
Property Description

Unique Elements No duplicate values allowed

Unordered No indexing or slicing

Mutable Can add/remove elements

Iterable Can loop through elements

Question 1(a) [3 marks]
Explain set data structure in python?

Answer:

A set is an unordered collection of unique elements in Python. Sets are mutable but contain only
immutable elements.

Key Properties:

Basic Operations:

Mnemonic: "Sets are Unique Unordered Collections"

Question 1(b) [4 marks]
Define Tuple in python? Explain operations of tuple data structure in python.

Answer:

A tuple is an ordered collection of items that is immutable (cannot be changed after creation).

Tuple Definition:

Ordered: Elements have defined order

Immutable: Cannot modify after creation

Allow duplicates: Same values can appear multiple times

Indexed: Access elements using index

Tuple Operations:

Create set
my_set = {1, 2, 3, 4}
Add element
my_set.add(5)
Remove element
my_set.remove(2)

Data Structure with Python (4331601) - Winter 2024 Solution by Milav Dabgar

No. 1 / 24

Operation Example Description

Creation t = (1, 2, 3) Create tuple

Indexing t[0] Access first element

Slicing t[1:3] Get subset

Length len(t) Count elements

Concatenation t1 + t2 Join tuples

Constructor Type Description Usage

Default Constructor No parameters __init__(self)

Parameterized Constructor Takes parameters __init__(self, params)

Non-parameterized Constructor Only self parameter Basic initialization

Mnemonic: "Tuples are Immutable Ordered Collections"

Question 1(c) [7 marks]
Explain Types of constructors in python? Write a python program to multiplication of two numbers
using static method.

Answer:

Types of Constructors:

Static Method Program:

Example operations
tup = (10, 20, 30, 40)
print(tup[1]) # Output: 20
print(tup[1:3]) # Output: (20, 30)

class Calculator:
 def __init__(self):
 pass

 @staticmethod
 def multiply(num1, num2):
 return num1 * num2

Usage
result = Calculator.multiply(5, 3)
print(f"Multiplication: {result}") # Output: 15

Data Structure with Python (4331601) - Winter 2024 Solution by Milav Dabgar

No. 2 / 24

Method Type Access Level Example

Public Accessible everywhere method()

Protected Class and subclass _method()

Private Only within class __method()

Static Class level @staticmethod

Class Class and subclasses @classmethod

Key Points:

Static methods: Don't need object instance

@staticmethod decorator: Defines static method

No self parameter: Independent of class instance

Mnemonic: "Static methods Stand Separate from Self"

Question 1(c) OR [7 marks]
Define Data Encapsulation. List out different types of methods in python. Write a python program to
multilevel inheritances.

Answer:

Data Encapsulation:
Data encapsulation is the concept of bundling data and methods within a class and restricting direct access
to some components.

Types of Methods:

Multilevel Inheritance Program:

class Animal:
 def __init__(self, name):
 self.name = name

 def speak(self):
 print(f"{self.name} makes sound")

class Mammal(Animal):
 def __init__(self, name, warm_blooded):
 super().__init__(name)
 self.warm_blooded = warm_blooded

class Dog(Mammal):
 def __init__(self, name, breed):
 super().__init__(name, True)

Data Structure with Python (4331601) - Winter 2024 Solution by Milav Dabgar

No. 3 / 24

Feature Simple Queue Circular Queue

Structure Linear arrangement Circular arrangement

Memory Usage Wasteful (empty spaces) Efficient (reuses space)

Rear Pointer Moves linearly Wraps around

Front Pointer Moves linearly Wraps around

Space Utilization Poor Excellent

Mnemonic: "Encapsulation Hides Internal Details"

Question 2(a) [3 marks]
Differentiate between simple queue and circular queue.

Answer:

Queue Comparison:

Key Differences:

Simple Queue: Front and rear move in one direction only

Circular Queue: Rear connects back to front position

Efficiency: Circular queue eliminates memory waste

Mnemonic: "Circular Queues Complete the Circle"

Question 2(b) [4 marks]
Explain polymorphism in python with example.

