## Question 1(a) [3 marks]

## Answer All Questions

### i) What is Information Security?

**Answer**: Information Security protects digital data from unauthorized access, use, disclosure, disruption, modification, or destruction.

#### **Key Components:**

- Confidentiality: Data accessible only to authorized users
- Integrity: Data remains accurate and complete
- Availability: Data accessible when needed

Mnemonic: "CIA keeps data safe"

#### ii) List Types of hackers

#### Answer:

| Hacker Type    | Description        | Intent              |
|----------------|--------------------|---------------------|
| White Hat      | Ethical hackers    | Good intentions     |
| Black Hat      | Malicious hackers  | Criminal activities |
| Gray Hat       | Mix of both        | Neutral motives     |
| Script Kiddies | Use existing tools | Limited skills      |

### iii) What is the default username and password for Kali Linux?

#### Answer:

- Username: kali
- Password: kali (changed from root/toor in newer versions)

## Question 1(b) [4 marks]

### Describe CIA triad with example.

**Answer**: CIA Triad is the foundation of information security with three core principles:

| Principle       | Definition                               | Example                         |
|-----------------|------------------------------------------|---------------------------------|
| Confidentiality | Data accessible only to authorized users | Password protection, encryption |
| Integrity       | Data remains accurate and unmodified     | Digital signatures, checksums   |
| Availability    | Data accessible when needed              | Backup systems, redundancy      |

**Real-world Example**: Banking system maintains confidentiality through login credentials, integrity through transaction verification, and availability through 24/7 service.

Mnemonic: "CIA protects information like secret agents"

## Question 1(c) [7 marks]

Explain MD5 hashing algorithm

**Answer**: MD5 (Message Digest 5) is a cryptographic hash function producing 128-bit hash values.

### **MD5 Process Table:**

| Step | Process         | Details                                        |
|------|-----------------|------------------------------------------------|
| 1    | Padding         | Add bits to make length $\equiv$ 448 (mod 512) |
| 2    | Length Addition | Append 64-bit length                           |
| 3    | Initialize      | Set four 32-bit variables                      |
| 4    | Processing      | Four rounds of operations                      |
| 5    | Output          | 128-bit hash value                             |



**Key Features:** 

- Fixed Output: Always 128 bits
- **One-way**: Cannot reverse hash to original
- Collision Prone: Vulnerable to attacks

Mnemonic: "MD5 Makes Data into 5-step hash"

## Question 1(c) OR [7 marks]

## **Explain SHA algorithm**

**Answer**: SHA (Secure Hash Algorithm) is a family of cryptographic hash functions designed by NSA.

### SHA Variants Comparison:

| Version | Output Size | Block Size | Security Level |
|---------|-------------|------------|----------------|
| SHA-1   | 160 bits    | 512 bits   | Deprecated     |
| SHA-256 | 256 bits    | 512 bits   | Strong         |
| SHA-512 | 512 bits    | 1024 bits  | Very Strong    |



### SHA-256 Process:

- Preprocessing: Padding and parsing message
- Hash Computation: 64 rounds of operations
- Final Hash: 256-bit output

### Advantages over MD5:

- Stronger Security: Resistant to collision attacks
- Larger Output: More bits for security
- Government Standard: NIST approved

Mnemonic: "SHA Securely Hashes All data"

## Question 2(a) [3 marks]

### What is virus? Explain Virus Life cycle.

**Answer**: Computer virus is malicious software that replicates by inserting copies into other programs or files.

### Virus Life Cycle:



### **Phase Details:**

- Dormant: Virus remains inactive
- Propagation: Copies itself to other systems
- Triggering: Activated by specific conditions
- **Execution**: Performs malicious activities

Mnemonic: "Viruses Dance, Propagate, Trigger, Execute"

## Question 2(b) [4 marks]

### **Answer All Questions**

i) Difference between Private key and Public Key cryptography

#### Answer:

| Aspect           | Private Key             | Public Key                |
|------------------|-------------------------|---------------------------|
| Keys             | Single shared key       | Key pair (public/private) |
| Speed            | Fast encryption         | Slower encryption         |
| Key Distribution | Difficult               | Easy distribution         |
| Scalability      | Poor for large networks | Good scalability          |

