
Step Description

1. Problem Identification Clearly understand and define the problem

2. Problem Analysis Break down the problem into smaller parts

3. Solution Design Develop possible solutions or algorithms

4. Implementation Execute the chosen solution

5. Testing & Validation Verify the solution works correctly

6. Documentation Record the solution for future reference

Rule Description

Start Character Must begin with letter (a-z, A-Z) or underscore (_)

Allowed Characters Can contain letters, digits (0-9), and underscores

Case Sensitive myVar and MyVar are different variables

No Keywords Cannot use Python reserved words (if, for, while)

No Spaces Use underscore instead of spaces

Descriptive Names Choose meaningful names (age, not x)

Question 1(a) [3 marks]
Define problem solving and list out the steps of problem solving.

Answer:
Problem solving is a systematic approach to identify, analyze, and resolve challenges or issues using logical
thinking and structured methods.

Steps of Problem Solving:

Mnemonic: "I Always Design Implementation Tests Daily"

Question 1(b) [4 marks]
Define variable and mention rule for choosing names of variable.

Answer:
A variable is a named storage location in memory that holds data values which can be changed during
program execution.

Variable Naming Rules:

Mnemonic: "Start Alphabetically, Continue Carefully, Never Keywords"

Python Programming (4311601) - Summer 2024 Solution by Milav Dabgar

No. 1 / 23

Question 1(c) [7 marks]
Design a flowchart to find maximum number out of three given numbers.

Answer:
A flowchart shows the logical flow to find the maximum of three numbers using comparison operations.

Flowchart:

Python Programming (4311601) - Summer 2024 Solution by Milav Dabgar

No. 2 / 23

Yes No

Yes No Yes No

Start

Input: num1, num2,
num3

num1 >
num2?

num1 >
num3?

num2 >
num3?

max =
num1

max =
num3

max =
num2

max =
num3

Output:
max

End

Key Points:

Input: Three numbers (num1, num2, num3)

Process: Compare numbers using nested conditions

Python Programming (4311601) - Summer 2024 Solution by Milav Dabgar

No. 3 / 23

Output: Maximum value among the three

Mnemonic: "Compare First Two, Then With Third"

Question 1(c OR) [7 marks]
Construct an algorithm which checks entered number is positive and greater than 5 or not.

Answer:
An algorithm to verify if a number is both positive and greater than 5.

Algorithm:

Flowchart:

Algorithm: CheckPositiveGreaterThan5

Step 1: START

Step 2: INPUT number

Step 3: IF number > 0 AND number > 5 THEN

 PRINT "Number is positive and greater than 5"
 ELSE
 PRINT "Number does not meet criteria"
 END IF
Step 4: END

Python Programming (4311601) - Summer 2024 Solution by Milav Dabgar

No. 4 / 23

Yes No

Start

Input: number

number > 0 AND number >
5?

Print: Number is positive
and greater than 5

Print: Number does not
meet criteria

End

Key Conditions:

Positive: number > 0

Greater than 5: number > 5

Combined: Both conditions must be true

Mnemonic: "Positive Plus Five"

Python Programming (4311601) - Summer 2024 Solution by Milav Dabgar

No. 5 / 23

Operator Name Example Result

+ Addition 5 + 3 8

- Subtraction 5 - 3 2

* Multiplication 5 * 3 15

/ Division 5 / 3 1.67

// Floor Division 5 // 3 1

% Modulus 5 % 3 2

** Exponentiation 5 ** 3 125

Statement Purpose Action

break Exit loop completely Terminates entire loop

continue Skip current iteration Jumps to next iteration

Question 2(a) [3 marks]
Write a short note on arithmetic operators.

Answer:
Arithmetic operators perform mathematical calculations on numeric values in Python programming.

Arithmetic Operators Table:

Mnemonic: "Add Subtract Multiply Divide Floor Mod Power"

Question 2(b) [4 marks]
Explain the need for continue and break statements.

Answer:
Continue and break statements control loop execution flow for efficient programming.

