Question 1(a) [3 marks]

Write key features of 4G and 5G system.

Answer:

Table: Key Features Comparison

Feature	4G System	5G System
Data Speed	Up to 100 Mbps	Up to 10 Gbps
Latency	30-50 ms	1-10 ms
Technology	LTE, OFDM	MIMO, Beamforming
Applications	Video streaming	IoT, AR/VR

Key Points:

- 4G: Uses LTE technology with OFDM modulation for high-speed data
- 5G: Ultra-low latency enables real-time applications like autonomous vehicles
- Network Slicing: 5G allows virtual networks for specific applications

Mnemonic: "4G Fast, 5G Super-Fast"

Question 1(b) [4 marks]

Explain concept of frequency reuse in cellular mobile system.

Answer:

Diagram:

F1	F2	F3
++	++	++
A	B	C
++	++	++
F4	F5	F6
++	++	++
D	E	F
++	++	++
F7	F1	F2
++	++	++
G	A	B
++	++	++

Key Points:

• Frequency Reuse: Same frequencies used in non-adjacent cells to increase capacity

- **Co-channel Distance**: Minimum distance between cells using same frequency
- **Cluster Size**: Group of cells using different frequencies (typically 3, 4, 7, 12)
- Capacity Improvement: More users served with limited spectrum

Mnemonic: "Same Frequency, Different Places"

Question 1(c) [7 marks]

If a total of 33 MHz of bandwidth is allocated to a particular FDD cellular telephone system which uses two 25 kHz simplex channels to provide full duplex communication. If 1 MHz of the allocated spectrum is dedicated to control channels, determine an equitable distribution of control channels and voice channels for cluster size of 7.

Answer:

Given Data:

- Total bandwidth = 33 MHz
- Channel bandwidth = 25 kHz (simplex)
- Control spectrum = 1 MHz
- Cluster size = 7

Calculations:

Step 1: Available spectrum for traffic

Traffic spectrum = 33 - 1 = 32 MHz

Step 2: Total duplex channels

Each duplex channel needs 2×25 kHz = 50 kHz Total channels = 32 MHz \div 50 kHz = 640 channels

Step 3: Control channels

Control channels = 1 MHz ÷ 25 kHz = 40 channels

Step 4: Distribution per cell

- Voice channels per cell = 640 \div 7 \approx 91 channels
- Control channels per cell = $40 \div 7 \approx 6$ channels

Final Distribution Table:

Parameter	Total	Per Cell
Voice Channels	640	91
Control Channels	40	6
Total Channels	680	97

Mnemonic: "Divide Total by Cluster"

Question 1(c OR) [7 marks]

List out types of cells and explain each.

Answer:

Table: Types of Cells

Cell Type	Coverage	Power	Applications
Macro Cell	1-30 km	High	Rural areas
Micro Cell	100m-1km	Medium	Urban areas
Pico Cell	10-100m	Low	Buildings
Femto Cell	10-50m	Very Low	Homes

Detailed Explanation:

Macro Cells:

- Coverage: Large geographical areas (1-30 km radius)
- **Power**: High transmission power (up to 40W)
- Usage: Rural and suburban areas with low user density

Micro Cells:

- **Coverage**: Medium areas (100m to 1km radius)
- **Power**: Medium transmission power (1-10W)
- Usage: Urban areas, highway coverage

Pico Cells:

- Coverage: Small indoor/outdoor areas (10-100m)
- **Power**: Low transmission power (100mW-1W)
- Usage: Shopping malls, airports, offices

Umbrella Cells:

- Special Type: Covers multiple smaller cells
- Purpose: Handles high-speed mobile users
- Advantage: Reduces handoffs for fast-moving users

Mnemonic: "Macro-Micro-Pico-Femto = Big to Small"

Question 2(a) [3 marks]

Define cell and cluster.

