
Linear Data Structure Non-Linear Data Structure

Elements stored sequentially Elements stored hierarchically

Single level arrangement Multi-level arrangement

Easy traversal Complex traversal

Examples: Array, Stack, Queue Examples: Tree, Graph

Concept Description

Encapsulation Binding data and methods together

Inheritance Acquiring properties from parent class

Polymorphism One name, multiple forms

Abstraction Hiding implementation details

Question 1(a) [3 marks]
Differentiate between Linear and Non Linear Data Structure.

Answer:

Mnemonic: "Linear flows Like water, Non-linear Navigates Networks"

Question 1(b) [4 marks]
Explain different concepts of Object Oriented programming.

Answer:

Table of OOP Concepts:

Encapsulation: Data hiding and bundling

Inheritance: Code reusability through parent-child relationship

Polymorphism: Method overriding and overloading

Abstraction: Interface without implementation

Mnemonic: "Every Intelligent Programmer Abstracts"

Question 1(c) [7 marks]
Define Polymorphism. Write a python program for polymorphism through inheritance.

Answer:

Polymorphism means "many forms" - same method name behaving differently in different classes.

Data Structure with Python (4331601) - Summer 2025 Solution by Milav Dabgar

No. 1 / 19

Code:

Polymorphism: Same interface, different implementation

Runtime binding: Method called based on object type

Code flexibility: Easy to extend with new classes

Mnemonic: "Polymorphism Provides Perfect Programming"

Question 1(c) OR [7 marks]
Define Abstraction. Write a python program to understand the concept of abstract class.

Answer:

Abstraction hides implementation details and shows only essential features.

Code:

class Animal:

 def sound(self):
 pass

class Dog(Animal):

 def sound(self):
 return "Bark"

class Cat(Animal):

 def sound(self):
 return "Meow"

Polymorphism in action

animals = [Dog(), Cat()]

for animal in animals:

 print(animal.sound())

from abc import ABC, abstractmethod

class Shape(ABC):

 @abstractmethod
 def area(self):
 pass

class Rectangle(Shape):

 def __init__(self, length, width):
 self.length = length
 self.width = width

 def area(self):
 return self.length * self.width

Usage

Data Structure with Python (4331601) - Summer 2025 Solution by Milav Dabgar

No. 2 / 19

Case Definition

Best case Minimum time required for algorithm

Worst case Maximum time required for algorithm

Average case Expected time for random input

Expression Operator Position Example

Infix Between operands A + B

Prefix Before operands + A B

Postfix After operands A B +

Abstract class: Cannot be instantiated directly

Abstract method: Must be implemented by child classes

Interface definition: Provides template for subclasses

Mnemonic: "Abstraction Avoids Actual implementation"

Question 2(a) [3 marks]
Define Following terms: I. Best case II. Worst case III. Average case

Answer:

Mnemonic: "Best-Worst-Average = Performance Analysis"

Question 2(b) [4 marks]
Explain infix, postfix & prefix expressions.

Answer:

Infix: Natural mathematical notation

Prefix: Polish notation

Postfix: Reverse Polish notation

Stack usage: Postfix eliminates parentheses

Mnemonic: "In-Pre-Post = Position of operator"

Question 2(c) [7 marks]
Define circular queue. Explain INSERT and DELETE operations of circular queue with diagrams.

rect = Rectangle(5, 3)

print(f"Area: {rect.area()}")

Data Structure with Python (4331601) - Summer 2025 Solution by Milav Dabgar

No. 3 / 19

Type Data Structure Example

Linear Array [1,2,3,4]

Linear Stack Function calls

Linear Queue Printer queue

Non-Linear Tree File system

Non-Linear Graph Social network

Answer:

Circular Queue: Linear data structure where last position connects to first position.

Diagram:

INSERT Operation:

DELETE Operation:

Circular nature: Efficient memory utilization

No shifting: Elements remain in place

Front-rear pointers: Track queue boundaries

Mnemonic: "Circular Saves Space"

Question 2(a) OR [3 marks]
List out different Data Structure with examples.

