Object Oriented Programming With Java (4341602) - Summer 2023 Solution by Milav Dabgar

Question 1(a) [3 marks]

Differentiate between Procedure-Oriented Programming (POP) and Object-Oriented Programming
(OOP).

Answer:

Table:
Aspect POP OoOoP
Focus Functions/Procedures Objects and Classes
Data Security Less secure, global data More secure, data encapsulation
Problem Solving Top-down approach Bottom-up approach
Code Reusability Limited High through inheritance
Examples C, Pascal Java, C++, Python

e POP: Program divided into functions, data flows between functions

e OOP: Program organized around objects that contain both data and methods

Mnemonic: "POP Functions, OOP Objects"

Question 1(b) [4 marks]

Explain Super keyword in inheritance with suitable example.

Answer:

Super keyword is used to access parent class members from child class.

Table: Super keyword uses

Use Purpose Example

super() Call parent constructor super(name, age)

super.method() Call parent method super.display()

super.variable Access parent variable super.name
Code Block:

class Animal {
String name = "Animal";
void eat() { System.out.println("Animal eats"); }

No. 1/32

Object Oriented Programming With Java (4341602) - Summer 2023 Solution by Milav Dabgar

class Dog extends Animal {
String name = "Dog";
void eat() {
super.eat(); // calls parent method
System.out.println("Dog eats bones");

}
void display() {
System.out.println(super.name); // prints "Animal"

Mnemonic: "Super calls Parent"

Question 1(c) [7 marks]

Define: Method Overriding. List out Rules for method overriding. Write a java program that
implements method overriding.

Answer:

Method Overriding: Child class provides specific implementation of parent class method with same
signature.

Table: Method Overriding Rules

Rule Description
Same name Method name must be identical
Same parameters Parameter list must match exactly
IS-A relationship Must have inheritance
Access modifier Cannot reduce visibility
Return type Must be same or covariant

Code Block:

class Shape {
void draw() {

System.out.println("Drawing a shape");

class Circle extends Shape {
@override
void draw() {

System.out.println("Drawing a circle");

No. 2 /32

Object Oriented Programming With Java (4341602) - Summer 2023 Solution by Milav Dabgar

class Main {
public static void main(String[] args) {
Shape s = new Circle();
s.draw(); // Output: Drawing a circle

Mnemonic: "Override Same Signature"

Question 1(c OR) [7 marks]

Describe: Interface. Write a java program using interface to demonstrate multiple inheritance.
Answer:

Interface: Blueprint containing abstract methods and constants. Classes implement interfaces to achieve
multiple inheritance.

Table: Interface Features

Feature Description
Abstract methods No implementation (before Java 8)
Constants All variables are public static final
Multiple inheritance Class can implement multiple interfaces
Default methods Concrete methods (Java 8+)

Code Block:

interface Flyable {
void fly();

interface Swimmable {

void swim();

class Duck implements Flyable, Swimmable {
public void fly() {
System.out.println("Duck flies");

public void swim() {
System.out.println("Duck swims");

No. 3 /32

Object Oriented Programming With Java (4341602) - Summer 2023 Solution by Milav Dabgar

class Main {
public static void main(String[] args) {
Duck d = new Duck();
d.fly();
d.swim();

Mnemonic: "Interface Multiple Implementation”

Question 2(a) [3 marks]

Explain the Java Program Structure with example.
Answer:
Java Program Structure consists of package, imports, class declaration, and main method.

Diagram:

|

[+ |
| | variables |
| = +
| | Methods |
[+ |
rocoooocaooooooooos +

Code Block:

package com.example; // Package

import java.util.*; // Import

public class HelloWorld { // Class
static int count = 0; // Variable

public static void main(String[] args) { // Main method

System.out.println("Hello World");

Mnemonic: "Package Import Class Main"

No. 4 /32

Object Oriented Programming With Java (4341602) - Summer 2023 Solution by Milav Dabgar

Question 2(b) [4 marks]

Explain static keyword with suitable example.
Answer:
Static keyword belongs to class rather than instance. Memory allocated once.