# ii) Define database forensics and list different kind of activities performed during database forensics.

**Answer**: Database forensics examines database systems to extract digital evidence for legal proceedings.

### **Activities Performed:**

- Log Analysis: Examining transaction logs
- Metadata Extraction: Recovering database structure
- Deleted Data Recovery: Retrieving removed records
- Timeline Analysis: Tracking data modifications

## Question 2(c) [7 marks]

## Explain proxy server in details and why we need it?

**Answer**: Proxy server acts as intermediary between client and server, forwarding requests and responses.

## **Proxy Server Architecture:**



### **Types of Proxy Servers:**

| Туре              | Function                 | Use Case        |
|-------------------|--------------------------|-----------------|
| Forward Proxy     | Client-side intermediary | Web filtering   |
| Reverse Proxy     | Server-side intermediary | Load balancing  |
| Transparent Proxy | Invisible to client      | Content caching |

#### Why We Need Proxy Servers:

- Security: Hide client IP addresses
- **Performance**: Cache frequently accessed content
- **Control**: Filter and monitor traffic
- Anonymity: Protect user privacy

### **Benefits:**

- Bandwidth Saving: Caching reduces traffic
- Access Control: Block unwanted sites
- Load Distribution: Balance server requests

Mnemonic: "Proxy Protects Privacy and Performance"

## Question 2(a) OR [3 marks]

## Define: Trojans, Rootkit, Backdoors, Keylogger

## Answer:

| Malware Type | Definition                                          |
|--------------|-----------------------------------------------------|
| Trojans      | Malicious software disguised as legitimate programs |
| Rootkit      | Software hiding presence of malware in system       |
| Backdoors    | Secret entry points bypassing normal authentication |
| Keylogger    | Software recording keystrokes to steal passwords    |

Mnemonic: "TRBK - Trojans, Rootkits, Backdoors Keep attacking"

## Question 2(b) OR [4 marks]

### **Answer All Questions**

i) Write advantages and disadvantages of firewall.

Answer:

| Advantages         | Disadvantages            |
|--------------------|--------------------------|
| Network Protection | Performance Impact       |
| Access Control     | Configuration Complexity |
| Traffic Monitoring | Cannot Stop All Attacks  |
| Log Generation     | Maintenance Required     |

## ii) List critical steps in preserving digital evidence.

Answer:

- Identification: Locate potential evidence
- Documentation: Record evidence details
- Collection: Gather evidence safely
- Preservation: Maintain evidence integrity
- Chain of Custody: Track evidence handling

## Question 2(c) OR [7 marks]

## **Explain IP Security Architecture.**

Answer: IPSec provides security services at network layer for IP communications.

### **IPSec Architecture Components:**



### **Security Services:**

| Service         | Protocol | Function               |
|-----------------|----------|------------------------|
| Authentication  | АН       | Verify packet origin   |
| Confidentiality | ESP      | Encrypt packet data    |
| Integrity       | Both     | Detect modifications   |
| Anti-replay     | Both     | Prevent replay attacks |

#### **IPSec Modes:**

- Transport Mode: Protects payload only
- Tunnel Mode: Protects entire IP packet

#### **Key Components:**

- Security Association (SA): Security parameters
- Security Policy Database (SPD): Security policies
- Key Management: Automated key exchange

Mnemonic: "IPSec Integrates Protection, Security, Encryption Completely"

## Question 3(a) [3 marks]

List out various types of cybercrime and explain anyone.

#### Answer:

### **Cybercrime Types:**

- Financial Crimes: Credit card fraud, online banking theft
- Identity Theft: Stealing personal information
- Cyber Bullying: Online harassment
- Data Breach: Unauthorized data access

### **Email Bombing (Detailed Explanation):**

Email bombing involves sending large volumes of emails to overwhelm victim's mailbox and server resources.

