Python Programming (1323203) - Winter 2024 Solution by Milav Dabgar

Question 1(a) [3 marks]

Define flowchart and list out the any four symbols of flowchart.

Answer:
A flowchart is a diagrammatic representation that uses standard symbols to illustrate the sequence of steps
in a process, algorithm, or program.

Common Flowchart Symbols:

Symbol Name Purpose

Oval/Rounded Rectangle Terminal/Start/End Indicates start or end of a process
Rectangle Process Represents computation or data processing
Diamond Decision Shows conditional branching point
Parallelogram Input/Output Represents data input or output

Mnemonic: "TP-DI" (Terminal-Process-Decision-Input/Output)

Question 1(b) [4 marks]

List out various data types in python. Explain any three data types with example.

Answer:
Python data types categorize different types of data values.

Data Type Description Example

Integer Whole numbers without decimals x = 10

Float Numbers with decimal points y = 3.14

String Sequence of characters name = "Python"

Boolean True or False values is valid = True

List Ordered, mutable collection colors = ["red", "green"]
Tuple Ordered, immutable collection point = (5, 10)

Dictionary Key-value pairs person = {"name": "John"}
Set Unordered collection of unique items unique = {1, 2, 3}

Integer: Represents whole numbers without decimal points.

age = 25

count = -10

No.1/28

Python Programming (1323203) - Winter 2024 Solution by Milav Dabgar

String: Represents sequence of characters enclosed in quotes.

name = "Python"

message = 'Hello World'
List: Ordered, mutable collection of items that can be of different types.

numbers = [1, 2, 3, 4]
mixed = [1, "Python", True, 3.14]

Mnemonic: "FIBS-LTDS" (Float-Integer-Boolean-String-List-Tuple-Dictionary-Set)

Question 1(c) [7 marks]

Design a flowchart to calculate the sum of first twenty even natural numbers.

Answer:

Yes—»| sum = sum + count = count + 1 \

num =num + 2

@ Initialize sum = 0, count = 0,
num =2

Explanation:

¢ |Initialize variables: Set sum=0, count=0 (to track even numbers found), num=2 (first even number)

Loop condition: Continue until we've found 20 even numbers

Process: Add current even number to sum

Update: Increase counter and move to next even number

Output: Print the final sum when loop completes

Mnemonic: "SCNL-20" (Sum-Count-Number-Loop until 20)

Question 1(c) OR [7 marks]

Create an algorithm to print odd numbers between 1 to 20.
Answer:
Algorithm:

1. Initialize a variable num = 1 (starting with first odd number)
2. While num < 20, do steps 3-5

3. Print the value of num

4. Increment num by 2 (to get next odd number)

5. Repeat from step 2

No. 2 /28

Python Programming (1323203) - Winter 2024 Solution by Milav Dabgar

6. End

Diagram:

S Ve

/ num = num + 2
@ 7 Initialize num =1 > Is num = No

Code Implementation:

Print odd numbers between 1 to 20
num = 1
while num <= 20:

print(num)

num += 2
Mnemonic: "SOLO-20" (Start Odd Loop Output until 20)

Question 2(a) [3 marks]

Discuss the membership operator of python.

Answer:
Membership operators in Python are used to test if a value or variable exists in a sequence.

Table of Membership Operators:

Operator Description Example Output
in Returns True if a value exists in sequence 5 in [1,2,5] True
not in Returns True if a value doesn't exist 4 not in [1,2,5] True

Common Usage:

e Checkingif an element existsin alist: if item in my list:
e Checking if a key exists in dictionary: if key in my dict:
e Checking if a substring exists: if "py" in "python":

Mnemonic: "IM-NOT" (In Membership - NOT in Membership)

Question 2(b) [4 marks]

Explain the need for continue and break statements.

