Data Structure and Application (1333203) - Winter 2023 Solution by Milav Dabgar

Question 1(a) [3 marks]

Define linked list. List different types of linked list.

Answer:

Types of Linked
List

Definition

1. Singly Linked

List
2. Doubly Linked

A linked list is a linear data structure where elements are stored in nodes, and LISt_

each node points to the next node in the sequence 3_' CIrCUIér
Linked List
4. Circular
Doubly Linked
List

Diagram:

Singly: [Data|Next] - [Data|Next] - [Data|Next] - NULL

Doubly: [Prev|Data|Next] — [Prev|Data|Next] — [Prev|Data|Next] - NULL

Circular: [Data|Next] - [Data|Next] - [Data|Next] €

Mnemonic: "Single, Double, Circle, Double-Circle"

Question 1(b) [4 marks]

Explain Linear and Non Linear Data structure in Python with examples.

Answer:

No.1/28

Data
Structure

Linear

Non-
Linear

Diagram:

— N T~

Data Structure and Application (1333203) - Winter 2023 Solution by Milav Dabgar

Description

Elements arranged in sequential order where each element has
exactly one predecessor and successor (except first and last)

Elements not arranged sequentially; an element can connect to

multiple elements

Data

/

Linear

I

Python
Examples

Lists: 11, 2,
3]

Tuples: (1, 2,
3)

Strings: "abc"
Queue:

queue.Queue()

Dictionary:
{"a": 1, "b":
2}

Set: {1, 2, 3}
Tree: Custom
implementation
Graph: Custom
implementation

Non-

Arrays

Linked Lists

Stacks

Queues

Trees

Graphs

Hash

Mnemonic: "Linear Listens In Sequence, Non-linear Navigates Various Paths"

Question 1(c) [7 marks]

Explain class, attributes, object and class method in python with suitable example.

Answer:

Diagram:

No. 2 /28

Data Structure and Application (1333203) - Winter 2023 Solution by Milav Dabgar

Student

+init()

+display()
Term Description
Class Blueprint for creating objects with shared attributes and methods
Attributes Variables that store data inside a class
Object Instance of a class with specific attribute values
Class Method Functions defined within a class that can access and modify class states

Code:

class Student:
Class attribute
school = "GTU"

Constructor

def init (self, roll no, name):
Instance attributes
self.roll no = roll no

self.name = name

Instance method
def display(self):
print(f"Roll No: {self.roll no}, Name: {self.name}")

Class method
@classmethod
def change school(cls, new_school):

cls.school = new_school

Creating object
studentl = Student (101, "Raj")
studentl.display() # Output: Roll No: 101, Name: Raj

Mnemonic: "Class Creates, Attributes Store, Objects Use, Methods Operate"

No. 3 /28

Data Structure and Application (1333203) - Winter 2023 Solution by Milav Dabgar

Question 1(c) OR [7 marks]

Define Data Encapsulation & Polymorphism. Develop a Python code to explain Polymorphism.

Answer:
Concept Definition
Data Bundling data and methods into a single unit (class) and restricting direct access to
Encapsulation some components

, Ability of different classes to provide their own implementation of methods with
Polymorphism
the same name

Diagram:

Polymorphism

Method Overriding Method Duck

Code:

Polymorphism example
class Animal:
def speak(self):

pass

class Dog(Animal):
def speak(self):
return "Woof!"

class Cat(Animal):
def speak(self):

return "Meow!"
class Duck(Animal):
def speak(self):
return "Quack!"
Function demonstrating polymorphism
def animal sound(animal):

return animal.speak()

Creating objects

No. 4 /28

Data Structure and Application (1333203) - Winter 2023 Solution by Milav Dabgar

dog Dog ()
Ccat()

duck = Duck()

cat

Same function works for different animal objects
print(animal sound(dog)) # Output: Woof!
print(animal sound(cat)) # Output: Meow!
print(animal_sound(duck)) # Output: Quack!

Mnemonic: "Encapsulate to Protect, Polymorphism for Flexibility"

Question 2(a) [3 marks]

Differentiate between Stack and Queue.