Answer:

Mnemonic: "Arrays-Stacks-Queues = Linear, Trees-Graphs = Non-linear"

Question 2(b) OR [4 marks]

 [0] [1] [2] [3]
 ↑ ↑
 front rear

1. Check if queue is full

2. If not full, increment rear

3. If rear exceeds size, set rear = 0

4. Insert element at rear position

1. Check if queue is empty

2. If not empty, remove element from front

3. Increment front

4. If front exceeds size, set front = 0

Data Structure with Python (4331601) - Summer 2025 Solution by Milav Dabgar

No. 4 / 19

Simple Queue Circular Queue

Linear arrangement Circular arrangement

Memory wastage Efficient memory use

Fixed front and rear Wraparound pointers

False overflow True overflow detection

Question 2(b) OR [4 marks]
Discuss how the concept of circular queue is different from simple queue.

Answer:

Memory efficiency: Circular reuses deleted spaces

Pointer management: Modulo arithmetic for wraparound

Performance: Better space utilization

Mnemonic: "Circular Conquers memory problems"

Question 2(c) OR [7 marks]
Define stack. Explain PUSH & POP operation with example. Write an algorithm for PUSH and POP
operations of stack.

Answer:

Stack: LIFO (Last In First Out) data structure.

PUSH Algorithm:

POP Algorithm:

Example:

1. Check if stack is full

2. If not full, increment top

3. Insert element at top position

4. Update top pointer

1. Check if stack is empty

2. If not empty, store top element

3. Decrement top pointer

4. Return stored element

Stack: [10, 20, 30] ← top
PUSH 40: [10, 20, 30, 40] ← top
POP: returns 40, stack: [10, 20, 30] ← top

Data Structure with Python (4331601) - Summer 2025 Solution by Milav Dabgar

No. 5 / 19

LIFO principle: Last element added is first removed

Top pointer: Tracks current stack position

Overflow/Underflow: Check before operations

Mnemonic: "Stack Stores in Last-in-first-out"

Question 3(a) [3 marks]
Convert following infix expression to postfix: (((A - B) * C) + ((D - E) / F))

Answer:

Step-by-step conversion:

Data Structure with Python (4331601) - Summer 2025 Solution by Milav Dabgar

No. 6 / 19

Step Scanned Stack Postfix

1 ((

2 (((

3 ((((

4 A (((A

5 - (((- A

6 B (((- AB

7) ((AB-

8 * ((* AB-

9 C ((* AB-C

10) (AB-C*

11 + (+ AB-C*

12 ((+(AB-C*

13 ((+((AB-C*

14 D (+((AB-C*D

15 - (+((- AB-C*D

16 E (+((- AB-C*DE

17) (+ AB-C*DE-

18 / (+(/ AB-C*DE-

19 F (+(/ AB-C*DE-F

20) (+ AB-C*DE-F/

21) AB-C*DE-F/+

Final Answer: AB-C*DE-F/+

Mnemonic: "Postfix Places operators after operands"

Question 3(b) [4 marks]
Write a short note on doubly linked list.

Answer:

Doubly Linked List: Linear data structure with bidirectional links.

Data Structure with Python (4331601) - Summer 2025 Solution by Milav Dabgar

No. 7 / 19

Structure:

Advantages:

Bidirectional traversal: Forward and backward navigation

Efficient deletion: No need for previous node reference

Better insertion: Can insert before given node easily

Disadvantages:

Extra memory: Additional pointer storage

Complex operations: More pointer manipulations

Mnemonic: "Doubly Delivers Bidirectional Benefits"

Question 3(c) [7 marks]
Write a Python Program to delete first and last node from singly linked list.

Answer:

Code:

NULL ← [prev|data|next] ↔ [prev|data|next] ↔ [prev|data|next] → NULL

class Node:

 def __init__(self, data):
 self.data = data
 self.next = None

class LinkedList:

 def __init__(self):
 self.head = None

 def delete_first(self):
 if self.head is None:
 return "List is empty"
 self.head = self.head.next
 return "First node deleted"

 def delete_last(self):
 if self.head is None:
 return "List is empty"
 if self.head.next is None:
 self.head = None
 return "Last node deleted"

 current = self.head
 while current.next.next:
 current = current.next
 current.next = None

Data Structure with Python (4331601) - Summer 2025 Solution by Milav Dabgar

No. 8 / 19

Application Usage

CPU Scheduling Process management

Print Queue Document printing

BFS Algorithm Graph traversal

Buffer Data streaming

Delete first: Update head pointer

Delete last: Traverse to second last node

Edge cases: Empty list and single node

Mnemonic: "Delete Delivers by pointer updates"

Question 3(a) OR [3 marks]
List different applications of Queue.