Answer:

No. 3 /28

Python Programming (1323203) - Winter 2024 Solution by Milav Dabgar

Statement Purpose Use Case Example
))) Exit loop when a condition Finding an
break Terminates the loop immediately)
is met element
Skips current iteration and jumps Skip processing for certain o
continue Filtering values
to next values

Break Statement:

e Purpose: Immediately exits the loop
e When to use: When the required condition is achieved and further processing is unnecessary

e Example: Finding a specific element in a list

for num in range(l, 10):
if num ==
print("Found 5!")
break

print (num)
Continue Statement:
e Purpose: Skips the current iteration and proceeds to the next
e When to use: When certain values should be skipped but the loop should continue
e Example: Skipping even numbers in a loop
for num in range(l, 10):
if num & 2 ==

continue

print(num) # Prints only odd numbers

Mnemonic: "BS-CE" (Break Stops, Continue Excepts)

Question 2(c) [7 marks]

Create a program to calculate total and average marks based on four subject marks taken as input
from user.

Answer:

Program to calculate total and average marks

Input marks for four subjects

subjectl = float(input("Enter marks for subject 1: "))
subject2 = float(input("Enter marks for subject 2: "))
subject3 = float(input("Enter marks for subject 3: "))
subject4 = float(input("Enter marks for subject 4: "))

Calculate total and average

No. 4 /28

Python Programming (1323203) - Winter 2024 Solution by Milav Dabgar

total marks = subjectl + subject2 + subject3 + subject4

average_marks = total _marks / 4

Display results

print(f"Total marks: {total marks}")

print(f"Average marks: {average marks}")

Diagram:
) . total_marks = subject1 +) S
(sm)——y/ Mo e) e L (o)
Explanation:
e Input: Get marks for four subjects from user
e Process: Calculate total by adding all subject marks and average by dividing total by number of
subjects
e Output: Display total and average marks
Mnemonic: "IAPO" (Input-Add-Process-Output)
Question 2(a) OR [3 marks]
Write a short note on assignment operator.
Answer:
The assignment operator in Python is used to assign values to variables.
Operator Name Description Example
Simple Assigns right operand value to left o
= X =
Assignment operand
Adds right operand to left and assigns += 5 (sameas x =
. Add AND S 2 & (o
result + 5)
Subtracts right operand from left and x -= 3 (sameas x = x
== Subtract AND i
assigns - 3)
_ Multiplies left by right and assigns x *= 2 (sameas x = x
*= Multiply AND
result * 2)
. . . /= 4 (sameas x =
/= Divide AND Divides left by right and assigns result * (T

Compound assignment operators combine an arithmetic operation with assignment, making code more

concise and readable.

Mnemonic: "SAME" (Simple Assignment Makes Easy)

No. 5/ 28

Python Programming (1323203) - Winter 2024 Solution by Milav Dabgar

Question 2(b) OR [4 marks]

Explain the use of for loop by giving syntax, flowchart and example.
Answer:

Syntax of For Loop:

for variable in sequence:

code block to be executed

Flowchart:

Yes—» Execute the body of \
Move to next item in
No . sequence

Are there items

Initialize loop variable with
Start > N .
/ first item in sequence

Example:

Print squares of numbers from 1 to 5
for num in range(l, 6):
square = num ** 2

print (f£"{num} squared = {square}")
The for loop in Python is used for definite iteration over a sequence (list, tuple, string, etc.) or other
iterable objects. It's particularly useful when you know the number of iterations in advance.

Mnemonic: "SIFE" (Sequence Iteration For Each item)

Question 2(c) OR [7 marks]

Develop a code to find the square and cube of a given number from user.

Answer:

Program to find square and cube of a number
Input number from user

num = float(input("Enter a number: "))

Calculate square and cube
square = num ** 2

cube = num ** 3

Display results

print (f"The number entered is: {num}")
print (f"Square of {num} is: {square}")
print (f"Cube of {num} is: {cube}")

No. 6 /28

Python Programming (1323203) - Winter 2024 Solution by Milav Dabgar

Diagram:

square =num **2 ——» cube = num ** —7/ Display num, square, —@

Explanation:

¢ Input: Get a number from user
e Process: Calculate square by raising to power 2, cube by raising to power 3

e Output: Display the input number, its square and cube

Mnemonic: "ISCO" (Input-Square-Cube-Output)

Question 3(a) [3 marks]

Explain if-elif-else statement with flowchart and suitable example.