Answer:

Polymorphism means "many forms" - same method name behaves differently in different classes.

Types of Polymorphism:

 self.breed = breed

 def bark(self):
 print(f"{self.name} barks")

Usage
dog = Dog("Buddy", "Golden Retriever")
dog.speak() # From Animal class
dog.bark() # From Dog class

Data Structure with Python (4331601) - Winter 2024 Solution by Milav Dabgar

No. 4 / 24

Type Description Implementation

Method Overriding Child class redefines parent method Inheritance

Duck Typing Same method in different classes Interface similarity

Operator Overloading Same operator different behavior Magic methods

Expression Type Description Example

Infix Operator between operands A + B

Postfix Operator after operands A B +

Example:

Mnemonic: "Polymorphism Provides Multiple Personalities"

Question 2(c) [7 marks]
Define a).Infix b).postfix. Given equation to conversion from infix to postfix using stack. A+(B*C/D)

Answer:

Definitions:

Conversion Algorithm:

1. Scan infix expression left to right

2. If operand, add to output

3. If operator, compare precedence with stack top

4. Higher precedence → push to stack

class Animal:
 def make_sound(self):
 pass

class Dog(Animal):
 def make_sound(self):
 return "Woof!"

class Cat(Animal):
 def make_sound(self):
 return "Meow!"

Polymorphic behavior
animals = [Dog(), Cat()]
for animal in animals:
 print(animal.make_sound())

Data Structure with Python (4331601) - Winter 2024 Solution by Milav Dabgar

No. 5 / 24

Disadvantage Description Impact

Memory Waste Empty spaces not reused Poor space utilization

Fixed Size Limited capacity Overflow issues

No Random Access Only front/rear access Limited flexibility

5. Lower/equal precedence → pop and add to output

Step-by-step Conversion: A+(B*C/D)

Final Answer: ABC*D/+

Mnemonic: "Stack Stores Operators Strategically"

Question 2(a) OR [3 marks]
Explain disadvantages of Queue.

Answer:

Queue Disadvantages:

Key Issues:

Linear Queue: Front spaces become unusable

Insertion/Deletion: Only at specific ends

Search Operations: Not efficient for searching

Mnemonic: "Queues Quietly Queue with Quirks"

Question 2(b) OR [4 marks]

Input: A+(B*C/D)

Step	Symbol	Stack	Output
1 | A | [] | A
2 | + | [+] | A
3 | (| [+,(] | A
4 | B | [+,(] | AB
5 | * | [+,(,*] | AB
6 | C | [+,(,*] | ABC
7 | / | [+,(,/] | ABC*
8 | D | [+,(,/] | ABC*D
9 |) | [+] | ABC*D/
10 | End | [] | ABC*D/+

Data Structure with Python (4331601) - Winter 2024 Solution by Milav Dabgar

No. 6 / 24

Component Purpose Syntax

ABC Module Provides abstract base class from abc import ABC

@abstractmethod Decorator for abstract methods @abstractmethod

Implementation Must override in subclass Required

Define Abstract class in python? Explain the declaration of abstract method in python?

Answer:

Abstract Class:
A class that cannot be instantiated and contains one or more abstract methods that must be implemented
by subclasses.

Abstract Method Declaration:

Example:

Mnemonic: "Abstract classes Are Blueprints Only"

Question 2(c) OR [7 marks]
Write an algorithm for Infix to postfix expression. Evaluate Postfix expression as: 5 6 2 + * 12 4 / -

Answer:

Infix to Postfix Algorithm:

from abc import ABC, abstractmethod

class Shape(ABC):
 @abstractmethod
 def area(self):
 pass

 @abstractmethod
 def perimeter(self):
 pass

class Rectangle(Shape):
 def __init__(self, length, width):
 self.length = length
 self.width = width

 def area(self):
 return self.length * self.width

 def perimeter(self):
 return 2 * (self.length + self.width)

Data Structure with Python (4331601) - Winter 2024 Solution by Milav Dabgar

No. 7 / 24

1. Initialize empty stack and output string

2. Scan infix expression from left to right

3. If operand → add to output

4. If '(' → push to stack

5. If ')' → pop until '('

6. If operator → pop higher/equal precedence operators

7. Push current operator to stack

8. Pop remaining operators

Postfix Evaluation: 5 6 2 + * 12 4 / -

Final Result: 37

Mnemonic: "Postfix Processing Pops Pairs Precisely"

Question 3(a) [3 marks]
Write an algorithm to traverse node in single linked list.

