
Data Structure Description

Array Fixed-size collection of elements accessed by index

Linked List Chain of nodes with data and reference to next node

Stack LIFO (Last In First Out) structure

Queue FIFO (First In First Out) structure

Complexity
Type

Definition Measurement Importance

Time
Complexity

Measures execution time required by
an algorithm as a function of input size

Big O notation
(O(n), O(1),
O(n²))

Determines how fast an
algorithm runs

Space
Complexity

Measures memory space required by
an algorithm as a function of input size

Big O notation
(O(n), O(1),
O(n²))

Determines how much
memory an algorithm
needs

Question 1(a) [3 marks]
Define linear data structure and give its examples.

Answer:
A linear data structure is a collection of elements arranged in sequential order where each element has
exactly one predecessor and one successor (except first and last elements).

Table: Linear Data Structures Examples

Mnemonic: "ALSQ are in a Line"

Question 1(b) [4 marks]
Define time and space complexity.

Answer:
Time and space complexity measure algorithm efficiency in terms of execution time and memory usage as
input size grows.

Table: Complexity Comparison

Mnemonic: "TS: Time-Speed and Space-Storage"

Question 1(c) [7 marks]
Explain the concept of class and object with example.

Data Structure And Application (1333203) - Summer 2024 Solution by Milav Dabgar

No. 1 / 21

Creates

Student

+name:
string+rollNo: int

+marks:
float

+displayInfo()

StudentObject

Answer:
Classes and objects are fundamental OOP concepts where classes are blueprints for creating objects with
attributes and behaviors.

Diagram: Class and Object Relationship

Code Example:

Class: Blueprint defining attributes (name, rollNo, marks) and methods (displayInfo)

Object: Instance (student1) created from the class with specific values

Mnemonic: "CAR - Class defines Attributes and Routines"

Question 1(c) OR [7 marks]
Explain instance method, class method and static method with example.

class Student:
 def __init__(self, name, rollNo, marks):
 self.name = name
 self.rollNo = rollNo
 self.marks = marks

 def displayInfo(self):
 print(f"Name: {self.name}, Roll No: {self.rollNo}, Marks: {self.marks}")

Creating object
student1 = Student("Raj", 101, 85.5)
student1.displayInfo()

Data Structure And Application (1333203) - Summer 2024 Solution by Milav Dabgar

No. 2 / 21

Method Type Decorator
First
Parameter

Purpose Access

Instance
Method

None self
Operate on instance
data

Can access/modify instance state

Class Method @classmethod cls Operate on class data Can access/modify class state

Static Method @staticmethod None Utility functions
Cannot access instance or class
state

factorial(3) factorial(2) factorial(1) Return
1

Return 1*2=2 Return 2*3=6

Answer:
Python supports three method types: instance, class, and static methods, each serving different purposes.

Table: Comparison of Method Types

Code Example:

Mnemonic: "ICS: Instance-Self, Class-Cls, Static-Solo"

Question 2(a) [3 marks]
Explain concept of recursive function.

Answer:
A recursive function is a function that calls itself during its execution to solve smaller instances of the same
problem.

Diagram: Recursive Function Execution

Mnemonic: "BASE and RECURSE - Base case stops, Recursion repeats"

Question 2(b) [4 marks]

class Student:
 school = "ABC School" # class variable

 def __init__(self, name):
 self.name = name # instance variable

 def instance_method(self): # instance method
 return f"Hi {self.name} from {self.school}"

 @classmethod
 def class_method(cls): # class method
 return f"School is {cls.school}"

 @staticmethod
 def static_method(): # static method
 return "This is a utility function"

Data Structure And Application (1333203) - Summer 2024 Solution by Milav Dabgar

No. 3 / 21

Feature Stack Queue

Access Pattern LIFO (Last In First Out) FIFO (First In First Out)

Operations Push (insert), Pop (remove) Enqueue (insert), Dequeue (remove)

Access Points Single end (top) Two ends (front, rear)

Visualization Like plates stacked vertically Like people in a line

Applications Function calls, undo operations Print jobs, process scheduling

Operation Description Time Complexity

Push Insert element at the top O(1)

Pop Remove element from the top O(1)

Peek/Top View top element without removing O(1)

isEmpty Check if stack is empty O(1)

isFull Check if stack is full (for array implementation) O(1)

Question 2(b) [4 marks]
Define stack and queue.

