Data Structure with Python (4331601) - Summer 2024 Solution by Milav Dabgar

Question 1(a) [3 marks]

Differentiate between array and list.

Answer:
Array List
Fixed size at creation Dynamic size - can grow/shrink
Homogeneous data (same type) Heterogeneous data (mixed types)
Memory efficient - contiguous allocation Flexible but uses more memory
Faster access for calculations Built-in methods for operations

Mnemonic: "Arrays are Fixed Friends, Lists are Loose Leaders"

Question 1(b) [4 marks]

Explain the concept of class and object with the help of python program.
Answer:
Class i s blueprint © < objects I structure 214 behavior define s2 ©. Object A4 class i instance ©.
class Student:
def init (self, name, age):

self.name = name

self.age = age

def display(self):
print (f"Name: {self.name}, Age: {self.age}")

Creating objects

sl = Student("Ram", 20)
s2 = Student("Sita", 19)
sl.display()

e Class: Template Gi41d &
e Object: Real instance Gi41d &

e Constructor: Object initialize 52 ©

Mnemonic: "Class Blueprints Create Object Instances"

Question 1(c) [7 marks]

Define constructor. Discuss different types of constructors with suitable python program.

Answer:

No.1/16

Data Structure with Python (4331601) - Summer 2024 Solution by Milav Dabgar

Constructor i special method £ < object creation time U2 automatically call &1 ©. Python Hi __init_ ()
method constructor €.

class Demo:
Default Constructor
def _ init (self):

self.value = 0

Parameterized Constructor
def _ init_ (self, x, y=10):
self.x = x

self.y =y
Usage

dl = Demo(5) # x=5, y=10 (default)
d2 = Demo(3, 7) # x=3, y=7

Types of Constructors:

Type Description Usage

Default No parameters Object initialization
Parameterized With parameters Custom initialization
Copy Creates copy of object Object duplication

Mnemonic: "Default Parameters Copy Objects"

Question 1(c) OR [7 marks]

Define Polymorphism. Write a python program for polymorphism through inheritance.

Answer:

Polymorphism i same interface diu?l4 different objects u different operations perform s2ai-l ability .
class Animal:

def sound(self):

pass

class Dog(Animal):
def sound(self):

return "Woof!"
class Cat(Animal):
def sound(self):

return "Meow!"

Polymorphic behavior

animals = [Dog(), Cat()]

No. 2 /16

Data Structure with Python (4331601) - Summer 2024 Solution by Milav Dabgar

for animal in animals:

print(animal.sound())

¢ Method Overriding: Child class Hi same method name
e Dynamic Binding: Runtime 42 method selection

¢ Code Reusability: Same interface, different implementation

Mnemonic: "Many Objects, One Interface"

Question 2(a) [3 marks]

Explain Python specific data structure List, Tuple and Dictionary.

Answer:
Data Structure Properties
List Mutable, ordered, allows duplicates
Tuple Immutable, ordered, allows duplicates
Dictionary Mutable, key-value pairs, no duplicate keys

Mnemonic: "Lists Change, Tuples Stay, Dictionaries Map"

Question 2(b) [4 marks]

Explain application of stack.
Answer:
Stack Applications:

¢ Function Calls: Call stack management
e Expression Evaluation: Infix to postfix conversion
e Undo Operations: Text editors, browsers

¢ Parentheses Matching: Syntax checking

Fe——t
| 3 | <- Top
et
| 2 |
et
| 1]
et

Mnemonic: "Functions Evaluate Undo Parentheses"

Question 2(c) [7 marks]

No. 3 /16

Example

: 2}

Data Structure with Python (4331601) - Summer 2024 Solution by Milav Dabgar

Define stack. Explain PUSH & POP operation with example. Write an algorithm for PUSH and POP
operations of stack.

Answer:
Stack i LIFO (Last In First Out) principle follow s2¢ linear data structure €.

