 Memory

SD
I

P7
.5

P6
.5

P5
.5 IE M

7.
5

M
6.

5
M

5.
5

01234567

How RIM sets the Accumulator’s
different bits

SD
I

P7
.5

P6
.5

P5
.5 IE M

7.
5

M
6.

5
M

5.
5

01234567

RST5.5 Mask
RST6.5 Mask
RST7.5 Mask

} 0 - Available
1 - Masked

Interrupt Enable
Value of the Interrupt Enable
Flip Flop

Serial Data In

RST5.5 Interrupt Pending
RST6.5 Interrupt Pending
RST7.5 Interrupt Pending

The RIM Instruction and the
Masks

• Bits 0-2 show the current setting of the mask for
each of RST 7.5, RST 6.5 and RST 5.5

• They return the contents of the three mask flip flops.
• They can be used by a program to read the mask settings in

order to modify only the right mask.

• Bit 3 shows whether the maskable interrupt
process is enabled or not.

• It returns the contents of the Interrupt Enable Flip Flop.
• It can be used by a program to determine whether or not

interrupts are enabled.

The RIM Instruction and the
Masks

• Bits 4-6 show whether or not there are pending
interrupts on RST 7.5, RST 6.5, and RST 5.5

• Bits 4 and 5 return the current value of the RST5.5 and RST6.5
pins.

• Bit 6 returns the current value of the RST7.5 memory flip flop.

• Bit 7 is used for Serial Data Input.
• The RIM instruction reads the value of the SID pin on the

microprocessor and returns it in this bit.

Pending Interrupts

• Since the 8085 has five interrupt lines, interrupts
may occur during an ISR and remain pending.
– Using the RIM instruction, the programmer can read

the status of the interrupt lines and find if there are any
pending interrupts.

– The advantage is being able to find about interrupts on
RST 7.5, RST 6.5, and RST 5.5 without having to
enable low level interrupts like INTR.

Using RIM and SIM to set
Individual Masks

• Example: Set the mask to enable RST6.5 without
modifying the masks for RST5.5 and RST7.5.
– In order to do this correctly, we need to use the RIM

instruction to find the current settings of the RST5.5
and RST7.5 masks.

– Then we can use the SIM instruction to set the masks
using this information.

– Given that both RIM and SIM use the Accumulator, we
can use some logical operations to masks the un-needed
values returned by RIM and turn them into the values
needed by SIM.

SD
O

SD
E

XX
X

R
7.

5
M

SE
M

7.
5

M
6.

5
M

5.
5

0 0 00000 1

Using RIM and SIM to set
Individual Masks

– Assume the RST5.5 and RST7.5 are enabled and the interrupt process
is disabled.

RIM ; Read the current settings.

ORI 08H ; 0 0 0 0 1 0 0 0
; Set bit 4 for MSE.

ANI 0DH ; 0 0 0 0 1 1 0 1
; Turn off Serial Data, Don’t reset
; RST7.5 flip flop, and set the mask
; for RST6.5 off. Don’t cares are
; assumed to be 0.

SIM ; Apply the settings.

Accumulator

SD
I

P7
.5

P6
.5

P5
.5

IE M
7.

5
M

6.
5

M
5.

5

0 1 00000 0

0 1 00000 1

0 0 00000 1

TRAP

• TRAP is the only non-maskable interrupt.
– It does not need to be enabled because it cannot be

disabled.
• It has the highest priority amongst interrupts.
• It is edge and level sensitive.

– It needs to be high and stay high to be recognized.
– Once it is recognized, it won’t be recognized again until

it goes low, then high again.

• TRAP is usually used for power failure and
emergency shutoff.

Internal Interrupt Priority

• Internally, the 8085 implements an interrupt
priority scheme.
– The interrupts are ordered as follows:

• TRAP
• RST 7.5
• RST 6.5
• RST 5.5
• INTR

– However, TRAP has lower priority than the HLD signal
used for DMA.

The 8085 Interrupts
Interrupt

Name Maskable Masking
Method Vectored Memory Triggerin

g Method

INTR Yes DI / EI No No Level
Sensitive

RST 5.5 /
RST 6.5 Yes

DI / EI
SIM

Yes No Level
Sensitive

RST 7.5 Yes
DI / EI
SIM

Yes Yes Edge
Sensitive

TRAP No None Yes No
Level &

Edge
Sensitive

Additional Concepts and
Processes

• Programmable Interrupt Controller 8259 A
– A programmable interrupt managing device

• It manages 8 interrupt requests.
• It can vector an interrupt anywhere in memory

without additional H/W.
• It can support 8 levels of interrupt priorities.
• The priority scheme can be extended to 64 levels

using a hierarchy 0f 8259 device.

The Need for the 8259A

• The 8085 INTR interrupt scheme presented earlier
has a few limitations:
– The RST instructions are all vectored to memory page

00H, which is usually used for ROM.
– It requires additional hardware to produce the RST

instruction opcodes.
– Priorities are set by hardware.

• Therefore, we need a device like the 8259A to
expand the priority scheme and allow mapping to
pages other than 00H.

Interfacing the 8259A to the 8085
Dev. 7

Dev. 6

Dev. 5

Dev. 4

Dev. 3

Dev. 2

Dev. 1

Dev. 0

8
2
5
9
A

8
0
8
5

INTA

INTR

AD7
AD6
AD5
AD4
AD3
AD2
AD1
AD0

I7
I6
I5
I4
I3
I2
I1
I0

Operating of the 8259A

• The 8259A requires the microprocessor to
provide 2 control words to set up its operation.
After that, the following sequence occurs:
1. One or more interrupts come in.
2. The 8259A resolves the interrupt priorities based on

its internal settings
3. The 8259A sends an INTR signal to the

microprocessor.
4. The microprocessor responds with an INTA signal

and turns off the interrupt enable flip flop.
5. The 8259A responds by placing the op-code for the

CALL instruction (CDH) on the data bus.

Operating of the 8259A
6. When the microprocessor receives the op-code for

CALL instead of RST, it recognizes that the device
will be sending 16 more bits for the address.

7. The microprocessor sends a second INTA signal.
8. The 8259A sends the high order byte of the ISR’s

address.
9. The microprocessor sends a third INTA signal.
10. The 8259A sends the low order byte of the ISR’s

address.
11. The microprocessor executes the CALL instruction

and jumps to the ISR.

Direct Memory Access

• This is a process where data is transferred between
two peripherals directly without the involvement
of the microprocessor.
– This process employs the HOLD pin on the

microprocessor
• The external DMA controller sends a signal on the HOLD pin

to the microprocessor.
• The microprocessor completes the current operation and sends

a signal on HLDA and stops using the buses.
• Once the DMA controller is done, it turns off the HOLD signal

and the microprocessor takes back control of the buses.

Serial I/O and Data
Communication

Basic Concepts in Serial I/O

• Interfacing requirements:
– Identify the device through a port number.

• Memory-mapped.
• Peripheral-mapped.

– Enable the device using the Read and Write control
signals.

• Read for an input device.
• Write for an output device.

– Only one data line is used to transfer the information
instead of the entire data bus.

Basic Concepts in Serial I/O

• Controlling the transfer of data:
– Microprocessor control.

