Python Programming (1323203) - Summer 2023 Solution by Milav Dabgar

Question 1(a) [3 marks]

Define algorithm. What are the advantages of Algorithm?

Answer:
An algorithm is a step-by-step procedure or a set of rules to solve a specific problem in a finite sequence of

steps.
Advantages of Algorithm:

e Clarity: Provides clear, unambiguous instructions

e Efficiency: Helps in optimizing time and resources

e Reusability: Can be used repeatedly for similar problems

e Verification: Easy to test and debug before implementation

e Communication: Acts as a blueprint to communicate the solution

Mnemonic: "CERVC" (Clarity, Efficiency, Reusability, Verification, Communication)

Question 1(b) [4 marks]

What are the rules for problem solving using flowchart? Design a flowchart to find simple interest.

Answer:
Rules for problem solving using flowchart:

e Proper symbols: Use standard symbols for different operations

e Direction flow: Always maintain clear top-to-bottom, left-to-right flow
¢ Single entry/exit: Have a clear start and end point

e Clarity: Keep steps clear and concise

e Consistency: Maintain consistent level of detail

Flowchart for Simple Interest Calculation:

Input Principal P, Rate R, /
Time T

Mnemonic: "PDRSC" (Proper symbols, Direction flow, Required entry/exit, Simplicity, Consistency)

4

Question 1(c) [7 marks]

List out assignment operator in python and build a python code to demonstrate an operation of any
three assighnment operators.

Answer:
Python assignment operators:

No.1/25

Python Programming (1323203) - Summer 2023 Solution by Milav Dabgar

Operator Example Equivalent To
= x=5 x=5

= X+=5 X=X+5
= x-=5 X=x-5
= x=5 X=X*5
/= x/=5 X=x/5
%= X %=5 X=x%5
/1= x//=5 X=x/15
Kk — X **=§ X = X ** §
&= X &=5 x=xX&5
|= X |=5 X=X|5
A= XA=5 X=x"5
>>= X>>=5 X=Xx>>5
<<= X <<=5 X=x<<5

Code demonstrating assignment operators:

Demonstrating Assignment Operators
num = 10

print("Initial value:", num)

Using += operator

num += 5

print("After += 5:", num) # Output: 15
Using -= operator

num -= 3

print("After -= 3:", num) # Output: 12

Using *= operator
num *= 2
print("After *= 2:", num) # Output: 24

Mnemonic: "VALUE" (Variable Assignment is Like Updating Existing values)

Question 1(c) OR [7 marks]

List out data types in python and Develop a Program to identify any three data types in python.

No. 2/ 25

Answer:

Python data types:

Data Type
int

float

str

bool

list

tuple

set

dict
complex

NoneType

Python Programming (1323203) - Summer 2023 Solution by Milav Dabgar

Description

Integer (whole numbers)

Floating point (decimal)

String (text)

Boolean (True/False)

Ordered, mutable collection
Ordered, immutable collection
Unordered collection of unique items
Key-value pairs

Complex numbers

Represents None

Code to identify three data types:

Program to identify data types

def identify data type(value):

data_type

print (f"value:

type(value)._ name

{value}")

print(f"Data Type: {data_type}")
print("-" * 20)

Testing with 3 different data types

identify data_type(42) # Integer
identify data_type(3.14) # Float
identify data_type("Hello World") # String

Output:
Value: 42

Data Type: int

Value: 3.14

Data Type: float

Value: Hello World

Data Type: str

Mnemonic: "TYPE-ID" (Tell Your Python Elements - Identify Data)

No. 3 /25

Example

42

3.14

"Hello"

True

[1,2,3]

(1,2,3)

{1,2,3}
{"name": "John"}
2+3j

None

Python Programming (1323203) - Summer 2023 Solution by Milav Dabgar

Question 2(a) [3 marks]

Define pseudocode. Write pseudocode to find smallest of two number.

Answer:
Pseudocode is a high-level description of an algorithm that uses structural conventions of a programming
language but is designed for human reading rather than machine reading.

