Question 1(a) [3 marks]

What is Word Embedding technique? List out different word embedding techniques.

Answer:

Word Embedding is a technique that converts words into numerical vectors while preserving semantic relationships between words. It represents words as dense vectors in a high-dimensional space where similar words are closer together.

Technique	Description	Key Feature
TF-IDF	Term Frequency-Inverse Document Frequency	Statistical measure
Bag of Words (BoW)	Frequency-based representation	Simple counting method
Word2Vec	Neural network-based embedding	Captures semantic relationships
GloVe	Global Vectors for word representation	Combines global and local statistics

Table: Different Word Embedding Techniques

- TF-IDF: Measures word importance in documents
- BoW: Creates vocabulary-based vectors
- Word2Vec: Uses CBOW and Skip-gram models
- GloVe: Pre-trained embeddings with global context

Mnemonic: "TB-WG" (TF-IDF, BoW, Word2Vec, GloVe)

Question 1(b) [4 marks]

Categorize the different types of Artificial Intelligence and demonstrate it with a diagram.

Answer:

Al can be categorized based on **capabilities** and **functionality**.

Diagram:

Table: AI Types Comparison

Category	Туре	Description	Example
Capabilities	Narrow Al	Task-specific intelligence	Siri, Chess programs
	General AI	Human-level intelligence	Not yet achieved
	Super Al	Beyond human intelligence	Theoretical concept
Functionality	Reactive	No memory, responds to stimuli	Deep Blue
	Limited Memory	Uses past data	Self-driving cars

Mnemonic: "NGS-RLT" (Narrow-General-Super, Reactive-Limited-Theory)

Question 1(c) [7 marks]

Explain NLU and NLG by giving difference.

Answer:

Natural Language Understanding (NLU) and **Natural Language Generation (NLG)** are two key components of Natural Language Processing.

Table: NLU vs NLG Comparison

Aspect	NLU	NLG
Purpose	Understands human language	Generates human language
Direction	Input processing	Output generation
Function	Interprets meaning	Creates text
Process	Analysis and comprehension	Synthesis and creation
Examples	Intent recognition, sentiment analysis	Chatbot responses, report generation
Challenges	Ambiguity resolution	Natural text generation

Detailed Explanation:

• NLU (Natural Language Understanding):

- Converts unstructured text into structured data
- Performs semantic analysis and intent extraction
- Handles ambiguity and context understanding
- NLG (Natural Language Generation):
 - Converts structured data into natural language
 - Creates coherent and contextually appropriate text
 - Ensures grammatical correctness and fluency

Mnemonic: "UI-OG" (Understanding Input, Output Generation)

Question 1(c) OR [7 marks]

List out various Industries where Artificial Intelligence is used and explain any two.

Answer:

Table: AI Applications in Industries

Industry	AI Applications	Benefits
Healthcare	Diagnosis, drug discovery	Improved accuracy
Finance	Fraud detection, trading	Risk management
Manufacturing	Quality control, predictive maintenance	Efficiency
Transportation	Autonomous vehicles, route optimization	Safety
Retail	Recommendation systems, inventory	Personalization
Education	Personalized learning, assessment	Adaptive teaching

Detailed Explanation of Two Industries:

- 1. Healthcare Industry:
 - Medical Diagnosis: Al analyzes medical images and patient data
 - Drug Discovery: Accelerates identification of potential medicines
 - Personalized Treatment: Tailors therapy based on patient genetics
 - Benefits: Faster diagnosis, reduced errors, improved outcomes

2. Finance Industry:

- Fraud Detection: Identifies suspicious transactions in real-time
- Algorithmic Trading: Automated trading based on market patterns
- Credit Scoring: Assesses loan default risk accurately
- **Benefits**: Enhanced security, faster processing, better risk management

Mnemonic: "HF-MR-TE" (Healthcare-Finance, Manufacturing-Retail-Transportation-Education)

Question 2(a) [3 marks]

Define the term Machine Learning. Draw the classification diagram of Machine Learning.

Answer:

Machine Learning is a subset of AI that enables computers to learn and improve from experience without being explicitly programmed. It uses algorithms to analyze data, identify patterns, and make predictions.

