# Question 1(a) [3 marks]

List different microwave bands with their frequency range.

## Answer:

**Table: Microwave Frequency Bands** 

| Band    | Frequency Range | Wavelength   |
|---------|-----------------|--------------|
| L Band  | 1-2 GHz         | 30-15 cm     |
| S Band  | 2-4 GHz         | 15-7.5 cm    |
| C Band  | 4-8 GHz         | 7.5-3.75 cm  |
| X Band  | 8-12 GHz        | 3.75-2.5 cm  |
| Ku Band | 12-18 GHz       | 2.5-1.67 cm  |
| K Band  | 18-27 GHz       | 1.67-1.11 cm |
| Ka Band | 27-40 GHz       | 1.11-0.75 cm |

Mnemonic: "Large Ships Can eXamine Kindly Using Knowledge Always"

# Question 1(b) [4 marks]

Draw the general equivalent circuit of the transmission line. Write the equation for characteristic impedance for a lossless line.

Answer:

Transmission Line Equivalent Circuit:



# **Circuit Elements:**

- R: Series resistance per unit length
- L: Series inductance per unit length
- **C**: Shunt capacitance per unit length

• **G**: Shunt conductance per unit length

For Lossless Line (R = 0, G = 0):

**Characteristic Impedance:**  $Z_0 = \sqrt{(L/C)}$ 

**Key Points:** 

- Lossless condition: No power loss during transmission
- Impedance matching: Z<sub>0</sub> determines reflection behavior

Mnemonic: "Lossless Lines Love Constant Impedance"

# Question 1(c) [7 marks]

Explain the impedance matching process using a single stub.

#### Answer:

### Single Stub Matching Process:



### **Matching Steps:**

| Step | Process                   | Purpose                    |
|------|---------------------------|----------------------------|
| 1    | Calculate load admittance | Find $Y_L = 1/Z_L$         |
| 2    | Move toward generator     | Find point where $G = G_0$ |
| 3    | Add stub susceptance      | Cancel reactive part       |
| 4    | Achieve matching          | $Y_{total} = Y_{0}$        |

#### **Design Equations:**

- **Distance to stub:**  $d = (\lambda/2\pi) \times \tan^{-1}(\sqrt{(R_L/R_0)})$
- **Stub length:**  $| = (\lambda/2\pi) \times \tan^{-1}(B_{stub}/Y_0)$

# **Applications:**

- Antenna matching
- Amplifier input/output

• Filter design

Mnemonic: "Single Stubs Stop Standing Waves Successfully"

# Question 1(c) OR [7 marks]

Compare rectangular and circular waveguides.

Answer:

#### **Comparison Table:**

| Parameter        | Rectangular Waveguide       | Circular Waveguide                          |
|------------------|-----------------------------|---------------------------------------------|
| Shape            | Rectangular cross-section   | Circular cross-section                      |
| Dominant Mode    | TE <sub>10</sub>            | TE <sub>11</sub>                            |
| Cutoff Frequency | $fc = c/(2a)$ for $TE_{10}$ | fc = $1.841c/(2\pi a)$ for TE <sub>11</sub> |
| Power Handling   | Lower                       | Higher                                      |
| Manufacturing    | Easy                        | Difficult                                   |
| Mode Separation  | Good                        | Poor                                        |
| Applications     | Radar, microwave ovens      | Satellite communication                     |

## **Key Advantages:**

- Rectangular: Better mode control, easier fabrication
- Circular: Higher power capacity, rotating polarization

Mnemonic: "Rectangular is Regular, Circular Carries Current"

# Question 2(a) [3 marks]

### Define group velocity and phase velocity in relation to them.

#### Answer:

**Velocity Definitions:** 

| Velocity Type  | Formula                                       | Physical Meaning        |
|----------------|-----------------------------------------------|-------------------------|
| Phase Velocity | $v_p = \omega/\beta = c/\sqrt{(1-(fc/f)^2)}$  | Speed of constant phase |
| Group Velocity | $v_m = d\omega/d\beta = c\sqrt{(1-(fc/f)^2)}$ | Speed of signal energy  |

**Relationship:**  $V_p \times V_m = C^2$ 

**Key Points:** 

- **Phase velocity**: Always > c (speed of light)
- Group velocity: Always < c
- Signal travels: At group velocity

Mnemonic: "Phase is Fast, Group Carries Message"

# Question 2(b) [4 marks]

Describe the principles and workings of the Directional coupler.

