
Aspect Description

Framework Type Agile methodology

Sprint Duration 2-4 weeks typically

Team Size 5-9 members

Key Ceremonies Daily standups, Sprint planning, Sprint review, Retrospective

Characteristic Description

Intangible Cannot be touched physically

No Physical Wear Doesn't deteriorate with time

Custom Built Developed for specific requirements

Expensive High development and maintenance costs

Question 1(a) [3 marks]
What is Scrum model? Write about it.

Answer:

Scrum is an agile framework for managing software development projects through iterative and
incremental practices.

Key Features:

Product Owner: Defines requirements and priorities

Scrum Master: Facilitates process and removes obstacles

Development Team: Cross-functional team building the product

Mnemonic: "SPIR" - Sprint, Product owner, Incremental delivery, Review

Question 1(b) [4 marks]
Define Software and Explain Software Characteristics.

Answer:

Software Definition: A collection of computer programs, procedures, and documentation that performs
tasks on a computer system.

Key Points:

Logical Product: Made of instructions and data

Engineered: Follows systematic development process

Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

No. 1 / 33

Requirements Analysis

System Design

Implementation

Testing

Deployment

Maintenance

Complex: Handles multiple interconnected functions

Maintainable: Can be modified and updated

Mnemonic: "IELM" - Intangible, Engineered, Logical, Maintainable

Question 1(c) [7 marks]
Explain Waterfall Model with diagram.

Answer:

The Waterfall Model is a linear sequential software development approach where each phase must be
completed before the next begins.

Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

No. 2 / 33

Phase Activities Output

Requirements Gather and document needs SRS Document

Design System architecture planning Design specs

Implementation Actual coding Source code

Testing Verification and validation Test reports

Deployment Installation at client site Working system

Maintenance Bug fixes and updates Updated system

Advantages:

Simple to understand and implement

Well-documented phases

Easy project management with clear milestones

Disadvantages:

No flexibility for requirement changes

Late testing discovery of issues

Not suitable for complex projects

Mnemonic: "RSITDM" - Requirements, System design, Implementation, Testing, Deployment, Maintenance

Question 1(c) OR [7 marks]
Explain Spiral Model with diagram.

Answer:

The Spiral Model combines iterative development with systematic risk assessment, emphasizing risk
analysis in each iteration.

Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

No. 3 / 33

Planning

Risk
Analysis

Engineering

Customer Evaluation

Risk Assessment

Prototype
Development

Customer
Feedback

Quadrant Activity Purpose

Planning Requirement gathering Define objectives

Risk Analysis Identify and resolve risks Minimize uncertainties

Engineering Development and testing Build working software

Evaluation Customer assessment Get feedback for next iteration

Key Features:

Risk-driven approach with early risk identification

Iterative development with customer involvement

Prototyping in each spiral

Suitable for large and complex projects

Advantages:

Early risk detection and mitigation

Customer involvement throughout development

Flexible to accommodate changes

Disadvantages:

Complex management due to risk analysis

Expensive for small projects

Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

No. 4 / 33

Situation Application

Unclear Requirements When user needs are not well-defined

New Technology Testing feasibility of new tools/platforms

User Interface Designing complex UI/UX systems

High Risk Projects Reducing uncertainties early

Technique Description When to Use

Interviews One-on-one discussions Detailed requirements

Questionnaires Structured surveys Large user groups

Observation Watching current processes Understanding workflows

Workshops Group sessions Collaborative requirements

Requires expertise in risk assessment

Mnemonic: "PRICE" - Planning, Risk analysis, Iterative, Customer evaluation, Engineering

Question 2(a) [3 marks]
In which situation prototype model is used?

Answer:

The Prototype Model is used when requirements are unclear or when demonstrating feasibility is crucial.

Specific Use Cases:

Web applications with complex user interactions

Real-time systems requiring performance validation

AI/ML projects with experimental algorithms

Mnemonic: "UNIT" - Unclear requirements, New technology, Interface design, Testing feasibility

Question 2(b) [4 marks]
Explain requirement gathering in detail.

Answer:

Requirement Gathering is the process of collecting, analyzing, and documenting software requirements
from stakeholders.