Table: Static Uses

Type Description Example
Static variable Shared by all objects static int count
Static method Called without object static void display()
Static block Executes before main static { }

Code Block:

class Student {
static String college = "GTU"; // static variable

String name;

static void showCollege() { // static method
System.out.println(college);

static { // static block
System.out.println("Static block executed");

class Main {
public static void main(String[] args) {
Student.showCollege(); // No object needed

Mnemonic: "Static Shared by Class"

Question 2(c) [7 marks]

Define: Constructor. List out types of it. Explain Parameterized and copy constructor with suitable
example.

Answer:

Constructor: Special method to initialize objects, same name as class, no return type.

Table: Constructor Types

No. 5/ 32

Object Oriented Programming With Java (4341602) - Summer 2023 Solution by Milav Dabgar

Type Description Example

Default No parameters Student()

Parameterized With parameters Student(String name)

Copy Creates copy of object Student(Student s)
Code Block:

class Student {
String name;

int age;

// Parameterized constructor
Student (String n, int a) {
name = n;

age = a;

// Copy constructor
Student (Student s) {
name = s.name;

age = s.age;

void display() {

System.out.println(name + + age);

class Main {
public static void main(String[] args) {
Student sl = new Student("John", 20); // Parameterized
Student s2 = new Student(sl); // Copy
sl.display();
s2.display();

Mnemonic: "Constructor Initializes Objects"

Question 2(a OR) [3 marks]

Explain the Primitive Data Types and User Defined Data Types in java.
Answer:

Primitive Data Types: Built-in types provided by Java language.
User Defined Types: Custom types created by programmer using classes.

No. 6 /32

Object Oriented Programming With Java (4341602) - Summer 2023 Solution by Milav Dabgar

Table: Data Types

Category Types Size Example
Primitive byte, short, int, long 1,2,4,8 bytes intx=10;
Primitive float, double 4,8 bytes double d =3.14;
Primitive char, boolean 2,1 bytes char c="A}
User Defined Class, Interface, Array Variable Students;

e Primitive: Stored in stack, faster access

e User Defined: Stored in heap, complex operations

Mnemonic: "Primitive Built-in, User Custom"

Question 2(b OR) [4 marks]

Explain this keyword with suitable example.
Answer:

This keyword refers to current object instance, used to distinguish between instance and local variables.

Table: This keyword uses

Use Purpose Example

this.variable Access instance variable this.name = name;

this.method() Call instance method this.display();

this() Call constructor this(name, age);
Code Block:

class Student {
String name;

int age;
Student (String name, int age) {

this.name = name; // this distinguishes

this.age = age; // instance from parameter

void setData(String name) {
this.name = name; // this refers to current object

void display() {

No. 7 /32

Object Oriented Programming With Java (4341602) - Summer 2023 Solution by Milav Dabgar

System.out.println(this.name + " " + this.age);

Mnemonic: "This Current Object"

Question 2(c OR) [7 marks]

Define Inheritance. List out types of it. Explain multilevel and hierarchical inheritance with suitable
example.

Answer:
Inheritance: Mechanism where child class acquires properties and methods of parent class.

Table: Inheritance Types

Type Description Structure
Single One parent, one child A—B
Multilevel Chain of inheritance A—-B—-C
Hierarchical One parent, multiple children A—-B A—-C
Multiple Multiple parents (via interfaces) B.C—A

Diagram - Multilevel:

Animal

Mammal

Dog

Code Block - Multilevel:

No. 8 /32

Object Oriented Programming With Java (4341602) - Summer 2023 Solution by Milav Dabgar

class Animal {

void eat() { System.out.println("Animal eats"); }

class Mammal extends Animal {

void breathe() { System.out.println("Mammal breathes"); }

class Dog extends Mammal {

void bark() { System.out.println("Dog barks"); }

Diagram - Hierarchical:

Shape

Circle Rectangle Triangle

Code Block - Hierarchical:

class Shape {

void draw() { System.out.println("Drawing shape"); }

class Circle extends Shape ({

void drawCircle() { System.out.println("Drawing circle"); }

class Rectangle extends Shape {

void drawRectangle() { System.out.println("Drawing rectangle"); }
Mnemonic: "Inheritance Shares Properties"

Question 3(a) [3 marks]

Explain Type Conversion and Casting in java.