Answer:

Traversal Algorithm:

Algorithm Steps:

Expression: 5 6 2 + * 12 4 / -

Step	Token	Stack	Operation
1 | 5 | [5] | Push operand
2 | 6 | [5,6] | Push operand
3 | 2 | [5,6,2] | Push operand
4 | + | [5,8] | Pop 2,6 → 6+2=8
5 | * | [40] | Pop 8,5 → 5*8=40
6 | 12 | [40,12] | Push operand
7 | 4 | [40,12,4] | Push operand
8 | / | [40,3] | Pop 4,12 → 12/4=3
9 | - | [37] | Pop 3,40 → 40-3=37

def traverse_linked_list(head):
 current = head
 while current is not None:
 print(current.data)
 current = current.next

Data Structure with Python (4331601) - Winter 2024 Solution by Milav Dabgar

No. 8 / 24

Step Action Purpose

1 Start from head node Initialize traversal

2 Check if current ≠ NULL Continue condition

3 Process current node Perform operation

4 Move to next node Advance pointer

5 Repeat until end Complete traversal

Step Condition Action

1 Check empty If queue is empty

2 Handle underflow Display error message

3 Remove element Delete front element

4 Return element Return removed value

5 Update structure Adjust queue pointers

Mnemonic: "Traverse Through Till The Tail"

Question 3(b) [4 marks]
Write an algorithm for Dequeue operation in queue using List.

Answer:

Dequeue Algorithm:

Algorithm Steps:

Time Complexity: O(n) due to list shifting

Mnemonic: "Dequeue Deletes from Front Door"

Question 3(c) [7 marks]

def dequeue(queue):
 if len(queue) == 0:
 print("Queue is empty")
 return None
 else:
 element = queue.pop(0)
 return element

Data Structure with Python (4331601) - Winter 2024 Solution by Milav Dabgar

No. 9 / 24

Operation Description Time Complexity

Insertion Add new node O(1) at beginning

Deletion Remove node O(1) if node known

Traversal Visit all nodes O(n)

Search Find specific node O(n)

Update Modify node data O(1) if node known

Define double linked list. Enlist major operation of Linked List. Write an algorithm to insert a node
at beginning in singly linked list.

Answer:

Double Linked List:
A linear data structure where each node contains data and two pointers - one pointing to the next node
and another to the previous node.

Major Linked List Operations:

Insert at Beginning Algorithm:

Algorithm Steps:

1. Create new node with given data

2. Set new node's next to current head

3. Update head to point to new node

4. Return new head

Mnemonic: "Insert at Beginning Builds Better Lists"

Question 3(a) OR [3 marks]
Explain the applications of single linked list.

Answer:

class Node:
 def __init__(self, data):
 self.data = data
 self.next = None

def insert_at_beginning(head, data):
 new_node = Node(data)
 new_node.next = head
 head = new_node
 return head

Data Structure with Python (4331601) - Winter 2024 Solution by Milav Dabgar

No. 10 / 24

Application Use Case Advantage

Dynamic Memory Variable size data Memory efficient

Stack Implementation LIFO operations Easy push/pop

Queue Implementation FIFO operations Dynamic sizing

Music Playlist Sequential playback Easy navigation

Browser History Page navigation Forward traversal

Polynomial Representation Mathematical operations Coefficient storage

Step Action Description

1 Check capacity Verify stack not full

2 Add element Append to end of list

3 Update top Top points to last element

4 Confirm operation Display success message

Single Linked List Applications:

Key Benefits:

Dynamic Size: Grows/shrinks during runtime

Memory Efficiency: Allocates as needed

Insertion/Deletion: Efficient at any position

Mnemonic: "Linked Lists Link Many Applications"

Question 3(b) OR [4 marks]
Write an algorithm for PUSH operation of stack using List.