Process Steps:

Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

No. 5 / 33

Responsibility Area Key Tasks Skills Required

Planning Project scheduling, resource allocation Strategic thinking

Team Management Team coordination, motivation Leadership

Risk Management Risk identification, mitigation strategies Problem-solving

Communication Stakeholder coordination, reporting Communication skills

Quality Assurance Process compliance, deliverable quality Attention to detail

Stakeholder Identification: Find all relevant parties

Information Collection: Use various gathering techniques

Analysis: Prioritize and categorize requirements

Documentation: Create formal requirement specifications

Challenges:

Changing requirements during development

Communication gaps between stakeholders

Incomplete information from users

Mnemonic: "IQOW" - Interviews, Questionnaires, Observation, Workshops

Question 2(c) [7 marks]
Discuss the responsibilities of software project manager.

Answer:

A Software Project Manager oversees the entire software development lifecycle ensuring successful
project delivery.

Detailed Responsibilities:

Project Planning:

Work Breakdown Structure creation

Timeline estimation and scheduling

Resource allocation and budget management

Team Leadership:

Team building and motivation

Conflict resolution between team members

Performance monitoring and feedback

Stakeholder Management:

Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

No. 6 / 33

Aspect GANTT Chart PERT Chart

Purpose Visual timeline of tasks Network analysis of dependencies

Format Horizontal bar chart Network diagram with nodes

Time Focus Shows duration and dates Shows critical path and slack time

Complexity Simple to understand More complex analysis

Best For Project scheduling Time optimization

Client communication and expectation management

Progress reporting to senior management

Change request handling and approval

Risk and Quality Management:

Risk assessment and contingency planning

Quality standards enforcement

Process improvement implementation

Essential Skills:

Technical knowledge of software development

Project management methodologies (Agile, Waterfall)

Communication skills for diverse stakeholders

Problem-solving and decision-making abilities

Mnemonic: "PLACE" - Planning, Leadership, Assessment, Communication, Execution

Question 2(a) OR [3 marks]
Difference between GANTT chart and PERT chart.

Answer:

Key Differences:

GANTT: Shows when tasks happen

PERT: Shows task relationships and critical path

Mnemonic: "GT vs PT" - Gantt Timeline vs PERT dependencies

Question 2(b) OR [4 marks]
Give the Full Form of: RAD, SDLC, XP model and SRS.

Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

No. 7 / 33

Acronym Full Form Description

RAD Rapid Application Development Fast prototyping methodology

SDLC Software Development Life Cycle Complete development process

XP Extreme Programming Agile development methodology

SRS Software Requirement Specification Formal requirement document

Software
Project

Analysis
Phase

Design Phase Implementation
Phase

Testing Phase

Requirement
Gathering

SRS Documentation System Design Database Design UI
Design

Module
Development

Code
Review

Integration Unit Testing System
Testing

User Acceptance Testing

WBS Level Description Example

Level 1 Major project phases Analysis, Design, Implementation

Level 2 Major deliverables SRS, Design docs, Code modules

Level 3 Work packages Specific tasks and activities

Level 4 Individual activities Detailed task breakdown

Answer:

Brief Explanations:

RAD: Focuses on rapid prototyping and iterative development

SDLC: Systematic approach to software development phases

XP: Agile methodology emphasizing coding practices

SRS: Detailed documentation of functional and non-functional requirements

Mnemonic: "RSXS" - RAD, SDLC, XP, SRS

Question 2(c) OR [7 marks]
Explain WBS in Detail.

Answer:

Work Breakdown Structure (WBS) is a hierarchical decomposition of project work into smaller,
manageable components.

Benefits of WBS:

Clear project scope definition

Better estimation of time and resources

Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

No. 8 / 33

Improved task assignment and accountability

Enhanced progress tracking and control

WBS Creation Process:

Identify major deliverables from project scope

Decompose deliverables into smaller components

Continue breakdown until work packages are manageable

Assign responsibilities for each work package

Key Principles:

100% Rule: WBS includes all project work

Mutually Exclusive: No overlap between components

Manageable Size: Work packages should be 8-80 hours

Mnemonic: "DEBT" - Decompose, Estimate, Breakdown, Track

Question 3(a) [3 marks]
Draw the diagram of Incremental Model.