Answer:

Type Conversion: Converting one data type to another.
Casting: Explicit type conversion by programmer.

No. 9 /32

Object Oriented Programming With Java (4341602) - Summer 2023 Solution by Milav Dabgar

Table: Type Conversion

Type Description Example

Implicit (Widening) Automatic, smaller to larger int to double

Explicit (Narrowing) Manual, larger to smaller double to int
Code Block:

// Implicit conversion
int i = 10;

double d = i; // int to double (automatic)

// Explicit casting
double x = 10.5;
int y = (int) x; // double to int (manual)

// String conversion
String s = String.valueOf(i); // int to String
int z = Integer.parseInt("123"); // String to int

Mnemonic: "Implicit Auto, Explicit Manual"

Question 3(b) [4 marks]

Explain different visibility controls used in Java.
Answer:
Visibility Controls (Access Modifiers): Control access to classes, methods, and variables.

Table: Access Modifiers

Modifier Same Class Same Package Subclass Different Package
private 4 X X X
default v 4 X X
protected 4 4 v X
public v v v v
Code Block:

No. 10 / 32

Object Oriented Programming With Java (4341602) - Summer 2023 Solution by Milav Dabgar

class Example {

private int x = 10; // Only within class
int y = 20; // Package level
protected int z = 30; // Package + subclass
public int w = 40; // Everywhere

private void methodl() { } // Private method
public void method2() { } // Public method

Mnemonic: "Private Package Protected Public"

Question 3(c) [7 marks]

Define: Thread. List different methods used to create Thread. Explain Thread life cycle in detail.
Answer:
Thread: Lightweight subprocess that allows concurrent execution of multiple parts of program.

Table: Thread Creation Methods

Method Description Example
Extending Thread Inherit Thread class class MyThread extends Thread
Implementing Runnable Implement Runnable interface class MyTask implements Runnable

Diagram: Thread Life Cycle

No. 11/ 32

Object Oriented Programming With Java (4341602) - Summer 2023 Solution by Milav Dabgar

NEW

start()

v

RUNNABLE

CPU allocation

notify()/interrupt() RUNNING

wait()/sleep() completion

y

BLOCKED [TERMINATED]

Table: Thread States

State Description
NEW Thread created but not started
RUNNABLE Ready to run, waiting for CPU
RUNNING Currently executing
BLOCKED Waiting for resource or sleep
TERMINATED Execution completed

Code Block:

// Method 1: Extending Thread
class MyThread extends Thread ({
public void run() {
System.out.println("Thread running");

No. 12 [32

Object Oriented Programming With Java (4341602) - Summer 2023 Solution by Milav Dabgar

// Method 2: Implementing Runnable
class MyTask implements Runnable {
public void run() {
System.out.println("Task running");

class Main {
public static void main(String[] args) {
MyThread tl1 = new MyThread();
Thread t2 = new Thread(new MyTask());
tl.start();
t2.start();

Mnemonic: "Thread Concurrent Execution"

Question 3(a OR) [3 marks]

Explain the purpose of JVM in java.
Answer:

JVM (Java Virtual Machine): Runtime environment that executes Java bytecode and provides platform
independence.

