
1.1 Intro 4

1.2 Types 40

1.3 Memory-Management 57

1.4 Abstraction-modularity 84

1.5 OO-concepts 103

1.6 Classes 134

1.7 Week 1 162

2.1-Week2-Java-Intro 169

2.2-Week2-Java-Basic-Types 191

2.3-Week2-Java-Control-Flow 224

2.4-Week2-Java-Classes 248

2.5-Week2-Java-Input-Output 266

2.6 Week 2 274

3.1-Week3-OO-design 286

3.2-Week3-Java-Subclasses 311

3.3-Week3-Java-Polymorphism 332

3.4-Week3-Java-Class-Hierarchy 358

3.5-Week3-Subtyping-vs-Inheritance 381

3.6-Week3-Java-Modifiers 393

3.7 Week 3 423

4.1-Week4-Java-Abstract-Classes 434

4.2-Week4-Java-Interfaces 457

4.3-Week4-Java-Private-Classes 470

4.4-Week4-Java-Interaction-with-State 480

4.5-Week4-Java-Callbacks 497

4.6-Week4-Java-Iterators 513

4.7 Week 4 534

5.1-Week5-Polymorphism-Revisited 543

5.2-Week5-Java-Generics 564

5.3-Java-Generics-Subtyping 581

5.4-Java-Reflection 605

5.5-Java-Generics-Erasure 650

6.1-Week6-Indirection 673

6.2-Week6-Java-Collections 702

6.3-Week6-Java-Concrete-Collections 732

6.4-Week6-Java-Maps 777

7.1-Week7-Errors-and-Exceptions 800

7.2-Week7-Java-Exceptions 814

7.3-Week7-Java-Packages 859

7.4-Week7-Java-Assertions 875

7.5-Week7-Java-Logging 892

8.1-Week8-Cloning 907

8.2-Week8-Type-Inference 937

8.3-Week8-Higher-Order-Functions 955

8.4-Week8-Streams 982

9.1-Week9-Optional-Type 1013

9.2-Week9-Collecting-Results 1039

9.3-Week9-IO-Streams 1065

9.4-Week9-Serializability 1097

10.1-Week10-Concurrency 1121

10.2-Week10-Race-Conditions 1139

10.3-Week10-Mutual-Exclusion 1155

10.4-Week10-Test-and-Set 1174

10.5-Week10-Monitors 1193

11.1-Week11-Java-Monitors 1223

11.2-Week11-Java-Threads 1249

11.3-Week11-Concurrent-Programming-Example 1267

11.4-Week11-Threadsafe-Collections 1306

12.1-Week12-Event-Driven-Programming 1331

12.2-Week12-Swing 1362

12.3-Week12-More-Swing 1396

Introduction

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 1

https://www.cmi.ac.in/~madhavan

Programming languages

A language is a medium for communication

Programming languages communicate computational instructions

Originally, directly connected to architecture

Memory locations store values, registers allow arithmetic

Load a value from memory location M into register R

Add the contents of register R1 and R2 and store the result back in R1

Write the value in R1 to memory location M ′

Tedious and error-prone

Madhavan Mukund Introduction Programming Concepts using Java 2 / 9

Programming languages

A language is a medium for communication

Programming languages communicate computational instructions

Originally, directly connected to architecture

Memory locations store values, registers allow arithmetic

Load a value from memory location M into register R

Add the contents of register R1 and R2 and store the result back in R1

Write the value in R1 to memory location M ′

Tedious and error-prone

Madhavan Mukund Introduction Programming Concepts using Java 2 / 9

Programming languages

A language is a medium for communication

Programming languages communicate computational instructions

Originally, directly connected to architecture

Memory locations store values, registers allow arithmetic

Load a value from memory location M into register R

Add the contents of register R1 and R2 and store the result back in R1

Write the value in R1 to memory location M ′

Tedious and error-prone

Madhavan Mukund Introduction Programming Concepts using Java 2 / 9

Programming languages

A language is a medium for communication

Programming languages communicate computational instructions

Originally, directly connected to architecture

Memory locations store values, registers allow arithmetic

Load a value from memory location M into register R

Add the contents of register R1 and R2 and store the result back in R1

Write the value in R1 to memory location M ′

Tedious and error-prone

Madhavan Mukund Introduction Programming Concepts using Java 2 / 9

Abstraction

Abstractions used in computational thinking

Assigning values to named variables

Conditional execution

Iteration

Functions / procedures, recursion

Aggregate data structures — arrays, lists, dictionaries

Express such ideas in the programming language

Translate “high level” programming language to “low level” machine language

Compilers, interpreters

Trade off expressiveness for efficiency

Less control over how code is mapped to the architecture

But fewer errors due to mismatch between intent and implementation

Madhavan Mukund Introduction Programming Concepts using Java 3 / 9

Abstraction

Abstractions used in computational thinking

Assigning values to named variables

Conditional execution

Iteration

Functions / procedures, recursion

Aggregate data structures — arrays, lists, dictionaries

Express such ideas in the programming language

Translate “high level” programming language to “low level” machine language

Compilers, interpreters

Trade off expressiveness for efficiency

Less control over how code is mapped to the architecture

But fewer errors due to mismatch between intent and implementation

Madhavan Mukund Introduction Programming Concepts using Java 3 / 9

Abstraction

Abstractions used in computational thinking

Assigning values to named variables

Conditional execution

Iteration

Functions / procedures, recursion

Aggregate data structures — arrays, lists, dictionaries

Express such ideas in the programming language

Translate “high level” programming language to “low level” machine language

Compilers, interpreters

Trade off expressiveness for efficiency

Less control over how code is mapped to the architecture

But fewer errors due to mismatch between intent and implementation

Madhavan Mukund Introduction Programming Concepts using Java 3 / 9

Styles of programming

Imperative vs declarative

Imperative

How to compute

Step by step instructions on what is to be done

Declarative

What the computation should produce

Often exploit inductive structure, express in terms of smaller computations

Typically avoid using intermediate variables

Combination of small transformations — functional programming

Madhavan Mukund Introduction Programming Concepts using Java 4 / 9

Styles of programming

Imperative vs declarative

Imperative

How to compute

Step by step instructions on what is to be done

Declarative

What the computation should produce

Often exploit inductive structure, express in terms of smaller computations

Typically avoid using intermediate variables

Combination of small transformations — functional programming

Madhavan Mukund Introduction Programming Concepts using Java 4 / 9

Styles of programming

Imperative vs declarative

Imperative

How to compute

Step by step instructions on what is to be done

Declarative

What the computation should produce

Often exploit inductive structure, express in terms of smaller computations

Typically avoid using intermediate variables

Combination of small transformations — functional programming

Madhavan Mukund Introduction Programming Concepts using Java 4 / 9

Imperative vs Declarative Programming, by example

Add values in a list

Imperative (in Python)

Intermediate values mysum, x

Explicit iteration to examine each
element of the list

Declarative (in Python)

Describe the desired output by
induction

Base case: Empty list has sum 0

Inductive step: Add first element to
the sum of the rest of the list

No intermediate variables

Madhavan Mukund Introduction Programming Concepts using Java 5 / 9

Imperative vs Declarative Programming, by example

Add values in a list

Imperative (in Python)

def sumlist(l):

mysum = 0

for x in l:

mysum = mysum + x

return(mysum)

Intermediate values mysum, x

Explicit iteration to examine each
element of the list

Declarative (in Python)

Describe the desired output by
induction

Base case: Empty list has sum 0

Inductive step: Add first element to
the sum of the rest of the list

No intermediate variables

Madhavan Mukund Introduction Programming Concepts using Java 5 / 9

Imperative vs Declarative Programming, by example

Add values in a list

Imperative (in Python)

def sumlist(l):

mysum = 0

for x in l:

mysum = mysum + x

return(mysum)

Intermediate values mysum, x

Explicit iteration to examine each
element of the list

Declarative (in Python)

def sumlist(l):

if l == []:

return(0)

else:

return(l[0] + sumlist(l[1:]))

Describe the desired output by
induction

Base case: Empty list has sum 0

Inductive step: Add first element to
the sum of the rest of the list

No intermediate variables

Madhavan Mukund Introduction Programming Concepts using Java 5 / 9

Imperative vs Declarative Programming, by example

Add values in a list

Imperative (in Python)

def sumlist(l):

mysum = 0

for x in l:

mysum = mysum + x

return(mysum)

Intermediate values mysum, x

Explicit iteration to examine each
element of the list

Declarative (in Python)

def sumlist(l):

if l == []:

return(0)

else:

return(l[0] + sumlist(l[1:]))

Describe the desired output by
induction

Base case: Empty list has sum 0

Inductive step: Add first element to
the sum of the rest of the list

No intermediate variables

Madhavan Mukund Introduction Programming Concepts using Java 5 / 9

Imperative vs Declarative Programming, by example

Add values in a list

Imperative (in Python)

def sumlist(l):

mysum = 0

for x in l:

mysum = mysum + x

return(mysum)

Intermediate values mysum, x

Explicit iteration to examine each
element of the list

Declarative (in Python)

def sumlist(l):

if l == []:

return(0)

else:

return(l[0] + sumlist(l[1:]))

Describe the desired output by
induction

Base case: Empty list has sum 0

Inductive step: Add first element to
the sum of the rest of the list

No intermediate variables

Madhavan Mukund Introduction Programming Concepts using Java 5 / 9

Imperative vs Declarative Programming, by example

Add values in a list

Imperative (in Python)

def sumlist(l):

mysum = 0

for x in l:

mysum = mysum + x

return(mysum)

Intermediate values mysum, x

Explicit iteration to examine each
element of the list

Declarative (in Python)

def sumlist(l):

if l == []:

return(0)

else:

return(l[0] + sumlist(l[1:]))

Describe the desired output by
induction

Base case: Empty list has sum 0

Inductive step: Add first element to
the sum of the rest of the list

No intermediate variables

Madhavan Mukund Introduction Programming Concepts using Java 5 / 9

Imperative vs Declarative Programming, by example

Add values in a list

Imperative (in Python)

def sumlist(l):

mysum = 0

for x in l:

mysum = mysum + x

return(mysum)

Intermediate values mysum, x

Explicit iteration to examine each
element of the list

Declarative (in Python)

def sumlist(l):

if l == []:

return(0)

else:

return(l[0] + sumlist(l[1:]))

Describe the desired output by
induction

Base case: Empty list has sum 0

Inductive step: Add first element to
the sum of the rest of the list

No intermediate variables

Madhavan Mukund Introduction Programming Concepts using Java 5 / 9

Imperative vs Declarative Programming, by example, . . .

Sum of squares of even numbers upto n

Imperative (in Python)

Can code functionally in an imperative
language!

Helps identify natural units of
(reusable) code

Declarative (in Python)

Madhavan Mukund Introduction Programming Concepts using Java 6 / 9

Imperative vs Declarative Programming, by example, . . .

Sum of squares of even numbers upto n

Imperative (in Python)

def sumsquareeven(n):

mysum = 0

for x in range(n+1):

if x%2 == 0:

mysum = mysum + x*x

return(mysum)

Can code functionally in an imperative
language!

Helps identify natural units of
(reusable) code

Declarative (in Python)

Madhavan Mukund Introduction Programming Concepts using Java 6 / 9

Imperative vs Declarative Programming, by example, . . .

Sum of squares of even numbers upto n

Imperative (in Python)

def sumsquareeven(n):

mysum = 0

for x in range(n+1):

if x%2 == 0:

mysum = mysum + x*x

return(mysum)

Can code functionally in an imperative
language!

Helps identify natural units of
(reusable) code

Declarative (in Python)

def even(x):

return(x%2 == 0)

def square(x):

return(x*x)

def sumsquareeven(n):

return(

sum(map(square,

filter(even,

range(n+1)))))

Madhavan Mukund Introduction Programming Concepts using Java 6 / 9

Imperative vs Declarative Programming, by example, . . .

Sum of squares of even numbers upto n

Imperative (in Python)

def sumsquareeven(n):

mysum = 0

for x in range(n+1):

if x%2 == 0:

mysum = mysum + x*x

return(mysum)

Can code functionally in an imperative
language!

Helps identify natural units of
(reusable) code

Declarative (in Python)

def even(x):

return(x%2 == 0)

def square(x):

return(x*x)

def sumsquareeven(n):

return(

sum(map(square,

filter(even,

range(n+1)))))

Madhavan Mukund Introduction Programming Concepts using Java 6 / 9

Imperative vs Declarative Programming, by example, . . .

Sum of squares of even numbers upto n

Imperative (in Python)

def sumsquareeven(n):

mysum = 0

for x in range(n+1):

if x%2 == 0:

mysum = mysum + x*x

return(mysum)

Can code functionally in an imperative
language!

Helps identify natural units of
(reusable) code

Declarative (in Python)

def even(x):

return(x%2 == 0)

def square(x):

return(x*x)

def sumsquareeven(n):

return(

sum(map(square,

filter(even,

range(n+1)))))

Madhavan Mukund Introduction Programming Concepts using Java 6 / 9

Names, types, values

Internally, everything is stored a sequence of bits

No difference between data and instructions, let alone numbers, characters, booleans

For a compiler or interpreter, our code is its data

We impose a notion of type to create some discipline

Intepret bit strings as “high level” concepts

Nature and range of allowed values

Operations that are permitted on these values

Strict type-checking helps catch bugs early

Incorrect expression evaluation — like dimension mismatch in science

Incorrect assignment — expression value does not match variable type

Madhavan Mukund Introduction Programming Concepts using Java 7 / 9

Names, types, values

Internally, everything is stored a sequence of bits

No difference between data and instructions, let alone numbers, characters, booleans

For a compiler or interpreter, our code is its data

We impose a notion of type to create some discipline

Intepret bit strings as “high level” concepts

Nature and range of allowed values

Operations that are permitted on these values

Strict type-checking helps catch bugs early

Incorrect expression evaluation — like dimension mismatch in science

Incorrect assignment — expression value does not match variable type

Madhavan Mukund Introduction Programming Concepts using Java 7 / 9

Names, types, values

Internally, everything is stored a sequence of bits

No difference between data and instructions, let alone numbers, characters, booleans

For a compiler or interpreter, our code is its data

We impose a notion of type to create some discipline

Intepret bit strings as “high level” concepts

Nature and range of allowed values

Operations that are permitted on these values

Strict type-checking helps catch bugs early

Incorrect expression evaluation — like dimension mismatch in science

Incorrect assignment — expression value does not match variable type

Madhavan Mukund Introduction Programming Concepts using Java 7 / 9

Names, types, values

Internally, everything is stored a sequence of bits

No difference between data and instructions, let alone numbers, characters, booleans

For a compiler or interpreter, our code is its data

We impose a notion of type to create some discipline

Intepret bit strings as “high level” concepts

Nature and range of allowed values

Operations that are permitted on these values

Strict type-checking helps catch bugs early

Incorrect expression evaluation — like dimension mismatch in science

Incorrect assignment — expression value does not match variable type

Madhavan Mukund Introduction Programming Concepts using Java 7 / 9

Abstract datatypes, object-oriented programming

Collections are important

Arrays, lists, dictionaries

Abstract data types

Structured collection with fixed interface

Stack is a sequence, but only allows push and pop

Separate implementation from interface

Priority queue allows insert and delete-max

Can implement a priority queue using sorted or unsorted lists, or using a heap

Object-oriented programming

Focus on data types

Functions are invoked through the object rather than passing data to the functions

In Python, mylist.sort() vs sorted(mylist)

Madhavan Mukund Introduction Programming Concepts using Java 8 / 9

Abstract datatypes, object-oriented programming

Collections are important

Arrays, lists, dictionaries

Abstract data types

Structured collection with fixed interface

Stack is a sequence, but only allows push and pop

Separate implementation from interface

Priority queue allows insert and delete-max

Can implement a priority queue using sorted or unsorted lists, or using a heap

Object-oriented programming

Focus on data types

Functions are invoked through the object rather than passing data to the functions

In Python, mylist.sort() vs sorted(mylist)

Madhavan Mukund Introduction Programming Concepts using Java 8 / 9

Abstract datatypes, object-oriented programming

Collections are important

Arrays, lists, dictionaries

Abstract data types

Structured collection with fixed interface

Stack is a sequence, but only allows push and pop

Separate implementation from interface

Priority queue allows insert and delete-max

Can implement a priority queue using sorted or unsorted lists, or using a heap

Object-oriented programming

Focus on data types

Functions are invoked through the object rather than passing data to the functions

In Python, mylist.sort() vs sorted(mylist)

Madhavan Mukund Introduction Programming Concepts using Java 8 / 9

Abstract datatypes, object-oriented programming

Collections are important

Arrays, lists, dictionaries

Abstract data types

Structured collection with fixed interface

Stack is a sequence, but only allows push and pop

Separate implementation from interface

Priority queue allows insert and delete-max

Can implement a priority queue using sorted or unsorted lists, or using a heap

Object-oriented programming

Focus on data types

Functions are invoked through the object rather than passing data to the functions

In Python, mylist.sort() vs sorted(mylist)

Madhavan Mukund Introduction Programming Concepts using Java 8 / 9

What this course is about

Explore concepts in programming languages

Object-oriented programming

Exception handling, concurrency, event-driven programming, . . .

Use Java as the illustrative language

Imperative, object-oriented

Incorporates almost all features of interest

Discuss design decisions where relevant

Every language makes some compromises

Understand and appreciate why there is a zoo of programming languages out there

. . . and why new ones are still being created

Madhavan Mukund Introduction Programming Concepts using Java 9 / 9

What this course is about

Explore concepts in programming languages

Object-oriented programming

Exception handling, concurrency, event-driven programming, . . .

Use Java as the illustrative language

Imperative, object-oriented

Incorporates almost all features of interest

Discuss design decisions where relevant

Every language makes some compromises

Understand and appreciate why there is a zoo of programming languages out there

. . . and why new ones are still being created

Madhavan Mukund Introduction Programming Concepts using Java 9 / 9

What this course is about

Explore concepts in programming languages

Object-oriented programming

Exception handling, concurrency, event-driven programming, . . .

Use Java as the illustrative language

Imperative, object-oriented

Incorporates almost all features of interest

Discuss design decisions where relevant

Every language makes some compromises

Understand and appreciate why there is a zoo of programming languages out there

. . . and why new ones are still being created

Madhavan Mukund Introduction Programming Concepts using Java 9 / 9

What this course is about

Explore concepts in programming languages

Object-oriented programming

Exception handling, concurrency, event-driven programming, . . .

Use Java as the illustrative language

Imperative, object-oriented

Incorporates almost all features of interest

Discuss design decisions where relevant

Every language makes some compromises

Understand and appreciate why there is a zoo of programming languages out there

. . . and why new ones are still being created

Madhavan Mukund Introduction Programming Concepts using Java 9 / 9

What this course is about

Explore concepts in programming languages

Object-oriented programming

Exception handling, concurrency, event-driven programming, . . .

Use Java as the illustrative language

Imperative, object-oriented

Incorporates almost all features of interest

Discuss design decisions where relevant

Every language makes some compromises

Understand and appreciate why there is a zoo of programming languages out there

. . . and why new ones are still being created

Madhavan Mukund Introduction Programming Concepts using Java 9 / 9

Types

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 1

https://www.cmi.ac.in/~madhavan

The role of types

Interpreting data stored in binary in a consistent manner

View sequence of bits as integers, floats, characters, . . .

Nature and range of allowed values

Operations that are permitted on these values

Naming concepts and structuring our computation

Especially at a higher level

Point vs (Float,Float)

Banking application: accounts of different types, customers . . .

Catching bugs early

Incorrect expression evaluation — like dimension mismatch in science

Incorrect assignment — expression value does not match variable type

Madhavan Mukund Types Programming Concepts using Java 2 / 7

The role of types

Interpreting data stored in binary in a consistent manner

View sequence of bits as integers, floats, characters, . . .

Nature and range of allowed values

Operations that are permitted on these values

Naming concepts and structuring our computation

Especially at a higher level

Point vs (Float,Float)

Banking application: accounts of different types, customers . . .

Catching bugs early

Incorrect expression evaluation — like dimension mismatch in science

Incorrect assignment — expression value does not match variable type

Madhavan Mukund Types Programming Concepts using Java 2 / 7

The role of types

Interpreting data stored in binary in a consistent manner

View sequence of bits as integers, floats, characters, . . .

Nature and range of allowed values

Operations that are permitted on these values

Naming concepts and structuring our computation

Especially at a higher level

Point vs (Float,Float)

Banking application: accounts of different types, customers . . .

Catching bugs early

Incorrect expression evaluation — like dimension mismatch in science

Incorrect assignment — expression value does not match variable type

Madhavan Mukund Types Programming Concepts using Java 2 / 7

Dynamic vs static typing

Every variable we use has a type

How is the type of a variable determined?

Python determines the type based on the current value

Dynamic typing — names derive type from current value

x = 10 — x is of type int

x = 7.5 — now x is of type float

An uninitialized name as no type

Static typing — associate a type in advance with a name

Need to declare names and their types in advance value

int x, float a, . . .

Cannot assign an incompatible value — x = 7.5 is no longer legal

Madhavan Mukund Types Programming Concepts using Java 3 / 7

Dynamic vs static typing

Every variable we use has a type

How is the type of a variable determined?

Python determines the type based on the current value

Dynamic typing — names derive type from current value

x = 10 — x is of type int

x = 7.5 — now x is of type float

An uninitialized name as no type

Static typing — associate a type in advance with a name

Need to declare names and their types in advance value

int x, float a, . . .

Cannot assign an incompatible value — x = 7.5 is no longer legal

Madhavan Mukund Types Programming Concepts using Java 3 / 7

Dynamic vs static typing

Every variable we use has a type

How is the type of a variable determined?

Python determines the type based on the current value

Dynamic typing — names derive type from current value

x = 10 — x is of type int

x = 7.5 — now x is of type float

An uninitialized name as no type

Static typing — associate a type in advance with a name

Need to declare names and their types in advance value

int x, float a, . . .

Cannot assign an incompatible value — x = 7.5 is no longer legal

Madhavan Mukund Types Programming Concepts using Java 3 / 7

Dynamic vs static typing

“Isn’t it convenient that we don’t have to declare variables in advance in Python?”

Yes, but . . .

Difficult to catch errors, such as typos

Empty user defined objects

Linked list is a sequence of objects of type Node

Convenient to represent empty linked list by None

Without declaring type of l, Python cannot associate a type after l = None

Madhavan Mukund Types Programming Concepts using Java 4 / 7

Dynamic vs static typing

“Isn’t it convenient that we don’t have to declare variables in advance in Python?”

Yes, but . . .

Difficult to catch errors, such as typos

def factors(n):

factorlist = []

for i in range(1,n+1):

if n%i == 0:

factorlst = factorlist + [i]

return(factorlist)

Empty user defined objects

Linked list is a sequence of objects of type Node

Convenient to represent empty linked list by None

Without declaring type of l, Python cannot associate a type after l = None

Madhavan Mukund Types Programming Concepts using Java 4 / 7

Dynamic vs static typing

“Isn’t it convenient that we don’t have to declare variables in advance in Python?”

Yes, but . . .

Difficult to catch errors, such as typos

def factors(n):

factorlist = []

for i in range(1,n+1):

if n%i == 0:

factorlst = factorlist + [i] # Typo!

return(factorlist)

Empty user defined objects

Linked list is a sequence of objects of type Node

Convenient to represent empty linked list by None

Without declaring type of l, Python cannot associate a type after l = None

Madhavan Mukund Types Programming Concepts using Java 4 / 7

Types for organizing concepts

Even simple type “synonyms” can help clarify code

2D point is a pair (float,float), 3D point is triple (float,float,float)

Create new type names point2d and point3d

These are synonyms for (float,float) and (float,float,float)

Makes intent more transparent when writing, reading and maintaining code

More elaborate types — abstract datatypes and object-oriented programming

Consider a banking application

Data and operations related to accounts, customers, deposits, withdrawals, transfers

Denote accounts and customers as separate types

Deposits, withdrawals, transfers can be applied to accounts, not customers

Updating personal details applies to customers, not accounts

Madhavan Mukund Types Programming Concepts using Java 5 / 7

Types for organizing concepts

Even simple type “synonyms” can help clarify code

2D point is a pair (float,float), 3D point is triple (float,float,float)

Create new type names point2d and point3d

These are synonyms for (float,float) and (float,float,float)

Makes intent more transparent when writing, reading and maintaining code

More elaborate types — abstract datatypes and object-oriented programming

Consider a banking application

Data and operations related to accounts, customers, deposits, withdrawals, transfers

Denote accounts and customers as separate types

Deposits, withdrawals, transfers can be applied to accounts, not customers

Updating personal details applies to customers, not accounts

Madhavan Mukund Types Programming Concepts using Java 5 / 7

Static analysis

Identify errors as early as possible — saves cost, effort

In general, compilers cannot check that a program will work correctly

Halting problem — Alan Turing

With variable delarations, compilers can detect type errors at compile-time — static
analysis

Dynamic typing would catch these errors only when the code runs

Executing code also slows down due to simultaneous monitoring for type correctness

Compilers can also perform optimizations based on static analysis

Reorder statements to optimize reads and writes

Store previously computed expressions to re-use later

Madhavan Mukund Types Programming Concepts using Java 6 / 7

Static analysis

Identify errors as early as possible — saves cost, effort

In general, compilers cannot check that a program will work correctly

Halting problem — Alan Turing

With variable delarations, compilers can detect type errors at compile-time — static
analysis

Dynamic typing would catch these errors only when the code runs

Executing code also slows down due to simultaneous monitoring for type correctness

Compilers can also perform optimizations based on static analysis

Reorder statements to optimize reads and writes

Store previously computed expressions to re-use later

Madhavan Mukund Types Programming Concepts using Java 6 / 7

Static analysis

Identify errors as early as possible — saves cost, effort

In general, compilers cannot check that a program will work correctly

Halting problem — Alan Turing

With variable delarations, compilers can detect type errors at compile-time — static
analysis

Dynamic typing would catch these errors only when the code runs

Executing code also slows down due to simultaneous monitoring for type correctness

Compilers can also perform optimizations based on static analysis

Reorder statements to optimize reads and writes

Store previously computed expressions to re-use later

Madhavan Mukund Types Programming Concepts using Java 6 / 7

Static analysis

Identify errors as early as possible — saves cost, effort

In general, compilers cannot check that a program will work correctly

Halting problem — Alan Turing

With variable delarations, compilers can detect type errors at compile-time — static
analysis

Dynamic typing would catch these errors only when the code runs

Executing code also slows down due to simultaneous monitoring for type correctness

Compilers can also perform optimizations based on static analysis

Reorder statements to optimize reads and writes

Store previously computed expressions to re-use later

Madhavan Mukund Types Programming Concepts using Java 6 / 7

Summary

Types have many uses

Making sense of arbitrary bit sequences in memory

Organizing concepts in our code in a meaningful way

Helping compilers catch bugs early, optimize compiled code

Some languages also support automatic type inference

Deduce the types of variable statically, based on the context in which they are used

x = 7 followed by y = x + 15 implies y must be int

If the inferred type is consistent across the program, all is well

Madhavan Mukund Types Programming Concepts using Java 7 / 7

Memory Management

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 1

https://www.cmi.ac.in/~madhavan

Keeping track of variables

Variables store intermediate
values during computation

Typically these are local to a
function

Can also refer to global
variables outside the function

Dynamically created data, like
nodes in a list

Scope of a variable

When the variable is available for use

In the following code, the x in f() is not in
scope within call to g()

Lifetime of a variable

How long the storage remains allocated

Above, lifetime of x in f() is till f() exits

“Hole in scope” — variable is alive but not in
scope

Madhavan Mukund Memory Management Programming Concepts using Java 2 / 7

Keeping track of variables

Variables store intermediate
values during computation

Typically these are local to a
function

Can also refer to global
variables outside the function

Dynamically created data, like
nodes in a list

Scope of a variable

When the variable is available for use

In the following code, the x in f() is not in
scope within call to g()

Lifetime of a variable

How long the storage remains allocated

Above, lifetime of x in f() is till f() exits

“Hole in scope” — variable is alive but not in
scope

Madhavan Mukund Memory Management Programming Concepts using Java 2 / 7

Keeping track of variables

Variables store intermediate
values during computation

Typically these are local to a
function

Can also refer to global
variables outside the function

Dynamically created data, like
nodes in a list

Scope of a variable

When the variable is available for use

In the following code, the x in f() is not in
scope within call to g()

def f(l): def g(m):

... ...

for x in l: for x in range(m):

y = y + g(x) ...

...

Lifetime of a variable

How long the storage remains allocated

Above, lifetime of x in f() is till f() exits

“Hole in scope” — variable is alive but not in
scope

Madhavan Mukund Memory Management Programming Concepts using Java 2 / 7

Keeping track of variables

Variables store intermediate
values during computation

Typically these are local to a
function

Can also refer to global
variables outside the function

Dynamically created data, like
nodes in a list

Scope of a variable

When the variable is available for use

In the following code, the x in f() is not in
scope within call to g()

def f(l): def g(m):

... ...

for x in l: for x in range(m):

y = y + g(x) ...

...

Lifetime of a variable

How long the storage remains allocated

Above, lifetime of x in f() is till f() exits

“Hole in scope” — variable is alive but not in
scope

Madhavan Mukund Memory Management Programming Concepts using Java 2 / 7

Memory stack

Each function needs storage for local variables

Create activation record when function is called

Activation records are stacked

Popped when function exits

Control link points to start of previous record

Return value link tells where to store result

Scope of a variable

Variable in activation record at top of stack

Access global variables by following control
links

Lifetime of a variable

Storage allocated is still on the stack

Memory

Control link

Return value link

Call factorial(3)

factorial(3) calls factorial(2)

Madhavan Mukund Memory Management Programming Concepts using Java 3 / 7

Memory stack

Each function needs storage for local variables

Create activation record when function is called

Activation records are stacked

Popped when function exits

Control link points to start of previous record

Return value link tells where to store result

Scope of a variable

Variable in activation record at top of stack

Access global variables by following control
links

Lifetime of a variable

Storage allocated is still on the stack

Memory

Storage for factorial(3)

n 3

factorial(n-1)

Control link

Return value link

Call factorial(3)

factorial(3) calls factorial(2)

Madhavan Mukund Memory Management Programming Concepts using Java 3 / 7

Memory stack

Each function needs storage for local variables

Create activation record when function is called

Activation records are stacked

Popped when function exits

Control link points to start of previous record

Return value link tells where to store result

Scope of a variable

Variable in activation record at top of stack

Access global variables by following control
links

Lifetime of a variable

Storage allocated is still on the stack

Memory

Storage for factorial(3)

n 3

factorial(n-1)

Storage for factorial(2)

n 2

factorial(n-1)

Control link

Return value link

Call factorial(3)

factorial(3) calls factorial(2)

Madhavan Mukund Memory Management Programming Concepts using Java 3 / 7

Memory stack

Each function needs storage for local variables

Create activation record when function is called

Activation records are stacked

Popped when function exits

Control link points to start of previous record

Return value link tells where to store result

Scope of a variable

Variable in activation record at top of stack

Access global variables by following control
links

Lifetime of a variable

Storage allocated is still on the stack

Memory

Storage for factorial(3)

n 3

factorial(n-1)

Storage for factorial(2)

n 2

factorial(n-1)

Control link

Return value link

Call factorial(3)

factorial(3) calls factorial(2)

Madhavan Mukund Memory Management Programming Concepts using Java 3 / 7

Memory stack

Each function needs storage for local variables

Create activation record when function is called

Activation records are stacked

Popped when function exits

Control link points to start of previous record

Return value link tells where to store result

Scope of a variable

Variable in activation record at top of stack

Access global variables by following control
links

Lifetime of a variable

Storage allocated is still on the stack

Memory

Storage for factorial(3)

n 3

factorial(n-1)

Storage for factorial(2)

n 2

factorial(n-1)

Control link

Return value link

Call factorial(3)

factorial(3) calls factorial(2)

Madhavan Mukund Memory Management Programming Concepts using Java 3 / 7

Memory stack

Each function needs storage for local variables

Create activation record when function is called

Activation records are stacked

Popped when function exits

Control link points to start of previous record

Return value link tells where to store result

Scope of a variable

Variable in activation record at top of stack

Access global variables by following control
links

Lifetime of a variable

Storage allocated is still on the stack

Memory

Storage for factorial(3)

n 3

factorial(n-1)

Storage for factorial(2)

n 2

factorial(n-1)

Control link

Return value link

Call factorial(3)

factorial(3) calls factorial(2)

Madhavan Mukund Memory Management Programming Concepts using Java 3 / 7

Memory stack

Each function needs storage for local variables

Create activation record when function is called

Activation records are stacked

Popped when function exits

Control link points to start of previous record

Return value link tells where to store result

Scope of a variable

Variable in activation record at top of stack

Access global variables by following control
links

Lifetime of a variable

Storage allocated is still on the stack

Memory

Storage for factorial(3)

n 3

factorial(n-1)

Storage for factorial(2)

n 2

factorial(n-1)

Control link

Return value link

Call factorial(3)

factorial(3) calls factorial(2)

Madhavan Mukund Memory Management Programming Concepts using Java 3 / 7

Passing arguments to functions

When a function is called, arguments are substituted for formal parameters

def f(a,l): x = 7

... myl = [8,9,10]

... f(x,myl)

Parameters are part of the activation record of the function

Values are populated on function call

Like having implicit assignment statements at the start of the function

Two ways to initialize the parameters

Call by value — copy the value

Updating the value inside the function has no side-effect

Call by reference — parameter points to same location as argument

Can have side-effects

Be careful: can update the contents, but cannot change the reference itself

Madhavan Mukund Memory Management Programming Concepts using Java 4 / 7

Passing arguments to functions

When a function is called, arguments are substituted for formal parameters

def f(a,l): x = 7

... myl = [8,9,10]

... f(x,myl)

Parameters are part of the activation record of the function

Values are populated on function call

Like having implicit assignment statements at the start of the function

Two ways to initialize the parameters

Call by value — copy the value

Updating the value inside the function has no side-effect

Call by reference — parameter points to same location as argument

Can have side-effects

Be careful: can update the contents, but cannot change the reference itself

Madhavan Mukund Memory Management Programming Concepts using Java 4 / 7

Passing arguments to functions

When a function is called, arguments are substituted for formal parameters

def f(a,l): x = 7 a = x

... myl = [8,9,10] l = myl

... f(x,myl) ... code for f() ...

Parameters are part of the activation record of the function

Values are populated on function call

Like having implicit assignment statements at the start of the function

Two ways to initialize the parameters

Call by value — copy the value

Updating the value inside the function has no side-effect

Call by reference — parameter points to same location as argument

Can have side-effects

Be careful: can update the contents, but cannot change the reference itself

Madhavan Mukund Memory Management Programming Concepts using Java 4 / 7

Passing arguments to functions

When a function is called, arguments are substituted for formal parameters

def f(a,l): x = 7 a = x

... myl = [8,9,10] l = myl

... f(x,myl) ... code for f() ...

Parameters are part of the activation record of the function

Values are populated on function call

Like having implicit assignment statements at the start of the function

Two ways to initialize the parameters

Call by value — copy the value

Updating the value inside the function has no side-effect

Call by reference — parameter points to same location as argument

Can have side-effects

Be careful: can update the contents, but cannot change the reference itself

Madhavan Mukund Memory Management Programming Concepts using Java 4 / 7

Passing arguments to functions

When a function is called, arguments are substituted for formal parameters

def f(a,l): x = 7 a = x

... myl = [8,9,10] l = myl

... f(x,myl) ... code for f() ...

Parameters are part of the activation record of the function

Values are populated on function call

Like having implicit assignment statements at the start of the function

Two ways to initialize the parameters

Call by value — copy the value

Updating the value inside the function has no side-effect

Call by reference — parameter points to same location as argument

Can have side-effects

Be careful: can update the contents, but cannot change the reference itself

Madhavan Mukund Memory Management Programming Concepts using Java 4 / 7

Passing arguments to functions

When a function is called, arguments are substituted for formal parameters

def f(a,l): x = 7 a = x

... myl = [8,9,10] l = myl

... f(x,myl) ... code for f() ...

Parameters are part of the activation record of the function

Values are populated on function call

Like having implicit assignment statements at the start of the function

Two ways to initialize the parameters

Call by value — copy the value

Updating the value inside the function has no side-effect

Call by reference — parameter points to same location as argument

Can have side-effects

Be careful: can update the contents, but cannot change the reference itself

Madhavan Mukund Memory Management Programming Concepts using Java 4 / 7

Heap

Function that inserts a value in a linked list

Storage for new node allocated inside function

Node should persist after function exits

Cannot be allocated within activation record

Separate storage for persistent data

Dynamically allocated vs statically declared

Usually called the heap

Not the same as the heap data structure!

Conceptually, allocate heap storage from
“opposite” end with respect to stack

Heap storage outlives activation record

Access through some variable that is in scope

Madhavan Mukund Memory Management Programming Concepts using Java 5 / 7

Heap

Function that inserts a value in a linked list

Storage for new node allocated inside function

Node should persist after function exits

Cannot be allocated within activation record

Separate storage for persistent data

Dynamically allocated vs statically declared

Usually called the heap

Not the same as the heap data structure!

Conceptually, allocate heap storage from
“opposite” end with respect to stack

Heap storage outlives activation record

Access through some variable that is in scope

Madhavan Mukund Memory Management Programming Concepts using Java 5 / 7

Heap

Function that inserts a value in a linked list

Storage for new node allocated inside function

Node should persist after function exits

Cannot be allocated within activation record

Separate storage for persistent data

Dynamically allocated vs statically declared

Usually called the heap

Not the same as the heap data structure!

Conceptually, allocate heap storage from
“opposite” end with respect to stack

Heap storage outlives activation record

Access through some variable that is in scope

Memory

Stack

Heap

Madhavan Mukund Memory Management Programming Concepts using Java 5 / 7

Heap

Function that inserts a value in a linked list

Storage for new node allocated inside function

Node should persist after function exits

Cannot be allocated within activation record

Separate storage for persistent data

Dynamically allocated vs statically declared

Usually called the heap

Not the same as the heap data structure!

Conceptually, allocate heap storage from
“opposite” end with respect to stack

Heap storage outlives activation record

Access through some variable that is in scope

Memory

Stack

Heap

Madhavan Mukund Memory Management Programming Concepts using Java 5 / 7

Managing heap storage

On the stack, variables are deallocated when a function exits

How do we “return” unused storage on the heap?

After deleting a node in a linked list, deleted node i now dead storage, unreachable

Manual memory management

Programmer explicitly requests and returns heap storage

p = malloc(...) and free(p) in C

Error-prone — memory leaks, invalid assignments

Automatic garbage collection (Java, Python, . . .)

Run-time environment checks and cleans up dead storage — e.g., mark-and-sweep

Mark all storage that is reachable from program variables

Return all unmarked memory cells to free space

Convenience for programmer vs performance penalty

Madhavan Mukund Memory Management Programming Concepts using Java 6 / 7

Managing heap storage

On the stack, variables are deallocated when a function exits

How do we “return” unused storage on the heap?

After deleting a node in a linked list, deleted node i now dead storage, unreachable

Manual memory management

Programmer explicitly requests and returns heap storage

p = malloc(...) and free(p) in C

Error-prone — memory leaks, invalid assignments

Automatic garbage collection (Java, Python, . . .)

Run-time environment checks and cleans up dead storage — e.g., mark-and-sweep

Mark all storage that is reachable from program variables

Return all unmarked memory cells to free space

Convenience for programmer vs performance penalty

Madhavan Mukund Memory Management Programming Concepts using Java 6 / 7

Managing heap storage

On the stack, variables are deallocated when a function exits

How do we “return” unused storage on the heap?

After deleting a node in a linked list, deleted node i now dead storage, unreachable

Manual memory management

Programmer explicitly requests and returns heap storage

p = malloc(...) and free(p) in C

Error-prone — memory leaks, invalid assignments

Automatic garbage collection (Java, Python, . . .)

Run-time environment checks and cleans up dead storage — e.g., mark-and-sweep

Mark all storage that is reachable from program variables

Return all unmarked memory cells to free space

Convenience for programmer vs performance penalty

Madhavan Mukund Memory Management Programming Concepts using Java 6 / 7

Managing heap storage

On the stack, variables are deallocated when a function exits

How do we “return” unused storage on the heap?

After deleting a node in a linked list, deleted node i now dead storage, unreachable

Manual memory management

Programmer explicitly requests and returns heap storage

p = malloc(...) and free(p) in C

Error-prone — memory leaks, invalid assignments

Automatic garbage collection (Java, Python, . . .)

Run-time environment checks and cleans up dead storage — e.g., mark-and-sweep

Mark all storage that is reachable from program variables

Return all unmarked memory cells to free space

Convenience for programmer vs performance penalty

Madhavan Mukund Memory Management Programming Concepts using Java 6 / 7

Summary

Variables have scope and lifetime

Scope — whether the variable is available in the program

Lifetime — whether the storage is still allocated

Activation records for functions are maintained as a stack

Control link points to previous activation record

Return value link tells where to store result

Heap is used to store dynamically allocated data

Outlives activation record of function that created the storage

Need to be careful about deallocating heap storage

Explicit deallocation vs automatic garbage collection

Madhavan Mukund Memory Management Programming Concepts using Java 7 / 7

Abstraction and modularity

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 1

https://www.cmi.ac.in/~madhavan

Stepwise refinement

Begin with a high level description of
the task

Refine the task into subtasks

Further elaborate each subtask

Subtasks can be coded by different
people

Program refinement — focus on
code, not much change in data
structures

begin

print first thousand prime numbers

end

Madhavan Mukund Abstraction and modularity Programming Concepts using Java 2 / 6

Stepwise refinement

Begin with a high level description of
the task

Refine the task into subtasks

Further elaborate each subtask

Subtasks can be coded by different
people

Program refinement — focus on
code, not much change in data
structures

begin

print first thousand prime numbers

end

begin

declare table p

fill table p with first thousand primes

print table p

end

Madhavan Mukund Abstraction and modularity Programming Concepts using Java 2 / 6

Stepwise refinement

Begin with a high level description of
the task

Refine the task into subtasks

Further elaborate each subtask

Subtasks can be coded by different
people

Program refinement — focus on
code, not much change in data
structures

begin

print first thousand prime numbers

end

begin

declare table p

fill table p with first thousand primes

print table p

end

begin

integer array p[1:1000]

for k from 1 through 1000

make p[k] equal to the kth prime number

for k from 1 through 1000

print p[k]

endMadhavan Mukund Abstraction and modularity Programming Concepts using Java 2 / 6

Stepwise refinement

Begin with a high level description of
the task

Refine the task into subtasks

Further elaborate each subtask

Subtasks can be coded by different
people

Program refinement — focus on
code, not much change in data
structures

begin

print first thousand prime numbers

end

begin

declare table p

fill table p with first thousand primes

print table p

end

begin

integer array p[1:1000]

for k from 1 through 1000

make p[k] equal to the kth prime number

for k from 1 through 1000

print p[k]

endMadhavan Mukund Abstraction and modularity Programming Concepts using Java 2 / 6

Stepwise refinement

Begin with a high level description of
the task

Refine the task into subtasks

Further elaborate each subtask

Subtasks can be coded by different
people

Program refinement — focus on
code, not much change in data
structures

begin

print first thousand prime numbers

end

begin

declare table p

fill table p with first thousand primes

print table p

end

begin

integer array p[1:1000]

for k from 1 through 1000

make p[k] equal to the kth prime number

for k from 1 through 1000

print p[k]

endMadhavan Mukund Abstraction and modularity Programming Concepts using Java 2 / 6

Data refinement

Banking application

Typical functions: CreateAccount(), Deposit()/Withdraw(), PrintStatement()

How do we represent each account?

