Data Structure with Python (4331601) - Summer 2025 Solution by Milav Dabgar

Question 1(a) [3 marks]

Differentiate between Linear and Non Linear Data Structure.

Answer:
Linear Data Structure Non-Linear Data Structure
Elements stored sequentially Elements stored hierarchically
Single level arrangement Multi-level arrangement
Easy traversal Complex traversal
Examples: Array, Stack, Queue Examples: Tree, Graph

Mnemonic: "Linear flows Like water, Non-linear Navigates Networks"

Question 1(b) [4 marks]

Explain different concepts of Object Oriented programming.
Answer:

Table of OOP Concepts:

Concept Description

Encapsulation Binding data and methods together
Inheritance Acquiring properties from parent class
Polymorphism One name, multiple forms
Abstraction Hiding implementation details

¢ Encapsulation: Data hiding and bundling
e Inheritance: Code reusability through parent-child relationship
e Polymorphism: Method overriding and overloading

e Abstraction: Interface without implementation

Mnemonic: "Every Intelligent Programmer Abstracts"

Question 1(c) [7 marks]

Define Polymorphism. Write a python program for polymorphism through inheritance.
Answer:

Polymorphism means "many forms" - same method name behaving differently in different classes.

No.1/19

Data Structure with Python (4331601) - Summer 2025 Solution by Milav Dabgar

Code:

class Animal:
def sound(self):

pass

class Dog(Animal):
def sound(self):

return "Bark"

class Cat(Animal):
def sound(self):

return "Meow"

Polymorphism in action
animals = [Dog(), Cat()]
for animal in animals:

print(animal.sound())

e Polymorphism: Same interface, different implementation
¢ Runtime binding: Method called based on object type

e Code flexibility: Easy to extend with new classes

Mnemonic: "Polymorphism Provides Perfect Programming"

Question 1(c) OR [7 marks]

Define Abstraction. Write a python program to understand the concept of abstract class.
Answer:
Abstraction hides implementation details and shows only essential features.

Code:

from abc import ABC, abstractmethod

class Shape(ABC):
@abstractmethod
def area(self):

pass
class Rectangle(Shape):
def _ init_(self, length, width):
self.length = length

self.width = width

def area(self):
return self.length * self.width

Usage

No. 2 /19

Data Structure with Python (4331601) - Summer 2025 Solution by Milav Dabgar

rect = Rectangle(5, 3)
print(f"Area: {rect.area()}")

e Abstract class: Cannot be instantiated directly
e Abstract method: Must be implemented by child classes

¢ Interface definition: Provides template for subclasses

Mnemonic: "Abstraction Avoids Actual implementation”

Question 2(a) [3 marks]

Define Following terms: I. Best case Il. Worst case Ill. Average case

Answer:
Case Definition
Best case Minimum time required for algorithm
Worst case Maximum time required for algorithm
Average case Expected time for random input

Mnemonic: "Best-Worst-Average = Performance Analysis"

Question 2(b) [4 marks]

Explain infix, postfix & prefix expressions.

Answer:
Expression Operator Position
Infix Between operands
Prefix Before operands
Postfix After operands

Infix: Natural mathematical notation

Prefix: Polish notation

Postfix: Reverse Polish notation

e Stack usage: Postfix eliminates parentheses

Mnemonic: "In-Pre-Post = Position of operator”

Question 2(c) [7 marks]

Example
A+B
+AB

AB+

Define circular queue. Explain INSERT and DELETE operations of circular queue with diagrams.

No. 3 /19

Data Structure with Python (4331601) - Summer 2025 Solution by Milav Dabgar

Answer:
Circular Queue: Linear data structure where last position connects to first position.
Diagram:

(0] [11 [2] [3]

T T

front rear
INSERT Operation:

1. Check if queue is full
2. If not full, increment rear
3. If rear exceeds size, set rear = 0

4. Insert element at rear position
DELETE Operation:

1. Check if queue is empty
2. If not empty, remove element from front
3. Increment front

4. If front exceeds size, set front = 0

e Circular nature: Efficient memory utilization
¢ No shifting: Elements remain in place

e Front-rear pointers: Track queue boundaries

Mnemonic: "Circular Saves Space"

Question 2(a) OR [3 marks]

List out different Data Structure with examples.