Diagram:

- Supervised: Uses labeled training data
- Unsupervised: Finds patterns in unlabeled data
- Reinforcement: Learns through rewards and penalties

Mnemonic: "SUR" (Supervised-Unsupervised-Reinforcement)

Question 2(b) [4 marks]

Differentiate Positive reinforcement and Negative reinforcement.

Answer:

Table: Positive vs Negative Reinforcement

Aspect	Positive Reinforcement	Negative Reinforcement
Definition	Adding reward for good behavior	Removing unpleasant stimulus
Action	Gives something pleasant	Takes away something unpleasant
Purpose	Increase desired behavior	Increase desired behavior
Example	Bonus for good performance	Removing alarm after waking up
Effect	Motivation through rewards	Motivation through relief
Agent Response	Seeks to repeat action	Avoids negative consequences

Key Points:

- **Positive Reinforcement**: Strengthens behavior by adding positive stimulus
- Negative Reinforcement: Strengthens behavior by removing negative stimulus
- Both types: Aim to increase the likelihood of desired behavior
- Difference: Method of encouragement (add vs remove)

Mnemonic: "AR-RN" (Add Reward, Remove Negative)

Question 2(c) [7 marks]

Compare Supervised and Unsupervised learning.

Answer:

Table: Supervised vs Unsupervised Learning

Parameter	Supervised Learning	Unsupervised Learning
Data Type	Labeled data (input-output pairs)	Unlabeled data (only inputs)
Learning Goal	Predict outcomes	Find hidden patterns
Feedback	Has correct answers	No correct answers
Algorithms	SVM, Decision Trees, Neural Networks	K-means, Hierarchical clustering
Applications	Classification, Regression	Clustering, Association rules
Accuracy	Can be measured	Difficult to measure
Complexity	Less complex	More complex
Examples	Email spam detection, Price prediction	Customer segmentation, Market basket analysis

Detailed Comparison:

- Supervised Learning:
 - Requires training data with known outcomes
 - Performance can be easily evaluated
 - Used for prediction tasks
- Unsupervised Learning:
 - Works with data without predefined labels
 - Discovers hidden structures in data
 - Used for exploratory data analysis

Mnemonic: "LP-PF" (Labeled Prediction, Pattern Finding)

Question 2(a) OR [3 marks]

Define: Classification, Regression, and clustering.

Answer:

Table: ML Task Definitions

Task	Definition	Output Type	Example
Classification	Predicts discrete categories/classes	Categorical	Email: Spam/Not Spam
Regression	Predicts continuous numerical values	Numerical	House price prediction
Clustering	Groups similar data points	Groups/Clusters	Customer segmentation

Detailed Definitions:

- **Classification**: Assigns input data to predefined categories based on learned patterns
- **Regression**: Estimates relationships between variables to predict continuous values
- **Clustering**: Discovers natural groupings in data without prior knowledge of groups

Mnemonic: "CRC" (Categories, Real numbers, Clusters)

Question 2(b) OR [4 marks]

Compare Artificial Neural Network and Biological Neural Network.

Answer:

Table: ANN vs Biological Neural Network

Aspect	Artificial Neural Network	Biological Neural Network
Processing	Digital/Binary	Analog
Speed	Fast processing	Slower processing
Learning	Backpropagation algorithm	Synaptic plasticity
Memory	Separate storage	Distributed in connections
Structure	Layered architecture	Complex 3D structure
Fault Tolerance	Low	High
Energy	High power consumption	Low energy consumption
Parallelism	Limited parallel processing	Massive parallel processing

Key Differences:

- ANN: Mathematical model inspired by brain
- Biological: Actual brain neural networks
- Purpose: ANN for computation, Biological for cognition
- Adaptability: Biological networks more flexible

Mnemonic: "DSML-CFEP" (Digital-Speed-Memory-Layer vs Complex-Fault-Energy-Parallel)

Question 2(c) OR [7 marks]

List out various applications of supervised, unsupervised and reinforcement learning.