Pseudocode to find smallest of two numbers:
BEGIN

INPUT first number, second number

IF first number < second number THEN

smallest
ELSE

first_number

smallest = second number
END IF
OUTPUT smallest
END

Mnemonic: "RISE" (Read Input, Select smallest, Echo result)

Question 2(b) [4 marks]

Develop a python code to read three numbers from the user and find the average of the numbers.
Answer:

Program to calculate average of three numbers

Input three numbers from user

numl = float(input("Enter first number: "))

num2 = float(input("Enter second number: "))

num3 = float(input("Enter third number: "))

Calculate the average

average = (numl + num2 + num3) / 3

Display the result

print (f"The average of {numl}, {num2}, and {num3} is: {average}")

Diagram:

average = (num1 + num2 +
Input num1, num2, num3 — ge=(47/ Output @
num3) /3

Mnemonic: "I-ADD-D" (Input three, ADD them up, Divide by 3)

Question 2(c) [7 marks]

No. 4 / 25

Python Programming (1323203) - Summer 2023 Solution by Milav Dabgar

Write a python code to show whether the entered number is prime or not.

Answer:

Program to check if a number is prime
Input number from user

num = int(input("Enter a number: "))

Check if number is less than 2
if num < 2:

print(f"{num} is not a prime number")
else:

Initialize is_prime as True

is_prime = True

Check from 2 to sqrt(num)
for i in range(2, int(num**0.5) + 1):
if num & i == 0:
is_prime = False

break

Display result
if is_prime:

print (f"{num} is a prime number")
else:

print (f"{num} is not a prime number")

Diagram:

(‘start }—/ nput %

numisnot A

(End)
wl /S
num is prime

is_prime?

N0\>< is_prime = True H i=2

Mnemonic: "PRIME" (Positive number, Range check from 2 to {/n, If divisible it's Multiple, Else it's prime)

Question 2(a) OR [3 marks]

Write down a difference between Flow chart and Algorithm.

Answer:

No. 5/ 25

Python Programming (1323203) - Summer 2023 Solution by Milav Dabgar

Flow Chart Algorithm
Visual representation using standard symbols and Textual description using structured
shapes language

Requires knowledge of syntax and

Easier to understand due to graphical nature ,
terminology

Shows logical flow and relationships clearly Provides detailed steps in sequential order

Quicker to draft but may be harder to

Time-consuming to create but easier to follow)
interpret

More difficult to modify or update Easier to modify or update

Mnemonic: "VITAL" (Visual vs Textual, Interpretation ease, Time to create, Alteration flexibility, Logical
representation)

Question 2(b) OR [4 marks]

What is the output of the following code:

x=10

y=2

print (x*y)
print (x ** y)
print (x//y)
print (x % y)

Answer:
Operation Explanation Output
x*y Multiplication: 10 x 2 20
x**y Exponentiation: 102 100
x/1y Integer division: 10 + 2 5
X%y Modulus (remainder): 10 + 2 0

Mnemonic: "MEMO" (Multiply, Exponent, Modulo, Operations)

Question 2(c) OR [7 marks]

Write a python code to display the following patterns:

No. 6/ 25

Python Programming (1323203) - Summer 2023 Solution by Milav Dabgar

A) B)
1 * K Kk
12 * Kk %
123 W
12314 &

Answer:

Pattern A: Number pattern
print("Pattern A:")
for i in range(l, 5):
for j in range(l, i + 1):
print(j, end=" ")
print()

Pattern B: Star pattern
print("\nPattern B:")
for i in range(4, 0, -1):
for j in range(i):
print("*", end=" ")
print()

Diagram:

Pattern A

i=1to4

j=1to

Print j

No. 7 /25

Python Programming (1323203) - Summer 2023 Solution by Milav Dabgar

!

New line after inner loop

Pattern B

i=4to1

j=0toi-1

Print *

New line after inner loop

Mnemonic: "LOOP-NED" (Loop Outer, Order Pattern, Nested loops, End with newline, Display)

Question 3(a) [3 marks]

With the necessary examples describe the use of break statement.

Answer:
Break statement is used to exit or terminate a loop prematurely when a specific condition is met.

Example:

No. 8 / 25

Python Programming (1323203) - Summer 2023 Solution by Milav Dabgar

Finding the first odd number in a list
numbers = [2, 4, 6, 7, 8, 10]
for num in numbers:
if num & 2 != O0:
print (f"Found odd number: {num}")
break

print (f"Checking {num}")
Output:

Checking 2
Checking 4
Checking 6
Found odd number: 7

Mnemonic: "EXIT" (EXecute until condition, Immediately Terminate)

Question 3(b) [4 marks]

Explain if...else statement with suitable example.