Only need the current balance

Overall, an array of balances

Refine PrintStatement() to include PrintTransactions()

Now we need to record transactions for each account

Data representation also changes

Cascading impact on other functions that operate on accounts

Madhavan Mukund Abstraction and modularity Programming Concepts using Java 3 / 6

Data refinement

Banking application

Typical functions: CreateAccount(), Deposit()/Withdraw(), PrintStatement()

How do we represent each account?

Only need the current balance

Overall, an array of balances

Refine PrintStatement() to include PrintTransactions()

Now we need to record transactions for each account

Data representation also changes

Cascading impact on other functions that operate on accounts

Madhavan Mukund Abstraction and modularity Programming Concepts using Java 3 / 6

Data refinement

Banking application

Typical functions: CreateAccount(), Deposit()/Withdraw(), PrintStatement()

How do we represent each account?

Only need the current balance

Overall, an array of balances

Refine PrintStatement() to include PrintTransactions()

Now we need to record transactions for each account

Data representation also changes

Cascading impact on other functions that operate on accounts

Madhavan Mukund Abstraction and modularity Programming Concepts using Java 3 / 6

Modular software development

Use refinement to divide the solution into components

Build a prototype of each component to validate design

Components are described in terms of

Interfaces — what is visible to other components, typically function calls

Specification — behaviour of the component, as visible through interface

Improve each component independently, preserving interface and specification

Simplest example of a component: a function

Interfaces — function header, arguments and return type

Specification — intended input-output behaviour

Main challenge: suitable language to write specifications

Balance abstraction and detail, should not be another programming language!

Cannot algorithmically check that specification is met (halting problem!)

Madhavan Mukund Abstraction and modularity Programming Concepts using Java 4 / 6

Modular software development

Use refinement to divide the solution into components

Build a prototype of each component to validate design

Components are described in terms of

Interfaces — what is visible to other components, typically function calls

Specification — behaviour of the component, as visible through interface

Improve each component independently, preserving interface and specification

Simplest example of a component: a function

Interfaces — function header, arguments and return type

Specification — intended input-output behaviour

Main challenge: suitable language to write specifications

Balance abstraction and detail, should not be another programming language!

Cannot algorithmically check that specification is met (halting problem!)

Madhavan Mukund Abstraction and modularity Programming Concepts using Java 4 / 6

Modular software development

Use refinement to divide the solution into components

Build a prototype of each component to validate design

Components are described in terms of

Interfaces — what is visible to other components, typically function calls

Specification — behaviour of the component, as visible through interface

Improve each component independently, preserving interface and specification

Simplest example of a component: a function

Interfaces — function header, arguments and return type

Specification — intended input-output behaviour

Main challenge: suitable language to write specifications

Balance abstraction and detail, should not be another programming language!

Cannot algorithmically check that specification is met (halting problem!)

Madhavan Mukund Abstraction and modularity Programming Concepts using Java 4 / 6

Modular software development

Use refinement to divide the solution into components

Build a prototype of each component to validate design

Components are described in terms of

Interfaces — what is visible to other components, typically function calls

Specification — behaviour of the component, as visible through interface

Improve each component independently, preserving interface and specification

Simplest example of a component: a function

Interfaces — function header, arguments and return type

Specification — intended input-output behaviour

Main challenge: suitable language to write specifications

Balance abstraction and detail, should not be another programming language!

Cannot algorithmically check that specification is met (halting problem!)

Madhavan Mukund Abstraction and modularity Programming Concepts using Java 4 / 6

Modular software development

Use refinement to divide the solution into components

Build a prototype of each component to validate design

Components are described in terms of

Interfaces — what is visible to other components, typically function calls

Specification — behaviour of the component, as visible through interface

Improve each component independently, preserving interface and specification

Simplest example of a component: a function

Interfaces — function header, arguments and return type

Specification — intended input-output behaviour

Main challenge: suitable language to write specifications

Balance abstraction and detail, should not be another programming language!

Cannot algorithmically check that specification is met (halting problem!)

Madhavan Mukund Abstraction and modularity Programming Concepts using Java 4 / 6

Modular software development

Use refinement to divide the solution into components

Build a prototype of each component to validate design

Components are described in terms of

Interfaces — what is visible to other components, typically function calls

Specification — behaviour of the component, as visible through interface

Improve each component independently, preserving interface and specification

Simplest example of a component: a function

Interfaces — function header, arguments and return type

Specification — intended input-output behaviour

Main challenge: suitable language to write specifications

Balance abstraction and detail, should not be another programming language!

Cannot algorithmically check that specification is met (halting problem!)

Madhavan Mukund Abstraction and modularity Programming Concepts using Java 4 / 6

Programming language support for abstraction

Control abstraction

Functions and procedures

Encapsulate a block of code, reuse in different contexts

Data abstraction

Abstract data types (ADTs)

Set of values along with operations permitted on them

Internal representation should not be accessible

Interaction restricted to public interface

For example, when a stack is implemented as a list, we should not be able to observe or
modify internal elements

Object-oriented programming

Organize ADTs in a hierarchy

Implicit reuse of implementations — subtyping, inheritance

Madhavan Mukund Abstraction and modularity Programming Concepts using Java 5 / 6

Programming language support for abstraction

Control abstraction

Functions and procedures

Encapsulate a block of code, reuse in different contexts

Data abstraction

Abstract data types (ADTs)

Set of values along with operations permitted on them

Internal representation should not be accessible

Interaction restricted to public interface

For example, when a stack is implemented as a list, we should not be able to observe or
modify internal elements

Object-oriented programming

Organize ADTs in a hierarchy

Implicit reuse of implementations — subtyping, inheritance

Madhavan Mukund Abstraction and modularity Programming Concepts using Java 5 / 6

Programming language support for abstraction

Control abstraction

Functions and procedures

Encapsulate a block of code, reuse in different contexts

Data abstraction

Abstract data types (ADTs)

Set of values along with operations permitted on them

Internal representation should not be accessible

Interaction restricted to public interface

For example, when a stack is implemented as a list, we should not be able to observe or
modify internal elements

Object-oriented programming

Organize ADTs in a hierarchy

Implicit reuse of implementations — subtyping, inheritance

Madhavan Mukund Abstraction and modularity Programming Concepts using Java 5 / 6

Summary

Solving a complex task requires breaking it down into manageable components

Top down: refine the task into subtasks
Bottom up: combine simple building blocks

Modular description of components

Interface and specification
Build prototype implementation to validate design
Reimplement the components independently, preserving interface and specification

PL support for abstraction

Control flow: functions and procedures
Data: Abstract data types, object-oriented programming

Madhavan Mukund Abstraction and modularity Programming Concepts using Java 6 / 6

Object-oriented programming

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 1

https://www.cmi.ac.in/~madhavan

Objects

An object is like an abstract datatype

Hidden data with set of public operations

All interaction through operations — messages, methods, member-functions, . . .

Uniform way of encapsulating different combinations of data and functionality

An object can hold single integer — e.g., a counter

An entire filesystem or database could be a single object

Distinguishing features of object-oriented programming

Abstraction

Subtyping

Dynamic lookup

Inheritance

Madhavan Mukund Object-oriented programming Programming Concepts using Java 2 / 9

Objects

An object is like an abstract datatype

Hidden data with set of public operations

All interaction through operations — messages, methods, member-functions, . . .

Uniform way of encapsulating different combinations of data and functionality

An object can hold single integer — e.g., a counter

An entire filesystem or database could be a single object

Distinguishing features of object-oriented programming

Abstraction

Subtyping

Dynamic lookup

Inheritance

Madhavan Mukund Object-oriented programming Programming Concepts using Java 2 / 9

Objects

An object is like an abstract datatype

Hidden data with set of public operations

All interaction through operations — messages, methods, member-functions, . . .

Uniform way of encapsulating different combinations of data and functionality

An object can hold single integer — e.g., a counter

An entire filesystem or database could be a single object

Distinguishing features of object-oriented programming

Abstraction

Subtyping

Dynamic lookup

Inheritance

Madhavan Mukund Object-oriented programming Programming Concepts using Java 2 / 9

History of object-oriented programming

Objects first introduced in Simula —
simulation language, 1960s

Event-based simulation follows a basic pattern

Maintain a queue of events to be simulated

Simulate the event at the head of the queue

Add all events it spawns to the queue

Challenges

Queue must be well-typed, yet hold all types
of events

Use a generic simulation operation across
different types of events

Avoid elaborate checking of cases

Madhavan Mukund Object-oriented programming Programming Concepts using Java 3 / 9

History of object-oriented programming

Objects first introduced in Simula —
simulation language, 1960s

Event-based simulation follows a basic pattern

Maintain a queue of events to be simulated

Simulate the event at the head of the queue

Add all events it spawns to the queue

Challenges

Queue must be well-typed, yet hold all types
of events

Use a generic simulation operation across
different types of events

Avoid elaborate checking of cases

Q := make-queue(first event)

repeat

remove next event e from Q

simulate e

place all events generated

by e on Q

until Q is empty

Madhavan Mukund Object-oriented programming Programming Concepts using Java 3 / 9

History of object-oriented programming

Objects first introduced in Simula —
simulation language, 1960s

Event-based simulation follows a basic pattern

Maintain a queue of events to be simulated

Simulate the event at the head of the queue

Add all events it spawns to the queue

Challenges

Queue must be well-typed, yet hold all types
of events

Use a generic simulation operation across
different types of events

Avoid elaborate checking of cases

Q := make-queue(first event)

repeat

remove next event e from Q

simulate e

place all events generated

by e on Q

until Q is empty

Madhavan Mukund Object-oriented programming Programming Concepts using Java 3 / 9

History of object-oriented programming

Objects first introduced in Simula —
simulation language, 1960s

Event-based simulation follows a basic pattern

Maintain a queue of events to be simulated

Simulate the event at the head of the queue

Add all events it spawns to the queue

Challenges

Queue must be well-typed, yet hold all types
of events

Use a generic simulation operation across
different types of events

Avoid elaborate checking of cases

Q := make-queue(first event)

repeat

remove next event e from Q

simulate e

place all events generated

by e on Q

until Q is empty

Madhavan Mukund Object-oriented programming Programming Concepts using Java 3 / 9

Abstraction

Objects are similar to abstract datatypes

Public interface

Private implementation

Changing the implementation should not affect interactions with the object

Data-centric view of programming

Focus on what data we need to maintain and manipulate

Recall that stepwise refinement could affect both code and data

Tying methods to data makes this easier to coordinate

Refining data representation naturally tied to updating methods that operate on the
data

Madhavan Mukund Object-oriented programming Programming Concepts using Java 4 / 9

Abstraction

Objects are similar to abstract datatypes

Public interface

Private implementation

Changing the implementation should not affect interactions with the object

Data-centric view of programming

Focus on what data we need to maintain and manipulate

Recall that stepwise refinement could affect both code and data

Tying methods to data makes this easier to coordinate

Refining data representation naturally tied to updating methods that operate on the
data

Madhavan Mukund Object-oriented programming Programming Concepts using Java 4 / 9

Abstraction

Objects are similar to abstract datatypes

Public interface

Private implementation

Changing the implementation should not affect interactions with the object

Data-centric view of programming

Focus on what data we need to maintain and manipulate

Recall that stepwise refinement could affect both code and data

Tying methods to data makes this easier to coordinate

Refining data representation naturally tied to updating methods that operate on the
data

Madhavan Mukund Object-oriented programming Programming Concepts using Java 4 / 9

Subtyping

Recall the Simula event queue

A well-typed queue holds values of a fixed type

In practice, the queue holds different types of objects

How can this be reconciled?

Arrange types in a hierarchy

A subtype is a specialization of a type

If A is a subtype of B, wherever an object of type B is needed, an object of type A can
be used

Every object of type A is also an object of type B

Think subset — if X ⊆ Y , every x ∈ X is also in Y

If f() is a method in B and A is a subtype of B, every object of A also supports f()

Implementation of f() can be different in A

Madhavan Mukund Object-oriented programming Programming Concepts using Java 5 / 9

Subtyping

Recall the Simula event queue

A well-typed queue holds values of a fixed type

In practice, the queue holds different types of objects

How can this be reconciled?

Arrange types in a hierarchy

A subtype is a specialization of a type

If A is a subtype of B, wherever an object of type B is needed, an object of type A can
be used

Every object of type A is also an object of type B

Think subset — if X ⊆ Y , every x ∈ X is also in Y

If f() is a method in B and A is a subtype of B, every object of A also supports f()

Implementation of f() can be different in A

Madhavan Mukund Object-oriented programming Programming Concepts using Java 5 / 9

Subtyping

Recall the Simula event queue

A well-typed queue holds values of a fixed type

In practice, the queue holds different types of objects

How can this be reconciled?

Arrange types in a hierarchy

A subtype is a specialization of a type

If A is a subtype of B, wherever an object of type B is needed, an object of type A can
be used

Every object of type A is also an object of type B

Think subset — if X ⊆ Y , every x ∈ X is also in Y

If f() is a method in B and A is a subtype of B, every object of A also supports f()

Implementation of f() can be different in A

Madhavan Mukund Object-oriented programming Programming Concepts using Java 5 / 9

Dynamic lookup

Whether a method can be invoked on an object is a static property — type-checking

How the method acts is a dynamic property of how the object is implemented

In the simulation queue, all events support a simulate method

The action triggered by the method depends on the type of event

In a graphics application, different types of objects to be rendered

Invoke using the same operation, each object “knows” how to render itself

Different from overloading

Operation + is addition for int and float

Internal implementation is different, but choice is determined by static type

Dynamic lookup

A variable v of type B can refer to an object of subtype A

Static type of v is B, but method implementation depends on run-time type A

Madhavan Mukund Object-oriented programming Programming Concepts using Java 6 / 9

Dynamic lookup

Whether a method can be invoked on an object is a static property — type-checking

How the method acts is a dynamic property of how the object is implemented

In the simulation queue, all events support a simulate method

The action triggered by the method depends on the type of event

In a graphics application, different types of objects to be rendered

Invoke using the same operation, each object “knows” how to render itself

Different from overloading

Operation + is addition for int and float

Internal implementation is different, but choice is determined by static type

Dynamic lookup

A variable v of type B can refer to an object of subtype A

Static type of v is B, but method implementation depends on run-time type A

Madhavan Mukund Object-oriented programming Programming Concepts using Java 6 / 9

Dynamic lookup

Whether a method can be invoked on an object is a static property — type-checking

How the method acts is a dynamic property of how the object is implemented

In the simulation queue, all events support a simulate method

The action triggered by the method depends on the type of event

In a graphics application, different types of objects to be rendered

Invoke using the same operation, each object “knows” how to render itself

Different from overloading

Operation + is addition for int and float

Internal implementation is different, but choice is determined by static type

Dynamic lookup

A variable v of type B can refer to an object of subtype A

Static type of v is B, but method implementation depends on run-time type A

Madhavan Mukund Object-oriented programming Programming Concepts using Java 6 / 9

Dynamic lookup

Whether a method can be invoked on an object is a static property — type-checking

How the method acts is a dynamic property of how the object is implemented

In the simulation queue, all events support a simulate method

The action triggered by the method depends on the type of event

In a graphics application, different types of objects to be rendered

Invoke using the same operation, each object “knows” how to render itself

Different from overloading

Operation + is addition for int and float

Internal implementation is different, but choice is determined by static type

Dynamic lookup

A variable v of type B can refer to an object of subtype A

Static type of v is B, but method implementation depends on run-time type A

Madhavan Mukund Object-oriented programming Programming Concepts using Java 6 / 9

Dynamic lookup

Whether a method can be invoked on an object is a static property — type-checking

How the method acts is a dynamic property of how the object is implemented

In the simulation queue, all events support a simulate method

The action triggered by the method depends on the type of event

In a graphics application, different types of objects to be rendered

Invoke using the same operation, each object “knows” how to render itself

Different from overloading

Operation + is addition for int and float

Internal implementation is different, but choice is determined by static type

Dynamic lookup

A variable v of type B can refer to an object of subtype A

Static type of v is B, but method implementation depends on run-time type A

Madhavan Mukund Object-oriented programming Programming Concepts using Java 6 / 9

Dynamic lookup

Whether a method can be invoked on an object is a static property — type-checking

How the method acts is a dynamic property of how the object is implemented

In the simulation queue, all events support a simulate method

The action triggered by the method depends on the type of event

In a graphics application, different types of objects to be rendered

Invoke using the same operation, each object “knows” how to render itself

Different from overloading

Operation + is addition for int and float

Internal implementation is different, but choice is determined by static type

Dynamic lookup

A variable v of type B can refer to an object of subtype A

Static type of v is B, but method implementation depends on run-time type A

Madhavan Mukund Object-oriented programming Programming Concepts using Java 6 / 9

Inheritance

Re-use of implementations

Example: different types of employees

Employee objects store basic personal data, date of joining

Manager objects can add functionality

Retain basic data of Employee objects

Additional fields and functions: date of promotion, seniority (in current role)

Usually one hierarchy of types to capture both subtyping and inheritance

A can inherit from B iff A is a subtype of B

Philosophically, however the two are different

Subtyping is a relationship of interfaces

Inheritance is a relationship of implementations

Madhavan Mukund Object-oriented programming Programming Concepts using Java 7 / 9

Inheritance

Re-use of implementations

Example: different types of employees

Employee objects store basic personal data, date of joining

Manager objects can add functionality

Retain basic data of Employee objects

Additional fields and functions: date of promotion, seniority (in current role)

Usually one hierarchy of types to capture both subtyping and inheritance

A can inherit from B iff A is a subtype of B

Philosophically, however the two are different

Subtyping is a relationship of interfaces

Inheritance is a relationship of implementations

Madhavan Mukund Object-oriented programming Programming Concepts using Java 7 / 9

Inheritance

Re-use of implementations

Example: different types of employees

Employee objects store basic personal data, date of joining

Manager objects can add functionality

Retain basic data of Employee objects

Additional fields and functions: date of promotion, seniority (in current role)

Usually one hierarchy of types to capture both subtyping and inheritance

A can inherit from B iff A is a subtype of B

Philosophically, however the two are different

Subtyping is a relationship of interfaces

Inheritance is a relationship of implementations

Madhavan Mukund Object-oriented programming Programming Concepts using Java 7 / 9

Inheritance

Re-use of implementations

Example: different types of employees

Employee objects store basic personal data, date of joining

Manager objects can add functionality

Retain basic data of Employee objects

Additional fields and functions: date of promotion, seniority (in current role)

Usually one hierarchy of types to capture both subtyping and inheritance

A can inherit from B iff A is a subtype of B

Philosophically, however the two are different

Subtyping is a relationship of interfaces

Inheritance is a relationship of implementations

Madhavan Mukund Object-oriented programming Programming Concepts using Java 7 / 9

Inheritance

Re-use of implementations

Example: different types of employees

Employee objects store basic personal data, date of joining

Manager objects can add functionality

Retain basic data of Employee objects

Additional fields and functions: date of promotion, seniority (in current role)

Usually one hierarchy of types to capture both subtyping and inheritance

A can inherit from B iff A is a subtype of B

Philosophically, however the two are different

Subtyping is a relationship of interfaces

Inheritance is a relationship of implementations

Madhavan Mukund Object-oriented programming Programming Concepts using Java 7 / 9

Subtyping vs inheritance

A deque is a double-ended queue

Supports insert-front(), delete-front(), insert-rear() and delete-rear()

We can implement a stack or a queue using a deque

Stack: use only insert-front(), delete-front(),

Queue: use only insert-rear(), delete-front(),

Stack and Queue inherit from Deque — reuse implementation

But Stack and Queue are not subtypes of Deque

If v of type Deque points an object of type Stack, cannot invoke insert-rear(),
delete-rear()

Similarly, no insert-front(), delete-rear() in Queue

Interfaces of Stack and Queue are not compatible with Deque

In fact, Deque is a subtype of both Stack and Queue

Madhavan Mukund Object-oriented programming Programming Concepts using Java 8 / 9

Subtyping vs inheritance

A deque is a double-ended queue

Supports insert-front(), delete-front(), insert-rear() and delete-rear()

We can implement a stack or a queue using a deque

Stack: use only insert-front(), delete-front(),

Queue: use only insert-rear(), delete-front(),

Stack and Queue inherit from Deque — reuse implementation

But Stack and Queue are not subtypes of Deque

If v of type Deque points an object of type Stack, cannot invoke insert-rear(),
delete-rear()

Similarly, no insert-front(), delete-rear() in Queue

Interfaces of Stack and Queue are not compatible with Deque

In fact, Deque is a subtype of both Stack and Queue

Madhavan Mukund Object-oriented programming Programming Concepts using Java 8 / 9

Subtyping vs inheritance

A deque is a double-ended queue

Supports insert-front(), delete-front(), insert-rear() and delete-rear()

We can implement a stack or a queue using a deque

Stack: use only insert-front(), delete-front(),

Queue: use only insert-rear(), delete-front(),

Stack and Queue inherit from Deque — reuse implementation

But Stack and Queue are not subtypes of Deque

If v of type Deque points an object of type Stack, cannot invoke insert-rear(),
delete-rear()

Similarly, no insert-front(), delete-rear() in Queue

Interfaces of Stack and Queue are not compatible with Deque

In fact, Deque is a subtype of both Stack and Queue

Madhavan Mukund Object-oriented programming Programming Concepts using Java 8 / 9

Subtyping vs inheritance

A deque is a double-ended queue

Supports insert-front(), delete-front(), insert-rear() and delete-rear()

We can implement a stack or a queue using a deque

Stack: use only insert-front(), delete-front(),

Queue: use only insert-rear(), delete-front(),

Stack and Queue inherit from Deque — reuse implementation

But Stack and Queue are not subtypes of Deque

If v of type Deque points an object of type Stack, cannot invoke insert-rear(),
delete-rear()

Similarly, no insert-front(), delete-rear() in Queue

Interfaces of Stack and Queue are not compatible with Deque

In fact, Deque is a subtype of both Stack and Queue

Madhavan Mukund Object-oriented programming Programming Concepts using Java 8 / 9

Subtyping vs inheritance

A deque is a double-ended queue

Supports insert-front(), delete-front(), insert-rear() and delete-rear()

We can implement a stack or a queue using a deque

Stack: use only insert-front(), delete-front(),

Queue: use only insert-rear(), delete-front(),

Stack and Queue inherit from Deque — reuse implementation

But Stack and Queue are not subtypes of Deque

If v of type Deque points an object of type Stack, cannot invoke insert-rear(),
delete-rear()

Similarly, no insert-front(), delete-rear() in Queue

Interfaces of Stack and Queue are not compatible with Deque

In fact, Deque is a subtype of both Stack and Queue
Madhavan Mukund Object-oriented programming Programming Concepts using Java 8 / 9

Summary

Objects are like abstract datatypes

Uniform way of encapsulating different combinations of data and functionality

Distinguishing features of object-oriented programming

Abstraction

Public interface, private implementation, like ADTs

Subtyping

Hierarchy of types, compatibility of interfaces

Dynamic lookup

Choice of method implementation is determined at run-time

Inheritance

Reuse of implementations

Madhavan Mukund Object-oriented programming Programming Concepts using Java 9 / 9

Classes and objects

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 1

https://www.cmi.ac.in/~madhavan

Programming with objects

Object are like abstract datatypes

Hidden data with set of public operations

All interaction through operations — messages, methods, member-functions, . . .

Class

Template for a data type

How data is stored

How public functions manipulate data

Object

Concrete instance of template

Each object maintains a separate copy of local data

Invoke methods on objects — send a message to the object

Madhavan Mukund Classes and objects Programming Concepts using Java 2 / 11

Programming with objects

Object are like abstract datatypes

Hidden data with set of public operations

All interaction through operations — messages, methods, member-functions, . . .

Class

Template for a data type

How data is stored

How public functions manipulate data

Object

Concrete instance of template

Each object maintains a separate copy of local data

Invoke methods on objects — send a message to the object

Madhavan Mukund Classes and objects Programming Concepts using Java 2 / 11

Programming with objects

Object are like abstract datatypes

Hidden data with set of public operations

All interaction through operations — messages, methods, member-functions, . . .

Class

Template for a data type

How data is stored

How public functions manipulate data

Object

Concrete instance of template

Each object maintains a separate copy of local data

Invoke methods on objects — send a message to the object

Madhavan Mukund Classes and objects Programming Concepts using Java 2 / 11

Example: 2D points

A point has coordinates (x , y)

Each point object stores its own internal
values x and y — instance variables

For a point p, the local values are p.x and p.y

self is a special name referring to the current
object — self.x, self.y

When we create an object, we need to set it up

Implicitly call a constructor function with a
fixed name

In Python, constructor is called init ()

Parameters are used to set up internal values

In Python, the first parameter is always self

Madhavan Mukund Classes and objects Programming Concepts using Java 3 / 11

Example: 2D points

A point has coordinates (x , y)

Each point object stores its own internal
values x and y — instance variables

For a point p, the local values are p.x and p.y

self is a special name referring to the current
object — self.x, self.y

When we create an object, we need to set it up

Implicitly call a constructor function with a
fixed name

In Python, constructor is called init ()

Parameters are used to set up internal values

In Python, the first parameter is always self

class Point:

def __init__(self,a=0,b=0):

self.x = a

self.y = b

Madhavan Mukund Classes and objects Programming Concepts using Java 3 / 11

Adding methods to a class

Translation: shift a point by (∆x ,∆y)

(x , y) 7→ (x + ∆x , y + ∆y)

Update instance variables

Distance from the origin

d =
√
x2 + y2

Does not update instance variables

state of object is unchanged

class Point:

def __init__(self,a=0,b=0):

self.x = a

self.y = b

def translate(self,dx,dy):

self.x += dx

self.y += dy

Madhavan Mukund Classes and objects Programming Concepts using Java 4 / 11

Adding methods to a class

Translation: shift a point by (∆x ,∆y)

(x , y) 7→ (x + ∆x , y + ∆y)

Update instance variables

Distance from the origin

d =
√
x2 + y2

Does not update instance variables

state of object is unchanged

class Point:

def __init__(self,a=0,b=0):

self.x = a

self.y = b

def translate(self,dx,dy):

self.x += dx

self.y += dy

def odistance(self):

import math

d = math.sqrt(self.x*self.x +

self.y*self.y)

return(d)

Madhavan Mukund Classes and objects Programming Concepts using Java 4 / 11

Changing the internal implementation

Polar coordinates: (r , θ), not (x , y)

r =
√
x2 + y2

θ = tan−1(y/x)

Distance from origin is just r

Translation

Convert (r , θ) to (x , y)

x = r cos θ, y = r sin θ

Recompute r , θ from (x + ∆x , y + ∆y)

Interface has not changed

User need not be aware whether
representation is (x , y) or (r , θ)

import math

class Point:

def __init__(self,a=0,b=0):

self.r = math.sqrt(a*a + b*b)

if a == 0:

self.theta = math.pi/2

else:

self.theta = math.atan(b/a)

Madhavan Mukund Classes and objects Programming Concepts using Java 5 / 11

Changing the internal implementation

Polar coordinates: (r , θ), not (x , y)

r =
√
x2 + y2

θ = tan−1(y/x)

Distance from origin is just r

Translation

Convert (r , θ) to (x , y)

x = r cos θ, y = r sin θ

Recompute r , θ from (x + ∆x , y + ∆y)

Interface has not changed

User need not be aware whether
representation is (x , y) or (r , θ)

import math

class Point:

def __init__(self,a=0,b=0):

self.r = math.sqrt(a*a + b*b)

if a == 0:

self.theta = math.pi/2

else:

self.theta = math.atan(b/a)

def odistance(self):

return(self.r)

Madhavan Mukund Classes and objects Programming Concepts using Java 5 / 11

Changing the internal implementation

Polar coordinates: (r , θ), not (x , y)

r =
√
x2 + y2

θ = tan−1(y/x)

Distance from origin is just r

Translation

Convert (r , θ) to (x , y)

x = r cos θ, y = r sin θ

Recompute r , θ from (x + ∆x , y + ∆y)

Interface has not changed

User need not be aware whether
representation is (x , y) or (r , θ)

def translate(self,dx,dy):

x = self.r*math.cos(self.theta)

y = self.r*math.sin(self.theta)

x += dx

y += dy

self.r = math.sqrt(x*x + y*y)

if x == 0:

self.theta = math.pi/2

else:

self.theta = math.atan(y/x)

Madhavan Mukund Classes and objects Programming Concepts using Java 5 / 11

Changing the internal implementation

Polar coordinates: (r , θ), not (x , y)

r =
√
x2 + y2

θ = tan−1(y/x)

Distance from origin is just r

Translation

Convert (r , θ) to (x , y)

x = r cos θ, y = r sin θ

Recompute r , θ from (x + ∆x , y + ∆y)

Interface has not changed

User need not be aware whether
representation is (x , y) or (r , θ)

def translate(self,dx,dy):

x = self.r*math.cos(self.theta)

y = self.r*math.sin(self.theta)

x += dx

y += dy

self.r = math.sqrt(x*x + y*y)

if x == 0:

self.theta = math.pi/2

else:

self.theta = math.atan(y/x)

Madhavan Mukund Classes and objects Programming Concepts using Java 5 / 11

Abstraction

User should not know whether Point uses
(x,y) or (r,theta)

Interface remains identical

Even constructor is the same

Python allows direct access to instance
variables from outside the class

Breaks the abstraction

Changing the internal implementation of
Point can have impact on other code

Rely on programmer discipline

class Point:

def __init__(self,a=0,b=0):

self.x = a

self.y = b

class Point:

def __init__(self,a=0,b=0):

self.r = math.sqrt(a*a + b*b)

if a == 0:

self.theta = math.pi/2

else:

self.theta = math.atan(b/a)

Madhavan Mukund Classes and objects Programming Concepts using Java 6 / 11

Abstraction

User should not know whether Point uses
(x,y) or (r,theta)

Interface remains identical

Even constructor is the same

Python allows direct access to instance
variables from outside the class

p = Point(5,7)

p.x = 4 # Point is now (4,7)

Breaks the abstraction

Changing the internal implementation of
Point can have impact on other code

Rely on programmer discipline

class Point:

def __init__(self,a=0,b=0):

self.x = a

self.y = b

class Point:

def __init__(self,a=0,b=0):

self.r = math.sqrt(a*a + b*b)

if a == 0:

self.theta = math.pi/2

else:

self.theta = math.atan(b/a)

Madhavan Mukund Classes and objects Programming Concepts using Java 6 / 11

Abstraction

User should not know whether Point uses
(x,y) or (r,theta)

Interface remains identical

Even constructor is the same

Python allows direct access to instance
variables from outside the class

p = Point(5,7)

p.x = 4 # Point is now (4,7)

Breaks the abstraction

Changing the internal implementation of
Point can have impact on other code

Rely on programmer discipline

class Point:

def __init__(self,a=0,b=0):

self.x = a

self.y = b

class Point:

def __init__(self,a=0,b=0):

self.r = math.sqrt(a*a + b*b)

if a == 0:

self.theta = math.pi/2

else:

self.theta = math.atan(b/a)

Madhavan Mukund Classes and objects Programming Concepts using Java 6 / 11

Abstraction

User should not know whether Point uses
(x,y) or (r,theta)

Interface remains identical

Even constructor is the same

Python allows direct access to instance
variables from outside the class

p = Point(5,7)

p.x = 4 # Point is now (4,7)

Breaks the abstraction

Changing the internal implementation of
Point can have impact on other code

Rely on programmer discipline

class Point:

def __init__(self,a=0,b=0):

self.x = a

self.y = b

class Point:

def __init__(self,a=0,b=0):

self.r = math.sqrt(a*a + b*b)

if a == 0:

self.theta = math.pi/2

else:

self.theta = math.atan(b/a)

Madhavan Mukund Classes and objects Programming Concepts using Java 6 / 11

Subtyping and inheritance

Define Square to be a subtype of
Rectangle

Different constructor

Same instance variables

The following is legal

s = Square(5)

a = s.area()

p = s.perimeter()

Square inherits definitions of area()
and perimeter() from Rectangle

class Rectangle:

def __init__(self,w=0,h=0):

self.width = w

self.height = h

def area(self):

return(self.width*self.height)

def perimeter(self):

return(2*(self.width+self.height))

class Square(Rectangle):

def __init__(self,s=0):

self.width = s

self.height = s

Madhavan Mukund Classes and objects Programming Concepts using Java 7 / 11

Subtyping and inheritance

Define Square to be a subtype of
Rectangle

Different constructor

Same instance variables

The following is legal

s = Square(5)

a = s.area()

p = s.perimeter()

Square inherits definitions of area()
and perimeter() from Rectangle

class Rectangle:

def __init__(self,w=0,h=0):

self.width = w

self.height = h

def area(self):

return(self.width*self.height)

def perimeter(self):

return(2*(self.width+self.height))

class Square(Rectangle):

def __init__(self,s=0):

self.width = s

self.height = s

Madhavan Mukund Classes and objects Programming Concepts using Java 7 / 11

Subtyping and inheritance . . .

Can change the instance variable in
Square

self.side

The following gives a run-time error

s = Square(5)

a = s.area()

p = s.perimeter()

Square inherits definitions of area()
and perimeter() from Rectangle

But s.width and s.height have not
been defined!

Subtype is not forced to be an extension
of the parent type

class Rectangle:

def __init__(self,w=0,h=0):

self.width = w

self.height = h

def area(self):

return(self.width*self.height)

def perimeter(self):

return(2*(self.width+self.height))

class Square(Rectangle):

def __init__(self,s=0):

self.side = s

Madhavan Mukund Classes and objects Programming Concepts using Java 8 / 11

Subtyping and inheritance . . .

Can change the instance variable in
Square

self.side

The following gives a run-time error

s = Square(5)

a = s.area()

p = s.perimeter()

Square inherits definitions of area()
and perimeter() from Rectangle

But s.width and s.height have not
been defined!

Subtype is not forced to be an extension
of the parent type

class Rectangle:

def __init__(self,w=0,h=0):

self.width = w

self.height = h

def area(self):

return(self.width*self.height)

def perimeter(self):

return(2*(self.width+self.height))

class Square(Rectangle):

def __init__(self,s=0):

self.side = s

Madhavan Mukund Classes and objects Programming Concepts using Java 8 / 11

Subtyping and inheritance . . .

Subclass and parent class are usually
developed separately

Implementor of Rectangle changes the
instance variables

The following gives a run-time error

s = Square(5)

a = s.area()

p = s.perimeter()

Square constructor sets s.width and
s.height

But the instance variable names have
changed!

Why should Square be affected by this?

class Rectangle:

def __init__(self,w=0,h=0):

self.width = w

self.height = h

def area(self):

return(self.width*self.height)

def perimeter(self):

return(2*(self.width+self.height))

class Square(Rectangle):

def __init__(self,s=0):

self.width = s

self.height = s

Madhavan Mukund Classes and objects Programming Concepts using Java 9 / 11

Subtyping and inheritance . . .

Subclass and parent class are usually
developed separately

Implementor of Rectangle changes the
instance variables

The following gives a run-time error

s = Square(5)

a = s.area()

p = s.perimeter()

Square constructor sets s.width and
s.height

But the instance variable names have
changed!

Why should Square be affected by this?

class Rectangle:

def __init__(self,w=0,h=0):

self.wd = w

self.ht = h

def area(self):

return(self.wd*self.ht)

def perimeter(self):

return(2*(self.wd+self.ht))

class Square(Rectangle):

def __init__(self,s=0):

self.width = s

self.height = s

Madhavan Mukund Classes and objects Programming Concepts using Java 9 / 11

Subtyping and inheritance . . .

Subclass and parent class are usually
developed separately

Implementor of Rectangle changes the
instance variables

The following gives a run-time error

s = Square(5)

a = s.area()

p = s.perimeter()

Square constructor sets s.width and
s.height

But the instance variable names have
changed!

Why should Square be affected by this?

class Rectangle:

def __init__(self,w=0,h=0):

self.wd = w

self.ht = h

def area(self):

return(self.wd*self.ht)

def perimeter(self):

return(2*(self.wd+self.ht))

class Square(Rectangle):

def __init__(self,s=0):

self.width = s

self.height = s

Madhavan Mukund Classes and objects Programming Concepts using Java 9 / 11

Subtyping and inheritance . . .

Need a mechanism to hide private
implementation details

Declare component private or public

Working within privacy constraints

Instance variables wd and ht of
Rectangle are private

How can the constructor for Square set
these private variables?

Square does (and should) not know the
names of the private instance variables

Need to have elaborate declarations

Type and visibility of variables

Static type checking catches errors early

class Rectangle:

def __init__(self,w=0,h=0):

self.wd = w

self.ht = h

def area(self):

return(self.wd*self.ht)

def perimeter(self):

return(2*(self.wd+self.ht))

class Square(Rectangle):

def __init__(self,s=0):

self.width = s

self.height = s

Madhavan Mukund Classes and objects Programming Concepts using Java 10 / 11

Subtyping and inheritance . . .

Need a mechanism to hide private
implementation details

Declare component private or public

Working within privacy constraints

Instance variables wd and ht of
Rectangle are private

How can the constructor for Square set
these private variables?

Square does (and should) not know the
names of the private instance variables

Need to have elaborate declarations

Type and visibility of variables

Static type checking catches errors early

class Rectangle:

def __init__(self,w=0,h=0):

self.wd = w

self.ht = h

def area(self):

return(self.wd*self.ht)

def perimeter(self):

return(2*(self.wd+self.ht))

class Square(Rectangle):

def __init__(self,s=0):

self.width = s

self.height = s

Madhavan Mukund Classes and objects Programming Concepts using Java 10 / 11

Subtyping and inheritance . . .

Need a mechanism to hide private
implementation details

Declare component private or public

Working within privacy constraints

Instance variables wd and ht of
Rectangle are private

How can the constructor for Square set
these private variables?

Square does (and should) not know the
names of the private instance variables

Need to have elaborate declarations

Type and visibility of variables

Static type checking catches errors early

class Rectangle:

def __init__(self,w=0,h=0):

self.wd = w

self.ht = h

def area(self):

return(self.wd*self.ht)

def perimeter(self):

return(2*(self.wd+self.ht))

class Square(Rectangle):

def __init__(self,s=0):

self.width = s

self.height = s

Madhavan Mukund Classes and objects Programming Concepts using Java 10 / 11

Subtyping and inheritance . . .

Need a mechanism to hide private
implementation details

Declare component private or public

Working within privacy constraints

Instance variables wd and ht of
Rectangle are private

How can the constructor for Square set
these private variables?

Square does (and should) not know the
names of the private instance variables

Need to have elaborate declarations

Type and visibility of variables

Static type checking catches errors early

class Rectangle:

def __init__(self,w=0,h=0):

self.wd = w

self.ht = h

def area(self):

return(self.wd*self.ht)

def perimeter(self):

return(2*(self.wd+self.ht))

class Square(Rectangle):

def __init__(self,s=0):

self.width = s

self.height = s

Madhavan Mukund Classes and objects Programming Concepts using Java 10 / 11

Summary

A class is a template describing the instance variables and methods for an abstract
datatype

An object is a concrete instance of a class

We should separate the public interface from the private implementation

Hierarchy of classes to implement subtyping and inheritance

A language like Python has no mechanism to enforce privacy etc

Can illegally manipulate private instance variables

Can introduce inconsistencies between subtype and parent type

Use strong declarations to enforce privacy, types

Do not rely on programmer discipline

Catch bugs early through type checking

Madhavan Mukund Classes and objects Programming Concepts using Java 11 / 11

Week-1

Lecture-1

Lecture-2

Lecture-3

Lecture-4

Lecture-5

Lecture-6

Programming Concepts Using Java
Week 1 Revision

Week-1

Lecture-1

Lecture-2

Lecture-3

Lecture-4

Lecture-5

Lecture-6

W01:L01: Introduction

Explore concepts in programming languages

Object-oriented programming

Exception handling, concurrency, event-driven programming, . . .

Use Java as the illustrative language

Imperative, object-oriented

Incorporates almost all features of interest

Discuss design decisions where relevant

Every language makes some compromises

Understand and appreciate why there is a zoo of programming languages out there

. . . and why new ones are still being created

Week-1

Lecture-1

Lecture-2

Lecture-3

Lecture-4

Lecture-5

Lecture-6

W01:L02: Types

Types have many uses

Making sense of arbitrary bit sequences in memory

Organizing concepts in our code in a meaningful way

Helping compilers catch bugs early, optimize compiled code

Some languages also support automatic type inference

Deduce the types of a variable statically, based on the context in which they are used

x = 7 followed by y = x + 15 implies y must be int

If the inferred type is consistent across the program, all is well

Week-1

Lecture-1

Lecture-2

Lecture-3

Lecture-4

Lecture-5

Lecture-6

W01:L03: Memory Management

Variables have scope and lifetime

Scope — whether the variable is available in the program

Lifetime — whether the storage is still allocated

Activation records for functions are maintained as a stack

Control link points to previous activation record

Return value link tells where to store result

Two ways to initialize parameters

Call by value

Call by reference

Heap is used to store dynamically allocated data

Outlives activation record of function that created the storage

Need to be careful about deallocating heap storage

Explicit deallocation vs automatic garbage collection

Week-1

Lecture-1

Lecture-2

Lecture-3

Lecture-4

Lecture-5

Lecture-6

W01:L04: Abstraction and Modularity

Solving a complex task requires breaking it down into manageable components

Top down: refine the task into subtasks

Bottom up: combine simple building blocks

Modular description of components

Interface and specification

Build prototype implementation to validate design

Reimplement the components independently, preserving interface and specification

PL support for abstraction

Control flow: functions and procedures

Data: Abstract data types, object-oriented programming

Week-1

Lecture-1

Lecture-2

Lecture-3

Lecture-4

Lecture-5

Lecture-6

W01:L05: OOPS

Objects are like abstract datatypes

Uniform way of encapsulating different combinations of data and functionality

Distinguishing features of object-oriented programming

Abstraction

Public interface, private implementation, like ADTs

Subtyping

Hierarchy of types, compatibility of interfaces

Dynamic lookup

Choice of method implementation is determined at run-time

Inheritance

Reuse of implementations

Week-1

Lecture-1

Lecture-2

Lecture-3

Lecture-4

Lecture-5

Lecture-6

W01:L06: Classes

A class is a template describing the instance variables and methods for an abstract
datatype

An object is a concrete instance of a class

We should separate the public interface from the private implementation

Hierarchy of classes to implement subtyping and inheritance

A language like Python has no mechanism to enforce privacy etc

Can illegally manipulate private instance variables

Can introduce inconsistencies between subtype and parent type

Use strong declarations to enforce privacy, types

Do not rely on programmer discipline

Catch bugs early through type checking

A first taste of Java

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 2

https://www.cmi.ac.in/~madhavan

Getting started

The C Programming Language,
Brian W Kernighan, Dennis M Ritchie

The only way to learn a new programming
language is by writing programs in it. The
first program is the same for all languages.