#### Attack Process:

- Target Selection: Choose victim email
- Volume Generation: Send thousands of emails
- **Resource Exhaustion**: Overwhelm mail server
- Service Disruption: Make email unusable

Mnemonic: "Cyber Crimes Create Chaos Constantly"

## Question 3(b) [4 marks]

### Define Web Jacking, Data Diddling, Dos Attack and DDOS Attack

Answer:

| Attack Type   | Definition                                          |
|---------------|-----------------------------------------------------|
| Web Jacking   | Unauthorized control of website by changing content |
| Data Diddling | Unauthorized modification of data before processing |
| DoS Attack    | Single source attack to make service unavailable    |
| DDoS Attack   | Multiple sources attack to overwhelm target system  |

## **Attack Comparison:**



## Question 3(c) [7 marks]

## Explain Main in the middle attack with suitable examples.

**Answer**: Man-in-the-Middle (MITM) attack occurs when attacker secretly intercepts and relays communications between two parties.

## MITM Attack Process:



### **Attack Types:**

| Туре                | Method               | Example                |
|---------------------|----------------------|------------------------|
| Wi-Fi Eavesdropping | Fake hotspots        | Coffee shop Wi-Fi      |
| Email Hijacking     | Compromised accounts | Business email         |
| DNS Spoofing        | Fake DNS responses   | Redirect to fake sites |
| HTTPS Spoofing      | Fake certificates    | Banking websites       |

#### Real Example - Wi-Fi Attack:

- 1. Attacker creates fake "Free\_WiFi" hotspot
- 2. Victim connects to malicious network
- 3. All traffic passes through attacker
- 4. Sensitive data like passwords stolen

#### **Prevention Measures:**

- Use HTTPS: Encrypted connections
- VPN Usage: Additional encryption layer

- Certificate Verification: Check SSL certificates
- Secure Networks: Avoid public Wi-Fi for sensitive tasks

Mnemonic: "MITM Maliciously Intercepts, Tampers Messages"

## Question 3(a) OR [3 marks]

#### Explain Salami attack in detail

**Answer**: Salami attack involves stealing small amounts of money from many accounts to avoid detection.

#### Attack Mechanism:

- Small Amounts: Steal fractions of currency
- Large Scale: Target thousands of accounts
- Rounding Errors: Exploit calculation differences
- Accumulation: Small thefts create large profit

**Example**: Banking system rounds interest to nearest cent. Attacker collects remaining fractions from millions of accounts.

Mnemonic: "Salami Slices Small, Steals Significantly"

## Question 3(b) OR [4 marks]

### Define Cyber bullying, Phishing, spyware and logic bomb

#### Answer:

| Term           | Definition                                          |
|----------------|-----------------------------------------------------|
| Cyber Bullying | Online harassment causing emotional distress        |
| Phishing       | Fraudulent attempts to obtain sensitive information |
| Spyware        | Software secretly monitoring user activities        |
| Logic Bomb     | Malicious code triggered by specific conditions     |

## Question 3(c) OR [7 marks]

#### Explain ransomware in detail?

Answer: Ransomware encrypts victim's files and demands payment for decryption key.

#### **Ransomware Attack Process:**



Ransomware Types:

| Туре              | Behavior                   | Example         |
|-------------------|----------------------------|-----------------|
| Crypto Ransomware | Encrypts files             | WannaCry        |
| Locker Ransomware | Locks system access        | Police-themed   |
| Scareware         | Fake threats               | Fake antivirus  |
| Doxware           | Threatens data publication | Personal photos |

#### **Attack Vectors:**

- Email Attachments: Malicious documents
- Drive-by Downloads: Compromised websites
- Exploit Kits: Vulnerability exploitation
- RDP Attacks: Remote desktop compromise

#### **Prevention Strategies:**

- **Regular Backups**: Offline data copies
- Security Updates: Patch vulnerabilities
- Email Filtering: Block malicious attachments
- User Training: Recognize threats
- Network Segmentation: Limit spread

#### Impact Assessment:

- Financial Loss: Ransom payments and downtime
- Data Loss: Permanently encrypted files
- Reputation Damage: Customer trust loss
- Operational Disruption: Business shutdown

Mnemonic: "Ransomware Really Ruins Recovery, Requires Robust Response"

## Question 4(a) [3 marks]

### List out any six basic kali Linux commands.

### Answer:

| Command | Function                |
|---------|-------------------------|
| ls      | List directory contents |
| cd      | Change directory        |
| pwd     | Print working directory |
| mkdir   | Create directory        |
| ср      | Copy files              |
| nmap    | Network scanning        |