Answer:

Table: Applications of Different Learning Types

Learning Type	Applications	Real-world Examples
Supervised	Email classification, Medical diagnosis, Stock prediction, Credit scoring	Gmail spam filter, X-ray analysis, Trading algorithms
Unsupervised	Customer segmentation, Anomaly detection, Data compression	Market research, Fraud detection, Image compression
Reinforcement	Game playing, Robotics, Autonomous vehicles, Resource allocation	AlphaGo, Robot navigation, Self- driving cars

Detailed Applications:

Supervised Learning:

- **Classification**: Spam detection, sentiment analysis, image recognition
- **Regression**: Price forecasting, weather prediction, sales estimation

Unsupervised Learning:

- **Clustering**: Market segmentation, gene sequencing, recommendation systems
- Association: Market basket analysis, web usage patterns

Reinforcement Learning:

- **Control Systems**: Robot control, traffic management
- **Optimization**: Resource scheduling, portfolio management

Mnemonic: "SCR-CRO" (Supervised-Classification-Regression, Unsupervised-Clustering-Association, Reinforcement-Control-Optimization)

Question 3(a) [3 marks]

Explain Single Layer Forward Network with proper diagram.

Answer:

A **Single Layer Forward Network** (Perceptron) is the simplest neural network with one layer of weights between input and output.

Diagram:

Components:

- Inputs: X1, X2, X3 (feature values)
- Weights: W1, W2, W3 (connection strengths)
- Bias: Additional parameter for threshold adjustment
- Summation: Weighted sum of inputs
- Activation: Function to produce output

Mathematical Formula:

 $Y = f(\Sigma(Wi \times Xi) + b)$

Mnemonic: "IWSA" (Input-Weight-Sum-Activation)

Question 3(b) [4 marks]

Write a short note on Backpropagation.

Answer:

Backpropagation is a supervised learning algorithm used to train neural networks by adjusting weights based on error calculation.

Table: Backpropagation Process

Phase	Description	Action
Forward Pass	Input propagates through network	Calculate output
Error Calculation	Compare output with target	Find error/loss
Backward Pass	Error propagates backward	Update weights
Weight Update	Adjust weights using gradient	Minimize error

Key Features:

- Gradient Descent: Uses calculus to find optimal weights
- Chain Rule: Calculates error contribution of each weight
- Iterative Process: Repeats until convergence
- Learning Rate: Controls speed of weight updates

Steps:

- 1. Initialize random weights
- 2. Forward propagation to get output
- 3. Calculate error between actual and predicted
- 4. Backward propagation to update weights

Mnemonic: "FCBU" (Forward-Calculate-Backward-Update)

Question 3(c) [7 marks]

Explain the components of architecture of Feed Forward Neuron Network.

Answer:

Feed Forward Neural Network consists of multiple layers where information flows in one direction from input to output.

Diagram:

Components:

1. Input Layer:

- Receives raw data
- No processing, just distribution
- Number of neurons = number of features

2. Hidden Layer(s):

- Performs computation and transformation
- Contains activation functions
- Can have multiple hidden layers

3. Output Layer:

- Produces final results
- Number of neurons = number of outputs
- Uses appropriate activation for task type
- 4. Weights and Biases:

- Weights: Connection strengths between neurons
- Biases: Threshold adjustment parameters

5. Activation Functions:

- Introduce non-linearity
- Common types: ReLU, Sigmoid, Tanh

Mnemonic: "IHO-WA" (Input-Hidden-Output, Weights-Activation)

Question 3(a) OR [3 marks]

Explain Multilayer Feed Forward ANN with diagram.

Answer:

Multilayer Feed Forward ANN contains multiple hidden layers between input and output layers, enabling complex pattern recognition.

Diagram:

Characteristics:

- Deep Architecture: Multiple hidden layers
- Complex Patterns: Can learn non-linear relationships
- Universal Approximator: Can approximate any continuous function

Mnemonic: "MDC" (Multiple layers, Deep learning, Complex patterns)

Question 3(b) OR [4 marks]

Explain 'ReLU is the most commonly used Activation function.'

Answer:

ReLU (Rectified Linear Unit) is widely used due to its simplicity and effectiveness in deep networks.

Table: Why ReLU is Popular

Advantage	Description	Benefit
Computational Efficiency	Simple max(0,x) operation	Fast processing
Gradient Flow	No vanishing gradient for positive values	Better learning
Sparsity	Outputs zero for negative inputs	Efficient representation
Non-linearity	Introduces non-linear behavior	Complex pattern learning

Mathematical Definition:

f(x) = max(0, x)

Comparison with Other Functions:

- vs Sigmoid: No saturation problem, faster computation
- vs Tanh: Simpler calculation, better gradient flow
- Limitations: Dead neurons problem for negative inputs

Why Most Common:

- Solves vanishing gradient problem
- Computationally efficient
- Works well in practice
- Default choice for hidden layers

Mnemonic: "CGSN" (Computational, Gradient, Sparsity, Non-linear)

Question 3(c) OR [7 marks]

Explain step by step learning process of Artificial Neural Network.