Answer:

Definitions:

Cell:

- **Definition**: Geographical area covered by one base station
- Shape: Typically hexagonal for planning purposes
- Function: Serves mobile users within its coverage area

Cluster:

- **Definition**: Group of cells using different frequency sets
- Purpose: Enables frequency reuse pattern
- Common Sizes: 3, 4, 7, 12 cells per cluster

Table: Cell vs Cluster

Parameter	Cell	Cluster
Unit	Single coverage area	Group of cells
Frequency	One frequency set	Multiple frequency sets
Reuse	Cannot reuse nearby	Enables frequency reuse

Mnemonic: "Cell = One Area, Cluster = Group Areas"

Question 2(b) [4 marks]

Explain effect of cluster size on capacity and interference.

Answer:

Effects Table:

Cluster Size	Capacity	Interference	Co-channel Distance
Small (3,4)	High	High	Short
Large (7,12)	Low	Low	Long

Key Effects:

On Capacity:

- Smaller Cluster: More channels per cell, higher capacity
- Larger Cluster: Fewer channels per cell, lower capacity

• **Formula**: Channels per cell = Total channels ÷ Cluster size

On Interference:

- Smaller Cluster: Higher co-channel interference
- Larger Cluster: Lower co-channel interference
- **Trade-off**: Capacity vs. Quality

Co-channel Distance:

- **Relationship**: $D = R\sqrt{3N}$ where N = cluster size
- Effect: Larger N means larger distance between co-channel cells

Mnemonic: "Small Cluster = More Capacity, More Interference"

Question 2(c) [7 marks]

Write key features of IS-95, CDMA2000 and WCDMA.

Answer:

Comparison Table:

Feature	IS-95	CDMA2000	WCDMA
Generation	2G	3G	3G
Data Rate	14.4 kbps	2 Mbps	2 Mbps
Chip Rate	1.2288 Mcps	3.6864 Mcps	3.84 Mcps
Bandwidth	1.25 MHz	1.25 MHz	5 MHz

IS-95 Features:

- Technology: First commercial CDMA system
- Voice Quality: Better than GSM in some conditions
- Soft Handoff: Maintains multiple connections during handoff
- **Power Control**: Precise power control reduces interference

CDMA2000 Features:

- Backward Compatibility: Works with IS-95 networks
- High Data Rate: Up to 2 Mbps for 1xEV-DO
- Multimedia: Supports voice, data, and video
- Efficiency: Better spectrum efficiency than IS-95

WCDMA Features:

- Global Standard: Used worldwide for 3G
- High Capacity: Supports more simultaneous users
- **QoS Support**: Different service classes for applications
- International Roaming: Global compatibility

Mnemonic: "IS-95 First, CDMA2000 Faster, WCDMA Global"

Question 2(a OR) [3 marks]

Explain cell splitting.

Answer:

Definition:

Cell splitting is a technique to increase system capacity by subdividing congested cells into smaller cells.

Process:

- **Step 1**: Identify congested cell with high traffic
- Step 2: Install new base stations with lower power
- Step 3: Reduce original base station power
- Step 4: Create multiple smaller coverage areas

Benefits:

- Capacity Increase: More channels available in same area
- Better Signal Quality: Shorter distances improve signal strength

Mnemonic: "Split Big Cell into Small Cells"

Question 2(b OR) [4 marks]

Write functions of HLR and VLR in GSM.

Answer:

Functions Table:

Database	Full Form	Primary Functions
HLR	Home Location Register	Permanent subscriber data
VLR	Visitor Location Register	Temporary visitor data

HLR Functions:

- **Subscriber Profile**: Stores permanent subscriber information (IMSI, services)
- Location Tracking: Maintains current location area of subscriber
- Authentication: Provides authentication keys for security
- Service Management: Controls subscribed services and restrictions

VLR Functions:

- Temporary Storage: Stores visiting subscriber data temporarily
- Local Services: Enables services for roaming subscribers
- Call Routing: Assists in routing calls to visiting subscribers
- Authentication Copy: Maintains copy of authentication data from HLR

Interaction:

- HLR updates VLR when subscriber roams to new area
- VLR requests subscriber data from HLR during registration

Mnemonic: "HLR = Home Data, VLR = Visitor Data"

Question 2(c OR) [7 marks]

Describe RFID technology.

