Question 1(a) [3 marks]

List the different Network Topologies and discuss any one in detail.

Answer:

Тороlоду	Description	
Star	All devices connected to central hub/switch	
Ring	Devices connected in circular fashion	
Bus	All devices connected to single cable	
Mesh	Every device connected to every other device	
Тгее	Hierarchical structure with root node	
Hybrid	Combination of two or more topologies	

Star Topology Details:

- Central Hub: All nodes connect to one central device
- **Point-to-Point**: Each connection is dedicated between node and hub
- Easy Management: Simple to install and troubleshoot

Mnemonic: "STAR = Single Terminal All Reach"

Question 1(b) [4 marks]

Explain how point-to-point and broadcast transmission technologies are used in modern communication systems with examples of real-world applications and discuss their advantages and limitations.

Answer:

Technology	Point-to-Point	Broadcast
Connection	Direct link between two devices	One-to-many communication
Example	Telephone, VPN tunnels	Radio, TV, WiFi
Data Flow	Bidirectional	Unidirectional/Multidirectional

Point-to-Point Applications:

- **Dedicated Lines**: Leased lines between offices
- Satellite Links: Ground station to satellite communication
- Cable Modems: Home to ISP connection

Broadcast Applications:

- WiFi Networks: Router broadcasts to multiple devices
- Television: One transmitter to many receivers

Mnemonic: "P2P = Private Path, Broadcast = Big Audience"

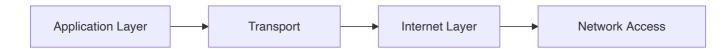
Question 1(c) [7 marks]

Describe OSI model with function of all layers.

Answer:

Layer	Name	Function
7	Application	User interface, network services
6	Presentation	Data encryption, compression, formatting
5	Session	Establishes, manages, terminates sessions
4	Transport	Reliable data transfer, error correction
3	Network	Routing, logical addressing (IP)
2	Data Link	Frame formatting, error detection
1	Physical	Bit transmission, electrical signals

Key Functions:


- Upper Layers (5-7): Handle application-related services
- Lower Layers (1-4): Handle data transmission and routing
- Encapsulation: Each layer adds its own header

Mnemonic: "All People Seem To Need Data Processing"

Question 1(c OR) [7 marks]

Write a functional description of all layer of TCP/IP model.

Layer	Name	Function	Protocols
4	Application	User services, applications	HTTP, FTP, SMTP, DNS
3	Transport	End-to-end communication	TCP, UDP
2	Internet	Routing, logical addressing	IP, ICMP, ARP
1	Network Access	Physical transmission	Ethernet, WiFi

Layer Functions:

- Application: Provides network services to applications
- Transport: Ensures reliable or unreliable delivery
- Internet: Routes packets across networks using IP addresses
- Network Access: Handles physical transmission media

Mnemonic: "Applications Transport Internet Networks"

Question 2(a) [3 marks]

Describe Function of firewall in network security.

Answer:

Firewall Functions:

- Packet Filtering: Controls incoming and outgoing network traffic
- Access Control: Blocks unauthorized access attempts
- Traffic Monitoring: Logs and analyzes network activity

Types:

- Hardware Firewall: Physical device protecting entire network
- Software Firewall: Program installed on individual computers
- **Stateful Inspection**: Tracks connection states and contexts

Mnemonic: "Firewall = Filter, Access, Monitor"

Question 2(b) [4 marks]

Compare FDDI (Fiber Distributed Data Interface) and CDDI (Copper Distributed Data Interface) in terms of their key characteristics, advantages, and applications.

Feature	FDDI	CDDI
Medium	Optical fiber	Twisted pair copper
Speed	100 Mbps	100 Mbps
Distance	Up to 200 km	Up to 100 meters
Cost	Higher	Lower
Security	Higher (difficult to tap)	Lower (easier to tap)
Installation	Complex	Simple

FDDI Advantages:

- Long Distance: Supports campus-wide networks
- High Security: Immune to electromagnetic interference
- **Reliability**: Better error detection and recovery

CDDI Advantages:

- Cost Effective: Uses existing copper infrastructure
- Easy Installation: Standard twisted pair cabling
- **Compatibility**: Works with existing network equipment

Mnemonic: "FDDI = Fiber Distance, CDDI = Copper Cost"

Question 2(c) [7 marks]

Explain and distinguish Ethernet, Fast Ethernet, Gigabit Ethernet.