Statement Comparison:

Usage Examples:

break: Exit when condition met (finding specific value)

continue: Skip invalid data (negative numbers in positive list)

Benefits:

Efficiency: Avoid unnecessary iterations

Python Programming (4311601) - Summer 2024 Solution by Milav Dabgar

No. 6 / 23

Condition Result Explanation

number % 2 == 0 Even Divisible by 2, no remainder

number % 2 == 1 Odd Not divisible by 2, remainder 1

Control: Better program flow management

Clarity: Cleaner code logic

Mnemonic: "Break Exits, Continue Skips"

Question 2(c) [7 marks]
Create a program to check whether entered number is even or odd.

Answer:
A Python program using modulus operator to determine if a number is even or odd.

Python Code:

Logic Explanation:

Sample Output:

Input: 8 → Output: "8 is Even"

Input: 7 → Output: "7 is Odd"

Mnemonic: "Modulus Zero Even, One Odd"

Question 2(a OR) [3 marks]
Summarize the comparison operators of python.

Answer:
Comparison operators compare values and return boolean results (True/False).

Comparison Operators Table:

Program to check even or odd

number = int(input("Enter a number: "))

if number % 2 == 0:

 print(f"{number} is Even")
else:

 print(f"{number} is Odd")

Python Programming (4311601) - Summer 2024 Solution by Milav Dabgar

No. 7 / 23

Operator Name Example Result

== Equal to 5 == 5 True

!= Not equal to 5 != 3 True

> Greater than 5 > 3 True

< Less than 5 < 3 False

>= Greater than or equal 5 >= 5 True

<= Less than or equal 5 <= 3 False

Component Description

Initialization Set initial value before loop

Condition Boolean expression to test

Body Code to execute repeatedly

Update Modify variable to avoid infinite loop

Return Type: All operators return boolean values (True/False)

Mnemonic: "Equal Not Greater Less Greater-Equal Less-Equal"

Question 2(b OR) [4 marks]
Write short note on while loop.

Answer:
While loop repeatedly executes code block as long as condition remains true.

While Loop Structure:

Syntax:

Characteristics:

Pre-tested: Condition checked before execution

Variable iterations: Unknown number of repetitions

Control: Condition determines continuation

Mnemonic: "While Condition True, Execute Loop"

while condition:

 # loop body
 # update statement

Python Programming (4311601) - Summer 2024 Solution by Milav Dabgar

No. 8 / 23

Step Operation

Input Read three numbers

Sum Add all three numbers

Divide Sum ÷ 3

Output Display formatted result

Question 2(c OR) [7 marks]
Create a program to read three numbers from the user and find the average of the numbers.

Answer:
A Python program to calculate average of three user-input numbers.

Python Code:

Calculation Process:

Sample Execution:

Input: 10, 20, 30

Sum: 60

Average: 20.00

Mnemonic: "Sum Three Divide Display"

Question 3(a) [3 marks]
Define control structures, List out control structures available in python.

Answer:
Control structures determine the execution flow and order of statements in a program.

Python Control Structures:

Program to find average of three numbers

num1 = float(input("Enter first number: "))

num2 = float(input("Enter second number: "))

num3 = float(input("Enter third number: "))

average = (num1 + num2 + num3) / 3

print(f"Average of {num1}, {num2}, {num3} is: {average:.2f}")

Python Programming (4311601) - Summer 2024 Solution by Milav Dabgar

No. 9 / 23

Type Structures Purpose

Sequential Normal flow Execute statements in order

Selection if, if-else, elif Choose between alternatives

Iteration for, while Repeat code blocks

Jump break, continue, pass Alter normal flow

Component Syntax Purpose

Definition def function_name(): Create function

Parameters def func(param1, param2): Accept inputs

Body Indented code block Function logic

Return return value Send result back

Call function_name() Execute function

Categories:

Conditional: Decision making (if statements)

Looping: Repetition (for/while loops)

Branching: Flow control (break/continue)

Mnemonic: "Sequence Select Iterate Jump"

Question 3(b) [4 marks]
Explain how to define and call user defined function by giving example.