Answer:

**Directional Coupler Principle:** 



**Working Principle:** 

- Electromagnetic coupling between two transmission lines
- Power division based on coupling factor
- Directional sensitivity to wave direction

Key Parameters:

- **Coupling Factor**:  $C = 10 \log(P_1/P_3) dB$
- **Directivity**:  $D = 10 \log(P_3/P_4) dB$
- **Insertion Loss**:  $IL = 10 \log(P_1/P_2) dB$

Mnemonic: "Directional Couplers Divide Power Precisely"

# Question 2(c) [7 marks]

## Explain Magic TEE with construction, operation and application.

## Answer:

# Magic TEE Construction:

E-Arm (Port 3) Port 1----Port 2 H-Arm (Port 4)

## **Operating Principles:**

| Port           | Function        | Field Pattern           |
|----------------|-----------------|-------------------------|
| Port 1 & 2     | Collinear ports | Symmetric               |
| Port 3 (E-Arm) | E-plane port    | Electric field coupling |
| Port 4 (H-Arm) | H-plane port    | Magnetic field coupling |

#### **Scattering Properties:**

- **Isolation**: Port  $3 \leftrightarrow$  Port 4
- Power division: Equal split when matched
- Phase relationships: 0° and 180°

## **Applications:**

- Mixers and modulators
- Power combiners
- Impedance bridges
- Antenna feeds

Mnemonic: "Magic TEE Creates Perfect Isolation"

# Question 2(a) OR [3 marks]

Draw TE<sub>10</sub>, TE<sub>20</sub> modes for rectangular waveguide.

### Answer:

TE<sub>10</sub> Mode (Dominant Mode):

| a           |   |  |  |
|-------------|---|--|--|
| ↑           | b |  |  |
| E ↑ E       |   |  |  |
| 1 1         |   |  |  |
|             | 1 |  |  |
| Field Lines |   |  |  |

# TE<sub>20</sub> Mode:



# Mode Characteristics:

- **TE<sub>10</sub>**: One half-wave variation in x-direction
- **TE**<sub>20</sub>: Two half-wave variations in x-direction
- Field patterns: Electric field perpendicular to propagation

Mnemonic: "TE modes have Electric Transverse"

# Question 2(b) OR [4 marks]

# Describe the Hybrid Ring with a necessary sketch.

Answer:

# **Hybrid Ring Structure:**



## **Operating Principle:**

- **Ring circumference**:  $3\lambda/2$
- **Port spacing**:  $\lambda/4$  apart
- Power division: Equal split between adjacent ports

## **Key Features:**

- **Isolation**: Between opposite ports
- Phase relationships: 0° and 180°
- Impedance: Matched at all ports

Mnemonic: "Hybrid Rings Handle Half-wavelengths"

# Question 2(c) OR [7 marks]

# Explain the Isolator with principles, construction and operation.

Answer:

## **Isolator Principle:**



## **Construction Elements:**

| Component      | Function                                  | Material         |
|----------------|-------------------------------------------|------------------|
| Ferrite        | Non-reciprocal medium Yttrium Iron Garnet |                  |
| Magnet         | Bias field                                | Permanent magnet |
| Resistive Load | Absorb reverse power                      | Carbon/ceramic   |

### **Operating Principle:**

- Faraday rotation in magnetized ferrite
- Non-reciprocal phase shift
- Forward transmission: Low loss