Answer:

Туре	Speed	Standard	Cable Type	Distance
Ethernet	10 Mbps	802.3	Coax/UTP	100m
Fast Ethernet	100 Mbps	802.3u	UTP Cat5	100m
Gigabit Ethernet	1000 Mbps	802.3z/ab	Cat5e/6, Fiber	100m/5km

Key Differences:

- **Speed Evolution**: 10x increase at each generation
- Media Support: From coax to twisted pair to fiber

- Applications: LAN backbone, server connections, desktop
- Backward Compatibility: Newer standards support older devices

Standards:

- 10Base-T: 10 Mbps over twisted pair
- 100Base-TX: 100 Mbps over Category 5 UTP
- 1000Base-T: 1 Gbps over Category 5e/6 UTP

Mnemonic: "Every Fast Gigabit = 10, 100, 1000"

Question 2(a OR) [3 marks]

Explain its role and function of router within a network infrastructure.

Answer:

Router Functions:

- Packet Forwarding: Routes data packets between different networks
- Path Determination: Selects best route using routing tables
- Network Isolation: Separates broadcast domains

Key Roles:

- Inter-network Communication: Connects LANs to WANs
- Traffic Management: Controls data flow between networks
- Protocol Translation: Converts between different network protocols

Mnemonic: "Router = Route, Isolate, Connect"

Question 2(b OR) [4 marks]

Explain the structure of FDDI (Fiber Distributed Data Interface) and give its advantages.

Answer:

FDDI Structure:

```
Node A ----- Node B

| | |

Node D ----- Node C

Primary Ring: Clockwise

Secondary Ring: Counter-clockwise
```

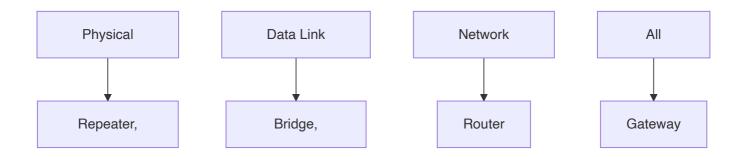
Components:

• Dual Ring: Primary and secondary rings for redundancy

- Token Passing: Uses token for media access control
- Concentrators: Connect multiple stations to ring

Advantages:

- High Reliability: Dual ring provides fault tolerance
- Fast Speed: 100 Mbps data transmission rate
- Long Distance: Supports up to 200 km ring circumference
- Self-Healing: Automatic reconfiguration when link fails


Mnemonic: "FDDI = Fast, Dual, Distance, Immune"

Question 2(c OR) [7 marks]

Explain roll of network Devices. Describe in brief about all the devices.

Answer:

Device	Layer	Function
Repeater	Physical	Regenerates signals, extends distance
Hub	Physical	Connects multiple devices, shared bandwidth
Bridge	Data Link	Connects LANs, reduces collisions
Switch	Data Link	Intelligent hub, dedicated bandwidth
Router	Network	Connects different networks, routing
Gateway	All Layers	Protocol conversion, network interconnection

Device Functions:

- **Repeater**: Amplifies and regenerates signals
- Hub: Simple connection point for multiple devices
- Bridge: Intelligent forwarding based on MAC addresses
- Switch: High-performance bridge with multiple ports
- Router: Intelligent path selection between networks

• Gateway: Complete protocol stack conversion

Mnemonic: "Repeat, Hub, Bridge, Switch, Route, Gateway"

Question 3(a) [3 marks]

Name any three data link layer protocol and explain any one in detail.

Answer:

Data Link Layer Protocols:

- HDLC (High-Level Data Link Control)
- **PPP** (Point-to-Point Protocol)
- Ethernet (IEEE 802.3)

HDLC Protocol Details:

- Frame Structure: Flag, Address, Control, Data, FCS, Flag
- Error Detection: Frame Check Sequence (FCS)
- Flow Control: Sliding window mechanism

HDLC Frame Format:

+	_+	_++
Flag Addr	Ctrl	Data FCS Flag
8bit 8bit	8bit	16bit 8bit
++	_+	_++

Mnemonic: "HDLC = High Data Link Control"

Question 3(b) [4 marks]

Explain error control and flow control at data link layer

Answer:

Control Type	Purpose	Methods
Error Control	Detect and correct transmission errors	CRC, Checksum, Parity
Flow Control	Manage data transmission rate	Stop-and-Wait, Sliding Window

Error Control Methods:

- Detection: CRC, Checksum identify errors
- Correction: ARQ (Automatic Repeat Request)
- Prevention: Forward Error Correction (FEC)

Flow Control Methods:

- **Stop-and-Wait**: Send one frame, wait for ACK
- Sliding Window: Send multiple frames before ACK
- Buffer Management: Prevent receiver overflow

Mnemonic: "Error = Detect, Flow = Control"

Question 3(c) [7 marks]

Compare IPv6 and IPv4.