Print the words
hello, world

This is a big hurdle; to leap over it you
have to create the program text
somewhere, compile it successfully, load it,
run it, and find out where your output
went. With these mechanical details
mastered, everything else is comparatively
easy

In Python
. . . C
. . . and Java

Madhavan Mukund A first taste of Java Programming Concepts using Java 2 / 9

Getting started

The C Programming Language,
Brian W Kernighan, Dennis M Ritchie

The only way to learn a new programming
language is by writing programs in it. The
first program is the same for all languages.

Print the words
hello, world

This is a big hurdle; to leap over it you
have to create the program text
somewhere, compile it successfully, load it,
run it, and find out where your output
went. With these mechanical details
mastered, everything else is comparatively
easy

In Python

print("hello, world")

. . . C

. . . and Java

Madhavan Mukund A first taste of Java Programming Concepts using Java 2 / 9

Getting started

The C Programming Language,
Brian W Kernighan, Dennis M Ritchie

The only way to learn a new programming
language is by writing programs in it. The
first program is the same for all languages.

Print the words
hello, world

This is a big hurdle; to leap over it you
have to create the program text
somewhere, compile it successfully, load it,
run it, and find out where your output
went. With these mechanical details
mastered, everything else is comparatively
easy

In Python

print("hello, world")

. . . C

#include <stdio.h>

main()

{

printf("hello, world\n");

}

. . . and Java

Madhavan Mukund A first taste of Java Programming Concepts using Java 2 / 9

Getting started

The C Programming Language,
Brian W Kernighan, Dennis M Ritchie

The only way to learn a new programming
language is by writing programs in it. The
first program is the same for all languages.

Print the words
hello, world

This is a big hurdle; to leap over it you
have to create the program text
somewhere, compile it successfully, load it,
run it, and find out where your output
went. With these mechanical details
mastered, everything else is comparatively
easy

In Python

print("hello, world")

. . . C

#include <stdio.h>

main()

{

printf("hello, world\n");

}

. . . and Java

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}
Madhavan Mukund A first taste of Java Programming Concepts using Java 2 / 9

Why so complicated?

Let’s unpack the syntax

All code in Java lives within a class

No free floating functions, unlike
Python and other languages

Modifier public specifies visibility

How does the program start?

Fix a function name that will be
called by default

From C, the convention is to call
this function main()

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Madhavan Mukund A first taste of Java Programming Concepts using Java 3 / 9

Why so complicated?

Let’s unpack the syntax

All code in Java lives within a class

No free floating functions, unlike
Python and other languages

Modifier public specifies visibility

How does the program start?

Fix a function name that will be
called by default

From C, the convention is to call
this function main()

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Madhavan Mukund A first taste of Java Programming Concepts using Java 3 / 9

Why so complicated?

Let’s unpack the syntax

All code in Java lives within a class

No free floating functions, unlike
Python and other languages

Modifier public specifies visibility

How does the program start?

Fix a function name that will be
called by default

From C, the convention is to call
this function main()

public class helloworld{
public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Madhavan Mukund A first taste of Java Programming Concepts using Java 3 / 9

Why so complicated . . .

Need to specify input and output
types for main()

The signature of main()

Input parameter is an array of
strings; command line arguments

No output, so return type is void

Visibility

Function has be available to run
from outside the class

Modifier public

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Madhavan Mukund A first taste of Java Programming Concepts using Java 4 / 9

Why so complicated . . .

Need to specify input and output
types for main()

The signature of main()

Input parameter is an array of
strings; command line arguments

No output, so return type is void

Visibility

Function has be available to run
from outside the class

Modifier public

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Madhavan Mukund A first taste of Java Programming Concepts using Java 4 / 9

Why so complicated . . .

Availability

Functions defined inside classes are
attached to objects

How can we create an object before
starting?

Modifier static — function that
exists independent of dynamic
creation of objects

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Madhavan Mukund A first taste of Java Programming Concepts using Java 5 / 9

Why so complicated . . .

The actual operation

System is a public class

out is a stream object defined in
System

Like a file handle

Note that out must also be
static

println() is a method associated
with streams

Prints argument with a newline,
like Python print()

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Punctuation {, }, ; to delimit blocks, statements

Unlike layout and indentation in Python

Madhavan Mukund A first taste of Java Programming Concepts using Java 6 / 9

Why so complicated . . .

The actual operation

System is a public class

out is a stream object defined in
System

Like a file handle

Note that out must also be
static

println() is a method associated
with streams

Prints argument with a newline,
like Python print()

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Punctuation {, }, ; to delimit blocks, statements

Unlike layout and indentation in Python

Madhavan Mukund A first taste of Java Programming Concepts using Java 6 / 9

Why so complicated . . .

The actual operation

System is a public class

out is a stream object defined in
System

Like a file handle

Note that out must also be
static

println() is a method associated
with streams

Prints argument with a newline,
like Python print()

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Punctuation {, }, ; to delimit blocks, statements

Unlike layout and indentation in Python

Madhavan Mukund A first taste of Java Programming Concepts using Java 6 / 9

Why so complicated . . .

The actual operation

System is a public class

out is a stream object defined in
System

Like a file handle

Note that out must also be
static

println() is a method associated
with streams

Prints argument with a newline,
like Python print()

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Punctuation {, }, ; to delimit blocks, statements

Unlike layout and indentation in Python

Madhavan Mukund A first taste of Java Programming Concepts using Java 6 / 9

Compiling and running Java code

A Java program is a collection of
classes

Each class is defined in a separate file
with the same name, with extension
java

Class helloworld in
helloworld.java

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Java programs are usually interpreted on Java Virtual Machine (JVM)

JVM provides a uniform execution environment across operating systems

Semantics of Java is defined in terms of JVM, OS-independent

“Write once, run anywhere”

Madhavan Mukund A first taste of Java Programming Concepts using Java 7 / 9

Compiling and running Java code

A Java program is a collection of
classes

Each class is defined in a separate file
with the same name, with extension
java

Class helloworld in
helloworld.java

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Java programs are usually interpreted on Java Virtual Machine (JVM)

JVM provides a uniform execution environment across operating systems

Semantics of Java is defined in terms of JVM, OS-independent

“Write once, run anywhere”

Madhavan Mukund A first taste of Java Programming Concepts using Java 7 / 9

Compiling and running Java code

A Java program is a collection of
classes

Each class is defined in a separate file
with the same name, with extension
java

Class helloworld in
helloworld.java

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Java programs are usually interpreted on Java Virtual Machine (JVM)

JVM provides a uniform execution environment across operating systems

Semantics of Java is defined in terms of JVM, OS-independent

“Write once, run anywhere”

Madhavan Mukund A first taste of Java Programming Concepts using Java 7 / 9

Compiling and running Java code

javac compiles into JVM bytecode

javac helloworld.java creates
bytecode file helloworld.class

java helloworld interprets and
runs bytecode in helloworld.class

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Note:

javac requires file extension .java

java should not be provided file extension .class

javac automatically follows dependencies and compiles all classes required

Sufficient to trigger compilation for class containing main()

Madhavan Mukund A first taste of Java Programming Concepts using Java 8 / 9

Compiling and running Java code

javac compiles into JVM bytecode

javac helloworld.java creates
bytecode file helloworld.class

java helloworld interprets and
runs bytecode in helloworld.class

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Note:

javac requires file extension .java

java should not be provided file extension .class

javac automatically follows dependencies and compiles all classes required

Sufficient to trigger compilation for class containing main()

Madhavan Mukund A first taste of Java Programming Concepts using Java 8 / 9

Compiling and running Java code

javac compiles into JVM bytecode

javac helloworld.java creates
bytecode file helloworld.class

java helloworld interprets and
runs bytecode in helloworld.class

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}
Note:

javac requires file extension .java

java should not be provided file extension .class

javac automatically follows dependencies and compiles all classes required

Sufficient to trigger compilation for class containing main()

Madhavan Mukund A first taste of Java Programming Concepts using Java 8 / 9

Summary

The syntax of Java is comparatively heavy

Many modifiers: unavoidable overhead of object-oriented design

Visibility: public vs private

Availability: all functions live inside objects, need to allow static definitions

Will see more modifiers as we go along

Functions and variable types have to be declared in advance

Java compiles into code for a virtual machine

JVM ensures uniform semantics across operating systems

Code is guaranteed to be portable

Madhavan Mukund A first taste of Java Programming Concepts using Java 9 / 9

Basic datatypes in Java

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 2

https://www.cmi.ac.in/~madhavan

Scalar types

In an object-oriented language, all data should be
encapsulated as objects

However, this is cumbersome

Useful to manipulate numeric values like
conventional languages

Java has eight primitive scalar types

int, long, short, byte

float, double

char

boolean

Size of each type is fixed by JVM

Does not depend on native architecture

2-byte char for Unicode

Madhavan Mukund Basic datatypes in Java Programming Concepts using Java 2 / 8

Scalar types

In an object-oriented language, all data should be
encapsulated as objects

However, this is cumbersome

Useful to manipulate numeric values like
conventional languages

Java has eight primitive scalar types

int, long, short, byte

float, double

char

boolean

Size of each type is fixed by JVM

Does not depend on native architecture

2-byte char for Unicode

Madhavan Mukund Basic datatypes in Java Programming Concepts using Java 2 / 8

Scalar types

In an object-oriented language, all data should be
encapsulated as objects

However, this is cumbersome

Useful to manipulate numeric values like
conventional languages

Java has eight primitive scalar types

int, long, short, byte

float, double

char

boolean

Size of each type is fixed by JVM

Does not depend on native architecture

2-byte char for Unicode

Madhavan Mukund Basic datatypes in Java Programming Concepts using Java 2 / 8

Scalar types

In an object-oriented language, all data should be
encapsulated as objects

However, this is cumbersome

Useful to manipulate numeric values like
conventional languages

Java has eight primitive scalar types

int, long, short, byte

float, double

char

boolean

Size of each type is fixed by JVM

Does not depend on native architecture

Type Size in bytes

int 4

long 8

short 2

byte 1

float 4

double 8

char 2

boolean 1

2-byte char for Unicode

Madhavan Mukund Basic datatypes in Java Programming Concepts using Java 2 / 8

Scalar types

In an object-oriented language, all data should be
encapsulated as objects

However, this is cumbersome

Useful to manipulate numeric values like
conventional languages

Java has eight primitive scalar types

int, long, short, byte

float, double

char

boolean

Size of each type is fixed by JVM

Does not depend on native architecture

Type Size in bytes

int 4

long 8

short 2

byte 1

float 4

double 8

char 2

boolean 1

2-byte char for Unicode

Madhavan Mukund Basic datatypes in Java Programming Concepts using Java 2 / 8

Declarations, assigning values

We declare variables before we use them

int x, y;

double y;

char c;

boolean b1, b2;

Note the semicolons after each
statement

The assignment statement works as
usual

Characters are written with
single-quotes (only)

Double quotes denote strings

Boolean constants are true, false

Madhavan Mukund Basic datatypes in Java Programming Concepts using Java 3 / 8

Declarations, assigning values

We declare variables before we use them

int x, y;

double y;

char c;

boolean b1, b2;

Note the semicolons after each
statement

The assignment statement works as
usual

int x,y;

x = 5;

y = 7;

Characters are written with
single-quotes (only)

Double quotes denote strings

Boolean constants are true, false

Madhavan Mukund Basic datatypes in Java Programming Concepts using Java 3 / 8

Declarations, assigning values

We declare variables before we use them

int x, y;

double y;

char c;

boolean b1, b2;

Note the semicolons after each
statement

The assignment statement works as
usual

int x,y;

x = 5;

y = 7;

Characters are written with
single-quotes (only)

char c,d;

c = ’x’;

d = ’\u03C0’; // Greek pi, unicode

Double quotes denote strings

Boolean constants are true, false

Madhavan Mukund Basic datatypes in Java Programming Concepts using Java 3 / 8

Declarations, assigning values

We declare variables before we use them

int x, y;

double y;

char c;

boolean b1, b2;

Note the semicolons after each
statement

The assignment statement works as
usual

int x,y;

x = 5;

y = 7;

Characters are written with
single-quotes (only)

char c,d;

c = ’x’;

d = ’\u03C0’; // Greek pi, unicode

Double quotes denote strings

Boolean constants are true, false

boolean b1, b2;

b1 = false;

b2 = true;

Madhavan Mukund Basic datatypes in Java Programming Concepts using Java 3 / 8

Initialization, constants

Declarations can come anywhere

int x;

x = 10;

double y;

Use this judiciously to retain
readability

Initialize at time of declaration

Can we declare a value to be a
constant?

Note: Append f after number for
float, else interpreted as double

Modifier final indicates a constant

Madhavan Mukund Basic datatypes in Java Programming Concepts using Java 4 / 8

Initialization, constants

Declarations can come anywhere

int x;

x = 10;

double y;

Use this judiciously to retain
readability

Initialize at time of declaration

int x = 10;

double y = 5.7;

Can we declare a value to be a
constant?

Note: Append f after number for
float, else interpreted as double

Modifier final indicates a constant

Madhavan Mukund Basic datatypes in Java Programming Concepts using Java 4 / 8

Initialization, constants

Declarations can come anywhere

int x;

x = 10;

double y;

Use this judiciously to retain
readability

Initialize at time of declaration

int x = 10;

double y = 5.7;

Can we declare a value to be a
constant?

float pi = 3.1415927f;

pi = 22/7; // Disallow?

Note: Append f after number for
float, else interpreted as double

Modifier final indicates a constant

Madhavan Mukund Basic datatypes in Java Programming Concepts using Java 4 / 8

Initialization, constants

Declarations can come anywhere

int x;

x = 10;

double y;

Use this judiciously to retain
readability

Initialize at time of declaration

int x = 10;

double y = 5.7;

Can we declare a value to be a
constant?

float pi = 3.1415927f;

pi = 22/7; // Disallow?

Note: Append f after number for
float, else interpreted as double

Modifier final indicates a constant

final float pi = 3.1415927f;

pi = 22/7; // Flagged as error;

Madhavan Mukund Basic datatypes in Java Programming Concepts using Java 4 / 8

Operators, shortcuts, type casting

Arithmetic operators are the usual ones

+, -, *, /, %

No separate integer division operator //

When both arguments are integer, / is
integer division

Note implicit conversion from int to
float

No exponentiation operater, use
Math.pow()

Math.pow(a,n) returns an

Special operators for incrementing and
decrementing integers

Shortcut for updating a variable

Madhavan Mukund Basic datatypes in Java Programming Concepts using Java 5 / 8

Operators, shortcuts, type casting

Arithmetic operators are the usual ones

+, -, *, /, %

No separate integer division operator //

When both arguments are integer, / is
integer division

float f = 22/7; // Value is 3.0

Note implicit conversion from int to
float

No exponentiation operater, use
Math.pow()

Math.pow(a,n) returns an

Special operators for incrementing and
decrementing integers

Shortcut for updating a variable

Madhavan Mukund Basic datatypes in Java Programming Concepts using Java 5 / 8

Operators, shortcuts, type casting

Arithmetic operators are the usual ones

+, -, *, /, %

No separate integer division operator //

When both arguments are integer, / is
integer division

float f = 22/7; // Value is 3.0

Note implicit conversion from int to
float

No exponentiation operater, use
Math.pow()

Math.pow(a,n) returns an

Special operators for incrementing and
decrementing integers

Shortcut for updating a variable

Madhavan Mukund Basic datatypes in Java Programming Concepts using Java 5 / 8

Operators, shortcuts, type casting

Arithmetic operators are the usual ones

+, -, *, /, %

No separate integer division operator //

When both arguments are integer, / is
integer division

float f = 22/7; // Value is 3.0

Note implicit conversion from int to
float

No exponentiation operater, use
Math.pow()

Math.pow(a,n) returns an

Special operators for incrementing and
decrementing integers

int a = 0, b = 10;

a++; // Same as a = a+1

b--; // Same as b = b-1

Shortcut for updating a variable

Madhavan Mukund Basic datatypes in Java Programming Concepts using Java 5 / 8

Operators, shortcuts, type casting

Arithmetic operators are the usual ones

+, -, *, /, %

No separate integer division operator //

When both arguments are integer, / is
integer division

float f = 22/7; // Value is 3.0

Note implicit conversion from int to
float

No exponentiation operater, use
Math.pow()

Math.pow(a,n) returns an

Special operators for incrementing and
decrementing integers

int a = 0, b = 10;

a++; // Same as a = a+1

b--; // Same as b = b-1

Shortcut for updating a variable

int a = 0, b = 10;

a += 7; // Same as a = a+7

b *= 12; // Same as b = b*12

Madhavan Mukund Basic datatypes in Java Programming Concepts using Java 5 / 8

Strings

String is a built in class

String s,t;

String constants enclosed in double
quotes

+ is overloaded for string concatenation

Strings are not arrays of characters

Cannot write

Instead, invoke method substring in
class String

s = s.substring(0,3) + "p!";

If we change a String, we get a new
object

After the update, s points to a new
String

Java does automatic garbage
collection

Madhavan Mukund Basic datatypes in Java Programming Concepts using Java 6 / 8

Strings

String is a built in class

String s,t;

String constants enclosed in double
quotes

String s = "Hello", t = "world";

+ is overloaded for string concatenation

Strings are not arrays of characters

Cannot write

Instead, invoke method substring in
class String

s = s.substring(0,3) + "p!";

If we change a String, we get a new
object

After the update, s points to a new
String

Java does automatic garbage
collection

Madhavan Mukund Basic datatypes in Java Programming Concepts using Java 6 / 8

Strings

String is a built in class

String s,t;

String constants enclosed in double
quotes

String s = "Hello", t = "world";

+ is overloaded for string concatenation

String s = "Hello";

String t = "world";

String u = s + " " + t;

// "Hello world"

Strings are not arrays of characters

Cannot write

Instead, invoke method substring in
class String

s = s.substring(0,3) + "p!";

If we change a String, we get a new
object

After the update, s points to a new
String

Java does automatic garbage
collection

Madhavan Mukund Basic datatypes in Java Programming Concepts using Java 6 / 8

Strings

String is a built in class

String s,t;

String constants enclosed in double
quotes

String s = "Hello", t = "world";

+ is overloaded for string concatenation

String s = "Hello";

String t = "world";

String u = s + " " + t;

// "Hello world"

Strings are not arrays of characters

Cannot write

s[3] = ’p’;

s[4] = ’!’;

Instead, invoke method substring in
class String

s = s.substring(0,3) + "p!";

If we change a String, we get a new
object

After the update, s points to a new
String

Java does automatic garbage
collection

Madhavan Mukund Basic datatypes in Java Programming Concepts using Java 6 / 8

Strings

String is a built in class

String s,t;

String constants enclosed in double
quotes

String s = "Hello", t = "world";

+ is overloaded for string concatenation

String s = "Hello";

String t = "world";

String u = s + " " + t;

// "Hello world"

Strings are not arrays of characters

Cannot write

s[3] = ’p’;

s[4] = ’!’;

Instead, invoke method substring in
class String

s = s.substring(0,3) + "p!";

If we change a String, we get a new
object

After the update, s points to a new
String

Java does automatic garbage
collection

Madhavan Mukund Basic datatypes in Java Programming Concepts using Java 6 / 8

Strings

String is a built in class

String s,t;

String constants enclosed in double
quotes

String s = "Hello", t = "world";

+ is overloaded for string concatenation

String s = "Hello";

String t = "world";

String u = s + " " + t;

// "Hello world"

Strings are not arrays of characters

Cannot write

s[3] = ’p’;

s[4] = ’!’;

Instead, invoke method substring in
class String

s = s.substring(0,3) + "p!";

If we change a String, we get a new
object

After the update, s points to a new
String

Java does automatic garbage
collection

Madhavan Mukund Basic datatypes in Java Programming Concepts using Java 6 / 8

Arrays

Arrays are also objects

Typical declaration

Or int a[] instead of int[] a

Combine as int[] a = new

int[100];

a.length gives size of a

Note, for String, it is a method
s.length()!

Array indices run from 0 to a.length-1

Size of the array can vary

Array constants: {v1, v2, v3}

For example

Madhavan Mukund Basic datatypes in Java Programming Concepts using Java 7 / 8

Arrays

Arrays are also objects

Typical declaration

int[] a;

a = new int[100];

Or int a[] instead of int[] a

Combine as int[] a = new

int[100];

a.length gives size of a

Note, for String, it is a method
s.length()!

Array indices run from 0 to a.length-1

Size of the array can vary

Array constants: {v1, v2, v3}

For example

Madhavan Mukund Basic datatypes in Java Programming Concepts using Java 7 / 8

Arrays

Arrays are also objects

Typical declaration

int[] a;

a = new int[100];

Or int a[] instead of int[] a

Combine as int[] a = new

int[100];

a.length gives size of a

Note, for String, it is a method
s.length()!

Array indices run from 0 to a.length-1

Size of the array can vary

Array constants: {v1, v2, v3}

For example

Madhavan Mukund Basic datatypes in Java Programming Concepts using Java 7 / 8

Arrays

Arrays are also objects

Typical declaration

int[] a;

a = new int[100];

Or int a[] instead of int[] a

Combine as int[] a = new

int[100];

a.length gives size of a

Note, for String, it is a method
s.length()!

Array indices run from 0 to a.length-1

Size of the array can vary

Array constants: {v1, v2, v3}

For example

Madhavan Mukund Basic datatypes in Java Programming Concepts using Java 7 / 8

Arrays

Arrays are also objects

Typical declaration

int[] a;

a = new int[100];

Or int a[] instead of int[] a

Combine as int[] a = new

int[100];

a.length gives size of a

Note, for String, it is a method
s.length()!

Array indices run from 0 to a.length-1

Size of the array can vary

Array constants: {v1, v2, v3}

For example

Madhavan Mukund Basic datatypes in Java Programming Concepts using Java 7 / 8

Arrays

Arrays are also objects

Typical declaration

int[] a;

a = new int[100];

Or int a[] instead of int[] a

Combine as int[] a = new

int[100];

a.length gives size of a

Note, for String, it is a method
s.length()!

Array indices run from 0 to a.length-1

Size of the array can vary

Array constants: {v1, v2, v3}

For example

Madhavan Mukund Basic datatypes in Java Programming Concepts using Java 7 / 8

Arrays

Arrays are also objects

Typical declaration

int[] a;

a = new int[100];

Or int a[] instead of int[] a

Combine as int[] a = new

int[100];

a.length gives size of a

Note, for String, it is a method
s.length()!

Array indices run from 0 to a.length-1

Size of the array can vary

Array constants: {v1, v2, v3}

For example

int[] a;

int n;

n = 10;

a = new int[n];

n = 20;

a = new int[n];

a = {2, 3, 5, 7, 11};

Madhavan Mukund Basic datatypes in Java Programming Concepts using Java 7 / 8

Summary

Java allows scalar types, which are not objects

int, long, short, byte, float, double, char, boolean

Declarations can include initializations

Strings and arrays are objects

Numerous versions of Java: we will use Java 11

Extensive online documentation — look up in case of doubt

https://docs.oracle.com/en/java/javase/11/docs/api/index.html

Madhavan Mukund Basic datatypes in Java Programming Concepts using Java 8 / 8

Control flow in Java

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 2

https://www.cmi.ac.in/~madhavan

Control flow

Program layout

Statements end with semi-colon

Blocks of statements delimited by braces

Conditional execution

if (condition) { ... } else { ... }

Conditional loops

while (condition) { ... }
do { ... } while (condition)

Iteration

Two kinds of for

Multiway branching – switch

Madhavan Mukund Control flow in Java Programming Concepts using Java 2 / 9

Control flow

Program layout

Statements end with semi-colon

Blocks of statements delimited by braces

Conditional execution

if (condition) { ... } else { ... }

Conditional loops

while (condition) { ... }
do { ... } while (condition)

Iteration

Two kinds of for

Multiway branching – switch

Madhavan Mukund Control flow in Java Programming Concepts using Java 2 / 9

Control flow

Program layout

Statements end with semi-colon

Blocks of statements delimited by braces

Conditional execution

if (condition) { ... } else { ... }

Conditional loops

while (condition) { ... }
do { ... } while (condition)

Iteration

Two kinds of for

Multiway branching – switch

Madhavan Mukund Control flow in Java Programming Concepts using Java 2 / 9

Control flow

Program layout

Statements end with semi-colon

Blocks of statements delimited by braces

Conditional execution

if (condition) { ... } else { ... }

Conditional loops

while (condition) { ... }
do { ... } while (condition)

Iteration

Two kinds of for

Multiway branching – switch

Madhavan Mukund Control flow in Java Programming Concepts using Java 2 / 9

Control flow

Program layout

Statements end with semi-colon

Blocks of statements delimited by braces

Conditional execution

if (condition) { ... } else { ... }

Conditional loops

while (condition) { ... }
do { ... } while (condition)

Iteration

Two kinds of for

Multiway branching – switch

Madhavan Mukund Control flow in Java Programming Concepts using Java 2 / 9

Conditional execution

if (c) {...} else {...}
else is optional

Condition must be in parentheses

If body is a single statement, braces are not
needed

No elif, à la Python

Indentation is not forced

Just align else if

Nested if is a single statement, no separate
braces required

No surprises

Aside: no def for function definition

public class MyClass {

...

public static int sign(int v) {

if (v < 0) {

return(-1);

} else if (v > 0) {

return(1);

} else {

return(0);

}

}

}

Madhavan Mukund Control flow in Java Programming Concepts using Java 3 / 9

Conditional loops

while (c) {...}
Condition must be in parentheses

If body is a single statement, braces are not
needed

do {...} while (c)

Condition is checked at the end of the loop

At least one iteration

Useful for interactive user input

public class MyClass {

...

public static int sumupto(int n) {

int sum = 0;

while (n > 0){

sum += n;

n--;

}

return(sum);

}

}

Madhavan Mukund Control flow in Java Programming Concepts using Java 4 / 9

Conditional loops

while (c) {...}
Condition must be in parentheses

If body is a single statement, braces are not
needed

do {...} while (c)

Condition is checked at the end of the loop

At least one iteration

Useful for interactive user input

public class MyClass {

...

public static int sumupto(int n) {

int sum = 0;

int i = 0;

do {

sum += i;

i++;

} while (i <= n);

return(sum);

}

}Madhavan Mukund Control flow in Java Programming Concepts using Java 4 / 9

Conditional loops

while (c) {...}
Condition must be in parentheses

If body is a single statement, braces are not
needed

do {...} while (c)

Condition is checked at the end of the loop

At least one iteration

Useful for interactive user input

do {

read input;

} while (input-condition);

public class MyClass {

...

public static int sumupto(int n) {

int sum = 0;

int i = 0;

do {

sum += i;

i++;

} while (i <= n);

return(sum);

}

}Madhavan Mukund Control flow in Java Programming Concepts using Java 4 / 9

Iteration

for loop is inherited from C

for (init; cond; upd) {...}
init is initialization

cond is terminating condition

upd is update

Intended use is
for(i = 0; i < n; i++){...}

Completely equivalent to

Madhavan Mukund Control flow in Java Programming Concepts using Java 5 / 9

Iteration

for loop is inherited from C

for (init; cond; upd) {...}
init is initialization

cond is terminating condition

upd is update

Intended use is
for(i = 0; i < n; i++){...}

Completely equivalent to

public class MyClass {

...

public static int sumarray(int[] a) {

int sum = 0;

int n = a.length;

int i;

for (i = 0; i < n; i++){

sum += a[i];

}

return(sum);

}

}Madhavan Mukund Control flow in Java Programming Concepts using Java 5 / 9

Iteration

for loop is inherited from C

for (init; cond; upd) {...}
init is initialization

cond is terminating condition

upd is update

Intended use is
for(i = 0; i < n; i++){...}

Completely equivalent to

i = 0;

while (i < n) {

i++;

}

public class MyClass {

...

public static int sumarray(int[] a) {

int sum = 0;

int n = a.length;

int i;

for (i = 0; i < n; i++){

sum += a[i];

}

return(sum);

}

}Madhavan Mukund Control flow in Java Programming Concepts using Java 5 / 9

Iteration

Intended use is
for(i = 0; i < n; i++){...}

Completely equivalent to

i = 0;

while (i < n) {

i++;

}

However, not good style to write for

instead of while

Can define loop variable within loop

The scope of i is local to the loop

An instance of more general local
scoping allowed in Java

public class MyClass {

...

public static int sumarray(int[] a) {

int sum = 0;

int n = a.length;

int i;

for (i = 0; i < n; i++){

sum += a[i];

}

return(sum);

}

}Madhavan Mukund Control flow in Java Programming Concepts using Java 6 / 9

Iteration

Intended use is
for(i = 0; i < n; i++){...}

Completely equivalent to

i = 0;

while (i < n) {

i++;

}

However, not good style to write for

instead of while

Can define loop variable within loop

The scope of i is local to the loop

An instance of more general local
scoping allowed in Java

public class MyClass {

...

public static int sumarray(int[] a) {

int sum = 0;

int n = a.length;

int i;

for (i = 0; i < n; i++){

sum += a[i];

}

return(sum);

}

}Madhavan Mukund Control flow in Java Programming Concepts using Java 6 / 9

Iteration

Intended use is
for(i = 0; i < n; i++){...}

Completely equivalent to

i = 0;

while (i < n) {

i++;

}

However, not good style to write for

instead of while

Can define loop variable within loop

The scope of i is local to the loop

An instance of more general local
scoping allowed in Java

public class MyClass {

...

public static int sumarray(int[] a) {

int sum = 0;

int n = a.length;

for (int i = 0; i < n; i++){

sum += a[i];

}

return(sum);

}

}

Madhavan Mukund Control flow in Java Programming Concepts using Java 6 / 9

Iterating over elements directly

Java later introduced a for in the style of
Python

for x in l:

do something with x

Again for, different syntax

for (type x : a)

do something with x;

}

It appears that loop variable must be
declared in local scope for this version of
for

Madhavan Mukund Control flow in Java Programming Concepts using Java 7 / 9

Iterating over elements directly

Java later introduced a for in the style of
Python

for x in l:

do something with x

Again for, different syntax

for (type x : a)

do something with x;

}

It appears that loop variable must be
declared in local scope for this version of
for

public class MyClass {

...

public static int sumarray(int[] a) {

int sum = 0;

int n = a.length;

for (int v : a){

sum += v;

}

return(sum);

}

}Madhavan Mukund Control flow in Java Programming Concepts using Java 7 / 9

Iterating over elements directly

Java later introduced a for in the style of
Python

for x in l:

do something with x

Again for, different syntax

for (type x : a)

do something with x;

}

It appears that loop variable must be
declared in local scope for this version of
for

public class MyClass {

...

public static int sumarray(int[] a) {

int sum = 0;

int n = a.length;

for (int v : a){

sum += v;

}

return(sum);

}

}Madhavan Mukund Control flow in Java Programming Concepts using Java 7 / 9

Multiway branching

switch selects between different
options

Be careful, default is to “fall
through” from one case to the next

Need to explicitly break out of
switch

break available for loops as well

Check the Java documentation

Options have to be constants

Cannot use conditional expressions

Aside: here return type is void

Non-void return type requires an
appropriate return value

public static void printsign(int v) {

switch (v) {

case -1: {

System.out.println("Negative");

break;

}

case 1: {

System.out.println("Positive");

break;

}

case 0: {

System.out.println("Zero");

break;

}

}

}

Madhavan Mukund Control flow in Java Programming Concepts using Java 8 / 9

Multiway branching

switch selects between different
options

Be careful, default is to “fall
through” from one case to the next

Need to explicitly break out of
switch

break available for loops as well

Check the Java documentation

Options have to be constants

Cannot use conditional expressions

Aside: here return type is void

Non-void return type requires an
appropriate return value

public static void printsign(int v) {

switch (v) {

case -1: {

System.out.println("Negative");

break;

}

case 1: {

System.out.println("Positive");

break;

}

case 0: {

System.out.println("Zero");

break;

}

}

}

Madhavan Mukund Control flow in Java Programming Concepts using Java 8 / 9

Multiway branching

switch selects between different
options

Be careful, default is to “fall
through” from one case to the next

Need to explicitly break out of
switch

break available for loops as well

Check the Java documentation

Options have to be constants

Cannot use conditional expressions

Aside: here return type is void

Non-void return type requires an
appropriate return value

public static void printsign(int v) {

switch (v) {

case -1: {

System.out.println("Negative");

break;

}

case 1: {

System.out.println("Positive");

break;

}

case 0: {

System.out.println("Zero");

break;

}

}

}

Madhavan Mukund Control flow in Java Programming Concepts using Java 8 / 9

Multiway branching

switch selects between different
options

Be careful, default is to “fall
through” from one case to the next

Need to explicitly break out of
switch

break available for loops as well

Check the Java documentation

Options have to be constants

Cannot use conditional expressions

Aside: here return type is void

Non-void return type requires an
appropriate return value

public static void printsign(int v) {

switch (v) {

case -1: {

System.out.println("Negative");

break;

}

case 1: {

System.out.println("Positive");

break;

}

case 0: {

System.out.println("Zero");

break;

}

}

}

Madhavan Mukund Control flow in Java Programming Concepts using Java 8 / 9

Summary

Program layout: semi-colons, braces

Conditional execution: if, else

Conditional loops: while, do-while

Iteration: two kinds of for

Local declaration of loop variable

Multiway branching: switch

break to avoid falling through

Madhavan Mukund Control flow in Java Programming Concepts using Java 9 / 9

Defining classes and objects in Java

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 2

https://www.cmi.ac.in/~madhavan

Classes and objects

A class is a template for an encapsulated type

An object is an instance of a class

How do we create objects?

How are objects initialized?

Madhavan Mukund Defining classes and objects in Java Programming Concepts using Java 2 / 8

Defining a class

Definition block using class, with class name

Modifier public to indicate visibility

Java allows public to be omitted

Default visibility is public to package

Packages are administrative units of code

All classes defined in same directory form part
of same package

Instance variables

Each concrete object of type Date will have
local copies of date, month, year

These are marked private

Can also have public instance variables, but
breaks encapsulation

public class Date {

private int day, month, year;

...

}

Madhavan Mukund Defining classes and objects in Java Programming Concepts using Java 3 / 8

Defining a class

Definition block using class, with class name

Modifier public to indicate visibility

Java allows public to be omitted

Default visibility is public to package

Packages are administrative units of code

All classes defined in same directory form part
of same package

Instance variables

Each concrete object of type Date will have
local copies of date, month, year

These are marked private

Can also have public instance variables, but
breaks encapsulation

public class Date {

private int day, month, year;

...

}

Madhavan Mukund Defining classes and objects in Java Programming Concepts using Java 3 / 8

Creating objects

Declare type using class name

new creates a new object

How do we set the instance variables?

Can add methods to update values

this is a reference to current object

Can omit this if reference is unambiguous

What if we want to check the values?

Methods to read and report values

Accessor and Mutator methods

public void UseDate() {

Date d;

d = new Date();

...

}

Madhavan Mukund Defining classes and objects in Java Programming Concepts using Java 4 / 8

Creating objects

Declare type using class name

new creates a new object

How do we set the instance variables?

Can add methods to update values

this is a reference to current object

Can omit this if reference is unambiguous

What if we want to check the values?

Methods to read and report values

Accessor and Mutator methods

public void UseDate() {

Date d;

d = new Date();

...

}

public class Date {

private int day, month, year;

public void setDate(int d, int m,

int y){

this.day = d;

this.month = m;

this.year = y;

}

}

Madhavan Mukund Defining classes and objects in Java Programming Concepts using Java 4 / 8

Creating objects

Declare type using class name

new creates a new object

How do we set the instance variables?

Can add methods to update values

this is a reference to current object

Can omit this if reference is unambiguous

What if we want to check the values?

Methods to read and report values

Accessor and Mutator methods

public void UseDate() {

Date d;

d = new Date();

...

}

public class Date {

private int day, month, year;

public void setDate(int d, int m,

int y){

day = d;

month = m;

year = y;

}

}

Madhavan Mukund Defining classes and objects in Java Programming Concepts using Java 4 / 8

Creating objects

Declare type using class name

new creates a new object

How do we set the instance variables?

Can add methods to update values

this is a reference to current object

Can omit this if reference is unambiguous

What if we want to check the values?

Methods to read and report values

Accessor and Mutator methods

public class Date {

...

public int getDay(){

return(day);

}

public int getMonth(){

return(month);

}

public int getYear(){

return(year);

}

}

Madhavan Mukund Defining classes and objects in Java Programming Concepts using Java 4 / 8

Creating objects

Declare type using class name

new creates a new object

How do we set the instance variables?

Can add methods to update values

this is a reference to current object

Can omit this if reference is unambiguous

What if we want to check the values?

Methods to read and report values

Accessor and Mutator methods

public class Date {

...

public int getDay(){

return(day);

}

public int getMonth(){

return(month);

}

public int getYear(){

return(year);

}

}

Madhavan Mukund Defining classes and objects in Java Programming Concepts using Java 4 / 8

Initializing objects

Would be good to set up an object when we
create it

Combine new Date() and setDate()

Constructors — special functions called when
an object is created

Function with the same name as the class

d = new Date(13,8,2015);

Constructors with different signatures

d = new Date(13,8); sets year to 2021

Java allows function overloading — same
name, different signatures

Python: default (optional) arguments, no
overloading

Madhavan Mukund Defining classes and objects in Java Programming Concepts using Java 5 / 8

Initializing objects

Would be good to set up an object when we
create it

Combine new Date() and setDate()

Constructors — special functions called when
an object is created

Function with the same name as the class

d = new Date(13,8,2015);

Constructors with different signatures

d = new Date(13,8); sets year to 2021

Java allows function overloading — same
name, different signatures

Python: default (optional) arguments, no
overloading

public class Date {

private int day, month, year;

public Date(int d, int m, int y){

day = d;

month = m;

year = y;

}

}

Madhavan Mukund Defining classes and objects in Java Programming Concepts using Java 5 / 8

Initializing objects

Would be good to set up an object when we
create it

Combine new Date() and setDate()

Constructors — special functions called when
an object is created

Function with the same name as the class

d = new Date(13,8,2015);

Constructors with different signatures

d = new Date(13,8); sets year to 2021

Java allows function overloading — same
name, different signatures

Python: default (optional) arguments, no
overloading

public class Date {

private int day, month, year;

public Date(int d, int m, int y){

day = d;

month = m;

year = y;

}

public Date(int d, int m){

day = d;

month = m;

year = 2021;

}

}

Madhavan Mukund Defining classes and objects in Java Programming Concepts using Java 5 / 8

Constructors . . .

A later constructor can call an earlier one using
this

If no constructor is defined, Java provides a
default constructor with empty arguments

new Date() would implicitly invoke this

Sets instance variables to sensible defaults

For instance, int variables set to 0

Only valid if no constructor is defined

Otherwise need an explicit constructor without
arguments

public class Date {

private int day, month, year;

public Date(int d, int m, int y){

day = d;

month = m;

year = y;

}

public Date(int d, int m){

this(d,m,2021);

}

}

Madhavan Mukund Defining classes and objects in Java Programming Concepts using Java 6 / 8

Constructors . . .

A later constructor can call an earlier one using
this

If no constructor is defined, Java provides a
default constructor with empty arguments

new Date() would implicitly invoke this

Sets instance variables to sensible defaults

For instance, int variables set to 0

Only valid if no constructor is defined

Otherwise need an explicit constructor without
arguments

public class Date {

private int day, month, year;

public Date(int d, int m, int y){

day = d;

month = m;

year = y;

}

public Date(int d, int m){

this(d,m,2021);

}

}

Madhavan Mukund Defining classes and objects in Java Programming Concepts using Java 6 / 8

Copy constructors

Create a new object from an existing one

Copy constructor takes an object of the same
type as argument

Copies the instance variables

Use object name to disambiguate which
instance variables we are talking about

Note that private instance variables of
argument are visible

Shallow copy vs deep copy

Want new object to be disjoint from old one

If instance variable are objects, we may end up
aliasing rather than copying

Discuss later — cloning objects

public class Date {

private int day, month, year;

public Date(Date d){

this.day = d.day;

this.month = d.month;

this.year = d.year;

}

}

Madhavan Mukund Defining classes and objects in Java Programming Concepts using Java 7 / 8

Copy constructors

Create a new object from an existing one

Copy constructor takes an object of the same
type as argument

Copies the instance variables

Use object name to disambiguate which
instance variables we are talking about

Note that private instance variables of
argument are visible

Shallow copy vs deep copy

Want new object to be disjoint from old one

If instance variable are objects, we may end up
aliasing rather than copying

Discuss later — cloning objects

public class Date {

private int day, month, year;

public Date(Date d){

this.day = d.day;

this.month = d.month;

this.year = d.year;

}

}

public void UseDate() {

Date d1,d2;

d1 = new Date(12,4,1954);

d2 = new.Date(d1);

}

Madhavan Mukund Defining classes and objects in Java Programming Concepts using Java 7 / 8

Copy constructors

Create a new object from an existing one

Copy constructor takes an object of the same
type as argument

Copies the instance variables

Use object name to disambiguate which
instance variables we are talking about

Note that private instance variables of
argument are visible

Shallow copy vs deep copy

Want new object to be disjoint from old one

If instance variable are objects, we may end up
aliasing rather than copying

Discuss later — cloning objects

public class Date {

private int day, month, year;

public Date(Date d){

this.day = d.day;

this.month = d.month;

this.year = d.year;

}

}

public void UseDate() {

Date d1,d2;

d1 = new Date(12,4,1954);

d2 = new.Date(d1);

}

Madhavan Mukund Defining classes and objects in Java Programming Concepts using Java 7 / 8

Summary

A class defines a type

Typically, instance variables are private, available through accessor and mutator
methods

We declare variables using the class name as type

Use new to create an object

Constructor is called implicitly to set up an object

Multiple constructors — overloading

Reuse — one constructor can call another

Default constructor, if none is defined

Copy constructor — make a copy of an existing object

Madhavan Mukund Defining classes and objects in Java Programming Concepts using Java 8 / 8

Basic input and output in Java

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 2

https://www.cmi.ac.in/~madhavan

Interacting with a Java program

We have seen how to print data

System.out.println("hello, world");

How do we read data

Madhavan Mukund Basic input and output in Java Programming Concepts using Java 2 / 4

Reading input

Simplest to use is the Console class

Functionality similar to Python
input()

Defined within System

Two methods, readLine and
readPassword

readPassword does not echo
characters on the screen

readLine returns a string (like
Python input())

readPassword returns an array of
char — for security reasons

More general Scanner class

Allows more granular reading of input

Read a full line, or read an integer, . . .

