
Characteristic Description

Intangible Cannot be touched physically

Logical Created through systematic approach

Manufactured Developed, not produced traditionally

Complex Has intricate internal structure

Layer Purpose Description

Quality Focus Foundation Emphasis on delivering quality products

Process Framework Defines how software development is done

Methods Techniques Specific ways to perform activities

Tools Automation Software that supports methods

Question 1(a) [3 marks]
Define Software and explain its characteristics.

Answer:

Software is a collection of programs, instructions, and documentation that performs tasks on a computer
system.

Key Characteristics:

Mnemonic: "In Logic, Manufacturing Creates" (Intangible, Logical, Manufactured, Complex)

Question 1(b) [4 marks]
Write a note on Software engineering – A layered technology.

Answer:

Software engineering is structured as a layered technology with each layer supporting the next.

Layered Structure:

Fundamentals of Software Development (4331604) - Winter 2023 Solution by Milav Dabgar

No. 1 / 31

Tools

Methods

Process

Quality Focus -
Foundation

Activity Purpose Key Tasks

Communication Understand requirements Stakeholder interaction, requirement gathering

Planning Create roadmap Estimation, scheduling, risk assessment

Modeling Create blueprints Analysis and design models

Construction Build software Coding and testing

Deployment Deliver to users Installation, support, feedback

Mnemonic: "Tools Make Process Quality" (Tools, Methods, Process, Quality)

Question 1(c) [7 marks]
Explain Software Process framework and umbrella activities.

Answer:

Software Process Framework provides structure for software development with core activities and umbrella
activities.

Framework Activities:

Umbrella Activities:

Software project tracking: Monitor progress and control quality

Risk management: Identify and mitigate potential problems

Fundamentals of Software Development (4331604) - Winter 2023 Solution by Milav Dabgar

No. 2 / 31

Communication

Planning

Modeling

Construction

Deployment
Umbrella Activities

Phase Purpose Key Activities Deliverables

Planning Define scope Feasibility study, resource allocation Project plan

Analysis Gather requirements Requirement collection, documentation SRS document

Design Create architecture System design, database design Design documents

Implementation Write code Programming, unit testing Source code

Testing Verify quality System testing, bug fixing Test reports

Deployment Release software Installation, user training Live system

Maintenance Ongoing support Bug fixes, enhancements Updated system

Quality assurance: Ensure standards are met

Configuration management: Control changes systematically

Work product preparation: Create deliverable documents

Mnemonic: "Can People Model Construction Daily" + "Track Risk Quality Configuration Work"

Question 1(c OR) [7 marks]
Define SDLC and explain each phase.

Answer:

SDLC (Software Development Life Cycle) is a systematic process for developing software applications.

SDLC Phases:

Fundamentals of Software Development (4331604) - Winter 2023 Solution by Milav Dabgar

No. 3 / 31

Planning

Analysis

Design

Implementation

Testing

Deployment

Maintenance

Mnemonic: "Please Analyze Design Implementation Testing Deployment Maintenance"

Question 2(a) [3 marks]
Describe advantage disadvantage of prototype model.

Answer:

Prototype Model Analysis:

Fundamentals of Software Development (4331604) - Winter 2023 Solution by Milav Dabgar

No. 4 / 31

Advantages Disadvantages

Early feedback from users Time consuming development process

Reduced risk of failure Cost increase due to iterations

Better understanding of requirements Scope creep may occur

Situation Example Justification

Unclear requirements Online shopping cart User interface needs refinement

New technology Mobile banking app Feasibility testing required

User interaction critical Gaming application User experience validation needed

No

YesRequirements Quick
Design

Build Prototype User Evaluation

Satisfied? Final
System

Mnemonic: "Early Reduced Better" vs "Time Cost Scope"

Question 2(b) [4 marks]
Explain Prototyping Model and justify when to use with example.

Answer:

Prototyping Model creates working model of software early in development process.

When to Use:

Mnemonic: "Requirements Quick Build User Satisfied Final"

Question 2(c) [7 marks]
Sketch and discuss (I) Waterfall model & (II) Incremental Model.