Answer:

The Incremental Model develops software in increments, with each increment adding functionality to the
previous versions.

Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

No. 9 / 33

Requirements Analysis

System Design

Increment
1

Increment
2

Increment
3

Design → Code →
Test

Design → Code →
Test

Design → Code →
Test

Release
1

Release
2

Release
3

Final
Product

Key Features:

Core functionality delivered first

Additional features added incrementally

Working software available early

Mnemonic: "IRA" - Incremental, Release, Add features

Question 3(b) [4 marks]
Difference between functional and non-functional requirements

Answer:

Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

No. 10 / 33

Aspect Functional Requirements Non-Functional Requirements

Definition What the system should do How the system should perform

Focus System behavior and features System quality attributes

Examples Login, data processing, reports Performance, security, usability

Testing Functional testing Performance, security testing

Documentation Use cases, user stories Quality metrics, constraints

Detailed Comparison:

Functional Requirements:

User authentication and authorization

Data processing and calculations

Report generation and export features

Business logic implementation

Non-Functional Requirements:

Performance: Response time, throughput

Security: Data encryption, access control

Usability: User interface design, accessibility

Reliability: System availability, fault tolerance

Examples for Library System:

Functional: Book search, issue/return books, fine calculation

Non-Functional: Search results in <2 seconds, 99.9% uptime, SSL encryption

Mnemonic: "FW vs NH" - Functional What vs Non-functional How

Question 3(c) [7 marks]
Explain DFD with example.

Answer:

Data Flow Diagram (DFD) is a graphical representation showing data flow through a system using
processes, data stores, external entities, and data flows.

DFD Symbols:

Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

No. 11 / 33

Symbol Name Purpose

Circle/Oval Process Data transformation

Rectangle External Entity Data source/destination

Open Rectangle Data Store Data storage

Arrow Data Flow Data movement direction

Book Request Book Details

Query Book Info

Issue
Request

Issue Details

Confirmation Book Return

Update
Status

Update Records

Receipt

Student

Search Books

Book
Database

Issue
Book

Issue
Records

Librarian

Return Book

Example: Library Management System

DFD Levels:

Context Diagram (Level 0):

Single process representing entire system

External entities and major data flows

High-level overview of system boundaries

Level 1 DFD:

Major processes of the system

Data stores and their interactions

Detailed data flows between processes

Level 2 and beyond:

Decomposition of complex processes

More detailed data transformations

Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

No. 12 / 33

Classification Activities Purpose

System Design Architecture, modules, interfaces High-level structure

Detailed Design Algorithms, data structures Implementation details

Interface Design UI/UX, API specifications User interaction

Database Design Schema, relationships, optimization Data management

Lower-level process specifications

DFD Rules:

Process naming: Use verb + object (e.g., "Validate User")

Data flow naming: Use noun phrases (e.g., "User Details")

Balancing: Input/output must match between levels

No direct connections between external entities

Benefits:

Clear communication with stakeholders

System boundary identification

Process analysis and optimization

Documentation for system design

Mnemonic: "PEDS" - Process, External entity, Data store, Data flow

Question 3(a) OR [3 marks]
Write classification of design activities.

Answer:

Design Activities are classified based on their scope and purpose in software development.

Key Design Activities:

Architectural Design: Overall system structure

Component Design: Individual module specifications

Data Design: Database and file structures

Mnemonic: "ACID" - Architectural, Component, Interface, Data design

Question 3(b) OR [4 marks]
Explain characteristics of good SRS.

Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

No. 13 / 33

Characteristic Description Benefit

Complete All requirements included No missing functionality

Consistent No contradictory requirements Clear understanding

Unambiguous Single interpretation possible Reduced confusion

Verifiable Requirements can be tested Quality assurance

Modifiable Easy to update and maintain Adaptability

Traceable Requirements can be tracked Change management

Answer:

A good SRS (Software Requirement Specification) document should possess specific characteristics for
effective communication and development.