Madhavan Mukund Basic input and output in Java Programming Concepts using Java 3 / 4

Reading input

Simplest to use is the Console class

Functionality similar to Python
input()

Defined within System

Two methods, readLine and
readPassword

readPassword does not echo
characters on the screen

readLine returns a string (like
Python input())

readPassword returns an array of
char — for security reasons

Console cons = System.console();

String username =

cons.readLine("User name: ");

char[] passwd =

cons.readPassword("Password: ");

More general Scanner class

Allows more granular reading of input

Read a full line, or read an integer, . . .

Madhavan Mukund Basic input and output in Java Programming Concepts using Java 3 / 4

Reading input

Simplest to use is the Console class

Functionality similar to Python
input()

Defined within System

Two methods, readLine and
readPassword

readPassword does not echo
characters on the screen

readLine returns a string (like
Python input())

readPassword returns an array of
char — for security reasons

Console cons = System.console();

String username =

cons.readLine("User name: ");

char[] passwd =

cons.readPassword("Password: ");

More general Scanner class

Allows more granular reading of input

Read a full line, or read an integer, . . .

Scanner in = new Scanner(System.in);

String name = in.nextLine();

int age = in.nextInt();

....

Madhavan Mukund Basic input and output in Java Programming Concepts using Java 3 / 4

Generating output

System.out.println(arg) prints arg and goes
to a new line

Implicitly converts argument to a string

System.out.print(arg) is similar, but does not
advance to a new line

System.out.printf(arg) generates formatted
output

Same conventions as printf in C

Read the documentation

Madhavan Mukund Basic input and output in Java Programming Concepts using Java 4 / 4

Generating output

System.out.println(arg) prints arg and goes
to a new line

Implicitly converts argument to a string

System.out.print(arg) is similar, but does not
advance to a new line

System.out.printf(arg) generates formatted
output

Same conventions as printf in C

Read the documentation

Madhavan Mukund Basic input and output in Java Programming Concepts using Java 4 / 4

Generating output

System.out.println(arg) prints arg and goes
to a new line

Implicitly converts argument to a string

System.out.print(arg) is similar, but does not
advance to a new line

System.out.printf(arg) generates formatted
output

Same conventions as printf in C

Read the documentation

Madhavan Mukund Basic input and output in Java Programming Concepts using Java 4 / 4

Week-2

Lecture-1

Lecture-2

Lecture-3

Lecture-4

Lecture-5

Programming Concepts Using Java
Week 2 Revision

Week-2

Lecture-1

Lecture-2

Lecture-3

Lecture-4

Lecture-5

Getting started

Java program to print hello, world

public class HelloWorld{

public static void main(String[] args) {

System.out.println("hello, world);

}

}

A Java program is a collection of classes

All code in Java lives within a class

Modifier public specifies visibility

The signature of main()

Input parameter is an array of strings; command line arguments
No output, so return type is void

Write once, run anywhere

Week-2

Lecture-1

Lecture-2

Lecture-3

Lecture-4

Lecture-5

Scalar types

Java has eight primitive scalar types

int, long, short, byte
float, double
char
boolean

We declare variables before we use them

int x, y;

x = 5;

y = 10;

Characters are written with single-quotes (only)

char c = ‘x’;

Boolean constants are true, false

boolean b1, b2;

b1 = false;

b2 = true;

Week-2

Lecture-1

Lecture-2

Lecture-3

Lecture-4

Lecture-5

Scalar types

Initialize at time of declaration

flat pi = 3.1415927f;

Modifier final indicates a constant

final float pi = 3.1415927f;

Week-2

Lecture-1

Lecture-2

Lecture-3

Lecture-4

Lecture-5

Operators

Arithmetic operators are the usual ones

+, -, *, /, %

No separate integer division operator //

When both arguments are integer, / is integer division

No exponentiation operater, use Math.pow()

Math.pow(a,n) returns an

Special operators for incrementing and decrementing integers

int a = 0, b = 10;

a++; // Same as a = a+1

b--; // Same as b = b-1

Shortcut for updating a variable

int a = 0, b = 10;

a += 7; // Same as a = a+7

Week-2

Lecture-1

Lecture-2

Lecture-3

Lecture-4

Lecture-5

Strings

String is a built-in class

String constants enclosed in double quotes

String s = "Hello", t = "world";

+ is overloaded for string concatenation

String s = "Hello";

String t = "world";

String u = s + " " + t;

// "Hello world"

Strings are not arrays of characters

Instead use s.charAt(0), s.substring(0,3)

Week-2

Lecture-1

Lecture-2

Lecture-3

Lecture-4

Lecture-5

Arrays

Arrays are also objects

Typical declaration

int[] a;

a = new int[100];

Or int a[] instead of int[] a

a.length gives size of a

Array indices run from 0 to a.length-1

Week-2

Lecture-1

Lecture-2

Lecture-3

Lecture-4

Lecture-5

Control flow

Conditional execution

if (condition) { ... } else { ... }

Conditional loops

while (condition) { ... }

do { ... } while (condition)

Iteration - Two kinds of for

Multiway branching – switch

Week-2

Lecture-1

Lecture-2

Lecture-3

Lecture-4

Lecture-5

Classes and objects

A class is a template for an encapsulated type

An object is an instance of a class

public class Date {

private int day, month, year;

public Date(int d, int m, int y){

day = d;

month = m;

year = y;

}

public int getDay(){

return(day);

}

}

Instance variables - Each concrete object of type Date will have local copies of date,
month, year

Week-2

Lecture-1

Lecture-2

Lecture-3

Lecture-4

Lecture-5

Creating and initializing objects

new creates a new object

How do we set the instance variables?

Constructors — special functions called when an object is created

Function with the same name as the class
d = new Date(13,8,2015);

Constructor overloading - same name, different signatures

A constructor can call another one using this

If no constructor is defined, Java provides a default constructor with empty arguments

new Date() would implicitly invoke this
Sets instance variables to sensible defaults
For instance, int variables set to 0
Only valid if no constructor is defined
Otherwise need an explicit constructor without arguments

Week-2

Lecture-1

Lecture-2

Lecture-3

Lecture-4

Lecture-5

Copy constructors

Create a new object from an existing one

public class Date {

private int day, month, year;

public Date(int d, int m, int y){

day = d; month = m; year = y;

}

public Date(Date d){

this.day = d.day; this.month = d.month; this.year = d.year;

}

}

public class UseDate() {

public static void main(String[] args){

Date d1,d2;

d1 = new Date(12,4,1954); d2 = new.Date(d1);

}

}

Week-2

Lecture-1

Lecture-2

Lecture-3

Lecture-4

Lecture-5

Basic input and output in java

Reading input

Use Console class
Use Scanner class

Scanner in = new Scanner(System.in);

String name = in.nextLine();

int age = in.nextInt();

The philosophy of OO programming

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 3

https://www.cmi.ac.in/~madhavan

Algorithms + Data Structures = Programs

Title of Niklaus Wirth’s introduction to Pascal

Traditionally, algorithms come first

Structured programming

Design a set of procedures for specific tasks

Combine them to build complex systems

Data representation comes later

Design data structures to suit procedural manipulations

Madhavan Mukund The philosophy of OO programming Programming Concepts using Java 2 / 7

Algorithms + Data Structures = Programs

Title of Niklaus Wirth’s introduction to Pascal

Traditionally, algorithms come first

Structured programming

Design a set of procedures for specific tasks

Combine them to build complex systems

Data representation comes later

Design data structures to suit procedural manipulations

Madhavan Mukund The philosophy of OO programming Programming Concepts using Java 2 / 7

Algorithms + Data Structures = Programs

Title of Niklaus Wirth’s introduction to Pascal

Traditionally, algorithms come first

Structured programming

Design a set of procedures for specific tasks

Combine them to build complex systems

Data representation comes later

Design data structures to suit procedural manipulations

Madhavan Mukund The philosophy of OO programming Programming Concepts using Java 2 / 7

Algorithms + Data Structures = Programs

Title of Niklaus Wirth’s introduction to Pascal

Traditionally, algorithms come first

Structured programming

Design a set of procedures for specific tasks

Combine them to build complex systems

Data representation comes later

Design data structures to suit procedural manipulations

Madhavan Mukund The philosophy of OO programming Programming Concepts using Java 2 / 7

Object Oriented design

Reverse the focus

First identify the data we want to maintain and manipulate

Then identify algorithms to operate on the data

Claim: works better for large systems

Example: simple web browser

2000 procedures manipulating global data

. . . vs 100 classes, each with about 20 methods

Much easier to grasp the design

Debugging: an object is in an incorrect state

Search among 20 methods rather than 2000 procedures

Madhavan Mukund The philosophy of OO programming Programming Concepts using Java 3 / 7

Object Oriented design

Reverse the focus

First identify the data we want to maintain and manipulate

Then identify algorithms to operate on the data

Claim: works better for large systems

Example: simple web browser

2000 procedures manipulating global data

. . . vs 100 classes, each with about 20 methods

Much easier to grasp the design

Debugging: an object is in an incorrect state

Search among 20 methods rather than 2000 procedures

Madhavan Mukund The philosophy of OO programming Programming Concepts using Java 3 / 7

Object Oriented design

Reverse the focus

First identify the data we want to maintain and manipulate

Then identify algorithms to operate on the data

Claim: works better for large systems

Example: simple web browser

2000 procedures manipulating global data

. . . vs 100 classes, each with about 20 methods

Much easier to grasp the design

Debugging: an object is in an incorrect state

Search among 20 methods rather than 2000 procedures

Madhavan Mukund The philosophy of OO programming Programming Concepts using Java 3 / 7

Object Oriented design

Reverse the focus

First identify the data we want to maintain and manipulate

Then identify algorithms to operate on the data

Claim: works better for large systems

Example: simple web browser

2000 procedures manipulating global data

. . . vs 100 classes, each with about 20 methods

Much easier to grasp the design

Debugging: an object is in an incorrect state

Search among 20 methods rather than 2000 procedures

Madhavan Mukund The philosophy of OO programming Programming Concepts using Java 3 / 7

Object Oriented design

Reverse the focus

First identify the data we want to maintain and manipulate

Then identify algorithms to operate on the data

Claim: works better for large systems

Example: simple web browser

2000 procedures manipulating global data

. . . vs 100 classes, each with about 20 methods

Much easier to grasp the design

Debugging: an object is in an incorrect state

Search among 20 methods rather than 2000 procedures

Madhavan Mukund The philosophy of OO programming Programming Concepts using Java 3 / 7

Object Oriented design

Reverse the focus

First identify the data we want to maintain and manipulate

Then identify algorithms to operate on the data

Claim: works better for large systems

Example: simple web browser

2000 procedures manipulating global data

. . . vs 100 classes, each with about 20 methods

Much easier to grasp the design

Debugging: an object is in an incorrect state

Search among 20 methods rather than 2000 procedures

Madhavan Mukund The philosophy of OO programming Programming Concepts using Java 3 / 7

Object Oriented design

Reverse the focus

First identify the data we want to maintain and manipulate

Then identify algorithms to operate on the data

Claim: works better for large systems

Example: simple web browser

2000 procedures manipulating global data

. . . vs 100 classes, each with about 20 methods

Much easier to grasp the design

Debugging: an object is in an incorrect state

Search among 20 methods rather than 2000 procedures

Madhavan Mukund The philosophy of OO programming Programming Concepts using Java 3 / 7

Object Oriented design

Reverse the focus

First identify the data we want to maintain and manipulate

Then identify algorithms to operate on the data

Claim: works better for large systems

Example: simple web browser

2000 procedures manipulating global data

. . . vs 100 classes, each with about 20 methods

Much easier to grasp the design

Debugging: an object is in an incorrect state

Search among 20 methods rather than 2000 procedures

Madhavan Mukund The philosophy of OO programming Programming Concepts using Java 3 / 7

Object Oriented design

Reverse the focus

First identify the data we want to maintain and manipulate

Then identify algorithms to operate on the data

Claim: works better for large systems

Example: simple web browser

2000 procedures manipulating global data

. . . vs 100 classes, each with about 20 methods

Much easier to grasp the design

Debugging: an object is in an incorrect state

Search among 20 methods rather than 2000 procedures

Madhavan Mukund The philosophy of OO programming Programming Concepts using Java 3 / 7

Object Oriented design: Example

An order processing system typically involves

Items
Orders
Shipping addresses
Payments
Accounts

What happens to these objects?

Items are added to orders
Orders are shipped, cancelled
Payments are accepted, rejected

Nouns signify objects, verbs denote methods that operate on objects

Associate with each order, a method to add an item

Madhavan Mukund The philosophy of OO programming Programming Concepts using Java 4 / 7

Object Oriented design: Example

An order processing system typically involves

Items
Orders
Shipping addresses
Payments
Accounts

What happens to these objects?

Items are added to orders
Orders are shipped, cancelled
Payments are accepted, rejected

Nouns signify objects, verbs denote methods that operate on objects

Associate with each order, a method to add an item

Madhavan Mukund The philosophy of OO programming Programming Concepts using Java 4 / 7

Object Oriented design: Example

An order processing system typically involves

Items
Orders
Shipping addresses
Payments
Accounts

What happens to these objects?

Items are added to orders
Orders are shipped, cancelled
Payments are accepted, rejected

Nouns signify objects, verbs denote methods that operate on objects

Associate with each order, a method to add an item

Madhavan Mukund The philosophy of OO programming Programming Concepts using Java 4 / 7

Designing objects

Behaviour — what methods do we need to operate on objects?

State — how does the object react when methods are invoked?

State is the information in the instance variables

Encapsulation — should not change unless a method operates on it

Identity — distinguish between different objects of the same class

State may be the same — two orders may contain the same item

These features interact

State will typically affect behaviour

Cannot add an item to an order that has been shipped

Cannot ship an empty order

Madhavan Mukund The philosophy of OO programming Programming Concepts using Java 5 / 7

Designing objects

Behaviour — what methods do we need to operate on objects?

State — how does the object react when methods are invoked?

State is the information in the instance variables

Encapsulation — should not change unless a method operates on it

Identity — distinguish between different objects of the same class

State may be the same — two orders may contain the same item

These features interact

State will typically affect behaviour

Cannot add an item to an order that has been shipped

Cannot ship an empty order

Madhavan Mukund The philosophy of OO programming Programming Concepts using Java 5 / 7

Designing objects

Behaviour — what methods do we need to operate on objects?

State — how does the object react when methods are invoked?

State is the information in the instance variables

Encapsulation — should not change unless a method operates on it

Identity — distinguish between different objects of the same class

State may be the same — two orders may contain the same item

These features interact

State will typically affect behaviour

Cannot add an item to an order that has been shipped

Cannot ship an empty order

Madhavan Mukund The philosophy of OO programming Programming Concepts using Java 5 / 7

Designing objects

Behaviour — what methods do we need to operate on objects?

State — how does the object react when methods are invoked?

State is the information in the instance variables

Encapsulation — should not change unless a method operates on it

Identity — distinguish between different objects of the same class

State may be the same — two orders may contain the same item

These features interact

State will typically affect behaviour

Cannot add an item to an order that has been shipped

Cannot ship an empty order

Madhavan Mukund The philosophy of OO programming Programming Concepts using Java 5 / 7

Relationship between classes

Dependence

Order needs Account to check credit status

Item does not depend on Account

Robust design minimizes dependencies, or coupling between classes

Aggregation

Order contains Item objects

Inheritance

One object is a specialized versions of another

ExpressOrder inherits from Order

Extra methods to compute shipping charges, priority handling

Madhavan Mukund The philosophy of OO programming Programming Concepts using Java 6 / 7

Relationship between classes

Dependence

Order needs Account to check credit status

Item does not depend on Account

Robust design minimizes dependencies, or coupling between classes

Aggregation

Order contains Item objects

Inheritance

One object is a specialized versions of another

ExpressOrder inherits from Order

Extra methods to compute shipping charges, priority handling

Madhavan Mukund The philosophy of OO programming Programming Concepts using Java 6 / 7

Relationship between classes

Dependence

Order needs Account to check credit status

Item does not depend on Account

Robust design minimizes dependencies, or coupling between classes

Aggregation

Order contains Item objects

Inheritance

One object is a specialized versions of another

ExpressOrder inherits from Order

Extra methods to compute shipping charges, priority handling

Madhavan Mukund The philosophy of OO programming Programming Concepts using Java 6 / 7

Summary

An object-oriented approach can help organize code in large projects

This course is not about software engineering

Nevertheless, useful to know the motivation underlying OO programming to
understand design choices in a programming language like Java

Madhavan Mukund The philosophy of OO programming Programming Concepts using Java 7 / 7

Subclasses and inheritance

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 3

https://www.cmi.ac.in/~madhavan

A Java class

An Employee class

Two private instance variables

Some constructors to set up the
object

Accessor and mutator methods to set
instance variables

A public method to compute bonus

public class Employee{

private String name;

private double salary;

// Some Constructors ...

// "mutator" methods

public boolean setName(String s){ ... }

public boolean setSalary(double x){ ... }

// "accessor" methods

public String getName(){ ... }

public double getSalary(){ ... }

// other methods

public double bonus(float percent){

return (percent/100.0)*salary;

}

}

Madhavan Mukund Subclasses and inheritance Programming Concepts using Java 2 / 6

A Java class

An Employee class

Two private instance variables

Some constructors to set up the
object

Accessor and mutator methods to set
instance variables

A public method to compute bonus

public class Employee{

private String name;

private double salary;

// Some Constructors ...

// "mutator" methods

public boolean setName(String s){ ... }

public boolean setSalary(double x){ ... }

// "accessor" methods

public String getName(){ ... }

public double getSalary(){ ... }

// other methods

public double bonus(float percent){

return (percent/100.0)*salary;

}

}

Madhavan Mukund Subclasses and inheritance Programming Concepts using Java 2 / 6

A Java class

An Employee class

Two private instance variables

Some constructors to set up the
object

Accessor and mutator methods to set
instance variables

A public method to compute bonus

public class Employee{

private String name;

private double salary;

// Some Constructors ...

// "mutator" methods

public boolean setName(String s){ ... }

public boolean setSalary(double x){ ... }

// "accessor" methods

public String getName(){ ... }

public double getSalary(){ ... }

// other methods

public double bonus(float percent){

return (percent/100.0)*salary;

}

}

Madhavan Mukund Subclasses and inheritance Programming Concepts using Java 2 / 6

A Java class

An Employee class

Two private instance variables

Some constructors to set up the
object

Accessor and mutator methods to set
instance variables

A public method to compute bonus

public class Employee{

private String name;

private double salary;

// Some Constructors ...

// "mutator" methods

public boolean setName(String s){ ... }

public boolean setSalary(double x){ ... }

// "accessor" methods

public String getName(){ ... }

public double getSalary(){ ... }

// other methods

public double bonus(float percent){

return (percent/100.0)*salary;

}

}

Madhavan Mukund Subclasses and inheritance Programming Concepts using Java 2 / 6

A Java class

An Employee class

Two private instance variables

Some constructors to set up the
object

Accessor and mutator methods to set
instance variables

A public method to compute bonus

public class Employee{

private String name;

private double salary;

// Some Constructors ...

// "mutator" methods

public boolean setName(String s){ ... }

public boolean setSalary(double x){ ... }

// "accessor" methods

public String getName(){ ... }

public double getSalary(){ ... }

// other methods

public double bonus(float percent){

return (percent/100.0)*salary;

}

}

Madhavan Mukund Subclasses and inheritance Programming Concepts using Java 2 / 6

Subclasses

Managers are special types of employees with extra features

public class Manager extends Employee{

private String secretary;

public boolean setSecretary(name s){ ... }

public String getSecretary(){ ... }

}

Manager objects inherit other fields and methods from Employee

Every Manager has a name, salary and methods to access and manipulate these.

Manager is a subclass of Employee

Think of subset

Madhavan Mukund Subclasses and inheritance Programming Concepts using Java 3 / 6

Subclasses

Managers are special types of employees with extra features

public class Manager extends Employee{

private String secretary;

public boolean setSecretary(name s){ ... }

public String getSecretary(){ ... }

}

Manager objects inherit other fields and methods from Employee

Every Manager has a name, salary and methods to access and manipulate these.

Manager is a subclass of Employee

Think of subset

Madhavan Mukund Subclasses and inheritance Programming Concepts using Java 3 / 6

Subclasses

Managers are special types of employees with extra features

public class Manager extends Employee{

private String secretary;

public boolean setSecretary(name s){ ... }

public String getSecretary(){ ... }

}

Manager objects inherit other fields and methods from Employee

Every Manager has a name, salary and methods to access and manipulate these.

Manager is a subclass of Employee

Think of subset

Madhavan Mukund Subclasses and inheritance Programming Concepts using Java 3 / 6

Subclasses

Manager objects do not
automatically have access to private
data of parent class.

Common to extend a parent class
written by someone else

How can a constructor for Manager
set instance variables that are private
to Employee?

Some constructors for Employee

Use parent class’s constructor using
super

A constructor for Manager

Madhavan Mukund Subclasses and inheritance Programming Concepts using Java 4 / 6

Subclasses

Manager objects do not
automatically have access to private
data of parent class.

Common to extend a parent class
written by someone else

How can a constructor for Manager
set instance variables that are private
to Employee?

Some constructors for Employee

Use parent class’s constructor using
super

A constructor for Manager

Madhavan Mukund Subclasses and inheritance Programming Concepts using Java 4 / 6

Subclasses

Manager objects do not
automatically have access to private
data of parent class.

Common to extend a parent class
written by someone else

How can a constructor for Manager
set instance variables that are private
to Employee?

Some constructors for Employee

Use parent class’s constructor using
super

A constructor for Manager

public class Employee{

...

public Employee(String n, double s){

name = n; salary = s;

}

public Employee(String n){

this(n,500.00);

}

}

Madhavan Mukund Subclasses and inheritance Programming Concepts using Java 4 / 6

Subclasses

Manager objects do not
automatically have access to private
data of parent class.

Common to extend a parent class
written by someone else

How can a constructor for Manager
set instance variables that are private
to Employee?

Some constructors for Employee

Use parent class’s constructor using
super

A constructor for Manager

public class Employee{

...

public Employee(String n, double s){

name = n; salary = s;

}

public Employee(String n){

this(n,500.00);

}

}

Madhavan Mukund Subclasses and inheritance Programming Concepts using Java 4 / 6

Subclasses

Manager objects do not
automatically have access to private
data of parent class.

Common to extend a parent class
written by someone else

How can a constructor for Manager
set instance variables that are private
to Employee?

Some constructors for Employee

Use parent class’s constructor using
super

A constructor for Manager

public class Employee{

...

public Employee(String n, double s){

name = n; salary = s;

}

public Employee(String n){

this(n,500.00);

}

}

public class Manager extends Employee{

..

public Manager(String n, double s, String sn){

super(n,s); /* super calls

Employee constructor */

secretary = sn;

}

}

Madhavan Mukund Subclasses and inheritance Programming Concepts using Java 4 / 6

Inheritance

In general, subclass has more features
than parent class

Subclass inherits instance variables,
methods from parent class

Every Manager is an Employee, but not
vice versa!

Can use a subclass in place of a
superclass

But the following will not work

Recall

int[] a = new int[100];

Why the seemingly redundant
reference to int in new?

One can now presumably write

Madhavan Mukund Subclasses and inheritance Programming Concepts using Java 5 / 6

Inheritance

In general, subclass has more features
than parent class

Subclass inherits instance variables,
methods from parent class

Every Manager is an Employee, but not
vice versa!

Can use a subclass in place of a
superclass

But the following will not work

Recall

int[] a = new int[100];

Why the seemingly redundant
reference to int in new?

One can now presumably write

Madhavan Mukund Subclasses and inheritance Programming Concepts using Java 5 / 6

Inheritance

In general, subclass has more features
than parent class

Subclass inherits instance variables,
methods from parent class

Every Manager is an Employee, but not
vice versa!

Can use a subclass in place of a
superclass

Employee e = new Manager(...)

But the following will not work

Recall

int[] a = new int[100];

Why the seemingly redundant
reference to int in new?

One can now presumably write

Madhavan Mukund Subclasses and inheritance Programming Concepts using Java 5 / 6

Inheritance

In general, subclass has more features
than parent class

Subclass inherits instance variables,
methods from parent class

Every Manager is an Employee, but not
vice versa!

Can use a subclass in place of a
superclass

Employee e = new Manager(...)

But the following will not work

Manager m = new Employee(...)

Recall

int[] a = new int[100];

Why the seemingly redundant
reference to int in new?

One can now presumably write

Madhavan Mukund Subclasses and inheritance Programming Concepts using Java 5 / 6

Inheritance

In general, subclass has more features
than parent class

Subclass inherits instance variables,
methods from parent class

Every Manager is an Employee, but not
vice versa!

Can use a subclass in place of a
superclass

Employee e = new Manager(...)

But the following will not work

Manager m = new Employee(...)

Recall

int[] a = new int[100];

Why the seemingly redundant
reference to int in new?

One can now presumably write

Madhavan Mukund Subclasses and inheritance Programming Concepts using Java 5 / 6

Inheritance

In general, subclass has more features
than parent class

Subclass inherits instance variables,
methods from parent class

Every Manager is an Employee, but not
vice versa!

Can use a subclass in place of a
superclass

Employee e = new Manager(...)

But the following will not work

Manager m = new Employee(...)

Recall

int[] a = new int[100];

Why the seemingly redundant
reference to int in new?

One can now presumably write

Employee[] e = new Manager(...)[100]

Madhavan Mukund Subclasses and inheritance Programming Concepts using Java 5 / 6

Summary

A subclass extends a parent class

Subclass inherits instance variables and methods from the parent class

Subclass can add more instance variables and methods

Can also override methods — later

Subclasses cannot see private components of parent class

Use super to access constructor of parent class

Madhavan Mukund Subclasses and inheritance Programming Concepts using Java 6 / 6

Dynamic dispatch and polymorphism

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 3

https://www.cmi.ac.in/~madhavan

Subclasses and inheritance

A subclass extends a parent class

Subclass inherits instance variables
and methods from the parent class

Subclasses cannot see private
components of parent class

Subclass can add more instance
variables and methods

Can also override methods

public class Employee{

private String name;

private double salary;

public boolean setName(String s){ ... }

public boolean setSalary(double x){ ... }

public String getName(){ ... }

public double getSalary(){ ... }

public double bonus(float percent){

return (percent/100.0)*salary;

}

}

public class Manager extends Employee{

private String secretary;

public boolean setSecretary(name s){ ... }

public String getSecretary(){ ... }

}

Madhavan Mukund Dynamic dispatch and polymorphism Programming Concepts using Java 2 / 8

Subclasses and inheritance

A subclass extends a parent class

Subclass inherits instance variables
and methods from the parent class

Subclasses cannot see private
components of parent class

Subclass can add more instance
variables and methods

Can also override methods

public class Employee{

private String name;

private double salary;

public boolean setName(String s){ ... }

public boolean setSalary(double x){ ... }

public String getName(){ ... }

public double getSalary(){ ... }

public double bonus(float percent){

return (percent/100.0)*salary;

}

}

public class Manager extends Employee{

private String secretary;

public boolean setSecretary(name s){ ... }

public String getSecretary(){ ... }

}

Madhavan Mukund Dynamic dispatch and polymorphism Programming Concepts using Java 2 / 8

Dynamic dispatch

Manager can redefine bonus()

double bonus(float percent){

return 1.5*super.bonus(percent);

}

Uses parent class bonus() via super

Overrides definition in parent class

Consider the following assignment

Can we invoke e.setSecretary()?

e is declared to be an Employee

Static typechecking — e can only
refer to methods in Employee

What about e.bonus(p)? Which
bonus() do we use?

Static: Use Employee.bonus()

Dynamic: Use Manager.bonus()

Dynamic dispatch (dynamic binding,
late method binding, . . .) turns out to
be more useful

Default in Java, optional in languages
like C++ (virtual function)

Madhavan Mukund Dynamic dispatch and polymorphism Programming Concepts using Java 3 / 8

Dynamic dispatch

Manager can redefine bonus()

double bonus(float percent){

return 1.5*super.bonus(percent);

}

Uses parent class bonus() via super

Overrides definition in parent class

Consider the following assignment

Employee e = new Manager(...)

Can we invoke e.setSecretary()?

e is declared to be an Employee

Static typechecking — e can only
refer to methods in Employee

What about e.bonus(p)? Which
bonus() do we use?

Static: Use Employee.bonus()

Dynamic: Use Manager.bonus()

Dynamic dispatch (dynamic binding,
late method binding, . . .) turns out to
be more useful

Default in Java, optional in languages
like C++ (virtual function)

Madhavan Mukund Dynamic dispatch and polymorphism Programming Concepts using Java 3 / 8

Dynamic dispatch

Manager can redefine bonus()

double bonus(float percent){

return 1.5*super.bonus(percent);

}

Uses parent class bonus() via super

Overrides definition in parent class

Consider the following assignment

Employee e = new Manager(...)

Can we invoke e.setSecretary()?

e is declared to be an Employee

Static typechecking — e can only
refer to methods in Employee

What about e.bonus(p)? Which
bonus() do we use?

Static: Use Employee.bonus()

Dynamic: Use Manager.bonus()

Dynamic dispatch (dynamic binding,
late method binding, . . .) turns out to
be more useful

Default in Java, optional in languages
like C++ (virtual function)

Madhavan Mukund Dynamic dispatch and polymorphism Programming Concepts using Java 3 / 8

Dynamic dispatch

Manager can redefine bonus()

double bonus(float percent){

return 1.5*super.bonus(percent);

}

Uses parent class bonus() via super

Overrides definition in parent class

Consider the following assignment

Employee e = new Manager(...)

Can we invoke e.setSecretary()?

e is declared to be an Employee

Static typechecking — e can only
refer to methods in Employee

What about e.bonus(p)? Which
bonus() do we use?

Static: Use Employee.bonus()

Dynamic: Use Manager.bonus()

Dynamic dispatch (dynamic binding,
late method binding, . . .) turns out to
be more useful

Default in Java, optional in languages
like C++ (virtual function)

Madhavan Mukund Dynamic dispatch and polymorphism Programming Concepts using Java 3 / 8

Dynamic dispatch

Manager can redefine bonus()

double bonus(float percent){

return 1.5*super.bonus(percent);

}

Uses parent class bonus() via super

Overrides definition in parent class

Consider the following assignment

Employee e = new Manager(...)

Can we invoke e.setSecretary()?

e is declared to be an Employee

Static typechecking — e can only
refer to methods in Employee

What about e.bonus(p)? Which
bonus() do we use?

Static: Use Employee.bonus()

Dynamic: Use Manager.bonus()

Dynamic dispatch (dynamic binding,
late method binding, . . .) turns out to
be more useful

Default in Java, optional in languages
like C++ (virtual function)

Madhavan Mukund Dynamic dispatch and polymorphism Programming Concepts using Java 3 / 8

Polymorphism

Every Employee in emparray

“knows” how to calculate its bonus

correctly!

Recall the event simulation loop that
motivated Simula to introduce
objects

Also referred to as runtime
polymorphism or inheritance
polymorphism

Employee[] emparray = new Employee[2];

Employee e = new Employee(...);

Manager e = new Manager(...);

emparray[0] = e;

emparray[1] = m;

for (i = 0; i < emparray.length; i++){

System.out.println(emparray[i].bonus(5.0);

}

Madhavan Mukund Dynamic dispatch and polymorphism Programming Concepts using Java 4 / 8

Polymorphism

Every Employee in emparray

“knows” how to calculate its bonus

correctly!

Recall the event simulation loop that
motivated Simula to introduce
objects

Also referred to as runtime
polymorphism or inheritance
polymorphism

Q := make-queue(first event)

repeat

remove next event e from Q

simulate e

place all events generated

by e on Q

until Q is empty

Madhavan Mukund Dynamic dispatch and polymorphism Programming Concepts using Java 4 / 8

Polymorphism

Every Employee in emparray

“knows” how to calculate its bonus

correctly!

Recall the event simulation loop that
motivated Simula to introduce
objects

Also referred to as runtime
polymorphism or inheritance
polymorphism

Employee[] emparray = new Employee[2];

Employee e = new Employee(...);

Manager e = new Manager(...);

emparray[0] = e;

emparray[1] = m;

for (i = 0; i < emparray.length; i++){

System.out.println(emparray[i].bonus(5.0);

}

Madhavan Mukund Dynamic dispatch and polymorphism Programming Concepts using Java 4 / 8

Functions, signatures and overloading

Signature of a function is its name and
the list of argument types

Can have different functions with the
same name and different signatures

For example, multiple constructors

Java class Arrays has a method sort

to sort arbitrary scalar arrays

Made possible by overloaded methods
defined in class Arrays

Madhavan Mukund Dynamic dispatch and polymorphism Programming Concepts using Java 5 / 8

Functions, signatures and overloading

Signature of a function is its name and
the list of argument types

Can have different functions with the
same name and different signatures

For example, multiple constructors

Java class Arrays has a method sort

to sort arbitrary scalar arrays

Made possible by overloaded methods
defined in class Arrays

Madhavan Mukund Dynamic dispatch and polymorphism Programming Concepts using Java 5 / 8

Functions, signatures and overloading

Signature of a function is its name and
the list of argument types

Can have different functions with the
same name and different signatures

For example, multiple constructors

Java class Arrays has a method sort

to sort arbitrary scalar arrays

Made possible by overloaded methods
defined in class Arrays

double[] darr = new double[100];

int[] iarr = new int[500];

...

Arrays.sort(darr);

// sorts contents of darr

Arrays.sort(iarr);

// sorts contents of iarr

Madhavan Mukund Dynamic dispatch and polymorphism Programming Concepts using Java 5 / 8

Functions, signatures and overloading

Signature of a function is its name and
the list of argument types

Can have different functions with the
same name and different signatures

For example, multiple constructors

Java class Arrays has a method sort

to sort arbitrary scalar arrays

Made possible by overloaded methods
defined in class Arrays

double[] darr = new double[100];

int[] iarr = new int[500];

...

Arrays.sort(darr);

// sorts contents of darr

Arrays.sort(iarr);

// sorts contents of iarr

class Arrays{

...

public static void sort(double[] a){..}

// sorts arrays of double[]

public static void sort(int[] a){..}

// sorts arrays of int[]

...

}

Madhavan Mukund Dynamic dispatch and polymorphism Programming Concepts using Java 5 / 8

Functions, signatures and overloading

Overloading: multiple methods,
different signatures, choice is static

Overriding: multiple methods, same
signature, choice is static

Employee.bonus()

Manager.bonus()

Dynamic dispatch: multiple methods,
same signature, choice made at
run-time

double[] darr = new double[100];

int[] iarr = new int[500];

...

Arrays.sort(darr);

// sorts contents of darr

Arrays.sort(iarr);

// sorts contents of iarr

class Arrays{

...

public static void sort(double[] a){..}

// sorts arrays of double[]

public static void sort(int[] a){..}

// sorts arrays of int[]

...

}

Madhavan Mukund Dynamic dispatch and polymorphism Programming Concepts using Java 6 / 8

Functions, signatures and overloading

Overloading: multiple methods,
different signatures, choice is static

Overriding: multiple methods, same
signature, choice is static

Employee.bonus()

Manager.bonus()

Dynamic dispatch: multiple methods,
same signature, choice made at
run-time

double[] darr = new double[100];

int[] iarr = new int[500];

...

Arrays.sort(darr);

// sorts contents of darr

Arrays.sort(iarr);

// sorts contents of iarr

class Arrays{

...

public static void sort(double[] a){..}

// sorts arrays of double[]

public static void sort(int[] a){..}

// sorts arrays of int[]

...

}

Madhavan Mukund Dynamic dispatch and polymorphism Programming Concepts using Java 6 / 8

Functions, signatures and overloading

Overloading: multiple methods,
different signatures, choice is static

Overriding: multiple methods, same
signature, choice is static

Employee.bonus()

Manager.bonus()

Dynamic dispatch: multiple methods,
same signature, choice made at
run-time

double[] darr = new double[100];

int[] iarr = new int[500];

...

Arrays.sort(darr);

// sorts contents of darr

Arrays.sort(iarr);

// sorts contents of iarr

class Arrays{

...

public static void sort(double[] a){..}

// sorts arrays of double[]

public static void sort(int[] a){..}

// sorts arrays of int[]

...

}

Madhavan Mukund Dynamic dispatch and polymorphism Programming Concepts using Java 6 / 8

Type casting

Consider the following assignment

Employee e = new Manager(...)

Can we get e.setSecretary() to
work?

Static type-checking disallows this

Type casting — convert e to Manager

Cast fails (error at run time) if e is not
a Manager

Can test if e is a Manager

A simple example of reflection in Java

“Think about oneself”

Can also use type casting for basic
types

Madhavan Mukund Dynamic dispatch and polymorphism Programming Concepts using Java 7 / 8

Type casting

Consider the following assignment

Employee e = new Manager(...)

Can we get e.setSecretary() to
work?

Static type-checking disallows this

Type casting — convert e to Manager

Cast fails (error at run time) if e is not
a Manager

Can test if e is a Manager

A simple example of reflection in Java

“Think about oneself”

Can also use type casting for basic
types

Madhavan Mukund Dynamic dispatch and polymorphism Programming Concepts using Java 7 / 8

Type casting

Consider the following assignment

Employee e = new Manager(...)

Can we get e.setSecretary() to
work?

Static type-checking disallows this

Type casting — convert e to Manager

((Manager) e).setSecretary(s)

Cast fails (error at run time) if e is not
a Manager

Can test if e is a Manager

A simple example of reflection in Java

“Think about oneself”

Can also use type casting for basic
types

Madhavan Mukund Dynamic dispatch and polymorphism Programming Concepts using Java 7 / 8

Type casting

Consider the following assignment

Employee e = new Manager(...)

Can we get e.setSecretary() to
work?

Static type-checking disallows this

Type casting — convert e to Manager

((Manager) e).setSecretary(s)

Cast fails (error at run time) if e is not
a Manager

Can test if e is a Manager

A simple example of reflection in Java

“Think about oneself”

Can also use type casting for basic
types

Madhavan Mukund Dynamic dispatch and polymorphism Programming Concepts using Java 7 / 8

Type casting

Consider the following assignment

Employee e = new Manager(...)

Can we get e.setSecretary() to
work?

Static type-checking disallows this

Type casting — convert e to Manager

((Manager) e).setSecretary(s)

Cast fails (error at run time) if e is not
a Manager

Can test if e is a Manager

if (e instanceof Manager){

((Manager) e).setSecretary(s);

}

A simple example of reflection in Java

“Think about oneself”

Can also use type casting for basic
types

double d = 29.98;

int nd = (int) d;

Madhavan Mukund Dynamic dispatch and polymorphism Programming Concepts using Java 7 / 8

Type casting

Consider the following assignment

Employee e = new Manager(...)

Can we get e.setSecretary() to
work?

Static type-checking disallows this

Type casting — convert e to Manager

((Manager) e).setSecretary(s)

Cast fails (error at run time) if e is not
a Manager

Can test if e is a Manager

if (e instanceof Manager){

((Manager) e).setSecretary(s);

}

A simple example of reflection in Java

“Think about oneself”

Can also use type casting for basic
types

double d = 29.98;

int nd = (int) d;

Madhavan Mukund Dynamic dispatch and polymorphism Programming Concepts using Java 7 / 8

Type casting

Consider the following assignment

Employee e = new Manager(...)

Can we get e.setSecretary() to
work?

Static type-checking disallows this

Type casting — convert e to Manager

((Manager) e).setSecretary(s)

Cast fails (error at run time) if e is not
a Manager

Can test if e is a Manager

if (e instanceof Manager){

((Manager) e).setSecretary(s);

}

A simple example of reflection in Java

“Think about oneself”

Can also use type casting for basic
types

double d = 29.98;

int nd = (int) d;

Madhavan Mukund Dynamic dispatch and polymorphism Programming Concepts using Java 7 / 8

Summary

A subclass can override a method from a parent class

Dynamic dispatch ensures that the most appropriate method is called, based on the
run-time identity of the object

Run-time/inheritance polymorphism, different from overloading

We will later see another type of polymorphism, structural polymorphism

For instance, use the same sorting function for array of any datatype that supports a
comparison operation

Java uses the term generics for this

Use type-casting (and reflection) overcome static type restrictions

Madhavan Mukund Dynamic dispatch and polymorphism Programming Concepts using Java 8 / 8

The Java class hierarchy

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 3

https://www.cmi.ac.in/~madhavan

Multiple inheritance

C1 C2

C3 extends C1,C2

Can a subclass extend multiple parent classes?

If f() is not overridden, which f() do we use in C3?

Java does not allow multiple inheritance

C++ allows this if C1 and C2 have no conflict

Madhavan Mukund The Java class hierarchy Programming Concepts using Java 2 / 7

Multiple inheritance

C1 C2

C3 extends C1,C2

public int f(); public int f();

Can a subclass extend multiple parent classes?

If f() is not overridden, which f() do we use in C3?

Java does not allow multiple inheritance

C++ allows this if C1 and C2 have no conflict

Madhavan Mukund The Java class hierarchy Programming Concepts using Java 2 / 7

Multiple inheritance

C1 C2

C3 extends C1,C2

public int f(); public int f();

Can a subclass extend multiple parent classes?

If f() is not overridden, which f() do we use in C3?

Java does not allow multiple inheritance

C++ allows this if C1 and C2 have no conflict

Madhavan Mukund The Java class hierarchy Programming Concepts using Java 2 / 7

Multiple inheritance

C1 C2

C3 extends C1,C2

public int f(); public int f();

Can a subclass extend multiple parent classes?

If f() is not overridden, which f() do we use in C3?