Answer:

(I) Waterfall Model:

Linear sequential approach where each phase must complete before next begins.

Fundamentals of Software Development (4331604) - Winter 2023 Solution by Milav Dabgar

No. 5 / 31

Requirements Analysis

System Design

Implementation

Testing

Deployment

Maintenance

Characteristics Description

Sequential One phase at a time

Documentation driven Heavy documentation

Suitable for Well-defined requirements

(II) Incremental Model:

Development in small increments with each increment adding functionality.

Fundamentals of Software Development (4331604) - Winter 2023 Solution by Milav Dabgar

No. 6 / 31

Analysis

Design

Code

Test

Increment
1

Analysis

Design

Code

Test

Increment
2

Final
Product

Feature Waterfall Incremental

Flexibility Low High

Risk High Low

Delivery End of project Multiple deliveries

Mnemonic: "Water Falls Once, Increments Build Multiple"

Question 2(a OR) [3 marks]
Describe advantage and disadvantage of Incremental Model.

Answer:

Incremental Model Analysis:

Fundamentals of Software Development (4331604) - Winter 2023 Solution by Milav Dabgar

No. 7 / 31

Advantages Disadvantages

Early delivery of working software Total cost may be higher

Easier testing of small increments System architecture issues

Reduced risk through early feedback Management complexity increases

Phase Duration Activities Output

Business Modeling Short Define information flow Business requirements

Data Modeling Short Define data objects Data models

Process Modeling Short Define processing functions Process descriptions

Application Generation Short Use tools to create Working application

Testing & Turnover Short Test and deliver Final system

Business
Modeling

Data
Modeling

Process
Modeling

Application Generation Testing & Turnover

Mnemonic: "Early Easier Reduced" vs "Total System Management"

Question 2(b OR) [4 marks]
Write concept of Rapid Application Development (RAD) and explain it.

Answer:

RAD emphasizes rapid prototyping and quick feedback over planning and testing.

RAD Components:

Mnemonic: "Business Data Process Application Testing"

Question 2(c OR) [7 marks]
Design and describe Spiral Model and give advantage and disadvantage.

Answer:

Spiral Model combines iterative development with systematic risk analysis.

Fundamentals of Software Development (4331604) - Winter 2023 Solution by Milav Dabgar

No. 8 / 31

Planning

Risk
Analysis

Engineering

Evaluation

Determine Objectives

Identify
Risks

Develop & Test

Plan Next Iteration

Quadrant Activity Purpose

Planning Objective setting Define requirements and constraints

Risk Analysis Risk assessment Identify and resolve risks

Engineering Development Build and test the product

Evaluation Customer assessment Evaluate results and plan next iteration

Advantages Disadvantages

High risk projects handled well Complex management required

Good for large applications Expensive for small projects

Customer involved throughout Risk analysis expertise needed

Spiral Quadrants:

Advantages vs Disadvantages:

Mnemonic: "Plan Risk Engineer Evaluate" + "High Good Customer" vs "Complex Expensive Risk"

Question 3(a) [3 marks]
Illustrate importance of SRS

Answer:

Fundamentals of Software Development (4331604) - Winter 2023 Solution by Milav Dabgar

No. 9 / 31

Aspect Importance Benefit

Communication Stakeholder understanding Clear expectations

Contract Legal agreement Dispute resolution

Testing basis Validation criteria Quality assurance

Good SRS Bad SRS

Complete - All requirements covered Incomplete - Missing requirements

Consistent - No contradictions Inconsistent - Conflicting statements

Unambiguous - Clear meaning Ambiguous - Multiple interpretations

Verifiable - Can be tested Unverifiable - Cannot be validated

SRS (Software Requirements Specification) is crucial foundation document for software development.