PUSH Algorithm:

1. Check if stack is full
2. If full, print "Stack Overflow"
3. Else, increment top
4. Add element at top position
POP Algorithm:
1. Check if stack is empty
2. If empty, print "Stack Underflow"
3. Else, remove element from top
4. Decrement top
Example:
stack = []

stack.append(10) # PUSH
stack.append(20) # PUSH
item = stack.pop() # POP returns 20

Mnemonic: "Last In, First Out - Like Plates"

Question 2(a) OR [3 marks]

Define Following terms: I. Time Complexity Il. Space Complexity Ill. Best case

Answer:
Term Definition Example
Time Complexity Algorithm execution time analysis O(n), O(log n)
Space Complexity Memory usage analysis O(1), O(n)
Best Case Minimum time/space needed Sorted array search

Mnemonic: "Time Space Best Performance”

Question 2(b) OR [4 marks]

Convert A-(B/C+ (D %E*F)/G)* Hinto postfix expression

Answer:

No. 4 /16

Data Structure with Python (4331601) - Summer 2024 Solution by Milav Dabgar

Step-by-step conversion:

Infix: A— (B / C+ (D% E *F) / G) *H
1. ABC/DES%F*xG/ +-H*

Stack operations:
- operators: ~r (I /l +, (I %I *,)I /I)I ki
- Final: ABC/DE % F *G/ + -H *

PostfixResult: ABCc /DES$F *G/ + - H *

Mnemonic: "Operands First, Operators Follow"

Question 2(c) OR [7 marks]

Define circular queue. Explain INSERT and DELETE operations of circular queue with diagrams.
Answer:

Circular Queue i queue 4 modified version € i last position first position 2112l connected ¢ia .

o S Y
11213 |
B S S

S S

front rear
INSERT Algorithm:

Check if queue is full
. rear = (rear + 1) % size

. queue[rear] = element

=Sow N
.

. If first element, set front = 0

DELETE Algorithm:

. Check if queue is empty
. element = queue[front]

. front = (front + 1) % size

=w NN

. Return element

Advantage: Memory efficiency

e Application: CPU scheduling, buffering

Mnemonic: "Circle Back When Full"

Question 3(a) [3 marks]

Explain Implementation of Stack using List.

No. 5 /16

Data Structure with Python (4331601) - Summer 2024 Solution by Milav Dabgar

Answer:

Stack operations Python List ds:
stack = [] # Empty stack
stack.append(10) # PUSH

stack.append(20) # PUSH
top = stack.pop() # POP

e PUSH: append() method
e POP: pop() method

e TOP: stack[-1] for peek

Mnemonic: "Append Pushes, Pop Pulls"

Question 3(b) [4 marks]

Discuss different applications of linked list.
Answer:
Linked List Applications:

e Dynamic Memory: Size varies at runtime
¢ |nsertion/Deletion: Efficient at any position
¢ Implementation: Stacks, queues, graphs

e Undo Functionality: Browser history, text editors

Application Advantage

Music Playlist Easy add/remove
Memory Management Dynamic allocation
Polynomial Representation Efficient storage

Mnemonic: "Dynamic Implementation Undo Memory"

Question 3(c) [7 marks]

Use Case
Media players
Operating systems

Mathematical operations

Explain doubly linked list. Write an algorithm to delete a node from the beginning of doubly linked

list

Answer:

Doubly Linked List 4i €25 node Hi data, next pointer 4 previous pointer ¢ia .

No. 6 /16

Data Structure with Python (4331601) - Summer 2024 Solution by Milav Dabgar

Delete from Beginning Algorithm:

1. If list is empty, return
2. If only one node:

- head = NULL
3. Else:

- temp = head

- head = head.next

- head.prev = NULL

- delete temp

def delete beginning(self):
if self.head is None:
return
if self.head.next is None:
self.head = None
else:
self.head = self.head.next

self.head.prev = None

Mnemonic: "Two Way Navigation"

Question 3(a) OR [3 marks]

Convert this Infix expression into Postfix expression: A+B/C*D-E/F-G
Answer:
Step-by-step conversion:

Infix: A+B/C*D-E/F-G

Postfix: ABC /D * + EF / - G -

Operator precedence: *, / > +, -

Left to right associativity

Mnemonic: "Multiply Divide Before Add Subtract”

Question 3(b) OR [4 marks]

Explain Circular Linked List with its disadvantages.