Java does not allow multiple inheritance

C++ allows this if C1 and C2 have no conflict

Madhavan Mukund The Java class hierarchy Programming Concepts using Java 2 / 7

Java class hierarchy

No multiple inheritance — tree-like

In fact, there is a universal superclass Object

Useful methods defined in Object

For Java objects x and y, x == y invokes x.equals(y)

To print o, use System.out.println(o+"");

Implicitly invokes o.toString()

Madhavan Mukund The Java class hierarchy Programming Concepts using Java 3 / 7

Java class hierarchy

No multiple inheritance — tree-like

In fact, there is a universal superclass Object

Useful methods defined in Object

For Java objects x and y, x == y invokes x.equals(y)

To print o, use System.out.println(o+"");

Implicitly invokes o.toString()

Madhavan Mukund The Java class hierarchy Programming Concepts using Java 3 / 7

Java class hierarchy

No multiple inheritance — tree-like

In fact, there is a universal superclass Object

Useful methods defined in Object

public boolean equals(Object o) // defaults to pointer equality

public String toString() // converts the values of the

// instance variables to String

For Java objects x and y, x == y invokes x.equals(y)

To print o, use System.out.println(o+"");

Implicitly invokes o.toString()

Madhavan Mukund The Java class hierarchy Programming Concepts using Java 3 / 7

Java class hierarchy

No multiple inheritance — tree-like

In fact, there is a universal superclass Object

Useful methods defined in Object

public boolean equals(Object o) // defaults to pointer equality

public String toString() // converts the values of the

// instance variables to String

For Java objects x and y, x == y invokes x.equals(y)

To print o, use System.out.println(o+"");

Implicitly invokes o.toString()

Madhavan Mukund The Java class hierarchy Programming Concepts using Java 3 / 7

Java class hierarchy

No multiple inheritance — tree-like

In fact, there is a universal superclass Object

Useful methods defined in Object

public boolean equals(Object o) // defaults to pointer equality

public String toString() // converts the values of the

// instance variables to String

For Java objects x and y, x == y invokes x.equals(y)

To print o, use System.out.println(o+"");

Implicitly invokes o.toString()

Madhavan Mukund The Java class hierarchy Programming Concepts using Java 3 / 7

Java class hierarchy

Can exploit the tree structure to write generic functions

Example: search for an element in an array

public int find (Object[] objarr, Object o){

int i;

for (i = 0; i < objarr.length(); i++){

if (objarr[i] == o) {return i};

}

return (-1);

}

Recall that == is pointer equality, by default

If a class overrides equals(), dynamic dispatch will use the redefined function
instead of Object.equals() for objarr[i] == o

Madhavan Mukund The Java class hierarchy Programming Concepts using Java 4 / 7

Java class hierarchy

Can exploit the tree structure to write generic functions

Example: search for an element in an array

public int find (Object[] objarr, Object o){

int i;

for (i = 0; i < objarr.length(); i++){

if (objarr[i] == o) {return i};

}

return (-1);

}

Recall that == is pointer equality, by default

If a class overrides equals(), dynamic dispatch will use the redefined function
instead of Object.equals() for objarr[i] == o

Madhavan Mukund The Java class hierarchy Programming Concepts using Java 4 / 7

Java class hierarchy

Can exploit the tree structure to write generic functions

Example: search for an element in an array

public int find (Object[] objarr, Object o){

int i;

for (i = 0; i < objarr.length(); i++){

if (objarr[i] == o) {return i};

}

return (-1);

}

Recall that == is pointer equality, by default

If a class overrides equals(), dynamic dispatch will use the redefined function
instead of Object.equals() for objarr[i] == o

Madhavan Mukund The Java class hierarchy Programming Concepts using Java 4 / 7

Overriding functions

For instance, a class Date with instance
variables day, month and year

May wish to override equals() to
compare the object state, as follows

Unfortunately,
boolean equals(Date d)

does not override
boolean equals(Object o)!

Should write, instead

Note the run-time type check and the
cast

Madhavan Mukund The Java class hierarchy Programming Concepts using Java 5 / 7

Overriding functions

For instance, a class Date with instance
variables day, month and year

May wish to override equals() to
compare the object state, as follows

public boolean equals(Date d){

return ((this.day == d.day) &&

(this.month == d.month) &&

(this.year == d.year));

}

Unfortunately,
boolean equals(Date d)

does not override
boolean equals(Object o)!

Should write, instead

Note the run-time type check and the
cast

Madhavan Mukund The Java class hierarchy Programming Concepts using Java 5 / 7

Overriding functions

For instance, a class Date with instance
variables day, month and year

May wish to override equals() to
compare the object state, as follows

public boolean equals(Date d){

return ((this.day == d.day) &&

(this.month == d.month) &&

(this.year == d.year));

}

Unfortunately,
boolean equals(Date d)

does not override
boolean equals(Object o)!

Should write, instead

Note the run-time type check and the
cast

Madhavan Mukund The Java class hierarchy Programming Concepts using Java 5 / 7

Overriding functions

For instance, a class Date with instance
variables day, month and year

May wish to override equals() to
compare the object state, as follows

public boolean equals(Date d){

return ((this.day == d.day) &&

(this.month == d.month) &&

(this.year == d.year));

}

Unfortunately,
boolean equals(Date d)

does not override
boolean equals(Object o)!

Should write, instead

public boolean equals(Object d){

if (d instanceof Date){

Date myd = (Date) d;

return ((this.day == myd.day) &&

(this.month == myd.month) &&

(this.year == myd.year));

}

return(false);

}

Note the run-time type check and the
cast

Madhavan Mukund The Java class hierarchy Programming Concepts using Java 5 / 7

Overriding functions

Overriding looks for “closest” match

Suppose we have public boolean equals(Employee e) but no equals() in
Manager

Consider

public boolean equals(Manager m) is compatible with both
boolean equals(Employee e) and boolean equals(Object o)

Use boolean equals(Employee e)

Madhavan Mukund The Java class hierarchy Programming Concepts using Java 6 / 7

Overriding functions

Overriding looks for “closest” match

Suppose we have public boolean equals(Employee e) but no equals() in
Manager

Consider

public boolean equals(Manager m) is compatible with both
boolean equals(Employee e) and boolean equals(Object o)

Use boolean equals(Employee e)

Madhavan Mukund The Java class hierarchy Programming Concepts using Java 6 / 7

Overriding functions

Overriding looks for “closest” match

Suppose we have public boolean equals(Employee e) but no equals() in
Manager

Consider

Manager m1 = new Manager(...);

Manager m2 = new Manager(...);

...

if (m1.equals(m2)){ ... }

public boolean equals(Manager m) is compatible with both
boolean equals(Employee e) and boolean equals(Object o)

Use boolean equals(Employee e)

Madhavan Mukund The Java class hierarchy Programming Concepts using Java 6 / 7

Overriding functions

Overriding looks for “closest” match

Suppose we have public boolean equals(Employee e) but no equals() in
Manager

Consider

Manager m1 = new Manager(...);

Manager m2 = new Manager(...);

...

if (m1.equals(m2)){ ... }

public boolean equals(Manager m) is compatible with both
boolean equals(Employee e) and boolean equals(Object o)

Use boolean equals(Employee e)

Madhavan Mukund The Java class hierarchy Programming Concepts using Java 6 / 7

Overriding functions

Overriding looks for “closest” match

Suppose we have public boolean equals(Employee e) but no equals() in
Manager

Consider

Manager m1 = new Manager(...);

Manager m2 = new Manager(...);

...

if (m1.equals(m2)){ ... }

public boolean equals(Manager m) is compatible with both
boolean equals(Employee e) and boolean equals(Object o)

Use boolean equals(Employee e)

Madhavan Mukund The Java class hierarchy Programming Concepts using Java 6 / 7

Summary

Java does not allow multiple inheritance

A subclass can extend only one parent class

The Java class hierarchy forms a tree

The root of the hierarchy is a built-in class called Object

Object defines default functions like equals() and toString()

These are implicitly inherited by any class that we write

When we override functions, we should be careful to check the signature

Madhavan Mukund The Java class hierarchy Programming Concepts using Java 7 / 7

Subtyping vs inheritance

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 3

https://www.cmi.ac.in/~madhavan

Subclasses, subtyping and inheritance

Class hierarchy provides both subtyping and inheritance

Subtyping

Capabilities of the subtype are a superset of the main type

If B is a subtype of A, wherever we require an object of type A, we can use an object of
type B

Employee e = new Manager(...); is legal

Inheritance

Subtype can reuse code of the main type

B inherits from A if some functions for B are written in terms of functions of A

Manager.bonus() uses Employee.bonus()

Madhavan Mukund Subtyping vs inheritance Programming Concepts using Java 2 / 4

Subclasses, subtyping and inheritance

Class hierarchy provides both subtyping and inheritance

Subtyping

Capabilities of the subtype are a superset of the main type

If B is a subtype of A, wherever we require an object of type A, we can use an object of
type B

Employee e = new Manager(...); is legal

Inheritance

Subtype can reuse code of the main type

B inherits from A if some functions for B are written in terms of functions of A

Manager.bonus() uses Employee.bonus()

Madhavan Mukund Subtyping vs inheritance Programming Concepts using Java 2 / 4

Subclasses, subtyping and inheritance

Class hierarchy provides both subtyping and inheritance

Subtyping

Capabilities of the subtype are a superset of the main type

If B is a subtype of A, wherever we require an object of type A, we can use an object of
type B

Employee e = new Manager(...); is legal

Inheritance

Subtype can reuse code of the main type

B inherits from A if some functions for B are written in terms of functions of A

Manager.bonus() uses Employee.bonus()

Madhavan Mukund Subtyping vs inheritance Programming Concepts using Java 2 / 4

Subtyping vs inheritance

Recall the following example

queue, with methods insert-rear, delete-front

stack, with methods insert-front, delete-front

deque, with methods insert-front, delete-front, insert-rear, delete-rear

What are the subtype and inheritance relationships between these classes?

Subtyping

deque has more functionality than queue or stack

deque is a subtype of both these types

Inheritance

Can suppress two functions in a deque and use it as a queue or stack

Both queue and stack inherit from deque

Madhavan Mukund Subtyping vs inheritance Programming Concepts using Java 3 / 4

Subtyping vs inheritance

Recall the following example

queue, with methods insert-rear, delete-front

stack, with methods insert-front, delete-front

deque, with methods insert-front, delete-front, insert-rear, delete-rear

What are the subtype and inheritance relationships between these classes?

Subtyping

deque has more functionality than queue or stack

deque is a subtype of both these types

Inheritance

Can suppress two functions in a deque and use it as a queue or stack

Both queue and stack inherit from deque

Madhavan Mukund Subtyping vs inheritance Programming Concepts using Java 3 / 4

Subtyping vs inheritance

Recall the following example

queue, with methods insert-rear, delete-front

stack, with methods insert-front, delete-front

deque, with methods insert-front, delete-front, insert-rear, delete-rear

What are the subtype and inheritance relationships between these classes?

Subtyping

deque has more functionality than queue or stack

deque is a subtype of both these types

Inheritance

Can suppress two functions in a deque and use it as a queue or stack

Both queue and stack inherit from deque

Madhavan Mukund Subtyping vs inheritance Programming Concepts using Java 3 / 4

Subtyping vs inheritance

Recall the following example

queue, with methods insert-rear, delete-front

stack, with methods insert-front, delete-front

deque, with methods insert-front, delete-front, insert-rear, delete-rear

What are the subtype and inheritance relationships between these classes?

Subtyping

deque has more functionality than queue or stack

deque is a subtype of both these types

Inheritance

Can suppress two functions in a deque and use it as a queue or stack

Both queue and stack inherit from deque

Madhavan Mukund Subtyping vs inheritance Programming Concepts using Java 3 / 4

Subclasses, subtyping and inheritance

Class hierarchy represents both subtyping and inheritance

Subtyping

Compatibility of interfaces.

B is a subtype of A if every function that can be invoked on an object of type A can
also be invoked on an object of type B.

Inheritance

Reuse of implementations.

B inherits from A if some functions for B are written in terms of functions of A.

Using one idea (hierarchy of classes) to implement both concepts blurs the
distinction between the two

Madhavan Mukund Subtyping vs inheritance Programming Concepts using Java 4 / 4

Subclasses, subtyping and inheritance

Class hierarchy represents both subtyping and inheritance

Subtyping

Compatibility of interfaces.

B is a subtype of A if every function that can be invoked on an object of type A can
also be invoked on an object of type B.

Inheritance

Reuse of implementations.

B inherits from A if some functions for B are written in terms of functions of A.

Using one idea (hierarchy of classes) to implement both concepts blurs the
distinction between the two

Madhavan Mukund Subtyping vs inheritance Programming Concepts using Java 4 / 4

Subclasses, subtyping and inheritance

Class hierarchy represents both subtyping and inheritance

Subtyping

Compatibility of interfaces.

B is a subtype of A if every function that can be invoked on an object of type A can
also be invoked on an object of type B.

Inheritance

Reuse of implementations.

B inherits from A if some functions for B are written in terms of functions of A.

Using one idea (hierarchy of classes) to implement both concepts blurs the
distinction between the two

Madhavan Mukund Subtyping vs inheritance Programming Concepts using Java 4 / 4

Subclasses, subtyping and inheritance

Class hierarchy represents both subtyping and inheritance

Subtyping

Compatibility of interfaces.

B is a subtype of A if every function that can be invoked on an object of type A can
also be invoked on an object of type B.

Inheritance

Reuse of implementations.

B inherits from A if some functions for B are written in terms of functions of A.

Using one idea (hierarchy of classes) to implement both concepts blurs the
distinction between the two

Madhavan Mukund Subtyping vs inheritance Programming Concepts using Java 4 / 4

Java modifiers

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 3

https://www.cmi.ac.in/~madhavan

Modifiers in Java

Java uses many modifiers in declarations, to cover different features of
object-oriented programming

public vs private to support encapsulation of data

static, for entities defined inside classes that exist without creating objects of the
class

final, for values that cannot be changed

These modifiers can be applied to classes, instance variables and methods

Let’s look at some examples of situations where different combinations make sense

Madhavan Mukund Java modifiers Programming Concepts using Java 2 / 8

Modifiers in Java

Java uses many modifiers in declarations, to cover different features of
object-oriented programming

public vs private to support encapsulation of data

static, for entities defined inside classes that exist without creating objects of the
class

final, for values that cannot be changed

These modifiers can be applied to classes, instance variables and methods

Let’s look at some examples of situations where different combinations make sense

Madhavan Mukund Java modifiers Programming Concepts using Java 2 / 8

Modifiers in Java

Java uses many modifiers in declarations, to cover different features of
object-oriented programming

public vs private to support encapsulation of data

static, for entities defined inside classes that exist without creating objects of the
class

final, for values that cannot be changed

These modifiers can be applied to classes, instance variables and methods

Let’s look at some examples of situations where different combinations make sense

Madhavan Mukund Java modifiers Programming Concepts using Java 2 / 8

Modifiers in Java

Java uses many modifiers in declarations, to cover different features of
object-oriented programming

public vs private to support encapsulation of data

static, for entities defined inside classes that exist without creating objects of the
class

final, for values that cannot be changed

These modifiers can be applied to classes, instance variables and methods

Let’s look at some examples of situations where different combinations make sense

Madhavan Mukund Java modifiers Programming Concepts using Java 2 / 8

Modifiers in Java

Java uses many modifiers in declarations, to cover different features of
object-oriented programming

public vs private to support encapsulation of data

static, for entities defined inside classes that exist without creating objects of the
class

final, for values that cannot be changed

These modifiers can be applied to classes, instance variables and methods

Let’s look at some examples of situations where different combinations make sense

Madhavan Mukund Java modifiers Programming Concepts using Java 2 / 8

Modifiers in Java

Java uses many modifiers in declarations, to cover different features of
object-oriented programming

public vs private to support encapsulation of data

static, for entities defined inside classes that exist without creating objects of the
class

final, for values that cannot be changed

These modifiers can be applied to classes, instance variables and methods

Let’s look at some examples of situations where different combinations make sense

Madhavan Mukund Java modifiers Programming Concepts using Java 2 / 8

public vs private

Faithful implementation of
encapsulation necessitates modifiers
public and private

Typically, instance variables are
private

Methods to query (accessor) and
update (mutator) the state are public

Can private methods make sense?

Example: a Stack class

Data stored in a private array

Public methods to push, pop, query if
empty

Madhavan Mukund Java modifiers Programming Concepts using Java 3 / 8

public vs private

Faithful implementation of
encapsulation necessitates modifiers
public and private

Typically, instance variables are
private

Methods to query (accessor) and
update (mutator) the state are public

Can private methods make sense?

Example: a Stack class

Data stored in a private array

Public methods to push, pop, query if
empty

Madhavan Mukund Java modifiers Programming Concepts using Java 3 / 8

public vs private

Faithful implementation of
encapsulation necessitates modifiers
public and private

Typically, instance variables are
private

Methods to query (accessor) and
update (mutator) the state are public

Can private methods make sense?

Example: a Stack class

Data stored in a private array

Public methods to push, pop, query if
empty

public class Stack {

private int[] values; // array of values

private int tos; // top of stack

private int size; // values.length

/* Constructors to set up values array */

public void push (int i){

....

}

public int pop (){

...

}

public boolean is_empty (){

return (tos == 0);

}

}

Madhavan Mukund Java modifiers Programming Concepts using Java 3 / 8

private methods

Example: a Stack class

Data stored in a private array

Public methods to push, pop, query if
empty

push() needs to check if stack has
space

Deal gracefully with stack overflow

private methods invoked from within
push() to check if stack is full and
expand storage

public class Stack {

private int[] values; // array of values

private int tos; // top of stack

private int size; // values.length

/* Constructors to set up values array */

public void push (int i){

....

}

public int pop (){

...

}

public boolean is_empty (){

return (tos == 0);

}

}

Madhavan Mukund Java modifiers Programming Concepts using Java 4 / 8

private methods

Example: a Stack class

Data stored in a private array

Public methods to push, pop, query if
empty

push() needs to check if stack has
space

Deal gracefully with stack overflow

private methods invoked from within
push() to check if stack is full and
expand storage

public class Stack {

...

public void push (int i){

if (tos < size){

values[tos] = i;

tos = tos+1;

}else{

// Deal with stack overflow

}

...

}

...

}

Madhavan Mukund Java modifiers Programming Concepts using Java 4 / 8

private methods

Example: a Stack class

Data stored in a private array

Public methods to push, pop, query if
empty

push() needs to check if stack has
space

Deal gracefully with stack overflow

private methods invoked from within
push() to check if stack is full and
expand storage

public class Stack {

...

public void push (int i){

if (stack_full()){

extend_stack();

}

... // Usual push operations

}

...

private boolean stack_full(){

return(tos == size);

}

private void extend_stack(){

/* Allocate additional space,

reset size etc */

}

}

Madhavan Mukund Java modifiers Programming Concepts using Java 4 / 8

Accessor and mutator methods

Public methods to query and update
private instance variables

Date class

Private instance variables day, month,
year

One public accessor/mutator method
per instance variable

Inconsistent updates are now possible

Separately set invalid combinations of
day and month

Instead, allow only combined update

Madhavan Mukund Java modifiers Programming Concepts using Java 5 / 8

Accessor and mutator methods

Public methods to query and update
private instance variables

Date class

Private instance variables day, month,
year

One public accessor/mutator method
per instance variable

Inconsistent updates are now possible

Separately set invalid combinations of
day and month

Instead, allow only combined update

public class Date {

private int day, month year;

public void getDay(int d) {...}

public void getMonth(int m) {...}

public void getYear(int y) {...}

public void setDay(int d) {...}

public void setMonth(int m) {...}

public void setYear(int y) {...}

}

Madhavan Mukund Java modifiers Programming Concepts using Java 5 / 8

Accessor and mutator methods

Public methods to query and update
private instance variables

Date class

Private instance variables day, month,
year

One public accessor/mutator method
per instance variable

Inconsistent updates are now possible

Separately set invalid combinations of
day and month

Instead, allow only combined update

public class Date {

private int day, month year;

public void getDay(int d) {...}

public void getMonth(int m) {...}

public void getYear(int y) {...}

public void setDay(int d) {...}

public void setMonth(int m) {...}

public void setYear(int y) {...}

}

Madhavan Mukund Java modifiers Programming Concepts using Java 5 / 8

Accessor and mutator methods

Public methods to query and update
private instance variables

Date class

Private instance variables day, month,
year

One public accessor/mutator method
per instance variable

Inconsistent updates are now possible

Separately set invalid combinations of
day and month

Instead, allow only combined update

public class Date {

private int day, month year;

public void getDay(int d) {...}

public void getMonth(int m) {...}

public void getYear(int y) {...}

public void setDate(int d, int m, int y) {

...

// Validate d-m-y combination

}

}

Madhavan Mukund Java modifiers Programming Concepts using Java 5 / 8

static components

Use static for components that exist
without creating objects

Library functions, main(), . . .

Useful constants like Math.PI,
Integer.MAX VALUE

These static components are also
public

Do private static components make
sense?

Internal constants for bookkeeping

Constructor sets unique id for each
order

lastorderid is private static field

Common to all objects in the class

Be careful about concurrent updates!

Madhavan Mukund Java modifiers Programming Concepts using Java 6 / 8

static components

Use static for components that exist
without creating objects

Library functions, main(), . . .

Useful constants like Math.PI,
Integer.MAX VALUE

These static components are also
public

Do private static components make
sense?

Internal constants for bookkeeping

Constructor sets unique id for each
order

lastorderid is private static field

Common to all objects in the class

Be careful about concurrent updates!

Madhavan Mukund Java modifiers Programming Concepts using Java 6 / 8

static components

Use static for components that exist
without creating objects

Library functions, main(), . . .

Useful constants like Math.PI,
Integer.MAX VALUE

These static components are also
public

Do private static components make
sense?

Internal constants for bookkeeping

Constructor sets unique id for each
order

lastorderid is private static field

Common to all objects in the class

Be careful about concurrent updates!

Madhavan Mukund Java modifiers Programming Concepts using Java 6 / 8

static components

Use static for components that exist
without creating objects

Library functions, main(), . . .

Useful constants like Math.PI,
Integer.MAX VALUE

These static components are also
public

Do private static components make
sense?

Internal constants for bookkeeping

Constructor sets unique id for each
order

public class Order {

private static int lastorderid = 0;

private int orderid;

....

public Order(...) {

lastorderid++;

orderid = lastorderid;

...

}

lastorderid is private static field

Common to all objects in the class

Be careful about concurrent updates!

Madhavan Mukund Java modifiers Programming Concepts using Java 6 / 8

static components

Use static for components that exist
without creating objects

Library functions, main(), . . .

Useful constants like Math.PI,
Integer.MAX VALUE

These static components are also
public

Do private static components make
sense?

Internal constants for bookkeeping

Constructor sets unique id for each
order

public class Order {

private static int lastorderid = 0;

private int orderid;

....

public Order(...) {

lastorderid++;

orderid = lastorderid;

...

}

lastorderid is private static field

Common to all objects in the class

Be careful about concurrent updates!

Madhavan Mukund Java modifiers Programming Concepts using Java 6 / 8

static components

Use static for components that exist
without creating objects

Library functions, main(), . . .

Useful constants like Math.PI,
Integer.MAX VALUE

These static components are also
public

Do private static components make
sense?

Internal constants for bookkeeping

Constructor sets unique id for each
order

public class Order {

private static int lastorderid = 0;

private int orderid;

....

public Order(...) {

lastorderid++;

orderid = lastorderid;

...

}

lastorderid is private static field

Common to all objects in the class

Be careful about concurrent updates!

Madhavan Mukund Java modifiers Programming Concepts using Java 6 / 8

static components

Use static for components that exist
without creating objects

Library functions, main(), . . .

Useful constants like Math.PI,
Integer.MAX VALUE

These static components are also
public

Do private static components make
sense?

Internal constants for bookkeeping

Constructor sets unique id for each
order

public class Order {

private static int lastorderid = 0;

private int orderid;

....

public Order(...) {

lastorderid++;

orderid = lastorderid;

...

}

lastorderid is private static field

Common to all objects in the class

Be careful about concurrent updates!

Madhavan Mukund Java modifiers Programming Concepts using Java 6 / 8

final components

final denotes that a value cannot be updated

Usually used for constants (public and static instance variables)

Math.PI, Integer.MAX VALUE

What would final mean for a method?

Cannot redefine functions at run-time, unlike Python!

Recall overriding

Subclass redefines a method available with the same signature in the parent class

A final method cannot be overridden

Madhavan Mukund Java modifiers Programming Concepts using Java 7 / 8

final components

final denotes that a value cannot be updated

Usually used for constants (public and static instance variables)

Math.PI, Integer.MAX VALUE

What would final mean for a method?

Cannot redefine functions at run-time, unlike Python!

Recall overriding

Subclass redefines a method available with the same signature in the parent class

A final method cannot be overridden

Madhavan Mukund Java modifiers Programming Concepts using Java 7 / 8

final components

final denotes that a value cannot be updated

Usually used for constants (public and static instance variables)

Math.PI, Integer.MAX VALUE

What would final mean for a method?

Cannot redefine functions at run-time, unlike Python!

Recall overriding

Subclass redefines a method available with the same signature in the parent class

A final method cannot be overridden

Madhavan Mukund Java modifiers Programming Concepts using Java 7 / 8

final components

final denotes that a value cannot be updated

Usually used for constants (public and static instance variables)

Math.PI, Integer.MAX VALUE

What would final mean for a method?

Cannot redefine functions at run-time, unlike Python!

Recall overriding

Subclass redefines a method available with the same signature in the parent class

A final method cannot be overridden

Madhavan Mukund Java modifiers Programming Concepts using Java 7 / 8

final components

final denotes that a value cannot be updated

Usually used for constants (public and static instance variables)

Math.PI, Integer.MAX VALUE

What would final mean for a method?

Cannot redefine functions at run-time, unlike Python!

Recall overriding

Subclass redefines a method available with the same signature in the parent class

A final method cannot be overridden

Madhavan Mukund Java modifiers Programming Concepts using Java 7 / 8

Summary

private and public are natural artefacts of encapsulation

Usually, instance variables are private and methods are public

However, private methods also make sense

Modifiers static and final are orthogonal to public/private

Use private static instance variables to maintain bookkeeping information
across objects in a class

Global serial number, count number of objects created, profile method invocations, . . .

Usually final is used with instance variables to denote constants

Also makes sense for methods

A final method cannot be overridden by a subclass

Can also have private classes, later

Madhavan Mukund Java modifiers Programming Concepts using Java 8 / 8

Week-3

Lecture-1

Lecture-2

Lecture-3

Lecture-4

Lecture-5

Lecture-6

Programming Concepts Using Java
Week 3 Revision

Week-3

Lecture-1

Lecture-2

Lecture-3

Lecture-4

Lecture-5

Lecture-6

W03:L01: The philosophy of OO programming

Structured programming
The algorithms come first

Design a set of procedures for specific tasks
Combine them to build complex systems

Data representation comes later

Design data structures to suit procedural manipulations

Object Oriented design

First identify the data we want to maintain and manipulate
Then identify algorithms to operate on the data

Designing objects

Behaviour – what methods do we need to operate on objects?
State – how does the object react when methods are invoked?

State is the information in the instance variables
Encapsulation – should not change unless a method operates on it

Week-3

Lecture-1

Lecture-2

Lecture-3

Lecture-4

Lecture-5

Lecture-6

W03:L01: The philosophy of OO programming (Cont.)

Relationship between classes
Dependence

Order needs Account to check credit status
Item does not depend on Account
Robust design minimizes dependencies, or coupling between classes

Aggregation

Order contains Item objects

Inheritance

One object is a specialized versions of another
ExpressOrder inherits from Order
Extra methods to compute shipping charges, priority handling

Week-3

Lecture-1

Lecture-2

Lecture-3

Lecture-4

Lecture-5

Lecture-6

W03:L02: Subclasses and inheritance

A subclass extends a parent class

Subclass inherits instance variables and
methods from the parent class

Subclass can add more instance variables
and methods

Can also override methods

Subclasses cannot see private
components of parent class

Use super to access constructor of
parent class

Manager objects inherit other fields and
methods from Employee

Every Manager has a name, salary and
methods to access and manipulate these.

public class Employee{
private String name;
private double salary;

// Some Constructors ...

// "mutator" methods
public boolean setName(String s){ ... }
public boolean setSalary(double x){ ... }

// "accessor" methods
public String getName(){ ... }
public double getSalary(){ ... }

// other methods
public double bonus(float percent){

return (percent/100.0)*salary;
}

}
public class Manager extends Employee{

private String secretary;
public boolean setSecretary(name s){ ... }
public String getSecretary(){ ... }

}

Week-3

Lecture-1

Lecture-2

Lecture-3

Lecture-4

Lecture-5

Lecture-6

W03:L03: Dynamic dispatch and polymorphism

Manager can redefine bonus()

double bonus(float percent){

return 1.5*super.bonus(percent);

}

Uses parent class bonus() via super
Overrides definition in parent class

Consider the following assignment

Employee e = new Manager(...)

Can we invoke e.setSecretary()?

e is declared to be an Employee
Static typechecking – e can only refer
to methods in Employee

public class Employee{
private String name;
private double salary;

// Some Constructors ...

// "mutator" methods
public boolean setName(String s){ ... }
public boolean setSalary(double x){ ... }

// "accessor" methods
public String getName(){ ... }
public double getSalary(){ ... }

// other methods
public double bonus(float percent){

return (percent/100.0)*salary;
}

}
public class Manager extends Employee{

private String secretary;
public boolean setSecretary(name s){ ... }
public String getSecretary(){ ... }

}

Week-3

Lecture-1

Lecture-2

Lecture-3

Lecture-4

Lecture-5

Lecture-6

W03:L03: Dynamic dispatch and polymorphism (Cont.)

What about e.bonus(p)? Which bonus()
do we use?

Static: Use Employee.bonus()
Dynamic: Use Manager.bonus()

Dynamic dispatch (dynamic binding,
late method binding, . . .) turns out to
be more useful

Polymorphism

Every Employee in emparray ”knows”
how to calculate its bonus correctly!

Employee[] emparray = new Employee[2];
Employee e = new Employee(...);
Manager e = new Manager(...);
emparray[0] = e;
emparray[1] = m;
for (i = 0; i < emparray.length; i++){

System.out.println(emparray[i].bonus(5.0);
}

public class Employee{
private String name;
private double salary;

// Some Constructors ...

// "mutator" methods
public boolean setName(String s){ ... }
public boolean setSalary(double x){ ... }

// "accessor" methods
public String getName(){ ... }
public double getSalary(){ ... }

// other methods
public double bonus(float percent){

return (percent/100.0)*salary;
}

}
public class Manager extends Employee{

private String secretary;
public boolean setSecretary(name s){ ... }
public String getSecretary(){ ... }

}

Week-3

Lecture-1

Lecture-2

Lecture-3

Lecture-4

Lecture-5

Lecture-6

W03:L03: Dynamic dispatch and polymorphism (Cont.)

Signature of a function is its name and
the list of argument types

Overloading: multiple methods, different
signatures, choice is static

Overriding: multiple methods, same
signature, choice is static

Employee.bonus()
Manager.bonus()

Dynamic dispatch: multiple methods,
same signature, choice made at run-time

double[] darr = new double[100];
int[] iarr = new int[500];
...
Arrays.sort(darr);

// sorts contents of darr
Arrays.sort(iarr);

// sorts contents of iarr
class Arrays{

...
public static void sort(double[] a){..}

// sorts arrays of double[]
public static void sort(int[] a){..}

// sorts arrays of int[]
...

}

Week-3

Lecture-1

Lecture-2

Lecture-3

Lecture-4

Lecture-5

Lecture-6

W03:L03: Dynamic dispatch and polymorphism (Cont.)

Type casting

Consider the following assignment

Employee e = new Manager(...)

e.setSecretary() does not work

Static type-checking disallows this

Type casting — convert e to Manager

((Manager) e).setSecretary(s)

Cast fails (error at run time) if e is not a
Manager

Can test if e is a Manager

if (e instanceof Manager){

((Manager) e).setSecretary(s);

}

public class Employee{
private String name;
private double salary;

// Some Constructors ...

// "mutator" methods
public boolean setName(String s){ ... }
public boolean setSalary(double x){ ... }

// "accessor" methods
public String getName(){ ... }
public double getSalary(){ ... }

// other methods
public double bonus(float percent){

return (percent/100.0)*salary;
}

}
public class Manager extends Employee{

private String secretary;
public boolean setSecretary(name s){ ... }
public String getSecretary(){ ... }

}

Week-3

Lecture-1

Lecture-2

Lecture-3

Lecture-4

Lecture-5

Lecture-6

W03:L04: The Java class hierarchy

Java does not allow multiple inheritance

A subclass can extend only one parent class

The Java class hierarchy forms a tree

The root of the hierarchy is a built-in class called Object

Object defines default functions like equals() and toString()
These are implicitly inherited by any class that we write

When we override functions, we should be careful to check the signature

Useful methods defined in Object

public boolean equals(Object o) // defaults to pointer equality

public String toString() // converts the values of the

// instance variables to String

For Java objects x and y, x == y invokes x.equals(y)

To print o, use System.out.println(o+””);

Implicitly invokes o.toString()

Week-3

Lecture-1

Lecture-2

Lecture-3

Lecture-4

Lecture-5

Lecture-6

W03:L05: Subtyping vs inheritance

Class hierarchy provides both subtyping and inheritance

Subtyping

Capabilities of the subtype are a superset of the main type
If B is a subtype of A, wherever we require an object of type A, we can use an object of
type B
Employee e = new Manager(...); is legal
Compatibility of interfaces

Inheritance

Subtype can reuse code of the main type
B inherits from A if some functions for B are written in terms of functions of A
Manager.bonus() uses Employee.bonus()
Reuse of implementations

Using one idea (hierarchy of classes) to implement both concepts blurs the distinction
between the two

Week-3

Lecture-1

Lecture-2

Lecture-3

Lecture-4

Lecture-5

Lecture-6

W03:L06: Java modifiers

private and public are natural artefacts of encapsulation

Usually, instance variables are private and methods are public
However, private methods also make sense

Modifiers static and final are orthogonal to public/private

Use private static instance variables to maintain bookkeeping information across
objects in a class

Global serial number, count number of objects created, profile method invocations, . . .

Usually final is used with instance variables to denote constants

A final method cannot be overridden by a subclass

A final class cannot be inherited

Can also have private classes

Abstract classes and interfaces

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 4

https://www.cmi.ac.in/~madhavan

Grouping together classes

Sometimes we collect together classes under a common heading

Classes Circle, Square and Rectangle are all shapes

Create a class Shape so that Circle, Square and Rectangle extend Shape

We want to force every Shape to define a function

public double perimeter()

Could define a function in Shape that returns an absurd value

public double perimeter() { return(-1.0); }

Rely on the subclass to redefine this function

What if this doesn’t happen?

Should not depend on programmer discipline

Madhavan Mukund Abstract classes and interfaces Programming Concepts using Java 2 / 8

Grouping together classes

Sometimes we collect together classes under a common heading

Classes Circle, Square and Rectangle are all shapes

Create a class Shape so that Circle, Square and Rectangle extend Shape

We want to force every Shape to define a function

public double perimeter()

Could define a function in Shape that returns an absurd value

public double perimeter() { return(-1.0); }

Rely on the subclass to redefine this function

What if this doesn’t happen?

Should not depend on programmer discipline

Madhavan Mukund Abstract classes and interfaces Programming Concepts using Java 2 / 8

Grouping together classes

Sometimes we collect together classes under a common heading

Classes Circle, Square and Rectangle are all shapes

Create a class Shape so that Circle, Square and Rectangle extend Shape

We want to force every Shape to define a function

public double perimeter()

Could define a function in Shape that returns an absurd value

public double perimeter() { return(-1.0); }

Rely on the subclass to redefine this function

What if this doesn’t happen?

Should not depend on programmer discipline

Madhavan Mukund Abstract classes and interfaces Programming Concepts using Java 2 / 8

Grouping together classes

Sometimes we collect together classes under a common heading

Classes Circle, Square and Rectangle are all shapes

Create a class Shape so that Circle, Square and Rectangle extend Shape

We want to force every Shape to define a function

public double perimeter()

Could define a function in Shape that returns an absurd value

public double perimeter() { return(-1.0); }

Rely on the subclass to redefine this function

What if this doesn’t happen?

Should not depend on programmer discipline

Madhavan Mukund Abstract classes and interfaces Programming Concepts using Java 2 / 8

Grouping together classes

Sometimes we collect together classes under a common heading

Classes Circle, Square and Rectangle are all shapes

Create a class Shape so that Circle, Square and Rectangle extend Shape

We want to force every Shape to define a function

public double perimeter()

Could define a function in Shape that returns an absurd value

public double perimeter() { return(-1.0); }

Rely on the subclass to redefine this function

What if this doesn’t happen?

Should not depend on programmer discipline

Madhavan Mukund Abstract classes and interfaces Programming Concepts using Java 2 / 8

Grouping together classes

Sometimes we collect together classes under a common heading

Classes Circle, Square and Rectangle are all shapes

Create a class Shape so that Circle, Square and Rectangle extend Shape

We want to force every Shape to define a function

public double perimeter()

Could define a function in Shape that returns an absurd value

public double perimeter() { return(-1.0); }

Rely on the subclass to redefine this function

What if this doesn’t happen?

Should not depend on programmer discipline

Madhavan Mukund Abstract classes and interfaces Programming Concepts using Java 2 / 8

Grouping together classes

Sometimes we collect together classes under a common heading

Classes Circle, Square and Rectangle are all shapes

Create a class Shape so that Circle, Square and Rectangle extend Shape

We want to force every Shape to define a function

public double perimeter()

Could define a function in Shape that returns an absurd value

public double perimeter() { return(-1.0); }

Rely on the subclass to redefine this function

What if this doesn’t happen?

Should not depend on programmer discipline

Madhavan Mukund Abstract classes and interfaces Programming Concepts using Java 2 / 8

Abstract classes

A better solution

Provide an abstract definition in Shape

public abstract double perimeter();

Forces subclasses to provide a concrete implementation

Cannot create objects from a class that has abstract functions

Shape must itself be declared to be abstract

Madhavan Mukund Abstract classes and interfaces Programming Concepts using Java 3 / 8

Abstract classes

A better solution

Provide an abstract definition in Shape

public abstract double perimeter();

Forces subclasses to provide a concrete implementation

Cannot create objects from a class that has abstract functions

Shape must itself be declared to be abstract

Madhavan Mukund Abstract classes and interfaces Programming Concepts using Java 3 / 8

Abstract classes

A better solution

Provide an abstract definition in Shape

public abstract double perimeter();

Forces subclasses to provide a concrete implementation

Cannot create objects from a class that has abstract functions

Shape must itself be declared to be abstract

Madhavan Mukund Abstract classes and interfaces Programming Concepts using Java 3 / 8

Abstract classes

A better solution

Provide an abstract definition in Shape

public abstract double perimeter();

Forces subclasses to provide a concrete implementation

Cannot create objects from a class that has abstract functions

Shape must itself be declared to be abstract

public abstract class Shape{

...

public abstract double perimeter();

...

}

Madhavan Mukund Abstract classes and interfaces Programming Concepts using Java 3 / 8

Abstract classes . . .

Can still declare variables whose type is an abstract class

Madhavan Mukund Abstract classes and interfaces Programming Concepts using Java 4 / 8

Abstract classes . . .

Can still declare variables whose type is an abstract class

Shape shapearr[] = new Shape[3];

int sizearr[] = new int[3];

shapearr[0] = new Circle(...);

shapearr[1] = new Square(...);

shapearr[2] = new Rectangle(...);

for (i = 0; i < 2; i++){

sizearr[i] = shapearr[i].perimeter();

// each shapearr[i] calls the appropriate method

...

}

Madhavan Mukund Abstract classes and interfaces Programming Concepts using Java 4 / 8

Generic functions

Use abstract classes to specify generic properties

public abstract class Comparable{

public abstract int cmp(Comparable s);

// return -1 if this < s,

// 0 if this == 0,

// +1 if this > s

}

Now we can sort any array of objects that extend Comparable

Madhavan Mukund Abstract classes and interfaces Programming Concepts using Java 5 / 8

Generic functions

Use abstract classes to specify generic properties

public abstract class Comparable{

public abstract int cmp(Comparable s);

// return -1 if this < s,

// 0 if this == 0,

// +1 if this > s

}

Now we can sort any array of objects that extend Comparable

public class SortFunctions{

public static void quicksort(Comparable[] a){

...

// Usual code for quicksort, except that

// to compare a[i] and a[j] we use a[i].cmp(a[j])

}

}
Madhavan Mukund Abstract classes and interfaces Programming Concepts using Java 5 / 8

Generic functions . . .

public class SortFunctions{

public static void quicksort(Comparable[] a){

...

}

}

To use this definition of quicksort, we write

Madhavan Mukund Abstract classes and interfaces Programming Concepts using Java 6 / 8

Generic functions . . .

public class SortFunctions{

public static void quicksort(Comparable[] a){

...

}

}

To use this definition of quicksort, we write

public class Myclass extends Comparable{

private double size; // quantity used for comparison

public int cmp(Comparable s){

if (s instanceof Myclass){

// compare this.size and ((Myclass) s).size

// Note the cast to access s.size

}

}

}
Madhavan Mukund Abstract classes and interfaces Programming Concepts using Java 6 / 8

Mutiple inheritance

Can we sort Circle objects using the generic functions in SortFunctions?

Circle already extends Shape

Java does not allow Circle to also extend Comparable!

An interface is an abstract class with no concrete components

A class that extends an interface is said to implement it:

Can extend only one class, but can implement multiple interfaces

Madhavan Mukund Abstract classes and interfaces Programming Concepts using Java 7 / 8

Mutiple inheritance

Can we sort Circle objects using the generic functions in SortFunctions?

Circle already extends Shape

Java does not allow Circle to also extend Comparable!

An interface is an abstract class with no concrete components

public interface Comparable{

public abstract int cmp(Comparable s);

}

A class that extends an interface is said to implement it:

Can extend only one class, but can implement multiple interfaces

Madhavan Mukund Abstract classes and interfaces Programming Concepts using Java 7 / 8

Mutiple inheritance

Can we sort Circle objects using the generic functions in SortFunctions?

Circle already extends Shape

Java does not allow Circle to also extend Comparable!

An interface is an abstract class with no concrete components

public interface Comparable{

public abstract int cmp(Comparable s);

}

A class that extends an interface is said to implement it:

public class Circle extends Shape implements Comparable{

public double perimeter(){...}

public int cmp(Comparable s){...}

...

}

Can extend only one class, but can implement multiple interfaces

Madhavan Mukund Abstract classes and interfaces Programming Concepts using Java 7 / 8

Mutiple inheritance

Can we sort Circle objects using the generic functions in SortFunctions?

Circle already extends Shape

Java does not allow Circle to also extend Comparable!

An interface is an abstract class with no concrete components

public interface Comparable{

public abstract int cmp(Comparable s);

}

A class that extends an interface is said to implement it:

public class Circle extends Shape implements Comparable{

public double perimeter(){...}

public int cmp(Comparable s){...}

...