Answer:
Type Data Structure Example
Linear Array [1,2,3,4]
Linear Stack Function calls
Linear Queue Printer queue
Non-Linear Tree File system
Non-Linear Graph Social network

Mnemonic: "Arrays-Stacks-Queues = Linear, Trees-Graphs = Non-linear"

No. 4 /19

Data Structure with Python (4331601) - Summer 2025 Solution by Milav Dabgar

Question 2(b) OR [4 marks]

Discuss how the concept of circular queue is different from simple queue.

Answer:
Simple Queue Circular Queue
Linear arrangement Circular arrangement
Memory wastage Efficient memory use
Fixed front and rear Wraparound pointers
False overflow True overflow detection

e Memory efficiency: Circular reuses deleted spaces
e Pointer management: Modulo arithmetic for wraparound

e Performance: Better space utilization

Mnemonic: "Circular Conquers memory problems"

Question 2(c) OR [7 marks]

Define stack. Explain PUSH & POP operation with example. Write an algorithm for PUSH and POP
operations of stack.

Answer:

Stack: LIFO (Last In First Out) data structure.
PUSH Algorithm:

Check if stack is full

If not full, increment top

. Insert element at top position

=ow N
. e

. Update top pointer

POP Algorithm:

. Check if stack is empty
. If not empty, store top element

. Decrement top pointer

=W N

. Return stored element

Example:

Stack: [10, 20, 30] « top
PUSH 40: [10, 20, 30, 40] « top
POP: returns 40, stack: [10, 20, 30] « top

No. 5 /19

Data Structure with Python (4331601) - Summer 2025 Solution by Milav Dabgar

e LIFO principle: Last element added is first removed
e Top pointer: Tracks current stack position

¢ Overflow/Underflow: Check before operations

Mnemonic: "Stack Stores in Last-in-first-out"

Question 3(a) [3 marks]

Convert following infix expression to postfix: (((A-B)*C)+((D-E)/F))
Answer:

Step-by-step conversion:

No. 6 /19

Data Structure with Python (4331601) - Summer 2025 Solution by Milav Dabgar

Step Scanned Stack Postfix

1 ((

2 (((

3 (((

4 A ((¢ A

5 - (((- A

6 B (- AB

7) ((AB-

8 * ((* AB-

9 C ((* AB-C

10) (AB-C*

11 + (+ AB-C*

12 ((+(AB-C*

13 ((+((AB-C*

14 D (+((AB-C*D

15 - (+((- AB-C*D

16 E (+((- AB-C*DE
17) (+ AB-C*DE-
18 / (+(/ AB-C*DE-
19 F (+(/ AB-C*DE-F
20) (+ AB-C*DE-F/
21) AB-C*DE-F/+

Final Answer: AB-C*DE-F/+

Mnemonic: "Postfix Places operators after operands"

Question 3(b) [4 marks]

Write a short note on doubly linked list.
Answer:

Doubly Linked List: Linear data structure with bidirectional links.

No.7 /19

Data Structure with Python (4331601) - Summer 2025 Solution by Milav Dabgar

Structure:
NULL « [prev|data|next] e [prev|data|next] o [prev|data|next] - NULL

Advantages:
e Bidirectional traversal: Forward and backward navigation
e Efficient deletion: No need for previous node reference

e Better insertion: Can insert before given node easily
Disadvantages:

e Extra memory: Additional pointer storage

e Complex operations: More pointer manipulations

Mnemonic: "Doubly Delivers Bidirectional Benefits"

Question 3(c) [7 marks]

Write a Python Program to delete first and last node from singly linked list.
Answer:

Code:

class Node:
def init_(self, data):
self.data = data

self.next = None

class LinkedList:
def _ init_ (self):

self.head = None

def delete first(self):
if self.head is None:
return "List is empty"
self.head = self.head.next

return "First node deleted"

def delete_last(self):
if self.head is None:
return "List is empty"
if self.head.next is None:
self.head = None

return "Last node deleted"

current = self.head
while current.next.next:
current = current.next

current.next = None

No. 8 /19

def

Usage

Data Structure with Python (4331601) - Summer 2025 Solution by Milav Dabgar

return "Last node deleted"

display(self):

elements = []

current = self.head

while current:
elements.append(current.data)
current = current.next

return elements

11 = LinkedList()
Add nodes and test deletion

e Delete first: Update head pointer

e Delete last: Traverse to second last node

e Edge cases: Empty list and single node

Mnemonic: "Delete Delivers by pointer updates”

Question 3(a) OR [3 marks]

List different applications of Queue.