Answer:

No. 7 /16

Data Structure with Python (4331601) - Summer 2024 Solution by Milav Dabgar

Circular Linked List Hi last node i next pointer first node - point s2 .

ot ot ot
| 1 |--—=>] 2 [-——>] 3 |
ot ot ot

Disadvantages:

e Infinite Loop Risk: Improper traversal
e Complex Implementation: Extra care needed
e Memory Overhead: Additional pointer management

¢ Debugging Difficulty: Circular references

Mnemonic: "Circles Can Cause Confusion"

Question 3(c) OR [7 marks]

Write a Python Program to perform Insert operation in doubly Linked List. Explain with neat
diagrams.

Answer:
class Node:

def init_(self, data):
self.data data

self.next None

self.prev = None

class DoublyLinkedList:
def _ init (self):

self.head = None

def insert beginning(self, data):
new_node = Node(data)
if self.head is None:
self.head = new_node
else:
new_node.next = self.head
self.head.prev = new_node

self.head = new_node

Before: NULL <- [10] <-> [20] -> NULL
After: NULL <- [5] <-> [10] <-> [20] -> NULL

new head

No. 8 /16

Data Structure with Python (4331601) - Summer 2024 Solution by Milav Dabgar

Insert Operations:
e Beginning: Update head pointer
¢ End: Traverse to last node

e Middle: Update prev/next pointers

Mnemonic: "Begin End Middle Insertions"

Question 4(a) [3 marks]

Write an algorithm for Merge sort.
Answer:

Merge Sort Algorithm:

. If array size <= 1, return

. Divide array into two halves

. Recursively sort both halves

=W N

. Merge sorted halves

Time Complexity: O(n log n)
Space Complexity: O(n)

Mnemonic: "Divide Conquer Merge"

Question 4(b) [4 marks]

Differentiate between Singly Linked List and Doubly Linked List.

Answer:
Singly Linked List Doubly Linked List
One pointer (next) Two pointers (next, prev)
Forward traversal only Bidirectional traversal
Less memory usage More memory usage
Simple implementation Complex implementation
Singly: [data|next] -> [data|next] -> NULL

Doubly: NULL <- [prev|data|next] <-> [prev|data|next] -> NULL

Mnemonic: "Single Forward, Double Bidirectional"

Question 4(c) [7 marks]

No. 9 /16

Data Structure with Python (4331601) - Summer 2024 Solution by Milav Dabgar
Write an algorithm for selection sort. Give the trace to sort the given data using selection sort
method. Data are: 13, 2, 6, 54, 18, 42, 11
Answer:

Selection Sort Algorithm:

1. For i = 0 to n-2:
2. Find minimum in array[i...n-1]

3. Swap minimum with array[i]

Trace for [13, 2, 6, 54, 18, 42, 111:

Pass Array State Min Found Swap

0 [13,2,6,54,18,42,11] 2 132

1 [2,13,6,54,18,42, 11] 6 136

2 [2,6,13,54,18,42,11] 11 1311
3 [2,6,11,54,18,42,13] 13 5413
4 [2,6,11,13,18, 42, 54] 18 No swap
5 [2,6,11,13,18, 42, 54] 42 No swap

Final Result: [2, 6, 11, 13, 18, 42, 54]

Mnemonic: "Select Minimum, Swap Position"

Question 4(a) OR [3 marks]

Write an algorithm for Insertion sort.
Answer:

Insertion Sort Algorithm:

1. For i = 1 to n-1:
2. key = array[i]
3. j = i-1
4. While j >= 0 and array[j] > key:
5. array[j+1] = array[]]
6. j = j-1
7. array[j+1] = key