Answer:
User-defined functions are custom blocks of reusable code that perform specific tasks.

Function Structure:

Example Code:

Function definition

def greet_user(name):

 message = f"Hello, {name}!"
 return message

Function call

result = greet_user("Python")

print(result) # Output: Hello, Python!

Python Programming (4311601) - Summer 2024 Solution by Milav Dabgar

No. 10 / 23

Row Iterations Output

1 1 time 1

2 2 times 22

3 3 times 333

4 4 times 4444

5 5 times 55555

Mnemonic: "Define Parameters Body Return Call"

Question 3(c) [7 marks]
Create a program to display the following patterns using loop concept

Answer:
A Python program using nested loops to create number patterns.

Python Code:

Pattern Logic:

Loop Structure:

Outer loop: Controls rows (1 to 5)

Inner loop: Prints current row number

Pattern: Row number repeated row times

Mnemonic: "Outer Rows Inner Repeats"

Question 3(a OR) [3 marks]
Explain nested loop using suitable example.

Answer:
Nested loop is a loop inside another loop where inner loop completes all iterations for each outer loop
iteration.

Nested Loop Structure:

Pattern printing program

for i in range(1, 6):

 for j in range(1, i + 1):
 print(i, end="")
 print() # New line after each row

Python Programming (4311601) - Summer 2024 Solution by Milav Dabgar

No. 11 / 23

Component Description

Outer Loop Controls main iterations

Inner Loop Executes completely for each outer iteration

Execution Inner loop runs n×m times total

Scope Type Definition Access Lifetime

Local Inside function Function only Function execution

Global Outside functions Entire program Program execution

Example Code:

Output Pattern:

Mnemonic: "Loop Inside Loop"

Question 3(b OR) [4 marks]
Write short note on local and global scope of variables

Answer:
Variable scope determines where variables can be accessed in a program.

Scope Comparison:

Example Code:

Nested loop example - Multiplication table

for i in range(1, 4): # Outer loop
 for j in range(1, 4): # Inner loop
 print(f"{i}×{j}={i*j}", end=" ")
 print() # New line

1×1=1 1×2=2 1×3=3
2×1=2 2×2=4 2×3=6
3×1=3 3×2=6 3×3=9

Python Programming (4311601) - Summer 2024 Solution by Milav Dabgar

No. 12 / 23

Key Points:

Local: Function-specific variables

Global: Program-wide variables

Access: Local overrides global in functions

Mnemonic: "Local Limited, Global General"

Question 3(c OR) [7 marks]
Develop a user-defined function to find the factorial of a given number.

Answer:
A recursive function to calculate factorial of a positive integer.

Python Code:

Factorial Logic:

global_var = "I am global" # Global scope

def my_function():

 local_var = "I am local" # Local scope
 global global_var
 print(global_var) # Accessible
 print(local_var) # Accessible

print(global_var) # Accessible
print(local_var) # Error - not accessible

def factorial(n):

 """Calculate factorial of n"""
 if n == 0 or n == 1:
 return 1
 else:
 return n * factorial(n - 1)

Test the function

number = int(input("Enter a number: "))

if number < 0:

 print("Factorial not defined for negative numbers")
else:

 result = factorial(number)
 print(f"Factorial of {number} is {result}")

Python Programming (4311601) - Summer 2024 Solution by Milav Dabgar

No. 13 / 23

Input Calculation Result

0 Base case 1

1 Base case 1

5 5 × 4 × 3 × 2 × 1 120

Function Purpose Example

math.sqrt() Square root math.sqrt(16) = 4.0

math.pow() Power calculation math.pow(2, 3) = 8.0

math.ceil() Round up math.ceil(4.3) = 5

math.floor() Round down math.floor(4.7) = 4

math.factorial() Factorial math.factorial(5) = 120

Function Features:

Recursive: Function calls itself

Base case: Stops recursion at n=0 or n=1

Validation: Handles negative inputs

Mnemonic: "Multiply All Previous Numbers"

Question 4(a) [3 marks]
Explain math module with various functions

Answer:
Math module provides mathematical functions and constants for numerical computations.