Answer:

ANN Learning Process involves iterative weight adjustment to minimize prediction error.

Table: Step-by-Step Learning Process

Step	Process	Description
1. Initialization	Set random weights	Small random values
2. Forward Propagation	Calculate output	$Input \to Hidden \to Output$
3. Error Calculation	Compare with target	Loss function computation
4. Backward Propagation	Calculate gradients	$Error \to Hidden \leftarrow Input$
5. Weight Update	Adjust parameters	Gradient descent
6. Iteration	Repeat process	Until convergence

Detailed Steps:

Step 1: Initialize Weights

- Assign small random values to all weights and biases
- Prevents symmetry breaking problem

Step 2: Forward Propagation

- Input data flows through network layers
- Each neuron computes weighted sum + activation

Step 3: Calculate Error

- Compare network output with desired output
- Use loss functions like MSE or Cross-entropy

Step 4: Backward Propagation

- Calculate error gradient for each weight
- Use chain rule to propagate error backward

Step 5: Update Weights

- Adjust weights using gradient descent
- New_weight = Old_weight (learning_rate × gradient)

Step 6: Repeat Process

- Continue until error converges or maximum epochs reached
- Monitor validation performance to avoid overfitting

Mnemonic: "IFEBWI" (Initialize-Forward-Error-Backward-Weight-Iterate)

Question 4(a) [3 marks]

List out various advantages and disadvantages of Natural Language Processing.

Answer:

Table: NLP Advantages and Disadvantages

Advantages	Disadvantages
Automation of text processing	Ambiguity in human language
24/7 Availability for customer service	Context Understanding challenges
Multilingual Support capabilities	Cultural Nuances difficulty
Scalability for large datasets	High Computational requirements
Consistency in responses	Data Privacy concerns
Cost Reduction in operations	Limited Creativity in responses

Key Points:

- Advantages: Efficiency, accessibility, consistency
- **Disadvantages**: Complexity, resource requirements, limitations
- Balance: Benefits outweigh challenges in many applications

Mnemonic: "AMS-ACC" (Automation-Multilingual-Scalability vs Ambiguity-Context-Computational)

Question 4(b) [4 marks]

List out preprocessing techniques in NLP and demonstrate any one with a python program.

Answer:

Table: NLP Preprocessing Techniques

Technique	Purpose	Example
Tokenization	Split text into words/sentences	"Hello world" \rightarrow ["Hello", "world"]
Stop Words Removal	Remove common words	Remove "the", "is", "and"
Stemming	Reduce words to root form	"running" \rightarrow "run"
Lemmatization	Convert to dictionary form	"better" \rightarrow "good"
POS Tagging	Identify parts of speech	"run" \rightarrow verb
Named Entity Recognition	Identify entities	"Apple" \rightarrow Organization

Python Program - Tokenization:

Mnemonic: "TSSL-PN" (Tokenization-Stop-Stemming-Lemmatization, POS-NER)

Question 4(c) [7 marks]

Explain the phases of NLP.

Answer:

NLP Phases represent the systematic approach to process and understand natural language.

Table: NLP Phases

Phase	Description	Process	Example
Lexical Analysis	Tokenization and word identification	Break text into tokens	"l am happy" → ["l", "am", "happy"]
Syntactic Analysis	Grammar and sentence structure	Parse trees, POS tagging	Identify noun, verb, adjective
Semantic Analysis	Meaning extraction	Word sense disambiguation	"Bank" \rightarrow financial vs river
Discourse Integration	Context across sentences	Resolve pronouns, references	"He" refers to "John"
Pragmatic Analysis	Intent and context understanding	Consider situation/culture	Sarcasm, idioms interpretation

Detailed Explanation:

1. Lexical Analysis:

- First phase of NLP pipeline
- Converts character stream into tokens
- Removes punctuation and special characters

2. Syntactic Analysis:

- Analyzes grammatical structure
- Creates parse trees
- Identifies sentence components

3. Semantic Analysis:

- Extracts meaning from text
- Handles word ambiguity
- Maps words to concepts

4. Discourse Integration:

- Analyzes text beyond sentence level
- Maintains context across sentences
- Resolves references and connections

5. Pragmatic Analysis:

- Considers real-world context
- Understands speaker's intent
- Handles figurative language

Mnemaid Diagram:

Mnemonic: "LSSDP" (Lexical-Syntactic-Semantic-Discourse-Pragmatic)

Question 4(a) OR [3 marks]

What is Natural Language Processing? List out its applications.