Answer:
Stack and queue are linear data structures with different access patterns for data insertion and removal.

Table: Stack vs Queue

Mnemonic: "SLIFF vs QFIFF - Stack-LIFO vs Queue-FIFO"

Question 2(c) [7 marks]
Explain basic operations on stack.

Answer:
Stack operations follow LIFO (Last In First Out) principle with the following basic operations:

Table: Stack Operations

Diagram: Stack Operations

Data Structure And Application (1333203) - Summer 2024 Solution by Milav Dabgar

No. 4 / 21

Code Example:

Mnemonic: "PIPES - Push In, Pop Exit, See top"

Question 2(a) OR [3 marks]
Define singly linked list.

Answer:
A singly linked list is a linear data structure with a collection of nodes where each node contains data and a
reference to the next node.

Diagram: Singly Linked List

Mnemonic: "DNL - Data and Next Link"

Question 2(b) OR [4 marks]

 +---+ Push
 | 8 | <-------
Top -> +---+
 | 5 | Pop
 +---+ -------->
 | 3 |
 +---+
 | 1 |
 +---+

class Stack:
 def __init__(self):
 self.items = []

 def push(self, item):
 self.items.append(item)

 def pop(self):
 if not self.isEmpty():
 return self.items.pop()

 def peek(self):
 if not self.isEmpty():
 return self.items[-1]

 def isEmpty(self):
 return len(self.items) == 0

 +---------+ +---------+ +---------+ +---------+
 | Data:10 | | Data:20 | | Data:30 | | Data:40 |
 | Next:--|--->| Next:--|--->| Next:--|--->| Next:/0|
 +---------+ +---------+ +---------+ +---------+
 Head Node Tail Node

Data Structure And Application (1333203) - Summer 2024 Solution by Milav Dabgar

No. 5 / 21

Operation Description Implementation Time Complexity

Enqueue Add element at the rear end queue.append(element) O(1)

Dequeue Remove element from the front end element = queue.pop(0) O(1) with linked list, O(n) with array

Question 2(b) OR [4 marks]
Explain Enqueue and Dequeue operations on Queue.

Answer:
Enqueue and Dequeue are the primary operations for adding and removing elements in a queue data
structure.

Table: Queue Operations

Diagram: Queue Operations

Mnemonic: "ERfDFr - Enqueue at Rear, Dequeue from Front"

Question 2(c) OR [7 marks]
Convert expression A+B/C+D to postfix and evaluate postfix expression using stack assuming some
values for A, B, C and D.

Answer:
Converting and evaluating the expression "A+B/C+D" using stack:

Step 1: Convert to Postfix

Table: Infix to Postfix Conversion

 Enqueue Dequeue
 --------> --------->
 +-----+ +-----+ +-----+ +-----+
Rear | 30 | | 20 | | 10 | Front
 +-----+ +-----+ +-----+

Data Structure And Application (1333203) - Summer 2024 Solution by Milav Dabgar

No. 6 / 21

Symbol Stack Output Action

A A Add to output

+ + A Push to stack

B + A B Add to output

/ + / A B Push to stack (higher precedence)

C + / A B C Add to output

+ + A B C / Pop all higher/equal precedence, push +

D + A B C / + D Add to output

End A B C / + D + Pop remaining operators

Symbol Stack Calculation

5 (A) 5 Push value

10 (B) 5, 10 Push value

2 (C) 5, 10, 2 Push value

/ 5, 5 10/2 = 5

+ 10 5+5 = 10

3 (D) 10, 3 Push value

+ 13 10+3 = 13

Final Postfix: A B C / + D +

Step 2: Evaluate with values A=5, B=10, C=2, D=3

Table: Postfix Evaluation

Result: 13

Mnemonic: "PC-SE - Push operands, Calculate when operators, Stack holds Everything"

Question 3(a) [3 marks]
Enlist applications of Linked List.

Answer:
Linked lists are versatile data structures with many practical applications.

Table: Applications of Linked List

Data Structure And Application (1333203) - Summer 2024 Solution by Milav Dabgar

No. 7 / 21

Application Why Linked List is Used

Dynamic Memory Allocation Efficient insertion/deletion without reallocation

Implementing Stacks & Queues Can grow and shrink as needed

Undo Functionality Easy to add/remove operations from history

Hash Tables For handling collisions via chaining

Music Playlists Easy navigation between songs (next/previous)

Mnemonic: "DSUHM - Dynamic allocation, Stacks & queues, Undo, Hash tables, Music players"

Question 3(b) [4 marks]
Explain creation of singly linked list in python.