Answer:
The if...else statement is a conditional statement that executes different blocks of code based on whether a
specified condition evaluates to True or False.

Syntax:

if condition:
Code to be executed if condition is True
else:

Code to be executed if condition is False
Example:

Check if a number is even or odd

number = int(input("Enter a number: "))
if number % 2 ==
print(f"{number} is an even number")

else:

print (£"{number} is an odd number")

Diagram:

No. 9/ 25

Python Programming (1323203) - Summer 2023 Solution by Milav Dabgar

Yes-—7/ Print "number is
No\—7/ Print "number is

number % 2 == 0?

/\‘
7

Mnemonic: "CITE" (Check condition, If True Execute this, Else execute that)

Question 3(c) [7 marks]

Create a User-defined function to print the Fibonacci series of 0 to N numbers where N is an integer
number and passed as an argument.

Answer:

Function to print Fibonacci series
def print fibonacci(n):
Print Fibonacci series from 0 to n
Args:
n: Upper limit (inclusive)
Initialize first two terms
a, b=20,1

Check if n is valid
if n < 0:
print("Please enter a positive number")

return

Print Fibonacci series

print("Fibonacci series up to", n, ":")

if n >= 0:

print(a, end=" ") # Print first term

if n >= 1:

print(b, end=" ") # Print second term

Generate and print the rest of the series
while a + b <= n:

next term = a + b

print(next term, end=" ")

a, b = b, next term

Test the function

print fibonacci(55)

No. 10 / 25

Python Programming (1323203) - Summer 2023 Solution by Milav Dabgar

Diagram:

N TN\

Print error message { End |

/ —
\

Initialize a=0,

next_term = a + b\n Print
next_termina=b\nb =
next_term

@

No No
No
- -

Mnemonic: "FIBER" (First terms set, Initialize variables, Build next term, Echo results, Repeat until limit)

Question 3(a) OR [3 marks]

With the necessary examples describe the use of continue statement.

Answer:
Continue statement is used to skip the current iteration of a loop and continue with the next iteration.

Example:

Print only odd numbers from 1 to 10
for i in range(l, 11):
if i &8 2 ==
continue # Skip even numbers

print(i)

Output:

O 9 U W

Mnemonic: "SKIP" (Skip current iteration, Keep looping, Ignore remaining statements, Proceed to next
iteration)

Question 3(b) OR [4 marks]

Explain For loop statement with example.

Answer:
For loop is used to iterate over a sequence (like list, tuple, string) or other iterable objects and execute a
block of code for each item in the sequence.

Syntax:

for variable in sequence:

Code to be executed for each item
Example:

No. 11/ 25

Python Programming (1323203) - Summer 2023 Solution by Milav Dabgar

Print squares of numbers from 1 to 5

for num in range(l, 6):

square

= num ** 2

print (f£"The square of {num} is {square}")

Output:

The
The
The
The
The

square
square
square
square

square

Diagram:

of 1 is 1
of 2 is 4
of 3 is 9
of 4 is 16
of 5 is 25

For num in range 1 to

square = num ** 2

v

Print

Yes

Mnemonic: "FIRE" (For each Item, Run commands, Execute until end)

Question 3(c) OR [7 marks]

Write a python code that determines whether a given number is an 'Armstrong number' or a
palindrome using a user-defined function.

Answer:

Function to check if a number is Armstrong number

def is_armstrong(num):

Convert to string to count digits

num_str

= str(num)

n = len(num_str)

Calculate sum of each digit raised to power of total digits

sum_of powers = sum(int(digit) ** n for digit in num_str)

Check if sum equals the original number

return

sum_of_ powers

num

Function to check if a number is a palindrome

def is palindrome(num):

Conve

rt to string

num_str = str(num)

Check if string equals its reverse

return num str == num str[::-1]

No. 12 / 25

Python Programming (1323203) - Summer 2023 Solution by Milav Dabgar

Main function to check both conditions
def check number (num):
if is_armstrong(num):
print (f"{num} is an Armstrong number")
else:

print (f"{num} is not an Armstrong number")

if is_palindrome (num) :
print(f"{num} is a palindrome")
else:

print (f"{num} is not a palindrome")
Test the function

number = int(input("Enter a number: "))

check_number (number)

Diagram:

Print "is Armstrong"

Call Sum of powers ==

&

Ye Print "is palindrome"

Call is_palindrome num == reversed

Print "not palindrome"

Mnemonic: "APC" (Armstrong check: Power sum of digits, Palindrome check: Compare with reverse)

Question 4(a) [3 marks]

Develop a python code to identify whether the scanned number is even or odd and print an
appropriate message.