Importance Table:

Mnemonic: "Communication Contract Testing"

Question 3(b) [4 marks]
Specify characteristics of good & bad SRS

Answer:

SRS Quality Characteristics:

Additional Good Characteristics:

Modifiable: Easy to change and maintain

Traceable: Links to source and design

Fundamentals of Software Development (4331604) - Winter 2023 Solution by Milav Dabgar

No. 10 / 31

Good
SRS

Complete

Consistent

Unambiguous

Verifiable

Bad SRS

Incomplete

Inconsistent

Ambiguous

Unverifiable

Mnemonic: "Complete Consistent Unambiguous Verifiable" vs "Incomplete Inconsistent Ambiguous
Unverifiable"

Question 3(c) [7 marks]

Fundamentals of Software Development (4331604) - Winter 2023 Solution by Milav Dabgar

No. 11 / 31

Type Description Example

Business Rules Core business logic "Calculate tax based on income bracket"

User Actions System responses "Login with username/password"

Data Processing Information handling "Generate monthly sales report"

External Interfaces System interactions "Connect to payment gateway"

Category Requirement Example Measurement

Performance Response time "Page load < 3 seconds" Time metrics

Security Data protection "Encrypt user passwords" Security standards

Reliability System uptime "99.9% availability" Failure rates

Usability User experience "Max 3 clicks to checkout" User metrics

Scalability Growth capacity "Support 10,000 users" Load capacity

Requirements

Functional Non-Functional

Business
Rules

User Actions Data
Processing

External
Interfaces

Performance Security Reliability Usability Scalability

Aspect Functional Non-Functional

Focus What system does How system performs

Testing Black-box testing Performance testing

Documentation Use cases Quality metrics

Classify Types of Requirements in SRS

Answer:

Software requirements are classified into two main categories.

(i) Functional Requirements:

Define what the system should do - specific behaviors and functions.

(ii) Non-functional Requirements:

Define how the system should perform - quality attributes and constraints.

Comparison Table:

Mnemonic: "Functional = What, Non-Functional = How"

Fundamentals of Software Development (4331604) - Winter 2023 Solution by Milav Dabgar

No. 12 / 31

Skill Category Description Application

Technical Understanding technology Architecture decisions

Leadership Team motivation Conflict resolution

Communication Stakeholder interaction Status reporting

Area Responsibility Activities

Planning Project roadmap Schedule, budget, resource allocation

Execution Team coordination Task assignment, progress monitoring

Quality Standard compliance Code reviews, testing oversight

Communication Stakeholder updates Status reports, risk communication

Question 3(a OR) [3 marks]
Describe skill to manage software projects

Answer:

Project management requires diverse skill set for successful software delivery.

Essential Skills:

Mnemonic: "Technical Leadership Communication"

Question 3(b OR) [4 marks]
Briefly give the Responsibility of software project Manager.

Answer:

Software Project Manager oversees entire project lifecycle and ensures successful delivery.

Key Responsibilities:

Additional Duties:

Risk Management: Identify and mitigate project risks

Team Development: Mentor team members and resolve conflicts

Fundamentals of Software Development (4331604) - Winter 2023 Solution by Milav Dabgar

No. 13 / 31

Project
Manager

Planning

Execution

Quality

Communication

Risk Management

Team Development

Mnemonic: "Plan Execute Quality Communicate Risk Team"

Question 3(c OR) [7 marks]
Compare PERT chart – Gantt chart side by side.

Answer:

Both charts are project management tools but serve different purposes and have distinct characteristics.

Detailed Comparison:

Fundamentals of Software Development (4331604) - Winter 2023 Solution by Milav Dabgar

No. 14 / 31

Aspect PERT Chart Gantt Chart

Purpose Show task dependencies Show project timeline

Structure Network diagram Bar chart

Focus Critical path analysis Schedule visualization

Time Display Estimated durations Actual dates

Dependencies Explicit arrows Implicit connections

Best For Complex projects Simple scheduling

PERT Chart

Task A

Task C

Task B

Task D

2024-01-01 2024-01-02 2024-01-03 2024-01-04 2024-01-05 2024-01-06 2024-01-07 2024-01-08 2024-01-09 2024-01-10

Task A

Task B

Task C

Task D

Development

Gantt Chart

Visual Representation:

When to Use:

Fundamentals of Software Development (4331604) - Winter 2023 Solution by Milav Dabgar

No. 15 / 31

Scenario PERT Gantt

Project Type Research & Development Construction, Software

Uncertainty High uncertainty Well-defined tasks

Audience Technical team Management, Clients

PERT Advantages Gantt Advantages

Critical path identification Easy to understand visually

Flexible timing estimates Progress tracking capability

Risk analysis support Resource allocation display

Step Activity Purpose

Track Progress Measure actual vs planned Identify deviations

Assess Quality Review deliverables Ensure standards

Take Action Implement corrections Maintain alignment

Advantages Comparison:

Mnemonic: "PERT = Path, Gantt = Bars"

Question 4(a) [3 marks]
Give steps of Project Monitoring and control process

Answer:

Project monitoring ensures project stays on track through systematic observation and corrective actions.