• **Reverse transmission**: High attenuation

### **Applications:**

- Amplifier protection
- Oscillator isolation
- Antenna systems

### **Specifications:**

- Isolation: 20-30 dB typical
- Insertion Loss: < 0.5 dB

Mnemonic: "Isolators Ignore Reverse Reflections"

# Question 3(a) [3 marks]

## Draw a Traveling wave tube amplifier.

### Answer:

## **TWT Amplifier Structure:**

| Electron Gun | Helix Structu | re Collector |
|--------------|---------------|--------------|
|              |               |              |
| v            | v             | v            |
| [   ]> ~     | ~~~~~~        | >            |
| Elec         | tron RF Input | RF Output    |
| Beam         | Coupler       | Coupler      |
|              |               |              |
|              | Attenuator    | :            |

### **Key Components:**

- Electron gun: Produces electron beam
- Helix: Slow-wave structure
- Couplers: Input/output RF connections
- Collector: Collects spent electrons

Mnemonic: "TWT Transfers Wave Through Helix"

# Question 3(b) [4 marks]

Describes various types of hazards due to microwave radiation.

Answer:

**Microwave Radiation Hazards:** 

| Hazard Type      | Effects               | Safety Limit          |
|------------------|-----------------------|-----------------------|
| HERP (Personnel) | Tissue heating, burns | 10 mW/cm <sup>2</sup> |
| HERO (Ordnance)  | Explosive detonation  | Variable              |
| HERF (Fuel)      | Fuel ignition         | 5 mW/cm <sup>2</sup>  |

## **Biological Effects:**

- Thermal effects: Tissue heating above 41°C
- Non-thermal effects: Cellular damage
- Sensitive organs: Eyes, reproductive organs

### **Protection Measures:**

- Shielding: Conductive enclosures
- **Distance**: Power density  $\propto 1/r^2$
- Time limits: Exposure duration control
- Warning systems: Radiation detectors

Mnemonic: "Heat Energy Requires Proper Protection"

# Question 3(c) [7 marks]

Explain two cavity klystrons construction and operation with an Applegate diagram.

### Answer:

# **Two-Cavity Klystron Structure:**



Applegate Diagram:

```
Velocity
   ^
   Bunched
                Bunched
             \setminus
                 /
      /
                       \
              \-/
V 0 +--+
                        \__
      \
               / 
                        /
       Bunched
                 Bunched
     ----> Distance
  Input Drift
                  Output
  Cavity Space
                  Cavity
```

### **Operation Principle:**

| Stage               | Process                             | Result           |
|---------------------|-------------------------------------|------------------|
| Velocity Modulation | RF input varies electron speed      | Speed variation  |
| Bunching            | Fast electrons catch slow ones      | Current bunches  |
| Energy Extraction   | Bunches interact with output cavity | RF amplification |

#### **Key Parameters:**

- Transit time: Critical for bunching
- Drift space length: Optimized for maximum bunching
- Cavity tuning: Resonant frequency matching

#### **Applications:**

- Radar transmitters
- Satellite communications
- Linear accelerators

Mnemonic: "Klystrons Create Bunches Through Velocity Variation"

# Question 3(a) OR [3 marks]

Draw the block diagram of the attenuation measurement method for microwave frequency.

#### Answer:

#### **Attenuation Measurement Setup:**



**Measurement Process:** 

- Reference measurement: Without DUT
- Insertion measurement: With DUT
- Attenuation calculation: A = P<sub>1</sub> P<sub>2</sub> (dB)

Mnemonic: "Attenuation Appears After Accurate Assessment"

# Question 3(b) OR [4 marks]

### Describe the limitation of vacuum tubes at microwave range.

Answer:

### Vacuum Tube Limitations:

| Limitation                     | Cause                               | Effect                            |
|--------------------------------|-------------------------------------|-----------------------------------|
| Transit Time                   | Finite electron travel time         | Reduced gain at high<br>frequency |
| Lead Inductance                | Connecting wire inductance          | Poor impedance matching           |
| Inter-electrode<br>Capacitance | Plate-cathode capacitance           | Feedback and instability          |
| Skin Effect                    | High-frequency current distribution | Increased resistance              |

#### **Frequency-Related Problems:**

- Input impedance: Becomes reactive
- Gain-bandwidth: Product limitation
- Noise figure: Increases with frequency
- Power handling: Decreases

#### Solutions:

- Special tube designs: Lighthouse tubes
- Cavity resonators: Replace tuned circuits
- Short leads: Minimize inductance

Mnemonic: "Vacuum Tubes Fail Fast at High Frequencies"

# Question 3(c) OR [7 marks]

Explain the Principle, construction, effect of the electric and magnetic field and operation of the magnetron in detail.

# Answer:

# Magnetron Construction:



# **Operating Principle:**

| Field           | Direction Effect                              |                       |
|-----------------|-----------------------------------------------|-----------------------|
| Electric Field  | Radial (cathode to anode) Accelerates electro |                       |
| Magnetic Field  | Axial (perpendicular to page)                 | Deflects electrons    |
| Combined Effect | Cycloid motion                                | Phase synchronization |

### **Operation Stages:**

- 1. Electron Emission: Heated cathode emits electrons
- 2. Cycloid Motion: E×B fields create spiral paths
- 3. Synchronization: Electrons synchronize with RF field
- 4. **Energy Transfer**: Kinetic energy  $\rightarrow$  RF energy
- 5. Output Coupling: RF extracted through waveguide

### **Key Parameters:**

- **Magnetic flux density**:  $B = 2\pi mf/e$
- Hull cutoff voltage: VH = (eB<sup>2</sup>R<sup>2</sup>)/(8m)
- **Frequency**:  $f = eB/(2\pi m) \times (anode modes)$

### **Applications:**

- Microwave ovens (2.45 GHz)
- Radar transmitters
- Industrial heating

Mnemonic: "Magnetrons Make Microwaves Through Magnetic Motion"

# Question 4(a) [3 marks]

Explain the working principle of a varactor diode using a graph.

## Answer:

## Varactor Diode Characteristics:



## **Working Principle:**

- Reverse bias operation: Diode operated in reverse
- Depletion layer: Acts as dielectric
- Variable capacitance: C ~ 1/√VR
- Voltage tuning: Capacitance controlled by voltage

### **Applications:**

- Voltage-controlled oscillators
- Frequency multipliers
- Parametric amplifiers

Mnemonic: "Varactors Vary Capacitance Via Voltage"

# Question 4(b) [4 marks]

Explain the Gunn Effect and negative resistance for Gunn diode.

Answer:

**Gunn Effect Mechanism:** 

| Parameter         | Lower Valley | Upper Valley          |
|-------------------|--------------|-----------------------|
| Energy Level      | Lower        | Higher                |
| Electron Mobility | High (µ1)    | Low (µ <sub>2</sub> ) |
| Effective Mass    | Light        | Heavy                 |

## **Transfer Characteristic:**



### **Negative Resistance:**

- Threshold voltage: Electrons transfer to upper valley
- Current decrease: Due to reduced mobility
- Oscillation: Negative resistance enables
- Domain formation: High-field domains propagate

## **Key Points:**

- Materials: GaAs, InP
- Frequency range: 1-100 GHz
- Efficiency: 5-20%

Mnemonic: "Gunn diodes Generate oscillations through Negative resistance"

# Question 4(c) [7 marks]

Explain frequency measurement method for microwave frequency.