Answer:
Feature Stack Queue
Principle LIFO (Last In First Out) FIFO (First In First Out)
Operations Push, Pop Enqueue, Dequeue
Access Elements can only be added/removed Elements are added at rear end and
from one end (top) removed from front end
Diagram:
Stack: [31] Queue: [1] - [2] - [3]
[2] Front Rear
[1]

Mnemonic: "Stack Piles Up, Queue Lines Up"

Question 2(b) [4 marks]

Write an algorithm for PUSH and POP operation of stack in python.
Answer:

PUSH Algorithm:
Start
1. Check if stack is full
2. If not full, increment top by 1

3. Add element at position 'top'
End

POP Algorithm:

No. 5/ 28

Data Structure and Application (1333203) - Winter 2023 Solution by Milav Dabgar

Start
1. Check if stack is empty
2. If not empty, retrieve element at 'top'
3. Decrement top by 1
4. Return retrieved element
End

Code:

class Stack:
def init (self, size):
self.stack = []
self.size = size

self.top = -1

def push(self, element):
if self.top >= self.size - 1:
return "Stack Overflow"
else:
self.top += 1
self.stack.append(element)
return "Pushed " + str(element)

def pop(self):
if self.top < 0:
return "Stack Underflow"
else:
element = self.stack.pop()
self.top -= 1

return element

Mnemonic: "Push to Top, Pop from Top"

Question 2(c) [7 marks]

Convert following equation from infix to postfix using Stack.
A*(B+C)-D/(E+F)

Answer:

Diagram:

Infix: A* (B+C)-D/ (E+F)
Postfix: ABC + * DEF + / -

No. 6 /28

Step

10
11
12
13
14
15

16

Data Structure and Application (1333203) - Winter 2023 Solution by Milav Dabgar

Symbol Stack
A

* *

(*(
B *(
+ *(+
C w3 (<
) *

D -

/ -/

(-/ (
E -/ (
+ -/ (+
B -/(+
) -/
end

Answer: A BC + *DEF + / -

Mnemonic: "Operators Stack, Operands Print"

Question 2(a) OR [3 marks]

Differentiate between simple Queue and circular Queue.

Answer:

Feature

Structure

Memory

Implementation

Simple Queue

Linear data structure

Inefficient memory usage due to unused
space after dequeue

Front always at index O, rear increases

No.7 /28

Output

A

A

A

AB

AB

ABC

ABC+
ABC+*
ABC+*D
ABC+*D
ABC+*D
ABC+*DE
ABC+*DE
ABC+*DEF
ABC+*DEF+

ABC+*DEF+/-

Circular Queue

Linear data structure with
connected ends

Efficient memory usage by reusing
empty spaces

Front and rear move in circular
fashion using modulo

Data Structure and Application (1333203) - Winter 2023 Solution by Milav Dabgar

Diagram:

Simple —> Front —> —> Rear

Circular Queue e Front Rear

Mnemonic: "Simple Wastes, Circular Reuses"

Question 2(b) OR [4 marks]

Explain concept of recursive function with suitable example.

Answer:
Key Aspects Description
Definition A function that calls itself to solve a smaller instance of the same problem
Base Case The condition where the function stops calling itself

Recursive Case The condition where the function calls itself with a simpler version of the problem

Diagram:

factorial(3) —> 3 * factorial(2) > 3 * 2 * factorial(1) —> 3 *2* 1 *factorial(0) 3*2*1*1 —> 3*2*1 > 3*2 >

Code:

def factorial(n):
Base case
if n ==
return 1
Recursive case
else:
return n * factorial(n-1)

Example
result = factorial(5) # 5! = 120

Mnemonic: "Base Breaks, Recursion Returns"

No. 8 /28

Data Structure and Application (1333203) - Winter 2023 Solution by Milav Dabgar

Question 2(c) OR [7 marks]

Develop a python code to implement Enqueue and Dequeue operation in Queue.
Answer:

Diagram:

Enqueue:

(11021031 ~» [11(2][3][4]