Answer:
The if-elif-else statement in Python allows for conditional execution where multiple expressions are
evaluated.

Flowchart:

e Execute if

Is condition1 True?

Yes—» Execute elif block @

Is condition2 True?

No—»| Execute else

Example:

Grade assignment based on marks

marks = 75

if marks >= 90:

grade = "A"
elif marks >= 80:

grade = "B"
elif marks >= 70:

grade = "C"
elif marks >= 60:

grade = "D"
elisel:

grade = "F"

No.7 /28

Python Programming (1323203) - Winter 2024 Solution by Milav Dabgar

print(f"Your grade is: {grade}")
Mnemonic: "CITE" (Check If Then Else)

Question 3(b) [4 marks]

Explain how to define and call user defined function by giving suitable example.
Answer:

Function Definition and Calling:

Aspect Syntax Purpose

Definition def function name(parameters): Creates a reusable block of code
Function Body Indented code block Contains the function's logic
Return Statement return [expression] Sends a value back to the caller
Function Call function name(arguments) Executes the function code

Example of Defining and Calling a Function:

Define a function to calculate area of rectangle
def calculate area(length, width):

Calculate area of a rectangle with given length and width"""
area = length * width

return area

Call the function
result = calculate area(5, 3)

print (f"Area of rectangle: {result}")

Explanation:

¢ Function Definition: Use def keyword followed by function name and parameters
e Documentation: Optional docstring describing the function

e Function Body: Code that performs the task

e Return Statement: Sends result back to caller

e Function Call: Pass arguments to execute the function

Mnemonic: "DBRCA" (Define-Body-Return-Call-Arguments)

Question 3(c) [7 marks]

Develop a code to find the factorial of a given number.

Answer:

No. 8 /28

Python Programming (1323203) - Winter 2024 Solution by Milav Dabgar

Program to find factorial of a number
Input number from user

num = int(input("Enter a positive integer: "))

Initialize factorial

factorial = 1

Check if number is negative, zero or positive
if num < 0O:

print("Factorial doesn't exist for negative numbers")
elif num ==

print ("Factorial of 0 is 1")
else:

Calculate factorial

for i in range(l, num + 1):

factorial *= i

print (f"Factorial of {num} is {factorial}")

Diagram:

Display error

A
Display factorial of 0 is /;N\End)
/

No—-{ Loop fori=1to }—-{ factorial = factorial * i }——7/ Display factorial

Initialize factorial =

TN
S Start /)—~7/ Input

Explanation:

¢ Input: Get a number from user
e Check: Validate if number is negative (factorial not defined), zero (factorial is 1), or positive
® Process: For positive numbers, multiply factorial by each number from 1 to num

e Output: Display the factorial result

Mnemonic: "MICE" (Multiply Incrementally, Check Edge-cases)

Question 3(a) OR [3 marks]

Explain nested loop using suitable example.

Answer:
A nested loop is a loop inside another loop. The inner loop completes all its iterations for each iteration of

the outer loop.

Diagram:

No. 9 /28

Python Programming (1323203) - Winter 2024 Solution by Milav Dabgar

Execute inner loop body

Update inner loop

Outer loop

Update outer loop counter

Example:

Print multiplication table from 1 to 3
for i in range(l, 4): # Outer loop: 1 to 3
print(f"Multiplication table for {i}:")
for j in range(l, 6): # Inner loop: 1 to 5
print(£"{i} x {Jj} = {i*3j}")
print() # Empty line after each table

Mnemonic: "LOFI" (Loop Outside, Finish Inside)

Question 3(b) OR [4 marks]

Explain return statement in function handling.