Answer:

PUSH Algorithm:

Algorithm Steps:

Detailed Algorithm:

def push(stack, element):
 stack.append(element)
 print(f"Pushed {element} to stack")

Data Structure with Python (4331601) - Winter 2024 Solution by Milav Dabgar

No. 11 / 24

Advantage Description Benefit

Dynamic Size Size changes at runtime Memory flexible

Memory Efficient Allocates as needed No waste

Easy Insertion Add anywhere efficiently O(1) operation

Easy Deletion Remove efficiently O(1) operation

No Memory Shift Elements don't move Fast operations

1. Accept stack and element to push

2. Check if stack has capacity (for fixed size)

3. Add element to end of list using append()

4. List automatically handles memory allocation

5. Return success status

Time Complexity: O(1) - Constant time operation

Mnemonic: "PUSH Puts on Stack Summit"

Question 3(c) OR [7 marks]
Explain advantages of a linked list. Write an algorithm to delete node at last from single linked list.

Answer:

Linked List Advantages:

Delete Last Node Algorithm:

def delete_last_node(head):
 # Empty list
 if head is None:
 return None

 # Single node
 if head.next is None:
 return None

 # Multiple nodes
 current = head
 while current.next.next is not None:
 current = current.next

 current.next = None
 return head

Data Structure with Python (4331601) - Winter 2024 Solution by Milav Dabgar

No. 12 / 24

Step Action Purpose

1 Outer loop i=0 to n-1 Number of passes

2 Inner loop j=0 to n-i-2 Compare adjacent elements

3 Compare arr[j] and arr[j+1] Check ordering

4 Swap if out of order Correct positioning

5 Repeat until sorted Complete sorting

Algorithm Steps:

1. Handle empty list case

2. Handle single node case

3. Traverse to second last node

4. Set second last node's next to NULL

5. Return updated head

Mnemonic: "Linked Lists Lead to Logical Advantages"

Question 4(a) [3 marks]
Write an algorithm of Bubble sort.

Answer:

Bubble Sort Algorithm:

Algorithm Steps:

Time Complexity: O(n²)

Mnemonic: "Bubbles Rise to Surface Slowly"

Question 4(b) [4 marks]
Explain circular linked list with its advantages.

def bubble_sort(arr):
 n = len(arr)
 for i in range(n):
 for j in range(0, n-i-1):
 if arr[j] > arr[j+1]:
 arr[j], arr[j+1] = arr[j+1], arr[j]
 return arr

Data Structure with Python (4331601) - Winter 2024 Solution by Milav Dabgar

No. 13 / 24

Feature Description Benefit

Circular Structure Last node → First node Continuous traversal

No NULL Pointers No end marker Always connected

Efficient Traversal Can start from any node Flexible access

Phase Action Description

Divide Split array Divide into two halves

Conquer Sort subarrays Recursively sort halves

Combine Merge results Merge sorted halves

Answer:

Circular Linked List:
A linked list where the last node points to the first node, forming a circular structure.

Characteristics:

Advantages:

Memory Efficient: No NULL pointers

Circular Traversal: Can loop continuously

Queue Implementation: Efficient enqueue/dequeue

Round Robin Scheduling: CPU time sharing

Music Player: Continuous playlist looping

Mnemonic: "Circular Lists Create Continuous Connections"

Question 4(c) [7 marks]
Explain merge sort with suitable example.

Answer:

Merge Sort:
A divide-and-conquer algorithm that divides array into halves, sorts them separately, and merges back.

Algorithm Phases:

Circular Linked List Structure:

[A] → [B] → [C] → [D]
 ↑ ↓
 ←←←←←←←←←←←←←←←←←←←

Data Structure with Python (4331601) - Winter 2024 Solution by Milav Dabgar

No. 14 / 24

Example: [38, 27, 43, 3, 9, 82, 10]

Time Complexity: O(n log n)
Space Complexity: O(n)

Mnemonic: "Merge Sort Methodically Merges Segments"

Question 4(a) OR [3 marks]
Write an algorithm for selection sort.