Time Complexity: O(n?)
Best Case: O(n) for sorted array

Mnemonic: "Insert In Right Position"

No. 10 /16

Data Structure with Python (4331601) - Summer 2024 Solution by Milav Dabgar

Question 4(b) OR [4 marks]

Write an algorithm to insert a new node at the end of circular linked list.
Answer:

Algorithm:

1. Create new node with data
2. If list is empty:

- head = new_node

- new_node.next = new_node
3. Else:

- temp = head

- While temp.next != head:

- temp = temp.next

temp.next = new_node

- new_node.next = head

def insert end(self, data):

new_node = Node(data)

if self.head is None:
self.head = new_node
new_node.next = new_node

else:
temp = self.head
while temp.next != self.head:

temp = temp.next

temp.next = new node

new_node.next = self.head

Mnemonic: "Circle Back To Head"

Question 4(c) OR [7 marks]

Write an algorithm for bubble sort. Give the trace to sort the given data using bubble sort method.
Data are: 37, 22, 64, 84, 58, 52, 11

Answer:

Bubble Sort Algorithm:

1. For i = 0 to n-2:
2. For j = 0 to n-2-i:
3. If array[]] > array[j+1l]:
4. Swap array[j] and array[]j+1]

Trace for [37, 22, 64, 84, 58, 52, 11]:

No. 11 /16

Data Structure with Python (4331601) - Summer 2024 Solution by Milav Dabgar

Pass Comparisons & Swaps Result

1 3722, 6484, 8458, 8452, 8411 [22,37, 64, 58,52, 11, 84]
2 3764, 6458, 6452, 6411 [22, 37,58, 52, 11, 64, 84]
3 3758, 5852, 5811 [22,37,52,11, 58, 64, 84]
4 37-52,52-11 [22,37,11, 52, 58, 64, 84]
5 3711 [22,11, 37,52, 58, 64, 84]
6 2211 [11,22,37,52, 58, 64, 84]

Final Result: [11, 22, 37, 52, 58, 64, 84]

Mnemonic: "Bubble Up The Largest"

Question 5(a) [3 marks]

Explain Binary search tree and application of it.
Answer:

Binary Search Tree (BST) 21 binary tree © ai left subtree i smaller values 44 right subtree Hi larger
values ¢l .

Properties:
e Left child < Parent < Right child

e Inorder traversal gives sorted sequence

e Search time: O(log n) average case

Applications:
Application Benefit Use Case
Database Indexing Fast search DBMS systems
Expression Trees Evaluation Compilers
Huffman Coding Compression Data compression

Mnemonic: "Binary Search Trees Organize Data"

Question 5(b) [4 marks]

Write Python Program for Linear Search and explain it with an example

Answer:

No. 12 /16

Data Structure with Python (4331601) - Summer 2024 Solution by Milav Dabgar

def linear search(arr, target):
for i in range(len(arr)):
if arr[i] == target:
return i

return -1

Example

numbers = [10, 25, 30, 45, 60]

result = linear_ search(numbers, 30)

print(f"Element found at index: {result}") # Output: 2

Working:
e Sequential check: Element by element
¢ Time Complexity: O(n)
e Space Complexity: O(1)

e Works on: Unsorted arrays

Step Element Found?
1 10 No

2 25 No

3 30 Yes!

Mnemonic: "Linear Line By Line"

Question 5(c) [7 marks]

Create a Binary Search Tree for the keys 45, 35, 12, 58, 5, 55, 58, 80, 35, 42 and write the Preorder,
Inorder and Postorder traversal sequences.