Answer:

Feature	IPv4	ΙΡν6
Address Length	32 bits	128 bits
Address Space	4.3 billion	340 undecillion
Header Size	20-60 bytes (variable)	40 bytes (fixed)
Notation	Decimal (192.168.1.1)	Hexadecimal (2001:db8::1)
Fragmentation	Router and host	Host only
Security	Optional (IPSec)	Built-in (IPSec)
Configuration	Manual/DHCP	Auto-configuration

IPv4 Example: 192.168.1.100 **IPv6 Example:** 2001:0db8:85a3:0000:0000:8a2e:0370:7334

Key Differences:

- Address Exhaustion: IPv4 addresses nearly exhausted
- Header Efficiency: IPv6 simplified header structure
- **Security**: IPv6 has built-in security features
- Quality of Service: Better QoS support in IPv6

Mnemonic: "IPv6 = Infinite, Integrated, Improved"

Question 3(a OR) [3 marks]

Explain the differences between guided and unguided transmission media used in computer networks

Media Type	Guided	Unguided
Definition	Physical path exists	No physical path
Examples	Twisted pair, Coax, Fiber	Radio, Microwave, Satellite
Direction	Point-to-point	Broadcast

Guided Media:

- Twisted Pair: Telephone lines, LANs
- **Coaxial Cable**: Cable TV, older networks
- Fiber Optic: High-speed, long-distance

Unguided Media:

- Radio Waves: WiFi, Bluetooth
- Microwaves: Point-to-point links
- Infrared: Short-range communication

Mnemonic: "Guided = Ground, Unguided = Air"

Question 3(b OR) [4 marks]

Describe circuit switching and packet switching.

Answer:

Feature	Circuit Switching	Packet Switching
Connection	Dedicated path established	No dedicated path
Resource Allocation	Fixed bandwidth	Shared resources
Example	Traditional telephone	Internet
Delay	Constant	Variable

Circuit Switching:

- Setup Phase: Establishes dedicated connection
- Data Transfer: Continuous transmission
- Teardown: Releases connection resources

Packet Switching:

- Store-and-Forward: Packets stored at intermediate nodes
- Dynamic Routing: Each packet routed independently
- Resource Sharing: Bandwidth shared among users

Mnemonic: "Circuit = Continuous, Packet = Pieces"

Question 3(c OR) [7 marks]

Explain IPv4 OR IPv6 in detail.

Answer (IPv4):

IPv4 Address Structure:

- 32-bit Address: Divided into 4 octets
- Dotted Decimal: 192.168.1.1 format
- Network + Host: Address split into network and host portions

Class	Range	Network Bits	Host Bits	Use
Α	1-126	8	24	Large networks
В	128-191	16	16	Medium networks
с	192-223	24	8	Small networks

Special Addresses:

- Loopback: 127.0.0.1 (local host)
- Private: 192.168.x.x, 10.x.x.x, 172.16-31.x.x
- Broadcast: 255.255.255.255

Subnetting:

- Subnet Mask: Identifies network portion
- CIDR: Classless Inter-Domain Routing
- Variable Length: Different subnet sizes

IPv4 Header:

0	16	32
+	_+	_+
Version IHL	Type of Servic	e
+	_+	_+
Total Len	gth	
+	_+	_+
Identification	Flags Fragment	
+	_+	_+
TTL Protoco	l Header Checksu	m
+	_+	_+
Source Ad	dress	
+	_+	_+
Destination	Address	
+	_+	_+

Mnemonic: "IPv4 = 4 octets, 32 bits, Classes A-C"

Question 4(a) [3 marks]

Give full name of ARP and RARP and describe them.

Answer:

Full Names:

- ARP: Address Resolution Protocol
- **RARP**: Reverse Address Resolution Protocol

Protocol	Function
ARP	Maps IP address to MAC address
RARP	Maps MAC address to IP address

ARP Process:

- **Request**: "Who has IP 192.168.1.1?"
- Reply: "192.168.1.1 is at MAC 00:1A:2B:3C:4D:5E"
- Cache: Stores mappings for future use

RARP Process:

- Diskless Workstations: Get IP from server
- Broadcast Request: Sends MAC address
- Server Response: Returns assigned IP address

Mnemonic: "ARP = Address to MAC, RARP = Reverse"

Question 4(b) [4 marks]

Describe DSL technology with its advantages and limitations.