Mnemonic: "Linux Commands Make Navigation Possible"

## Question 4(b) [4 marks]

## Explain Zero day attack with example

**Answer**: Zero-day attack exploits unknown vulnerability before security patch is available.

## Zero-Day Timeline:



## **Zero-Day Attack Timeline**

### **Example - Stuxnet Worm:**

- Target: Iranian nuclear facilities
- Exploit: Windows zero-day vulnerabilities
- Impact: Physical damage to centrifuges
- **Duration**: Active for months before detection

#### **Characteristics:**

- Unknown Vulnerability: No existing patches
- High Success Rate: No defenses prepared
- Valuable: Expensive in dark markets
- Limited Lifespan: Once discovered, patched

Mnemonic: "Zero-day Zaps before Anyone Notices"

## Question 4(c) [7 marks]

## Explain Remote Access Tools and how we protect system from RAT?

Answer: Remote Access Tool (RAT) allows remote control of computer systems, often used maliciously.

## **RAT Functionality:**



## **Common RATs:**

| RAT Name     | Features            | Detection Difficulty |
|--------------|---------------------|----------------------|
| DarkComet    | Full system control | Medium               |
| Poison Ivy   | Stealth operations  | High                 |
| Back Orifice | Windows targeting   | Low                  |
| NetBus       | Simple interface    | Low                  |

### **RAT Infection Methods:**

- Email Attachments: Trojanized files
- Software Bundling: Hidden in legitimate software
- Drive-by Downloads: Malicious websites
- Social Engineering: Trick users into installation

### **Protection Strategies:**

**Technical Measures:** 

- Antivirus Software: Real-time scanning
- Firewall Rules: Block unauthorized connections
- Network Monitoring: Detect unusual traffic
- System Updates: Patch vulnerabilities

#### **Behavioral Measures:**

- **Email Caution**: Verify attachments
- Download Sources: Use trusted sites only
- Regular Scans: Periodic malware checks
- User Training: Recognize threats

### **Detection Signs:**

- Slow Performance: Unusual system lag
- Network Activity: Unexpected connections
- File Changes: Modified or new files
- Strange Behavior: Unexpected system actions

#### **Incident Response:**

- 1. Isolate System: Disconnect from network
- 2. Document Evidence: Record malicious activity
- 3. Clean System: Remove RAT completely
- 4. Restore Data: From clean backups
- 5. Strengthen Security: Improve defenses

Mnemonic: "RATs Remotely Access, Require Robust Response"

## Question 4(a) OR [3 marks]

### Describe Hacking, Blackhat, and White hat hacker in short.

#### Answer:

| Term      | Definition                                         |
|-----------|----------------------------------------------------|
| Hacking   | Gaining unauthorized access to systems or networks |
| Black Hat | Malicious hackers with criminal intent             |
| White Hat | Ethical hackers helping improve security           |

#### Comparison:

• Intent: White hat helps, Black hat harms

- Authorization: White hat has permission
- Purpose: White hat protects, Black hat exploits

Mnemonic: "Hats Have Different Hacking Habits"

## Question 4(b) OR [4 marks]

#### What is Port Scanning? Explain any two port scanning techniques.

**Answer**: Port scanning discovers open ports and services on target systems.

#### **Port Scanning Techniques:**

| Technique   | Method               | Stealth Level |
|-------------|----------------------|---------------|
| TCP Connect | Full connection      | Low stealth   |
| SYN Scan    | Half-open connection | High stealth  |

#### TCP Connect Scan:

- Completes full TCP handshake
- Reliable but easily detected
- Logged by target systems

### SYN Scan (Half-Open):

- Sends SYN, receives SYN-ACK, sends RST
- Stealthy, often unlogged
- Faster than connect scan

Mnemonic: "Port Scanning Probes System Services"

## Question 4(c) OR [7 marks]

#### Explain the hacking process in detail.

**Answer**: Hacking follows systematic five-phase methodology for gaining unauthorized system access.

#### **Five Phases of Hacking:**



### **Phase Details:**

## 1. Information Gathering (Reconnaissance):

- Passive: OSINT, social media research
- Active: Network queries, DNS lookups
- Tools: Google dorking, Whois, social engineering