Answer:

Program to check if a number is even or odd
Input number from user

number = int(input("Enter a number: "))

Check if number is even or odd
if number % 2 == 0:

print (f£"{number} is an even number")
else:

print (f"{number} is an odd number")

No. 13/ 25

Python Programming (1323203) - Summer 2023 Solution by Milav Dabgar

Diagram:

YeS-—7/ Print "number is /R‘
Input number % 2 == 0?
No\—7/ Print "number is /L/

Mnemonic: "MODE" (Modulo Operation Determines Even-odd)

Question 4(b) [4 marks]

Define function. Explain user define function using suitable example.

Answer:
A function is a block of organized, reusable code that performs a specific task. User-defined functions are
functions created by the programmer to perform custom operations.

Components of a User-defined Function:

e def keyword: Marks the start of function definition
¢ Function name: [dentifier for the function

e Parameters: Input values (optional)

e Docstring: Description of the function (optional)

e Function body: Code to be executed

e Return statement: Output value (optional)

Example:

User-defined function to calculate area of rectangle
def calculate area(length, width):
Calculate area of rectangle
Args:
length: Length of rectangle
width: Width of rectangle
Returns:
Area of rectangle
area = length * width

return area
Call the function

result = calculate area(5, 3)

print (f"Area of rectangle: {result}")

No. 14 [25

Python Programming (1323203) - Summer 2023 Solution by Milav Dabgar

Mnemonic: "DRAPE" (Define function, Receive parameters, Acquire result, Process data, End with return)

Question 4(c) [7 marks]

List out various String operations and explain any three using example.

Answer:
String operations in Python:

Operation

Concatenation

Repetition

Indexing

Slicing

Methods (len, upper, lower, etc.)
Membership Testing

Formatting

Escape Sequences

Three String Operations with Examples:

1. String Concatenation:

first name = "John"
last_name = "Doe"

full name = first name + " " + last name
print(full _name) # Output: John Doe

2. String Slicing:

Description

Joining strings together using +
Repeating a string using *

Accessing characters by position
Extracting a portion of a string

Built-in functions for string manipulation
Check if a substring exists in a string
Create formatted strings

Special characters preceded by \

message = "Python Programming"

print (message[0:6]) # Output:

print(message[7:]) # Output: Programming

print (message[-11:]) # Output: Programming

3. String Methods:

text = "python programming"

print(text.upper()) # Output: PYTHON PROGRAMMING

print(text.capitalize()) # Output: Python programming

print(text.replace("python",

Output: Java programming

Mnemonic: "CSM" (Concatenate strings, Slice portions, Manipulate with methods)

No. 15/ 25

Python Programming (1323203) - Summer 2023 Solution by Milav Dabgar

Question 4(a) OR [3 marks]

Create a python code to check positive or negative number.

Answer:

Program to check if a number is positive or negative
Input number from user

number = float(input("Enter a number: "))

Check if number is positive, negative, or zero
if number > 0:

print (f"{number} is a positive number")
elif number < 0:

print (f"{number} is a negative number")
else:

print("The number is zero")

Diagram:

Yes 7 Print "number is positive"

@ m Yes—-7/ Print "number is negative" End

No

No ~7 Print "number is zero"

Mnemonic: "SIGN" (See If Greater than 0, Negative otherwise)

Question 4(b) OR [4 marks]

Explain local and global variables using suitable examples.