Monitoring Steps:

Mnemonic: "Track Assess Take"

Question 4(b) [4 marks]
Discuss i)Risk Assessment ii)Risk Mitigation

Answer:

(i) Risk Assessment:

Process of identifying and evaluating potential project risks.

Fundamentals of Software Development (4331604) - Winter 2023 Solution by Milav Dabgar

No. 16 / 31

Assessment Type Method Output

Risk Identification Brainstorming, checklists Risk list

Risk Analysis Probability × Impact Risk priority

Risk Evaluation Risk matrix Action priorities

Strategy Description Example

Avoidance Eliminate risk source Change technology

Reduction Minimize impact Add testing

Transfer Shift risk to others Insurance, outsourcing

Acceptance Live with risk Contingency planning

Characteristic Description Example

Uncertainty May or may not occur Technology failure

Impact Affects project parameters Cost, schedule, quality

Probability Likelihood of occurrence 30% chance of delay

(ii) Risk Mitigation:

Strategies to reduce risk impact and probability.

Mnemonic: "Avoid Reduce Transfer Accept"

Question 4(c) [7 marks]
Define project risk and how Manage Risk Management it.

Answer:

Project Risk is an uncertain event that, if occurs, has positive or negative effect on project objectives.

Risk Characteristics:

Risk Management Process:

Fundamentals of Software Development (4331604) - Winter 2023 Solution by Milav Dabgar

No. 17 / 31

Risk
Identification

Risk Assessment

Risk Prioritization

Risk Response
Planning

Risk
Monitoring

Risk
Control

Step Activities Tools Output

Risk Identification Brainstorming, interviews Checklists, SWOT Risk register

Risk Assessment Probability and impact analysis Risk matrix Risk ratings

Risk Response Develop mitigation strategies Response templates Action plans

Risk Monitoring Track risk indicators Dashboards Status reports

Risk Management Steps:

Risk Categories:

Fundamentals of Software Development (4331604) - Winter 2023 Solution by Milav Dabgar

No. 18 / 31

Category Examples Mitigation Approach

Technical Technology obsolescence Proof of concept

Project Resource unavailability Resource planning

Business Market changes Stakeholder engagement

External Regulatory changes Legal consultation

Phase Activity Output

Analysis Understand requirements Problem definition

Architecture High-level structure System architecture

Detailed Design Component specification Design documents

Risk Response Strategies:

Negative Risks (Threats): Avoid, Transfer, Mitigate, Accept

Positive Risks (Opportunities): Exploit, Share, Enhance, Accept

Mnemonic: "Identify Assess Respond Monitor" + "Avoid Transfer Mitigate Accept"

Question 4(a OR) [3 marks]
Describe Software design process and explain Design methodologies.

Answer:

Software design transforms requirements into blueprint for implementation through systematic approach.

Design Process:

Mnemonic: "Analysis Architecture Detail"

Question 4(b OR) [4 marks]
Compare Cohesion and Coupling side by side.

Answer:

Both concepts measure module design quality but focus on different aspects.