Answer:

Natural Language Processing (NLP) is a branch of AI that enables computers to understand, interpret, and generate human language in a meaningful way.

Table: NLP Applications

Category	Applications	Examples
Communication	Chatbots, Virtual assistants	Siri, Alexa, ChatGPT
Translation	Language translation	Google Translate
Analysis	Sentiment analysis, Text mining	Social media monitoring
Search	Information retrieval	Search engines
Writing	Grammar checking, Auto-complete	Grammarly, predictive text
Business	Document processing, Spam detection	Email filtering

Key Applications:

- Machine Translation: Converting text between languages
- Speech Recognition: Converting speech to text
- Text Summarization: Creating concise summaries
- Question Answering: Providing answers to queries

Mnemonic: "CTAS-WB" (Communication-Translation-Analysis-Search, Writing-Business)

Question 4(b) OR [4 marks]

List out the tasks performed with WordNet in NLTK and demonstrate anyone with a python code.

Answer:

Table: WordNet Tasks in NLTK

Task	Description	Purpose
Synsets	Find synonymous words	Word similarity
Definitions	Get word meanings	Understanding context
Examples	Usage examples	Practical application
Hyponyms	Find specific terms	Hierarchical relationships
Hypernyms	Find general terms	Category identification
Antonyms	Find opposite words	Contrast analysis

Python Code - Synsets and Definitions:

```
from nltk.corpus import wordnet
# Get synsets for word 'good'
synsets = wordnet.synsets('good')
print("Synsets:", synsets)
# Get definition
definition = synsets[0].definition()
print("Definition:", definition)
# Get examples
examples = synsets[0].examples()
print("Examples:", examples)
```

Mnemonic: "SDEHA" (Synsets-Definitions-Examples-Hyponyms-Antonyms)

Question 4(c) OR [7 marks]

Explain the types of ambiguities in NLP.

Answer:

NLP Ambiguities occur when text can be interpreted in multiple ways, creating challenges for automated understanding.

Table: Types of Ambiguities

Туре	Description	Example	Resolution
Lexical	Multiple meanings of single word	"Bank" (financial/river)	Context analysis
Syntactic	Multiple grammatical interpretations	"Flying planes can be dangerous"	Parse trees
Semantic	Multiple meanings at sentence level	"Time flies like an arrow"	Semantic analysis
Pragmatic	Context-dependent interpretation	"Can you pass the salt?"	Situational context
Referential	Unclear pronoun references	"John told Bob he was wrong"	Discourse analysis

Detailed Explanation:

1. Lexical Ambiguity:

- Same word, different meanings
- Homonyms and polysemes
- Example: "Bat" (animal/sports equipment)

2. Syntactic Ambiguity:

- Multiple grammatical structures
- Different parse trees possible
- Example: "I saw a man with a telescope"

3. Semantic Ambiguity:

- Sentence-level meaning confusion
- Multiple interpretations possible
- Example: "Visiting relatives can be boring"

4. Pragmatic Ambiguity:

- Context and intent dependent
- Cultural and situational factors
- Example: Sarcasm and indirect requests

5. Referential Ambiguity:

- Unclear references to entities
- Pronoun resolution challenges
- Example: Multiple possible antecedents

Resolution Strategies:

- Context analysis and machine learning
- Statistical disambiguation methods
- Knowledge bases and ontologies

Mnemonic: "LSSPR" (Lexical-Syntactic-Semantic-Pragmatic-Referential)

Question 5(a) [3 marks]

Explain Bag of Words with example.

Answer:

Bag of Words (BoW) is a text representation method that converts text into numerical vectors based on word frequency, ignoring grammar and word order.