Answer:
Aspect Description Example
Purpose Send value back to caller return result
Multiple Returns Return multiple values as tuple return x, y, z
Early Exit Exit function before end if error: return None
No Return Function returns None by default def show(): print("Hi")

The return statementin Python functions:

1. Terminates the function execution

2. Passes a value back to the function caller

3. Canreturn multiple values (as tuple)

4. Is optional (if omitted, function returns None)

Example:

No. 10 / 28

Python Programming (1323203) - Winter 2024 Solution by Milav Dabgar

def calculate circle(radius):

Calculate area and circumference of a circle
if radius < 0:

return None # Early exit for invalid input

area = 3.14 * radius ** 2

circumference = 2 * 3.14 * radius
return area, circumference # Return multiple values

Function call
result = calculate_circle(5)

print (f"Area and circumference: {result}")

Mnemonic: "TERM" (Terminate Execution, Return Multiple values)

Question 3(c) OR [7 marks]

Create a program to display the following patterns using loop concept

AB
ABC
ABCD
ABCDE

Answer:

Program to print character pattern

First pattern: A to E in triangle form

Loop through rows (1 to 5)
for i in range(l, 6):
For each row, print characters from 'A' to required letter
for j in range(i):
ASCII value of 'A' is 65, add j to get successive letters
print(chr(65 + j), end="")
Move to next line after each row

print()

Diagram:

No. 11/ 28

Python Programming (1323203) - Winter 2024 Solution by Milav Dabgar

Yes—» j=0 —>

'\Isj</<

Yes—»

Print chr(65 + j)

No—»

Print newline

Explanation:

Outer loop: Controls the number of rows (1 to 5)

Mnemonic: "OICE" (Outer-Inner-Character-Endline)

Question 4(a) [3 marks]

Inner loop: For each row i, prints i characters starting from 'A'

Describe following built-in functions with suitable example.

i) max() ii) input() iii) pow()

Answer:

Function Purpose

Returns largest item in an iterable or

max
$ largest of two or more arguments
. Reads a line from input and returns as
A0pUt() string
pow () Returns x to powery

Examples in code:

No. 12 /28

Syntax

Character generation: Using ASCII value conversion (chr(65+j) gives 'A’, 'B', etc.)

Output formatting: Using end=""to print characters in same line for each row

max(iterable) Or

max(argl, arg2,

input ([prompt])

pow (x,

Y)

Example

max([1l, 5,

3]) returns 5

input ("Enter

name: ")

pow (2, 3)
returns 8

Python Programming (1323203) - Winter 2024 Solution by Milav Dabgar

max()
numbers = [10, 5, 20, 15]

function example

maximum = max(numbers)

print(f"Maximum value: {maximum}") # Output: Maximum value: 20
input() function example

name = input("Enter your name: ")

print(f"Hello, {name}!")
pow() function example
result = pow(2, 4)

print(f"2 raised to power 4 is: {result}")

Output: 2 raised to power 4 is: 16

Mnemonic: "MIP" (Max-Input-Power)

Question 4(b) [4 marks]

Explain slicing of string by giving suitable example.
Answer:
String slicing in Python is used to extract a substring from a string.

Syntax: string[start:end:step]

Parameter Description Default Example

start Starting index (inclusive) 0 "Python"[1:] — "ython"

end Ending index (exclusive) Length of string "Python"[:3] — "Pyt"

step Increment between characters 1 "Python"[::2] — "Pto"
Examples:

text = "Python Programming"

Basic slicing

print(text[0:6]) # Output: "Python"
print(text[7:]) # Output: "Programming"
print(text[:6]) # Output: "Python"

With step

print(text[::2]) # Output: "Pto rgamn"

print(text[0:10:2]) # Output: "Pto r"

Negative indices (count from end)
print(text[-11:]) # Output: "Programming"
print(text[:-12]) # Output: "Python"

Reverse a string

No. 13 /28

Python Programming (1323203) - Winter 2024 Solution by Milav Dabgar
print(text[::-1]) # Output: "gnimmargorP nohtyP"

Mnemonic: "SES" (Start-End-Step)

Question 4(c) [7 marks]

Create a user defined function which prints cube of all the odd numbers between 1 to 7.