Comprehensive Comparison:

Fundamentals of Software Development (4331604) - Winter 2023 Solution by Milav Dabgar

No. 19 / 31

Aspect Cohesion Coupling

Definition
Degree of relatedness within
module

Degree of interdependence between
modules

Goal High cohesion desired Low coupling desired

Focus Internal module structure Inter-module relationships

Quality
Indicator

Stronger = Better Weaker = Better

Cohesion Types (Best to Worst) Coupling Types (Best to Worst)

Functional - Single purpose Data - Simple data sharing

Sequential - Output→Input Stamp - Data structure sharing

Communicational - Same data Control - Control information

Procedural - Sequential execution External - External dependencies

Temporal - Same time Common - Global data

Logical - Similar functions Content - Internal data access

Coincidental - No relation

Factor High Cohesion Low Coupling

Maintainability Easy to modify Independent changes

Reusability Self-contained modules Flexible integration

Testing Focused test cases Isolated testing

Types Comparison:

Impact on Design:

Mnemonic: "Cohesion = Inside Strong, Coupling = Between Weak"

Question 4(c OR) [7 marks]
Sketch Data Flow Diagram with levels and explain.

Answer:

Data Flow Diagram (DFD) shows how data moves through system using graphical notation with multiple
levels of detail.

DFD Symbols:

Fundamentals of Software Development (4331604) - Winter 2023 Solution by Milav Dabgar

No. 20 / 31

Symbol Represents Description

Circle/Bubble Process Transforms input to output

Rectangle External Entity Source or destination

Open Rectangle Data Store Repository of data

Arrow Data Flow Movement of data

Context Diagram Level
0

Level 1 DFD

Level 2 DFD

Level 3 DFD

Single Process

Major
Processes

Sub-processes

Detailed Processes

Level Scope Purpose Detail

Level 0 (Context) Entire system System boundary Single process

Level 1 Major functions High-level processes 5-7 processes

Level 2 Sub-functions Process breakdown Detailed view

Level 3+ Fine details Implementation level Very specific

DFD Levels:

Level Descriptions:

Example - Student Information System:

Level 0 (Context Diagram):

[Student] → Student Info → [Student System] → Reports → [Admin]

Fundamentals of Software Development (4331604) - Winter 2023 Solution by Milav Dabgar

No. 21 / 31

Student 1.0 Register Student

Student
Database

2.0 Generate Reports Admin

Teacher 3.0 Update
Grades

Benefit Description Advantage

Abstraction Hide complexity Easy understanding

Decomposition Break down processes Manageable chunks

Verification Check completeness Quality assurance

Characteristic Description Benefit

Simple Easy to understand Reduced learning curve

Consistent Uniform behavior Predictable interaction

Responsive Quick feedback User satisfaction

Level 1 DFD:

Balancing Rules:

Data Conservation: Input = Output at each level

Process Numbering: Hierarchical numbering system

External Entities: Same at all levels

Benefits of Leveled DFDs:

Mnemonic: "Context Major Sub Fine" + "Process Entity Store Flow"

Question 5(a) [3 marks]
Give Characteristics of good UI.

Answer:

Good User Interface design ensures effective user interaction with software system.

UI Characteristics:

Mnemonic: "Simple Consistent Responsive"

Question 5(b) [4 marks]
Briefly explain Unit testing

Answer:

Fundamentals of Software Development (4331604) - Winter 2023 Solution by Milav Dabgar

No. 22 / 31

Aspect Description Purpose

Scope Individual modules/functions Component verification

Isolation Test in isolation Independent validation

Automation Automated test execution Efficient testing

Early Detection Find bugs early Cost-effective debugging

Write Test Cases Execute Tests

Analyze Results

Fix Defects

No

Start

User
Login

Unit Testing verifies individual software components in isolation to ensure correct functionality.

Unit Testing Overview:

Testing Process:

Benefits:

Early bug detection reduces fixing costs

Code quality improvement through testing discipline

Regression testing prevents future breaks

Mnemonic: "Scope Isolation Automation Early"

Question 5(c) [7 marks]
Draw activity diagrams of the train reservation system, explain each step.

Answer:

Activity Diagram shows workflow of train reservation system from user request to ticket confirmation.

Fundamentals of Software Development (4331604) - Winter 2023 Solution by Milav Dabgar

No. 23 / 31

Yes

No

Yes

No

Valid Credentials?

Search Trains

Select Train

Choose Seats

Seats Available?

Enter Passenger Details

Review Booking

Fundamentals of Software Development (4331604) - Winter 2023 Solution by Milav Dabgar

No. 24 / 31

Yes

No

Yes

Review Booking

Confirm
Booking?