Math Module Functions:

Usage:

Mnemonic: "Square Power Ceiling Floor Factorial"

Question 4(b) [4 marks]
Discuss the following list functions: i. len() ii. sum() iii. sort() iv. index()

import math

result = math.sqrt(25) # Returns 5.0

Python Programming (4311601) - Summer 2024 Solution by Milav Dabgar

No. 14 / 23

Function Purpose Return Type Example

len() Count elements Integer len([1,2,3]) = 3

sum() Add all numbers Number sum([1,2,3]) = 6

sort() Arrange in order None (modifies list) list.sort()

index() Find element position Integer [1,2,3].index(2) = 1

Answer:
Essential list functions for data manipulation and analysis.

List Functions Comparison:

Usage Notes:

len(): Works with any sequence

sum(): Only numeric lists

sort(): Modifies original list

index(): Returns first occurrence

Mnemonic: "Length Sum Sort Index"

Question 4(c) [7 marks]
Create a user-defined function to print the Fibonacci series of 0 to N numbers. (Where N is an
integer number and passed as an argument)

Answer:
A function to generate and display Fibonacci sequence up to N terms.

Python Code:

def fibonacci_series(n):

 """Print Fibonacci series of n terms"""
 if n <= 0:
 print("Please enter a positive number")
 return

 # First two terms
 a, b = 0, 1

 if n == 1:
 print(f"Fibonacci series: {a}")
 return

 print(f"Fibonacci series: {a}, {b}", end="")

 # Generate remaining terms

Python Programming (4311601) - Summer 2024 Solution by Milav Dabgar

No. 15 / 23

Term Value Calculation

1st 0 Given

2nd 1 Given

3rd 1 0 + 1

4th 2 1 + 1

5th 3 1 + 2

Function Purpose Example

random() Float 0.0 to 1.0 random.random()

randint() Integer in range random.randint(1, 10)

choice() Random list element random.choice([1,2,3])

shuffle() Mix list order random.shuffle(list)

uniform() Float in range random.uniform(1.0, 5.0)

Fibonacci Logic:

Mnemonic: "Add Previous Two Numbers"

Question 4(a OR) [3 marks]
Explain random module with various functions

Answer:
Random module generates random numbers and makes random selections for various applications.

Random Module Functions:

Usage:

 for i in range(2, n):
 c = a + b
 print(f", {c}", end="")
 a, b = b, c
 print() # New line

Test function

num = int(input("Enter number of terms: "))

fibonacci_series(num)

Python Programming (4311601) - Summer 2024 Solution by Milav Dabgar

No. 16 / 23

Method Syntax Returns

in operator element in list Boolean

not in operator element not in list Boolean

count() method list.count(element) Integer

Applications: Games, simulations, testing, cryptography

Mnemonic: "Random Range Choice Shuffle Uniform"

Question 4(b OR) [4 marks]
Build a python code to check whether given element is member of list or not.

Answer:
A Python program to verify if an element exists in a list using membership operator.

Python Code:

Membership Methods:

Mnemonic: "In List True False"

Question 4(c OR) [7 marks]

import random

number = random.randint(1, 100)

Check element membership in list

def check_membership():

 # Sample list
 numbers = [10, 20, 30, 40, 50]

 # Get element to search
 element = int(input("Enter element to search: "))

 # Check membership
 if element in numbers:
 print(f"{element} is present in the list")
 print(f"Position: {numbers.index(element)}")
 else:
 print(f"{element} is not present in the list")

Call function

check_membership()

Python Programming (4311601) - Summer 2024 Solution by Milav Dabgar

No. 17 / 23

Step Operation Example

1 Split into words ["Hello", "IT"]

2 Reverse each word ["olleH", "TI"]

3 Join with spaces "olleH TI"

Develop a user defined function that reverses the entered string words

Answer:
A function to reverse each word in a string while maintaining word positions.