Answer:

Function to print cube of odd numbers in a range
def print odd cubes(start, end):

Print cube of all odd numbers between start and end (inclusive)

print (f"Cubes of odd numbers between {start} and {end}:")

Loop through the range
for num in range(start, end + 1):
Check if number is odd
if num & 2 != 0:
Calculate and print cube
cube = num ** 3

print (f"Cube of {num} is {cube}")

Call the function to print odd cubes from 1 to 7
print odd_cubes(1l, 7)

Diagram:

Define function
print_odd_cubes

Call print_odd_cubes(1, 7)

Display heading

No. 14 / 28

Python Programming (1323203) - Winter 2024 Solution by Milav Dabgar

l

Loop num from start to

Is num % 2 =07

!

cube = num **

Display num and

Continue loop

No. 15/ 28

Python Programming (1323203) - Winter 2024 Solution by Milav Dabgar

Yes

Explanation:

e Function Definition: Create a function to process odd numbers in a range
® Loop: Iterate through numbers from start to end

e Condition: Check if number is odd using modulo operator

e Processing: Calculate cube of odd numbers

e Output: Display each odd number and its cube

Mnemonic: "FLOOP" (Function-Loop-Odd-Output-Power)

Question 4(a) OR [3 marks]

Explain random module with various functions.

Answer:

The random module in Python provides functions for generating random numbers and making random

selections.
Function Description Example
random() Returns random float between 0 and 1 random.random()
randint(a, Returns random integer between a and b .
i . random.randint (1, 10)
b) (inclusive)
. random.choice(['red', 'green',
choice(seq) Returns random element from sequence
'blue'])
shuffle(seq) Shuffles a sequence in-place random.shuffle(my list)
sample(seq, Returns k unique random elements from
random.sample(range(l, 30), 5)
k) sequence
Example:

import random

Generate random float between 0 and 1

print(random.random())

Generate random integer between 1 and 10

print (random.randint(1l, 10))
Select random element from list

colors = ["red", "green", "blue", "yellow"]

print (random.choice(colors))

No. 16 / 28

Result

0.7134346335849448

'green’

No return value

(3, 12, 21, 7, 25]

Python Programming (1323203) - Winter 2024 Solution by Milav Dabgar

Shuffle a list in-place
random.shuffle(colors)

print(colors)

Select 2 unique random elements

print(random.sample(colors, 2))

Mnemonic: "RICES" (Random-Integer-Choice-Elements-Shuffle)

Question 4(b) OR [4 marks]

Discuss the following list functions.
i. len() ii. sum() iii. sort() iv. index()

Answer:
Function Purpose Syntax Example Output
len() Returns number of items in list len(list) len([1l, 2, 3]) 3
sum() Returns sum of all items in list sum(list) sum([1, 2, 3]) 6
sort () Sorts list in-place list.sort() [3, 1, 2].sort() None (modifies original)
index() Returns index of first occurrence list.index(value) [10, 20, 30].index(20) 1
Examples:

len() function
numbers = [5, 10, 15, 20, 25]
print(f"Length of list: {len(numbers)}") # Output: 5

sum() function

print(f"Sum of all items: {sum(numbers)}") # Output: 75

sort() function

mixed = [3, 1, 4, 2]

mixed.sort() # Sorts in-place

print(f"Sorted list: {mixed}") # Output: [1, 2, 3, 4]
mixed.sort (reverse=True)

print (f"Reverse sorted: {mixed}") # Output: [4, 3, 2, 1]
index() function

fruits = ["apple", "banana", "cherry", "apple"]

print(f"Index of 'banana': {fruits.index('banana')}") # Output: 1

Mnemonic: "LSSI" (Length-Sum-Sort-Index)

Question 4(c) OR [7 marks]

Create a user-defined function to print the Fibonacci series of 0 to N numbers. (Where N is an
integer number and passed as an argument)

No. 17 /28

Python Programming (1323203) - Winter 2024 Solution by Milav Dabgar

Answer:

Function to print Fibonacci series up to N
def print fibonacci(n):
Print Fibonacci series up to n terms
Where Oth term is 0 and 1lst term is 1
Check if input is valid
if n < 0:
print ("Please enter a positive integer")

return

Initialize first two terms
a, b=20,1
count = 0

print (f"Fibonacci series up to {n} terms:")

Print Fibonacci series
while count < n:
print(a, end=" ")
Update variables for next iteration
next _term = a + b
a=>,b
b = next term

count += 1

Diagram:

Define function
print_fibonacci

Yes No

No. 18 / 28

Python Programming (1323203) - Winter 2024 Solution by Milav Dabgar

|

Display error

!