• Unconditional, polling, status check, etc.

– Device control.
• Interrupt.

Synchronous Data Transmission

• The transmitter and receiver are synchronized.
– A sequence of synchronization signals is sent before the

communication begins.

• Usually used for high speed transmission.
• More than 20 K bits/sec.

• Message based.
– Synchronization occurs at the beginning of a long

message.

Asynchronous Data Transmission

• Transmission occurs at any time.

• Character based.
– Each character is sent separately.

• Generally used for low speed transmission.
– Less the 20 K bits/sec.

Asynchronous Data Transmission
• Follows agreed upon standards:

– The line is normally at logic one (mark).
• Logic 0 is known as space.

– The transmission begins with a start bit (low).
– Then the seven or eight bits representing the

character are transmitted.
– The transmission is concluded with one or two

stop bits.
D0 D1 D2 D3 D4 D5 D6 D7St

ar
t

Stop

Time

One Character

Simplex and Duplex
Transmission

• Simplex.
– One-way transmission.
– Only one wire is needed to connect the two devices
– Like communication from computer to a printer.

• Half-Duplex.
– Two-way transmission but one way at a time.
– One wire is sufficient.

• Full-Duplex.
– Data flows both ways at the same time.
– Two wires are needed.
– Like transmission between two computers.

Rate of Transmission

• For parallel transmission, all of the bits are sent at
once.

• For serial transmission, the bits are sent one at a
time.
– Therefore, there needs to be agreement on how “long”

each bit stays on the line.

• The rate of transmission is usually measured in
bits/second or baud.

Length of Each Bit

• Given a certain baud rate, how long should
each bit last?
– Baud = bits / second.
– Seconds / bits = 1 /baud.
– At 1200 baud, a bit lasts 1/1200 = 0.83 m Sec.

Transmitting a Character

• To send the character A over a serial
communication line at a baud rate of 56.6 K:
– ASCII for A is 41H = 01000001.
– Must add a start bit and two stop bits:

• 11 01000001 0
– Each bit should last 1/56.6K = 17.66 µ Sec.

• Known as bit time.
– Set up a delay loop for 17.66 µ Sec and set the

transmission line to the different bits for the duration of
the loop.

Error Checking
• Various types of errors may occur during

transmission.
– To allow checking for these errors, additional

information is transmitted with the data.

• Error checking techniques:
– Parity Checking.
– Checksum.

• These techniques are for error checking not
correction.
– They only indicate that an error has occurred.
– They do not indicate where or what the correct

information is.

Parity Checking

• Make the number of 1’s in the data Odd or Even.
– Given that ASCII is a 7-bit code, bit D7 is used to carry

the parity information.

– Even Parity
• The transmitter counts the number of ones in the data. If there

is an odd number of 1’s, bit D7 is set to 1 to make the total
number of 1’s even.

• The receiver calculates the parity of the received message, it
should match bit D7.

– If it doesn’t match, there was an error in the transmission.

Checksum

• Used when larger blocks of data are being
transmitted.

• The transmitter adds all of the bytes in the
message without carries. It then calculates the 2’s
complement of the result and send that as the last
byte.

• The receiver adds all of the bytes in the message
including the last byte. The result should be 0.
– If it isn’t an error has occurred.

RS 232

• A communication standard for connecting
computers to printers, modems, etc.
– The most common communication standard.
– Defined in the 1950’s.
– It uses voltages between +15 and –15 V.
– Restricted to speeds less than 20 K baud.
– Restricted to distances of less than 50 feet (15 m).

• The original standard uses 25 wires to connect the
two devices.
– However, in reality only three of these wires are

needed.

Software-Controlled Serial
Transmission

• The main steps involved in serially transmitting a
character are:
– Transmission line is at logic 1 by default.
– Transmit a start bit for one complete bit length.
– Transmit the character as a stream of bits with

appropriate delay.
– Calculate parity and transmit it if needed.
– Transmit the appropriate number of stop bits.
– Transmission line returns to logic 1.

Serial Transmission

0
1
0
0
0
0
0
1D0

D1

D2

D3

D4

D5

D6

D7

Ac
cu

m
ul

at
or

Shift

O
ut

pu
t P

or
t

0 1000010 St
ar

t

Stop

Time

D0

Flowchart of Serial Transmission
Set up Bit Counter

Set bit D0 of A to 0 (Start Bit)

Wait Bit Time

Get character into A

Wait Bit Time

Rotate A Left
Decrement Bit Counter

Last Bit?

Add Parity
Send Stop Bit(s)

Yes

No

Software-Controlled Serial
Reception

• The main steps involved in serial reception are:
– Wait for a low to appear on the transmission line.

• Start bit

– Read the value of the line over the next 8 bit lengths.
• The 8 bits of the character.

– Calculate parity and compare it to bit 8 of the character.
• Only if parity checking is being used.

– Verify the reception of the appropriate number of stop
bits.

Serial Reception

0
1
0
0
0
0
0
1 D0

D1

D2

D3

D4

D5

D6

D7

Ac
cu

m
ul

at
or

Shift

0 1000010 St
ar

t
Stop

Time

D7
In

pu
t P

or
t

Flowchart of Serial Reception
Read Input Port

Start Bit?

Yes

No

Wait for Half Bit Time

Bit Still
Low?

Yes

No

Start Bit Counter

Wait Bit Time
Read Input Port

Decrement Counter

Last Bit?

Check Parity
Wait for Stop Bits

Yes

No

The 8085 Serial I/O Lines

• The 8085 Microprocessor has two serial I/O
pins:
– SOD – Serial Output Data
– SID – Serial Input Data

• Serial input and output is controlled using
the RIM and SIM instructions respectively.

SIM and Serial Output
• As was discussed in Chapter 12, the SIM

instruction has dual use.
– It is used for controlling the maskable interrupt

process
– For the serial output process.

• The figure below shows how SIM uses the
accumulator for Serial Output.

SD
O

SD
E

XX
X

R
7.

5
M

SE
M

7.
5

M
6.

5
M

5.
5

01234567

0 – Disable SOD
1 – Enable SOD

Serial Output Data

RIM and Serial Input

• Again, the RIM instruction has dual use
– Reading the current settings of the Interrupt

Masks
– Serial Data Input

• The figure below shows how the RIM
instruction uses the Accumulator for Serial
Input

SD
I

P7
.5

P6
.5

P5
.5 IE M

7.
5

M
6.

5
M

5.
5

01234567

Serial Input Data

Ports?

• Using the SOD and SID pins, the user
would not need to bother with setting up
input and output ports.
– The two pins themselves can be considered as

the ports.
– The instructions SIM and RIM are similar to

the OUT and IN instructions except that they
only deal with the 1-bit SOD and SID ports.