Answer:

DSL (Digital Subscriber Line):

Туре	Speed	Distance
ADSL	Up to 8 Mbps	5.5 km
VDSL	Up to 52 Mbps	1.5 km
SDSL	Up to 2 Mbps	3 km

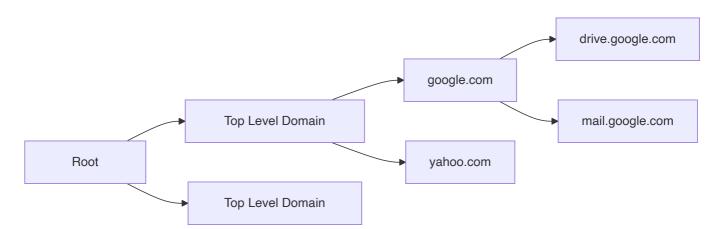
Advantages:

- **Existing Infrastructure**: Uses telephone lines
- Always-On: Continuous internet connection
- Voice + Data: Simultaneous phone and internet
- Cost-Effective: Affordable for home users

Limitations:

- Distance Dependent: Speed decreases with distance
- Upload Speed: Lower than download speed (ADSL)
- Line Quality: Affected by copper wire condition
- Availability: Not available in all areas

Mnemonic: "DSL = Digital Subscriber Line"


Question 4(c) [7 marks]

Role of DNS- Domain Name System.

Answer:

DNS Functions:

- Name Resolution: Converts domain names to IP addresses
- Hierarchical Structure: Organized in tree-like structure
- Distributed Database: Information stored across multiple servers

DNS Hierarchy:

- Root Domain: Highest level (.)
- Top-Level Domain: .com, .org, .net, .edu
- Second-Level Domain: google.com, yahoo.com
- Subdomain: www.google.com, mail.google.com

DNS Resolution Process:

1. Client Query: User types www.example.com

- 2. Local DNS: Checks local cache
- 3. Root Server: Queries root DNS server
- 4. TLD Server: Queries .com server
- 5. Authoritative Server: Gets IP address
- 6. Response: Returns IP to client

DNS Record Types:

- A Record: Maps domain to IPv4 address
- AAAA Record: Maps domain to IPv6 address
- CNAME: Canonical name (alias)
- MX: Mail exchange server
- **NS**: Name server records

Mnemonic: "DNS = Domain Name System"

Question 4(a OR) [3 marks]

Give full name of DHCP and BOOTP. and describe them.

Answer:

Full Names:

- DHCP: Dynamic Host Configuration Protocol
- BOOTP: Bootstrap Protocol

Protocol	Function
DHCP	Automatically assigns IP addresses
воотр	Provides IP address to diskless workstations

DHCP Process:

- Discover: Client broadcasts request
- Offer: Server offers IP address
- Request: Client requests specific IP
- Acknowledge: Server confirms assignment

BOOTP Process:

- Static Configuration: Pre-configured IP assignments
- **Diskless Boot**: Workstations boot from network
- Server Response: Provides IP and boot information

Mnemonic: "DHCP = Dynamic, BOOTP = Bootstrap"

Question 4(b OR) [4 marks]

Differences Between Virtual Circuits and Datagram Networks.

Answer:

Feature	Virtual Circuits	Datagram Networks
Connection	Connection-oriented	Connectionless
Setup	Requires setup phase	No setup required
Routing	Same path for all packets	Independent routing
Order	Packets arrive in order	May arrive out of order
Reliability	More reliable	Less reliable
Overhead	Higher setup overhead	Lower per-packet overhead

Virtual Circuits:

- Path Establishment: Creates virtual connection
- State Information: Maintains connection state
- **Examples**: ATM, Frame Relay

Datagram Networks:

- Independent Packets: Each packet routed separately
- Stateless: No connection state maintained
- **Examples**: Internet Protocol (IP)

Mnemonic: "Virtual = Connection, Datagram = Independent"

Question 4(c OR) [7 marks]

Explain TCP and UDP protocol in transport layer

Feature	ТСР	UDP
Connection	Connection-oriented	Connectionless
Reliability	Reliable	Unreliable
Header Size	20 bytes	8 bytes
Flow Control	Yes	No
Error Control	Yes	Basic
Speed	Slower	Faster