Answer:

**Direct Frequency Measurement:** 



### Indirect Methods:

| Method         | Principle         | Accuracy |
|----------------|-------------------|----------|
| Wavemeter      | Cavity resonance  | ±0.1%    |
| Beat Frequency | Heterodyne mixing | ±0.01%   |
| Standing Wave  | λ/2 measurement   | ±0.5%    |

#### **Cavity Wavemeter Setup:**



#### **Measurement Procedure:**

- 1. Coupling: Weakly couple to signal line
- 2. Tuning: Adjust cavity for resonance
- 3. Indication: Monitor output for minimum/maximum
- 4. Calibration: Read frequency from calibrated scale

### **Beat Frequency Method:**

- Local oscillator: Known reference frequency
- Mixer: Generates beat frequency
- **Measurement**: fbeat = |fsignal fLO|

Mnemonic: "Frequency Found through Careful Cavity Calibration"

# Question 4(a) OR [3 marks]

## Explain the working of a PIN diode as a switch.

## Answer:

## **PIN Diode Structure:**



### **Switching Operation:**

| <b>Bias Condition</b> | Intrinsic Region      | RF Impedance | Switch State |
|-----------------------|-----------------------|--------------|--------------|
| Forward Bias          | Flooded with carriers | Low (~1Ω)    | ON (Closed)  |
| Reverse Bias          | Depleted              | High (~10kΩ) | OFF (Open)   |
| Zero Bias             | Few carriers          | Medium       | Variable     |

#### Key Advantages:

- Fast switching: Nanosecond response
- Low insertion loss: When ON
- High isolation: When OFF
- Wide frequency range: DC to microwave

### **Applications:**

- RF switches
- Modulators
- Attenuators
- Phase shifters

Mnemonic: "PIN diodes Perform Perfect switching"

# Question 4(b) OR [4 marks]

# Explain stripeline and Microstrip circuits.

Answer:

**Stripline Configuration:** 

Ground Plane

Dielectric → Signal Conductor

Dielectric

Ground Plane

#### **Microstrip Configuration:**

| Signal Conductor |  |  |  |
|------------------|--|--|--|
| Dielectric       |  |  |  |
| Ground Plane     |  |  |  |

#### **Comparison Table:**

| Parameter     | Stripline      | Microstrip   |
|---------------|----------------|--------------|
| Ground Planes | Two (sandwich) | One (bottom) |
| Shielding     | Complete       | Partial      |
| Dispersion    | Lower          | Higher       |
| Manufacturing | Complex        | Simple       |
| Cost          | Higher         | Lower        |

#### **Applications:**

- Stripline: High-performance systems
- Microstrip: PCB circuits, antennas

#### **Design Equations:**

- Characteristic impedance: Function of w/h ratio
- Effective permittivity: εeff = (εr + 1)/2

Mnemonic: "Striplines are Sandwiched, Microstrips are Mounted"

# Question 4(c) OR [7 marks]

Explain the principles and process of amplification for a Parametric amplifier.

Answer:

**Parametric Amplifier Principle:** 



## Frequency Relationships:

| Parameter        | Relationship | Typical Values |
|------------------|--------------|----------------|
| Pump Frequency   | fp = fs + fi | 10 GHz         |
| Signal Frequency | fs (input)   | 1 GHz          |
| Idler Frequency  | fi = fp - fs | 9 GHz          |

## **Amplification Process:**

- 1. Nonlinear Element: Varactor diode provides time-varying capacitance
- 2. Pump Power: High-frequency pump supplies energy
- 3. Frequency Mixing: Three-frequency interaction
- 4. **Energy Transfer**: Pump energy  $\rightarrow$  Signal energy
- 5. Impedance Matching: Optimize power transfer

## **Circuit Configuration:**



#### **Key Advantages:**

• Low noise figure: Near quantum limit

- High gain: 10-20 dB typical
- Wide bandwidth: Limited by pump circuit

### **Applications:**

- Satellite receivers
- Radio astronomy
- Low-noise amplifiers

# **Design Considerations:**

- Pump power: Sufficient for nonlinear operation
- Impedance matching: All three frequencies
- Stability: Prevent oscillation

Mnemonic: "Parametric amplifiers Pump Power into signal Perfectly"