Example
• Transmit an ASCII character stored in

register B using the SOD line.
SODDATA MVI C, 0BH ; Set up counter for 11 bits

XRA A ; Clear the Carry flag
NXTBIT MVI A, 80H ; Set D7 =1

RAR ; Bring Carry into D7 and set D6 to 1
SIM ; Output D7 (Start bit)
CALL BITTIME
STC ; Set Carry to 1
MOV A, B ; Place character in A
RAR ; Shift D0 of the character to the carry

Shift 1 into bit D7
MOV B, A ; Save the interim result
DCR C ; decrement bit counter
JNZ NXTBIT

1

PORT
A

EN

PORT

C

EN

PORT
B

EN

CONTROL
REGISTER

EN

INTE
RNAL

DEC
ODIN
G

RD

WR

RD

WR

RD

WRC

B

A

11

10

01

00

00

10

01

WR

CS

A1

A0

8

2

5

5

A

PORT A

CU
PORT C

CL

PORT B

1

CONTROL WORD

D7 D6 D5 D4 D3 D2 D1 D0

0/1

BSR MODE

BIT SET/RESET

FOR PORT C

NO EFFECT ON I/O

MODE

I/O MODE

MODE 0

SIMPLE I/O FOR
PORTS

A, B AND C

MODE 1

HANDSHAKE
I/O FOR
PORTS A
AND/OR B

PORT C BITS
ARE USED
FOR
HANDSHAKE

MODE 2

BIDIRECTI
ONAL
DATA BUS
FOR PORT
A

PORT B
EITHER IN
MODE 0 OR
1

PORT C
BITS ARE
USED FOR
HANDSHAK
E

1

GROUP
A

PORT
A
(8)

GROUP
B

PORT
B
(8)

GROUPA
PORT C
UPPER

(4)

GROUPB
PORT C
LOWER

(4)

GROUP
A

CON-
TROL

GROUP
B

CON-
TROL

READ/
WRITE

CONTROL
LOGIC

DATA
BUS

BUFFER

BIDIRECTION
AL DATA BUS

D1,D0

RD
WR

A1
A0

RESET

8-BIT
INTERNAL
DATA BUS

CS

I/O
PA7-PA0

I/O

PC7-PC4

I/O

PC3-
PC0

I/O

PB7-
PB0

+5V

GND
POWER
SUPPLIES

8255A

1

Control Word Format for
I/O Mode

D7 D6 D5 D4 D3 D2 D1 D0

PORT CL (PC3-PC0)
1= INPUT;0= OUTPUT

PORT B
1= INPUT;0= OUTPUT

MODE SELECTION
0=MODE0; 1=MODE 1

1= I/O Mode
0= BSR Mode

Group B

Group A

PORT CU (PC7-PC4)

1= INPUT; 0=OUTPUT

PORT A

1= INPUT; 0=OUTPUT

MODE SELECTION

00= MODE 0;01= MODE 1;1X= MODE 2

1

8255A

A1

A0

RD

WR

RESET

PA7

PA0

PC7

PC4

PC3

PC0

PB7

PB0

CS

1

Mode 0 (Simple Input or
Output)

PROBLEM 1)

 Interface 8255a to a 8085 microprocessor using I/O-mapped -
I/O technique so that Port a have address 80H in the system.

 Determine addresses of Ports B,C and control register.
 Write an ALP to configure port A and port CL as output ports

and port B and port CU as input ports in mode 0.
 Connect DIP switches connected to the to input ports and

LEDs to the output ports .
 Read switch positions connected to port A and turn on the

respective LEDs of port b. Read switch positions of port CL and
display the reading at port CU

1

BSR (Bit Set/Reset) Mode

BSR control word

D7 D6 D5 D4 D3 D2 D1 D0

0 X X X BIT SELECT S/R

BSR Mode

Not used,

Generally reset to 0

000 = Bit 0

001 = Bit 1

010 = Bit 2

011 = Bit 3

100 = Bit 4

101 = Bit 5

110 = Bit 6

111 = Bit 7

1= Set

0 = Reset

1

Problem 2)

 Write an ALP to set bits PC7 and PC 3
and reset them after 10 ms in BSR
mode.

1

Mode 1: Input or Output with
Handshake

PC4

PC5

PC3

PC2

PC1

PC0

Port A Input

Port B Input

STBA

IBFA

INTRA

STBB

IBFB

INTRB

INTEA

INTEB

I/OPC 6,7

RD

PA7-PA0

PB7-PB0

Port A with
Handshake

Signal

Port b with

Handshake

Signal

Port A & Port B as
Input in Mode 1

1

Control word – mode 1 input

D7 D6 D5 D4 D3 D2 D1 D0

x111101 1/0

I/O
Mode

Port A

Mode 1

Port A
Input

Port B

Input

Port B

Mode 1

PC6,7

1=Input;
0=Output

1

Status Word – Mode 1 input

D7 D6 D5 D4 D3 D2 D1 D0

INTRBIBFBINTEAIBFAI/OI/O INTRA INTEB

1

STB

IBF

INTR

RD

Input from
peripheral

v

1

PC7

PC6

PC3

PC2

PC1

PC0

OBFA

ACKA

INTRA

OBFB

ACKB

INTRB

INTEA

INTEB

I/OPC 4,5

WR

PA7-PA0

PB7-PB0

Port A with
Handshake

Signal

Port b with

Handshake

Signal

Port A Output

Port B Output

Port A & B as Output

In Mode 1

1

Control word – mode 1 Output

D7 D6 D5 D4 D3 D2 D1 D0

x010101 1/0

I/O
Mode

Port A

Mode 1

Port A
Output

Port B

Output

Port B

Mode 1

PC4,5

1=Input;
0=Output

1

Status Word – Mode 1 Output

D7 D6 D5 D4 D3 D2 D1 D0

INTRBOBFBI/OI/OINTEaOBFA INTRA INTEB

1

WR

OBF

INTR

ACK

output

1

Status

Initialize Ports

Read port
C for status

Is
Peripheral
Ready?

Interrupt

Initialize Ports

Enable INTE

No

yes

Continue

No
Yes

Continue

1

Problem 3)

 Initialize 8255A in mode 1 to configure Port
A as an input port and Port B as an output
port.

 Assuming that an A-to-d converter is
connected with port A as an interrupt I/O
and a printer is connected with port B as a
status check I/O

8086 MICROPROCESSOR

Pinouts

I-46

8086 Pins
The 8086 comes in a 40 pin package which means that some pins have
more than one use or are multiplexed. The packaging technology of time
limited the number of pin that could be used.

In particular, the address lines 0 - 15 are multiplexed with data lines 0-15,
address lines 16-19 are multiplexed with status lines. These pins are

AD0 - AD15, A16/S3 - A19/S6

The 8086 has one other pin that is multiplexed and this is BHE’/S7.
BHE stands for Byte High Enable. This is an active low signal that is
asserted when there is data on the upper half of the data bus.

The 8086 has two modes of operation that changes the function of some pins.
The SDK-86 uses the 8086 in the minimum mode with the MN/MX’ pin tied to
5 volts. This is a simple single processor mode. The IBM PC uses an 8088
in the maximum mode with the MN/MX” pin tied to ground. This is the mode
required for a coprocessor like the 8087.

I-47

8086 Pins
In the minimum mode the following pins are available.

HOLD When this pin is high, another master is requesting control of the
local bus, e.g., a DMA controller.

HLDA HOLD Acknowledge: the 8086 signals that it is going to float
the local bus.

WR’ Write: the processor is performing a write memory or I/O operation.