Dequeue:
(11021031041 ~» [2]1[3]1[4]

Code:

class Queue:
def _ init_(self, size):
self.queue = []
self.size = size
self.front = 0
self.rear = -1

self.count = 0

def enqueue(self, item):
if self.count >= self.size:
return "Queue is full"
elisel:
self.rear += 1
self.queue.append(item)
self.count += 1

return "Enqueued " + str(item)

def dequeue(self):
if self.count <= 0:
return "Queue is empty"
else:
item = self.queue.pop(0)
self.count -=1

return item

def display(self):

return self.queue

Test

g = Queue(5)

g.enqueue(10)

g.enqueue(20)

g.enqueue(30)

print(g.display()) # [10, 20, 30]
print(g.dequeue()) # 10

No. 9 /28

Data Structure and Application (1333203) - Winter 2023 Solution by Milav Dabgar
print(q.display()) # [20, 30]

Mnemonic: "Enqueue at End, Dequeue from Start"

Question 3(a) [3 marks]

Give Difference between Singly linked list and Circular linked list.

Answer:
Feature Singly Linked List Circular Linked List
Last Node Points to NULL Points back to the first node
Traversal Has a definite end Can be traversed continuously
Memory Each node needs one pointer Each node needs one pointer
Diagram:
Singly: [1] - [2] - [3] - NULL

Circular: [1] - [2] - [3] - ¢

Mnemonic: "Singly Stops, Circular Cycles"

Question 3(b) [4 marks]

Explain concept of Doubly linked list.
Answer:

Diagram:

NULL « [Prev|l|Next] « [Prev|2|Next] — [Prev|3|Next] - NULL

Feature Description

Node Structure Each node contains data and two pointers (previous and next)

Navigation Can traverse in both forward and backward directions

Operations Insertion and deletion can be performed from both ends

Memory Usage Requires more memory than singly linked list due to extra pointer
Code:

No. 10 / 28

Data Structure and Application (1333203) - Winter 2023 Solution by Milav Dabgar

class Node:
def init (self, data):
self.data = data

self.prev None

None

self.next

Mnemonic: "Double Pointers, Double Directions"

Question 3(c) [7 marks]

Write an algorithm for following operation on singly linked list:
1. To insert a node at the beginning of the list.
2. To insert the node at the end of the list.

Answer:

Insert at Beginning:

Set new node's next to
Start Create new node —> Set new node's data head Set head to new node End

Insert at End:

Yes:

Set head to new node
Set last node's next to new
No Traverse to last node
node

Set new node's next to
‘ Start H Create new node H Set new node's data }—» NULL

Code:

def insert at beginning(head, data):
new_node = Node(data)
new_node.next = head

return new_node # New head

def insert_at_end(head, data):
new_node = Node(data)

new_node.next = None

If linked list is empty
if head is None:

return new_node

Traverse to the last node
temp = head
while temp.next:

temp = temp.next

Link the last node to new node

temp.next = new node

No. 11/ 28

Data Structure and Application (1333203) - Winter 2023 Solution by Milav Dabgar
return head

Mnemonic: "Begin: New Leads Old, End: Old Leads New"

Question 3(a) OR [3 marks]

List different operations performed on singly linked list.

Answer:

Operations on Singly Linked List

1. Insertion (at beginning, middle, end)
2. Deletion (from beginning, middle, end)
3. Traversal (visiting each node)

4. Searching (finding a specific node)

5. Updating (modifying node data)

Diagram:
Linked List
Insertion Deletion Traversal Searching Updating

Mnemonic: "Insert Delete Traverse Search Update"

Question 3(b) OR [4 marks]

Explain concept of Circular linked list.
Answer:

Diagram:

(11 - [2] - [3] -~ [4]

No. 12 /28

Data Structure and Application (1333203) - Winter 2023 Solution by Milav Dabgar

Feature Description
Structure Last node points to the first node instead of NULL
Advantage Allows continuous traversal through all nodes

Applications Round robin scheduling, circular buffer implementation

Insertion and deletion similar to singly linked list with special handling for the last

Operations
P node

Code:

class Node:
def init_(self, data):
self.data = data

self.next = None

Creating a circular linked list with 3 nodes
head = Node(1)
node2 = Node(2)
node3 = Node(3)

head.next = node2
node2.next = node3

node3.next = head # Makes it circular

Mnemonic: "Last Links to First"

Question 3(c) OR [7 marks]

List application of linked list. Write an algorithm to count the number of nodes in singly linked list.