# Question 5(a) [3 marks]

## Compare RADAR and SONAR.

### Answer:

### **RADAR vs SONAR Comparison:**

| Parameter    | RADAR                 | SONAR               |
|--------------|-----------------------|---------------------|
| Wave Type    | Electromagnetic       | Acoustic            |
| Medium       | Air/Vacuum            | Water               |
| Frequency    | 300 MHz - 30 GHz      | 1 kHz - 1 MHz       |
| Speed        | 3×10 <sup>8</sup> m/s | 1500 m/s (water)    |
| Range        | Up to 1000 km         | Up to 100 km        |
| Applications | Aircraft, weather     | Submarines, fishing |

#### **Common Principles:**

- Echo ranging: Measure time-of-flight
- **Doppler effect**: Detect moving targets
- Beam forming: Directional transmission

### **Key Differences:**

- **Propagation**: EM waves vs sound waves
- Attenuation: Different loss mechanisms

• **Resolution**: Frequency dependent

Mnemonic: "RADAR sees Radio waves, SONAR hears Sound waves"

# Question 5(b) [4 marks]

Write the name of RADAR display method and explain anyone.

Answer:

### **RADAR Display Methods:**

| Display Type | Description             | Application         |
|--------------|-------------------------|---------------------|
| A-Scope      | Range vs amplitude      | Target detection    |
| B-Scope      | Range vs azimuth        | 2D position         |
| C-Scope      | Azimuth vs elevation    | 3D tracking         |
| PPI          | Plan Position Indicator | Air traffic control |
| RHI          | Range Height Indicator  | Weather radar       |

## **PPI Display Explanation:**





#### **PPI Features:**

- Polar coordinates: Range and bearing
- Rotating sweep: Follows antenna rotation
- Persistence: Targets remain visible

• **Scale selection**: Adjustable range

#### **Display Process:**

- 1. Sweep generation: Synchronized with antenna
- 2. Target plotting: Distance and direction
- 3. Intensity modulation: Target strength
- 4. Map overlay: Geographic reference

Mnemonic: "PPI Provides Perfect Position Information"

# Question 5(c) [7 marks]

Explain the basic pulse radar system with a block diagram.

#### Answer:

#### Pulse Radar Block Diagram:



#### **System Components:**

| Component         | Function             | Key Parameters            |
|-------------------|----------------------|---------------------------|
| Master Oscillator | Generate RF signal   | Frequency stability       |
| Modulator         | Create pulse train   | Pulse width, PRF          |
| Power Amplifier   | Boost transmit power | Peak power, efficiency    |
| Duplexer          | Switch Tx/Rx         | Isolation, switching time |
| Antenna           | Radiate/receive      | Gain, beamwidth           |
| Receiver          | Amplify echo signals | Sensitivity, bandwidth    |

#### **Operating Sequence:**

## 1. Transmission Phase:

- Master oscillator generates RF
- Modulator creates pulses
- Power amplifier boosts signal
- Duplexer routes to antenna

#### 2. Reception Phase:

- Antenna receives echoes
- Duplexer routes to receiver
- Signal processing extracts information
- Display shows target data

#### **Key Equations:**

- **Range**: R = ct/2 (where t = round-trip time)
- Maximum range: Rmax = cPRT/2
- **Range resolution**:  $\Delta R = c\tau/2$

## **Performance Parameters:**

- **PRF**: Pulse Repetition Frequency
- Duty cycle: τ × PRF
- Average power: Peak power × duty cycle

Mnemonic: "Pulse Radar Properly Processes Reflected signals"