M/IO’ Memory or I/O operation.

DT/R’ Data Transmit or Receive.

DEN’ Data Enable: data is on the multiplexed address/data pins.

ALE Address Latch Enable: the address is on the address/data pins.
This signal is used to capture the address in latches to establish the
address bus.

INTA’ Interrupt acknowledge: acknowledges external interrupt requests.

I-48

8086 Pins
The following are pins are available in both minimum and maximum modes.

VCC + 5 volt power supply pin.

GND Ground

RD’ READ: the processor is performing a read memory or I/O operation.

READY Acknowledgement from wait-state logic that the data transfer will
be completed.

RESET Stops processor and restarts execution from FFFF:0. Must be high
for 4 clocks. CS = 0FFFFH, IP = DS = SS = ES = Flags = 0000H, no
other registers are affected.

TEST’ The WAIT instruction waits for this pin to go low. Used with 8087.

NMI Non Maskable Interrupt: transition from low to high causes an
interrupt. Used for emergencies such as power failure.

INTR Interrupt request: masked by the IF bit in FLAG register.

CLK Clock: 33% duty cycle, i.e., high 1/3 the time.
I-49

• 16-bit Arithmetic Logic Unit

• 16-bit data bus (8088 has 8-bit data bus)

• 20-bit address bus - 220 = 1,048,576 = 1 meg

The address refers to a byte in memory. In the 8088, these bytes come in on
the 8-bit data bus. In the 8086, bytes at even addresses come in on the low
half of the data bus (bits 0-7) and bytes at odd addresses come in on the upper
half of the data bus (bits 8-15).

The 8086 can read a 16-bit word at an even address in one operation and at an
odd address in two operations. The 8088 needs two operations in either case.

The least significant byte of a word on an 8086 family microprocessor is at the
lower address.

I-8

8086 Features

8086 Architecture
• The 8086 has two parts, the Bus Interface Unit (BIU) and the
Execution Unit (EU).

• The BIU fetches instructions, reads and writes data, and computes the
20-bit address.

• The EU decodes and executes the instructions using the 16-bit ALU.

• The BIU contains the following registers:

IP - the Instruction Pointer
CS - the Code Segment Register
DS - the Data Segment Register
SS - the Stack Segment Register
ES - the Extra Segment Register

The BIU fetches instructions using the CS and IP, written CS:IP, to contruct
the 20-bit address. Data is fetched using a segment register (usually the DS)
and an effective address (EA) computed by the EU depending on the
addressing mode.

I-9

8086 Block Diagram

I-10

8086 Architecture
The EU contains the following 16-bit registers:

AX - the Accumulator
BX - the Base Register
CX - the Count Register
DX - the Data Register
SP - the Stack Pointer \ defaults to stack segment
BP - the Base Pointer /
SI - the Source Index Register
DI - the Destination Register

These are referred to as general-purpose registers, although, as seen by
their names, they often have a special-purpose use for some instructions.

The AX, BX, CX, and DX registers can be considers as two 8-bit registers, a
High byte and a Low byte. This allows byte operations and compatibility with
the previous generation of 8-bit processors, the 8080 and 8085. 8085 source
code could be translated in 8086 code and assembled. The 8-bit registers are:

AX --> AH,AL
BX --> BH,BL
CX --> CH,CL
DX --> DH,DL

I-11

Flag Register

 NT IOPL OF DF IF TF ZFSF AF PF CF

015

 Control Flags Status Flags

IF: Interrupt enable flag
DF: Direction flag
TF: Trap flag

CF: Carry flag
PF: Parity flag
AF: Auxiliary carry flag
ZF: Zero flag
SF: Sign flag
OF: Overflow flag
NT: Nested task flag
IOPL: Input/output privilege level

 Flag register contains information reflecting the current status of a
microprocessor. It also contains information which controls the
operation of the microprocessor.

Flags Commonly Tested During the Execution of
Instructions

 There are five flag bits that are commonly tested during the execution
of instructions

 Sign Flag (Bit 7), SF: 0 for positive number and 1 for negative number

 Zero Flag (Bit 6), ZF: If the ALU output is 0, this bit is set (1); otherwise,
it is 0

 Carry Flag (Bit 0), CF: It contains the carry generated during the execution

 Auxiliary Carry, AF: Depending on the width of ALU inputs, this flag
(Bit 4) bit contains the carry generated at bit 3 (or, 7, 15)

of the 8088 ALU

 Parity Flag (bit2), PF: It is set (1) if the output of the ALU has even number
of ones; otherwise it is zero

Direction Flag
 Direction Flag (DF) is used to control the way SI and DI are adjusted during the

execution of a string instruction

— DF=0, SI and DI will auto-increment during the execution; otherwise, SI and DI
auto-decrement

— Instruction to set DF: STD; Instruction to clear DF: CLD

— Example:

CLD
MOV CX, 5
REP MOVSB

At the beginning of execution,
DS=0510H and SI=0000H

53
48
4F
50
50
45

S
H

O
P
P

52
E
R

0510:0000
0510:0001
0510:0002

0510:0003
0510:0004
0510:0005
0510:0006

DS : SI

Source String

SI CX=5

SI CX=4

SI CX=3

SI CX=2
SI CX=1

SI CX=0

8086 Programmer’s Model
ES
CS
SS
DS
IP

AH
BH
CH
DH

AL
BL
CL
DL

SP
BP
SI
DI

FLAGS

AX
BX
CX
DX

Extra Segment
Code Segment
Stack Segment
Data Segment
Instruction Pointer

Accumulator
Base Register
Count Register
Data Register
Stack Pointer
Base Pointer
Source Index Register
Destination Index Register

I-13

BIU registers
(20 bit adder)

EU registers
16 bit arithmetic

Memory Address Calculation

 Segment addresses must be stored
in segment registers

 Offset is derived from the combination
of pointer registers, the Instruction
Pointer (IP), and immediate values

0000

+
Segment address

Offset

Memory address

 Examples

3 4 8 A 0
4 2 1 4
8 A B 43

CS
IP +

Instruction address

5 0 0 0 0
F F E 0
F F E 05

SS
SP +

Stack address

1 2 3 4 0
0 0 2 2
2 3 6 21

DS
DI +

Data address

EEE/CSE 226

Segment
Registers

CODE

STACK

DATA

EXTRA

MEMORY

Address
0H

0FFFFFH

64K Data
Segment

64K Code
Segment

Segments are < or = 64K,
can overlap, start at an address
that ends in 0H.

Segments

← CS:0

I-14

Segment Starting address is segment
register value shifted 4 places to the left.

CODE

DATA

STACK

EXTRA

0100H

0B200H

0CF00H

0FF00H

DS:

SS:

ES:

CS:

01000H

0B2000H

0CF000H

0FF000H

10FFFH

0C1FFFH

0DEFFFH

0FFFFFH

0HSegment
Registers

Memory Segments

Segments are < or = 64K and can overlap.

8086 Memory Terminology

I-15
Note that the Code segment is < 64K since 0FFFFFH is the highest address.