Detailed Characteristics:

Completeness:

All functional requirements specified

All non-functional requirements included

All interfaces and constraints documented

Consistency:

No conflicting requirements

Uniform terminology throughout document

Consistent formatting and structure

Verifiability:

Testable requirements with clear criteria

Measurable quality attributes

Objective success criteria defined

Mnemonic: "CCUMVT" - Complete, Consistent, Unambiguous, Modifiable, Verifiable, Traceable

Question 3(c) OR [7 marks]
Explain White box Testing.

Answer:

White Box Testing is a testing method that examines the internal structure, code, and logic of software
applications.

Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

No. 14 / 33

Aspect Description

Also Known As Structural testing, Glass box testing, Clear box testing

Access Level Full access to source code and internal structure

Focus Code coverage, logic paths, internal data structures

Tester Knowledge Programming knowledge required

White Box
Testing

Statement Coverage Branch Coverage Path Coverage Condition
Coverage

Execute every
statement

Test all decision
points

Test all possible paths Test all logical
conditions

Coverage Type Formula Description

Statement
Coverage

(Executed statements / Total statements) ×
100%

Tests every line of code

Branch Coverage (Executed branches / Total branches) × 100%
Tests all decision
outcomes

Path Coverage (Executed paths / Total paths) × 100% Tests all execution paths

Condition Coverage (Tested conditions / Total conditions) × 100% Tests all logical conditions

White Box Testing Techniques:

Coverage Types:

Advantages:

Thorough testing of code logic

Early defect detection in development

Code optimization opportunities identification

Complete code coverage possible

Disadvantages:

Expensive and time-consuming process

Requires programming skills from testers

May miss requirement-related defects

Complex for large applications

Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

No. 15 / 33

Importance Benefit Application

Fast Development Reduced time-to-market Business applications

User Involvement Better requirement understanding Interactive systems

Prototype-based Early feedback and validation UI-intensive applications

Component Reuse Cost reduction and efficiency Enterprise applications

Tools Used:

Code coverage tools (JaCoCo, gcov)

Static analysis tools (SonarQube)

Unit testing frameworks (JUnit, NUnit)

Example Test Cases:

Mnemonic: "SBPC" - Statement, Branch, Path, Condition coverage

Question 4(a) [3 marks]
Importance of RAD model.

Answer:

RAD (Rapid Application Development) model emphasizes quick development through prototyping and
iterative design.

Key Benefits:

Quick delivery of working prototypes

Reduced development time and costs

High user satisfaction through involvement

Flexible to changes during development

// Function to test
function calculateGrade(marks) {
 if (marks >= 90) return 'A';
 else if (marks >= 80) return 'B';
 else if (marks >= 70) return 'C';
 else return 'F';
}

// White box test cases for 100% branch coverage
// Test 1: marks = 95 (A grade path)
// Test 2: marks = 85 (B grade path)
// Test 3: marks = 75 (C grade path)
// Test 4: marks = 65 (F grade path)

Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

No. 16 / 33

Type Description Participants Duration

Formal Inspection Structured process with defined roles 3-6 people 2-4 hours

Walkthrough Author-led review session 2-7 people 1-2 hours

Peer Review Informal colleague review 2-3 people 30-60 minutes

Tool-based Review Automated code analysis Individual Varies

When to Use RAD:

Well-defined business requirements

Experienced development team available

Modular system architecture possible

Mnemonic: "FUPR" - Fast, User involvement, Prototype-based, Reusable components

Question 4(b) [4 marks]
Explain code inspection.

Answer:

Code Inspection is a systematic examination of source code to identify defects, improve quality, and
ensure compliance with standards.