# Question 5(a) OR [3 marks]

### List the application of microwave frequency.

#### Answer:

**Microwave Applications:** 

| Application Category | Specific Uses                  | Frequency Band |
|----------------------|--------------------------------|----------------|
| Communication        | Satellite, cellular, WiFi      | 1-40 GHz       |
| Radar Systems        | Weather, air traffic, military | 1-35 GHz       |
| Industrial           | Heating, drying, medical       | 0.9-5.8 GHz    |
| Navigation           | GPS, aircraft landing          | 1-15 GHz       |
| Scientific           | Radio astronomy, research      | 1-300 GHz      |
| Medical              | Diathermy, cancer treatment    | 0.9-2.45 GHz   |
| Domestic             | Microwave ovens                | 2.45 GHz       |

#### **Key Points:**

- ISM bands (Industrial, Scientific, Medical): License-free
- Penetration ability: Depends on frequency and material

• Atmospheric absorption: Increases with frequency

Mnemonic: "Microwaves Serve Many Applications Perfectly"

# Question 5(b) OR [4 marks]

#### Compare PULSED RADAR and CW RADAR.

#### Answer:

### **PULSED vs CW RADAR Comparison:**

| Parameter            | Pulsed RADAR           | CW RADAR        |
|----------------------|------------------------|-----------------|
| Transmission         | Pulse train            | Continuous wave |
| Range Measurement    | Time-of-flight         | Frequency shift |
| Velocity Measurement | Doppler in pulses      | Direct Doppler  |
| Antenna              | Single (duplexer)      | Separate Tx/Rx  |
| Power                | High peak, low average | Low continuous  |
| Range Resolution     | Pulse width limited    | Poor            |
| Velocity Resolution  | Limited                | Excellent       |
| Complexity           | High                   | Low             |
| Cost                 | Higher                 | Lower           |

### **Operational Differences:**

#### Pulsed RADAR:

- **Range equation**: R = ct/2
- Maximum range: Limited by PRF
- Blind ranges: Multiple of cPRT/2
- Applications: Long-range detection

#### **CW RADAR:**

- **Doppler equation**:  $fd = 2vr/\lambda$
- Range measurement: Requires FM modulation
- No blind ranges: Continuous operation
- Applications: Speed measurement, proximity

## Key Advantages:

• **Pulsed**: Better range capability, target separation

• CW: Better velocity accuracy, simpler design

Mnemonic: "Pulsed measures Range, CW measures Velocity"

# Question 5(c) OR [7 marks]

Explain MTI Radar with the block diagram.

Answer:

### **MTI RADAR Block Diagram:**



#### **MTI System Components:**

| Component      | Full Form               | Function              |
|----------------|-------------------------|-----------------------|
| STALO          | Stable Local Oscillator | Reference frequency   |
| СОНО           | Coherent Oscillator     | Phase reference       |
| MTI Filter     | Moving Target Indicator | Clutter suppression   |
| Phase Detector | -                       | Compare signal phases |

## **MTI Operating Principle:**

#### **Pulse-to-Pulse Comparison:**





#### **MTI Process:**

- 1. Coherent transmission: Maintain phase relationships
- 2. Echo reception: Preserve phase information
- 3. Phase comparison: Compare successive pulses
- 4. Clutter cancellation: Subtract stationary returns
- 5. Moving target detection: Enhance moving targets

#### **Key Equations:**

- **Doppler frequency**:  $fd = 2vr \cos(\theta)/\lambda$
- **Phase change**:  $\Delta \phi = 4\pi v r / \lambda \times PRT$
- **Blind speeds**: vb =  $n\lambda/(2PRT)$

#### **MTI Improvement Factor:**

- Definition: Ratio of clutter power before/after MTI
- Typical values: 20-40 dB
- Factors affecting: System stability, clutter characteristics

## Limitations:

- Blind speeds: Targets invisible at certain velocities
- Tangential targets: Radial velocity component needed
- Weather effects: Atmospheric fluctuations

#### **Applications:**

- Air traffic control: Separate aircraft from ground clutter
- Weather radar: Distinguish precipitation from terrain
- Military radar: Detect moving vehicles/aircraft

Mnemonic: "MTI Makes Targets Identifiable by Movement"