The Code Segment

Memory
Segment Register

Offset

Physical or
Absolute Address

0

+

CS:

IP

0400H

0056H

4000H

4056H

0400

0056

04056H

The offset is the distance in bytes from the start of the segment.
The offset is given by the IP for the Code Segment.
Instructions are always fetched with using the CS register.

I-16

CS:IP = 400:56
Logical Address

0H

0FFFFFH

The physical address is also called the absolute address.

The Stack Segment

Memory
Segment Register

Offset

Physical Address

+

SS:

SP

0A00

0100

0A000H

0A100H

0A00 0

0100

0A100H

The stack is always referenced with respect to the stack segment register.
The stack grows toward decreasing memory locations.
The SP points to the last or top item on the stack.

PUSH - pre-decrement the SP
POP - post-increment the SP

The offset is given by the SP register.

I-17

SS:SP

0H

0FFFFFH

The Data Segment

Memory
Segment Register

Offset

Physical Address

+

DS:

EA

05C0

0050

05C00H

05C50H

05C0 0

0050

05C50H

Data is usually fetched with respect to the DS register.
The effective address (EA) is the offset.
The EA depends on the addressing mode.

I-18

DS:EA

0H

0FFFFFH

8086 memory Organization

Even addresses are on the low half
of the data bus (D0-D7).

Odd addresses are on the upper
half of the data bus (D8-D15).

A0 = 0 when data is on the low
half of the data bus.

BHE’ = 0 when data is on the upper
half of the data bus.

MAX and MIN Modes

• In minmode, the 9 signals correspond to
control signals that are needed to operate
memory and I/O devices connected to the
8088.

• In maxmode, the 9 signals change their
functions; the 8088 now requires the use of
the 8288 bus controller to generate
memory and I/O read/write signals.

Why MIN and MAX modes?

• Minmode signals can be directly decoded
by memory and I/O circuits, resulting in a
system with minimal hardware
requirements.

• Maxmode systems are more complicated,
but obtain the new signals that allow for bus
grants (e.g. DMA), and the use of an 8087
coprocessor.

The 9 pins (min)

• **ALE: address latch enable (AD0 – AD7)
• **DEN: data enable (connect/disc. buffer)
• **WR: write (writing indication)
• *HOLD
• *HDLA: hold acknowledge
• *INTA: interrupt acknowledge
• IO/M: memory access or I/O access
• DT/R: data transmit / receive (direction)
• SSO: status

The 9 pins (max)

• S0, S1, S2: status
• *RQ/GT0, RQ/GT1: request/grant
• *LOCK: locking the control of the sys. bus
• *QS1, QS0: queue status (tracking of

internal instruction queue).
• HIGH

Instruction Types

Data transfer instructions

 String instructions

Arithmetic instructions

 Bit manipulation instructions

 Loop and jump instructions

 Subroutine and interrupt instructions

 Processor control instructions

Addressing Modes

 Immediate addressing MOV AL, 12H
 Register addressing MOV AL, BL
 Direct addressing MOV [500H], AL
 Register Indirect addressing MOV DL, [SI]
 Based addressing MOV AX, [BX+4]
 Indexed addressing MOV [DI-8], BL
 Based indexed addressing MOV [BP+SI], AH
 Based indexed with displacement addressing MOV CL, [BX+DI+2]

Exceptions

 String addressing

 Port addressing (e.g. IN AL, 79H)

Addressing Modes Examples

Data Transfer Instructions
 MOV Destination, Source

— Move data from source to destination; e.g. MOV [DI+100H], AH

 For 80x86 family, directly moving data from one memory location to
another memory location is not allowed

MOV [SI], [5000H]

When the size of data is not clear, assembler directives are used

MOV [SI], 0

 BYTE PTR MOV BYTE PTR [SI], 12H
 WORD PTR MOV WORD PTR [SI], 12H
 DWORD PTR MOV DWORD PTR [SI], 12H

— It does not modify flags

You can not move an immediate data to segment register by MOV

MOV DS, 1234H

Instructions for Stack Operations
 What is a Stack ?

— A stack is a collection of memory locations. It always follows the rule of
last-in-firs-out

— Generally, SS and SP are used to trace where is the latest date written into stack

 PUSH Source
— Push data (word) onto stack
— It does not modify flags
— For Example: PUSH AX (assume ax=1234H, SS=1000H, SP=2000H

before PUSH AX)

1000:2000

1000:1FFF

1000:1FFE

1000:1FFD

??

??

??

??

1000:2000

1000:1FFF

1000:1FFE

1000:1FFD

??

12

34

??

SS:SP

SS:SP

Before PUSH AX, SP = 2000H After PUSH AX, SP = 1FFEH AX

12 34

 Decrementing the stack pointer during a push is a standard way of implementing stacks in hardware

Instructions for Stack Operations
 PUSHF

— Push the values of the flag register onto stack
— It does not modify flags

 POP Destination

1000:2000

1000:1FFF

1000:1FFE

1000:1FFD

EC

12

34

??

1000:2000

1000:1FFF

1000:1FFE

1000:1FFD

EC

12

34

??

SP

SP

Before POP, SP = 1FFEH After POP AX, SP = 2000H AX

12 34

— Pop word off stack
— It does not modify flags
— For example: POP AX

 POPF
— Pop word from the stack to the flag register
— It modifies all flags

Data Transfer Instructions
 SAHF

 LAHF

— Store data in AH to the low 8 bits of the flag register
— It modifies flags: AF, CF, PF, SF, ZF

— Copies bits 0-7 of the flags register into AH
— It does not modify flags

 LDS Destination Source

— Load 4-byte data (pointer) in memory to two 16-bit registers
— Source operand gives the memory location
— The first two bytes are copied to the register specified in the destination operand;

the second two bytes are copied to register DS
— It does not modify flags

 LES Destination Source
— It is identical to LDS except that the second two bytes are copied to ES
— It does not modify flags

Data Transfer Instructions
 LEA Destination Source

— Transfers the offset address of source (must be a memory location) to the
destination register

— It does not modify flags

 XCHG Destination Source

— It exchanges the content of destination and source
— One operand must be a microprocessor register, the other one can be a register

or a memory location
— It does not modify flags

 XLAT

— Replace the data in AL with a data in a user defined look-up table
— BX stores the beginning address of the table
— At the beginning of the execution, the number in AL is used as the

index of the look-up table
— It does not modify flags

String Instructions
 String is a collection of bytes, words, or long-words that can be up to 64KB

in length

 String instructions can have at most two operands. One is referred to as source
string and the other one is called destination string
— Source string must locate in Data Segment and SI register points to the current

element of the source string
— Destination string must locate in Extra Segment and DI register points to the current

element of the destination string

53
48
4F
50
50
45

S
H

O
P
P

52
E
R

0510:0000
0510:0001
0510:0002

0510:0003
0510:0004
0510:0005
0510:0006

53
48
4F
50
50
49

S
H

O
P
P

4E
I
N

02A8:2000
02A8:2001
02A8:2002

02A8:2003
02A8:2004
02A8:2005
02A8:2006

DS : SI ES : DI

Source String Destination String

Repeat Prefix Instructions
 REP String Instruction

— The prefix instruction makes the microprocessor repeatedly execute the string instruction
until CX decrements to 0 (During the execution, CX is decreased by one when the string
instruction is executed one time).