Table: JVM Components

Component Purpose

Class Loader Loads .class files into memory

Execution Engine Executes bytecode

Memory Area Manages heap and stack memory

Garbage Collector Automatic memory management
Diagram:

oo +

| Java Source |

| (.java) |

| Java Compiler |

No. 13 /32

Object Oriented Programming With Java (4341602) - Summer 2023 Solution by Milav Dabgar

| (javac) |
e +
|
v
e +
| Bytecode |
| (.class) |
e mmemmonmmes +
|
v
s +
| Jgvm |
| (Platform |

| Specific) |

¢ Platform Independence: "Write Once, Run Anywhere"
e Memory Management: Automatic garbage collection

® Security: Bytecode verification

Mnemonic: "JVM Java Virtual Machine"

Question 3(b OR) [4 marks]

Define: Package. Write the steps to create a Package with suitable example.

Answer:

Package: Collection of related classes and interfaces grouped together, providing namespace and access
control.

Table: Package Benefits

Benefit Description
Namespace Avoid name conflicts
Access Control Better encapsulation
Organization Logical grouping
Reusability Easy to maintain

Steps to create Package:

1. Declare package at top of file
2. Create directory structure matching package name
3. Compile with package structure

4. Import in other classes

No. 14 [32

Object Oriented Programming With Java (4341602) - Summer 2023 Solution by Milav Dabgar

Code Block:

// File: com/company/utilities/Calculator.java

package com.company.utilities;

public class Calculator {
public int add(int a, int b) {

return a + b;

// File: Main.java

import com.company.utilities.Calculator;

class Main {
public static void main(String[] args) {
Calculator calc = new Calculator();

System.out.println(calc.add(5, 3));

Directory Structure:

com/
company/
utilities/
Calculator.class

Main.class

Mnemonic: "Package Groups Classes"

Question 3(c OR) [7 marks]

Explain Synchronization in Thread with suitable example.
Answer:

Synchronization: Mechanism to control access to shared resources by multiple threads to avoid data
inconsistency.

Table: Synchronization Types

Type Description Usage

Synchronized method Entire method locked synchronized void method()
Synchronized block Specific code block locked synchronized(object) { }

Static synchronization Class level locking synchronized static void method()

No. 15/ 32

Object Oriented Programming With Java (4341602) - Summer 2023 Solution by Milav Dabgar

Diagram: Without vs With Synchronization

With Sync
Thread
Lock
Thread Shared Resource
Wait Safe Access
Without
Thread Thread

\.

Shared Resource

Nata CAarrnintinn

No. 16 / 32

Object Oriented Programming With Java (4341602) - Summer 2023 Solution by Milav Dabgar

vawa vuiliupuull

Code Block:

class Counter {

private int count = 0;

// Synchronized method
public synchronized void increment() ({
count++;

// Synchronized block
public void decrement() {
synchronized(this) {

count--;

public int getCount() {

return count;

class CounterThread extends Thread {

Counter counter;

CounterThread(Counter c) {

counter = c;

public void run() {
for(int i = 0; i < 1000; i++) {

counter.increment();

class Main {
public static void main(String[] args) throws InterruptedException {
Counter c¢ = new Counter();
CounterThread tl = new CounterThread(c);

CounterThread t2 = new CounterThread(c);

tl.start();
t2.start();

tl.Jjoin();

No. 17/ 32

Object Oriented Programming With Java (4341602) - Summer 2023 Solution by Milav Dabgar

t2.join();

System.out.println("Final count: + c.getCount());

Mnemonic: "Synchronization Prevents Race Conditions"

Question 4(a) [3 marks]

Differentiate between String class and StringBuffer class.
Answer:

Table: String vs StringBuffer

Aspect String StringBuffer

Mutability Immutable (cannot change) Mutable (can change)

Performance Slower for concatenation Faster for concatenation

Memory Creates new object each time Modifies existing object

Thread Safety Thread safe Thread safe

Methods concat(), substring() append(), insert(), delete()
Code Block:

// String - Immutable
String sl = "Hello";
sl = sl + " World"; // Creates new String object

// StringBuffer - Mutable

StringBuffer sb = new StringBuffer("Hello");
sb.append(" World"); // Modifies existing object

e String: Use when content doesn't change frequently

e StringBuffer: Use when frequent modifications needed

Mnemonic: "String Immutable, StringBuffer Mutable"

Question 4(b) [4 marks]

Write a Java Program to find sum and average of 10 numbers of an array.