}

Can extend only one class, but can implement multiple interfaces
Madhavan Mukund Abstract classes and interfaces Programming Concepts using Java 7 / 8

Summary

We can use the class hierarchy to group together related classes

An abstract method in a parent class forces each subclass to implement it in a
sensible manner

Any class with an abtract method is itself abstract

Cannot create objects corresponding to an abstract class

However, we can define variables whose type is an abstract class

Abstract classes can also describe capabilities, allowing for generic functions

An interface is an abstract class with no concrete components

A class to extend only one parent class, but it can implement any number of interfaces

Madhavan Mukund Abstract classes and interfaces Programming Concepts using Java 8 / 8

Interfaces

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 4

https://www.cmi.ac.in/~madhavan

Interfaces

An interface is a purely abstract class

All methods are abstract

A class implements an interface

Provide concrete code for each abstract function

Classes can implement multiple interfaces

Abstract functions, so no contradictory inheritance

Interfaces describe relevant aspects of a class

Abstract functions describe a specific “slice” of capabilities

Another class only needs to know about these capabilities

Madhavan Mukund Interfaces Programming Concepts using Java 2 / 6

Exposing limited capabilities

Generic quicksort for any datatype
that supports comparisons

Express this capability by making the
argument type Comparable[]

Only information that quicksort
needs about the underlying type

All other aspects are irrelevant

Describe the relevant functions
supported by Comparable objects
through an interface

However, we cannot express the
intended behaviour of cmp explicitly

Madhavan Mukund Interfaces Programming Concepts using Java 3 / 6

Exposing limited capabilities

Generic quicksort for any datatype
that supports comparisons

Express this capability by making the
argument type Comparable[]

Only information that quicksort
needs about the underlying type

All other aspects are irrelevant

Describe the relevant functions
supported by Comparable objects
through an interface

However, we cannot express the
intended behaviour of cmp explicitly

public class SortFunctions{

public static void quicksort(Comparable[] a){

...

// Usual code for quicksort, except that

// to compare a[i] and a[j] we use

// a[i].cmp(a[j])

}

}

Madhavan Mukund Interfaces Programming Concepts using Java 3 / 6

Exposing limited capabilities

Generic quicksort for any datatype
that supports comparisons

Express this capability by making the
argument type Comparable[]

Only information that quicksort
needs about the underlying type

All other aspects are irrelevant

Describe the relevant functions
supported by Comparable objects
through an interface

However, we cannot express the
intended behaviour of cmp explicitly

public class SortFunctions{

public static void quicksort(Comparable[] a){

...

// Usual code for quicksort, except that

// to compare a[i] and a[j] we use

// a[i].cmp(a[j])

}

}

public interface Comparable{

public abstract int cmp(Comparable s);

// return -1 if this < s,

// 0 if this == 0,

// +1 if this > s

}

Madhavan Mukund Interfaces Programming Concepts using Java 3 / 6

Exposing limited capabilities

Generic quicksort for any datatype
that supports comparisons

Express this capability by making the
argument type Comparable[]

Only information that quicksort
needs about the underlying type

All other aspects are irrelevant

Describe the relevant functions
supported by Comparable objects
through an interface

However, we cannot express the
intended behaviour of cmp explicitly

public class SortFunctions{

public static void quicksort(Comparable[] a){

...

// Usual code for quicksort, except that

// to compare a[i] and a[j] we use

// a[i].cmp(a[j])

}

}

public interface Comparable{

public abstract int cmp(Comparable s);

// return -1 if this < s,

// 0 if this == 0,

// +1 if this > s

}

Madhavan Mukund Interfaces Programming Concepts using Java 3 / 6

Adding methods to interfaces

Java interfaces extended to allow
functions to be added

Static functions

Cannot access instance variables

Invoke directly or using interface
name: Comparable.cmpdoc()

Default functions

Provide a default implementation
for some functions

Class can override these

Invoke like normal method, using
object name: a[i].cmp(a[j])

Madhavan Mukund Interfaces Programming Concepts using Java 4 / 6

Adding methods to interfaces

Java interfaces extended to allow
functions to be added

Static functions

Cannot access instance variables

Invoke directly or using interface
name: Comparable.cmpdoc()

Default functions

Provide a default implementation
for some functions

Class can override these

Invoke like normal method, using
object name: a[i].cmp(a[j])

public interface Comparable{

public static String cmpdoc(){

String s;

s = "Return -1 if this < s, ";

s = s + "0 if this == s, ";

s = s + "+1 if this > s.";

return(s);

}

Madhavan Mukund Interfaces Programming Concepts using Java 4 / 6

Adding methods to interfaces

Java interfaces extended to allow
functions to be added

Static functions

Cannot access instance variables

Invoke directly or using interface
name: Comparable.cmpdoc()

Default functions

Provide a default implementation
for some functions

Class can override these

Invoke like normal method, using
object name: a[i].cmp(a[j])

public interface Comparable{

public static String cmpdoc(){

String s;

s = "Return -1 if this < s, ";

s = s + "0 if this == s, ";

s = s + "+1 if this > s.";

return(s);

}

public interface Comparable{

public default int cmp(Comparable s) {

return(0);

}

}

Madhavan Mukund Interfaces Programming Concepts using Java 4 / 6

Dealing with conflicts

Old problem of multiple inheritance
returns

Conflict between static/default
methods

Subclass must provide a fresh
implementation

Conflict could be between a class and
an interface

Employee inherits from class Person

and implements Designation

Method inherited from the class
“wins”

Motivated by reverse compatibility

public interface Person{

public default String getName() {

return("No name");

}

}

public interface Designation{

public default String getName() {

return("No designation");

}

}

public class Employee

implements Person, Designation {...}

Madhavan Mukund Interfaces Programming Concepts using Java 5 / 6

Dealing with conflicts

Old problem of multiple inheritance
returns

Conflict between static/default
methods

Subclass must provide a fresh
implementation

Conflict could be between a class and
an interface

Employee inherits from class Person

and implements Designation

Method inherited from the class
“wins”

Motivated by reverse compatibility

public interface Person{

public default String getName() {

return("No name");

}

}

public interface Designation{

public default String getName() {

return("No designation");

}

}

public class Employee

implements Person, Designation {

...

public String getName(){

...

}

}Madhavan Mukund Interfaces Programming Concepts using Java 5 / 6

Dealing with conflicts

Old problem of multiple inheritance
returns

Conflict between static/default
methods

Subclass must provide a fresh
implementation

Conflict could be between a class and
an interface

Employee inherits from class Person

and implements Designation

Method inherited from the class
“wins”

Motivated by reverse compatibility

public class Person{

public String getName() {

return("No name");

}

}

public interface Designation{

public default String getName() {

return("No designation");

}

}

public class Employee

extends Person implements Designation {

...

}

Madhavan Mukund Interfaces Programming Concepts using Java 5 / 6

Summary

Interfaces express abstract capabilities

Capabilities are expressed in terms of methods that must be present

Cannot specify the intended behaviour of these functions

Java later allowed concrete functions to be added to interfaces

Static functions — cannot access instance variables

Default functions — may be overridden

Reintroduces conflicts in multiple inheritance

Subclass must resolve the conflict by providing a fresh implementation

Special “class wins” rule for conflict between superclass and interface

Pitfalls of extending a language and maintaining compatibility

Madhavan Mukund Interfaces Programming Concepts using Java 6 / 6

Private classes

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 4

https://www.cmi.ac.in/~madhavan

Nested objects

An instance variable can be a user
defined type

Employee uses Date

Date is a public class, also available
to other classes

When could a private class make
sense?

public class Employee{

private String name;

private double salary;

private Date joindate;

...

}

public class Date {

private int day, month year;

...

}

Madhavan Mukund Private classes Programming Concepts using Java 2 / 4

Nested objects

An instance variable can be a user
defined type

Employee uses Date

Date is a public class, also available
to other classes

When could a private class make
sense?

public class Employee{

private String name;

private double salary;

private Date joindate;

...

}

public class Date {

private int day, month year;

...

}

Madhavan Mukund Private classes Programming Concepts using Java 2 / 4

Nested objects

An instance variable can be a user
defined type

Employee uses Date

Date is a public class, also available
to other classes

When could a private class make
sense?

public class Employee{

private String name;

private double salary;

private Date joindate;

...

}

public class Date {

private int day, month year;

...

}

Madhavan Mukund Private classes Programming Concepts using Java 2 / 4

Nested objects

LinkedList is built using Node

Why should Node be public?

May want to enhance with prev

field, doubly linked list

Does not affect interface of
LinkedList

Instead, make Node a private class

Nested within LinkedList

Also called an inner class

Objects of private class can see
private components of enclosing class

public class Node {

public Object data;

public Node next;

...

}

public class LinkedList{

private int size;

private Node first;

public Object head(){

Object returnval = null;

if (first != null){

returnval = first.data;

first = first.next;

}

return(returnval);

}

}

public void insert(Object newdata){

...

}

Madhavan Mukund Private classes Programming Concepts using Java 3 / 4

Nested objects

LinkedList is built using Node

Why should Node be public?

May want to enhance with prev

field, doubly linked list

Does not affect interface of
LinkedList

Instead, make Node a private class

Nested within LinkedList

Also called an inner class

Objects of private class can see
private components of enclosing class

public class Node {

public Object data;

public Node next;

...

}

public class LinkedList{

private int size;

private Node first;

public Object head(){

Object returnval = null;

if (first != null){

returnval = first.data;

first = first.next;

}

return(returnval);

}

}

public void insert(Object newdata){

...

}

Madhavan Mukund Private classes Programming Concepts using Java 3 / 4

Nested objects

LinkedList is built using Node

Why should Node be public?

May want to enhance with prev

field, doubly linked list

Does not affect interface of
LinkedList

Instead, make Node a private class

Nested within LinkedList

Also called an inner class

Objects of private class can see
private components of enclosing class

public class LinkedList{

private int size;

private Node first;

public Object head(){ ... }

public void insert(Object newdata){

...

}

private class Node {

public Object data;

public Node next;

...

}

}

Madhavan Mukund Private classes Programming Concepts using Java 3 / 4

Nested objects

LinkedList is built using Node

Why should Node be public?

May want to enhance with prev

field, doubly linked list

Does not affect interface of
LinkedList

Instead, make Node a private class

Nested within LinkedList

Also called an inner class

Objects of private class can see
private components of enclosing class

public class LinkedList{

private int size;

private Node first;

public Object head(){ ... }

public void insert(Object newdata){

...

}

private class Node {

public Object data;

public Node next;

...

}

}

Madhavan Mukund Private classes Programming Concepts using Java 3 / 4

Summary

An object can have nested objects as instance variables

In some situations, the structure of these nested objects need not be exposed

Private classes allow an additional degree of data encapsulation

Combine private classes with interfaces to provide controlled access to the state of
an object

Madhavan Mukund Private classes Programming Concepts using Java 4 / 4

Summary

An object can have nested objects as instance variables

In some situations, the structure of these nested objects need not be exposed

Private classes allow an additional degree of data encapsulation

Combine private classes with interfaces to provide controlled access to the state of
an object

Madhavan Mukund Private classes Programming Concepts using Java 4 / 4

Controlled interaction with objects

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 4

https://www.cmi.ac.in/~madhavan

Manipulating objects

Encapsulation is a key principle of
object oriented programming

Internal data is private

Access to the data is regulated
through public methods

Accessor and mutator methods

Can ensure data integrity by regulating
access

Update date as a whole, rather than
individual components

Does this provide sufficient control?

public class Date {

private int day, month year;

public void getDay(int d) {...}

public void getMonth(int m) {...}

public void getYear(int y) {...}

public void setDay(int d) {...}

public void setMonth(int m) {...}

public void setYear(int y) {...}

}

Madhavan Mukund Controlled interaction with objects Programming Concepts using Java 2 / 6

Manipulating objects

Encapsulation is a key principle of
object oriented programming

Internal data is private

Access to the data is regulated
through public methods

Accessor and mutator methods

Can ensure data integrity by regulating
access

Update date as a whole, rather than
individual components

Does this provide sufficient control?

public class Date {

private int day, month year;

public void getDay(int d) {...}

public void getMonth(int m) {...}

public void getYear(int y) {...}

public void setDay(int d) {...}

public void setMonth(int m) {...}

public void setYear(int y) {...}

}

Madhavan Mukund Controlled interaction with objects Programming Concepts using Java 2 / 6

Manipulating objects

Encapsulation is a key principle of
object oriented programming

Internal data is private

Access to the data is regulated
through public methods

Accessor and mutator methods

Can ensure data integrity by regulating
access

Update date as a whole, rather than
individual components

Does this provide sufficient control?

public class Date {

private int day, month year;

public void getDay(int d) {...}

public void getMonth(int m) {...}

public void getYear(int y) {...}

public void setDate(int d, int m, int y) {

...

// Validate d-m-y combination

}

}

Madhavan Mukund Controlled interaction with objects Programming Concepts using Java 2 / 6

Manipulating objects

Encapsulation is a key principle of
object oriented programming

Internal data is private

Access to the data is regulated
through public methods

Accessor and mutator methods

Can ensure data integrity by regulating
access

Update date as a whole, rather than
individual components

Does this provide sufficient control?

public class Date {

private int day, month year;

public void getDay(int d) {...}

public void getMonth(int m) {...}

public void getYear(int y) {...}

public void setDate(int d, int m, int y) {

...

// Validate d-m-y combination

}

}

Madhavan Mukund Controlled interaction with objects Programming Concepts using Java 2 / 6

Querying a database

Object stores train reservation
information

Can query availability for a given train,
date

To control spamming by bots, require
user to log in before querying

Need to connect the query to the
logged in status of the user

“Interaction with state”

public class RailwayBooking {

private BookingDB railwaydb;

public int getStatus(int trainno, Date d) {

// Return number of seats available

// on train number trainno on date d

...

}

}

Madhavan Mukund Controlled interaction with objects Programming Concepts using Java 3 / 6

Querying a database

Object stores train reservation
information

Can query availability for a given train,
date

To control spamming by bots, require
user to log in before querying

Need to connect the query to the
logged in status of the user

“Interaction with state”

public class RailwayBooking {

private BookingDB railwaydb;

public int getStatus(int trainno, Date d) {

// Return number of seats available

// on train number trainno on date d

...

}

}

Madhavan Mukund Controlled interaction with objects Programming Concepts using Java 3 / 6

Querying a database

Object stores train reservation
information

Can query availability for a given train,
date

To control spamming by bots, require
user to log in before querying

Need to connect the query to the
logged in status of the user

“Interaction with state”

public class RailwayBooking {

private BookingDB railwaydb;

public int getStatus(int trainno, Date d) {

// Return number of seats available

// on train number trainno on date d

...

}

}

Madhavan Mukund Controlled interaction with objects Programming Concepts using Java 3 / 6

Querying a database

Object stores train reservation
information

Can query availability for a given train,
date

To control spamming by bots, require
user to log in before querying

Need to connect the query to the
logged in status of the user

“Interaction with state”

public class RailwayBooking {

private BookingDB railwaydb;

public int getStatus(int trainno, Date d) {

// Return number of seats available

// on train number trainno on date d

...

}

}

Madhavan Mukund Controlled interaction with objects Programming Concepts using Java 3 / 6

Querying a database

Need to connect the query to the
logged in status of the user

Use objects!

On log in, user receives an object that
can make a query

Object is created from private class
that can look up railwaydb

How does user know the capabilities of
private class QueryObject?

Use an interface!

Interface describes the capability of
the object returned on login

public class RailwayBooking {

private BookingDB railwaydb;

public int getStatus(int trainno, Date d) {

// Return number of seats available

// on train number trainno on date d

...

}

}

Madhavan Mukund Controlled interaction with objects Programming Concepts using Java 4 / 6

Querying a database

Need to connect the query to the
logged in status of the user

Use objects!

On log in, user receives an object that
can make a query

Object is created from private class
that can look up railwaydb

How does user know the capabilities of
private class QueryObject?

Use an interface!

Interface describes the capability of
the object returned on login

public class RailwayBooking {

private BookingDB railwaydb;

public QueryObject login(String u, String p){

QueryObject qobj;

if (valid_login(u,p)) {

qobj = new QueryObject();

return(qobj);

}

}

private class QueryObject {

public int getStatus(int trainno, Date d) {

// Return number of seats available

// on train number trainno on date d

...

}

}

}

Madhavan Mukund Controlled interaction with objects Programming Concepts using Java 4 / 6

Querying a database

Need to connect the query to the
logged in status of the user

Use objects!

On log in, user receives an object that
can make a query

Object is created from private class
that can look up railwaydb

How does user know the capabilities of
private class QueryObject?

Use an interface!

Interface describes the capability of
the object returned on login

public class RailwayBooking {

private BookingDB railwaydb;

public QueryObject login(String u, String p){

QueryObject qobj;

if (valid_login(u,p)) {

qobj = new QueryObject();

return(qobj);

}

}

private class QueryObject {

public int getStatus(int trainno, Date d) {

// Return number of seats available

// on train number trainno on date d

...

}

}

}

Madhavan Mukund Controlled interaction with objects Programming Concepts using Java 4 / 6

Querying a database

Need to connect the query to the
logged in status of the user

Use objects!

On log in, user receives an object that
can make a query

Object is created from private class
that can look up railwaydb

How does user know the capabilities of
private class QueryObject?

Use an interface!

Interface describes the capability of
the object returned on login

public interface QIF{

public abstract int

getStatus(int trainno, Date d);

}

public class RailwayBooking {

private BookingDB railwaydb;

public QIF login(String u, String p){

QueryObject qobj;

if (valid_login(u,p)) {

qobj = new QueryObject();

return(qobj);

}

}

private class QueryObject implements QIF {

public int getStatus(int trainno, Date d){

...

}

}

}
Madhavan Mukund Controlled interaction with objects Programming Concepts using Java 4 / 6

Querying a database

Query object allows unlimited number
of queries

Limit the number of queries per login?

Maintain a counter

Add instance variables to object
returned on login

Query object can remember the state
of the interaction

public interface QIF{

public abstract int

getStatus(int trainno, Date d);

}

public class RailwayBooking {

private BookingDB railwaydb;

public QIF login(String u, String p){

QueryObject qobj;

if (valid_login(u,p)) {

qobj = new QueryObject();

return(qobj);

}

}

private class QueryObject implements QIF {

public int getStatus(int trainno, Date d){

...

}

}

}
Madhavan Mukund Controlled interaction with objects Programming Concepts using Java 5 / 6

Querying a database

Query object allows unlimited number
of queries

Limit the number of queries per login?

Maintain a counter

Add instance variables to object
returned on login

Query object can remember the state
of the interaction

public interface QIF{

public abstract int

getStatus(int trainno, Date d);

}

public class RailwayBooking {

private BookingDB railwaydb;

public QIF login(String u, String p){

QueryObject qobj;

if (valid_login(u,p)) {

qobj = new QueryObject();

return(qobj);

}

}

private class QueryObject implements QIF {

public int getStatus(int trainno, Date d){

...

}

}

}
Madhavan Mukund Controlled interaction with objects Programming Concepts using Java 5 / 6

Querying a database

Query object allows unlimited number
of queries

Limit the number of queries per login?

Maintain a counter

Add instance variables to object
returned on login

Query object can remember the state
of the interaction

public class RailwayBooking {

private BookingDB railwaydb;

public QIF login(String u, String p){

QueryObject qobj;

if (valid_login(u,p)) {

qobj = new QueryObject();

return(qobj);

}

}

private class QueryObject implements QIF {

private int numqueries;

private static int QLIM;

public int getStatus(int trainno, Date d){

if (numqueries < QLIM){

// respond, increment numqueries

}

}

}

}
Madhavan Mukund Controlled interaction with objects Programming Concepts using Java 5 / 6

Summary

Can provide controlled access to an object

Combine private classes with interfaces

External interaction is through an object of the private class

Capabilities of this object are known through a public interface

Object can maintain instance variables to track the state of the interaction

Madhavan Mukund Controlled interaction with objects Programming Concepts using Java 6 / 6

Callbacks

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 4

https://www.cmi.ac.in/~madhavan

Implementing a call-back facility

Myclass m creates a Timer t

Start t to run in parallel

Myclass m continues to run

Will see later how to invoke parallel
execution in Java!

Timer t notifies Myclass m when the
time limit expires

Assume Myclass m has a function
timerdone()

Myclass m Timer t

Madhavan Mukund Callbacks Programming Concepts using Java 2 / 6

Implementing a call-back facility

Myclass m creates a Timer t

Start t to run in parallel

Myclass m continues to run

Will see later how to invoke parallel
execution in Java!

Timer t notifies Myclass m when the
time limit expires

Assume Myclass m has a function
timerdone()

Myclass m Timer t

• start()

Madhavan Mukund Callbacks Programming Concepts using Java 2 / 6

Implementing a call-back facility

Myclass m creates a Timer t

Start t to run in parallel

Myclass m continues to run

Will see later how to invoke parallel
execution in Java!

Timer t notifies Myclass m when the
time limit expires

Assume Myclass m has a function
timerdone()

Myclass m Timer t

• start()

•timerdone()

Madhavan Mukund Callbacks Programming Concepts using Java 2 / 6

Implementing callbacks

Code for Myclass

Timer t should know
whom to notify

Myclass m passes
its identity when it
creates Timer t

Code for Timer

Interface Runnable

indicates that Timer
can run in parallel

Timer specific to
Myclass

Create a generic
Timer?

public class Myclass{

public void f(){

..

Timer t =

new Timer(this);

// this object

// created t

...

t.start(); // Start t

...

}

public void timerdone(){...}

}

Madhavan Mukund Callbacks Programming Concepts using Java 3 / 6

Implementing callbacks

Code for Myclass

Timer t should know
whom to notify

Myclass m passes
its identity when it
creates Timer t

Code for Timer

Interface Runnable

indicates that Timer
can run in parallel

Timer specific to
Myclass

Create a generic
Timer?

public class Myclass{

public void f(){

..

Timer t =

new Timer(this);

// this object

// created t

...

t.start(); // Start t

...

}

public void timerdone(){...}

}

Madhavan Mukund Callbacks Programming Concepts using Java 3 / 6

Implementing callbacks

Code for Myclass

Timer t should know
whom to notify

Myclass m passes
its identity when it
creates Timer t

Code for Timer

Interface Runnable

indicates that Timer
can run in parallel

Timer specific to
Myclass

Create a generic
Timer?

public class Myclass{

public void f(){

..

Timer t =

new Timer(this);

// this object

// created t

...

t.start(); // Start t

...

}

public void timerdone(){...}

}

public class Timer

implements Runnable{

// Timer can be

// invoked in parallel

private Myclass owner;

public Timer(Myclass o){

owner = o; // My creator

}

public void start(){

...

owner.timerdone();

// I’m done

}

}

Madhavan Mukund Callbacks Programming Concepts using Java 3 / 6

Implementing callbacks

Code for Myclass

Timer t should know
whom to notify

Myclass m passes
its identity when it
creates Timer t

Code for Timer

Interface Runnable

indicates that Timer
can run in parallel

Timer specific to
Myclass

Create a generic
Timer?

public class Myclass{

public void f(){

..

Timer t =

new Timer(this);

// this object

// created t

...

t.start(); // Start t

...

}

public void timerdone(){...}

}

public class Timer

implements Runnable{

// Timer can be

// invoked in parallel

private Myclass owner;

public Timer(Myclass o){

owner = o; // My creator

}

public void start(){

...

owner.timerdone();

// I’m done

}

}

Madhavan Mukund Callbacks Programming Concepts using Java 3 / 6

Implementing callbacks

Code for Myclass

Timer t should know
whom to notify

Myclass m passes
its identity when it
creates Timer t

Code for Timer

Interface Runnable

indicates that Timer
can run in parallel

Timer specific to
Myclass

Create a generic
Timer?

public class Myclass{

public void f(){

..

Timer t =

new Timer(this);

// this object

// created t

...

t.start(); // Start t

...

}

public void timerdone(){...}

}

public class Timer

implements Runnable{

// Timer can be

// invoked in parallel

private Myclass owner;

public Timer(Myclass o){

owner = o; // My creator

}

public void start(){

...

owner.timerdone();

// I’m done

}

}

Madhavan Mukund Callbacks Programming Concepts using Java 3 / 6

A generic timer

Use Java class
hierarchy

Parameter of
Timer constructor
of type Object

Compatible
with all caller
types

Need to cast
owner back to
Myclass

Madhavan Mukund Callbacks Programming Concepts using Java 4 / 6

A generic timer

Use Java class
hierarchy

Parameter of
Timer constructor
of type Object

Compatible
with all caller
types

Need to cast
owner back to
Myclass

public class Myclass{

public void f(){

..

Timer t =

new Timer(this);

// this object

// created t

...

t.start(); // Start t

...

}

public void timerdone(){...}

}

public class Timer

implements Runnable{

// Timer can be

// invoked in parallel

private Object owner;

public Timer(Object o){

owner = o; // My creator

}

public void start(){

...

((Myclass) owner).timerdone();

// I’m done

}

}

Madhavan Mukund Callbacks Programming Concepts using Java 4 / 6

A generic timer

Use Java class
hierarchy

Parameter of
Timer constructor
of type Object

Compatible
with all caller
types

Need to cast
owner back to
Myclass

public class Myclass{

public void f(){

..

Timer t =

new Timer(this);

// this object

// created t

...

t.start(); // Start t

...

}

public void timerdone(){...}

}

public class Timer

implements Runnable{

// Timer can be

// invoked in parallel

private Object owner;

public Timer(Object o){

owner = o; // My creator

}

public void start(){

...

((Myclass) owner).timerdone();

// I’m done

}

}

Madhavan Mukund Callbacks Programming Concepts using Java 4 / 6

Use interfaces

Define an interface for
callback

public interface

Timerowner{

public abstract

void timerdone();

}

Modify Myclass to
implement
Timerowner

Modify Timer so that
owner is compatible
with Timerowner

Madhavan Mukund Callbacks Programming Concepts using Java 5 / 6

Use interfaces

Define an interface for
callback

public interface

Timerowner{

public abstract

void timerdone();

}

Modify Myclass to
implement
Timerowner

Modify Timer so that
owner is compatible
with Timerowner

public class Myclass

implements Timerowner{

public void f(){

..

Timer t =

new Timer(this);

// this object

// created t

...

t.start(); // Start t

...

}

public void timerdone(){...}

}

Madhavan Mukund Callbacks Programming Concepts using Java 5 / 6

Use interfaces

Define an interface for
callback

public interface

Timerowner{

public abstract

void timerdone();

}

Modify Myclass to
implement
Timerowner

Modify Timer so that
owner is compatible
with Timerowner

public class Myclass

implements Timerowner{

public void f(){

..

Timer t =

new Timer(this);

// this object

// created t

...

t.start(); // Start t

...

}

public void timerdone(){...}

}

public class Timer

implements Runnable{

// Timer can be

// invoked in parallel

private Timerowner owner;

public Timer(Timerowner o){

owner = o; // My creator

}

public void start(){

...

owner.timerdone();

// I’m done

}

}

Madhavan Mukund Callbacks Programming Concepts using Java 5 / 6

Summary

Callbacks are useful when we spawn a class in parallel

Spawned object notifies the owner when it is done

Can also notify some other object when done

owner in Timer need not be the object that created the Timer

Interfaces allow this callback to be generic

owner has to have the capability to be notified

Madhavan Mukund Callbacks Programming Concepts using Java 6 / 6

Iterators

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 4

https://www.cmi.ac.in/~madhavan

Linear list

A generic linear list of objects

Internal implementation may vary

An array implementation

A linked list implementation

Madhavan Mukund Iterators Programming Concepts using Java 2 / 8

Linear list

A generic linear list of objects

Internal implementation may vary

An array implementation

A linked list implementation

Madhavan Mukund Iterators Programming Concepts using Java 2 / 8

Linear list

A generic linear list of objects

Internal implementation may vary

An array implementation

A linked list implementation

public class Linearlist {

// Array implementation

private int limit = 100;

private Object[] data = new Object[limit];

private int size; // Current size

public Linearlist(){ size = 0; }

public void append(Object o){

data[size] = o;

size++;

...

}

...

}

Madhavan Mukund Iterators Programming Concepts using Java 2 / 8

Linear list

A generic linear list of objects

Internal implementation may vary

An array implementation

A linked list implementation

public class Linearlist {

private Node head;

private int size;

public Linearlist(){ size = 0; }

public void append(Object o){

Node m;

for (m = head; m.next != null; m = m.next){}

Node n = new Node(o);

m.next = n;

size++;

}

...

private class Node (...}

}

Madhavan Mukund Iterators Programming Concepts using Java 2 / 8

Iteration

Want a loop to run through all values
in a linear list

If the list is an array with public
access, we write this

For a linked list with public access,
we could write this

We don’t have public access . . .

. . . and we don’t know which
implementation is in use!

Madhavan Mukund Iterators Programming Concepts using Java 3 / 8

Iteration

Want a loop to run through all values
in a linear list

If the list is an array with public
access, we write this

For a linked list with public access,
we could write this

We don’t have public access . . .

. . . and we don’t know which
implementation is in use!

int i;

for (i = 0; i < data.length; i++){

... // do something with data[i]

}

Madhavan Mukund Iterators Programming Concepts using Java 3 / 8

Iteration

Want a loop to run through all values
in a linear list

If the list is an array with public
access, we write this

For a linked list with public access,
we could write this

We don’t have public access . . .

. . . and we don’t know which
implementation is in use!

int i;

for (i = 0; i < data.length; i++){

... // do something with data[i]

}

Node m;

for (m = head; m != null; m = m.next}

... // do something with m.data

}

Madhavan Mukund Iterators Programming Concepts using Java 3 / 8

Iteration

Want a loop to run through all values
in a linear list

If the list is an array with public
access, we write this

For a linked list with public access,
we could write this

We don’t have public access . . .

. . . and we don’t know which
implementation is in use!

int i;

for (i = 0; i < data.length; i++){

... // do something with data[i]

}

Node m;

for (m = head; m != null; m = m.next}

... // do something with m.data

}

Madhavan Mukund Iterators Programming Concepts using Java 3 / 8

Iteration

Want a loop to run through all values
in a linear list

If the list is an array with public
access, we write this

For a linked list with public access,
we could write this

We don’t have public access . . .

. . . and we don’t know which
implementation is in use!

int i;

for (i = 0; i < data.length; i++){

... // do something with data[i]

}

Node m;

for (m = head; m != null; m = m.next}

... // do something with m.data

}

Madhavan Mukund Iterators Programming Concepts using Java 3 / 8

Iterators

Need the following abstraction

Start at the beginning of the list;

while (there is a next element){

get the next element;

do something with it

}

Encapsulate this functionality in an interface called Iterator

Madhavan Mukund Iterators Programming Concepts using Java 4 / 8

Iterators

Need the following abstraction

Start at the beginning of the list;

while (there is a next element){

get the next element;

do something with it

}

Encapsulate this functionality in an interface called Iterator

public interface Iterator{

public abstract boolean has_next();

public abstract Object get_next();

}

Madhavan Mukund Iterators Programming Concepts using Java 4 / 8

Iterators

How do we implement Iterator in Linearlist?

Need a “pointer” to remember position of the iterator

How do we handle nested loops?

Madhavan Mukund Iterators Programming Concepts using Java 5 / 8

Iterators

How do we implement Iterator in Linearlist?

Need a “pointer” to remember position of the iterator

How do we handle nested loops?

Madhavan Mukund Iterators Programming Concepts using Java 5 / 8

Iterators

How do we implement Iterator in Linearlist?

Need a “pointer” to remember position of the iterator

How do we handle nested loops?

for (i = 0; i < data.length; i++){

for (j = 0; j < data.length; j++){

... // do something with data[i] and data[j]

}

}

Madhavan Mukund Iterators Programming Concepts using Java 5 / 8

Iterators

Solution: Create an Iterator object and export it!

Definition of Iter depends on linear list

Madhavan Mukund Iterators Programming Concepts using Java 6 / 8

Iterators

Solution: Create an Iterator object and export it!

public class Linearlist{

private class Iter implements Iterator{

private Node position;

public Iter(){...} // Constructor

public boolean has_next(){...}

public Object get_next(){...}

}

// Export a fresh iterator

public Iterator get_iterator(){

Iter it = new Iter();

return(it);

}

}

Definition of Iter depends on linear list

Madhavan Mukund Iterators Programming Concepts using Java 6 / 8

Iterators

Solution: Create an Iterator object and export it!

public class Linearlist{

private class Iter implements Iterator{

private Node position;

public Iter(){...} // Constructor

public boolean has_next(){...}

public Object get_next(){...}

}

// Export a fresh iterator

public Iterator get_iterator(){

Iter it = new Iter();

return(it);

}

}

Definition of Iter depends on linear list

Madhavan Mukund Iterators Programming Concepts using Java 6 / 8

Iterators

Now, we can traverse the list externally
as follows:

Linearlist l = new Linearlist();

...

Object o;

Iterator i = l.get_iterator();

while (i.has_next()){

o = i.get_next();

... // do something with o

}

...

For nested loops, acquire multiple
iterators!

Madhavan Mukund Iterators Programming Concepts using Java 7 / 8

Iterators

Now, we can traverse the list externally
as follows:

Linearlist l = new Linearlist();

...

Object o;

Iterator i = l.get_iterator();

while (i.has_next()){

o = i.get_next();

... // do something with o

}

...

For nested loops, acquire multiple
iterators!

Linearlist l = new Linearlist();

...

Object oi,oj;

Iterator i,j;

i = l.get_iterator();

while (i.has_next()){

oi = i.get_next();

j = l.get_iterator();

while (j.has_next()){

oj = j.get_next();

... // do something with oi, oj

}

}

...

Madhavan Mukund Iterators Programming Concepts using Java 7 / 8

Summary

Iterators are another example of interaction with state

Each iterator needs to remember its position in the list

Export an object with a prespecified interface to handle the interaction

The new Java for over lists implicitly constructs and uses an iterator

for (type x : a)

do something with x;

}

Madhavan Mukund Iterators Programming Concepts using Java 8 / 8

Week-4

Lecture-1

Lecture-2

Lecture-3

Lecture-4

Lecture-5

Lecture-6

Programming Concepts Using Java
Week 4 Revision

Week-4

Lecture-1

Lecture-2

Lecture-3

Lecture-4

Lecture-5

Lecture-6

Abstract classes

Sometimes we collect together classes under a common heading

Classes Swiggy, Zomato and UberEat are all food order

Create a class FoodOrder so that Swiggy, Zomato and UberEat extend FoodOrder

We want to force every FoodOrder class to define a function

public void order() {}

Now we should force every class to define the public void order();

Provide an abstract definition in FoodOrder

public abstract void order();

Week-4

Lecture-1

Lecture-2

Lecture-3

Lecture-4

Lecture-5

Lecture-6

Interfaces

An interface is a purely abstract class

All methods are abstract by default

All data members are final by default

If any class implement an interface, it should provide concrete code for each abstract
method

Classes can implement multiple interfaces

Java interfaces extended to allow static and default methods from JDK 1.8 onwards

If two interfaces has same default/static methods then its implemented class must
provide a fresh implementation

If any class wants to extend another class and an interface then it should inherit the
class and implements interface

Week-4

Lecture-1

Lecture-2

Lecture-3

Lecture-4

Lecture-5

Lecture-6

private classes

An instance variable can be a user defined type

public class BookMyshow{

String user;

int tickets;

Payment payement;

}

public class Payment{

int cardno;

int cvv;

}

Payment is a public class, also available to other classes

Payment class has sensitive information, so there is a security concern.

Week-4

Lecture-1

Lecture-2

Lecture-3

Lecture-4

Lecture-5

Lecture-6

private classes

We cannot declare Payment class as private outside the BookMyshow class

You can declare Payment class as private inside the BookMyshow class

public class BookMyshow{

String user;

int tickets;

Payment payement;

private class Payment{

int cardno;

int cvv;

}

}

Now Payment class is a private member of the BookMyshow class

Now Payment class only available to the BookMyshow class

Week-4

Lecture-1

Lecture-2

Lecture-3

Lecture-4

Lecture-5

Lecture-6

Interaction with State(Manipulating objects)

Consider the class student below.

Student class is encapsulated by private variables.

public class Student{

private String rollno;

private String name;

private int age;

//3 mutator methods

//3 Accessor methods

}

Consider Student class has student1,student2.....student60 objects

Update date as a whole, rather than individual components

Week-4

Lecture-1

Lecture-2

Lecture-3

Lecture-4

Lecture-5

Lecture-6

Interaction with State(Manipulating objects)

public class Student{

private String rollno;

private String name;

private int age;

public void setStudent(String rollno,String name,int age){

}

}

Now public void setStudent(String rollno, String name, int age) update the Student
object as a whole.

Week-4

Lecture-1

Lecture-2

Lecture-3

Lecture-4

Lecture-5

Lecture-6

Java Call back methods.

what is call back method?

interface Notification{

void notification();//should be overridden in WorkingDay and Weekend

}

class WorkingDay implements Notification{

}

class Weekend implements Notification{

}

class Timer{//Timer will decide which call back function should be call

}

public class User {

public static void main(String[] args) {

Timer timer=new Timer();

timer.start(new Date());

}

}

Week-4

Lecture-1

Lecture-2

Lecture-3

Lecture-4

Lecture-5

Lecture-6

Iterators

what is Iterator?

You can loop through any data structure using an Iterator.

public interface Iterator{

public abstract boolean has_next();

public abstract Object get_next();

}

Polymorphism revisited

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 5

https://www.cmi.ac.in/~madhavan

Polymorphism

In object-oriented programming, polymorphism usually refers to the effect of
dynamic dispatch

S is a subclass of T

S overrides a method f() defined in T

Variable v of type T is assigned to an object of type S

v.f() uses the definition of f() from S rather than T

Every object “knows” what it needs to do

More generally, polymorphism refers to behaviour that depends only a specific
capabilities

Reverse an array/list

Search for an element in an array/list

Sort an array/list

Madhavan Mukund Polymorphism revisited Programming Concepts using Java 2 / 6

Polymorphism

In object-oriented programming, polymorphism usually refers to the effect of
dynamic dispatch

S is a subclass of T

S overrides a method f() defined in T

Variable v of type T is assigned to an object of type S

v.f() uses the definition of f() from S rather than T

Every object “knows” what it needs to do

More generally, polymorphism refers to behaviour that depends only a specific
capabilities

Reverse an array/list

Search for an element in an array/list

Sort an array/list

Madhavan Mukund Polymorphism revisited Programming Concepts using Java 2 / 6

Polymorphism

In object-oriented programming, polymorphism usually refers to the effect of
dynamic dispatch

S is a subclass of T

S overrides a method f() defined in T

Variable v of type T is assigned to an object of type S

v.f() uses the definition of f() from S rather than T

Every object “knows” what it needs to do

More generally, polymorphism refers to behaviour that depends only a specific
capabilities

Reverse an array/list

Search for an element in an array/list

Sort an array/list

Madhavan Mukund Polymorphism revisited Programming Concepts using Java 2 / 6

Polymorphism

In object-oriented programming, polymorphism usually refers to the effect of
dynamic dispatch

S is a subclass of T

S overrides a method f() defined in T

Variable v of type T is assigned to an object of type S

v.f() uses the definition of f() from S rather than T

Every object “knows” what it needs to do

More generally, polymorphism refers to behaviour that depends only a specific
capabilities — structural polymorphism

Reverse an array/list (should work for any type)

Search for an element in an array/list

Sort an array/list

Madhavan Mukund Polymorphism revisited Programming Concepts using Java 2 / 6

Polymorphism

In object-oriented programming, polymorphism usually refers to the effect of
dynamic dispatch

S is a subclass of T

S overrides a method f() defined in T

Variable v of type T is assigned to an object of type S

v.f() uses the definition of f() from S rather than T

Every object “knows” what it needs to do

More generally, polymorphism refers to behaviour that depends only a specific
capabilities — structural polymorphism

Reverse an array/list (should work for any type)

Search for an element in an array/list (need equality check)

Sort an array/list

Madhavan Mukund Polymorphism revisited Programming Concepts using Java 2 / 6

Polymorphism

In object-oriented programming, polymorphism usually refers to the effect of
dynamic dispatch

S is a subclass of T

S overrides a method f() defined in T

Variable v of type T is assigned to an object of type S

v.f() uses the definition of f() from S rather than T

Every object “knows” what it needs to do

More generally, polymorphism refers to behaviour that depends only a specific
capabilities — structural polymorphism

Reverse an array/list (should work for any type)

Search for an element in an array/list (need equality check)

Sort an array/list (need to compare values)

Madhavan Mukund Polymorphism revisited Programming Concepts using Java 2 / 6

Structural polymorphism

Use the Java class hierarchy to
simulate this

Polymorphic reverse

Polymorphic find

== translates to Object.equals()

Polymorphic sort

Use interfaces to capture
capabilities

Madhavan Mukund Polymorphism revisited Programming Concepts using Java 3 / 6

Structural polymorphism

Use the Java class hierarchy to
simulate this

Polymorphic reverse

Polymorphic find

== translates to Object.equals()

Polymorphic sort

Use interfaces to capture
capabilities

public void reverse (Object[] objarr){

Object tempobj;

int len = objarr.length;

for (i = 0; i < n/2; i++){

tempobj = objarr[i];

objarr[i] = objarr[(n-1)-i];

objarr[(n-1)-i] = tempobj;

}

}

Madhavan Mukund Polymorphism revisited Programming Concepts using Java 3 / 6

Structural polymorphism

Use the Java class hierarchy to
simulate this

Polymorphic reverse

Polymorphic find

== translates to Object.equals()

Polymorphic sort

Use interfaces to capture
capabilities

public int find (Object[] objarr, Object o){

int i;

for (i = 0; i < objarr.length; i++){

if (objarr[i] == o) {return i};

}

return (-1);

}

Madhavan Mukund Polymorphism revisited Programming Concepts using Java 3 / 6

Structural polymorphism

Use the Java class hierarchy to
simulate this

Polymorphic reverse

Polymorphic find

== translates to Object.equals()

Polymorphic sort

Use interfaces to capture
capabilities

public interface Comparable{

public abstract int cmp(Comparable s);

}

public class SortFunctions{

public static void quicksort(Comparable[] a){

...