Process
Payment

Payment Success?

Generate
Ticket

Send Confirmation

Fundamentals of Software Development (4331604) - Winter 2023 Solution by Milav Dabgar

No. 25 / 31

End

Step Activity Description Decision Points

1 User Login Authenticate user credentials Valid/Invalid

2 Search Trains Find available trains for route/date Results found

3 Select Train Choose specific train Train selection

4 Choose Seats Select seat preferences Availability check

5 Enter Details Provide passenger information Data validation

6 Review Booking Confirm booking details User confirmation

7 Process Payment Handle payment transaction Success/Failure

8 Generate Ticket Create ticket document Ticket creation

9 Send Confirmation Deliver confirmation to user Process complete

Type Symbol Purpose Examples

Action Rounded Rectangle Perform activity Search Trains

Decision Diamond Choose path Valid Credentials?

Start/End Circle Begin/Terminate Start, End

Flow Arrow Show sequence Process flow

Step-by-Step Explanation:

Activity Types:

Parallel Activities:

Payment processing and seat reservation can occur simultaneously

Confirmation email and SMS can be sent in parallel

Exception Handling:

Login Failure: Return to login screen

No Seats: Allow different seat selection

Payment Failure: Retry payment options

System Error: Show error message and restart

Mnemonic: "Login Search Select Choose Enter Review Pay Generate Send"

Fundamentals of Software Development (4331604) - Winter 2023 Solution by Milav Dabgar

No. 26 / 31

Aspect Verification Validation

Question "Are we building right?" "Are we building right thing?"

Focus Process correctness Product correctness

Method Reviews, inspections Testing, user feedback

Aspect Description Example

Approach Test without knowing internal structure Input/Output testing

Focus Functional requirements Login validation

Technique Equivalence partitioning Valid/Invalid inputs

Tester External perspective User acceptance

Question 5(a OR) [3 marks]
Compare Verification, Validation side by side.

Answer:

Both are quality assurance activities but focus on different aspects of correctness.

Verification vs Validation:

Mnemonic: "Verification = Right Process, Validation = Right Product"

Question 5(b OR) [4 marks]
Define Testing describe any two testing type.

Answer:

Testing is process of evaluating software to detect errors and ensure it meets requirements.

Testing Definition: Systematic examination of software to find defects and verify functionality.

Two Testing Types:

(1) Black Box Testing:

(2) White Box Testing:

Fundamentals of Software Development (4331604) - Winter 2023 Solution by Milav Dabgar

No. 27 / 31

Aspect Description Example

Approach Test with knowledge of code structure Path coverage

Focus Internal logic Code branches

Technique Statement coverage All lines executed

Tester Developer perspective Unit testing

Factor Black Box White Box

Knowledge No code knowledge Full code knowledge

Coverage Functional coverage Structural coverage

Level System level Unit level

Benefit Description Impact

Readability Easy to understand code Faster maintenance

Consistency Uniform coding style Team collaboration

Maintainability Easy to modify Reduced costs

Quality Fewer defects Reliable software

Comparison:

Mnemonic: "Black = External, White = Internal"

Question 5(c OR) [7 marks]
Describe each Coding standards and guidelines.

Answer:

Coding Standards are set of rules and conventions for writing consistent, maintainable, and readable code.

Purpose of Coding Standards:

Major Coding Standards Categories:

(1) Naming Conventions:

Fundamentals of Software Development (4331604) - Winter 2023 Solution by Milav Dabgar

No. 28 / 31

Element Standard Example Purpose

Variables camelCase userName, totalAmount Clear identification

Constants UPPER_CASE MAX_SIZE, DEFAULT_VALUE Distinguish constants

Functions descriptive verbs calculateTax(), validateInput() Action clarity

Classes PascalCase CustomerAccount, OrderManager Type identification

Aspect Guideline Example Benefit

Indentation Consistent spacing 4 spaces or 1 tab Visual hierarchy

Line Length Maximum 80-120 chars Break long lines Screen readability

Braces Opening brace style Same line vs new line Consistency

Comments Meaningful descriptions // Calculate tax amount Code documentation

Code
Organization

File
Structure

Function Size Class
Design

Single Responsibility Small Functions Clear Interfaces

Principle Guideline Limit Benefit

File Organization One class per file Related functions grouped Easy navigation

Function Length Keep functions small 20-30 lines max Better testing

Class Size Single responsibility Focused purpose Maintainability

Module Coupling Minimize dependencies Loose coupling Flexibility

(2) Code Structure:

(3) Code Organization:

(4) Documentation Standards:

Fundamentals of Software Development (4331604) - Winter 2023 Solution by Milav Dabgar

No. 29 / 31

Type Format Content Example

Header
Comments

File description
Purpose, author,
date

// Customer management module

Function
Comments

Parameter
description

Input/output specs @param userId - unique identifier

Inline Comments Complex logic Why, not what
// Using binary search for
performance

API
Documentation

Public interfaces Usage examples Method signatures

Practice Description Example Purpose

Exception
Handling

Use try-catch blocks try { ... } catch (Exception e) Graceful failure

Error Messages
Meaningful
messages

"Invalid email format" User guidance

Logging Record error details
log.error("Database connection

failed")

Debugging
support

Validation Input checking Check null values Prevent errors

Area Standard Example Impact

Memory Usage Avoid memory leaks Close resources System stability

Algorithm Choice Efficient algorithms Use appropriate data structures Response time

Database Access Minimize queries Use connection pooling Scalability

Code Optimization Avoid premature optimization Profile before optimizing Maintainability

Code
Written

Self
Review

Peer Review Team Lead
Review

Code
Approved

Merge to
Main

(5) Error Handling:

(6) Performance Guidelines:

Code Review Standards:

Review Checklist:

Fundamentals of Software Development (4331604) - Winter 2023 Solution by Milav Dabgar

No. 30 / 31

Category Check Items Purpose

Functionality Requirements met, edge cases handled Correctness

Standards Naming, formatting, documentation Consistency

Security Input validation, authentication Safety

Performance Efficient algorithms, resource usage Scalability

Benefit Description Long-term Impact

Team Productivity Faster development Reduced development time

Code Quality Fewer bugs Lower maintenance costs

Knowledge Transfer Easy understanding Smooth team transitions

Tool Support Better IDE support Enhanced development experience

Language Standard Organization Focus

Java Google Java Style Google Comprehensive guidelines

Python PEP 8 Python Software Foundation Pythonic code

JavaScript Airbnb Style Airbnb Modern JS practices

C# Microsoft Guidelines Microsoft .NET ecosystem

Benefits of Following Standards:

Implementation Strategy:

1. Establish Guidelines: Create team-specific coding standards document

2. Tool Integration: Use automated formatting and linting tools

3. Training: Conduct workshops on coding best practices

4. Enforcement: Include standards in code review process

5. Continuous Improvement: Regular updates based on team feedback

Popular Coding Standards:

Mnemonic: "Name Structure Organize Document Handle Perform Review"

Fundamentals of Software Development (4331604) - Winter 2023 Solution by Milav Dabgar

No. 31 / 31

	Question 1(a) [3 marks]
	Question 1(b) [4 marks]
	Question 1(c) [7 marks]
	Question 1(c OR) [7 marks]
	Question 2(a) [3 marks]
	Question 2(b) [4 marks]
	Question 2(c) [7 marks]
	Question 2(a OR) [3 marks]
	Question 2(b OR) [4 marks]
	Question 2(c OR) [7 marks]
	Question 3(a) [3 marks]
	Question 3(b) [4 marks]
	Question 3(c) [7 marks]
	Question 3(a OR) [3 marks]
	Question 3(b OR) [4 marks]
	Question 3(c OR) [7 marks]
	Question 4(a) [3 marks]
	Question 4(b) [4 marks]
	Question 4(c) [7 marks]
	Question 4(a OR) [3 marks]
	Question 4(b OR) [4 marks]
	Question 4(c OR) [7 marks]
	Question 5(a) [3 marks]
	Question 5(b) [4 marks]
	Question 5(c) [7 marks]
	Question 5(a OR) [3 marks]
	Question 5(b OR) [4 marks]
	Question 5(c OR) [7 marks]