Answer:
Creating a singly linked list in Python involves defining a Node class and implementing basic operations.

Code Example:

Diagram: Creating a Linked List

class Node:
 def __init__(self, data):
 self.data = data
 self.next = None

class LinkedList:
 def __init__(self):
 self.head = None

 def append(self, data):
 new_node = Node(data)
 # If empty list, set new node as head
 if self.head is None:
 self.head = new_node
 return
 # Traverse to the end and add node
 last = self.head
 while last.next:
 last = last.next
 last.next = new_node

Data Structure And Application (1333203) - Summer 2024 Solution by Milav Dabgar

No. 8 / 21

Create Node

Set head if empty

Otherwise traverse to
end

Attach new node at
end

Mnemonic: "CHEN - Create nodes, Head first, End attachment, Next pointers"

Question 3(c) [7 marks]
Write a code to insert a new node at the beginning and end of singly linked list.

Answer:
Adding nodes at the beginning and end of a singly linked list requires different approaches.

Code Example:

class Node:
 def __init__(self, data):
 self.data = data
 self.next = None

class LinkedList:
 def __init__(self):
 self.head = None

 # Insert at beginning (prepend)
 def insert_at_beginning(self, data):
 new_node = Node(data)
 new_node.next = self.head
 self.head = new_node

 # Insert at end (append)
 def insert_at_end(self, data):
 new_node = Node(data)
 # If empty list
 if self.head is None:
 self.head = new_node
 return

 # Traverse to last node
 current = self.head
 while current.next:
 current = current.next

 # Attach new node
 current.next = new_node

Data Structure And Application (1333203) - Summer 2024 Solution by Milav Dabgar

No. 9 / 21

All nodes visitedInitialize count=0 Start from
head

Traverse each node

Increment count

Move to next node
Return count

Diagram: Insertion Operations

Mnemonic: "BEN - Beginning is Easy and Next-based, End Needs traversal"

Question 3(a) OR [3 marks]
Write a code to count the number of nodes in singly linked list.

Answer:
Counting nodes requires traversing the entire linked list from head to tail.

Code Example:

Diagram: Counting Nodes

Mnemonic: "CIT - Count Incrementally while Traversing"

Question 3(b) OR [4 marks]
Match appropriate options from column A and B

Answer:
The matching between different linked list types and their characteristics:

Table: Matching Linked List Types with Characteristics

 Insert at Beginning: Insert at End:
 +---------+ +-----+ +-----+ +-----+ +---------+
 | New Node|------>| Head| | Head|---->| ... |---->| New Node|
 +---------+ +-----+ +-----+ +-----+ +---------+

def count_nodes(self):
 count = 0
 current = self.head

 # Traverse the list and count nodes
 while current:
 count += 1
 current = current.next

 return count

Data Structure And Application (1333203) - Summer 2024 Solution by Milav Dabgar

No. 10 / 21

Column A Column B Match

1. Singly Linked List c. Nodes contain data and a reference to the next node 1-c

2. Doubly Linked
List

d. Nodes contain data and references to both the next and
previous nodes

2-d

3. Circular Linked
List

b. Nodes form a loop where the last node points to the first node 3-b

4. Node in a Linked
List

a. Basic unit containing data and references 4-a

Position Approach Time Complexity Special Case

First Node Change head pointer O(1) Check if list is empty

Last Node Traverse to second-last node O(n) Handle single node list

Diagram: Different Linked List Types

Mnemonic: "SDCN - Single-Direction, Double-Direction, Circular-Connection, Node-Component"

Question 3(c) OR [7 marks]
Explain deletion of first and last node in singly linked list.

Answer:
Deleting nodes from a singly linked list varies in complexity based on the position (first vs. last).