— For Example:

MOV CX, 5
REP MOVSB

By the above two instructions, the microprocessor will execute MOVSB 5 times.

— Execution flow of REP MOVSB::

While (CX!=0)
{

CX = CX –1;
MOVSB;

}

Check_CX: If CX!=0 Then
CX = CX –1;
MOVSB;
goto Check_CX;

end if

OR

String Instructions
 MOVSB (MOVSW)

— Move byte (word) at memory location DS:SI to memory location ES:DI and
update SI and DI according to DF and the width of the data being transferred

— It does not modify flags
—Example:

53
48
4F
50
50
45

S
H

O
P
P

52
E
R

0510:0000
0510:0001
0510:0002

0510:0003
0510:0004
0510:0005
0510:0006

0300:0100
DS : SI ES : DI

Source String Destination String

MOV AX, 0510H
MOV DS, AX
MOV SI, 0
MOV AX, 0300H
MOV ES, AX
MOV DI, 100H
CLD
MOV CX, 5
REP MOVSB

String Instructions
 CMPSB (CMPSW)

— Compare bytes (words) at memory locations DS:SI and ES:DI;
update SI and DI according to DF and the width of the data being compared

— It modifies flags
—Example:

Assume: ES = 02A8H
DI = 2000H
DS = 0510H
SI = 0000H

CLD
MOV CX, 9
REPZ CMPSB

What’s the values of CX after
The execution?

53
48
4F
50
50
45

S
H

O
P
P

52
E
R

0510:0000
0510:0001
0510:0002

0510:0003
0510:0004
0510:0005
0510:0006

02A8:2000

DS : SI
ES : DI

Source String Destination String

02A8:2001
02A8:2002

02A8:2003
02A8:2004
02A8:2005
02A8:2006

53
48
4F
50
50
49

S
H

O
P
P

4E
I
N

String Instructions
 SCASB (SCASW)

— Move byte (word) in AL (AX) and at memory location ES:DI;
update DI according to DF and the width of the data being compared

— It modifies flags

 LODSB (LODSW)

— Load byte (word) at memory location DS:SI to AL (AX);
update SI according to DF and the width of the data being transferred

— It does not modify flags

 STOSB (STOSW)

— Store byte (word) at in AL (AX) to memory location ES:DI;
update DI according to DF and the width of the data being transferred

— It does not modify flags

Repeat Prefix Instructions
 REPZ String Instruction

— Repeat the execution of the string instruction until CX=0 or zero flag is clear

 REPNZ String Instruction
— Repeat the execution of the string instruction until CX=0 or zero flag is set

 REPE String Instruction
— Repeat the execution of the string instruction until CX=0 or zero flag is clear

 REPNE String Instruction
— Repeat the execution of the string instruction until CX=0 or zero flag is set

Loops and Conditional Jumps
All loops and conditional jumps are SHORT jumps, i.e., the target must
be in the range of an 8-bit signed displacement (-128 to +127).

The displacement is the number that, when added to the IP, changes the
IP to point at the jump target. Remember the IP is pointing at the next
instruction when this occurs.

The loop instructions perform several operations at one time but do not
change any flags.

LOOP decrements CX and jumps if CX is not zero.
LOOPNZ or LOOPNE -- loop while not zero or not equal: decrements CX
and jumps if CX is not zero or the zero flag ZF = 0.
LOOPZ or LOOPE -- loop while zero or equal: decrements CX and jumps
if CX is zero or the zero flag ZF = 1.

The conditional jump instructions often follow a compare CMP or TEST
instruction. These two instructions only affect the FLAG register and not
the destination. CMP does a SUBtract (dest - src) and TEST does an AND.

For example, if a CMP is followed by a JG (jump greater than), then the
jump is taken if the destination is greater than the source.
Test is used to see if a bit or bits are set in a word or byte such as when
determining the status of a peripheral device.

I-39

Conditional Jumps
Name/Alt Meaning Flag setting
JE/JZ Jump equal/zero ZF = 1
JNE/JNZ Jump not equal/zero ZF = 0
JL/JNGE Jump less than/not greater than or = (SF xor OF) = 1
JNL/JGE Jump not less than/greater than or = (SF xor OF) = 0
JG/JNLE Jump greater than/not less than or = ((SF xor OF) or ZF) = 0
JNG/JLE Jump not greater than/ less than or = ((SF xor OF) or ZF) = 1
JB/JNAE Jump below/not above or equal CF = 1
JNB/JAE Jump not below/above or equal CF = 0
JA/JNBE Jump above/not below or equal (CF or ZF) = 0
JNA/JBE Jump not above/ below or equal (CF or ZF) = 1

JS Jump on sign (jump negative) SF = 1
JNS Jump on not sign (jump positive) SF = 0
JO Jump on overflow OF = 1
JNO Jump on no overflow OF = 0
JP/JPE Jump parity/parity even PF = 1
JNP/JPO Jump no parity/parity odd PF = 0

JCXZ Jump on CX = 0 ---

I-40

8254 Internal Architecture

8
Counter

=0

Counter
=1

Counter
=2

Control
Word

Register

Read/
Write
Logic

Data
Bus

Buffer

CLK 0
GATE 0
OUT 0

CLK 1
GATE 1
OUT 1

CLK 2
GATE 2
OUT 2

RD
WR

A0
A1

CS

D7-D0

THE CONTROL WORD REGISTER AND COUNTERS
ARE SELECTED

ACCORDING TO THE SIGNALS ON LINE
A0 and A1 AS SHOWN BELOW

A1 A0 Selection

0 0 Counter 0
0 1 Counter 1
1 0 Counter 2
1 1 Control Register

8254 Control Word Format
SC1 SC0 RW1 RW0 M2 M1 M0 BCD

SC1 SC0

0 0 Select counter 0

0 1 Select counter 1

1 0 Select Counter 2

1 1 Read-Back command

RW1 RW0

0 0 Counter Latch Command

0 1 Read/Write least significant byte only

1 0 Read/Write most significant byte only

1 1 Read/Write least significant byte first,
Then the most significant byte.

0 Binary Counter 16-bits

1 Binary Coded Decimal (BCD) Counter

BCD:

M2 M1 M0

0 0 0 Mode 0

0 0 1 Mode 1

X 1 0 Mode 2

X 1 1 Mode 3

1 0 0 Mode 4

1 0 1 Mode 5

MODE 0 : Interrupt on terminal count

Clk

3 2 1 0WR

Output
Interrupt

MODE 1 : HARDWARE-RETRIGGERABLE
ONE-SHOT

Clk

WR 3 2 1 0

Output

MODE 2 : RATE GENERATOR CLOCK

3 2 1 0

Clk

WR 3

OUTPUT

MODE 3 : Square Wave Generator

Clk

4 2 4 2 4 2 4 2OUTPUT(n=4)

5 4 2 5 2 5 4 2OUTPUT(n=5)

MODE 4 : SOFTWARE TRIGGERED STROBE

In this mode OUT is initially high; it goes low for one
clock period at the end of the count. The count must be

RELOADED -(UNLIKE MODE 2)
for subsequent outputs.