// Usual code for quicksort, except that

// to compare a[i] and a[j] we use

// a[i].cmp(a[j])

}

}

Madhavan Mukund Polymorphism revisited Programming Concepts using Java 3 / 6

Type consistency

Polymorphic function to copy an array

Need to ensure that target array is
type compatible with source array

Type errors should be flagged at
compile time

More generally source array can be a
subtype of the target array

But the converse is illegal

public static void arraycopy (Object[] src,

Object[] tgt){

int i,limit;

limit = Math.min(src.length,tgt.length);

for (i = 0; i < limit; i++){

tgt[i] = src[i];

}

}

Madhavan Mukund Polymorphism revisited Programming Concepts using Java 4 / 6

Type consistency

Polymorphic function to copy an array

Need to ensure that target array is
type compatible with source array

Type errors should be flagged at
compile time

More generally source array can be a
subtype of the target array

But the converse is illegal

public static void arraycopy (Object[] src,

Object[] tgt){

int i,limit;

limit = Math.min(src.length,tgt.length);

for (i = 0; i < limit; i++){

tgt[i] = src[i];

}

}

Date[] datearr = new Date[10];

Employee[] emparr = new Employee[10];

arraycopy(datearr,emparr); // Run-time error

Madhavan Mukund Polymorphism revisited Programming Concepts using Java 4 / 6

Type consistency

Polymorphic function to copy an array

Need to ensure that target array is
type compatible with source array

Type errors should be flagged at
compile time

More generally source array can be a
subtype of the target array

But the converse is illegal

public static void arraycopy (Object[] src,

Object[] tgt){

int i,limit;

limit = Math.min(src.length,tgt.length);

for (i = 0; i < limit; i++){

tgt[i] = src[i];

}

}

public class Ticket {...}

public class ETicket extends Ticket{...}

Ticket[] tktarr = new Ticket[10];

ETicket[] etktarr = new ETicket[10];

arraycopy(etktarr,tktarr); // Allowed

Madhavan Mukund Polymorphism revisited Programming Concepts using Java 4 / 6

Type consistency

Polymorphic function to copy an array

Need to ensure that target array is
type compatible with source array

Type errors should be flagged at
compile time

More generally source array can be a
subtype of the target array

But the converse is illegal

public static void arraycopy (Object[] src,

Object[] tgt){

int i,limit;

limit = Math.min(src.length,tgt.length);

for (i = 0; i < limit; i++){

tgt[i] = src[i];

}

}

public class Ticket {...}

public class ETicket extends Ticket{...}

Ticket[] tktarr = new Ticket[10];

ETicket[] etktarr = new ETicket[10];

arraycopy(tktarr,etktarr); // Illegal

Madhavan Mukund Polymorphism revisited Programming Concepts using Java 4 / 6

Polymorphic data structures

Arrays, lists, . . . should allow arbitrary
elements

A polymorphic list stores values of
type Object

Two problems

Type information is lost, need casts

List need not be homogenous!

Madhavan Mukund Polymorphism revisited Programming Concepts using Java 5 / 6

Polymorphic data structures

Arrays, lists, . . . should allow arbitrary
elements

A polymorphic list stores values of
type Object

Two problems

Type information is lost, need casts

List need not be homogenous!

public class LinkedList{

private int size;

private Node first;

public Object head(){

Object returnval;

...

return(returnval);

}

public void insert(Object newdata){...}

private class Node {

private Object data;

private Node next;

...

}

}

Madhavan Mukund Polymorphism revisited Programming Concepts using Java 5 / 6

Polymorphic data structures

Arrays, lists, . . . should allow arbitrary
elements

A polymorphic list stores values of
type Object

Two problems

Type information is lost, need casts

List need not be homogenous!

public class LinkedList{

private int size;

private Node first;

public Object head(){

Object returnval;

...

return(returnval);

}

public void insert(Object newdata){...}

private class Node {

private Object data;

private Node next;

...

}

}

Madhavan Mukund Polymorphism revisited Programming Concepts using Java 5 / 6

Polymorphic data structures

Arrays, lists, . . . should allow arbitrary
elements

A polymorphic list stores values of
type Object

Two problems

Type information is lost, need casts

List need not be homogenous!

public class LinkedList{

private int size;

private Node first;

public Object head(){ ... }

public void insert(Object newdata){...}

private class Node {...}

}

LinkedList list = new LinkedList();

Ticket t1,t2;

t1 = new Ticket();

list.insert(t1);

t2 = (Ticket)(list.head());

// head() returns an Object

Madhavan Mukund Polymorphism revisited Programming Concepts using Java 5 / 6

Polymorphic data structures

Arrays, lists, . . . should allow arbitrary
elements

A polymorphic list stores values of
type Object

Two problems

Type information is lost, need casts

List need not be homogenous!

public class LinkedList{

private int size;

private Node first;

public Object head(){ ... }

public void insert(Object newdata){...}

private class Node {...}

}

LinkedList list = new LinkedList();

Ticket t = new Ticket();

Date d = new Date();

list.insert(t);

list.insert(d);

...

Madhavan Mukund Polymorphism revisited Programming Concepts using Java 5 / 6

Generic programming in Java

Java added generic programming to address these issues

Classes and functions can have type parameters

class LinearList<T> holds values of type T

public T head(){...} returns a value of same type T as enclosing class

Can describe subclass relationships between type variables

public static <S extends T,T> void arraycopy (S[] src, T[] tgt){...}

Madhavan Mukund Polymorphism revisited Programming Concepts using Java 6 / 6

Generic programming in Java

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 5

https://www.cmi.ac.in/~madhavan

Structural polymorphism

Functions that depends only a specific capabilities

Reverse an array/list — should work for any type

Search for an element in an array/list — need equality check

Sort an array/list — need to compare values

May need to impose constraints on types of arguments

Copying an array needs source type to extend target type

Polymorphic data structures

Hold values of an arbitrary type

Homogenous

Should not have to cast return values

Madhavan Mukund Generic programming in Java Programming Concepts using Java 2 / 6

Java Generics

Use type variables

Polymorphic reverse in Java

Type quantifier before return type

“For every type T . . . ”

Polymorphic find in Java

Searching for a value of incompatible
type is now a compile-time error

Polymorphic arraycopy

Source and target types must be identical

A more generous arraycopy

Source and target types may be different

Source type must extend target type

Madhavan Mukund Generic programming in Java Programming Concepts using Java 3 / 6

Java Generics

Use type variables

Polymorphic reverse in Java

Type quantifier before return type

“For every type T . . . ”

Polymorphic find in Java

Searching for a value of incompatible
type is now a compile-time error

Polymorphic arraycopy

Source and target types must be identical

A more generous arraycopy

Source and target types may be different

Source type must extend target type

public <T> void reverse (T[] objarr){

T tempobj;

int len = objarr.length;

for (i = 0; i < n/2; i++){

tempobj = objarr[i];

objarr[i] = objarr[(n-1)-i];

objarr[(n-1)-i] = tempobj;

}

}

Madhavan Mukund Generic programming in Java Programming Concepts using Java 3 / 6

Java Generics

Use type variables

Polymorphic reverse in Java

Type quantifier before return type

“For every type T . . . ”

Polymorphic find in Java

Searching for a value of incompatible
type is now a compile-time error

Polymorphic arraycopy

Source and target types must be identical

A more generous arraycopy

Source and target types may be different

Source type must extend target type

public <T> int find (T[] objarr, T o){

int i;

for (i = 0; i < objarr.length; i++){

if (objarr[i] == o) {return i};

}

return (-1);

}

Madhavan Mukund Generic programming in Java Programming Concepts using Java 3 / 6

Java Generics

Use type variables

Polymorphic reverse in Java

Type quantifier before return type

“For every type T . . . ”

Polymorphic find in Java

Searching for a value of incompatible
type is now a compile-time error

Polymorphic arraycopy

Source and target types must be identical

A more generous arraycopy

Source and target types may be different

Source type must extend target type

public static <T> void arraycopy (T[] src,

T[] tgt){

int i,limit;

limit = Math.min(src.length,tgt.length);

for (i = 0; i < limit; i++){

tgt[i] = src[i];

}

}

Madhavan Mukund Generic programming in Java Programming Concepts using Java 3 / 6

Java Generics

Use type variables

Polymorphic reverse in Java

Type quantifier before return type

“For every type T . . . ”

Polymorphic find in Java

Searching for a value of incompatible
type is now a compile-time error

Polymorphic arraycopy

Source and target types must be identical

A more generous arraycopy

Source and target types may be different

Source type must extend target type

public static <S extends T,T>

void arraycopy (S[] src,

T[] tgt){

int i,limit;

limit = Math.min(src.length,tgt.length);

for (i = 0; i < limit; i++){

tgt[i] = src[i];

}

}

Madhavan Mukund Generic programming in Java Programming Concepts using Java 3 / 6

Polymorphic data structures

A polymorphic list

The type parameter T applies to the
class as a whole

Internally, the T in Node is the same T

Also the return value of head() and
the argument of insert()

Instantiate generic classes using
concrete type

public class LinkedList<T>{

private int size;

private Node first;

public T head(){

T returnval;

...

return(returnval);

}

public void insert(T newdata){...}

private class Node {

private T data;

private Node next;

...

}

}

}

Madhavan Mukund Generic programming in Java Programming Concepts using Java 4 / 6

Polymorphic data structures

A polymorphic list

The type parameter T applies to the
class as a whole

Internally, the T in Node is the same T

Also the return value of head() and
the argument of insert()

Instantiate generic classes using
concrete type

public class LinkedList<T>{

private int size;

private Node first;

public T head(){

T returnval;

...

return(returnval);

}

public void insert(T newdata){...}

private class Node {

private T data;

private Node next;

...

}

}

}

Madhavan Mukund Generic programming in Java Programming Concepts using Java 4 / 6

Polymorphic data structures

A polymorphic list

The type parameter T applies to the
class as a whole

Internally, the T in Node is the same T

Also the return value of head() and
the argument of insert()

Instantiate generic classes using
concrete type

public class LinkedList<T>{

private int size;

private Node first;

public T head(){

T returnval;

...

return(returnval);

}

public void insert(T newdata){...}

private class Node {

private T data;

private Node next;

...

}

}

}

Madhavan Mukund Generic programming in Java Programming Concepts using Java 4 / 6

Polymorphic data structures

A polymorphic list

The type parameter T applies to the
class as a whole

Internally, the T in Node is the same T

Also the return value of head() and
the argument of insert()

Instantiate generic classes using
concrete type

public class LinkedList<T>{

private int size;

private Node first;

public T head(){

T returnval;

...

return(returnval);

}

public void insert(T newdata){...}

private class Node {

private T data;

private Node next;

...

}

}

}

Madhavan Mukund Generic programming in Java Programming Concepts using Java 4 / 6

Polymorphic data structures

A polymorphic list

The type parameter T applies to the
class as a whole

Internally, the T in Node is the same T

Also the return value of head() and
the argument of insert()

Instantiate generic classes using
concrete type

public class LinkedList<T>{

...

}

LinkedList<Ticket> ticketlist =

new LinkedList<Ticket>();

LinkedList<Date> datelist =

new LinkedList<Date>();

Ticket t = new Ticket();

Date d = new Date();

ticketlist.insert(t);

datelist.insert(d);

Madhavan Mukund Generic programming in Java Programming Concepts using Java 4 / 6

Polymorphic data structures

Be careful not to accidentally hide a
type variable

public <T> void

insert(T newdata){...}

T in the argument of insert() is a
new T

Quantifier <T> masks the type
parameter T of LinkedList

Contrast with

public class LinkedList<T>{

private int size;

private Node first;

public T head(){

T returnval;

...

return(returnval);

}

public <T> void insert(T newdata){...}

private class Node {

private T data;

private Node next;

...

}

}

}

Madhavan Mukund Generic programming in Java Programming Concepts using Java 5 / 6

Polymorphic data structures

Be careful not to accidentally hide a
type variable

public <T> void

insert(T newdata){...}

T in the argument of insert() is a
new T

Quantifier <T> masks the type
parameter T of LinkedList

Contrast with

public class LinkedList<T>{

private int size;

private Node first;

public T head(){

T returnval;

...

return(returnval);

}

public <T> void insert(T newdata){...}

private class Node {

private T data;

private Node next;

...

}

}

}

Madhavan Mukund Generic programming in Java Programming Concepts using Java 5 / 6

Polymorphic data structures

Be careful not to accidentally hide a
type variable

public <T> void

insert(T newdata){...}

T in the argument of insert() is a
new T

Quantifier <T> masks the type
parameter T of LinkedList

Contrast with

public class LinkedList<T>{

private int size;

private Node first;

public T head(){

T returnval;

...

return(returnval);

}

public <T> void insert(T newdata){...}

private class Node {

private T data;

private Node next;

...

}

}

}

Madhavan Mukund Generic programming in Java Programming Concepts using Java 5 / 6

Polymorphic data structures

Be careful not to accidentally hide a
type variable

public <T> void

insert(T newdata){...}

T in the argument of insert() is a
new T

Quantifier <T> masks the type
parameter T of LinkedList

Contrast with

public <T> static void

arraycopy (T[] src, T[] tgt){...}

public class LinkedList<T>{

private int size;

private Node first;

public T head(){

T returnval;

...

return(returnval);

}

public <T> void insert(T newdata){...}

private class Node {

private T data;

private Node next;

...

}

}

}

Madhavan Mukund Generic programming in Java Programming Concepts using Java 5 / 6

Summary

Generics introduce structural polymorphism into Java through type variables

Classes and functions can have type parameters

class LinearList<T> holds values of an arbitrary type T

public T head(){...} returns a value of same type T used when creating the list

Can describe subclass relationships between type variables

public static <S extends T,T> void arraycopy (S[] src, T[] tgt){...}

Be careful not to accidentally hide type variables

public <T> void insert(T newdata){...} inside class LinearList<T>

vs

public <T> static void arraycopy (T[] src, T[] tgt){...}

Madhavan Mukund Generic programming in Java Programming Concepts using Java 6 / 6

Java generics and subtyping

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 5

https://www.cmi.ac.in/~madhavan

Extending subtyping in contexts

If S is compatible with T, S[] is compatible with T[]

ETicket[] elecarr = new ETicket[10];

Ticket[] ticketarr = elecarr;

// OK. ETicket[] is a subtype of Ticket[]

But . . .

A type error at run time!

Java array typing is covariant

If S extends T then S[] extends T[]

Madhavan Mukund Java generics and subtyping Programming Concepts using Java 2 / 9

Extending subtyping in contexts

If S is compatible with T, S[] is compatible with T[]

ETicket[] elecarr = new ETicket[10];

Ticket[] ticketarr = elecarr;

// OK. ETicket[] is a subtype of Ticket[]

But . . .

...

ticketarr[5] = new Ticket();

// Not OK. ticketarr[5] refers to an ETicket!

A type error at run time!

Java array typing is covariant

If S extends T then S[] extends T[]

Madhavan Mukund Java generics and subtyping Programming Concepts using Java 2 / 9

Extending subtyping in contexts

If S is compatible with T, S[] is compatible with T[]

ETicket[] elecarr = new ETicket[10];

Ticket[] ticketarr = elecarr;

// OK. ETicket[] is a subtype of Ticket[]

But . . .

...

ticketarr[5] = new Ticket();

// Not OK. ticketarr[5] refers to an ETicket!

A type error at run time!

Java array typing is covariant

If S extends T then S[] extends T[]

Madhavan Mukund Java generics and subtyping Programming Concepts using Java 2 / 9

Extending subtyping in contexts

If S is compatible with T, S[] is compatible with T[]

ETicket[] elecarr = new ETicket[10];

Ticket[] ticketarr = elecarr;

// OK. ETicket[] is a subtype of Ticket[]

But . . .

...

ticketarr[5] = new Ticket();

// Not OK. ticketarr[5] refers to an ETicket!

A type error at run time!

Java array typing is covariant

If S extends T then S[] extends T[]

Madhavan Mukund Java generics and subtyping Programming Concepts using Java 2 / 9

Generics and subtypes

Generic classes are not covariant

LinkedList<String> is not compatible with LinkedList<Object>

The following will not work to print out an arbitrary LinkedList

How can we get around this limitation?

Madhavan Mukund Java generics and subtyping Programming Concepts using Java 3 / 9

Generics and subtypes

Generic classes are not covariant

LinkedList<String> is not compatible with LinkedList<Object>

The following will not work to print out an arbitrary LinkedList

public class LinkedList<T>{...}

public static void printlist(LinkedList<Object> l){

Object o;

Iterator i = l.get_iterator();

while (i.has_next()){

o = i.get_next();

System.out.println(o);

}

How can we get around this limitation?

Madhavan Mukund Java generics and subtyping Programming Concepts using Java 3 / 9

Generics and subtypes

Generic classes are not covariant

LinkedList<String> is not compatible with LinkedList<Object>

The following will not work to print out an arbitrary LinkedList

public class LinkedList<T>{...}

public static void printlist(LinkedList<Object> l){

Object o;

Iterator i = l.get_iterator();

while (i.has_next()){

o = i.get_next();

System.out.println(o);

}

How can we get around this limitation?

Madhavan Mukund Java generics and subtyping Programming Concepts using Java 3 / 9

Generic methods

As we have seen, we can make the method generic by introducing a type variable

public class LinkedList<T>{...}

public static <T> void printlist(LinkedList<T> l){

Object o;

Iterator i = l.get_iterator();

while (i.has_next()){

o = i.get_next();

System.out.println(o);

}

<T> is a type quantifier: For every type T, . . .

Note that T is not actually used inside the function

We use Object o as a generic variable to cycle through the list

Madhavan Mukund Java generics and subtyping Programming Concepts using Java 4 / 9

Generic methods

As we have seen, we can make the method generic by introducing a type variable

public class LinkedList<T>{...}

public static <T> void printlist(LinkedList<T> l){

Object o;

Iterator i = l.get_iterator();

while (i.has_next()){

o = i.get_next();

System.out.println(o);

}

<T> is a type quantifier: For every type T, . . .

Note that T is not actually used inside the function

We use Object o as a generic variable to cycle through the list

Madhavan Mukund Java generics and subtyping Programming Concepts using Java 4 / 9

Generic methods

As we have seen, we can make the method generic by introducing a type variable

public class LinkedList<T>{...}

public static <T> void printlist(LinkedList<T> l){

Object o;

Iterator i = l.get_iterator();

while (i.has_next()){

o = i.get_next();

System.out.println(o);

}

<T> is a type quantifier: For every type T, . . .

Note that T is not actually used inside the function

We use Object o as a generic variable to cycle through the list

Madhavan Mukund Java generics and subtyping Programming Concepts using Java 4 / 9

Wildcards

Instead, use ? as a wildcard type variable

public class LinkedList<T>{...}

public static void printlist(LinkedList<?> l){

Object o;

Iterator i = l.get_iterator();

while (i.has_next()){

o = i.get_next();

System.out.println(o);

}

}

? stands for an arbitrary unknown type

Avoids unnecessary type variable quantification when the type variable is not needed
elsewhere

Madhavan Mukund Java generics and subtyping Programming Concepts using Java 5 / 9

Wildcards

Instead, use ? as a wildcard type variable

public class LinkedList<T>{...}

public static void printlist(LinkedList<?> l){

Object o;

Iterator i = l.get_iterator();

while (i.has_next()){

o = i.get_next();

System.out.println(o);

}

}

? stands for an arbitrary unknown type

Avoids unnecessary type variable quantification when the type variable is not needed
elsewhere

Madhavan Mukund Java generics and subtyping Programming Concepts using Java 5 / 9

Wildcards

Instead, use ? as a wildcard type variable

public class LinkedList<T>{...}

public static void printlist(LinkedList<?> l){

Object o;

Iterator i = l.get_iterator();

while (i.has_next()){

o = i.get_next();

System.out.println(o);

}

}

? stands for an arbitrary unknown type

Avoids unnecessary type variable quantification when the type variable is not needed
elsewhere

Madhavan Mukund Java generics and subtyping Programming Concepts using Java 5 / 9

Wildcards

Can define variables of a wildcard type

public class LinkedList<T>{...}

LinkedList<?> l;

But need to be careful about assigning values

Compiler cannot guarantee the types match

Madhavan Mukund Java generics and subtyping Programming Concepts using Java 6 / 9

Wildcards

Can define variables of a wildcard type

public class LinkedList<T>{...}

LinkedList<?> l;

But need to be careful about assigning values

public class LinkedList<T>{...}

LinkedList<?> l = new LinkedList<String>();

l.add(new Object()); // Compile time error

Compiler cannot guarantee the types match

Madhavan Mukund Java generics and subtyping Programming Concepts using Java 6 / 9

Wildcards

Can define variables of a wildcard type

public class LinkedList<T>{...}

LinkedList<?> l;

But need to be careful about assigning values

public class LinkedList<T>{...}

LinkedList<?> l = new LinkedList<String>();

l.add(new Object()); // Compile time error

Compiler cannot guarantee the types match

Madhavan Mukund Java generics and subtyping Programming Concepts using Java 6 / 9

Bounded wildcards

Suppose Circle, Square and Rectangle all extend Shape

Shape has a method draw()

All subclasses override draw()

Want a function to draw all elements in a list of Shape compatible objects

Madhavan Mukund Java generics and subtyping Programming Concepts using Java 7 / 9

Bounded wildcards

Suppose Circle, Square and Rectangle all extend Shape

Shape has a method draw()

All subclasses override draw()

Want a function to draw all elements in a list of Shape compatible objects

Madhavan Mukund Java generics and subtyping Programming Concepts using Java 7 / 9

Bounded wildcards

Suppose Circle, Square and Rectangle all extend Shape

Shape has a method draw()

All subclasses override draw()

Want a function to draw all elements in a list of Shape compatible objects

Madhavan Mukund Java generics and subtyping Programming Concepts using Java 7 / 9

Bounded wildcards

Suppose Circle, Square and Rectangle all extend Shape

Shape has a method draw()

All subclasses override draw()

Want a function to draw all elements in a list of Shape compatible objects

public static void drawAll(LinkedList<? extends Shape> l){

Object o;

Iterator i = l.get_iterator();

while (i.has_next()){

o = i.get_next();

o.draw();

}

}

Madhavan Mukund Java generics and subtyping Programming Concepts using Java 7 / 9

Bounded wildcards

Copying a LinkedList, using a
wildcard

public static <? extends T,T>

void listcopy (LinkedList<?> src,

LinkedList<T> tgt){

Object o;

Iterator i = srt.get_iterator();

while (i.has_next()){

o = i.get_next();

trt.add(o);

}

}

Can reverse the constraint, using super

Madhavan Mukund Java generics and subtyping Programming Concepts using Java 8 / 9

Bounded wildcards

Copying a LinkedList, using a
wildcard

public static <? extends T,T>

void listcopy (LinkedList<?> src,

LinkedList<T> tgt){

Object o;

Iterator i = srt.get_iterator();

while (i.has_next()){

o = i.get_next();

trt.add(o);

}

}

Can reverse the constraint, using super

public static <T,? super T>

void listcopy (LinkedList<T> src,

LinkedList<?> tgt){

Object o;

Iterator i = srt.get_iterator();

while (i.has_next()){

o = i.get_next();

trt.add(o);

}

}

Madhavan Mukund Java generics and subtyping Programming Concepts using Java 8 / 9

Summary

Java generics are not covariant, unlike arrays

Cannot substitute Object for T to get most general type

Instead, use type quantification <T> or wild card type variable ?

Wild card can be used wherever the type T is not required within the function

When T is not needed for return type, or to declare local variables

Wild cards can be bounded

LinkedList<? extends T>

LinkedList<? super T>

Madhavan Mukund Java generics and subtyping Programming Concepts using Java 9 / 9

Reflection

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 5

https://www.cmi.ac.in/~madhavan

Reflection

Wikipedia

Reflective programming or reflection is the ability of a process to examine, introspect,
and modify its own structure and behaviour.

Two components involved in reflection

Introspection

A program can observe, and therefore reason about its own state.

Intercession

A program can modify its execution state or alter its own interpretation or meaning.

Madhavan Mukund Reflection Programming Concepts using Java 2 / 14

Reflection

Wikipedia

Reflective programming or reflection is the ability of a process to examine, introspect,
and modify its own structure and behaviour.

Two components involved in reflection

Introspection

A program can observe, and therefore reason about its own state.

Intercession

A program can modify its execution state or alter its own interpretation or meaning.

Madhavan Mukund Reflection Programming Concepts using Java 2 / 14

Reflection

Wikipedia

Reflective programming or reflection is the ability of a process to examine, introspect,
and modify its own structure and behaviour.

Two components involved in reflection

Introspection

A program can observe, and therefore reason about its own state.

Intercession

A program can modify its execution state or alter its own interpretation or meaning.

Madhavan Mukund Reflection Programming Concepts using Java 2 / 14

Reflection

Wikipedia

Reflective programming or reflection is the ability of a process to examine, introspect,
and modify its own structure and behaviour.

Two components involved in reflection

Introspection

A program can observe, and therefore reason about its own state.

Intercession

A program can modify its execution state or alter its own interpretation or meaning.

Madhavan Mukund Reflection Programming Concepts using Java 2 / 14

Reflection in Java

Simple example of introspection

Employee e = new Manager(...);

...

if (e instanceof Manager){

...

}

What if we don’t know the type that we want to check in advance?

Suppose we want to write a function to check if two different objects are both
instances of the same class?

Madhavan Mukund Reflection Programming Concepts using Java 3 / 14

Reflection in Java

Simple example of introspection

Employee e = new Manager(...);

...

if (e instanceof Manager){

...

}

What if we don’t know the type that we want to check in advance?

Suppose we want to write a function to check if two different objects are both
instances of the same class?

Madhavan Mukund Reflection Programming Concepts using Java 3 / 14

Reflection in Java

Simple example of introspection

Employee e = new Manager(...);

...

if (e instanceof Manager){

...

}

What if we don’t know the type that we want to check in advance?

Suppose we want to write a function to check if two different objects are both
instances of the same class?

public static boolean classequal(Object o1, Object o2){

...

// return true iff o1 and o2 point to objects of same type

...

}

Madhavan Mukund Reflection Programming Concepts using Java 3 / 14

Reflection in Java . . .

public static boolean classequal(Object o1, Object o2){...}

Can’t use instanceof

Will have to check across all defined classes

This is not even a fixed set!

Can’t use generic type variables

The following code is syntactically disallowed

Madhavan Mukund Reflection Programming Concepts using Java 4 / 14

Reflection in Java . . .

public static boolean classequal(Object o1, Object o2){...}

Can’t use instanceof

Will have to check across all defined classes

This is not even a fixed set!

Can’t use generic type variables

The following code is syntactically disallowed

Madhavan Mukund Reflection Programming Concepts using Java 4 / 14

Reflection in Java . . .

public static boolean classequal(Object o1, Object o2){...}

Can’t use instanceof

Will have to check across all defined classes

This is not even a fixed set!

Can’t use generic type variables

The following code is syntactically disallowed

if (o1 instance of T) { ...}

Madhavan Mukund Reflection Programming Concepts using Java 4 / 14

Introspection in Java

Can extract the class of an object using getClass()

Import package java.lang.reflect

What does getClass() return?

An object of type Class that encodes class information

Madhavan Mukund Reflection Programming Concepts using Java 5 / 14

Introspection in Java

Can extract the class of an object using getClass()

Import package java.lang.reflect

import java.lang.reflect.*;

class MyReflectionClass{

...

public static boolean classequal(Object o1, Object o2){

return (o1.getClass() == o2.getClass());

}

}

What does getClass() return?

An object of type Class that encodes class information

Madhavan Mukund Reflection Programming Concepts using Java 5 / 14

Introspection in Java

Can extract the class of an object using getClass()

Import package java.lang.reflect

import java.lang.reflect.*;

class MyReflectionClass{

...

public static boolean classequal(Object o1, Object o2){

return (o1.getClass() == o2.getClass());

}

}

What does getClass() return?

An object of type Class that encodes class information

Madhavan Mukund Reflection Programming Concepts using Java 5 / 14

Introspection in Java

Can extract the class of an object using getClass()

Import package java.lang.reflect

import java.lang.reflect.*;

class MyReflectionClass{

...

public static boolean classequal(Object o1, Object o2){

return (o1.getClass() == o2.getClass());

}

}

What does getClass() return?

An object of type Class that encodes class information

Madhavan Mukund Reflection Programming Concepts using Java 5 / 14

The class Class

A version of classequal the explicitly uses this fact

import java.lang.reflect.*;

class MyReflectionClass{

...

public static boolean classequal(Object o1, Object o2){

Class c1, c2;

c1 = o1.getClass();

c2 = o2.getClass();

return (c1 == c2);

}

}

For each currently loaded class C, Java creates an object of type Class with
information about C

Encoding execution state as data — reification

Representing an abstract idea in a concrete form

Madhavan Mukund Reflection Programming Concepts using Java 6 / 14

The class Class

A version of classequal the explicitly uses this fact

import java.lang.reflect.*;

class MyReflectionClass{

...

public static boolean classequal(Object o1, Object o2){

Class c1, c2;

c1 = o1.getClass();

c2 = o2.getClass();

return (c1 == c2);

}

}

For each currently loaded class C, Java creates an object of type Class with
information about C

Encoding execution state as data — reification

Representing an abstract idea in a concrete form

Madhavan Mukund Reflection Programming Concepts using Java 6 / 14

The class Class

A version of classequal the explicitly uses this fact

import java.lang.reflect.*;

class MyReflectionClass{

...

public static boolean classequal(Object o1, Object o2){

Class c1, c2;

c1 = o1.getClass();

c2 = o2.getClass();

return (c1 == c2);

}

}

For each currently loaded class C, Java creates an object of type Class with
information about C

Encoding execution state as data — reification

Representing an abstract idea in a concrete form
Madhavan Mukund Reflection Programming Concepts using Java 6 / 14

Using the Class object

Can create new instances of a class at runtime

...

Class c = obj.getClass();

Object o = c.newInstance();

// Create a new object of same type as obj

...

Can also get hold of the class object using the name of the class

. . . , or, more compactly

Madhavan Mukund Reflection Programming Concepts using Java 7 / 14

Using the Class object

Can create new instances of a class at runtime

...

Class c = obj.getClass();

Object o = c.newInstance();

// Create a new object of same type as obj

...

Can also get hold of the class object using the name of the class

...

String s = "Manager".

Class c = Class.forName(s);

Object o = c.newInstance();

...

. . . , or, more compactly

Madhavan Mukund Reflection Programming Concepts using Java 7 / 14

Using the Class object

Can create new instances of a class at runtime

...

Class c = obj.getClass();

Object o = c.newInstance();

// Create a new object of same type as obj

...

Can also get hold of the class object using the name of the class

...

String s = "Manager".

Class c = Class.forName(s);

Object o = c.newInstance();

...

. . . , or, more compactly

...

Object o = Class.forName("Manager").newInstance();

...
Madhavan Mukund Reflection Programming Concepts using Java 7 / 14

The class Class . . .

From the Class object for class C, we can extract details about constructors,
methods and fields of C

Constructors, methods and fields themselves have structure

Constructors: arguments

Methods : arguments and return type

All three: modifiers static, private etc

Additional classes Constructor, Method, Field

Use getConstructors(), getMethods() and getFields() to obtain
constructors, methods and fields of C in an array.

Madhavan Mukund Reflection Programming Concepts using Java 8 / 14

The class Class . . .

From the Class object for class C, we can extract details about constructors,
methods and fields of C

Constructors, methods and fields themselves have structure

Constructors: arguments

Methods : arguments and return type

All three: modifiers static, private etc

Additional classes Constructor, Method, Field

Use getConstructors(), getMethods() and getFields() to obtain
constructors, methods and fields of C in an array.

Madhavan Mukund Reflection Programming Concepts using Java 8 / 14

The class Class . . .

From the Class object for class C, we can extract details about constructors,
methods and fields of C

Constructors, methods and fields themselves have structure

Constructors: arguments

Methods : arguments and return type

All three: modifiers static, private etc

Additional classes Constructor, Method, Field

Use getConstructors(), getMethods() and getFields() to obtain
constructors, methods and fields of C in an array.

Madhavan Mukund Reflection Programming Concepts using Java 8 / 14

The class Class . . .

From the Class object for class C, we can extract details about constructors,
methods and fields of C

Constructors, methods and fields themselves have structure

Constructors: arguments

Methods : arguments and return type

All three: modifiers static, private etc

Additional classes Constructor, Method, Field

Use getConstructors(), getMethods() and getFields() to obtain
constructors, methods and fields of C in an array.

Madhavan Mukund Reflection Programming Concepts using Java 8 / 14

The class Class . . .

Extracting information about constructors, methods and fields

...

Class c = obj.getClass();

Constructor[] constructors = c.getConstructors();

Method[] methods = c.getMethods();

Field[] fields = c.getFields();

...

Constructor, Method, Field in turn have functions to get further details

Madhavan Mukund Reflection Programming Concepts using Java 9 / 14

The class Class . . .

Extracting information about constructors, methods and fields

...

Class c = obj.getClass();

Constructor[] constructors = c.getConstructors();

Method[] methods = c.getMethods();

Field[] fields = c.getFields();

...

Constructor, Method, Field in turn have functions to get further details

Madhavan Mukund Reflection Programming Concepts using Java 9 / 14

The class Class . . .

Example: Get the list of parameters for each constructor

...

Class c = obj.getClass();

Constructor[] constructors = c.getConstructors();

for (int i = 0; i < constructors.length; i++){

Class params[] = constructors[i].getParameterTypes();

..

}

Each parameter list is a list of types

Return value is an array of type Class[]

Madhavan Mukund Reflection Programming Concepts using Java 10 / 14

The class Class . . .

Example: Get the list of parameters for each constructor

...

Class c = obj.getClass();

Constructor[] constructors = c.getConstructors();

for (int i = 0; i < constructors.length; i++){

Class params[] = constructors[i].getParameterTypes();

..

}

Each parameter list is a list of types

Return value is an array of type Class[]

Madhavan Mukund Reflection Programming Concepts using Java 10 / 14

The class Class . . .

We can also invoke methods and examine/set values of fields.

...

Class c = obj.getClass();

..

Method[] methods = c.getMethods();

Object[] args = { ... }

// construct an array of arguments

methods[3].invoke(obj,args);

// invoke methods[3] on obj with arguments args

...

Madhavan Mukund Reflection Programming Concepts using Java 11 / 14

The class Class . . .

We can also invoke methods and examine/set values of fields.

...

Class c = obj.getClass();

..

Method[] methods = c.getMethods();

Object[] args = { ... }

// construct an array of arguments

methods[3].invoke(obj,args);

// invoke methods[3] on obj with arguments args

...

Field[] fields = c.getFields();

Object o = fields[2].get(obj);

// get the value of fields[2] from obj

...

fields[3].set(obj,value);

// set the value of fields[3] in obj to value

...

Madhavan Mukund Reflection Programming Concepts using Java 11 / 14

Reflection and security

Can we extract information about private methods, fields, . . . ?

getConstructors(), . . . only return publicly defined values

Separate functions to also include private components

getDeclaredConstructors()

getDeclaredMethods()

getDeclaredFields()

Should this be allowed to all programs?

Security issue!

Access to private components may be restricted through external security policies

Madhavan Mukund Reflection Programming Concepts using Java 12 / 14

Reflection and security

Can we extract information about private methods, fields, . . . ?

getConstructors(), . . . only return publicly defined values

Separate functions to also include private components

getDeclaredConstructors()

getDeclaredMethods()

getDeclaredFields()

Should this be allowed to all programs?

Security issue!

Access to private components may be restricted through external security policies

Madhavan Mukund Reflection Programming Concepts using Java 12 / 14

Reflection and security

Can we extract information about private methods, fields, . . . ?

getConstructors(), . . . only return publicly defined values

Separate functions to also include private components

getDeclaredConstructors()

getDeclaredMethods()

getDeclaredFields()

Should this be allowed to all programs?

Security issue!

Access to private components may be restricted through external security policies

Madhavan Mukund Reflection Programming Concepts using Java 12 / 14

Reflection and security

Can we extract information about private methods, fields, . . . ?

getConstructors(), . . . only return publicly defined values

Separate functions to also include private components

getDeclaredConstructors()

getDeclaredMethods()

getDeclaredFields()

Should this be allowed to all programs?

Security issue!

Access to private components may be restricted through external security policies

Madhavan Mukund Reflection Programming Concepts using Java 12 / 14

Reflection and security

Can we extract information about private methods, fields, . . . ?

getConstructors(), . . . only return publicly defined values

Separate functions to also include private components

getDeclaredConstructors()

getDeclaredMethods()

getDeclaredFields()

Should this be allowed to all programs?

Security issue!

Access to private components may be restricted through external security policies

Madhavan Mukund Reflection Programming Concepts using Java 12 / 14

Reflection and security

Can we extract information about private methods, fields, . . . ?

getConstructors(), . . . only return publicly defined values

Separate functions to also include private components

getDeclaredConstructors()

getDeclaredMethods()

getDeclaredFields()

Should this be allowed to all programs?

Security issue!

Access to private components may be restricted through external security policies

Madhavan Mukund Reflection Programming Concepts using Java 12 / 14

Using reflection

BlueJ, a programming environment to learn Java

Can define and compile Java classes

For compiled code, create object, invoke methods, examine state

Uses reflective capabilities of Java — BlueJ need not internally maintain
“debugging” information about each class

See http://www.bluej.org

Madhavan Mukund Reflection Programming Concepts using Java 13 / 14

Using reflection

BlueJ, a programming environment to learn Java

Can define and compile Java classes

For compiled code, create object, invoke methods, examine state

Uses reflective capabilities of Java — BlueJ need not internally maintain
“debugging” information about each class

See http://www.bluej.org

Madhavan Mukund Reflection Programming Concepts using Java 13 / 14

Using reflection

BlueJ, a programming environment to learn Java

Can define and compile Java classes

For compiled code, create object, invoke methods, examine state

Uses reflective capabilities of Java — BlueJ need not internally maintain
“debugging” information about each class

See http://www.bluej.org

Madhavan Mukund Reflection Programming Concepts using Java 13 / 14

Using reflection

BlueJ, a programming environment to learn Java

Can define and compile Java classes

For compiled code, create object, invoke methods, examine state

Uses reflective capabilities of Java — BlueJ need not internally maintain
“debugging” information about each class

See http://www.bluej.org

Madhavan Mukund Reflection Programming Concepts using Java 13 / 14

Using reflection

BlueJ, a programming environment to learn Java

Can define and compile Java classes

For compiled code, create object, invoke methods, examine state

Uses reflective capabilities of Java — BlueJ need not internally maintain
“debugging” information about each class

See http://www.bluej.org

Madhavan Mukund Reflection Programming Concepts using Java 13 / 14

Limitations of Java reflection

Cannot create or modify classes at run time

The following is not possible

Class c = new Class(....);

An environment like BlueJ must invoke Java compiler before you can use a new class

Contrast with Python

class XYZ: can be executed at runtime in Python

Other OO languages like Smalltalk allow redefining methods at run time

Madhavan Mukund Reflection Programming Concepts using Java 14 / 14

Limitations of Java reflection

Cannot create or modify classes at run time

The following is not possible

Class c = new Class(....);

An environment like BlueJ must invoke Java compiler before you can use a new class

Contrast with Python

class XYZ: can be executed at runtime in Python

Other OO languages like Smalltalk allow redefining methods at run time

Madhavan Mukund Reflection Programming Concepts using Java 14 / 14

Limitations of Java reflection

Cannot create or modify classes at run time

The following is not possible

Class c = new Class(....);

An environment like BlueJ must invoke Java compiler before you can use a new class

Contrast with Python

class XYZ: can be executed at runtime in Python

Other OO languages like Smalltalk allow redefining methods at run time

Madhavan Mukund Reflection Programming Concepts using Java 14 / 14

Java generics at run time

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 5

https://www.cmi.ac.in/~madhavan

Erasure of generic information

Type erasure — Java does not keep record all versions of LinkedList<T> as
separate types

Cannot write

if (s instanceof LinkedList<String>){ ... }

At run time, all type variables are promoted to Object

LinkedList<T> becomes LinkedList<Object>

Or, the upper bound, if one is available

LinkedList<? extends Shape> becomes LinkedList<Shape>

Since no information about T is preserved, cannot use T in expressions like

if (o instanceof T) {...}

Madhavan Mukund Java generics at run time Programming Concepts using Java 2 / 7

Erasure of generic information

Type erasure — Java does not keep record all versions of LinkedList<T> as
separate types

Cannot write

if (s instanceof LinkedList<String>){ ... }

At run time, all type variables are promoted to Object

LinkedList<T> becomes LinkedList<Object>

Or, the upper bound, if one is available

LinkedList<? extends Shape> becomes LinkedList<Shape>

Since no information about T is preserved, cannot use T in expressions like

if (o instanceof T) {...}

Madhavan Mukund Java generics at run time Programming Concepts using Java 2 / 7

Erasure of generic information

Type erasure — Java does not keep record all versions of LinkedList<T> as
separate types

Cannot write

if (s instanceof LinkedList<String>){ ... }

At run time, all type variables are promoted to Object

LinkedList<T> becomes LinkedList<Object>

Or, the upper bound, if one is available

LinkedList<? extends Shape> becomes LinkedList<Shape>

Since no information about T is preserved, cannot use T in expressions like

if (o instanceof T) {...}

Madhavan Mukund Java generics at run time Programming Concepts using Java 2 / 7

Erasure of generic information

Type erasure — Java does not keep record all versions of LinkedList<T> as
separate types

Cannot write

if (s instanceof LinkedList<String>){ ... }

At run time, all type variables are promoted to Object

LinkedList<T> becomes LinkedList<Object>

Or, the upper bound, if one is available

LinkedList<? extends Shape> becomes LinkedList<Shape>

Since no information about T is preserved, cannot use T in expressions like

if (o instanceof T) {...}

Madhavan Mukund Java generics at run time Programming Concepts using Java 2 / 7

Erasure and overloading

Type erasure means the comparison in following code fragment returns True

o1 = new LinkedList<Employee>();

o2 = new LinkedList<Date>();

if (o1.getClass() == o2.getClass){

// True, so this block is executed

}

As a consequence the following overloading is illegal

Both functions have the same signature after type erasure

Madhavan Mukund Java generics at run time Programming Concepts using Java 3 / 7

Erasure and overloading

Type erasure means the comparison in following code fragment returns True

o1 = new LinkedList<Employee>();

o2 = new LinkedList<Date>();

if (o1.getClass() == o2.getClass){

// True, so this block is executed

}

As a consequence the following overloading is illegal

public class Example {

public void printlist(LinkedList<String> strList) { }

public void printlist(LinkedList<Date> dateList) { }

}

Both functions have the same signature after type erasure

Madhavan Mukund Java generics at run time Programming Concepts using Java 3 / 7

Erasure and overloading

Type erasure means the comparison in following code fragment returns True

o1 = new LinkedList<Employee>();

o2 = new LinkedList<Date>();

if (o1.getClass() == o2.getClass){

// True, so this block is executed

}

As a consequence the following overloading is illegal

public class Example {

public void printlist(LinkedList<String> strList) { }

public void printlist(LinkedList<Date> dateList) { }

}

Both functions have the same signature after type erasure

Madhavan Mukund Java generics at run time Programming Concepts using Java 3 / 7

Arrays and generics

Recall the covariance problem for arrays

If S extends T then S[] extends T[]

Can lead to run time type errors

To avoid similar problems, can declare a generic array, but cannot instantiate it

An ugly workaround . . .