Answer:

Queue Applications:

Application
CPU Scheduling
Print Queue
BFS Algorithm

Buffer

e FIFO nature: First come first served

Usage

Process management
Document printing
Graph traversal

Data streaming

e Real-time systems: Handle requests in order

e Resource sharing: Fair allocation

Mnemonic: "Queues Quietly handle ordered operations"

Question 3(b) OR [4 marks]

Explain different operations which we can perform on singly linked list.

Answer:

Singly Linked List Operations:

No.9/19

Data Structure with Python (4331601) - Summer 2025 Solution by Milav Dabgar

Operation Description

Insertion Add node at beginning/end/middle
Deletion Remove node from any position
Traversal Visit all nodes sequentially

Search Find specific data in list

Count Count total number of nodes

* Dynamic size: Grow/shrink during runtime
e Memory efficiency: Allocate as needed

e Sequential access: No random access

Mnemonic: "Insert-Delete-Traverse-Search-Count"

Question 3(c) OR [7 marks]

Write an algorithm to insert a new node at the end of doubly linked list.
Answer:

Algorithm for insertion at end:

1. Create new node with given data
2. Set new node's next = NULL
3. If list is empty:
- Set head = new node
- Set new node's prev = NULL
4. Else:
- Traverse to last node
- Set last node's next = new node
- Set new node's prev = last node

5. Return success

Code:

No. 10 /19

Data Structure with Python (4331601) - Summer 2025 Solution by Milav Dabgar

def insert at end(self, data):
new _node = Node(data)
if self.head is None:
self.head = new_node

return

current = self.head
while current.next:

current = current.next

current.next = new_node

new_node.prev = current

e Two-way linking: Update both next and prev pointers
e End insertion: Traverse to find last node

e Bidirectional connection: Maintain list integrity

Mnemonic: "Insert Intelligently with bidirectional links"

Question 4(a) [3 marks]

Write a python program for linear search.
Answer:
Code:
def linear search(arr, target):
for i in range(len(arr)):
if arr[i] == target:

return i

return -1

Example usage

data = [10, 20, 30, 40, 50]

result = linear search(data, 30)
print(f"Element found at index: {result}")

® Sequential search: Check each element one by one
e Time complexity: O(n)

e Simple implementation: Easy to understand

Mnemonic: "Linear Looks through every element”

Question 4(b) [4 marks]

Write a short note on Circular linked list.

Answer:

No. 11 /19

Data Structure with Python (4331601) - Summer 2025 Solution by Milav Dabgar

Circular Linked List: Last node points back to first node forming a circle.

Diagram:

[data|next] - [data|next] - [data|next]
T 13

Characteristics:

* No NULL pointers: Last node connects to first

e Continuous traversal: Can traverse infinitely

¢ Memory efficiency: Better cache performance

e Applications: Round-robin scheduling, multiplayer games
Advantages:

e Efficient insertion: At any position

* No wasted pointers: All nodes connected

Mnemonic: "Circular Connects everything in a loop"

Question 4(c) [7 marks]

Explain Quick sort algorithm with an example.
Answer:

Quick Sort: Divide and conquer sorting algorithm using pivot element.

Algorithm:
1. Choose pivot element
2. Partition array around pivot
3. Recursively sort left subarray
4. Recursively sort right subarray

Example: Sort [64, 34, 25, 12, 22, 11, 90]

Step 1: Pivot =64

[34, 25, 12, 22, 11] 64 [90]

Step 2: Sort left partition [34, 25, 12, 22, 11]
Pivot = 34

[25, 12, 22, 11] 34 []

Final sorted: [11, 12, 22, 25, 34, 64, 90]

No. 12 /19

Data Structure with Python (4331601) - Summer 2025 Solution by Milav Dabgar

¢ Divide and conquer: Break problem into smaller parts

¢ In-place sorting: Minimal extra memory
® Average complexity: O(n log n)

Mnemonic: "Quick Partitions then conquers"

Question 4(a) OR [3 marks]

Explain Binary search algorithm with an example.