Answer:

No. 18 / 32

Object Oriented Programming With Java (4341602) - Summer 2023 Solution by Milav Dabgar

Code Block:

class ArraySum {
public static void main(String[] args) {
// Initialize array with 10 numbers
int[] numbers = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100};

int sum = 0;

// Calculate sum
for(int i = 0; i < numbers.length; i++) {

sum += numbers[i];

// Calculate average

double average = (double) sum / numbers.length;

// Display results
System.out.println("Array elements: ");
for(int num : numbers) {

System.out.print(num + " ");

System.out.println("\nSum: + sum);

System.out.println("Average: + average);

Output:

Array elements: 10 20 30 40 50 60 70 80 90 100
Sum: 550
Average: 55.0

Logic Steps:
1. Initialize array with 10 numbers
2. Loop through array to calculate sum
3. Calculate average = sum / length

4. Display results

Mnemonic: "Loop Sum Divide Average"

Question 4(c) [7 marks]

1) Explain abstract class with suitable example. Il) Explain final class with suitable example.

Answer:

No. 19/ 32

Object Oriented Programming With Java (4341602) - Summer 2023 Solution by Milav Dabgar

1) Abstract Class: Class that cannot be instantiated, contains abstract methods that must be implemented
by subclasses.

Table: Abstract Class Features

Feature Description

Cannot instantiate No object creation

Abstract methods Methods without implementation

Concrete methods Methods with implementation

Inheritance Subclasses must implement abstract methods

Code Block - Abstract Class:

abstract class Shape {

String color;

// BAbstract method

abstract void draw();

// Concrete method
void setColor(String c) {

color = c;

class Circle extends Shape {
void draw() {

System.out.println("Drawing Circle");

class Main {
public static void main(String[] args) {
// Shape s = new Shape(); // Error: Cannot instantiate
Circle ¢ = new Circle();

c.draw();

1) Final Class: Class that cannot be extended (no inheritance allowed).

Table: Final Class Features

No. 20 / 32

Object Oriented Programming With Java (4341602) - Summer 2023 Solution by Milav Dabgar

Feature Description

No inheritance Cannot be extended
Security Prevents modification
Performance Better optimization
Examples String, Integer, System

Code Block - Final Class:

final class FinalClass {
void display() {
System.out.println("This is final class");

// class SubClass extends FinalClass { } // Error: Cannot extend

class Main {
public static void main(String[] args) {
FinalClass obj = new FinalClass();

obj.display();

Mnemonic: "Abstract Incomplete, Final Complete"

Question 4(a OR) [3 marks]

Explain Garbage Collection in Java.
Answer:

Garbage Collection: Automatic memory management process that removes unused objects from heap
memory.

Table: GC Benefits

Benefit Description

Automatic No manual memory management

Memory leak prevention Removes unreferenced objects

Performance Optimizes memory usage

Safety Prevents memory errors
Diagram:

No. 21/ 32

Object Oriented Programming With Java (4341602) - Summer 2023 Solution by Milav Dabgar

| Object created |

| (new keyword) |

| Object in use |

| (has references) |

| Garbage Collector |

| removes object |

e When occurs: When heap memory is low or System.gc() called
e Process: Mark and Sweep algorithm

e Cannot guarantee: Exact timing of garbage collection

Mnemonic: "GC Automatic Memory Cleanup"

Question 4(b OR) [4 marks]

Write a Java program to handle user defined exception for 'Divide by Zero' error.
Answer:

Code Block:

// User defined exception class
class DivideByZeroException extends Exception {
public DivideByZeroException(String message) {

super (message) ;

class Calculator {
public static double divide(int a, int b) throws DivideByZeroException {
if(b == 0) {

throw new DivideByZeroException("Cannot divide by zero!");

No. 22 /32

Object Oriented Programming With Java (4341602) - Summer 2023 Solution by Milav Dabgar

return (double) a / b;

class Main {
public static void main(String[] args) {

try {
int numl = 10;
int num2 = 0;

double result = Calculator.divide(numl, num2);

System.out.println("Result: " + result);

} catch(DivideByZeroException e) {

System.out.println("Error: " + e.getMessage());

Output:
Error: Cannot divide by zero!

Steps:
1. Create custom exception class extending Exception
2. Throw exception when condition occurs

3. Handle exception with try-catch block

Mnemonic: "Custom Exception Handle Error"

Question 4(c OR) [7 marks]

Write a java program to demonstrate multiple try block and multiple catch block exception.

Answer:
Code Block:
class MultipleExceptionDemo {

public static void main(String[] args) {
// First try block

try {

int[] arr = {1, 2, 3};

System.out.println("Array element: " + arr[5]); // ArrayIndexOutOfBounds
}

catch(ArrayIndexOutOfBoundsException e) {

System.out.println("Array index error: + e.getMessage());

No. 23 /32

Object Oriented Programming With Java (4341602) - Summer 2023 Solution by Milav Dabgar

catch(Exception e) {

System.out.println("General exception: + e.getMessage());

// Second try block

try {
String str = null;

System.out.println("String length: " + str.length()); // NullPointer

}

catch(NullPointerException e) {

System.out.println("Null pointer error: + e.getMessage());

// Third try block with multiple catch

try {
int a = 10;
int b = 0;

int result = a / b; // ArithmeticException

String s = "abc";
int num = Integer.parselnt(s); // NumberFormatException

}
catch(ArithmeticException e) {

System.out.println("Arithmetic error: + e.getMessage());

}

catch (NumberFormatException e) {

System.out.println("Number format error: " + e.getMessage());

}

catch(Exception e) {

System.out.println("Other error: + e.getMessage());

}
finally {
System.out.println("Program completed");
}
}
}
Output:

Array index error: Index 5 out of bounds for length 3
Null pointer error: null
Arithmetic error: / by zero

Program completed

Features demonstrated:

e Multiple try blocks: Each handles different operations
e Multiple catch blocks: Each handles specific exception type
e Exception hierarchy: General Exception catches all

e Finally block: Always executes

No. 24 [/ 32

Object Oriented Programming With Java (4341602) - Summer 2023 Solution by Milav Dabgar

Mnemonic: "Multiple Try Multiple Catch"

Question 5(a) [3 marks]

Write a program in Java to create a file and perform write operation on this file.
Answer:

Code Block:

import java.io.*;

class FileWriteDemo {
public static void main(String[] args) {

try {
// Create file

File file = new File("demo.txt");

// Create FileWriter object
FileWriter writer = new FileWriter(file);

// Write data to file
writer.write("Hello World!\n");
writer.write("This is Java file writing demo.\n");

writer.write("File created successfully.");

// Close the writer

writer.close();
System.out.println("File created and data written successfully!");

} catch(IOException e) {

System.out.println("Error: + e.getMessage());

Steps:
1. Import java.io package
2. Create File object with filename
3. Create FileWriter object
4. Write data using write() method

5. Close writer to save changes

Mnemonic: "File Writer Write Close"

No. 25/ 32

Object Oriented Programming With Java (4341602) - Summer 2023 Solution by Milav Dabgar

Question 5(b) [4 marks]

Explain throw and finally in Exception Handling with example.
Answer:

Throw: Keyword used to explicitly throw an exception.
Finally: Block that always executes regardless of exception occurrence.