Code Inspection Process:

Planning: Select code, assign roles, schedule meeting

Overview: Author explains code purpose and design

Preparation: Reviewers study code individually

Inspection Meeting: Systematic defect identification

Rework: Author fixes identified issues

Follow-up: Verify defect resolution

Benefits:

Early defect detection before testing

Knowledge sharing among team members

Code quality improvement and standardization

Reduced maintenance costs

Mnemonic: "FWPT" - Formal, Walkthrough, Peer review, Tool-based

Question 4(c) [7 marks]

Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

No. 17 / 33

Type Description Example Strength

Functional Single, well-defined task Calculate tax amount Highest

Sequential Output of one element feeds next Read→Process→Write data High

Communicational Elements operate on same data Update customer record High

Procedural Elements follow execution sequence Initialize→Process→Cleanup Medium

Temporal Elements executed at same time System startup routines Medium

Logical Similar logical functions grouped All input/output operations Low

Coincidental No meaningful relationship Random utility functions Lowest

Cohesion Types

Functional -
Best

Sequential Communicational Procedural Temporal Logical Coincidental - Worst

Explain cohesion with its classification.

Answer:

Cohesion measures how closely related and focused the responsibilities of a single module are. Higher
cohesion indicates better module design.

Cohesion Types (Ranked from Best to Worst):

Detailed Classification:

Functional Cohesion (Best):

Single responsibility principle

Example: calculateInterest() - only calculates interest

Benefits: Easy to understand, test, and maintain

Sequential Cohesion:

Data flows from one element to next

Example: readFile() → parseData() → generateReport()

Good design for processing pipelines

Communicational Cohesion:

Same data structure manipulation

Example: Module updating all fields of customer record

Reasonable design for data-centric operations

Procedural Cohesion:

Control flow relationship

Example: Initialization sequence in specific order

Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

No. 18 / 33

Acceptable for procedural operations

Temporal Cohesion:

Time-based relationship

Example: System startup or shutdown routines

Moderate quality design

Logical Cohesion:

Similar functions grouped together

Example: All mathematical functions in one module

Poor design - difficult to maintain

Coincidental Cohesion (Worst):

No logical relationship between elements

Example: Miscellaneous utility functions

Avoid this - creates maintenance nightmares

Benefits of High Cohesion:

Easier maintenance and debugging

Better reusability of modules

Improved testability and reliability

Clearer code understanding

How to Achieve High Cohesion:

Single Responsibility Principle: One reason to change

Clear module purpose: Well-defined functionality

Minimal interfaces: Reduce external dependencies

Logical grouping: Related functions together

Mnemonic: "FSCPTLC" - Functional, Sequential, Communicational, Procedural, Temporal, Logical,
Coincidental

Question 4(a) OR [3 marks]
Software doesn't wear out.

Answer:

Software doesn't wear out means software doesn't deteriorate physically like hardware components do
over time.

Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

No. 19 / 33

Aspect Hardware Software

Physical Degradation Components wear out No physical degradation

Age Effect Performance decreases Performance remains constant

Failure Pattern Increasing failure rate Constant failure rate

Maintenance Replace worn parts Fix logical errors only

Component Symbol Description

Actor Stick figure External entity interacting with system

Use Case Oval System function or service

System Boundary Rectangle System scope definition

Relationships Lines/Arrows Associations between components

Key Points:

No mechanical parts to wear out

Logical errors don't increase with time

Performance degradation due to environment changes, not aging

Failures occur due to design flaws, not wear

Why This Matters:

Different maintenance approach needed

Focus on updates rather than replacement

Longevity planning differs from hardware

Mnemonic: "NLPF" - No physical parts, Logical errors, Performance constant, Failures from design

Question 4(b) OR [4 marks]
Explain use-case diagram.

Answer:

Use-case Diagram is a UML behavioral diagram showing system functionality from user's perspective
through interactions between actors and use cases.

Use-case Diagram Elements:

Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

No. 20 / 33

Library Management
System

Search Books
Borrow Book

Return Book

Manage
Catalog

Generate
Reports

Student

Librarian

Relationship Types:

Association: Actor participates in use case

Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

No. 21 / 33

Aspect Description

Also Known As Functional testing, Behavioral testing, Specification-based testing

Access Level No access to source code or internal structure

Focus Input-output behavior, functional requirements

Tester Knowledge Domain knowledge required, not programming

Black Box
Testing

Equivalence Partitioning Boundary Value Analysis Decision Table
Testing

State Transition Testing

Valid/Invalid input
classes

Test boundary conditions Complex business rules State-dependent
behavior

Include: Use case always includes another use case

Extend: Use case conditionally extends another

Generalization: Inheritance between actors/use cases

Benefits:

Clear system scope definition

User requirements visualization

Communication tool with stakeholders

Test case derivation basis

Mnemonic: "AUSB" - Actor, Use case, System boundary, Relationships

Question 4(c) OR [7 marks]
Explain Black box Testing.