Answer:

Binary Search: Search algorithm for sorted arrays using divide and conquer.

Algorithm:

1. Set left = 0, right = array length - 1
2. While left <= right:
- Calculate mid = (left + right) / 2
- If target = array[mid], return mid
- If target < array[mid], right = mid - 1
- If target > array[mid], left = mid + 1

3. Return -1 if not found

Example: Search 22 in [11, 12, 22, 25, 34, 64, 90]

Step Left Right Mid
1 0 6 3
2 0 2 1
3 2 2 2

Mnemonic: "Binary Bisects to find quickly"

Question 4(b) OR [4 marks]

Discuss different applications of linked list.
Answer:

Linked List Applications:

No. 13 /19

Value

25

12

22

Action
22 <25, right=2
22>12, left=2

Found!

Data Structure with Python (4331601) - Summer 2025 Solution by Milav Dabgar

Application

Dynamic Arrays

Stack/Queue Implementation
Graph Representation
Memory Management

Music Playlist

¢ Dynamic memory: Allocate as needed

e Efficient insertion/deletion: No shifting required

Usage

Resizable data storage
LIFO/FIFO structures
Adjacency lists

Free memory blocks

Next/previous song navigation

e Flexible structure: Adapt to changing requirements

Mnemonic: "Linked Lists Live in dynamic applications"

Question 4(c) OR [7 marks]

Write a python program for insertion sort with an example.

Answer:

Code:

def insertion sort(arr):
for i in range(l, len(arr)):
key = arr[i]

j=1i-1
while j >= 0 and arr[j] > key:
arr[j + 1] = arr[j]
j-=1
arr[j + 1] = key
return arr
Example
data = [64, 34, 25, 12, 22, 11, 90]

sorted _data = insertion_sort(data)
print(f"Sorted array: {sorted data}")

Step-by-step example:

No. 14 /19

Data Structure with Python (4331601) - Summer 2025 Solution by Milav Dabgar

Initial: [64, 34, 25, 12, 22, 11, 90]

Pass 1: [34, 64, 25, 12, 22, 11, 90]

Pass 2 [25, 34, 64, 12, 22, 11, 90]

Pass 3: [12, 25, 34, 64, 22, 11, 90]

Pass 4: [12, 22, 25, 34, 64, 11, 90]

Pass 5 (11, 12, 22, 25, 34, 64, 90]
6

Pass [11, 12, 22, 25, 34, 64, 90]

e Card sorting analogy: Like arranging playing cards
e Stable sort: Maintains relative order of equal elements

¢ Online algorithm: Can sort list as it receives data

Mnemonic: "Insertion Inserts in right position"

Question 5(a) [3 marks]

Define following terms: . Complete Binary tree Il. In-degree Ill. Out-degree.

Answer:
Term Definition
Complete Binary Tree All levels filled except possibly last level from left
In-degree Number of edges coming into a node
Out-degree Number of edges going out from a node

Mnemonic: "Complete-In-Out = Tree terminology"

Question 5(b) [4 marks]

Explain bubble sort algorithm with an example.
Answer:
Bubble Sort: Compare adjacent elements and swap if in wrong order.

Algorithm:

1. For each pass (0 to n-1):
2. For each element (0 to n-pass-1):
3. If arr[j] > arr[j+1]:
4. Swap arr[j] and arr[j+1]

Example: [64, 34, 25, 12]

No. 15 /19

Data Structure with Python (4331601) - Summer 2025 Solution by Milav Dabgar

Pass Comparisons Result

1 64>34(swap), 64>25(swap), 64>12(swap) [34,25,12,64]
2 34>25(swap), 34>12(swap) [25,12,34,64]
3 25>12(swap) [12,25,34,64]

Bubble up: Largest element bubbles to end

Multiple passes: Each pass places one element correctly

e Simple implementation: Easy to understand

Mnemonic: "Bubble Brings biggest to back"

Question 5(c) [7 marks]

Create a Binary Search Tree for the keys 15, 35, 12, 48, 5, 25, 58, 8 and write the Preorder, Inorder
and Postorder traversal sequences.