Table: Deletion Comparison

Code Example:

Singly Linked: A->B->C->D->null
Doubly Linked: A<->B<->C<->D<->null
Circular Linked: A->B->C->D-+
 ^ |
 +----------+

def delete_first(self):
 # Check if list is empty
 if self.head is None:
 return

 # Update head to second node
 self.head = self.head.next

def delete_last(self):
 # Check if list is empty

Data Structure And Application (1333203) - Summer 2024 Solution by Milav Dabgar

No. 11 / 21

Diagram: Deletion Operations

Mnemonic: "FELO - First is Easy, Last needs One-before-last"

Question 4(a) [3 marks]
Explain concept of doubly linked list.

Answer:
A doubly linked list is a bidirectional linear data structure with nodes containing data, previous, and next
references.

Diagram: Doubly Linked List

Mnemonic: "PDN - Previous, Data, Next"

Question 4(b) [4 marks]
Explain concept of linear search.

 if self.head is None:
 return

 # If only one node
 if self.head.next is None:
 self.head = None
 return

 # Traverse to second last node
 current = self.head
 while current.next.next:
 current = current.next

 # Remove last node
 current.next = None

Delete First: Delete Last:
+-----+ +-----+ +-----+ +-----+ +-----+
| Head|---->| Next| => | Head|---->| Next|---->| Last| =>
+-----+ +-----+ +-----+ +-----+ +-----+
 +-----+ +-----+
 | Head|---->| Next|--X
 +-----+ +-----+

 +-------------------+ +-------------------+ +-------------------+
 | prev | data | next| | prev | data | next| | prev | data | next|
NULL<------| 10 |---->|<----| 20 |---->|<-----| 30 |----->NULL |
 +-------------------+ +-------------------+ +-------------------+

Data Structure And Application (1333203) - Summer 2024 Solution by Milav Dabgar

No. 12 / 21

Aspect Description

Working Sequentially check each element from start to end

Time Complexity O(n) - worst and average case

Best Case O(1) - element found at first position

Suitability Small lists or unsorted data

Advantage Simple implementation, works on any collection

Match

No
Match

No

Yes

Start Check First
Element

Return
Position

Move to Next
Element

Reached End? Not Found

Answer:
Linear search is a simple sequential search algorithm that checks each element one by one until finding the
target.

Table: Linear Search Characteristics

Diagram: Linear Search Process

Mnemonic: "SCENT - Search Consecutively Each element until Target"

Question 4(c) [7 marks]
Write a code to implement binary search algorithm.

Answer:
Binary search is an efficient algorithm for finding elements in a sorted array by repeatedly dividing the
search interval in half.

Code Example:

def binary_search(arr, target):
 left = 0
 right = len(arr) - 1

 while left <= right:
 mid = (left + right) // 2

 # Check if target is present at mid
 if arr[mid] == target:
 return mid

Data Structure And Application (1333203) - Summer 2024 Solution by Milav Dabgar

No. 13 / 21

Aspect Description

Approach Find minimum element from unsorted part and place at beginning

Time Complexity O(n²) - worst, average, and best cases

Space Complexity O(1) - in-place sorting

Stability Not stable (equal elements may change relative order)

Advantage Simple implementation with minimal memory usage

Diagram: Binary Search Process

Mnemonic: "MCLR - Middle Compare, Left or Right adjust"

Question 4(a) OR [3 marks]
Explain concept of selection sort algorithm.

Answer:
Selection sort is a simple comparison-based sorting algorithm that divides the array into sorted and
unsorted regions.

Table: Selection Sort Characteristics

Mnemonic: "FSMR - Find Smallest, Move to Right position, Repeat"

Question 4(b) OR [4 marks]

 # If target is greater, ignore left half
 elif arr[mid] < target:
 left = mid + 1

 # If target is smaller, ignore right half
 else:
 right = mid - 1

 # Target not found
 return -1

 Array: [10, 20, 30, 40, 50, 60, 70]
 Search: 40

 Step 1: mid = 3, arr[mid] = 40 (Found!)
 left right
 | |
 [10, 20, 30, 40, 50, 60, 70]
 ^
 mid

Data Structure And Application (1333203) - Summer 2024 Solution by Milav Dabgar

No. 14 / 21

Aspect Description

Approach Repeatedly compare adjacent elements and swap if needed

Passes (n-1) passes for n elements

Time Complexity O(n²) - worst and average case, O(n) - best case

Space Complexity O(1) - in-place sorting

Optimization Early termination if no swaps occur in a pass

Explain bubble sort method.

Answer:
Bubble sort is a simple sorting algorithm that repeatedly steps through the list, compares adjacent
elements, and swaps them if they're in the wrong order.