Table: BoW Process

Step	Process	Description
1. Tokenization	Split text into words	Create vocabulary
2. Vocabulary Creation	Unique words collection	Dictionary of terms
3. Vector Creation	Count word frequencies	Numerical representation

Example:

Documents:

- Doc1: "I love machine learning"
- Doc2: "Machine learning is amazing"

Vocabulary: [I, love, machine, learning, is, amazing]

BoW Vectors:

- Doc1: [1, 1, 1, 1, 0, 0]
- Doc2: [0, 0, 1, 1, 1, 1]

Characteristics:

- Order Independent: Word sequence ignored
- Frequency Based: Counts word occurrences
- Sparse Representation: Many zero values

Mnemonic: "TVC" (Tokenize-Vocabulary-Count)

Question 5(b) [4 marks]

What is Word2Vec? Explain its steps.

Answer:

Word2Vec is a neural network-based technique that creates dense vector representations of words by learning from their context in large text corpora.

Table: Word2Vec Models

Model	Approach	Prediction
CBOW	Continuous Bag of Words	$Context \rightarrow Target word$
Skip-gram	Skip-gram with Negative Sampling	Target word \rightarrow Context

Steps of Word2Vec:

1. Data Preparation:

- Collect large text corpus
- Clean and preprocess text
- Create training pairs

2. Model Architecture:

- Input layer (one-hot encoded words)
- Hidden layer (embedding layer)
- Output layer (softmax for prediction)

3. Training Process:

- **CBOW**: Predict target word from context
- Skip-gram: Predict context from target word
- Use backpropagation to update weights

4. Vector Extraction:

- Extract weight matrix from hidden layer
- Each row represents word embedding
- Typically 100-300 dimensions

Benefits:

- Captures semantic relationships
- Similar words have similar vectors
- Supports arithmetic operations (King Man + Woman = Queen)

Mnemonic: "DMAT" (Data-Model-Architecture-Training)

Question 5(c) [7 marks]

List out applications of NLP and explain any one in detail.

Answer:

Table: NLP Applications

Application	Description	Industry Use	
Machine Translation	Language conversion	Global communication	
Sentiment Analysis	Opinion mining	Social media monitoring	
Chatbots	Conversational AI	Customer service	
Text Summarization	Content condensation	News, research	
Speech Recognition	Voice to text	Virtual assistants	
Information Extraction	Data mining from text	Business intelligence	
Question Answering Automated responses		Search engines	
Spam Detection	Email filtering	Cybersecurity	

Detailed Explanation: Sentiment Analysis

Sentiment Analysis is the process of determining emotional tone and opinions expressed in text data.

Components:

- Text Preprocessing: Cleaning and tokenization
- Feature Extraction: TF-IDF, word embeddings
- Classification: Positive, negative, neutral
- Confidence Scoring: Strength of sentiment

Process Steps:

- 1. Data Collection: Gather text from reviews, social media
- 2. Preprocessing: Remove noise, normalize text
- 3. Feature Engineering: Convert text to numerical features
- 4. Model Training: Use ML algorithms for classification
- 5. Prediction: Classify new text sentiment
- 6. Evaluation: Measure accuracy and performance

Applications:

- Brand Monitoring: Track customer opinions
- Product Reviews: Analyze customer feedback
- Social Media: Monitor public sentiment
- Market Research: Understand consumer preferences

Mnemonic: "MSCTSIQ-S" (Machine-Sentiment-Chatbot-Text-Speech-Information-Question-Spam)

Question 5(a) OR [3 marks]

Explain TFIDF with example.

Answer:

TF-IDF (Term Frequency-Inverse Document Frequency) measures word importance in a document relative to a collection of documents.

Formula:

 $TF-IDF = TF(t,d) \times IDF(t)$

Where:

- TF(t,d) = (Number of times term t appears in document d) / (Total terms in document d)
- IDF(t) = log(Total documents / Documents containing term t)

Example:

Documents:

- Doc1: "machine learning is good"
- Doc2: "learning algorithms are good"
- Doc3: "machine algorithms work well"

Table: TF-IDF Calculation for "machine"

Document	TF	IDF	TF-IDF
Doc1	1/4 = 0.25	log(3/2) = 0.18	0.25 × 0.18 = 0.045
Doc2	0/4 = 0	log(3/2) = 0.18	0 × 0.18 = 0
Doc3	1/4 = 0.25	log(3/2) = 0.18	0.25 × 0.18 = 0.045

Key Points:

- High TF-IDF: Important word in specific document
- Low TF-IDF: Common word across documents
- Applications: Information retrieval, text mining

Mnemonic: "TI-FD" (Term frequency, Inverse Document frequency)

Question 5(b) OR [4 marks]

Explain about challenges with TFIDF and BOW.