Answer:

Black Box Testing is a testing method that examines software functionality without knowledge of internal
code structure or implementation details.

Black Box Testing Techniques:

Testing Techniques:

Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

No. 22 / 33

Technique Description Example

Equivalence
Partitioning

Divide inputs into valid/invalid
groups

Age: 0-17, 18-60, 60+

Boundary Value
Analysis

Test at boundaries of input
ranges

Test at 17, 18, 60, 61

Decision Table Test combinations of conditions
Login with valid/invalid
user/password

State Transition Test state changes
ATM states: Idle→Card inserted→PIN
entry

Test Case Design Example:

Advantages:

No programming knowledge required for testers

User perspective testing approach

Independent verification of requirements

Effective for large applications

Disadvantages:

Limited code coverage visibility

Cannot identify unused code paths

Difficult to design test cases without specifications

May miss logical errors in code

Types of Black Box Testing:

Functional Testing: Feature verification

Integration Testing: Module interaction testing

Function: Login validation
Inputs: Username, Password
Valid equivalence classes:
- Username: 5-20 characters, alphanumeric
- Password: 8-15 characters, special chars allowed

Invalid equivalence classes:
- Username: <5 or >20 characters, special chars
- Password: <8 or >15 characters, spaces

Boundary values to test:
- Username: 4, 5, 20, 21
- Password: 7, 8, 15, 16

Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

No. 23 / 33

Aspect Verification Validation

Definition "Are we building the product right?" "Are we building the right product?"

Focus Process compliance Product correctness

When During development After development

Method Reviews, inspections, walkthroughs Testing with actual data

Cost Lower cost of defect detection Higher cost of defect detection

System Testing: Complete system validation

Acceptance Testing: User requirement verification

Tools Used:

Test management tools (TestRail, Zephyr)

Automation tools (Selenium, QTP)

Defect tracking tools (Jira, Bugzilla)

When to Use:

Requirements-based testing

User acceptance testing

System integration testing

Regression testing after changes

Mnemonic: "EBDS" - Equivalence, Boundary, Decision table, State transition

Question 5(a) [3 marks]
Difference between verification and validation.

Answer:

Key Differences:

Verification: Checks against specifications

Validation: Checks against user needs

Verification: Static testing methods

Validation: Dynamic testing methods

Examples:

Verification: Code review, design review, SRS review

Validation: Unit testing, integration testing, system testing

Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

No. 24 / 33

Component Description Purpose

Introduction System overview and scope Context setting

Functional Requirements What system should do Feature specification

Non-functional Requirements How system should perform Quality attributes

Constraints Limitations and restrictions Boundary definition

Mnemonic: "VR vs VT" - Verification Reviews vs Validation Testing

Question 5(b) [4 marks]
Explain SRS.

Answer:

SRS (Software Requirement Specification) is a detailed document describing the functional and non-
functional requirements of a software system.

SRS Structure:

System Purpose: Why the system is needed

System Scope: What the system will and won't do

Definitions: Technical terms and acronyms

User Requirements: High-level user needs

System Requirements: Detailed technical specifications

Importance of SRS:

Communication tool between stakeholders

Baseline for testing and validation

Contract basis between client and developer

Change management reference document

Users of SRS:

Developers: Implementation guidance

Testers: Test case creation

Project Managers: Planning and tracking

Clients: Requirement verification

Mnemonic: "IFNC" - Introduction, Functional, Non-functional, Constraints

Question 5(c) [7 marks]

Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

No. 25 / 33

Risk
Identification

Risk
Analysis

Risk Assessment

Risk
Mitigation

Risk
Monitoring

Phase Activities Output

Identification Brainstorming, checklists, expert judgment Risk register

Analysis Probability and impact assessment Risk matrix

Assessment Risk prioritization and ranking Risk priority list

Mitigation Response strategy development Mitigation plans

Monitoring Track risks and mitigation effectiveness Status reports

Explain Risk Management.