Table: Bubble Sort Characteristics

Diagram: Bubble Sort Process

Mnemonic: "CABS - Compare Adjacent, Bubble-up Swapping"

Question 4(c) OR [7 marks]
Explain the working of quick sort method with example.

Answer:
Quick sort is an efficient divide-and-conquer sorting algorithm that works by selecting a pivot element and
partitioning the array.

Table: Quick Sort Steps

Array: [5, 3, 8, 4, 2]

Pass 1: [3, 5, 4, 2, 8]
 ^-^ ^-^ ^-^

Pass 2: [3, 4, 2, 5, 8]
 ^-^ ^-^

Pass 3: [3, 2, 4, 5, 8]
 ^-^

Pass 4: [2, 3, 4, 5, 8] (Sorted)
 ^-^

Data Structure And Application (1333203) - Summer 2024 Solution by Milav Dabgar

No. 15 / 21

Step Description

1 Choose a pivot element from the array

2 Partition: Rearrange elements (smaller than pivot to left, larger to right)

3 Recursively apply quick sort to subarrays on left and right of pivot

Array:
7,2,1,6,8,5,3,4

Choose Pivot: 4 Partition

Left:
2,1,3

Pivot:
4

Right:
7,6,8,5

Recursively Sort Left

Recursively Sort
Right

Sorted Left: 1,2,3

Sorted Right: 5,6,7,8

Final: 1,2,3,4,5,6,7,8

Example with Array [7, 2, 1, 6, 8, 5, 3, 4]:

Diagram: Quick Sort Partitioning

Mnemonic: "PPR - Pivot, Partition, Recursive divide"

Question 5(a) [3 marks]
Explain binary tree.

Answer:
A binary tree is a hierarchical data structure where each node has at most two children referred to as left
and right child.

Diagram: Binary Tree

Table: Binary Tree Properties

Pivot: 4
After partition: [2, 1, 3] 4 [7, 6, 8, 5]
 Left P Right

Recursively sort left: [1] 2 [3] → [1, 2, 3]
Recursively sort right: [5] 7 [6, 8] → [5, 6, 7, 8]

Final sorted array: [1, 2, 3, 4, 5, 6, 7, 8]

 A
 / \
 B C
 / \ \
 D E F

Data Structure And Application (1333203) - Summer 2024 Solution by Milav Dabgar

No. 16 / 21

Property Description

Node Contains data and references to left and right children

Depth Length of path from root to the node

Height Length of the longest path from node to a leaf

Binary Tree Each node has at most 2 children

Term Definition

Root Topmost node of the tree with no parent

Path Sequence of nodes connected by edges from one node to another

Parent Node that has one or more child nodes

Children Nodes directly connected to a parent node

Mnemonic: "RLTM - Root, Left, Two, Maximum"

Question 5(b) [4 marks]
Define the terms root, path, parent and children with reference to tree.

Answer:
Trees have specific terminology to describe relationships between nodes in the hierarchy.

Table: Tree Terminology

Diagram: Tree Terminology

Mnemonic: "RPPC - Root at Top, Path connects, Parent above, Children below"

Question 5(c) [7 marks]
Apply preorder and postorder traversal for given below tree.

Answer:
Preorder and postorder are depth-first tree traversal methods with different node visiting sequences.

Given Tree:

 A <-- Root
 / \
 B C <-- Children of A, A is Parent
 / \ \
 D E F <-- Path from A to F: A->C->F

Data Structure And Application (1333203) - Summer 2024 Solution by Milav Dabgar

No. 17 / 21

Traversal Order Result for Given Tree

Preorder Root, Left, Right 40, 30, 25, 15, 28, 35, 50, 45, 60, 55, 70

Postorder Left, Right, Root 15, 28, 25, 35, 30, 45, 55, 70, 60, 50, 40

Table: Tree Traversal Comparison

Code Example:

Mnemonic: "PRE-NLR, POST-LRN - Preorder (Node-Left-Right), Postorder (Left-Right-Node)"

Question 5(a) OR [3 marks]
Enlist applications of binary tree.

Answer:
Binary trees have numerous practical applications in various fields of computer science.