TCP (Transmission Control Protocol):

- Three-Way Handshake: SYN, SYN-ACK, ACK
- Flow Control: Sliding window mechanism
- Error Recovery: Retransmission of lost packets
- Congestion Control: Prevents network overload

TCP Header:

0	16	32		
+	+	+		
Source Por	rt Destin	nation Port		
+	+	+		
Sequ	uence Number			
++				
Acknowledgment Number				
+	+	+		
Hdr U	A P R S F	Window		
Len R	C S S Y I	Size		
+	+	+		

UDP (User Datagram Protocol):

- Simple Protocol: Minimal overhead
- Best Effort: No guarantee of delivery
- Applications: DNS, DHCP, streaming media
- Real-time Communication: Voice, video applications

UDP Header:

0	16	32
+	+	+
Source Port	Destinat	ion Port
+ Length	+ Check	+ sum
+	+	+

Applications:

- TCP: Web browsing, email, file transfer
- **UDP**: Online gaming, video streaming, DNS queries

Mnemonic: "TCP = Reliable, UDP = Fast"

Question 5(a) [3 marks]

Explain any two of following. (1) WWW (2) FTP (3) SMTP

Answer:

WWW (World Wide Web):

- HTTP Protocol: HyperText Transfer Protocol
- Web Browser: Client software (Chrome, Firefox)
- Web Server: Serves web pages (Apache, IIS)

FTP (File Transfer Protocol):

- File Transfer: Upload and download files
- Two Modes: Active and passive mode
- Authentication: Username and password required

Service	Port	Function
www	80/443	Web page delivery
FTP	20/21	File transfer

Mnemonic: "WWW = Web, FTP = Files"

Question 5(b) [4 marks]

Difference between symmetric and asymmetric encryption algorithms.

Feature	Symmetric	Asymmetric
Keys	Same key for encryption/decryption	Different keys (public/private)
Speed	Fast	Slow
Key Distribution	Difficult	Easy
Examples	AES, DES	RSA, ECC

Symmetric Encryption:

- Single Key: Same key used by sender and receiver
- Key Management: Secure key distribution required
- Performance: Fast encryption/decryption
- Applications: Bulk data encryption

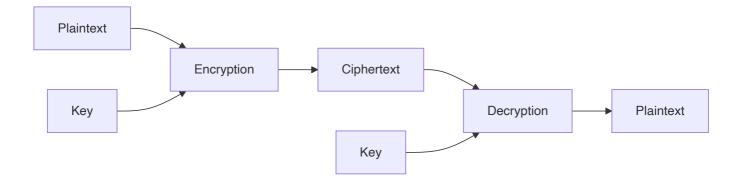
Asymmetric Encryption:

- Key Pair: Public key for encryption, private key for decryption
- Key Distribution: Public key can be shared openly
- Performance: Slower than symmetric
- Applications: Digital signatures, key exchange

Mnemonic: "Symmetric = Same, Asymmetric = Different"

Question 5(c) [7 marks]

Define the terms "encryption" and "decryption" in the context of cryptography.


Answer:

Encryption:

- Definition: Process of converting plaintext into ciphertext
- **Purpose**: Protect data confidentiality
- Input: Plaintext + Key
- **Output**: Ciphertext

Decryption:

- Definition: Process of converting ciphertext back to plaintext
- Purpose: Retrieve original data
- **Input**: Ciphertext + Key
- **Output**: Plaintext

Cryptographic Process:

- 1. Sender: Encrypts message using key
- 2. Transmission: Sends ciphertext over network
- 3. Receiver: Decrypts ciphertext using key
- 4. Recovery: Gets original plaintext message

Types of Encryption:

- Stream Cipher: Encrypts one bit/byte at a time
- Block Cipher: Encrypts fixed-size blocks
- Hash Function: One-way encryption (no decryption)

Applications:

- Data Protection: Secure file storage
- Communication: Secure messaging
- Authentication: Digital signatures
- Privacy: Personal information protection

Security Requirements:

- Confidentiality: Only authorized users can read
- Integrity: Data hasn't been tampered with
- Authentication: Verify sender identity
- Non-repudiation: Sender cannot deny sending

Mnemonic: "Encryption = Hide, Decryption = Reveal"

Question 5(a OR) [3 marks]

Difference between IMAP and POP3

Feature	ΙΜΑΡ	POP3
Storage	Server-side	Client-side
Access	Multiple devices	Single device
Offline	Limited	Full access

IMAP (Internet Message Access Protocol):

- Server Storage: Messages remain on server
- Multi-Device: Access from multiple devices
- Synchronization: Changes sync across devices

POP3 (Post Office Protocol 3):

- Download: Messages downloaded to client
- Single Device: Best for one device access
- Storage: Client manages message storage

Mnemonic: "IMAP = Internet Access, POP3 = Post Office"

Question 5(b OR) [4 marks]

Briefly describe the Information Technology (Amendment) Act, 2008, and its impact on cyber laws in India.