Answer:

RFID Overview:

Radio Frequency Identification uses electromagnetic fields to identify and track tags attached to objects.

System Components:

Types Table:

Туре	Power Source	Range	Applications
Passive	Reader's energy	0.1-10m	Access cards
Active	Internal battery	10-100m	Vehicle tracking
Semi-passive	Battery + Reader	1-30m	Temperature sensors

Key Features:

- No Line of Sight: Works without direct visual contact
- Multiple Reading: Can read multiple tags simultaneously
- Data Storage: Can store and update information
- Durability: Resistant to environmental conditions

Applications:

- Inventory Management: Warehouse and retail tracking
- Access Control: Building and vehicle access
- Payment Systems: Contactless payment cards
- Supply Chain: Product tracking from manufacturing to sale

Advantages:

- Fast Reading: Instant identification without scanning
- Automation: Reduces manual data entry errors
- Real-time Tracking: Continuous monitoring of assets

Mnemonic: "Radio Frequency Identifies Everything"

Question 3(a) [3 marks]

Draw GSM architecture.

Answer:

Components:

- MS: Mobile Station (handset + SIM)
- BTS: Radio interface with mobile
- BSC: Controls multiple BTS, handles handoffs
- MSC: Switching and call control
- HLR/VLR: Database for subscriber information

Mnemonic: "Mobile Talks Through BTS-BSC-MSC"

Question 3(b) [4 marks]

Write GSM 900 specifications.

Answer:

GSM 900 Specifications Table:

Parameter	Specification
Frequency Band	890-915 MHz (Uplink), 935-960 MHz (Downlink)
Channel Spacing	200 kHz
Total Channels	124 channels
Modulation	GMSK (Gaussian MSK)
Access Method	TDMA/FDMA
Frame Duration	4.615 ms
Time Slots	8 per frame
Speech Coding	13 kbps RPE-LTP

Key Features:

- Digital Transmission: Superior voice quality compared to analog
- International Roaming: Global compatibility standard
- **Security**: Encryption and authentication built-in
- **SMS Support**: Short message service capability

Coverage:

- **Cell Radius**: Up to 35 km (rural areas)
- Power Classes: 5 classes from 0.8W to 20W

Mnemonic: "900 MHz, 200 kHz spacing, 8 time slots"

Question 3(c) [7 marks]

Explain mobile to landline and landline to mobile call procedure in GSM.

Answer:

Mobile to Landline Call Procedure:

Steps:

- 1. Call Initiation: Mobile dials landline number
- 2. Channel Assignment: BSC assigns traffic channel
- 3. Authentication: MSC verifies subscriber
- 4. Routing: MSC routes call to PSTN gateway
- 5. Connection: End-to-end connection established

Landline to Mobile Call Procedure:

Steps:

- 1. Call Reception: PSTN receives call to mobile number
- 2. HLR Query: Gateway MSC queries HLR for location
- 3. Location Update: HLR provides current MSC information
- 4. Paging: Visited MSC pages mobile in location area
- 5. Connection: Mobile responds and call is connected

Key Differences:

- Mobile Originating: Direct routing through serving MSC
- Mobile Terminating: Requires location lookup through HLR

```
Mnemonic: "Mobile Out = Direct, Mobile In = Find First"
```

Question 3(a OR) [3 marks]

Explain fast and slow frequency hopping.

Answer:

Frequency Hopping Types:

Table: Fast vs Slow Hopping

Parameter	Fast Hopping	Slow Hopping
Hop Rate	> Symbol Rate	< Symbol Rate
Symbols per Hop	< 1	> 1
Complexity	High	Low
GSM Usage	Not used	Used (217 hops/sec)

Fast Frequency Hopping:

- **Definition**: Frequency changes multiple times per symbol
- Characteristics: Very high hop rate, complex implementation
- Advantage: Excellent interference resistance

Slow Frequency Hopping:

- **Definition**: Multiple symbols transmitted per frequency
- **GSM Implementation**: 217 hops per second
- **Advantage**: Simple to implement, effective interference averaging

Mnemonic: "Fast = Many hops per symbol, Slow = Many symbols per hop"

Question 3(b OR) [4 marks]

Explain authentication process in GSM.