Answer:

Selection Sort Algorithm:

Algorithm Steps:

Merge Sort Process:

Level 0: [38, 27, 43, 3, 9, 82, 10]
 ↓
Level 1: [38, 27, 43, 3] | [9, 82, 10]
 ↓ ↓
Level 2: [38, 27] [43, 3] | [9, 82] [10]
 ↓ ↓ ↓ ↓
Level 3: [38][27] [43][3] | [9][82] [10]
 ↓ ↓ ↓ ↓
Merge: [27, 38] [3, 43] | [9, 82] [10]
 ↓ ↓
 [3, 27, 38, 43] | [9, 10, 82]
 ↓
 [3, 9, 10, 27, 38, 43, 82]

def selection_sort(arr):
 n = len(arr)
 for i in range(n):
 min_idx = i
 for j in range(i+1, n):
 if arr[j] < arr[min_idx]:
 min_idx = j
 arr[i], arr[min_idx] = arr[min_idx], arr[i]
 return arr

Data Structure with Python (4331601) - Winter 2024 Solution by Milav Dabgar

No. 15 / 24

Step Action Purpose

1 Find minimum element Locate smallest

2 Swap with first position Place in sorted position

3 Move to next position Advance boundary

4 Repeat for remaining Continue sorting

5 Complete when done Finish algorithm

Component Purpose Direction

Data Store information -

Next Pointer Points to next node Forward

Previous Pointer Points to previous node Backward

Time Complexity: O(n²)

Mnemonic: "Selection Sort Selects Smallest Successfully"

Question 4(b) OR [4 marks]
Explain double linked list with its advantages.

Answer:

Double Linked List:
A linked list where each node contains data and two pointers - next and previous.

Structure:

Advantages:

Bidirectional Traversal: Forward and backward movement

Easy Deletion: Can delete without knowing previous node

Efficient Insertion: Insert at any position easily

Better Navigation: Can move in both directions

Applications:

Browser navigation (back/forward buttons)

Double Linked List Structure:

NULL ← [prev|data|next] ⇄ [prev|data|next] ⇄ [prev|data|next] → NULL

Data Structure with Python (4331601) - Winter 2024 Solution by Milav Dabgar

No. 16 / 24

Pass Current Array State Comparisons Action

Initial - [25, 15, 30, 9, 99, 20, 26] - Start

1 15 [15, 25, 30, 9, 99, 20, 26] 15 < 25 Insert 15 before 25

2 30 [15, 25, 30, 9, 99, 20, 26] 30 > 25 Keep 30 in place

3 9 [9, 15, 25, 30, 99, 20, 26] 9 < all Insert at beginning

4 99 [9, 15, 25, 30, 99, 20, 26] 99 > 30 Keep 99 in place

5 20 [9, 15, 20, 25, 30, 99, 26] Insert between 15,25 Shift and insert

6 26 [9, 15, 20, 25, 26, 30, 99] Insert between 25,30 Final position

Music player (previous/next song)

Undo/Redo operations

Mnemonic: "Double Links provide Dual Direction"

Question 4(c) OR [7 marks]
Explain insertion sort. Give trace of following numbers using insertion sort : 25, 15,30,9,99,20,26

Answer:

Insertion Sort:
Builds sorted array one element at a time by inserting each element into its correct position.

Algorithm Concept:

Sorted Portion: Left side of current element

Unsorted Portion: Right side of current element

Insert Strategy: Place current element in correct position in sorted portion

Trace of [25, 15, 30, 9, 99, 20, 26]:

Final Sorted Array: [9, 15, 20, 25, 26, 30, 99]

Time Complexity: O(n²) worst case, O(n) best case

Mnemonic: "Insertion Inserts Into Increasing Order"

Question 5(a) [3 marks]
Explain application of binary tree.