### 2. Scanning:

- Network Scanning: Discover live hosts
- Port Scanning: Find open services
- Vulnerability Scanning: Identify weaknesses
- Tools: Nmap, Nessus, OpenVAS

### 3. Gaining Access:

- Exploit Vulnerabilities: Use discovered weaknesses
- Password Attacks: Brute force, dictionary
- **Social Engineering**: Manipulate humans
- Tools: Metasploit, custom exploits

#### 4. Maintaining Access:

- Install Backdoors: Ensure continued access
- Create User Accounts: Hidden administrator
- Rootkits: Hide presence
- Tools: Netcat, custom backdoors

#### 5. Covering Tracks:

- Log Deletion: Remove evidence
- File Hiding: Conceal malicious files
- Process Hiding: Hide running programs
- Tools: Log cleaners, steganography

### **Detailed Process Flow:**

| Phase              | Activities             | Duration      | Risk Level |
|--------------------|------------------------|---------------|------------|
| Reconnaissance     | Passive info gathering | Days/Weeks    | Low        |
| Scanning           | Active probing         | Hours/Days    | Medium     |
| Gaining Access     | Exploitation           | Minutes/Hours | High       |
| Maintaining Access | Persistence            | Ongoing       | Medium     |
| Covering Tracks    | Evidence removal       | Hours         | High       |

#### Legal vs Illegal Hacking:

- Ethical Hacking: Authorized penetration testing
- Malicious Hacking: Unauthorized criminal activity
- Bug Bounty: Legal vulnerability discovery

Mnemonic: "Hackers Investigate, Scan, Gain, Maintain, Cover"

## Question 5(a) [3 marks]

### Write Locards's principal and explain how it is related to cybercrime?

Answer: Locard's Principle states "Every contact leaves a trace" - fundamental principle in forensic science.

### **Digital Application:**

- Log Files: System activities recorded
- Network Traffic: Communication traces
- File Metadata: Creation, modification times
- Memory Dumps: Runtime evidence

#### **Cybercrime Relevance:**

Digital activities create electronic traces that investigators can analyze to reconstruct criminal activities.

Mnemonic: "Locard's Law: Leave Lasting Logs"

## Question 5(b) [4 marks]

#### What is software forensics? How it is contributing in cybercrime?

**Answer**: Software forensics analyzes software artifacts to determine authorship, detect plagiarism, or investigate malicious code.

#### **Software Forensics Applications:**

| Application          | Purpose             | Cybercrime Use      |
|----------------------|---------------------|---------------------|
| Code Analysis        | Identify programmer | Malware attribution |
| Binary Analysis      | Reverse engineering | Understand attacks  |
| License Compliance   | Software piracy     | IP theft cases      |
| Plagiarism Detection | Academic integrity  | Copyright violation |

Contribution to Cybercrime Investigation:

- Malware Attribution: Link code to specific authors
- Attack Reconstruction: Understand how attacks occurred
- Evidence Collection: Gather digital proof
- Pattern Recognition: Identify repeat offenders

## Question 5(c) [7 marks]

### Explain in detail: Drive imaging, Chain of custody and hash values

#### Answer:

#### Drive Imaging:

Physical bit-by-bit copy of storage device preserving all data including deleted files and slack space.

#### **Imaging Process:**



## Chain of Custody:

Documentation tracking evidence handling from seizure to court presentation.

### **Chain of Custody Elements:**

| Element | Details                  |
|---------|--------------------------|
| Who     | Person handling evidence |
| What    | Evidence description     |
| When    | Date and time            |
| Where   | Location of evidence     |
| Why     | Reason for handling      |

#### Hash Values:

Mathematical algorithms creating unique fingerprints to verify data integrity.