Table: Binary Tree Applications

 40
 / \
 30 50
 / \ / \
 25 35 45 60
 / \ / \
 15 28 55 70

def preorder(root):
 if root:
 print(root.data, end=", ") # Visit root
 preorder(root.left) # Visit left subtree
 preorder(root.right) # Visit right subtree

def postorder(root):
 if root:
 postorder(root.left) # Visit left subtree
 postorder(root.right) # Visit right subtree
 print(root.data, end=", ") # Visit root

Data Structure And Application (1333203) - Summer 2024 Solution by Milav Dabgar

No. 18 / 21

Application Description

Binary Search Trees Efficient searching, insertion, and deletion operations

Expression Trees Representing mathematical expressions for evaluation

Huffman Coding Data compression algorithms

Priority Queues Implementation of heap data structure

Decision Trees Classification algorithms in machine learning

Step Description

1 Start at the root node

2 If new value < current node value, go to left subtree

3 If new value > current node value, go to right subtree

4 Repeat until finding an empty position (null pointer)

5 Insert the new node at the empty position found

Yes

No

Yes

No

Yes

No

Start at Root New Value < Current?

Move to Left Child

Move to Right Child

Left Child Exists?

Right Child
Exists?

Insert as Left
Child

Insert as Right
Child

Mnemonic: "BEHPD - BST, Expression, Huffman, Priority queue, Decision tree"

Question 5(b) OR [4 marks]
Explain insertion of a node in binary search tree.

Answer:
Insertion in a Binary Search Tree (BST) follows the BST property: left child < parent < right child.

Table: Insertion Steps in BST

Diagram: BST Insertion

Mnemonic: "LSRG - Less-go-left, Same-or-greater-go-right"

Question 5(c) OR [7 marks]

Data Structure And Application (1333203) - Summer 2024 Solution by Milav Dabgar

No. 19 / 21

Step Insert Tree Structure

1 8 Root = 8

2 4 Left of 8

3 12 Right of 8

4 2 Left of 4

5 6 Right of 4

6 10 Left of 12

7 14 Right of 12

8 1 Left of 2

9 3 Right of 2

10 5 Left of 6

Question 5(c) OR [7 marks]
Draw Binary search tree for 8, 4, 12, 2, 6, 10, 14, 1, 3, 5 and write In-order traversal for the tree.

Answer:
Binary Search Tree (BST) is constructed by inserting nodes while maintaining the BST property.

Binary Search Tree for the given elements:

Table: BST Construction Process

In-order Traversal:

An in-order traversal visits nodes in the order: left subtree, current node, right subtree.

For the given BST, the in-order traversal is:
1, 2, 3, 4, 5, 6, 8, 10, 12, 14

Code Example:

 8
 / \
 4 12
 / \ / \
 2 6 10 14
 / \ /
 1 3 5

Data Structure And Application (1333203) - Summer 2024 Solution by Milav Dabgar

No. 20 / 21

Mnemonic: "LNR - Left, Node, Right makes sorted order in BST"

def inorder_traversal(root):
 if root:
 inorder_traversal(root.left) # Visit left subtree
 print(root.data, end=", ") # Visit current node
 inorder_traversal(root.right) # Visit right subtree

Data Structure And Application (1333203) - Summer 2024 Solution by Milav Dabgar

No. 21 / 21

	Question 1(a) [3 marks]
	Question 1(b) [4 marks]
	Question 1(c) [7 marks]
	Question 1(c) OR [7 marks]
	Question 2(a) [3 marks]
	Question 2(b) [4 marks]
	Question 2(c) [7 marks]
	Question 2(a) OR [3 marks]
	Question 2(b) OR [4 marks]
	Question 2(c) OR [7 marks]
	Question 3(a) [3 marks]
	Question 3(b) [4 marks]
	Question 3(c) [7 marks]
	Question 3(a) OR [3 marks]
	Question 3(b) OR [4 marks]
	Question 3(c) OR [7 marks]
	Question 4(a) [3 marks]
	Question 4(b) [4 marks]
	Question 4(c) [7 marks]
	Question 4(a) OR [3 marks]
	Question 4(b) OR [4 marks]
	Question 4(c) OR [7 marks]
	Question 5(a) [3 marks]
	Question 5(b) [4 marks]
	Question 5(c) [7 marks]
	Question 5(a) OR [3 marks]
	Question 5(b) OR [4 marks]
	Question 5(c) OR [7 marks]