Answer:

Queue Applications:

FIFO nature: First come first served

Real-time systems: Handle requests in order

Resource sharing: Fair allocation

Mnemonic: "Queues Quietly handle ordered operations"

Question 3(b) OR [4 marks]
Explain different operations which we can perform on singly linked list.

Answer:

Singly Linked List Operations:

 return "Last node deleted"

 def display(self):
 elements = []
 current = self.head
 while current:
 elements.append(current.data)
 current = current.next
 return elements

Usage

ll = LinkedList()

Add nodes and test deletion

Data Structure with Python (4331601) - Summer 2025 Solution by Milav Dabgar

No. 9 / 19

Operation Description

Insertion Add node at beginning/end/middle

Deletion Remove node from any position

Traversal Visit all nodes sequentially

Search Find specific data in list

Count Count total number of nodes

Dynamic size: Grow/shrink during runtime

Memory efficiency: Allocate as needed

Sequential access: No random access

Mnemonic: "Insert-Delete-Traverse-Search-Count"

Question 3(c) OR [7 marks]
Write an algorithm to insert a new node at the end of doubly linked list.

Answer:

Algorithm for insertion at end:

Code:

1. Create new node with given data

2. Set new node's next = NULL

3. If list is empty:

 - Set head = new node
 - Set new node's prev = NULL
4. Else:

 - Traverse to last node
 - Set last node's next = new node
 - Set new node's prev = last node
5. Return success

Data Structure with Python (4331601) - Summer 2025 Solution by Milav Dabgar

No. 10 / 19

Two-way linking: Update both next and prev pointers

End insertion: Traverse to find last node

Bidirectional connection: Maintain list integrity

Mnemonic: "Insert Intelligently with bidirectional links"

Question 4(a) [3 marks]
Write a python program for linear search.

Answer:

Code:

Sequential search: Check each element one by one

Time complexity: O(n)

Simple implementation: Easy to understand

Mnemonic: "Linear Looks through every element"

Question 4(b) [4 marks]
Write a short note on Circular linked list.

Answer:

def insert_at_end(self, data):

 new_node = Node(data)
 if self.head is None:
 self.head = new_node
 return

 current = self.head
 while current.next:
 current = current.next

 current.next = new_node
 new_node.prev = current

def linear_search(arr, target):

 for i in range(len(arr)):
 if arr[i] == target:
 return i
 return -1

Example usage

data = [10, 20, 30, 40, 50]

result = linear_search(data, 30)

print(f"Element found at index: {result}")

Data Structure with Python (4331601) - Summer 2025 Solution by Milav Dabgar

No. 11 / 19

Circular Linked List: Last node points back to first node forming a circle.

Diagram:

Characteristics:

No NULL pointers: Last node connects to first

Continuous traversal: Can traverse infinitely

Memory efficiency: Better cache performance

Applications: Round-robin scheduling, multiplayer games

Advantages:

Efficient insertion: At any position

No wasted pointers: All nodes connected

Mnemonic: "Circular Connects everything in a loop"

Question 4(c) [7 marks]
Explain Quick sort algorithm with an example.

Answer:

Quick Sort: Divide and conquer sorting algorithm using pivot element.

Algorithm:

Example: Sort [64, 34, 25, 12, 22, 11, 90]

Step 1: Pivot = 64

Step 2: Sort left partition [34, 25, 12, 22, 11]
Pivot = 34

Final sorted: [11, 12, 22, 25, 34, 64, 90]

[data|next] → [data|next] → [data|next]
 ↑ ↓
 ←←←←←←←←←←←←←←←←←←←←←←←←←←←

1. Choose pivot element

2. Partition array around pivot

3. Recursively sort left subarray

4. Recursively sort right subarray

[34, 25, 12, 22, 11] 64 [90]

[25, 12, 22, 11] 34 []

Data Structure with Python (4331601) - Summer 2025 Solution by Milav Dabgar

No. 12 / 19

Step Left Right Mid Value Action

1 0 6 3 25 22 < 25, right = 2

2 0 2 1 12 22 > 12, left = 2

3 2 2 2 22 Found!