Answer:

Authentication Process:

Key Components:

- **RAND**: Random number (128 bits)
- SRES: Signed response (32 bits)
- Kc: Cipher key (64 bits)
- Ki: Individual subscriber authentication key

Process Steps:

- 1. Challenge: Network sends random number (RAND)
- 2. Response: Mobile calculates SRES using Ki and RAND
- 3. Verification: Network compares received and expected SRES
- 4. Result: Authentication success or failure

Security Features:

- Mutual Authentication: Prevents fake base stations
- Unique Keys: Each subscriber has individual Ki
- Challenge-Response: Prevents replay attacks

Mnemonic: "Random Challenge, Signed Response, Compare and Accept"

Question 3(c OR) [7 marks]

Draw and explain block diagram of Signal processing in GSM.

Answer:

GSM Signal Processing Block Diagram:

Transmitter Processing:

Speech Coding:

- Function: Converts analog speech to 13 kbps digital
- Algorithm: RPE-LTP (Regular Pulse Excitation Long Term Prediction)
- Frame Size: 20 ms speech frames

Channel Coding:

- Purpose: Adds redundancy for error correction
- Types: Convolutional coding, block coding
- Output: Protected 22.8 kbps data stream

Interleaving:

- Function: Spreads coded bits across multiple time slots
- Benefit: Combats burst errors from fading
- Types: Block interleaving over 8 time slots

Burst Formatting:

- Process: Organizes data into GSM burst structure
- Components: Training sequence, guard bits, data bits
- Types: Normal burst, access burst, sync burst

Modulation:

- Technique: GMSK (Gaussian Minimum Shift Keying)
- Bandwidth: 200 kHz channel spacing
- Symbol Rate: 270.833 kbps

Receiver Processing:

• **Demodulation**: Recovers digital bits from RF signal

- Equalization: Compensates for multipath distortion
- Error Correction: Uses channel coding redundancy
- Speech Decoding: Reconstructs original speech

Key Features:

- Digital Processing: All operations in digital domain
- Error Protection: Multiple levels of error correction
- Adaptive: Parameters adjust to channel conditions

Mnemonic: "Speech-Code-Interleave-Burst-Modulate-Transmit"

Question 4(a) [3 marks]

Draw block diagram of baseband section.

Answer:

Baseband Section Block Diagram:

Components:

- **DSP**: Digital signal processing for speech and data
- Audio Codec: Analog-to-digital conversion
- Memory: Program storage (Flash) and working memory (RAM)
- Control: User interface management
- Interfaces: RF section, SIM card connections

Functions:

- Signal Processing: Speech coding, echo cancellation
- Protocol Stack: GSM layer 1, 2, 3 protocols
- User Interface: Display, keypad, audio management

Mnemonic: "DSP Controls Audio, Memory, Display, RF"

Question 4(b) [4 marks]

Explain EDGE.

Answer:

EDGE Overview:

Enhanced Data rates for GSM Evolution - improves data transmission in GSM networks.

Key Features Table:

Parameter	GSM/GPRS	EDGE
Modulation	GMSK	8-PSK
Data Rate	9.6-171 kbps	Up to 473 kbps
Generation	2.5G	2.75G
Symbol Rate	270.833 ksps	270.833 ksps

Technical Improvements:

- Advanced Modulation: 8-PSK carries 3 bits per symbol vs 1 bit in GMSK
- Link Adaptation: Automatically switches between GMSK and 8-PSK
- Enhanced Coding: Better error correction schemes
- Incremental Redundancy: Improved retransmission strategy

Benefits:

- Higher Data Rates: 3x faster than GPRS
- Backward Compatibility: Works with existing GSM infrastructure
- Cost Effective: Software upgrade to existing networks
- Multimedia Support: Enables better mobile internet experience

Applications:

- Mobile Internet: Faster web browsing
- Email: Quick email with attachments
- Multimedia Messaging: MMS support
- Video Calls: Basic video communication

Mnemonic: "EDGE = Enhanced Data rates for GSM Evolution"

Question 4(c) [7 marks]

Draw and explain block diagram of mobile handset.