Answer:

Risk Management is the systematic process of identifying, analyzing, and responding to project risks to
minimize their impact on project success.

Risk Management Process:

Risk Categories:

Project Risks:

Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

No. 26 / 33

Strategy Description When to Use Example

Accept Acknowledge risk, no action Low impact risks Minor UI changes

Avoid Eliminate risk source High impact, avoidable Change technology

Mitigate Reduce probability/impact Manageable risks Additional testing

Transfer Shift risk to third party Specialized risks Insurance, outsourcing

Probability/Impact Low Medium High

High Medium High Critical

Medium Low Medium High

Low Very Low Low Medium

Schedule delays due to resource unavailability

Budget overruns from scope changes

Team turnover affecting productivity

Communication gaps between stakeholders

Technical Risks:

Technology complexity exceeding team skills

Integration challenges with existing systems

Performance issues under load conditions

Security vulnerabilities in design

Business Risks:

Changing requirements from market conditions

Competition releasing similar products

Regulatory changes affecting compliance

Stakeholder conflicts on priorities

Risk Response Strategies:

Risk Assessment Matrix:

Risk Mitigation Techniques:

Prototyping to reduce technical uncertainty

Staff training to address skill gaps

Regular reviews to catch issues early

Contingency planning for critical scenarios

Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

No. 27 / 33

Benefits of Risk Management:

Proactive problem prevention

Better decision making with risk awareness

Improved project success rates

Stakeholder confidence in project delivery

Risk Monitoring Activities:

Regular risk reviews and updates

Risk trigger monitoring for early warning

Mitigation plan progress tracking

New risk identification as project evolves

Tools for Risk Management:

Risk registers and databases

Risk assessment matrices

Monte Carlo simulation for quantitative analysis

Expert judgment and historical data

Key Success Factors:

Management commitment to risk processes

Team awareness and participation

Regular communication about risks

Integration with project management processes

Mnemonic: "IATMM" - Identify, Analyze, Assess, Treat, Monitor risks

Question 5(a) OR [3 marks]
List out any functional requirements for Hostel management system.

Answer:

Functional Requirements for Hostel Management System define what the system should do to manage
hostel operations effectively.

Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

No. 28 / 33

Module Functional Requirements

Student Management Register students, assign rooms, maintain profiles

Room Management Room allocation, availability tracking, maintenance

Fee Management Fee calculation, payment processing, receipt generation

Visitor Management Visitor registration, entry/exit tracking, approval

Detailed Functional Requirements:

Student Module:

Student registration with personal details

Room assignment based on availability

Student profile management and updates

Administrative Module:

Staff management and role assignment

Report generation for occupancy and finances

Complaint management and resolution tracking

Security Module:

Access control for different user types

Visitor logging and approval system

Emergency contact management

Mnemonic: "SRFV" - Student, Room, Fee, Visitor management

Question 5(b) OR [4 marks]
Explain Agile process.

Answer:

Agile Process is an iterative and incremental software development approach emphasizing collaboration,
flexibility, and customer satisfaction.

Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

No. 29 / 33

Agile Principle Description Benefit

Customer Collaboration Continuous customer involvement
Better requirement
understanding

Working Software
Deliver functional software
frequently

Early value delivery

Responding to Change Adapt to changing requirements Market responsiveness

Individuals and
Interactions

People over processes and tools Better team dynamics

Agile Values:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

Agile Practices:

Short iterations (1-4 weeks)

Daily standups for team coordination

Sprint planning and review meetings

Continuous integration and testing

Benefits:

Faster delivery of working software

Better quality through continuous testing

Improved stakeholder satisfaction

Flexibility to handle changes

Mnemonic: "CWRI" - Customer collaboration, Working software, Responding to change, Individuals

Question 5(c) OR [7 marks]
Explain Software Engineering - A layered approach

Answer:

Software Engineering - A Layered Approach represents software engineering as a structured
methodology with multiple interconnected layers, each building upon the foundation of lower layers.