### **Common Hash Algorithms:**

| Algorithm | Output Size | Use Case           |
|-----------|-------------|--------------------|
| MD5       | 128 bits    | Quick verification |
| SHA-1     | 160 bits    | Legacy systems     |
| SHA-256   | 256 bits    | Modern standard    |

#### **Forensic Implementation:**

- 1. Create Image: Bit-by-bit copy
- 2. Generate Hash: Calculate original drive hash
- 3. Verify Integrity: Compare image hash
- 4. Document Process: Chain of custody
- 5. Analyze Safely: Work on copy only

### Importance in Digital Forensics:

- Data Integrity: Ensures evidence authenticity
- Legal Admissibility: Court accepts verified evidence
- Non-Repudiation: Proves data unchanged
- Forensic Soundness: Maintains evidence quality

Mnemonic: "Drive Images Document Digital Data Definitively"

## Question 5(a) OR [3 marks]

## Explain four stage of malware analysis in short.

### Answer:

Malware Analysis Stages:

| Stage            | Description               | Tools Used                 |
|------------------|---------------------------|----------------------------|
| Static Analysis  | Examine without execution | Hex editors, disassemblers |
| Dynamic Analysis | Observe runtime behavior  | Sandboxes, debuggers       |
| Code Analysis    | Reverse engineer source   | IDA Pro, Ghidra            |
| Network Analysis | Monitor communications    | Wireshark, tcpdump         |

Mnemonic: "Static, Dynamic, Code, Network - SDCN"

## Question 5(b) OR [4 marks]

## How does network forensic functions?

**Answer**: Network forensics captures, records, and analyzes network traffic to investigate security incidents.

### **Network Forensics Process:**



### **Key Functions:**

• **Packet Capture**: Record network communications

- Protocol Analysis: Examine communication protocols
- Flow Analysis: Track data movement patterns
- Content Inspection: Analyze payload data

**Tools and Techniques:** 

- Network Taps: Hardware monitoring
- Packet Analyzers: Software inspection
- Flow Collectors: Traffic summarization
- SIEM Systems: Correlation and alerting

## Question 5(c) OR [7 marks]

#### Explain digital forensic investigation process

**Answer**: Digital forensic investigation follows systematic methodology to collect, preserve, analyze, and present digital evidence.

#### **Investigation Process Phases:**



#### **Detailed Process:**

#### **1. Identification Phase:**

- Evidence Location: Find potential digital evidence
- Scope Definition: Determine investigation boundaries
- Resource Planning: Allocate personnel and tools
- Legal Considerations: Obtain necessary warrants

## 2. Preservation Phase:

- Scene Securing: Prevent evidence contamination
- System Isolation: Disconnect from networks
- Evidence Documentation: Photograph and catalog
- Chain of Custody: Begin documentation trail

#### 3. Collection Phase:

- Imaging Process: Create forensic copies
- Hash Generation: Ensure data integrity
- Metadata Capture: Record file properties
- Live Data Collection: Capture volatile information

### 4. Examination Phase:

- Data Recovery: Retrieve deleted files
- File System Analysis: Examine storage structures
- Timeline Creation: Establish event sequence
- Keyword Searching: Find relevant content

#### 5. Analysis Phase:

- Evidence Correlation: Link related findings
- Pattern Recognition: Identify trends
- Hypothesis Testing: Validate theories
- Timeline Analysis: Reconstruct events

#### 6. Presentation Phase:

- **Report Writing**: Document findings
- Evidence Preparation: Organize for court
- Expert Testimony: Present in legal proceedings
- Visualization: Create demonstrative aids

#### **Investigation Principles:**

| Principle     | Description                 | Importance          |
|---------------|-----------------------------|---------------------|
| Reliability   | Evidence must be dependable | Court acceptance    |
| Repeatability | Results can be reproduced   | Scientific validity |
| Integrity     | Data remains unchanged      | Legal admissibility |
| Documentation | Complete record keeping     | Audit trail         |

## **Key Challenges:**

- Encryption: Password-protected data
- Anti-Forensics: Evidence hiding techniques
- Volume: Large amounts of data
- Technology: Rapidly changing systems

#### **Best Practices:**

- **Standard Procedures**: Follow established protocols
- **Tool Validation**: Use tested forensic tools
- Continuous Training: Stay current with technology
- Quality Assurance: Peer review processes

### Legal Framework:

- Evidence Rules: Admissibility requirements
- Privacy Laws: Data protection compliance
- Chain of Custody: Unbroken documentation
- Expert Qualifications: Forensic examiner credentials

Mnemonic: "Digital Investigation: Identify, Preserve, Collect, Examine, Analyze, Present"