Python Code:

Process Steps:

Mnemonic: "Split Reverse Join"

Question 5(a) [3 marks]
Explain given string methods: i. count() ii. strip() iii. replace()

def reverse_string_words(text):

 """Reverse each word in the string"""
 # Split string into words
 words = text.split()

 # Reverse each word
 reversed_words = []
 for word in words:
 reversed_word = word[::-1] # Slice notation for reversal
 reversed_words.append(reversed_word)

 # Join words back
 result = " ".join(reversed_words)
 return result

Test function

input_string = input("Enter a string: ")

output = reverse_string_words(input_string)

print(f"Input: \"{input_string}\"")

print(f"Output: \"{output}\"")

Example with given input

test_input = "Hello IT"

test_output = reverse_string_words(test_input)

print(f"Input: \"{test_input}\"")

print(f"Output: \"{test_output}\"") # Output: "olleH TI"

Python Programming (4311601) - Summer 2024 Solution by Milav Dabgar

No. 18 / 23

Method Purpose Syntax Example

count() Count occurrences str.count(substring) "hello".count("l") = 2

strip() Remove whitespace str.strip() " text ".strip() = "text"

replace() Replace substring str.replace(old, new) "hi".replace("i", "ello") = "hello"

Method Syntax Use Case

Index-based for i in range(len(str)) Need position

Direct iteration for char in string Just characters

Enumerate for i, char in enumerate(str) Both index and character

Answer:
Essential string methods for text processing and manipulation.

String Methods Comparison:

Return Values:

count(): Integer (number of occurrences)

strip(): New string (whitespace removed)

replace(): New string (replacements made)

Mnemonic: "Count Strip Replace"

Question 5(b) [4 marks]
Explain how to traverse a string by giving example.

Answer:
String traversal means accessing each character in a string sequentially.

Traversal Methods:

Example Code:

Python Programming (4311601) - Summer 2024 Solution by Milav Dabgar

No. 19 / 23

Mnemonic: "Direct Index Enumerate"

Question 5(c) [7 marks]
Develop programs to perform the following list operations:

Answer:
Two programs for essential list operations and analysis.

Program 1: Check Element Existence

Program 2: Find Smallest and Largest

text = "Python"

Method 1: Direct iteration

for char in text:

 print(char, end=" ") # P y t h o n

Method 2: Index-based

for i in range(len(text)):

 print(f"{i}: {text[i]}")

Method 3: Enumerate

for index, character in enumerate(text):

 print(f"Position {index}: {character}")

def check_element_exists(lst, element):

 """Check if element exists in list"""
 if element in lst:
 return True, lst.index(element)
 else:
 return False, -1

Test program 1

numbers = [10, 25, 30, 45, 50]

search_item = int(input("Enter element to search: "))

exists, position = check_element_exists(numbers, search_item)

if exists:

 print(f"{search_item} found at position {position}")
else:

 print(f"{search_item} not found in list")

def find_min_max(lst):

 """Find smallest and largest elements"""
 if not lst: # Empty list check
 return None, None

Python Programming (4311601) - Summer 2024 Solution by Milav Dabgar

No. 20 / 23

Format Description Example

list[start:end] Elements from start to end-1 [1,2,3,4][1:3] = [2,3]

list[:end] From beginning to end-1 [1,2,3,4][:2] = [1,2]

list[start:] From start to end [1,2,3,4][2:] = [3,4]

list[::step] Every step element [1,2,3,4][::2] = [1,3]

Key Operations:

Membership: Using 'in' operator

Min/Max: Built-in functions

Validation: Empty list handling

Mnemonic: "Search Find Compare"

Question 5(a OR) [3 marks]
Explain slicing of list with example.

Answer:
List slicing extracts specific portions of a list using index ranges.