Initialize a=0, b=1, count=0

Yes

Print

l

|

Display heading

No

next_term=a +

No. 19 /28

count +=1

Python Programming (1323203) - Winter 2024 Solution by Milav Dabgar

Explanation:

¢ Input Validation: Check if N is a valid positive integer

e |nitialize Variables: Set first two Fibonacci terms

Print Series: Loop to print Fibonacci numbers

Update Terms: Calculate next term and shift values for next iteration

e Termination: Stop when count reaches N

Mnemonic: "FIST" (Fibonacci-Initialize-Shift-Terminate)

Question 5(a) [3 marks]

Explain given string methods:
i. count() ii. upper() iii. replace()

Answer:
Method Purpose Syntax Example Output
count () Counts occurrences of substring str.count (substring) "hello".count("1") 2
upper () Converts string to uppercase str.upper () "hello" .upper() "HELLO"
replace() Replaces all occurrences of a substring str.replace(old, new) "hello".replace("1l", "r") "herro"
Examples:
text = "Python programming is fun and Python is easy to learn"

count() method
print(f"Count of 'Python': {text.count('Python')}") # Output: 2
print(f"Count of 'is': {text.count('is')}") # Output: 2

upper () method
print (f"Uppercase: {text.upper()}") # Output: "PYTHON PROGRAMMING IS FUN AND PYTHON IS
EASY TO LEARN"

replace() method

print(f"Replace 'Python' with 'Java': {text.replace('Python', 'Java')}")

Output: "Java programming is fun and Java is easy to learn”

Mnemonic: "CUR" (Count-Upper-Replace)

Question 5(b) [4 marks]

Explain tuple operation with example.
Answer:

Tuples in Python are ordered, immutable collections enclosed in parentheses.

No. 20/ 28

Python Programming (1323203) - Winter 2024 Solution by Milav Dabgar

Operation Description Example Result

Creation Define tuple with values t = (1, 2, 3) Tuple with 3 items

Indexing Access item by position t[0] 1

Slicing Extract portion of tuple t[1:3] (2, 3)

Concatenation Join two tuples tl + t2 Combined tuple

Repetition Repeat tuple elements t * 2 Duplicated elements
Examples:

Create a tuple
fruits = ("apple", "banana", "cherry")

print(f"Fruits tuple: {fruits}")

Access tuple items
print(f"First fruit: {fruits[0]}") # Output: "apple"
print(f"Last fruit: {fruits[-1]}") # Output: "cherry"

Tuple slicing
print (f"First two fruits: {fruits[:2]}") # Output: ("apple", "banana")

Tuple concatenation

more_ fruits = ("orange", "kiwi")

all fruits = fruits + more_ fruits

print(£"All fruits: {all fruits}") # Output: ("apple", "banana", "cherry", "orange",

"kiwi")

Tuple repetition
duplicated = fruits * 2
print(f"Duplicated: {duplicated}") # Output: ("apple", "banana", "cherry", "apple",

"banana", "cherry")

Tuple functions
print(f"Length: {len(fruits)}") # Output: 3
print(f"Max: {max(fruits)}") # Output: "cherry" (alphabetical comparison)

print(f"Min: {min(fruits)}") # Output: "apple" (alphabetical comparison)

Mnemonic: "ICSM" (Immutable-Create-Slice-Merge)

Question 5(c) [7 marks]

Develop a code to create two set and perform given operations with those created set:
i) Union Operation on Sets

ii) Intersection Operation on Sets

iii) Difference Operation on Sets

iv) Symmetric Difference of Two Sets

No. 21/ 28

Python Programming (1323203) - Winter 2024 Solution by Milav Dabgar

Answer:

Program to demonstrate set operations

Create two sets
set A = {1, 2, 3, 4, 5}
set B = {4, 5, 6, 7, 8}

print(f"Set A: {set A}")
print(f"Set B: {set B}")

1) Union Operation (A U B)