Answer:

Mobile Handset Block Diagram:

Major Sections:

RF Section:

- Antenna: Transmits and receives radio signals
- Duplexer: Separates TX and RX signals
- RF Transceiver: Up/down conversion, amplification
- Frequency Synthesizer: Generates carrier frequencies

Baseband Section:

- **DSP**: Digital signal processing for speech and data
- Protocol Stack: Implements GSM protocols
- Control Unit: Manages all mobile functions
- Memory Interface: Controls program and data storage

Audio Section:

- Audio Codec: A/D and D/A conversion
- Audio Amplifier: Drives speaker
- Microphone Amplifier: Amplifies voice input
- Hands-free Support: External audio accessories

User Interface:

- **Display**: Shows information to user (LCD/OLED)
- Keypad: User input interface
- LED Indicators: Status indication
- Vibrator: Alert mechanism

Power Management:

- **Battery**: Energy storage (Li-ion typically)
- Charging Circuit: Battery charging control
- Power Regulation: Voltage regulation for all sections
- Power Saving: Sleep modes and power optimization

Memory System:

- Flash Memory: Program storage and user data
- **RAM**: Working memory for program execution
- **SIM Interface**: Secure element for subscriber identity

Interconnections:

- Control Bus: Command and control signals
- Data Bus: Information transfer
- Power Bus: Power distribution
- Audio Bus: Voice and audio signals

Operation:

- 1. **Receive**: Antenna \rightarrow RF \rightarrow Baseband \rightarrow Audio \rightarrow Speaker
- 2. **Transmit**: Microphone \rightarrow Audio \rightarrow Baseband \rightarrow RF \rightarrow Antenna
- 3. **Control**: User input \rightarrow Baseband \rightarrow Display output
- 4. Processing: All operations controlled by baseband processor

Mnemonic: "Antenna-RF-Baseband-Audio-Display-Power"

Question 4(a OR) [3 marks]

Explain radiation hazards due to mobile.

Answer:

Radiation Hazards:

SAR (Specific Absorption Rate):

- Definition: Rate of energy absorption by human body
- Unit: Watts per kilogram (W/kg)
- Limit: 2.0 W/kg (Europe), 1.6 W/kg (USA)

Health Concerns Table:

Effect	Risk Level	Symptoms
Thermal	Confirmed	Tissue heating
Non-thermal	Under study	Headaches, fatigue
Long-term	Uncertain	Cancer concerns

Prevention Measures:

- **Distance**: Keep phone away from body during calls
- Duration: Limit call duration
- Hands-free: Use headsets or speakerphone
- Low SAR: Choose phones with lower SAR values

Safety Guidelines:

- Avoid sleeping with phone near head
- Use airplane mode when not needed
- Keep calls short and use text when possible

Mnemonic: "SAR measures absorption rate"

Question 4(b OR) [4 marks]

Describe working of charging section in mobile handset.

Answer:

Charging Section Block Diagram:

Components & Functions:

Charging Controller:

- Function: Controls charging current and voltage
- Types: Linear and switching mode controllers
- Protection: Prevents overcharging and overheating

Charging Process:

- 1. **Constant Current**: Initial high current charging (fast charge)
- 2. Constant Voltage: Voltage maintained, current decreases

- 3. Trickle Charge: Low current maintenance charging
- 4. Cut-off: Charging stops when battery full

Protection Features:

- **Over-voltage Protection**: Prevents damage from high voltage
- Over-current Protection: Limits maximum charging current
- Temperature Monitoring: Stops charging if battery gets too hot
- **Reverse Polarity**: Prevents damage from wrong connection

Battery Management:

- Fuel Gauge: Monitors battery capacity
- Cell Balancing: Ensures equal charging of battery cells
- Health Monitoring: Tracks battery condition over time

Mnemonic: "Control Current, Voltage, Temperature, and Time"

Question 4(c OR) [7 marks]

Draw and explain block diagram of DSSS transmitter and receiver.