Divide and conquer: Break problem into smaller parts

In-place sorting: Minimal extra memory

Average complexity: O(n log n)

Mnemonic: "Quick Partitions then conquers"

Question 4(a) OR [3 marks]
Explain Binary search algorithm with an example.

Answer:

Binary Search: Search algorithm for sorted arrays using divide and conquer.

Algorithm:

Example: Search 22 in [11, 12, 22, 25, 34, 64, 90]

Mnemonic: "Binary Bisects to find quickly"

Question 4(b) OR [4 marks]
Discuss different applications of linked list.

Answer:

Linked List Applications:

1. Set left = 0, right = array length - 1

2. While left <= right:

 - Calculate mid = (left + right) / 2
 - If target = array[mid], return mid
 - If target < array[mid], right = mid - 1
 - If target > array[mid], left = mid + 1
3. Return -1 if not found

Data Structure with Python (4331601) - Summer 2025 Solution by Milav Dabgar

No. 13 / 19

Application Usage

Dynamic Arrays Resizable data storage

Stack/Queue Implementation LIFO/FIFO structures

Graph Representation Adjacency lists

Memory Management Free memory blocks

Music Playlist Next/previous song navigation

Dynamic memory: Allocate as needed

Efficient insertion/deletion: No shifting required

Flexible structure: Adapt to changing requirements

Mnemonic: "Linked Lists Live in dynamic applications"

Question 4(c) OR [7 marks]
Write a python program for insertion sort with an example.

Answer:

Code:

Step-by-step example:

def insertion_sort(arr):

 for i in range(1, len(arr)):
 key = arr[i]
 j = i - 1

 while j >= 0 and arr[j] > key:
 arr[j + 1] = arr[j]
 j -= 1

 arr[j + 1] = key

 return arr

Example

data = [64, 34, 25, 12, 22, 11, 90]

sorted_data = insertion_sort(data)

print(f"Sorted array: {sorted_data}")

Data Structure with Python (4331601) - Summer 2025 Solution by Milav Dabgar

No. 14 / 19

Term Definition

Complete Binary Tree All levels filled except possibly last level from left

In-degree Number of edges coming into a node

Out-degree Number of edges going out from a node

Card sorting analogy: Like arranging playing cards

Stable sort: Maintains relative order of equal elements

Online algorithm: Can sort list as it receives data

Mnemonic: "Insertion Inserts in right position"

Question 5(a) [3 marks]
Define following terms: I. Complete Binary tree II. In-degree III. Out-degree.

Answer:

Mnemonic: "Complete-In-Out = Tree terminology"

Question 5(b) [4 marks]
Explain bubble sort algorithm with an example.

Answer:

Bubble Sort: Compare adjacent elements and swap if in wrong order.

Algorithm:

Example: [64, 34, 25, 12]

Initial: [64, 34, 25, 12, 22, 11, 90]

Pass 1: [34, 64, 25, 12, 22, 11, 90]

Pass 2: [25, 34, 64, 12, 22, 11, 90]

Pass 3: [12, 25, 34, 64, 22, 11, 90]

Pass 4: [12, 22, 25, 34, 64, 11, 90]

Pass 5: [11, 12, 22, 25, 34, 64, 90]

Pass 6: [11, 12, 22, 25, 34, 64, 90]

1. For each pass (0 to n-1):

 2. For each element (0 to n-pass-1):
 3. If arr[j] > arr[j+1]:
 4. Swap arr[j] and arr[j+1]

Data Structure with Python (4331601) - Summer 2025 Solution by Milav Dabgar

No. 15 / 19

Pass Comparisons Result

1 64>34(swap), 64>25(swap), 64>12(swap) [34,25,12,64]

2 34>25(swap), 34>12(swap) [25,12,34,64]

3 25>12(swap) [12,25,34,64]

Traversal Sequence

Preorder 15, 12, 5, 8, 35, 25, 48, 58

Inorder 5, 8, 12, 15, 25, 35, 48, 58

Postorder 8, 5, 12, 25, 58, 48, 35, 15

Bubble up: Largest element bubbles to end

Multiple passes: Each pass places one element correctly

Simple implementation: Easy to understand

Mnemonic: "Bubble Brings biggest to back"

Question 5(c) [7 marks]
Create a Binary Search Tree for the keys 15, 35, 12, 48, 5, 25, 58, 8 and write the Preorder, Inorder
and Postorder traversal sequences.