Answer:
In Python, variables can have different scopes:

Variable Type Description

Local Variable Defined within a function and accessible only inside that function

Global Variable Defined outside functions and accessible throughout the program
Example:

Global variable

count = 0 # This is a global variable

def update count():

No. 16 / 25

Python Programming (1323203) - Summer 2023 Solution by Milav Dabgar

Local variable

local_var = 5 # This is a local variable
Accessing global variable inside function
global count

count += 1

print(f"Local variable: {local_var}")

print (f"Global variable (inside function): {count}")

Call the function

update count()

Accessing variables outside function

print(f"Global variable (outside function): {count}")

This would cause an error if uncommented

print(local var) # NameError: name 'local var' is not defined
Output:

Local variable: 5
Global variable (inside function): 1

Global variable (outside function): 1

Mnemonic: "SCOPE" (Some variables Confined to function Only, Program-wide Exposure for others)

Question 4(c) OR [7 marks]

List out various List operations and explain any three using example.

Answer:
List operations in Python:

No. 17/ 25

Python Programming (1323203) - Summer 2023 Solution by Milav Dabgar

Operation Description

Creating Lists Using square brackets []

Indexing Accessing elements by position
Slicing Extracting portions of a list
Append Adding elements to the end

Insert Adding elements at specific positions
Remove Removing specific elements

Pop Removing and returning elements
Sort Ordering list elements

Reverse Reversing list order

Extend Combining lists

List Comprehensions Creating lists using expressions

Three List Operations with Examples:

1. List Indexing and Slicing:

fruits = ["apple", "banana", "cherry", "orange", "kiwi"]
print(fruits[1l]) # Output: banana

print (fruits[-1]) # Output: kiwi

print(fruits[1:4]) # Output: ['banana', 'cherry', 'orange']

2. List Methods (append, insert, remove):

numbers = [1, 2, 3]

numbers.append(4) # Add 4 to the end

print (numbers) # Output: [1, 2, 3, 4]
numbers.insert (0, 0) # Insert 0 at position 0
print (numbers) # Output: [0, 1, 2, 3, 4]
numbers.remove(2) # Remove element with value 2
print (numbers) # Output: [0, 1, 3, 4]

3. List Comprehensions:

No. 18 [25

Python Programming (1323203) - Summer 2023 Solution by Milav Dabgar

Create a list of squares
squares = [x**2 for x in range(l, 6)]
print(squares) # Output: [1, 4, 9, 16, 25]

Filter even numbers
numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
evens = [x for x in numbers if x % 2 == 0]

print(evens) # Output: [2, 4, 6, 8, 10]

Mnemonic: "AIM" (Access with index, Insert/modify elements, Make using comprehensions)

Question 5(a) [3 marks]

Write python code to swap given two elements in a list.

Answer:

Program to swap two elements in a list
def swap elements(my_list, posl, pos2):

Swap elements at positions posl and pos2 in the list

Check if positions are valid

if 0 <= posl < len(my_list) and 0 <= pos2 < len(my_list):
Swap elements
my list[posl], my list[pos2] = my list[pos2], my list[posl]
return True

else:

return False
Example usage
numbers = [10, 20, 30, 40, 50]
print("Original list:", numbers)
Swap elements at positions 1 and 3
if swap elements(numbers, 1, 3):
print ("After swapping:", numbers)

else:

print("Invalid positions")
Output:

Original list: [10, 20, 30, 40, 50]
After swapping: [10, 40, 30, 20, 50]

Mnemonic: "SWAP" (Select positions, Watch boundaries, Assign simultaneously, Print result)

Question 5(b) [4 marks]

Explain math module and random module in python using example.

No. 19/ 25

Python Programming (1323203) - Summer 2023 Solution by Milav Dabgar

Answer:
Math and random modules provide functions for mathematical operations and random number
generation.

Math Module:
import math
Constants
print (math.pi) # Output: 3.141592653589793

print(math.e) # Output: 2.718281828459045

Mathematical functions

print(math.sqrt(16)) # Output: 4.0
print (math.ceil(4.2)) # Output: 5
print(math.floor(4.8)) # Output: 4
print (math.pow(2, 3)) # Output: 8.0
Random Module:
import random
Random float between 0 and 1
print (random.random()) # Output: 0.123... (random)

Random integer within range

print(random.randint (1, 10)) # Output: 7 (random between 1 and 10)

Random choice from a sequence
colors = ["red", "green", "blue"]

print(random.choice(colors)) # Output: "green" (random)
Shuffle a list
numbers = [1, 2, 3, 4, 5]

random.shuffle(numbers)

print (numbers) # Output: [3, 1, 5, 2, 4] (random)