Answer:

DSSS Transmitter Block Diagram:

DSSS Receiver Block Diagram:

Transmitter Operation:

Data Modulation:

- Input: Original data stream (low rate)
- Modulation: BPSK or QPSK modulation
- **Output**: Modulated narrowband signal

Spreading Process:

- PN Code: Pseudo-random binary sequence (high rate)
- Spreading: XOR operation between data and PN code
- **Result**: Wideband spread spectrum signal

RF Modulation:

- **Carrier**: High frequency carrier signal
- Modulation: Spread signal modulates RF carrier
- Transmission: Signal transmitted through antenna

Receiver Operation:

RF Processing:

- **Reception**: Antenna receives spread spectrum signal
- Amplification: Low noise amplifier boosts weak signal
- **Demodulation**: Recovers baseband spread signal

Despreading Process:

- Correlation: Received signal correlated with same PN code
- Synchronization: PN code timing synchronized with received signal
- **Output**: Original narrowband data signal recovered

Key Parameters:

- **Processing Gain**: Ratio of spread bandwidth to data bandwidth
- Chip Rate: Rate of PN code (higher than data rate)
- Spreading Factor: Processing gain value

Advantages:

- Interference Rejection: Resistant to narrowband interference
- Low Probability of Intercept: Difficult to detect and jam
- Multiple Access: Many users can share same frequency
- Multipath Resistance: Reduces fading effects

Applications:

- CDMA Cellular: IS-95, CDMA2000, WCDMA
- GPS: Global positioning system
- WiFi: 802.11b spread spectrum mode
- Military: Secure communications

Mnemonic: "Data Spreads with PN, Correlates to Recover"

Question 5(a) [3 marks]

Explain the concept of spread spectrum.

Answer:

Spread Spectrum Concept:

A communication technique where the transmitted signal bandwidth is much wider than the minimum required bandwidth.

Basic Principle:

Parameter	Before Spreading	After Spreading
Bandwidth	Narrow (data rate)	Wide (chip rate)
Power Density	High	Low
Interference	Vulnerable	Resistant

Key Characteristics:

- Bandwidth Expansion: Signal spread over wide frequency range
- Processing Gain: Improvement in signal-to-noise ratio
- **Pseudo-random Sequence**: Spreading code known only to intended receiver
- Security: Difficult for unauthorized users to intercept

Benefits:

- Jam Resistance: Immune to intentional interference
- Low Power Density: Coexists with narrowband systems
- Multiple Access: Many users share same spectrum
- Privacy: Encrypted-like transmission

Mnemonic: "Spread Wide, Gain Processing Power"

Question 5(b) [4 marks]

Write criteria of spread spectrum and its applications.

Answer:

Spread Spectrum Criteria:

Technical Criteria:

- 1. **Bandwidth**: Transmitted bandwidth >> Information bandwidth
- 2. **Processing Gain**: Gp = Spread BW / Data BW \ge 10 dB
- 3. Pseudo-random: Spreading sequence appears random

4. Synchronization: Receiver must sync with transmitter code

Performance Criteria Table:

Criteria	Requirement	Benefit
Processing Gain	> 10 dB	Interference rejection
Code Length	Long period	Security and randomness
Cross-correlation	Low	Multiple user separation
Auto-correlation	Sharp peak	Synchronization

Applications:

Military Communications:

- Anti-jam: Resistant to enemy jamming
- LPI/LPD: Low probability of intercept/detection
- Secure: Encrypted transmission

Cellular Systems:

- CDMA: IS-95, CDMA2000, WCDMA
- **Capacity**: Multiple users per frequency
- Quality: Reduced interference

Satellite Communications:

- **GPS**: Global positioning system
- Weather: Satellite data transmission
- Broadcasting: Satellite radio/TV

Wireless Networks:

- WiFi: 802.11b DSSS mode
- Bluetooth: Frequency hopping
- Cordless Phones: 2.4 GHz band

Mnemonic: "Military, Cellular, Satellite, Wireless use Spread Spectrum"

Question 5(c) [7 marks]

Explain call processing in CDMA.