Answer:

Binary Tree Applications:

Data Structure with Python (4331601) - Winter 2024 Solution by Milav Dabgar

No. 17 / 24

Application Use Case Benefit

Expression Trees Mathematical expressions Easy evaluation

Binary Search Trees Searching/Sorting O(log n) operations

Heap Trees Priority queues Efficient min/max

File Systems Directory structure Hierarchical organization

Decision Trees AI/ML algorithms Classification

Huffman Coding Data compression Optimal encoding

Key Benefits:

Hierarchical Structure: Natural tree organization

Efficient Operations: Search, insert, delete

Recursive Processing: Easy to implement

Mnemonic: "Binary Trees Branch into Many Applications"

Question 5(b) [4 marks]
Write an algorithm for binary search using list.

Answer:

Binary Search Algorithm:

Algorithm Steps:

def binary_search(arr, target):
 left, right = 0, len(arr) - 1

 while left <= right:
 mid = (left + right) // 2

 if arr[mid] == target:
 return mid
 elif arr[mid] < target:
 left = mid + 1
 else:
 right = mid - 1

 return -1 # Element not found

Data Structure with Python (4331601) - Winter 2024 Solution by Milav Dabgar

No. 18 / 24

Step Action Purpose

1 Set left=0, right=n-1 Initialize boundaries

2 Calculate mid Find middle element

3 Compare target with mid Determine direction

4 Update boundaries Narrow search space

5 Repeat until found Continue searching

Tree Type Description Special Property

Binary Tree Max 2 children per node Left and right child

Binary Search Tree Ordered binary tree Left < Root < Right

Complete Binary Tree All levels filled except last Efficient heap

Full Binary Tree All nodes have 0 or 2 children No single child

AVL Tree Self-balancing BST Height balanced

Red-Black Tree Self-balancing BST Color properties

Prerequisite: Array must be sorted
Time Complexity: O(log n)

Mnemonic: "Binary Search Bisects to Find Faster"

Question 5(c) [7 marks]
Define Tree. Enlist Types of Tree. Write an algorithm to insert node in binary search tree using
python.

Answer:

Tree Definition:
A hierarchical data structure consisting of nodes connected by edges, with one root node and no cycles.

Types of Trees:

BST Insertion Algorithm:

class TreeNode:
 def __init__(self, data):
 self.data = data
 self.left = None
 self.right = None

Data Structure with Python (4331601) - Winter 2024 Solution by Milav Dabgar

No. 19 / 24

Step Action Order

1 Traverse left subtree Recursive call

2 Visit root node Process data

3 Traverse right subtree Recursive call

Algorithm Steps:

1. If tree empty, create root node

2. If data < root.data, insert in left subtree

3. If data > root.data, insert in right subtree

4. If data = root.data, ignore (no duplicates)

5. Return updated root

Mnemonic: "Trees Grow with Structured Organization"

Question 5(a) OR [3 marks]
Write an algorithm for in-order traversal of tree.

Answer:

In-order Traversal Algorithm:

Algorithm Steps:

Traversal Order: Left → Root → Right

Properties:

def insert_bst(root, data):
 if root is None:
 return TreeNode(data)

 if data < root.data:
 root.left = insert_bst(root.left, data)
 elif data > root.data:
 root.right = insert_bst(root.right, data)

 return root

def inorder_traversal(root):
 if root is not None:
 inorder_traversal(root.left) # Left
 print(root.data) # Root
 inorder_traversal(root.right) # Right

Data Structure with Python (4331601) - Winter 2024 Solution by Milav Dabgar

No. 20 / 24

Feature Description Value

Method Sequential checking Element by element

Time Complexity O(n) Linear time

Space Complexity O(1) Constant space

Data Requirement Any order Unsorted data OK

BST Property: In-order gives sorted sequence

Time Complexity: O(n)

Space Complexity: O(h) where h is height

Example Tree Result:

Mnemonic: "In-order: Left, Root, Right"

Question 5(b) OR [4 marks]
Define search? Write an algorithm for Linear search using list.