Table: Throw vs Finally

Keyword Purpose Usage
throw Explicitly throw exception throw new Exception()
finally Always execute cleanup code finally {}

Code Block:

class ThrowFinallyDemo {
public static void checkAge(int age) throws Exception {
if(age < 18) {
throw new Exception("Age must be 18 or above");

}

System.out.println("valid age: " + age);

public static void main(String[] args) {

try {
checkAge(15); // Will throw exception

}

catch(Exception e) {

System.out.println("Error: + e.getMessage());

}
finally {
System.out.println("Finally block always executes");
}
}
}
Output:

Error: Age must be 18 or above

Finally block always executes

e Throw: Forces exception to occur

¢ Finally: Cleanup code, closes resources

Mnemonic: "Throw Exception, Finally Always"

No. 26 / 32

Object Oriented Programming With Java (4341602) - Summer 2023 Solution by Milav Dabgar

Question 5(c) [7 marks]

Describe: Polymorphism. Explain run time polymorphism with suitable example in java.

Answer:

Polymorphism: One interface, multiple implementations. Object behaves differently based on its actual

type.
Table: Polymorphism Types

Type Description
Compile-time Method overloading
Run-time Method overriding

When Decided
At compilation

At execution

Run-time Polymorphism: Method call resolved at runtime based on actual object type.

Diagram:
Animal reference
Dog object Cat
Dog Cat sound
Code Block:

class Animal {

void makeSound() {

System.out.println("Animal makes sound");

class Dog extends Animal {
@Override
void makeSound() {

System.out.println("Dog barks");

Object Oriented Programming With Java (4341602) - Summer 2023 Solution by Milav Dabgar

class Cat extends Animal {
@Override
void makeSound() {

System.out.println("Cat meows");

class Main {
public static void main(String[] args) {
Animal animall = new Dog(); // Upcasting

Animal animal2 = new Cat(); // Upcasting

animall.makeSound(); // Output: Dog barks

animal2.makeSound(); // Output: Cat meows

// Array of animals
Animal[] animals = {new Dog(), new Cat(), new Dog()};
for(Animal a : animals) {

a.makeSound(); // Dynamic method dispatch

Output:

Dog barks
Cat meows
Dog barks
Cat meows
Dog barks
Features:
e Dynamic Method Dispatch: JVM decides which method to call at runtime

e Upcasting: Child object referenced by parent reference

¢ Flexibility: Same code works with different object types

Mnemonic: "Polymorphism Many Forms Runtime"

Question 5(a OR) [3 marks]

Write a program in Java that read the content of a file byte by byte and copy it into another file.
Answer:

Code Block:

import java.io.*;

No. 28 / 32

Object Oriented Programming With Java (4341602) - Summer 2023 Solution by Milav Dabgar

class FileCopyDemo {

public static void main(String[] args) {

try {
// Create input stream to read from source file

FileInputStream input = new FileInputStream("source.txt");

// Create output stream to write to destination file

FileOutputStream output = new FileOutputStream("destination.txt");
int byteData;

// Read byte by byte and copy
while((byteData = input.read()) != -1) {
output.write(byteData);

// Close streams
input.close();

output.close();
System.out.println("File copied successfully!");

} catch(IOException e) {
System.out.println("Error: " + e.getMessage());

Steps:
1. Create FilelnputStream for reading
2. Create FileOutputStream for writing
3. Read byte by byte using read()
4. Write each byte using write()

5. Close both streams

Mnemonic: "Read Byte Write Byte"

Question 5(b OR) [4 marks]

Explain the different 1/0 Classes available with Java.
Answer:

Table: Java 1/0 Classes

No. 29 /32

Object Oriented Programming With Java (4341602) - Summer 2023 Solution by Milav Dabgar

Class Type
Byte Stream

Byte Stream

Class Name
FileInputStream

FileOutputStream

Character Stream FileReader
Character Stream FileWriter
Buffered BufferedReader
Buffered BufferedWriter