Elements present in either A or B or both

union result = set A.union(set B) # OR set A | set B
print(£"\ni) Union of A and B (A U B): {union_ result}")

ii) Intersection Operation (A N B)
Elements present in both A and B
intersection_result = set_A.intersection(set_B) # OR set A & set B

print(f"ii) Intersection of A and B (A N B): {intersection result}")

iii) Difference Operation (A - B)
Elements present in A but not in B
difference_result = set A.difference(set B) # OR set A - set B

print(f"iii) Difference (A - B): {difference result}")

Alternative difference (B - A)
difference alt = set B.difference(set A) # OR set B - set A
print(f" Difference (B - A): {difference alt}")

iv) Symmetric Difference (A A B)
Elements present in A or B but not in both
symmetric_difference = set A.symmetric_difference(set B) # OR set A " set B

print(f"iv) Symmetric Difference (A A B): {symmetric_difference}")

Diagram:

Create set_A={1,2,3,4,5}

Create set_B ={4,5,6,7,8}

No. 22 / 28

Python Programming (1323203) - Winter 2024 Solution by Milav Dabgar

l

Print sets A and

|

union_result =
set_A.union(set_B)

|

Print union_result

|

intersection_result =
set_A.intersection(set_B)

|

Print

|

difference_result =
set_A.difference(set_B)

|

Print

|

difference_alt =
set_B.difference(set_A)

No. 23 /28

Python Programming (1323203) - Winter 2024 Solution by Milav Dabgar

|

Print

symmetric_difference =
set_A.symmetric_difference(set_B)

Print

Explanation:

e Union: All elements from both sets without duplicates (1, 2, 3,4, 5, 6, 7, 8)
¢ Intersection: Common elements in both sets (4, 5)
e Difference (A-B): Elements in A but notin B (1, 2, 3)
e Difference (B-A): Elements in B but notin A (6, 7, 8)

e Symmetric Difference: Elements in either A or B but not in both (1, 2, 3, 6, 7, 8)

Mnemonic: "UIDS" (Union-Intersection-Difference-Symmetric)

Question 5(a) OR [3 marks]

Define list and how it is created in python?

Answer:
A list in Python is an ordered, mutable collection of items that can be of different data types, enclosed in
square brackets.

Table of List Creation Methods:

No. 24 / 28

Python Programming (1323203) - Winter 2024 Solution by Milav Dabgar

Method Description Example
Literal Create using square brackets my list = [1, 2, 3]
Constructor Create using list() function my list = list((1, 2, 3))
Comprehension Create using a single line expression my list = [x for x in range(5)]
From iterable Convert other iterables to list my list = list("abc")
Empty list Create empty list and append later my list = []

Examples:

Create list using literals
numbers = [1, 2, 3, 4, 5]
mixed = [1, "hello", 3.14, True]

Create using list() constructor
tuple to list = list((10, 20, 30))
string to list = list("Python")

Create using list comprehension

squares = [x**2 for x in range(l, 6)]

Create empty list and add values
empty list = []

empty list.append("first")

empty list.append("second")

print (f"Numbers: {numbers}")
print(f"Mixed: {mixed}")

print(f"From tuple: {tuple to list}")
print(f"From string: {string to list}")
print (f"Squares: {squares}")
print(£"Built list: {empty_ list}")

Mnemonic: "LCMIE" (Literal-Constructor-Mixed-Iterable-Empty)

Question 5(b) OR [4 marks]

Explain dictionary built-in function and methods.
Answer:

Dictionary is a collection of key-value pairs enclosed in curly braces {}.