Answer:

BST Construction (duplicates ignored):

45
/ 0\
35 58
/ N\ /\
12 42 55 80
/
5

Insertion Order: 45(root), 35(left), 12(left of 35), 58(right), 5(left of 12), 55(left of 58), 80(right of 58), 42(right
of 12)

Traversals:

No. 13 /16

Traversal

Preorder

Inorder

Postorder

Sequence
45, 35,12, 5,42, 58, 55, 80
5,12, 35,42, 45, 55, 58, 80

5,42,12, 35, 55, 80, 58, 45

Data Structure with Python (4331601) - Summer 2024 Solution by Milav Dabgar

Rule
Root-Left-Right
Left-Root-Right

Left-Right-Root

Mnemonic: "Pre-Root First, In-Sorted, Post-Root Last"

Question 5(a) OR [3 marks]

Define following terms: I. Binary tree Il. level number Ill. Leaf-node

Answer:
Term Definition Example
Binary tree Tree with max 2 children per node
Level number Distance from root (root = level 0) Root=0, children=1, etc.
Leaf-node Node with no children Terminal nodes
A <- Level 0 (Root)
/ \
B C <- Level 1
/
D <- Level 2 (Leaf)

Mnemonic: "Binary Levels Lead To Leaves"

Question 5(b) OR [4 marks]

Differentiate between Linear Search and Binary search.

Answer:

Linear Search

Works on unsorted arrays
Sequential checking
Time: O(n)

Simple implementation

No preprocessing needed

Binary Search

Requires sorted array
Divide and conquer
Time: O(log n)

Complex implementation

Sorting required

No. 14 /16

Each node has < 2 children

Data Structure with Python (4331601) - Summer 2024 Solution by Milav Dabgar

Linear: [1][2][3]1[4]1[5] -> Check each
Binary: [11[2][31[4][5] -> Check middle, divide

Mnemonic: "Linear Line, Binary Bisect"

Question 5(c) OR [7 marks]

Write an algorithm for insertion and deletion a node in Binary search tree.
Answer:

Insertion Algorithm:

1. If root is NULL, create new node as root
2. If data < root.data, insert in left subtree
3. If data > root.data, insert in right subtree

4., If data == root.data, no insertion (duplicate)
Deletion Algorithm:

1. If node is leaf: Simply delete
2. If node has one child: Replace with child
3. If node has two children:

- Find inorder successor

- Replace data with successor's data

- Delete successor

def insert(root, data):
if root is None:
return Node(data)
if data < root.data:
root.left = insert(root.left, data)
elif data > root.data:
root.right = insert(root.right, data)

return root

def delete(root, data):
if root is None:
return root
if data < root.data:
root.left = delete(root.left, data)
elif data > root.data:
root.right = delete(root.right, data)
else:
Node to be deleted found
if root.left is None:
return root.right
elif root.right is None:
return root.left
Node with two children

No. 15 /16

Data Structure with Python (4331601) - Summer 2024 Solution by Milav Dabgar

temp = find min(root.right)
root.data = temp.data
root.right = delete(root.right, temp.data)
return root
Cases:
e Leaf deletion: Direct removal
e One child: Replace with child

e Two children: Replace with successor

Mnemonic: "Insert Compare, Delete Replace"

No. 16 / 16

	Question 1(a) [3 marks]
	Question 1(b) [4 marks]
	Question 1(c) [7 marks]
	Question 1(c) OR [7 marks]
	Question 2(a) [3 marks]
	Question 2(b) [4 marks]
	Question 2(c) [7 marks]
	Question 2(a) OR [3 marks]
	Question 2(b) OR [4 marks]
	Question 2(c) OR [7 marks]
	Question 3(a) [3 marks]
	Question 3(b) [4 marks]
	Question 3(c) [7 marks]
	Question 3(a) OR [3 marks]
	Question 3(b) OR [4 marks]
	Question 3(c) OR [7 marks]
	Question 4(a) [3 marks]
	Question 4(b) [4 marks]
	Question 4(c) [7 marks]
	Question 4(a) OR [3 marks]
	Question 4(b) OR [4 marks]
	Question 4(c) OR [7 marks]
	Question 5(a) [3 marks]
	Question 5(b) [4 marks]
	Question 5(c) [7 marks]
	Question 5(a) OR [3 marks]
	Question 5(b) OR [4 marks]
	Question 5(c) OR [7 marks]