Answer:

Search Definition:
The process of finding a specific element or checking if an element exists in a data structure.

Linear Search Algorithm:

Algorithm Characteristics:

Algorithm Steps:

1. Start from first element

2. Compare each element with target

 Tree: 50
 / \
 30 70
 / \ / \
 20 40 60 80

In-order: 20, 30, 40, 50, 60, 70, 80

def linear_search(arr, target):
 for i in range(len(arr)):
 if arr[i] == target:
 return i # Return index if found
 return -1 # Return -1 if not found

Data Structure with Python (4331601) - Winter 2024 Solution by Milav Dabgar

No. 21 / 24

Term Definition Characteristics

Path Sequence of nodes from one node to another Connected by edges

Leaf Node Node with no children No left or right child

3. If match found, return index

4. If end reached, return -1

Mnemonic: "Linear Search Looks through Lists Linearly"

Question 5(c) OR [7 marks]
Define: a) Path b). Leaf Node. Construct a binary search tree for following data items. 60, 40,
37,31,59,21,65,30

Answer:

Definitions:

BST Construction for: 60, 40, 37, 31, 59, 21, 65, 30

Step-by-step Construction:

Step 1: Insert 60 (Root)
 60

Step 2: Insert 40 (40 < 60, go left)
 60
 /
 40

Step 3: Insert 37 (37 < 60, go left; 37 < 40, go left)
 60
 /
 40
 /
 37

Step 4: Insert 31 (31 < 60, left; 31 < 40, left; 31 < 37, left)
 60
 /
 40
 /
 37
 /
 31

Step 5: Insert 59 (59 < 60, left; 59 > 40, right)
 60

Data Structure with Python (4331601) - Winter 2024 Solution by Milav Dabgar

No. 22 / 24

Final BST Structure:

 /
 40
 / \
 37 59
 /
 31

Step 6: Insert 21 (21 < 60, left; 21 < 40, left; 21 < 37, left; 21 < 31, left)
 60
 /
 40
 / \
 37 59
 /
 31
 /
21

Step 7: Insert 65 (65 > 60, go right)
 60
 / \
 40 65
 / \
 37 59
 /
 31
 /
21

Step 8: Insert 30 (30 < 60, left; 30 < 40, left; 30 < 37, left; 30 < 31, left; 30 > 21,
right)
 60
 / \
 40 65
 / \
 37 59
 /
 31
 / \
21 30

Data Structure with Python (4331601) - Winter 2024 Solution by Milav Dabgar

No. 23 / 24

Level Nodes Type

0 60 Root

1 40, 65 Internal

2 37, 59 Internal, Internal

3 31 Internal

4 21 Internal

5 30 Leaf

Leaf Nodes: 30, 59, 65

Mnemonic: "BST Building follows Binary Search Tree rules"

Data Structure with Python (4331601) - Winter 2024 Solution by Milav Dabgar

No. 24 / 24

	Question 1(a) [3 marks]
	Question 1(b) [4 marks]
	Question 1(c) [7 marks]
	Question 1(c) OR [7 marks]
	Question 2(a) [3 marks]
	Question 2(b) [4 marks]
	Question 2(c) [7 marks]
	Question 2(a) OR [3 marks]
	Question 2(b) OR [4 marks]
	Question 2(c) OR [7 marks]
	Question 3(a) [3 marks]
	Question 3(b) [4 marks]
	Question 3(c) [7 marks]
	Question 3(a) OR [3 marks]
	Question 3(b) OR [4 marks]
	Question 3(c) OR [7 marks]
	Question 4(a) [3 marks]
	Question 4(b) [4 marks]
	Question 4(c) [7 marks]
	Question 4(a) OR [3 marks]
	Question 4(b) OR [4 marks]
	Question 4(c) OR [7 marks]
	Question 5(a) [3 marks]
	Question 5(b) [4 marks]
	Question 5(c) [7 marks]
	Question 5(a) OR [3 marks]
	Question 5(b) OR [4 marks]
	Question 5(c) OR [7 marks]