Answer:

Applications of Linked List

1. Implementation of stacks and queues
2. Dynamic memory allocation

3. Undo functionality in applications

4. Hash tables (chaining)

5. Adjacency lists for graphs

Algorithm to Count Nodes:

No. 13 /28

Data Structure and Application (1333203) - Winter 2023 Solution by Milav Dabgar

Start

Initialize count = 0

Initialize temp = head

Code:

def count_nodes(head):

coun

temp

whil

retu

Exampl

t =0
= head
e temp:

count += 1

temp = temp.next

rn count

e usage

Assuming head points to the first node of a linked list

total _nodes = count_nodes (head)

print(£f"

Total nodes:

{total nodes}")

Mnemonic: "Count While Moving"

Question 4(a) [3 marks]

Compare Linear search with Binary search.

Answer:

Feature

Data Arrangement

Time Complexity

Impleme

Best For

Diagram:

ntation

Linear Search

Works on both sorted and unsorted data
O(n)

Simpler

Small datasets or unsorted data

No. 14 / 28

Yes—»

increment count \

No—>

temp =

Return count

Binary Search

Works only on sorted data
O(log n)

More complex

Large sorted datasets

Data Structure and Application (1333203) - Winter 2023 Solution by Milav Dabgar

Linear: [1] [2] [3] [4] [5] [6] [7] [8]

{ { l { 1 { { !

Sequential checking

Binary: [1] [2] [3] [4] [5] [6] [7] [8]

&
Check middle
/ \
/ \

Lower half Upper half

Mnemonic: "Linear Looks at All, Binary Breaks in Half"

Question 4(b) [4 marks]

Write an algorithm for selection sort method.

Answer:

Diagram:

Initial: [5,
Pass 1: [1,

2]

~
~
~

~
~
~

N NN W W
~

w w 0 0
~

u o v
~

2] (Find min =

swap with 5)

~

swap with 3)

~

swap with 8)

U W N
~

~

already in place)

Pass 2 [1, 3] (Find min =
Pass 3: [1, 2, 3, 5, 8] (Find min =
Pass 4 (1, 2, 3, 5, 8] (Find min =
Algorithm:
Start > Fori=0ton-1 —>

Find minimum element in
unsorted portion

Swap minimum with first
element of unsorted portion

End

Code Outline:

def selection sort(arr):

n = len(arr)

for i in range(n):

min_idx = i

Find the minimum element in

for j in range(i+l, n):
if arr[j] < arr[min_idx]:

min_idx = j

unsorted array

Swap the found minimum element with the first element

arr[i], arr[min_idx] = arr[min_idx], arr[i]

Mnemonic: "Find Minimum, Swap Position"

No. 15/ 28

Data Structure and Application (1333203) - Winter 2023 Solution by Milav Dabgar

Question 4(c) [7 marks]

Develop a python code to sort following list in ascending order using Bubble sort method.
list1=[5,4,3,2,1,0]

Answer:

Diagram:

Initial: [5, 4, 3, 2, 1, 0]

Pass 1: (4, 3, 2, 1, 0, 5]

Pass 2 [3, 2, 1, 0, 4, 5]

Pass 3 [2, 1, 0, 3, 4, 5]

Pass 4: [, o, 2, 3, 4, 5]

Pass 5 (o, 1, 2, 3, 4, 5]
Code:

def bubble sort(arr):

n = len(arr)

Traverse through all array elements
for i in range(n):
Last i elements are already in place
for j in range(0, n-i-1):
Swap if current element is greater than next element
if arr[j] > arr[j+1]:

arr[j], arr[j+1] = arr[j+1], arr[]]
return arr

Input list
listl = [5, 4, 3, 2, 1, 0]

Sorting the list
sorted list = bubble sort(listl)

Displaying the result

print("Sorted list:", sorted list)
Output: Sorted list: [0, 1, 2, 3, 4, 5]

Mnemonic: "Bubble Biggest Upward"

Question 4(a) OR [3 marks]

Define sorting. List different sorting methods.