Mnemonic: "MR-CS" (Math for Calculations, Random for Choice and Shuffling)

Question 5(c) [7 marks]

Write a python code to demonstrate tuples functions and operations.
Answer:

Demonstrating Tuple Functions and Operations

Creating tuples

empty tuple = ()

single item tuple = (1,) # Note the comma

No. 20 / 25

Python Programming (1323203) - Summer 2023 Solution by Milav Dabgar

mixed tuple = (1, "Hello", 3.14, True)
nested tuple = (1, 2, (3, 4))

Accessing tuple elements
print("Accessing elements:")

print(mixed tuple[0]) # Output: 1
print(mixed tuple[-1]) # Output: True
print(nested_tuple[2][0]) # Output: 3

Tuple slicing
print("\nTuple slicing:")

print(mixed tuple[1:3]) # Output: ("Hello", 3.14)

Tuple concatenation

tuplel = (1, 2, 3)
tuple2 = (4, 5, 6)
tuple3 = tuplel + tuple2

print("\nConcatenated tuple:", tuple3d) # Output: (1, 2, 3, 4, 5, 6)

Tuple repetition
repeated tuple = tuplel * 3
print("\nRepeated tuple:", repeated tuple) # Output: (1, 2, 3, 1, 2, 3, 1, 2, 3)

Tuple methods

numbers = (1, 2, 3, 2, 4, 2)

print("\nCount of 2:", numbers.count(2)) # Output: 3
print("Index of 3:", numbers.index(3)) # Output: 2

Tuple unpacking

print("\nTuple unpacking:")

X, vy, z = (10, 20, 30)

print (f"x={x}, y={y}, 2z={z}") # Output: x=10, y=20, z=30

Check if an element exists in a tuple
print("\nMembership testing:")
print(3 in numbers) # Output: True

print(5 in numbers) # Output: False

Converting list to tuple and vice versa
my list = [1, 2, 3]

my_tuple = tuple(my_ list)

print("\nList to tuple:", my_ tuple)

back _to list = list(my_tuple)
print("Tuple to list:", back to list)

Diagram:

‘ Create Tuples H Access Elements H Slice Tuples H Concatenate Tuples H Repeat H Use Tuple H Unpack H Test Membership H Convert

No. 21/ 25

Python Programming (1323203) - Summer 2023 Solution by Milav Dabgar

Mnemonic: "CASC-RUMTC" (Create, Access, Slice, Concatenate, Repeat, Use methods, Membership test,
Tuple conversion)

Question 5(a) OR [3 marks]

Write a python code to find the sum of elements in a list.

Answer:

Program to find the sum of elements in a list
def sum of elements(numbers):

Calculate the sum of all elements in a list
total = 0
for num in numbers:

total += num

return total

Example usage

my list = [10, 20, 30, 40, 50]

print("List:", my_list)

print("Sum of elements:", sum of elements(my list)) # Output: 150

Alternative using built-in sum() function

print("Sum using built-in function:", sum(my_list)) # Output: 150

Diagram:

> total += num

No—» Return total

More elements?

Initialize total = 0 For each num in list

Mnemonic: "SITE" (Sum Initialized To zero, Elements added one by one)

Question 5(b) OR [4 marks]

Explain the usage of following built in functions:
1) Print() 2) Min() 3) Sum() 4) Input()

Answer:

No. 22/ 25

Python Programming (1323203) - Summer 2023 Solution by Milav Dabgar

Function Purpose Example
print() Displays output to the console print("Hello World")

. Returns smallest item in an
min() . min([5, 3, 8, 1])
iterable

Returns sum of all items in an
sum() . sum([1l, 2, 3, 4])
iterable

name = input("Enter

input() Reads input from the user
name: ")
Example Code:
print() function
print("Hello, Python!") # Basic output
print("a", "b", "c", sep="-") # Output with separator: a-b-c
print("No newline", end=" ") # Custom end character

print("on same line") # Output: No newline on same line

min() function

numbers = [15, 8, 23, 4, 42]

print("Minimum value:", min(numbers)) # Output: 4
print("Minimum of 5, 2, 9:", min(5, 2, 9)) # Output: 2
chars = "wxyz"

print("Minimum character:", min(chars)) # Output: w

sum() function
print("Sum of numbers:", sum(numbers)) # Output: 92

print("Sum with start value:", sum(numbers, 10)) # Output: 102

input() function
user_input = input("Enter something: ") # Prompts user for input

print("You entered:", user_input) # Displays user's input

Mnemonic: "PMSI" (Print to display, Min for smallest, Sum for total, Input for reading)

Question 5(c) OR [7 marks]

Write a python code to demonstrate the set functions and operations.