MODE 5 : HARWARE TRIGGERED STROBE

• This mode is similar to MODE 4 except that
it is triggered by the rising pulse at the gate.
Initially, the OUT is low and when the
GATE pulse is triggered from low to high ,
the count begins. At the end of the count the
OUT goes low for one clock period.

READ BACK COMMAND FORMAT:

• THIS FEATURE AVAILABLE ONLY IN
8254 and not in 8253.

1 1 COU
NT

STAT
US

CNT2 CNT1 CNT0 0

Data Transfer
Schemes

Why do we need data transfer
schemes ?

• Availability of wide variety of I/O devices
because of variations in manufacturing
technologies e.g. electromechanical, electrical,
mechanical, electronic etc.

• Enormous variation in the range of speed.

• Wide variation in the format of data.
•

Classification of Data Transfer
Schemes

Data transfer schemes

Programmed
Data transfer

DMA
Data transfer

Synchronous
mode

Asynchronous
mode

Interrupt
Driven mode

Block
DMA mode

Cycle stealing
DMA mode

Programmed Data Transfer
Scheme

• The data transfer takes place under the control
of a program residing in the main memory.

• These programs are executed by the CPU
when an I/O device is ready to transfer data.

• To transfer one byte of data, it needs to
execute several instructions.

• This scheme is very slow and thus suitable
when small amount of data is to be transferred.

Synchronous Mode of Data
Transfer

• Its used for I/O devices whose timing
characteristics are fast enough to be
compatible in speed with the communicating
MPU.

• In this case the status of the I/O device is not
checked before data transfer.

• The data transfer is executed using IN and
OUT instructions.

• Memory compatible with MPU are available.
Hence this method is invariably used with
compatible memory devices.

• The I/O devices compatible in speed with
MPU are usually not available. Hence this
technique is rarely used in practice

Asynchronous Data Transfer
• This method of data transfer is also called

Handshaking mode.

• This scheme is used when speed of I/O device
does not match with that of MPU and the
timing characteristics are not predictable.

• The MPU fist sends a request to the device and
then keeps on checking its status.

• The data transfer instructions are executed
only when the I/O device is ready to accept or
supply data.

• Each data transfer is preceded by a requesting
signal sent by MPU and READY signal from
the device.

Disadvantages

• A lot of MPU time is wasted during looping to
check the device status which may be
prohibitive in many situations.

• Some simple devices may not have status
signals. In such a case MPU goes on checking
whether data is available on the port or not.

Interrupt Driven Data Transfer
• In this scheme the MPU initiates an I/O device

to get ready and then it executes its main
program instead of remaining in the loop to
check the status of the device.

• When the device gets ready, it sends a signal
to the MPU through a special input line called
an interrupt line.

• The MPU answers the interrupt signal after
executing the current instruction.

• The MPU saves the contents of the PC on the
stack first and then takes up a subroutine called
ISS (Interrupt Service Subroutine).

• After returning from ISS the MPU again loads
the PC with the address that is just loaded in
the stack and thus returns to the main program.

• It is efficient because precious time of MPU is
not wasted while the I/O device gets ready.

• In this scheme the data transfer may also be
initiated by the I/O device.

Multiple Interrupts

• The MPU has one interrupt level and several
I/O devices to be connected to it which are
attended in the order of priority.

• The MPU has several interrupt levels and one
I/O device is to be connected to each interrupt
level.

• The MPU has several interrupt levels and
more than one I/O devices are to be
connected to each interrupt level.

• The MPU executes multiple interrupts by
using a device polling technique to know
which device connected to which
interrupt level has interrupted

Interrupts of 8085
On the basis of priority the interrupt signals are
as follows

• TRAP
• RST 7.5
• RST6.5
• RST5.5
• INTR

These interrupts are implemented by the
hardware

Interrupt Instructions
• EI (Enable Interrupt) This instruction sets the

interrupt enable Flip Flop to activate the interrupts.

• DI (Disable Interrupt) This instruction resets the
interrupt enable Flip Flop and deactivates all the
interrupts except the non-maskable interrupt i.e.
TRAP

• RESET This also resets the interrupt enable Flip
Flop.

• SIM (Set Interrupt Mask) This enables\disables
interrupts according to the bit pattern in
accumulator obtained through masking.

• RIM (Read Interrupt Mask) This
instruction helps the programmer to know the
current status of pending interrupt.

Call Locations and Hex – codes
for RST n

RST n Hex - code Call location
RST 0 C7 0000
RST 1 CF 0008
RST 2 D7 0010
RST 3 DF 0018
RST 4 E7 0020
RST 5 EF 0028
RST 6 F7 0030
RST 7 FF 0038

These instructions are implemented by the software

DMA Data Transfer scheme
• Data transfer from I/O device to memory or

vice-versa is controlled by a DMA controller.
• This scheme is employed when large amount

of data is to be transferred.
• The DMA requests the control of buses

through the HOLD signal and the MPU
acknowledges the request through HLDA
signal and releases the control of buses to
DMA.

• It’s a faster scheme and hence used for high
speed printers.

In this scheme the I/O device withdraws
the DMA request only after all the data
bytes have been transferred.

Block mode of data transfer

Cycle stealing technique
In this scheme the bytes are divided into
several parts and after transferring every part
the control of buses is given back to MPU and
later stolen back when MPU does not need it.

	1. Intro
	Slide Number 1
	MICROPROCESSOR 8085
	Basic Concepts of Microprocessors
	What is a Microprocessor?
	What about micro?
	Was there ever a “mini”-processor?
	Definition of the Microprocessor
	Definition (Contd.)
	Definition (Contd.)
	Definition (Contd.)
	Definition (Contd.)
	Definition (Contd.)
	Definition (Contd.)
	Definition (Contd.)
	Definition (Contd.)
	A Microprocessor-based system
	Inside The Microprocessor
	Organization of a microprocessor-based system
	Memory
	Memory Map and Addresses
	Memory
	The three cycle instruction execution model
	Machine Language
	The 8085 Machine Language
	Assembly Language
	Assembly Language
	Assembly Language
	“Assembling” The Program

	2a. architecture
	8085 Microprocessor�Architecture
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Architecture of Intel 8085 Microprocessor
	Intel 8085 Microprocessor
	The ALU
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	The Internal Architecture
	The Internal Architecture
	Non Programmable Registers
	The Address and Data Busses
	Demultiplexing AD7-AD0
	Demultiplexing AD7-AD0
	Demultiplexing the Bus AD7 – AD0
	Slide Number 19
	The Overall Picture

	3.Instruction
	Introduction to 8085 Instructions
	The 8085 Instructions
	Instruction and Data Formats
	Data Transfer Operations
	The LXI instruction
	The Memory “Register”
	Using the Other Register Pairs
	Indirect Addressing Mode
	Arithmetic Operations
	Arithmetic Operations Related to Memory
	Arithmetic Operations
	Manipulating Addresses
	Logic Operations
	Logic Operations
	Additional Logic Operations
	RLC vs. RLA
	Logical Operations
	Branch Operations
	Unconditional Branch
	Conditional Branch
	Machine Control
	Operand Types
	Instruction Size
	Instruction with Immediate Date
	Instruction with a Memory Address
	Addressing Modes
	Data Formats
	Data Formats
	Slide Number 29