Answer:

No. 16 / 28

Data Structure and Application (1333203) - Winter 2023 Solution by Milav Dabgar

Sorting

Definition
Methods

1. Bubble Sort
2. Selection Sort
3. Insertion Sort

Sorting is the process of arranging data in a specified order (ascending or
g p ging P (& 4, Merge Sort

descending)

5. Quick Sort
6. Heap Sort
7. Radix Sort
Diagram:
Sorting Algorithms
Comparison- Non-
Bubble Sort Selection Sort Insertion Merge Quick Sort Counting Sort Radix Sort Bucket Sort

Mnemonic: "Better Sort Improves Many Query Results"

Question 4(b) OR [4 marks]

Write an algorithm for Insertion sort method.
Answer:

Diagram:

Initial: [5, 2, 4, 6, 1, 3]
Pass 1: [2, 5, 4, 6, 1, 3] (Insert 2 before 5)
Pass 2 [2, 4, 5, 6, 1, 3] (Insert 4 before 5)
Pass 3: [2, 4, 5, 6, 1, 3] (6 is already in place)
Pass 4 [1, 2, 4, 5, 6, 3] (Insert 1 at beginning)
Pass 5 [1, 2, 3, 4, 5, 6] (Insert 3 after 2)
Algorithm:
Yes—» Move element e
Decrement
Start | —»| Fori=1ton-1 —> Setkey = arr[i] —> Setj=i- j>=0and arr[j] > key?
Place key at correct
No—» . End
position

Code Outline:

No. 17 /28

Data Structure and Application (1333203) - Winter 2023 Solution by Milav Dabgar

def insertion sort(arr):
for i in range(l, len(arr)):
key = arr[i]

j=1i-1

Move elements that are greater than key
to one position ahead of their current position
while j >= 0 and arr[]j] > key:

arr[j + 1] = arr[j]

j =1

arr[j + 1] = key

Mnemonic: "Take Card, Insert In Order"

Question 4(c) OR [7 marks]

Develop a python code to sort following list in ascending order using selection sort method.
list1=[6,3,25,8,-1,55,0]

Answer:

Diagram:

Initial: [6, 3, 25, 8, -1, 55, 0]

’
Pass 1: [-1, 3, 25, 8, 6, 55, 0] (Find min = -1, swap with 6)
Pass 2 [-1, 0, 25, 8, 6, 55, 3] (Find min = 0, swap with 3)

Pass 3 [-1, 0, 3, 8, 6, 55, 25] (Find min = 3, swap with 25)

Pass 4: [-1, 0O, 3, 6, 8, 55, 25] (Find min = 6, swap with 8)

Pass 5 [-1, o, 3, 6, 8, 55, 25] (Find min = 8, already in place)

Pass 6 [-1, 0, 3, 6, 8, 25, 55] (Find min = 25, swap with 55)
Code:

def selection_sort(arr):

n = len(arr)

for i in range(n):
Find the minimum element in remaining unsorted array
min_idx = i
for j in range(i+l, n):
if arr[j] < arr[min_idx]:

min idx = j

Swap the found minimum element with the first element

arr[i], arr[min_idx] = arr[min_idx], arr[i]

return arr

Input list

No. 18 / 28

Data Structure and Application (1333203) - Winter 2023 Solution by Milav Dabgar

listl = [6, 3, 25, 8, -1, 55, 0]

Sorting the list
sorted _list = selection_sort(listl)

Displaying the result

print("Sorted list:", sorted list)
Output: Sorted list: [-1, O, 3, 6, 8, 25, 55]

Mnemonic: "Select Smallest, Shift to Start"