Answer:

IT Act 2008 Key Features:

- Cyber Crimes: Defines various cyber offenses
- Data Protection: Privacy and security requirements
- Digital Signatures: Legal recognition of e-signatures
- Penalties: Fines and imprisonment for violations

Major Amendments:

- Section 66A: Criminalized offensive messages (later struck down)
- Section 69: Government power to intercept information
- Section 72A: Punishment for disclosure of personal information
- Section 43A: Compensation for data breach

Impact on Cyber Laws:

- Legal Framework: Comprehensive cyber law structure
- Business Compliance: Data protection requirements
- Individual Rights: Privacy protection mechanisms

• Law Enforcement: Tools for investigating cyber crimes

Mnemonic: "IT Act = Internet Technology Act"

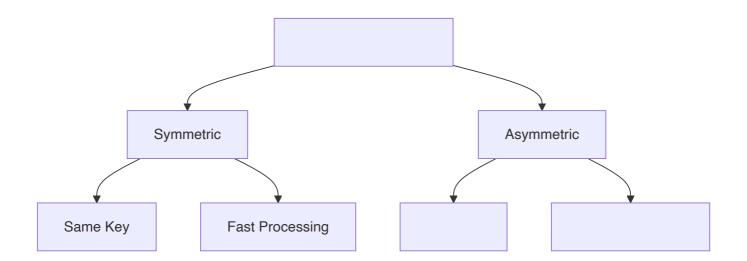
Question 5(c OR) [7 marks]

Difference between symmetric and asymmetric encryption algorithms.

Answer:

Aspect	Symmetric Encryption	Asymmetric Encryption
Key Usage	Same key for encrypt/decrypt	Different keys (public/private)
Key Management	Difficult key distribution	Easy key distribution
Performance	Fast processing	Slow processing
Key Length	Shorter keys (128-256 bits)	Longer keys (1024-4096 bits)
Scalability	Poor (n² key pairs needed)	Good (n key pairs needed)
Examples	AES, DES, 3DES, Blowfish	RSA, ECC, DSA, ElGamal

Symmetric Encryption Details:


- Algorithm Types: Stream ciphers, Block ciphers
- Key Distribution Problem: Secure channel needed for key exchange
- Applications: Bulk data encryption, VPNs, file encryption
- Advantages: Fast, efficient for large amounts of data
- **Disadvantages**: Key management complexity, no digital signatures

Asymmetric Encryption Details:

- Public Key Infrastructure: PKI for key management
- Digital Signatures: Authentication and non-repudiation
- **Applications**: Email security, SSL/TLS, digital certificates
- Advantages: Secure key exchange, digital signatures
- Disadvantages: Computationally intensive, slower processing

Hybrid Approach:

- Best of Both: Combines symmetric and asymmetric encryption
- Key Exchange: Asymmetric for key distribution
- Data Encryption: Symmetric for actual data
- **Example**: SSL/TLS uses both methods

Real-world Applications:

- Banking: ATM transactions use symmetric encryption
- E-commerce: HTTPS uses hybrid encryption
- Email: PGP uses asymmetric for key exchange
- Mobile: WhatsApp uses end-to-end encryption

Security Considerations:

- Key Length: Longer keys provide better security
- Algorithm Strength: Choose proven algorithms
- Implementation: Proper coding prevents vulnerabilities
- Key Storage: Secure key management essential

Performance Comparison:

Operation	Symmetric (AES)	Asymmetric (RSA)
Encryption	~1000 MB/s	~1 MB/s
Key Generation	Fast	Slow
Memory Usage	Low	High
CPU Usage	Low	High

Future Trends:

- Quantum Computing: Threat to current asymmetric algorithms
- Post-Quantum Cryptography: New algorithms being developed
- Elliptic Curve: More efficient asymmetric encryption
- Lightweight Cryptography: For IoT devices

Mnemonic: "Symmetric = Same Speed, Asymmetric = Advanced Security"