No. 25/ 28

Python Programming (1323203) - Winter 2024 Solution by Milav Dabgar

Function/Method Description Example Result
L. {'name': 'John', 'age':
dict() Creates a dictionary dict(name='John', age=25) 25
len() Returns number of items len(my dict) Integer count
keys () Returns view of all keys my dict.keys() Dictionary view object
values() Returns view of all values my dict.values() Dictionary view object
items () Returns view of (key, value) pairs my dict.items() Dictionary view object
my dict.get('key',
get() Returns value for key, or default T get(ey Value or default
‘default')
Updates dict with keys/values from)
update () my dict.update(other dict) None (updates in-place)
another - -
pop () Removes item with key and returns value my dict.pop('key') Value of removed item
Examples:

Create a dictionary
student = {

'name': 'John',
'age': 20,
'courses':

['Math', 'Science']

Built-in functions

print(f"Length: {len(student)}") # Output: 3
Dictionary methods

{student.keys()}")
{student.values()}")

{student.items()}")

print (f"Keys:
print(f"values:

print(f"Items:

Get method with default
print(f"Get grade (with default): {student.get('grade', 'N/A"')}")
Update dictionary

student.update({'grade': 'A', 'age': 21})

print (f"After update: {student}")

Pop method

removed_item = student.pop('age')
print(f"Removed item: {removed item}")

print (f"After pop: {student}")

Mnemonic: "LKVIGUP" (Length-Keys-Values-Items-Get-Update-Pop)

Question 5(c) OR [7 marks]

Develop python code to create list of prime and non-prime numbers in range 1 to 50.

No. 26 / 28

Python Programming (1323203) - Winter 2024 Solution by Milav Dabgar

Answer:

Program to create list of prime and non-prime numbers from 1 to 50

def is prime(num):
Check if a number is prime
Returns True if prime, False otherwise
1 is not a prime number
if num <= 1:

return False

2 is a prime number
if num ==

return True

Even numbers greater than 2 are not prime
if num & 2 ==

return False

Check odd divisors up to square root of num
(optimization: we only need to check up to sqrt(num))
for i in range(3, int(num**0.5) + 1, 2):

if num & i == 0:

return False
return True

Initialize empty lists for prime and non-prime numbers
prime numbers = []

non_ prime numbers = []

Check each number from 1 to 50
for num in range(l, 51):
if is_prime(num):
prime numbers.append (num)
elisel:

non_prime numbers.append (num)
Display results

print(f"Prime numbers from 1 to 50: {prime numbers}")

print (f"Non-prime numbers from 1 to 50: {non_ prime numbers}")

Diagram:

Add num to
Add num to
non_prime_numbers

Is is_prime(num) Tni

Loop complete?

o Initialize prime_numbers = [
(start } Define is_prime function 1, non_prime_numbers =[] Loop for num =1 to

No. 27 [28

Print prime_numbers and T
Yes—» C End)
non_prime_numbers Naili

Python Programming (1323203) - Winter 2024 Solution by Milav Dabgar

Explanation:
e Helper Function: is prime() efficiently checks if a number is prime
e Optimization: Only checks divisibility up to square root of number
e Classification: Sort numbers into prime or non-prime lists

e Output: Display both lists at the end

Prime numbers (from 1to0 50): 2, 3,5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47
Non-prime numbers (from 1 to 50): 1, 4, 6, 8,9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32,
33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50

Mnemonic: "POEMS" (Prime-Optimization-Efficient-Modulo-Sorting)

No. 28 / 28

	Question 1(a) [3 marks]
	Question 1(b) [4 marks]
	Question 1(c) [7 marks]
	Question 1(c) OR [7 marks]
	Question 2(a) [3 marks]
	Question 2(b) [4 marks]
	Question 2(c) [7 marks]
	Question 2(a) OR [3 marks]
	Question 2(b) OR [4 marks]
	Question 2(c) OR [7 marks]
	Question 3(a) [3 marks]
	Question 3(b) [4 marks]
	Question 3(c) [7 marks]
	Question 3(a) OR [3 marks]
	Question 3(b) OR [4 marks]
	Question 3(c) OR [7 marks]
	Question 4(a) [3 marks]
	Question 4(b) [4 marks]
	Question 4(c) [7 marks]
	Question 4(a) OR [3 marks]
	Question 4(b) OR [4 marks]
	Question 4(c) OR [7 marks]
	Question 5(a) [3 marks]
	Question 5(b) [4 marks]
	Question 5(c) [7 marks]
	Question 5(a) OR [3 marks]
	Question 5(b) OR [4 marks]
	Question 5(c) OR [7 marks]