Question 5(a) [3 marks]

Define following terms regarding Tree data structure:

1. Forest
2. Root node
3. Leaf node
Answer:
Term Definition
Forest Collection of disjoint trees (multiple trees without connections between them)
Root Node Topmost node of a tree with no parent, from which all other nodes are descended
Leaf Node Node with no children (terminal node at the bottom of the tree)
Diagram:
Forest: Treel Tree?2 Tree3
/ N\ / \ |
/ \ / N\ |
Root: [R]
/ \
/ \

Leaf: [A] - [B] - [L] - [L]
No children

Mnemonic: "Forest has Many Roots, Roots Lead All, Leaves End All"

Question 5(b) [4 marks]

Draw Binary search tree for 78,58,82,15,66,80,99 and write In-order traversal for the tree.
Answer:

Binary Search Tree:

No. 19/ 28

Data Structure and Application (1333203) - Winter 2023 Solution by Milav Dabgar

In-order Traversal:

Step

1

2

9

1

0

Visit Order

Visit left subtree of 78

Visit left subtree of 58

Visit 15

Visit 58

Visit 66

Visit 78

Visit left subtree of 82

Visit 80

Visit 82

Visit 99

In-order Traversal Result: 15, 58, 66, 78, 80, 82, 99

Mnemonic: "Left, Root, Right"

Question 5(c) [7 marks]

Write an algorithm for following operation:
1. Insertion of Node in Binary Tree
2. Deletion of Node in Binary Tree

Answer:

Insertion Algorithm:

Start

Create new node with given
data

Set root to new node

Deletion Algorithm:

Find position using level
order traversal

Insert node at first vacant
position

End

W

No. 20/ 28

Data Structure and Application (1333203) - Winter 2023 Solution by Milav Dabgar

Yes Return

Find deepest rightmost Replace node fo delete with Delete deepest rightmost
No Find node to delete :ode 9 deepest rightmost node n?)de 9

Code:

class Node:
def init (self, data):
self.data data
self.left
self.right = None

None

Insertion in Binary Tree
def insert(root, data):
if root is None:

return Node(data)

Level order traversal to find vacant position
queue = []
queue.append (root)

while queue:

temp = queue.pop(0)

if temp.left is None:
temp.left = Node(data)
break

else:

queue.append (temp.left)

if temp.right is None:
temp.right = Node(data)
break

else:
queue.append (temp.right)

return root

Deletion in Binary Tree
def delete node(root, key):
if root is None:

return None

if root.left is None and root.right is None:
if root.data == key:
return None
else:

return root

No. 21/ 28

Data Structure and Application (1333203) - Winter 2023 Solution by Milav Dabgar

Find the node to delete
key node = None

Find the deepest node
last = None

parent = None

Level order traversal
queue = []

queue.append(root)

while queue:

temp = queue.pop(0)

if temp.data == key:
key node = temp

if temp.left:
parent = temp
queue.append (temp.left)
last = temp.left

if temp.right:
parent = temp
queue.append (temp.right)
last = temp.right

if key node:
Replace with deepest node's data
key node.data = last.data

Delete the deepest node
if parent.right == last:
parent.right = None
else:
parent.left = None

return root

Mnemonic: "Insert at Empty, Delete by Swap and Remove"

Question 5(a) OR [3 marks]

Define following terms regarding Tree data structure:
1. In-degree

2. Out-degree

3. Depth

Answer:

No. 22 / 28

Term
In-degree
Out-

degree

Depth

Diagram:

A
/
/
B
/ N\
D E

Node

Data Structure and Application (1333203) - Winter 2023 Solution by Milav Dabgar

Definition

Number of edges coming into a node (always 1 for each node except root node in a

tree)

Number of edges going out from a node (number of children)

Length of the path from root to the node (number of edges in path)

(Root, Depth 0)
\
\
C (Depth 1)
\
F (Depth 2)

In-degree
0

1

Out-degree
2

2

Mnemonic: "In Counts Parents, Out Counts Children, Depth Counts Edges from Root"

Question 5(b) OR [4 marks]

Write Preorder and postorder traversal of following Binary tree.