Slicing Syntax:

Example:

Mnemonic: "Start End Step"

Question 5(b OR) [4 marks]

 smallest = min(lst)
 largest = max(lst)
 return smallest, largest

Test program 2

numbers = [15, 8, 23, 4, 16, 42]

min_val, max_val = find_min_max(numbers)

print(f"List: {numbers}")

print(f"Smallest: {min_val}")

print(f"Largest: {max_val}")

numbers = [0, 1, 2, 3, 4, 5]

print(numbers[1:4]) # [1, 2, 3]
print(numbers[:3]) # [0, 1, 2]
print(numbers[3:]) # [3, 4, 5]
print(numbers[::2]) # [0, 2, 4]

Python Programming (4311601) - Summer 2024 Solution by Milav Dabgar

No. 21 / 23

Method Syntax Output Type

Value iteration for item in list Elements only

Index iteration for i in range(len(list)) Index access

Enumerate for i, item in enumerate(list) Index and value

Question 5(b OR) [4 marks]
Explain how to traverse a list by giving example.

Answer:
List traversal involves accessing each element in a list systematically.

Traversal Techniques:

Example Code:

Use Cases:

Value only: Simple processing

Index access: Position-dependent operations

Enumerate: Both index and value needed

Mnemonic: "Value Index Both"

Question 5(c OR) [7 marks]
Develop python code to create list of prime and non-prime numbers in range 1 to 50.

Answer:
A Python program to categorize numbers into prime and non-prime lists.

fruits = ["apple", "banana", "orange"]

Method 1: Direct value access

print("Values only:")

for fruit in fruits:

 print(fruit)

Method 2: Index-based access

print("\nWith indices:")

for i in range(len(fruits)):

 print(f"Index {i}: {fruits[i]}")

Method 3: Enumerate

print("\nUsing enumerate:")

for index, fruit in enumerate(fruits):

 print(f"{index} -> {fruit}")

Python Programming (4311601) - Summer 2024 Solution by Milav Dabgar

No. 22 / 23

Number Type Condition Examples

Prime Only divisible by 1 and itself 2, 3, 5, 7, 11

Non-Prime Has other divisors 1, 4, 6, 8, 9

Python Code:

Prime Logic:

Algorithm Steps:

Check divisibility from 2 to √n

Categorize based on prime test

Store in appropriate lists

Mnemonic: "Check Divide Categorize Store"

def is_prime(n):

 """Check if a number is prime"""
 if n < 2:
 return False
 for i in range(2, int(n**0.5) + 1):
 if n % i == 0:
 return False
 return True

def categorize_numbers(start, end):

 """Create lists of prime and non-prime numbers"""
 prime_numbers = []
 non_prime_numbers = []

 for num in range(start, end + 1):
 if is_prime(num):
 prime_numbers.append(num)
 else:
 non_prime_numbers.append(num)

 return prime_numbers, non_prime_numbers

Generate lists for 1 to 50

primes, non_primes = categorize_numbers(1, 50)

print("Prime numbers (1-50):")

print(primes)

print(f"\nTotal prime numbers: {len(primes)}")

print("\nNon-prime numbers (1-50):")

print(non_primes)

print(f"\nTotal non-prime numbers: {len(non_primes)}")

Python Programming (4311601) - Summer 2024 Solution by Milav Dabgar

No. 23 / 23

	Question 1(a) [3 marks]
	Question 1(b) [4 marks]
	Question 1(c) [7 marks]
	Question 1(c OR) [7 marks]
	Question 2(a) [3 marks]
	Question 2(b) [4 marks]
	Question 2(c) [7 marks]
	Question 2(a OR) [3 marks]
	Question 2(b OR) [4 marks]
	Question 2(c OR) [7 marks]
	Question 3(a) [3 marks]
	Question 3(b) [4 marks]
	Question 3(c) [7 marks]
	Question 3(a OR) [3 marks]
	Question 3(b OR) [4 marks]
	Question 3(c OR) [7 marks]
	Question 4(a) [3 marks]
	Question 4(b) [4 marks]
	Question 4(c) [7 marks]
	Question 4(a OR) [3 marks]
	Question 4(b OR) [4 marks]
	Question 4(c OR) [7 marks]
	Question 5(a) [3 marks]
	Question 5(b) [4 marks]
	Question 5(c) [7 marks]
	Question 5(a OR) [3 marks]
	Question 5(b OR) [4 marks]
	Question 5(c OR) [7 marks]