Answer:

BST Construction:

Traversal Sequences:

Traversal Sequence

Preorder 15,12,5, 8, 35, 25, 48, 58
Inorder 5,8,12,15, 25, 35, 48, 58
Postorder 8,5,12, 25,58, 48, 35, 15

Traversal Rules:

® Preorder: Root — Left — Right
e Inorder: Left —» Root — Right (gives sorted order)

e Postorder: Left — Right — Root

Mnemonic: "Pre-In-Post = Root position”

No. 16 /19

Data Structure with Python (4331601) - Summer 2025 Solution by Milav Dabgar

Question 5(a) OR [3 marks]

Define binary tree. Explain searching a node in binary tree.

Answer:

Binary Tree: Hierarchical data structure where each node has at most two children.
Search Algorithm:

. Start from root

If target = current node, return found

If target < current node, go left

. If target > current node, go right

g W N
. e

. Repeat until found or reach NULL

Hierarchical structure: Parent-child relationship

Binary property: Maximum two children per node

Search efficiency: O(log n) for balanced trees

Mnemonic: "Binary Branches into two paths"

Question 5(b) OR [4 marks]

Give the trace to sort the given data using bubble sort method. Data are: 44, 72, 94, 28, 18, 442, 41
Answer:

Bubble Sort Trace:

Pass Array State Swaps

Initial [44,72,94, 28,18, 442, 41] -

Pass 1 [44,72, 28,18, 94, 41, 442] 94>28, 94>18, 442>41
Pass 2 [44, 28,18, 72,41, 94, 442] 72>28,72>18, 94>41
Pass 3 [28, 18, 44,41,72,94, 442] 44>28, 44>18, 72>41
Pass 4 [18, 28,41, 44,72, 94, 442] 28>18, 44>41

Pass 5 [18, 28, 41,44, 72,94, 442] No swaps

Final sorted array: [18, 28, 41, 44, 72, 94, 442]

Mnemonic: "Bubble sort Bubbles largest to end each pass"

Question 5(c) OR [7 marks]

List applications of trees. Explain the technique for converting general tree into a Binary Search
Tree with example.

No. 17 /19

Data Structure with Python (4331601) - Summer 2025 Solution by Milav Dabgar

Answer:

Tree Applications:

Application

File System
Expression Trees
Decision Trees

Heap

General Tree to BST Conversion:

Usage

Directory hierarchy
Mathematical expressions
Al and machine learning

Priority queues

Technique: First Child - Next Sibling Representation

Original General Tree:

A
/N
B CD
/1
E F G

Converted to Binary Tree:

Steps:

1. First child: Becomes left child in binary tree

2. Next sibling: Becomes right child in binary tree

3. Recursive application: Apply to all nodes

e Systematic conversion: Preserves tree structure

e Binary representation: Uses only two pointers per node

e Space efficiency: Standard binary tree operations apply

No. 18 /19

Data Structure with Python (4331601) - Summer 2025 Solution by Milav Dabgar

Mnemonic: "First-child Left, Next-sibling Right"

No. 19 /19

	Question 1(a) [3 marks]
	Question 1(b) [4 marks]
	Question 1(c) [7 marks]
	Question 1(c) OR [7 marks]
	Question 2(a) [3 marks]
	Question 2(b) [4 marks]
	Question 2(c) [7 marks]
	Question 2(a) OR [3 marks]
	Question 2(b) OR [4 marks]
	Question 2(c) OR [7 marks]
	Question 3(a) [3 marks]
	Question 3(b) [4 marks]
	Question 3(c) [7 marks]
	Question 3(a) OR [3 marks]
	Question 3(b) OR [4 marks]
	Question 3(c) OR [7 marks]
	Question 4(a) [3 marks]
	Question 4(b) [4 marks]
	Question 4(c) [7 marks]
	Question 4(a) OR [3 marks]
	Question 4(b) OR [4 marks]
	Question 4(c) OR [7 marks]
	Question 5(a) [3 marks]
	Question 5(b) [4 marks]
	Question 5(c) [7 marks]
	Question 5(a) OR [3 marks]
	Question 5(b) OR [4 marks]
	Question 5(c) OR [7 marks]