	4.Counter And delay
	Counters & Time Delays
	Counters
	Counters
	Slide Number 4
	Using a Register Pair as a Loop Counter
	Using a Register Pair as a Loop Counter
	Delays
	Delays
	Delay loops
	Delay Loops (Contd.)
	Delay Loops (Contd.)
	Using a Register Pair as a Loop Counter
	Using a Register Pair as a Loop Counter
	Using a Register Pair as a Loop Counter
	Nested Loops
	Nested Loops for Delay
	Delay Calculation of Nested Loops
	Delay Calculation of Nested Loops
	Increasing the delay
	Slide Number 20

	5.Timing Diagram
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Timing Diagram
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16

	6.stack and subroutines
	Chapter 9�Stack and Subroutines
	The Stack
	The Stack
	Saving Information on the Stack
	The PUSH Instruction
	The POP Instruction
	Operation of the Stack
	LIFO
	The PSW Register Pair
	Subroutines
	Subroutines
	The CALL Instruction
	The RTE Instruction
	Cautions
	Passing Data to a Subroutine
	Call by Reference and Call by Value
	Cautions with PUSH and POP
	Conditional CALL and RTE Instructions
	A Proper Subroutine
	Slide Number 20

	7. memory interfacing
	The Design and Operation of Memory
	Accessing Information in Memory
	Tri-State Buffers
	The Tri-State Buffer
	The Basic Memory Element
	The Basic Memory Element
	The Basic Memory Element
	A Memory “Register”
	A group of memory registers
	Externally Initiated Operations
	A group of Memory Registers
	The Design of a Memory Chip
	The Enable Inputs
	The Design of a Memory Chip
	The Design of a Memory Chip
	The steps of writing into Memory
	Dimensions of Memory
	The 8085 and Memory
	Chip Select
	Chip Selection Example
	Chip Selection Example
	Memory Map and Addresses
	Address Range of a Memory Chip
	Address Range of a Memory Chip
	The 8085 and Address Ranges
	The 8085 and Address Ranges
	Chip Select Example
	Chip Select Example
	Chip Select Example
	High-Order vs. Low-Order Address Lines
	Data Lines
	Data Lines

	8.Interrupts
	� Interrupts
	Interrupts
	Interrupts
	Responding to Interrupts
	The 8085 Interrupts
	The 8085 Interrupts
	The 8085 Interrupts
	Interrupt Vectors and the Vector Table
	The 8085 Non-Vectored Interrupt Process
	The 8085 Non-Vectored Interrupt Process
	The 8085 Non-Vectored Interrupt Process
	Restart Sequence
	Restart Sequence
	Hardware Generation of RST Opcode
	Hardware Generation of RST Opcode
	Hardware Generation of RST Opcode
	Issues in Implementing INTR Interrupts
	Issues in Implementing INTR Interrupts
	Issues in Implementing INTR Interrupts
	Multiple Interrupts & Priorities
	The Priority Encoder
	Multiple Interrupts & Priorities
	Multiple Interrupts and Priority
	The 8085 Maskable/Vectored Interrupts
	Masking RST 5.5, RST 6.5 and RST 7.5
	Maskable Interrupts
	The 8085 Maskable/Vectored Interrupt Process
	The 8085 Maskable/Vectored Interrupt Process
	Manipulating the Masks
	How SIM Interprets the Accumulator
	SIM and the Interrupt Mask
	SIM and the Interrupt Mask
	SIM and the Interrupt Mask
	Using the SIM Instruction to Modify the Interrupt Masks
	Triggering Levels
	Determining the Current Mask Settings
	How RIM sets the Accumulator’s different bits
	The RIM Instruction and the Masks
	The RIM Instruction and the Masks
	Pending Interrupts
	Using RIM and SIM to set Individual Masks
	Using RIM and SIM to set Individual Masks
	TRAP
	Internal Interrupt Priority
	The 8085 Interrupts
	Additional Concepts and Processes
	The Need for the 8259A
	Interfacing the 8259A to the 8085
	Operating of the 8259A
	Operating of the 8259A
	Direct Memory Access

	9.Serial Tx
	�Serial I/O and Data Communication
	Basic Concepts in Serial I/O
	Basic Concepts in Serial I/O
	Synchronous Data Transmission
	Asynchronous Data Transmission
	Asynchronous Data Transmission
	Simplex and Duplex Transmission
	Rate of Transmission
	Length of Each Bit
	Transmitting a Character
	Error Checking
	Parity Checking
	Checksum
	RS 232
	Software-Controlled Serial Transmission
	Serial Transmission
	Flowchart of Serial Transmission
	Software-Controlled Serial Reception
	Serial Reception
	Flowchart of Serial Reception
	The 8085 Serial I/O Lines
	SIM and Serial Output
	RIM and Serial Input
	Ports?
	Example

	10.8255
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Control Word Format for I/O Mode
	Slide Number 5
	�Mode 0 (Simple Input or Output)��PROBLEM 1)
	BSR (Bit Set/Reset) Mode
	Problem 2)
	Mode 1: Input or Output with Handshake
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Problem 3)�

	8086
	Slide Number 1
	Pinouts
	8086 Pins��
	8086 Pins
	8086 Pins
	8086 Features
	8086 Architecture
	8086 Block Diagram
	8086 Architecture
	Slide Number 10
	Slide Number 11
	Slide Number 12
	8086 Programmer’s Model
	Slide Number 14
	Slide Number 15
	8086 Memory Terminology
	The Code Segment
	The Stack Segment
	The Data Segment
	Slide Number 20
	Even addresses are on the low half �of the data bus (D0-D7).��Odd addresses are on the upper�half of the data bus (D8-D15).��A0 = 0 when data is on the low�half of the data bus.��BHE’ = 0 when data is on the upper�half of the data bus.�
	MAX and MIN Modes
	Why MIN and MAX modes?
	The 9 pins (min)
	The 9 pins (max)
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Loops and Conditional Jumps
	Conditional Jumps

	8253_8254
	8254 Internal Architecture
	Slide Number 2
	8254 Control Word Format
	Slide Number 4
	Slide Number 5
	Slide Number 6
	MODE 1 : HARDWARE-RETRIGGERABLE �ONE-SHOT
	MODE 2 : RATE GENERATOR CLOCK
	MODE 3 : Square Wave Generator
	MODE 4 : SOFTWARE TRIGGERED STROBE
	MODE 5 : HARWARE TRIGGERED STROBE
	READ BACK COMMAND FORMAT:

	Data Transfer schemes
	Data Transfer �Schemes�
	Why do we need data transfer schemes ?
	Classification of Data Transfer Schemes
	Programmed Data Transfer Scheme
	Synchronous Mode of Data Transfer
	Slide Number 6
	Asynchronous Data Transfer
	Slide Number 8
	Disadvantages
	Interrupt Driven Data Transfer
	Slide Number 11
	Multiple Interrupts
	Slide Number 13
	Interrupts of 8085
	Interrupt Instructions
	Slide Number 16
	Call Locations and Hex – codes for RST n
	DMA Data Transfer scheme
	Slide Number 19