Diagram: I/0 Class Hierarchy

+-- FileInputStream
+-- BufferedInputStream

+-- FileOutputStream
+-- BufferedOutputStream

+-- FileReader

+-- BufferedReader

+-- FileWriter

+-- BufferedWriter

Code Example:

No. 30 /32

Purpose

Read bytes from file

Write bytes to file

Read characters from file
Write characters to file
Efficient character reading

Efficient character writing

Object Oriented Programming With Java (4341602) - Summer 2023 Solution by Milav Dabgar

// Byte streams
FileInputStream fis = new FileInputStream("file.txt");

FileOutputStream fos = new FileOutputStream("output.txt");

// Character streams
FileReader fr = new FileReader("file.txt");

FileWriter fw = new FileWriter("output.txt");

// Buffered streams
BufferedReader br = new BufferedReader(new FileReader("file.txt"));

BufferedWriter bw = new BufferedWriter(new FileWriter("output.txt"));

Mnemonic: "Byte Character Buffered Streams"

Question 5(c OR) [7 marks]

Write a java program that executes two threads. One thread displays "Java Programming" every 3
seconds, and the other displays "Semester - 4th IT" every 6 seconds.(Create the threads by extending
the Thread class)

Answer:

Code Block:

class JavaThread extends Thread {
public void run() {
try {
while(true) {
System.out.println("Java Programming");
Thread.sleep(3000); // Sleep for 3 seconds
}
} catch(InterruptedException e) {
System.out.println("JavaThread interrupted");

class SemesterThread extends Thread {
public void run() {
try {
while(true) {
System.out.println("Semester - 4th IT");
Thread.sleep(6000); // Sleep for 6 seconds
}
} catch(InterruptedException e) {

System.out.println("SemesterThread interrupted");

No. 31/ 32

Object Oriented Programming With Java (4341602) - Summer 2023 Solution by Milav Dabgar

class Main {
public static void main(String[] args) {
// Create thread objects
JavaThread javaThread = new JavaThread();

SemesterThread semesterThread = new SemesterThread();

// Start both threads
javaThread.start();

semesterThread.start();

// Let threads run for 20 seconds then stop

try {
Thread.sleep(20000);

javaThread.interrupt();
semesterThread.interrupt();
} catch(InterruptedException e) {

System.out.println("Main thread interrupted");

Sample Output:

Java Programming
Semester - 4th IT
Java Programming
Java Programming
Semester - 4th IT
Java Programming
Java Programming
Semester - 4th IT

Features:
e Two separate threads: Each with different timing
e Thread.sleep(): Pauses execution for specified milliseconds
e Concurrent execution: Both threads run simultaneously
e Extending Thread class: Override run() method

Execution Pattern:

e JavaThread: Displays every 3 seconds
e SemesterThread: Displays every 6 seconds

e Both run concurrently showing different timing

Mnemonic: "Two Threads Different Timing"

No. 32 /32

	Question 1(a) [3 marks]
	Question 1(b) [4 marks]
	Question 1(c) [7 marks]
	Question 1(c OR) [7 marks]
	Question 2(a) [3 marks]
	Question 2(b) [4 marks]
	Question 2(c) [7 marks]
	Question 2(a OR) [3 marks]
	Question 2(b OR) [4 marks]
	Question 2(c OR) [7 marks]
	Question 3(a) [3 marks]
	Question 3(b) [4 marks]
	Question 3(c) [7 marks]
	Question 3(a OR) [3 marks]
	Question 3(b OR) [4 marks]
	Question 3(c OR) [7 marks]
	Question 4(a) [3 marks]
	Question 4(b) [4 marks]
	Question 4(c) [7 marks]
	Question 4(a OR) [3 marks]
	Question 4(b OR) [4 marks]
	Question 4(c OR) [7 marks]
	Question 5(a) [3 marks]
	Question 5(b) [4 marks]
	Question 5(c) [7 marks]
	Question 5(a OR) [3 marks]
	Question 5(b OR) [4 marks]
	Question 5(c OR) [7 marks]