Answer:

Table: Challenges with TF-IDF and BOW

Challenge	TF-IDF	BOW	Impact
Semantic Understanding	Cannot capture meaning	Ignores word relationships	Poor context understanding
Word Order	Position ignored	Sequence lost	Grammar meaning lost
Sparsity	High-dimensional vectors	Many zero values	Memory inefficient
Vocabulary Size	Large feature space	Grows with corpus	Computational complexity
Out-of-Vocabulary	Unknown words ignored	New words not handled	Limited generalization
Polysemy	Multiple meanings	Same treatment for different senses	Ambiguity issues

Detailed Challenges:

1. Lack of Semantic Understanding:

- Words treated as independent features
- Cannot understand synonyms or related concepts
- "Good" and "excellent" treated differently

2. Loss of Word Order:

- "Dog bites man" vs "Man bites dog" same representation
- Context and grammar information lost
- Sentence structure ignored

3. High Dimensionality:

- Vector size equals vocabulary size
- Sparse matrices with mostly zeros
- Storage and computation problems

4. Context Insensitivity:

- Same word different contexts treated equally
- "Apple" company vs fruit same representation
- Polysemy and homonymy issues

Solutions:

- Word Embeddings: Word2Vec, GloVe
- Contextual Models: BERT, GPT
- **N-grams**: Capture some word order
- Dimensionality Reduction: PCA, SVD

Mnemonic: "SSVO-CP" (Semantic-Sequence-Vocabulary-OOV, Context-Polysemy)

Question 5(c) OR [7 marks]

Explain the working of GloVe.

Answer:

GloVe (Global Vectors for Word Representation) combines global statistical information with local context windows to create word embeddings.

Table: GloVe vs Other Methods

Aspect	GloVe	Word2Vec	Traditional Methods
Approach	Global + Local statistics	Local context windows	Frequency-based
Training	Matrix factorization	Neural networks	Counting methods
Efficiency	Fast training	Slower training	Very fast
Performance	High accuracy	Good accuracy	Limited performance

Working Process:

1. Co-occurrence Matrix Construction:

• Count word co-occurrences in context windows

- Create global statistics matrix
- Xij = number of times word j appears in context of word i

2. Ratio Calculation:

- Calculate probability ratios
- P(k | i) = Xik / Xi (probability of word k given word i)
- Focus on meaningful ratios between probabilities

3. Objective Function:

- Minimize weighted least squares objective
- $J = \Sigma f(Xij)(wi^T wj + bi + bj log Xij)^2$
- Where f(x) is weighting function

4. Vector Learning:

- Use gradient descent to optimize objective
- Learn word vectors wi and context vectors wj
- Final representation combines both vectors

Key Features:

Global Statistics:

- Uses entire corpus information
- Captures global word relationships
- More stable than local methods

Efficiency:

- Trains on co-occurrence statistics
- Faster than neural network methods
- Scalable to large corpora

Performance:

- Performs well on analogy tasks
- Captures both semantic and syntactic relationships
- Good performance on similarity tasks

Mathematical Foundation:

 $J = \Sigma(i, j=1 \text{ to } V) f(Xij)(wi^T wj + bi + bj - \log Xij)^2$

Where:

• V = vocabulary size

- Xij = co-occurrence count
- wi, wj = word vectors
- bi, bj = bias terms
- f(x) = weighting function

Advantages:

- Combines Benefits: Global statistics + local context
- Interpretable: Clear mathematical foundation
- Efficient: Faster training than Word2Vec
- Effective: Good performance on various tasks

Applications:

- Word Similarity: Find related words
- Analogy Tasks: King Man + Woman = Queen
- Text Classification: Feature representation
- Machine Translation: Cross-lingual mappings

Mnemonic: "CROF-PGAE" (Co-occurrence-Ratio-Objective-Function, Performance-Global-Advantage-Efficiency)