Answer:

Demonstrating Set Functions and Operations

Creating sets

empty set = set() # Empty set

numbers = {1, 2, 3, 4, 5}

duplicates = {1, 2, 2, 3, 4, 4, 5} # Duplicates removed automatically
print("Original set:", numbers)

No. 23 /25

Output

Hello World

10

(waits for user
input)

Python Programming (1323203) - Summer 2023 Solution by Milav Dabgar

print("Set with duplicates:", duplicates) # Output: {1, 2, 3, 4, 5}

Adding elements
numbers.add(6)
print("\nAfter adding 6:", numbers) # Output: {1, 2, 3, 4, 5, 6}

Updating with multiple elements
numbers.update([7, 8, 9])
print("After updating:", numbers) # Output: {1, 2, 3, 4, 5, 6, 7, 8, 9}

Removing elements
numbers.remove(5) # Raises error if element not found

print("\nAfter removing 5:", numbers)

numbers.discard(10) # No error if element not found

print("After discarding 10:", numbers) # No change

popped = numbers.pop() # Removes and returns arbitrary element
print("Popped element:", popped)

print("After pop:", numbers)
Set operations

setl = {1, 2, 3, 4, 5}

set2 = {4, 5, 6, 7, 8}

Union
union_set = setl | set2 # or setl.union(set2)
print("\nUnion:", union set) # Output: {1, 2, 3, 4, 5, 6, 7, 8}

Intersection
intersection _set = setl & set2 # or setl.intersection(set2)

print("Intersection:", intersection_set) # Output: {4, 5}

Difference
difference set = setl - set2 # or setl.difference(set2)
print("Difference (setl - set2):", difference set) # Output: {1, 2, 3}

Symmetric Difference
symmetric_diff = setl " set2 # or setl.symmetric_ difference(set2)

print("Symmetric difference:", symmetric diff) # Output: {1, 2, 3, 6, 7, 8}
Subset and Superset
subset = {1, 2}

print("\nIs {1, 2} subset of setl?", subset.issubset(setl)) # Output: True
print("Is setl superset of {1, 2}?", setl.issuperset(subset)) # Output: True

Diagram:

No. 24 / 25

_—

Python Programming (1323203) - Summer 2023 Solution by Milav Dabgar

—

Modify Sets

N

Create

—

Set Operations

D —

Add Elements

Remove Elements

Union

Intersection

Difference

Symmetric Difference

Subset/Superset

Mnemonic: "CARDS-UI" (Create, Add, Remove, Discard elements, Set operations - Union, Intersection)

No. 25/ 25

	Question 1(a) [3 marks]
	Question 1(b) [4 marks]
	Question 1(c) [7 marks]
	Question 1(c) OR [7 marks]
	Question 2(a) [3 marks]
	Question 2(b) [4 marks]
	Question 2(c) [7 marks]
	Question 2(a) OR [3 marks]
	Question 2(b) OR [4 marks]
	Question 2(c) OR [7 marks]
	Question 3(a) [3 marks]
	Question 3(b) [4 marks]
	Question 3(c) [7 marks]
	Question 3(a) OR [3 marks]
	Question 3(b) OR [4 marks]
	Question 3(c) OR [7 marks]
	Question 4(a) [3 marks]
	Question 4(b) [4 marks]
	Question 4(c) [7 marks]
	Question 4(a) OR [3 marks]
	Question 4(b) OR [4 marks]
	Question 4(c) OR [7 marks]
	Question 5(a) [3 marks]
	Question 5(b) [4 marks]
	Question 5(c) [7 marks]
	Question 5(a) OR [3 marks]
	Question 5(b) OR [4 marks]
	Question 5(c) OR [7 marks]