Answer:

CDMA Call Processing Sequence:

Call Origination Process:

Step 1: System Access

- Random Access: Mobile sends access probe on access channel
- **Power Control**: Gradually increases power until acknowledged
- Code Assignment: Base station assigns unique spreading code

Step 2: Authentication

- Challenge: Network sends authentication challenge
- **Response**: Mobile responds with calculated authentication
- Validation: Network validates mobile identity

Step 3: Channel Assignment

- Walsh Code: Unique orthogonal code assigned for forward link
- PN Offset: Base station identified by PN sequence offset
- Power Level: Initial transmission power set

Step 4: Traffic Channel Setup

- Service Options: Voice, data, or multimedia service negotiated
- Rate Set: Transmission rate configured (Rate Set 1 or 2)

• Handoff Parameters: Neighboring cell information provided

Call Processing Features:

Soft Handoff:

- Multiple Connections: Mobile maintains links to multiple base stations
- Diversity: Improves call quality and reliability
- Make-before-Break: New connection established before old one dropped

Power Control:

- **Closed Loop**: Rapid power adjustments (800 Hz rate)
- **Open Loop**: Initial power estimation
- **Purpose**: Minimize interference, maximize capacity

Variable Rate Vocoder:

- Rate Adaptation: Transmission rate varies with speech activity
- Silence Detection: Lower rates during speech pauses
- Capacity: Increases system capacity

Call Termination Process:

Key CDMA Features:

Rake Receiver:

- **Multipath Combining**: Combines multiple signal paths
- Diversity Gain: Improves signal quality
- Finger Assignment: Each finger tracks different path

Capacity Advantages:

- Frequency Reuse: Same frequency used in all cells
- Interference Limited: Capacity limited by interference, not frequency
- Voice Activity: Statistical multiplexing increases capacity

Quality Features:

- Error Correction: Forward error correction coding
- Interleaving: Protects against burst errors
- Adaptive Rates: Data rate adapts to channel conditions

Call States:

- 1. Idle: Mobile monitoring paging channel
- 2. Access: Attempting to access system
- 3. Traffic: Active call in progress
- 4. Handoff: Transitioning between base stations

Mnemonic: "Access-Authenticate-Assign-Traffic-Handoff"

Question 5(a OR) [3 marks]

Write features of Zigbee and advantages.

Answer:

Zigbee Features:

Technical Specifications Table:

Parameter	Specification
Standard	IEEE 802.15.4
Frequency	2.4 GHz, 915 MHz, 868 MHz
Data Rate	250 kbps (2.4 GHz)
Range	10-100 meters
Power	Ultra-low power

Key Features:

- Mesh Network: Self-organizing and self-healing network
- Low Power: Battery life up to years
- Low Cost: Inexpensive hardware implementation
- Simple Protocol: Easy to implement and deploy

Advantages:

- Long Battery Life: Optimized for battery-powered devices
- Network Reliability: Multiple routing paths available
- Scalability: Supports thousands of nodes
- Interoperability: Standard ensures device compatibility

Applications:

• Home automation, Industrial monitoring, Smart lighting

Mnemonic: "Low Power, Mesh Network, Many Applications"

Question 5(b OR) [4 marks]

Explain OFDM with block diagram.

Answer:

OFDM Block Diagram:

OFDM Principle:

Orthogonal Frequency Division Multiplexing divides high-speed data into multiple parallel low-speed streams transmitted simultaneously on different frequencies.