Answer:

BST Construction:

Traversal Sequences:

Traversal Rules:

Preorder: Root → Left → Right

Inorder: Left → Root → Right (gives sorted order)

Postorder: Left → Right → Root

Mnemonic: "Pre-In-Post = Root position"

Question 5(a) OR [3 marks]

 15
 / \
 12 35
 / / \
 5 25 48
 \ \
 8 58

Data Structure with Python (4331601) - Summer 2025 Solution by Milav Dabgar

No. 16 / 19

Pass Array State Swaps

Initial [44, 72, 94, 28, 18, 442, 41] -

Pass 1 [44, 72, 28, 18, 94, 41, 442] 94>28, 94>18, 442>41

Pass 2 [44, 28, 18, 72, 41, 94, 442] 72>28, 72>18, 94>41

Pass 3 [28, 18, 44, 41, 72, 94, 442] 44>28, 44>18, 72>41

Pass 4 [18, 28, 41, 44, 72, 94, 442] 28>18, 44>41

Pass 5 [18, 28, 41, 44, 72, 94, 442] No swaps

Question 5(a) OR [3 marks]
Define binary tree. Explain searching a node in binary tree.

Answer:

Binary Tree: Hierarchical data structure where each node has at most two children.

Search Algorithm:

Hierarchical structure: Parent-child relationship

Binary property: Maximum two children per node

Search efficiency: O(log n) for balanced trees

Mnemonic: "Binary Branches into two paths"

Question 5(b) OR [4 marks]
Give the trace to sort the given data using bubble sort method. Data are: 44, 72, 94, 28, 18, 442, 41

Answer:

Bubble Sort Trace:

Final sorted array: [18, 28, 41, 44, 72, 94, 442]

Mnemonic: "Bubble sort Bubbles largest to end each pass"

Question 5(c) OR [7 marks]
List applications of trees. Explain the technique for converting general tree into a Binary Search
Tree with example.

1. Start from root

2. If target = current node, return found

3. If target < current node, go left

4. If target > current node, go right

5. Repeat until found or reach NULL

Data Structure with Python (4331601) - Summer 2025 Solution by Milav Dabgar

No. 17 / 19

Application Usage

File System Directory hierarchy

Expression Trees Mathematical expressions

Decision Trees AI and machine learning

Heap Priority queues

Answer:

Tree Applications:

General Tree to BST Conversion:

Technique: First Child - Next Sibling Representation

Original General Tree:

Converted to Binary Tree:

Steps:

1. First child: Becomes left child in binary tree

2. Next sibling: Becomes right child in binary tree

3. Recursive application: Apply to all nodes

Systematic conversion: Preserves tree structure

Binary representation: Uses only two pointers per node

Space efficiency: Standard binary tree operations apply

 A
 /|\
 B C D

 /| |

E F G

 A
 /
 B

 \
 C
 / \
 E D
 \
 F
 \
 G

Data Structure with Python (4331601) - Summer 2025 Solution by Milav Dabgar

No. 18 / 19

Mnemonic: "First-child Left, Next-sibling Right"

Data Structure with Python (4331601) - Summer 2025 Solution by Milav Dabgar

No. 19 / 19

	Question 1(a) [3 marks]
	Question 1(b) [4 marks]
	Question 1(c) [7 marks]
	Question 1(c) OR [7 marks]
	Question 2(a) [3 marks]
	Question 2(b) [4 marks]
	Question 2(c) [7 marks]
	Question 2(a) OR [3 marks]
	Question 2(b) OR [4 marks]
	Question 2(c) OR [7 marks]
	Question 3(a) [3 marks]
	Question 3(b) [4 marks]
	Question 3(c) [7 marks]
	Question 3(a) OR [3 marks]
	Question 3(b) OR [4 marks]
	Question 3(c) OR [7 marks]
	Question 4(a) [3 marks]
	Question 4(b) [4 marks]
	Question 4(c) [7 marks]
	Question 4(a) OR [3 marks]
	Question 4(b) OR [4 marks]
	Question 4(c) OR [7 marks]
	Question 5(a) [3 marks]
	Question 5(b) [4 marks]
	Question 5(c) [7 marks]
	Question 5(a) OR [3 marks]
	Question 5(b) OR [4 marks]
	Question 5(c) OR [7 marks]