Layered Architecture:

Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

No. 30 / 33

Quality Focus

Process
Layer

Methods Layer

Tools Layer

Layer Description Purpose Examples

Quality
Focus

Foundation emphasizing
quality

Ensures customer
satisfaction

Quality standards, metrics

Process
Framework for software
development

Provides structure and
control

SDLC models, project
management

Methods
Technical approaches and
techniques

Guides development
activities

Analysis, design, testing
methods

Tools
Automated support for
methods

Increases productivity
IDEs, testing tools, CASE
tools

Detailed Layer Analysis:

Quality Focus (Foundation Layer):

Bedrock of software engineering approach

Commitment to quality in all activities

Customer satisfaction as primary goal

Continuous improvement mindset

Quality characteristics: Correctness, reliability, efficiency, maintainability

Process Layer:

Defines framework for effective delivery

Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

No. 31 / 33

Establishes context for technical methods

Key elements: Communication, planning, modeling, construction, deployment

Process models: Waterfall, Agile, Spiral, Incremental

Management activities: Project planning, tracking, risk management

Methods Layer:

Technical knowledge for building software

Encompasses broad array of tasks

Communication methods: Requirement elicitation, analysis

Planning methods: Project estimation, scheduling

Modeling methods: Analysis and design techniques

Construction methods: Coding standards, testing strategies

Deployment methods: Delivery, support, feedback

Tools Layer:

Automated or semi-automated support

Increases efficiency and reduces errors

Tool categories:

Development environments: IDEs, compilers

Analysis and design tools: UML tools, CASE tools

Testing tools: Unit testing, automation frameworks

Project management tools: Scheduling, tracking software

Interactions Between Layers:

Quality ↔ Process:

Quality focus drives process selection

Process ensures quality delivery

Process ↔ Methods:

Process provides context for methods

Methods implement process activities

Methods ↔ Tools:

Methods define what needs to be done

Tools provide how to do it efficiently

Benefits of Layered Approach:

Systematic methodology for software development

Scalability from small to large projects

Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

No. 32 / 33

Flexibility to adapt tools and methods

Quality assurance at every level

Risk reduction through structured approach

Implementation Strategy:

Start with quality focus establishment

Select appropriate process for project context

Choose methods matching process requirements

Integrate tools supporting selected methods

Continuous evaluation and improvement

Key Success Factors:

Management commitment to quality

Team training on methods and tools

Process adherence and discipline

Tool integration and standardization

Continuous improvement culture

Real-world Application:

Large organizations: Complete layer implementation

Small teams: Simplified but consistent approach

Project-specific: Tailored layer selection

Industry standards: Compliance with quality frameworks

Mnemonic: "QPMT" - Quality focus, Process, Methods, Tools (from bottom to top)

Fundamentals of Software Development (4331604) - Winter 2024 Solution by Milav Dabgar

No. 33 / 33

	Question 1(a) [3 marks]
	Question 1(b) [4 marks]
	Question 1(c) [7 marks]
	Question 1(c) OR [7 marks]
	Question 2(a) [3 marks]
	Question 2(b) [4 marks]
	Question 2(c) [7 marks]
	Question 2(a) OR [3 marks]
	Question 2(b) OR [4 marks]
	Question 2(c) OR [7 marks]
	Question 3(a) [3 marks]
	Question 3(b) [4 marks]
	Question 3(c) [7 marks]
	Question 3(a) OR [3 marks]
	Question 3(b) OR [4 marks]
	Question 3(c) OR [7 marks]
	Question 4(a) [3 marks]
	Question 4(b) [4 marks]
	Question 4(c) [7 marks]
	Question 4(a) OR [3 marks]
	Question 4(b) OR [4 marks]
	Question 4(c) OR [7 marks]
	Question 5(a) [3 marks]
	Question 5(b) [4 marks]
	Question 5(c) [7 marks]
	Question 5(a) OR [3 marks]
	Question 5(b) OR [4 marks]
	Question 5(c) OR [7 marks]