Key Components:

IFFT/FFT:

- IFFT: Inverse Fast Fourier Transform creates orthogonal subcarriers
- FFT: Fast Fourier Transform recovers data at receiver
- Orthogonality: Subcarriers don't interfere with each other

Cyclic Prefix:

- Function: Prevents inter-symbol interference
- Implementation: Copy of signal end added to beginning

• Length: Longer than channel delay spread

Advantages:

- Spectral Efficiency: High data rate in limited bandwidth
- Multipath Immunity: Resistant to fading channels
- Flexible: Easy to implement with DSP

Applications:

- 4G LTE: Mobile communication standard
- WiFi: 802.11a/g/n/ac standards
- Digital TV: DVB-T, ISDB-T standards

Mnemonic: "Orthogonal Frequencies Divide Multiplexed data"

Question 5(c OR) [7 marks]

Describe MANET.

Answer:

MANET Overview:

Mobile Ad-hoc Network is a self-configuring network of mobile devices connected wirelessly without fixed infrastructure.

Network Topology:

Key Characteristics:

Architecture Table:

Parameter	MANET	Cellular Network
Infrastructure	No fixed base stations	Base stations required
Тороlоду	Dynamic, changes frequently	Fixed cell structure
Routing	Multi-hop peer-to-peer	Single hop to base station
Cost	Low deployment cost	High infrastructure cost

MANET Features:

Dynamic Topology:

- Mobile Nodes: All nodes can move freely
- **Changing Links**: Network connections change as nodes move
- Self-Organization: Network automatically reconfigures

Multi-hop Communication:

- Relay Function: Nodes act as routers for other nodes
- Path Discovery: Dynamic route finding to destination
- Distributed Control: No central coordination needed

Routing Protocols:

Proactive Protocols:

- **DSDV**: Destination Sequenced Distance Vector
- Characteristic: Maintain routing tables continuously
- Advantage: Routes available immediately
- Disadvantage: High overhead in mobile environment

Reactive Protocols:

- AODV: Ad-hoc On-demand Distance Vector
- DSR: Dynamic Source Routing
- Characteristic: Find routes only when needed
- Advantage: Lower overhead
- **Disadvantage**: Route discovery delay

Hybrid Protocols:

- **ZRP**: Zone Routing Protocol
- **Combination**: Proactive within zone, reactive between zones
- Balance: Overhead vs. delay optimization

Advantages:

- No Infrastructure: Quick deployment without base stations
- Flexibility: Network adapts to changing topology
- **Cost Effective**: Lower setup and maintenance costs
- Robustness: No single point of failure

Disadvantages:

• Limited Bandwidth: Shared wireless medium

- **Power Consumption**: Routing functions drain battery
- Security Issues: Vulnerable to attacks
- Scalability: Performance degrades with network size

Applications:

Military Operations:

- Battlefield Communications: Soldier-to-soldier communication
- Emergency Response: Disaster relief coordination
- Surveillance: Sensor network deployment

Commercial Applications:

- Vehicular Networks: Car-to-car communication
- Sensor Networks: Environmental monitoring
- Conference Networks: Temporary meeting networks
- Personal Area Networks: Device interconnection

Challenges:

Technical Challenges:

- Routing Overhead: Control message bandwidth consumption
- **Quality of Service**: Difficulty in guaranteeing service levels
- **Power Management**: Energy-efficient operation
- **Interference**: Co-channel interference from multiple hops

Security Challenges:

- Authentication: Verifying node identity
- **Data Integrity**: Ensuring message authenticity
- **Privacy**: Protecting user information
- Denial of Service: Preventing network attacks

Performance Metrics:

- Throughput: Data delivery rate
- Delay: End-to-end packet delivery time
- Packet Loss: Percentage of lost packets
- Energy Consumption: Battery life optimization

Future Trends:

- Integration: Combination with cellular and WiFi networks
- IoT Applications: Internet of Things device networks
- **5G Integration**: Part of 5G network architecture

• Al-based Routing: Machine learning for optimal routing

Mnemonic: "Mobile Nodes, Ad-hoc Routing, No Infrastructure, Temporary Networks"