Binary Tree:

Answer:

No. 23 /28

Data Structure and Application (1333203) - Winter 2023 Solution by Milav Dabgar

Traversal Order Result
Preorder Root, Left, Right 100, 20, 10, 30, 200, 150, 300
Postorder Left, Right, Root 10, 30, 20, 150, 300, 200, 100

Preorder Visualization:

100

Visit

Visit left subtree

Visit

Visit

Visit

Visit right

Visit

No. 24 / 28

Data Structure and Application (1333203) - Winter 2023 Solution by Milav Dabgar

l

Visit

Visit

Postorder Visualization:

100

l

Visit left subtree

l

Visit

Visit

Visit

l

Visit right

l

‘ Visit ‘

No. 25/ 28

Data Structure and Application (1333203) - Winter 2023 Solution by Milav Dabgar

Visit

Visit

Visit

Mnemonic:

e Preorder: "Root First, Then Children"

e Postorder: "Children First, Then Root"

Question 5(c) OR [7 marks]

Develop a program to implement construction of Binary Search Tree.

Answer:
Diagram:
e > 30
Root — Inset —» 50 | — Insert —» 50 I
Insert —» 50
\, 70 — Insert —» 50
Code:

class Node:
def init (self, key):
self.key = key
self.left = None
self.right = None

def insert(root, key):

No. 26 / 28

Data Structure and Application (1333203) - Winter 2023 Solution by Milav Dabgar

If the tree is empty, return a new node
if root is None:

return Node (key)

Otherwise, recur down the tree
if key < root.key:

root.left = insert(root.left, key)
else:

root.right = insert(root.right, key)

Return the unchanged node pointer

return root

def inorder (root):
if root:
inorder (root.left)
print(root.key, end=" ")

inorder (root.right)

def preorder(root):
if root:
print(root.key, end=" ")
preorder (root.left)

preorder (root.right)

def postorder(root):
if root:
postorder (root.left)
postorder (root.right)

print(root.key, end=" ")

Driver program to test the above functions

def main():
Create BST with these elements: 50, 30, 20, 40, 70, 60, 80
root = None
elements = [50, 30, 20, 40, 70, 60, 80]

for element in elements:

root = insert(root, element)

Print traversals

print("Inorder traversal: ", end="")
inorder (root)

print("\nPreorder traversal: ", end="")
preorder (root)

print("\nPostorder traversal: ", end="")

postorder (root)

Run the program

main()

Example Output:

No. 27 [28

Data Structure and Application (1333203) - Winter 2023 Solution by Milav Dabgar

Inorder traversal: 20 30 40 50 60 70 80
Preorder traversal: 50 30 20 40 70 60 80
Postorder traversal: 20 40 30 60 80 70 50

Mnemonic: "Insert Smaller Left, Larger Right"

No. 28 / 28

	Question 1(a) [3 marks]
	Question 1(b) [4 marks]
	Question 1(c) [7 marks]
	Question 1(c) OR [7 marks]
	Question 2(a) [3 marks]
	Question 2(b) [4 marks]
	Question 2(c) [7 marks]
	Question 2(a) OR [3 marks]
	Question 2(b) OR [4 marks]
	Question 2(c) OR [7 marks]
	Question 3(a) [3 marks]
	Question 3(b) [4 marks]
	Question 3(c) [7 marks]
	Question 3(a) OR [3 marks]
	Question 3(b) OR [4 marks]
	Question 3(c) OR [7 marks]
	Question 4(a) [3 marks]
	Question 4(b) [4 marks]
	Question 4(c) [7 marks]
	Question 4(a) OR [3 marks]
	Question 4(b) OR [4 marks]
	Question 4(c) OR [7 marks]
	Question 5(a) [3 marks]
	Question 5(b) [4 marks]
	Question 5(c) [7 marks]
	Question 5(a) OR [3 marks]
	Question 5(b) OR [4 marks]
	Question 5(c) OR [7 marks]