Madhavan Mukund Java generics at run time Programming Concepts using Java 4 / 7

Arrays and generics

Recall the covariance problem for arrays

If S extends T then S[] extends T[]

Can lead to run time type errors

ETicket[] elecarr = new ETicket[10];

Ticket[] ticketarr = elecarr; // OK. ETicket[] is a subtype of Ticket[]

...

ticketarr[5] = new Ticket(); // Not OK. ticketarr[5] refers to an ETicket!

To avoid similar problems, can declare a generic array, but cannot instantiate it

An ugly workaround . . .

Madhavan Mukund Java generics at run time Programming Concepts using Java 4 / 7

Arrays and generics

Recall the covariance problem for arrays

If S extends T then S[] extends T[]

Can lead to run time type errors

ETicket[] elecarr = new ETicket[10];

Ticket[] ticketarr = elecarr; // OK. ETicket[] is a subtype of Ticket[]

...

ticketarr[5] = new Ticket(); // Not OK. ticketarr[5] refers to an ETicket!

To avoid similar problems, can declare a generic array, but cannot instantiate it

T[] newarray; // OK

newarray = new T[100]; // Cannot create!

An ugly workaround . . .

Madhavan Mukund Java generics at run time Programming Concepts using Java 4 / 7

Arrays and generics

Recall the covariance problem for arrays

If S extends T then S[] extends T[]

Can lead to run time type errors

ETicket[] elecarr = new ETicket[10];

Ticket[] ticketarr = elecarr; // OK. ETicket[] is a subtype of Ticket[]

...

ticketarr[5] = new Ticket(); // Not OK. ticketarr[5] refers to an ETicket!

To avoid similar problems, can declare a generic array, but cannot instantiate it

T[] newarray; // OK

newarray = new T[100]; // Cannot create!

An ugly workaround . . .

T[] newarray;

newarray = (T[]) new Object[100];

Madhavan Mukund Java generics at run time Programming Concepts using Java 4 / 7

Arrays and generics

Recall the covariance problem for arrays

If S extends T then S[] extends T[]

Can lead to run time type errors

ETicket[] elecarr = new ETicket[10];

Ticket[] ticketarr = elecarr; // OK. ETicket[] is a subtype of Ticket[]

...

ticketarr[5] = new Ticket(); // Not OK. ticketarr[5] refers to an ETicket!

To avoid similar problems, can declare a generic array, but cannot instantiate it

T[] newarray; // OK

newarray = new T[100]; // Cannot create!

An ugly workaround . . . generates a compiler warning but works!

T[] newarray;

newarray = (T[]) new Object[100];

Madhavan Mukund Java generics at run time Programming Concepts using Java 4 / 7

Wrapper classes

Type erasure — at run time, all type variables are promoted to Object

LinkedList<T> becomes LinkedList<Object>

Basic types int, float, . . . are not compatible with Object

Cannot use basic type in place of a generic type variable T

Cannot instantiate LinkedList<T> as LinkedList<int>, LinkedList<double>, . . .

Wrapper class for each basic type:

Basic type Wrapper Class

byte Byte

short Short

int Integer

long Long

Basic type Wrapper Class

float Float

double Double

boolean Boolean

char Character

All wrapper classes other than Boolean, Character extend the class Number

Madhavan Mukund Java generics at run time Programming Concepts using Java 5 / 7

Wrapper classes

Type erasure — at run time, all type variables are promoted to Object

LinkedList<T> becomes LinkedList<Object>

Basic types int, float, . . . are not compatible with Object

Cannot use basic type in place of a generic type variable T

Cannot instantiate LinkedList<T> as LinkedList<int>, LinkedList<double>, . . .

Wrapper class for each basic type:

Basic type Wrapper Class

byte Byte

short Short

int Integer

long Long

Basic type Wrapper Class

float Float

double Double

boolean Boolean

char Character

All wrapper classes other than Boolean, Character extend the class Number

Madhavan Mukund Java generics at run time Programming Concepts using Java 5 / 7

Wrapper classes

Type erasure — at run time, all type variables are promoted to Object

LinkedList<T> becomes LinkedList<Object>

Basic types int, float, . . . are not compatible with Object

Cannot use basic type in place of a generic type variable T

Cannot instantiate LinkedList<T> as LinkedList<int>, LinkedList<double>, . . .

Wrapper class for each basic type:

Basic type Wrapper Class

byte Byte

short Short

int Integer

long Long

Basic type Wrapper Class

float Float

double Double

boolean Boolean

char Character

All wrapper classes other than Boolean, Character extend the class Number

Madhavan Mukund Java generics at run time Programming Concepts using Java 5 / 7

Wrapper classes

Type erasure — at run time, all type variables are promoted to Object

LinkedList<T> becomes LinkedList<Object>

Basic types int, float, . . . are not compatible with Object

Cannot use basic type in place of a generic type variable T

Cannot instantiate LinkedList<T> as LinkedList<int>, LinkedList<double>, . . .

Wrapper class for each basic type:

Basic type Wrapper Class

byte Byte

short Short

int Integer

long Long

Basic type Wrapper Class

float Float

double Double

boolean Boolean

char Character

All wrapper classes other than Boolean, Character extend the class Number

Madhavan Mukund Java generics at run time Programming Concepts using Java 5 / 7

Wrapper classes

Type erasure — at run time, all type variables are promoted to Object

LinkedList<T> becomes LinkedList<Object>

Basic types int, float, . . . are not compatible with Object

Cannot use basic type in place of a generic type variable T

Cannot instantiate LinkedList<T> as LinkedList<int>, LinkedList<double>, . . .

Wrapper class for each basic type:

Basic type Wrapper Class

byte Byte

short Short

int Integer

long Long

Basic type Wrapper Class

float Float

double Double

boolean Boolean

char Character

All wrapper classes other than Boolean, Character extend the class Number

Madhavan Mukund Java generics at run time Programming Concepts using Java 5 / 7

Wrapper classes

Converting from basic type to wrapper class and back

int x = 5;

Integer myx = Integer(x);

int y = myx.intValue();

Similarly, byteValue(), doubleValue(), . . .

Autoboxing — implicit conversion between base types and wrapper types

Use wrapper types in generic data structures

Madhavan Mukund Java generics at run time Programming Concepts using Java 6 / 7

Wrapper classes

Converting from basic type to wrapper class and back

int x = 5;

Integer myx = Integer(x);

int y = myx.intValue();

Similarly, byteValue(), doubleValue(), . . .

Autoboxing — implicit conversion between base types and wrapper types

Use wrapper types in generic data structures

Madhavan Mukund Java generics at run time Programming Concepts using Java 6 / 7

Wrapper classes

Converting from basic type to wrapper class and back

int x = 5;

Integer myx = Integer(x);

int y = myx.intValue();

Similarly, byteValue(), doubleValue(), . . .

Autoboxing — implicit conversion between base types and wrapper types

int x = 5;

Integer myx = x;

int y = myx;

Use wrapper types in generic data structures

Madhavan Mukund Java generics at run time Programming Concepts using Java 6 / 7

Wrapper classes

Converting from basic type to wrapper class and back

int x = 5;

Integer myx = Integer(x);

int y = myx.intValue();

Similarly, byteValue(), doubleValue(), . . .

Autoboxing — implicit conversion between base types and wrapper types

int x = 5;

Integer myx = x;

int y = myx;

Use wrapper types in generic data structures

Madhavan Mukund Java generics at run time Programming Concepts using Java 6 / 7

Summary

Java generics come with some restrictions

Information about type variables is erased at runtime

LinkedList<T> becomes LinkedList<Object>

LinkedList<? extends Shape> becomes LinkedList<Shape>

Limits the use reflection on generic types — cannot write

if (o instanceof LinkedList<String>) {...}
if (o instanceof T) {...}

Cannot overload function signatures using instantiation of generic types

Cannot instantiate arrays of generic type

Need to box built-in types using wrapper types

Madhavan Mukund Java generics at run time Programming Concepts using Java 7 / 7

The benefits of indirection

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 6

https://www.cmi.ac.in/~madhavan

Abstract data types

Separate public interface from private
implementation

For instance, a (generic) queue

Concrete implementation could be a
circular array

Or a linked list

Implementer of class Queue can choose
either one

Public interface is unchanged

Madhavan Mukund The benefits of indirection Programming Concepts using Java 2 / 6

Abstract data types

Separate public interface from private
implementation

For instance, a (generic) queue

Concrete implementation could be a
circular array

Or a linked list

Implementer of class Queue can choose
either one

Public interface is unchanged

public class Queue<E> {

public void add (E element){...};

public E remove(){...};

public int size(){...};

...

}

Madhavan Mukund The benefits of indirection Programming Concepts using Java 2 / 6

Abstract data types

Separate public interface from private
implementation

For instance, a (generic) queue

Concrete implementation could be a
circular array

Or a linked list

Implementer of class Queue can choose
either one

Public interface is unchanged

Head

Tail

Tail

Head

Madhavan Mukund The benefits of indirection Programming Concepts using Java 2 / 6

Abstract data types

Separate public interface from private
implementation

For instance, a (generic) queue

Concrete implementation could be a
circular array

Or a linked list

Implementer of class Queue can choose
either one

Public interface is unchanged

Head

Tail

Tail

Head

Madhavan Mukund The benefits of indirection Programming Concepts using Java 2 / 6

Abstract data types

Separate public interface from private
implementation

For instance, a (generic) queue

Concrete implementation could be a
circular array

Or a linked list

Implementer of class Queue can choose
either one

Public interface is unchanged

Head

Tail

Tail

Head

Madhavan Mukund The benefits of indirection Programming Concepts using Java 2 / 6

Abstract data types

Separate public interface from private
implementation

For instance, a (generic) queue

Concrete implementation could be a
circular array

Or a linked list

Implementer of class Queue can choose
either one

Public interface is unchanged

Head

Tail

Tail

Head

Madhavan Mukund The benefits of indirection Programming Concepts using Java 2 / 6

Abstract data types . . .

Is the user indifferent to choice of
implementation?

Interface does not capture other aspects

Efficiency

Circular array is better — one time
storage allocation

Flexibility

Linked list is better — circular array
has bounded size

Offer user a choice of implementation?

Head

Tail

Tail

Head

Madhavan Mukund The benefits of indirection Programming Concepts using Java 3 / 6

Abstract data types . . .

Is the user indifferent to choice of
implementation?

Interface does not capture other aspects

Efficiency

Circular array is better — one time
storage allocation

Flexibility

Linked list is better — circular array
has bounded size

Offer user a choice of implementation?

Head

Tail

Tail

Head

Madhavan Mukund The benefits of indirection Programming Concepts using Java 3 / 6

Abstract data types . . .

Is the user indifferent to choice of
implementation?

Interface does not capture other aspects

Efficiency

Circular array is better — one time
storage allocation

Flexibility

Linked list is better — circular array
has bounded size

Offer user a choice of implementation?

Head

Tail

Tail

Head

Madhavan Mukund The benefits of indirection Programming Concepts using Java 3 / 6

Abstract data types . . .

Is the user indifferent to choice of
implementation?

Interface does not capture other aspects

Efficiency

Circular array is better — one time
storage allocation

Flexibility

Linked list is better — circular array
has bounded size

Offer user a choice of implementation?

Head

Tail

Tail

Head

Madhavan Mukund The benefits of indirection Programming Concepts using Java 3 / 6

Abstract data types . . .

Is the user indifferent to choice of
implementation?

Interface does not capture other aspects

Efficiency

Circular array is better — one time
storage allocation

Flexibility

Linked list is better — circular array
has bounded size

Offer user a choice of implementation?

Head

Tail

Tail

Head

Madhavan Mukund The benefits of indirection Programming Concepts using Java 3 / 6

Multiple impementations

Create two separate implementations

User chooses

What if we later realize we need a
flexible size dateq?

Change declaration for dateq

And also every function header, auxiliary
variable, . . . associated with it

public class CircularArrayQueue<E> {

public void add (E element){...};

public E remove(){...};

public int size(){...};

...

}

public class LinkedListQueue<E> {

public void add (E element){...};

public E remove(){...};

public int size(){...};

...

}

Madhavan Mukund The benefits of indirection Programming Concepts using Java 4 / 6

Multiple impementations

Create two separate implementations

User chooses
CircularArrayQueue<Date> dateq;

LinkedListQueue<String> stringq;

dateq =

new CircularArrayQueue<Date>();

stringq =

new LinkedListQueue<String>();

}

What if we later realize we need a
flexible size dateq?

Change declaration for dateq

And also every function header, auxiliary
variable, . . . associated with it

public class CircularArrayQueue<E> {

public void add (E element){...};

public E remove(){...};

public int size(){...};

...

}

public class LinkedListQueue<E> {

public void add (E element){...};

public E remove(){...};

public int size(){...};

...

}

Madhavan Mukund The benefits of indirection Programming Concepts using Java 4 / 6

Multiple impementations

Create two separate implementations

User chooses
CircularArrayQueue<Date> dateq;

LinkedListQueue<String> stringq;

dateq =

new CircularArrayQueue<Date>();

stringq =

new LinkedListQueue<String>();

}

What if we later realize we need a
flexible size dateq?

Change declaration for dateq

And also every function header, auxiliary
variable, . . . associated with it

public class CircularArrayQueue<E> {

public void add (E element){...};

public E remove(){...};

public int size(){...};

...

}

public class LinkedListQueue<E> {

public void add (E element){...};

public E remove(){...};

public int size(){...};

...

}

Madhavan Mukund The benefits of indirection Programming Concepts using Java 4 / 6

Multiple impementations

Create two separate implementations

User chooses
CircularArrayQueue<Date> dateq;

LinkedListQueue<String> stringq;

dateq =

new CircularArrayQueue<Date>();

stringq =

new LinkedListQueue<String>();

}

What if we later realize we need a
flexible size dateq?

Change declaration for dateq

And also every function header, auxiliary
variable, . . . associated with it

public class CircularArrayQueue<E> {

public void add (E element){...};

public E remove(){...};

public int size(){...};

...

}

public class LinkedListQueue<E> {

public void add (E element){...};

public E remove(){...};

public int size(){...};

...

}

Madhavan Mukund The benefits of indirection Programming Concepts using Java 4 / 6

Multiple impementations

Create two separate implementations

User chooses
CircularArrayQueue<Date> dateq;

LinkedListQueue<String> stringq;

dateq =

new CircularArrayQueue<Date>();

stringq =

new LinkedListQueue<String>();

}

What if we later realize we need a
flexible size dateq?

Change declaration for dateq

And also every function header, auxiliary
variable, . . . associated with it

public class CircularArrayQueue<E> {

public void add (E element){...};

public E remove(){...};

public int size(){...};

...

}

public class LinkedListQueue<E> {

public void add (E element){...};

public E remove(){...};

public int size(){...};

...

}

Madhavan Mukund The benefits of indirection Programming Concepts using Java 4 / 6

Adding indirection

Instead, create a Queue interface

Concrete implementations implement
the interface

Use the interface to declare variables

Benefit of indirection — to use a
different implementation for dateq, only
need to update the instantiation

public interface Queue<E> {

abstract void add (E element);

abstract E remove();

abstract int size();

}

public class CircularArrayQueue<E>

implements Queue<E> {

public void add (E element){...};

public E remove(){...};

public int size(){...};

...

}

public class LinkedListQueue<E>

implements Queue<E> {

public void add (E element){...};

public E remove(){...};

public int size(){...};

...

}

Madhavan Mukund The benefits of indirection Programming Concepts using Java 5 / 6

Adding indirection

Instead, create a Queue interface

Concrete implementations implement
the interface

Use the interface to declare variables
Queue<Date> dateq;

Queue<String> stringq;

dateq =

new CircularArrayQueue<Date>();

stringq =

new LinkedListQueue<String>();

}

Benefit of indirection — to use a
different implementation for dateq, only
need to update the instantiation

public interface Queue<E> {

abstract void add (E element);

abstract E remove();

abstract int size();

}

public class CircularArrayQueue<E>

implements Queue<E> {

public void add (E element){...};

public E remove(){...};

public int size(){...};

...

}

public class LinkedListQueue<E>

implements Queue<E> {

public void add (E element){...};

public E remove(){...};

public int size(){...};

...

}

Madhavan Mukund The benefits of indirection Programming Concepts using Java 5 / 6

Adding indirection

Instead, create a Queue interface

Concrete implementations implement
the interface
Use the interface to declare variables
Queue<Date> dateq;

Queue<String> stringq;

dateq =

new CircularArrayQueue<Date>();

stringq =

new LinkedListQueue<String>();

}

Benefit of indirection — to use a
different implementation for dateq, only
need to update the instantiation

public interface Queue<E> {

abstract void add (E element);

abstract E remove();

abstract int size();

}

public class CircularArrayQueue<E>

implements Queue<E> {

public void add (E element){...};

public E remove(){...};

public int size(){...};

...

}

public class LinkedListQueue<E>

implements Queue<E> {

public void add (E element){...};

public E remove(){...};

public int size(){...};

...

}

Madhavan Mukund The benefits of indirection Programming Concepts using Java 5 / 6

Adding indirection

Instead, create a Queue interface

Concrete implementations implement
the interface
Use the interface to declare variables
Queue<Date> dateq;

Queue<String> stringq;

dateq =

new CircularArrayQueue<Date>();

stringq =

new LinkedListQueue<String>();

}

Benefit of indirection — to use a
different implementation for dateq, only
need to update the instantiation

public interface Queue<E> {

abstract void add (E element);

abstract E remove();

abstract int size();

}

public class CircularArrayQueue<E>

implements Queue<E> {

public void add (E element){...};

public E remove(){...};

public int size(){...};

...

}

public class LinkedListQueue<E>

implements Queue<E> {

public void add (E element){...};

public E remove(){...};

public int size(){...};

...

}

Madhavan Mukund The benefits of indirection Programming Concepts using Java 5 / 6

Summary

Use interfaces to flexibly choose between multiple concrete implementations

Interfaces add a level of indirection

Indirection in real life

Organization provides senior staff with an office car

Concrete: each official has an assigned car — what if it breaks down?

Indirection: a pool of office cars, use any that is available

Don’t want to maintain a pool of cars? Contract with a taxi service

Don’t want to negotiate tenders? Reimburse taxi bills

Madhavan Mukund The benefits of indirection Programming Concepts using Java 6 / 6

Summary

Use interfaces to flexibly choose between multiple concrete implementations

Interfaces add a level of indirection

Indirection in real life

Organization provides senior staff with an office car

Concrete: each official has an assigned car — what if it breaks down?

Indirection: a pool of office cars, use any that is available

Don’t want to maintain a pool of cars? Contract with a taxi service

Don’t want to negotiate tenders? Reimburse taxi bills

Madhavan Mukund The benefits of indirection Programming Concepts using Java 6 / 6

Summary

Use interfaces to flexibly choose between multiple concrete implementations

Interfaces add a level of indirection

Indirection in real life

Organization provides senior staff with an office car

Concrete: each official has an assigned car — what if it breaks down?

Indirection: a pool of office cars, use any that is available

Don’t want to maintain a pool of cars? Contract with a taxi service

Don’t want to negotiate tenders? Reimburse taxi bills

Madhavan Mukund The benefits of indirection Programming Concepts using Java 6 / 6

Summary

Use interfaces to flexibly choose between multiple concrete implementations

Interfaces add a level of indirection

Indirection in real life

Organization provides senior staff with an office car

Concrete: each official has an assigned car — what if it breaks down?

Indirection: a pool of office cars, use any that is available

Don’t want to maintain a pool of cars? Contract with a taxi service

Don’t want to negotiate tenders? Reimburse taxi bills

Madhavan Mukund The benefits of indirection Programming Concepts using Java 6 / 6

Summary

Use interfaces to flexibly choose between multiple concrete implementations

Interfaces add a level of indirection

Indirection in real life

Organization provides senior staff with an office car

Concrete: each official has an assigned car — what if it breaks down?

Indirection: a pool of office cars, use any that is available

Don’t want to maintain a pool of cars? Contract with a taxi service

Don’t want to negotiate tenders? Reimburse taxi bills

Madhavan Mukund The benefits of indirection Programming Concepts using Java 6 / 6

Summary

Use interfaces to flexibly choose between multiple concrete implementations

Interfaces add a level of indirection

Indirection in real life

Organization provides senior staff with an office car

Concrete: each official has an assigned car — what if it breaks down?

Indirection: a pool of office cars, use any that is available

Don’t want to maintain a pool of cars? Contract with a taxi service

Don’t want to negotiate tenders? Reimburse taxi bills

Madhavan Mukund The benefits of indirection Programming Concepts using Java 6 / 6

Summary

Use interfaces to flexibly choose between multiple concrete implementations

Interfaces add a level of indirection

Indirection in real life

Organization provides senior staff with an office car

Concrete: each official has an assigned car — what if it breaks down?

Indirection: a pool of office cars, use any that is available

Don’t want to maintain a pool of cars? Contract with a taxi service

Don’t want to negotiate tenders? Reimburse taxi bills

Madhavan Mukund The benefits of indirection Programming Concepts using Java 6 / 6

Summary

Use interfaces to flexibly choose between multiple concrete implementations

Interfaces add a level of indirection

Indirection in real life

Organization provides senior staff with an office car

Concrete: each official has an assigned car — what if it breaks down?

Indirection: a pool of office cars, use any that is available

Don’t want to maintain a pool of cars? Contract with a taxi service

Don’t want to negotiate tenders? Reimburse taxi bills

“Fundamental theorem of software engineering”
All problems in computer science can be solved by another level of indirection.

Butler Lampson, Turing Award 1992

Madhavan Mukund The benefits of indirection Programming Concepts using Java 6 / 6

Collections

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 6

https://www.cmi.ac.in/~madhavan

Built-in data types

Most programming languages provide built-in collective data types

Arrays, lists, dictionaries, . . .

Java originally had many such pre-defined classes

Vector, Stack, Hashtable, Bitset, . . .

Choose the one you need

. . . but changing a choice requires multiple updates

Instead, organize these data structures by functionality

Create a hierarchy of abstract interfaces and concrete implementations

Provide a level of indirection

Madhavan Mukund Collections Programming Concepts using Java 2 / 8

Built-in data types

Most programming languages provide built-in collective data types

Arrays, lists, dictionaries, . . .

Java originally had many such pre-defined classes

Vector, Stack, Hashtable, Bitset, . . .

Choose the one you need

. . . but changing a choice requires multiple updates

Instead, organize these data structures by functionality

Create a hierarchy of abstract interfaces and concrete implementations

Provide a level of indirection

Madhavan Mukund Collections Programming Concepts using Java 2 / 8

Built-in data types

Most programming languages provide built-in collective data types

Arrays, lists, dictionaries, . . .

Java originally had many such pre-defined classes

Vector, Stack, Hashtable, Bitset, . . .

Choose the one you need

. . . but changing a choice requires multiple updates

Instead, organize these data structures by functionality

Create a hierarchy of abstract interfaces and concrete implementations

Provide a level of indirection

Madhavan Mukund Collections Programming Concepts using Java 2 / 8

Built-in data types

Most programming languages provide built-in collective data types

Arrays, lists, dictionaries, . . .

Java originally had many such pre-defined classes

Vector, Stack, Hashtable, Bitset, . . .

Choose the one you need

. . . but changing a choice requires multiple updates

Instead, organize these data structures by functionality

Create a hierarchy of abstract interfaces and concrete implementations

Provide a level of indirection

Madhavan Mukund Collections Programming Concepts using Java 2 / 8

Built-in data types

Most programming languages provide built-in collective data types

Arrays, lists, dictionaries, . . .

Java originally had many such pre-defined classes

Vector, Stack, Hashtable, Bitset, . . .

Choose the one you need

. . . but changing a choice requires multiple updates

Instead, organize these data structures by functionality

Create a hierarchy of abstract interfaces and concrete implementations

Provide a level of indirection

Madhavan Mukund Collections Programming Concepts using Java 2 / 8

Built-in data types

Most programming languages provide built-in collective data types

Arrays, lists, dictionaries, . . .

Java originally had many such pre-defined classes

Vector, Stack, Hashtable, Bitset, . . .

Choose the one you need

. . . but changing a choice requires multiple updates

Instead, organize these data structures by functionality

Create a hierarchy of abstract interfaces and concrete implementations

Provide a level of indirection

Madhavan Mukund Collections Programming Concepts using Java 2 / 8

The Collection interface

The Collection interface abstracts
properties of grouped data

Arrays, lists, sets, . . .

But not key-value structures like
dictionaries

add() — add to the collection

iterator() — get an object that
implements Iterator interface

Use iterator to loop through the
elements

public interface Collection<E>{

boolean add(E element);

Iterator<E> iterator();

...

}

public interface Iterator<E>{

E next();

boolean hasNext();

void remove();

...

}

Collection<String> cstr = new ...;

Iterator<String> iter = cstr.iterator();

while (iter.hasNext()) {

String element = iter.next();

// do something with element

}

Madhavan Mukund Collections Programming Concepts using Java 3 / 8

The Collection interface

The Collection interface abstracts
properties of grouped data

Arrays, lists, sets, . . .

But not key-value structures like
dictionaries

add() — add to the collection

iterator() — get an object that
implements Iterator interface

Use iterator to loop through the
elements

public interface Collection<E>{

boolean add(E element);

Iterator<E> iterator();

...

}

public interface Iterator<E>{

E next();

boolean hasNext();

void remove();

...

}

Collection<String> cstr = new ...;

Iterator<String> iter = cstr.iterator();

while (iter.hasNext()) {

String element = iter.next();

// do something with element

}

Madhavan Mukund Collections Programming Concepts using Java 3 / 8

The Collection interface

The Collection interface abstracts
properties of grouped data

Arrays, lists, sets, . . .

But not key-value structures like
dictionaries

add() — add to the collection

iterator() — get an object that
implements Iterator interface

Use iterator to loop through the
elements

public interface Collection<E>{

boolean add(E element);

Iterator<E> iterator();

...

}

public interface Iterator<E>{

E next();

boolean hasNext();

void remove();

...

}

Collection<String> cstr = new ...;

Iterator<String> iter = cstr.iterator();

while (iter.hasNext()) {

String element = iter.next();

// do something with element

}

Madhavan Mukund Collections Programming Concepts using Java 3 / 8

The Collection interface

The Collection interface abstracts
properties of grouped data

Arrays, lists, sets, . . .

But not key-value structures like
dictionaries

add() — add to the collection

iterator() — get an object that
implements Iterator interface

Use iterator to loop through the
elements

public interface Collection<E>{

boolean add(E element);

Iterator<E> iterator();

...

}

public interface Iterator<E>{

E next();

boolean hasNext();

void remove();

...

}

Collection<String> cstr = new ...;

Iterator<String> iter = cstr.iterator();

while (iter.hasNext()) {

String element = iter.next();

// do something with element

}

Madhavan Mukund Collections Programming Concepts using Java 3 / 8

Using iterators

Use iterator to loop through the
elements

Java later added “for each” loop

Implicitly creates an iterator and runs
through it

Generic functions to operate on
collections

How does this line work?

if (element.equals(obj))

Later!

Collection<String> cstr = new ...;

Iterator<String> iter = cstr.iterator();

while (iter.hasNext()) {

String element = iter.next();

// do something with element

}

Madhavan Mukund Collections Programming Concepts using Java 4 / 8

Using iterators

Use iterator to loop through the
elements

Java later added “for each” loop

Implicitly creates an iterator and runs
through it

Generic functions to operate on
collections

How does this line work?

if (element.equals(obj))

Later!

Collection<String> cstr = new ...;

Iterator<String> iter = cstr.iterator();

while (iter.hasNext()) {

String element = iter.next();

// do something with element

}

Collection<String> cstr = new ...;

for (String element : cstr){

// do something with element

}

Madhavan Mukund Collections Programming Concepts using Java 4 / 8

Using iterators

Use iterator to loop through the
elements

Java later added “for each” loop

Implicitly creates an iterator and runs
through it

Generic functions to operate on
collections

How does this line work?

if (element.equals(obj))

Later!

Collection<String> cstr = new ...;

Iterator<String> iter = cstr.iterator();

while (iter.hasNext()) {

String element = iter.next();

// do something with element

}

Collection<String> cstr = new ...;

for (String element : cstr){

// do something with element

}

public static <E> boolean

contains(Collection<E> c, Object obj) {

for (E element : c)

if (element.equals(obj))

return true;

return false;

}

Madhavan Mukund Collections Programming Concepts using Java 4 / 8

Using iterators

Use iterator to loop through the
elements

Java later added “for each” loop

Implicitly creates an iterator and runs
through it

Generic functions to operate on
collections

How does this line work?

if (element.equals(obj))

Later!

Collection<String> cstr = new ...;

Iterator<String> iter = cstr.iterator();

while (iter.hasNext()) {

String element = iter.next();

// do something with element

}

Collection<String> cstr = new ...;

for (String element : cstr){

// do something with element

}

public static <E> boolean

contains(Collection<E> c, Object obj) {

for (E element : c)

if (element.equals(obj))

return true;

return false;

}

Madhavan Mukund Collections Programming Concepts using Java 4 / 8

Using iterators

Use iterator to loop through the
elements

Java later added “for each” loop

Implicitly creates an iterator and runs
through it

Generic functions to operate on
collections

How does this line work?

if (element.equals(obj))

Later!

Collection<String> cstr = new ...;

Iterator<String> iter = cstr.iterator();

while (iter.hasNext()) {

String element = iter.next();

// do something with element

}

Collection<String> cstr = new ...;

for (String element : cstr){

// do something with element

}

public static <E> boolean

contains(Collection<E> c, Object obj) {

for (E element : c)

if (element.equals(obj))

return true;

return false;

}

Madhavan Mukund Collections Programming Concepts using Java 4 / 8

Removing elements

Iterator also has a remove() method

Which element does it remove?

The element that was last accessed
using next()

To remove consecutive elements, must
interleave a next()

To remove the first element, need to
access it first

public interface Iterator<E>{

E next();

boolean hasNext();

void remove();

...

}

Madhavan Mukund Collections Programming Concepts using Java 5 / 8

Removing elements

Iterator also has a remove() method

Which element does it remove?

The element that was last accessed
using next()

To remove consecutive elements, must
interleave a next()

To remove the first element, need to
access it first

public interface Iterator<E>{

E next();

boolean hasNext();

void remove();

...

}

Collection<String> cstr = new ...;

Iterator<String> iter = cstr.iterator();

while (iter.hasNext()) {

String element = iter.next();

// Delete element if it has some property

if (property(element)) {

iter.remove();

}

}

Madhavan Mukund Collections Programming Concepts using Java 5 / 8

Removing elements

Iterator also has a remove() method

Which element does it remove?

The element that was last accessed
using next()

To remove consecutive elements, must
interleave a next()

To remove the first element, need to
access it first

public interface Iterator<E>{

E next();

boolean hasNext();

void remove();

...

}

Collection<String> cstr = new ...;

Iterator<String> iter = cstr.iterator();

...

iter.remove();

iter.remove(); // Error

Madhavan Mukund Collections Programming Concepts using Java 5 / 8

Removing elements

Iterator also has a remove() method

Which element does it remove?

The element that was last accessed
using next()

To remove consecutive elements, must
interleave a next()

To remove the first element, need to
access it first

public interface Iterator<E>{

E next();

boolean hasNext();

void remove();

...

}

Collection<String> cstr = new ...;

Iterator<String> iter = cstr.iterator();

...

iter.remove();

iter.next();

iter.remove();

Madhavan Mukund Collections Programming Concepts using Java 5 / 8

Removing elements

Iterator also has a remove() method

Which element does it remove?

The element that was last accessed
using next()

To remove consecutive elements, must
interleave a next()

To remove the first element, need to
access it first

public interface Iterator<E>{

E next();

boolean hasNext();

void remove();

...

}

Collection<String> cstr = new ...;

Iterator<String> iter = cstr.iterator();

// Remove first element in cstr

iter.next();

iter.remove();

Madhavan Mukund Collections Programming Concepts using Java 5 / 8

The Collection interface — the full story

How does this line work?

if (element.equals(obj))

Actually, Collection defines a much
larger set of abstract methods

addAll(from) adds elements from a
compatible collection

removeAll(c) removes elements
present in c

A different remove() from the one in
Iterator

To implement the Collection

interface, need to implement all these
methods!

public static <E> boolean

contains(Collection<E> c, Object obj) {

for (E element : c)

if (element.equals(obj))

return true;

return false;

}

Madhavan Mukund Collections Programming Concepts using Java 6 / 8

The Collection interface — the full story

How does this line work?

if (element.equals(obj))

Actually, Collection defines a much
larger set of abstract methods

addAll(from) adds elements from a
compatible collection

removeAll(c) removes elements
present in c

A different remove() from the one in
Iterator

To implement the Collection

interface, need to implement all these
methods!

public static <E> boolean

contains(Collection<E> c, Object obj) {

for (E element : c)

if (element.equals(obj))

return true;

return false;

}

public interface Collection<E>{

boolean add(E element);

Iterator<E> iterator();

int size() boolean isEmpty();

boolean contains(Object obj);

boolean containsAll(Collection<?> c);

boolean equals(Object other);

boolean addAll(Collection<? extends E> from);

boolean remove(Object obj);

boolean removeAll(Collection<?> c);

...

}
Madhavan Mukund Collections Programming Concepts using Java 6 / 8

The Collection interface — the full story

How does this line work?

if (element.equals(obj))

Actually, Collection defines a much
larger set of abstract methods

addAll(from) adds elements from a
compatible collection

removeAll(c) removes elements
present in c

A different remove() from the one in
Iterator

To implement the Collection

interface, need to implement all these
methods!

public static <E> boolean

contains(Collection<E> c, Object obj) {

for (E element : c)

if (element.equals(obj))

return true;

return false;

}

public interface Collection<E>{

boolean add(E element);

Iterator<E> iterator();

int size() boolean isEmpty();

boolean contains(Object obj);

boolean containsAll(Collection<?> c);

boolean equals(Object other);

boolean addAll(Collection<? extends E> from);

boolean remove(Object obj);

boolean removeAll(Collection<?> c);

...

}
Madhavan Mukund Collections Programming Concepts using Java 6 / 8

The AbsractCollection class

To implement Collection, need to
implement all these methods!

“Correct” solution — provide default
implementations in the interface

Added to Java interfaces later!

Instead, AbstractCollection
abstract class implements Collection

Concrete classes now extend
AbstractCollection

Need to define iterator() based on
internal representation

Can choose to override contains(),
. . .

public interface Collection<E>{

boolean add(E element);

Iterator<E> iterator();

int size() boolean isEmpty();

boolean contains(Object obj);

boolean containsAll(Collection<?> c);

boolean equals(Object other);

boolean addAll(Collection<? extends E> from);

boolean remove(Object obj);

boolean removeAll(Collection<?> c);

...

}

Madhavan Mukund Collections Programming Concepts using Java 7 / 8

The AbsractCollection class

To implement Collection, need to
implement all these methods!

“Correct” solution — provide default
implementations in the interface

Added to Java interfaces later!

Instead, AbstractCollection
abstract class implements Collection

Concrete classes now extend
AbstractCollection

Need to define iterator() based on
internal representation

Can choose to override contains(),
. . .

public interface Collection<E>{

boolean add(E element);

Iterator<E> iterator();

int size() boolean isEmpty();

boolean contains(Object obj);

boolean containsAll(Collection<?> c);

boolean equals(Object other);

boolean addAll(Collection<? extends E> from);

boolean remove(Object obj);

boolean removeAll(Collection<?> c);

...

}

Madhavan Mukund Collections Programming Concepts using Java 7 / 8

The AbsractCollection class

To implement Collection, need to
implement all these methods!

“Correct” solution — provide default
implementations in the interface

Added to Java interfaces later!

Instead, AbstractCollection
abstract class implements Collection

Concrete classes now extend
AbstractCollection

Need to define iterator() based on
internal representation

Can choose to override contains(),
. . .

public interface Collection<E>{

boolean add(E element);

Iterator<E> iterator();

int size() boolean isEmpty();

boolean contains(Object obj);

boolean containsAll(Collection<?> c);

boolean equals(Object other);

boolean addAll(Collection<? extends E> from);

boolean remove(Object obj);

boolean removeAll(Collection<?> c);

...

}

Madhavan Mukund Collections Programming Concepts using Java 7 / 8

The AbsractCollection class

To implement Collection, need to
implement all these methods!

“Correct” solution — provide default
implementations in the interface

Added to Java interfaces later!

Instead, AbstractCollection
abstract class implements Collection

Concrete classes now extend
AbstractCollection

Need to define iterator() based on
internal representation

Can choose to override contains(),
. . .

public abstract class AbstractCollection<E>

implements Collection<E> {

...

public abstract Iterator<E> iterator();

public boolean contains(Object obj) {

for (E element : this)

if (element.equals(obj))

return true;

return false;

}

...

}

Madhavan Mukund Collections Programming Concepts using Java 7 / 8

The AbsractCollection class

To implement Collection, need to
implement all these methods!

“Correct” solution — provide default
implementations in the interface

Added to Java interfaces later!

Instead, AbstractCollection
abstract class implements Collection

Concrete classes now extend
AbstractCollection

Need to define iterator() based on
internal representation

Can choose to override contains(),
. . .

public abstract class AbstractCollection<E>

implements Collection<E> {

...

public abstract Iterator<E> iterator();

public boolean contains(Object obj) {

for (E element : this)

if (element.equals(obj))

return true;

return false;

}

...

}

Madhavan Mukund Collections Programming Concepts using Java 7 / 8

Summary

The Collection interface captures abstract properties of collections

Add an element, create an iterator, . . .

Can use for each loop to avoid explicit iterator

Write generic functions that operate on collections

Collection defines many additional abstract functions, tedious if we have to
implement each of them

AbstractCollection provides default implementations to many functions required
by Collection

Concrete implementations of collections extend AbstractCollection

Madhavan Mukund Collections Programming Concepts using Java 8 / 8

Concrete Collections

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 6

https://www.cmi.ac.in/~madhavan

Built-in data types

The Collection interface abstracts properties of grouped data

Arrays, lists, sets, . . .

But not key-value structures like dictionaries

Collections can be further organized based on additional properties

Are the elements ordered?

Are duplicates allowed?

Are there constraints on how elements are added, removed?

In the spirit of indirection, these are captured by interfaces that extend Collection

Interface List for ordered collections

Interface Set for collections without duplicates

Interface Queue for ordered collections with constraints on addition and deletion

Madhavan Mukund Concrete Collections Programming Concepts using Java 2 / 10

Built-in data types

The Collection interface abstracts properties of grouped data

Arrays, lists, sets, . . .

But not key-value structures like dictionaries

Collections can be further organized based on additional properties

Are the elements ordered?

Are duplicates allowed?

Are there constraints on how elements are added, removed?

In the spirit of indirection, these are captured by interfaces that extend Collection

Interface List for ordered collections

Interface Set for collections without duplicates

Interface Queue for ordered collections with constraints on addition and deletion

Madhavan Mukund Concrete Collections Programming Concepts using Java 2 / 10

Built-in data types

The Collection interface abstracts properties of grouped data

Arrays, lists, sets, . . .

But not key-value structures like dictionaries

Collections can be further organized based on additional properties

Are the elements ordered?

Are duplicates allowed?

Are there constraints on how elements are added, removed?

In the spirit of indirection, these are captured by interfaces that extend Collection

Interface List for ordered collections

Interface Set for collections without duplicates

Interface Queue for ordered collections with constraints on addition and deletion

Madhavan Mukund Concrete Collections Programming Concepts using Java 2 / 10

The List interface

An ordered collection can be accessed
in two ways

Through an iterator

By position — random access

Additional functions for random access

ListIterator extends Iterator

void add(E element) to insert an
element before the current index

void previous() to go to previous
element

boolean hasPrevious() checks that
it is legal to go backwards

Madhavan Mukund Concrete Collections Programming Concepts using Java 3 / 10

The List interface

An ordered collection can be accessed
in two ways

Through an iterator

By position — random access

Additional functions for random access

ListIterator extends Iterator

void add(E element) to insert an
element before the current index

void previous() to go to previous
element

boolean hasPrevious() checks that
it is legal to go backwards

public interface List<E>

extends Collection<E>{

void add(int index, E element);

void remove(int index);

E get(int index);

E set(int index, E element);

}

Madhavan Mukund Concrete Collections Programming Concepts using Java 3 / 10

The List interface

An ordered collection can be accessed
in two ways

Through an iterator

By position — random access

Additional functions for random access

ListIterator extends Iterator

void add(E element) to insert an
element before the current index

void previous() to go to previous
element

boolean hasPrevious() checks that
it is legal to go backwards

public interface List<E>

extends Collection<E>{

void add(int index, E element);

void remove(int index);

E get(int index);

E set(int index, E element);

ListIterator<E> listIterator();

}

Madhavan Mukund Concrete Collections Programming Concepts using Java 3 / 10

The List interface and random access

Random access is not equally efficient
for all ordered collections

In an array, can compute location of
element at index i

In a linked list, must start at the
beginning and traverse i links

Tagging interface RandomAccess

Tells us whether a List supports
random access or not

Can choose algorithmic strategy based
on this

public interface List<E>

extends Collection<E>{

void add(int index, E element);

void remove(int index);

E get(int index);

E set(int index, E element);

ListIterator<E> listIterator();

}

Madhavan Mukund Concrete Collections Programming Concepts using Java 4 / 10

The List interface and random access

Random access is not equally efficient
for all ordered collections

In an array, can compute location of
element at index i

In a linked list, must start at the
beginning and traverse i links

Tagging interface RandomAccess

Tells us whether a List supports
random access or not

Can choose algorithmic strategy based
on this

public interface List<E>

extends Collection<E>{

void add(int index, E element);

void remove(int index);

E get(int index);

E set(int index, E element);

ListIterator<E> listIterator();

}

if (c instanceof RandomAccess) {

// use random access algorithm

} else {

// use sequential access algorithm

}

Madhavan Mukund Concrete Collections Programming Concepts using Java 4 / 10

The AbstractList interface

Recall that AbstractCollection is
the “usable” version of Collection

Correspondingly, AbstractList
extends AbstractCollection

Inherits default implementations

AbstractSequentialList extends
AbstractList

A further subclass to distinguish lists
without random access

Concrete generic class LinkedList<E>

extends AbstractSequentialList

Internally, the usual flexible linked list

Efficient to add and remove elements
at arbitrary positions

Concrete generic class ArrayList<E>

extends AbstractList

Flexible size array, supports random
access

Madhavan Mukund Concrete Collections Programming Concepts using Java 5 / 10

The AbstractList interface

Recall that AbstractCollection is
the “usable” version of Collection

Correspondingly, AbstractList
extends AbstractCollection

Inherits default implementations

AbstractSequentialList extends
AbstractList

A further subclass to distinguish lists
without random access

Concrete generic class LinkedList<E>

extends AbstractSequentialList

Internally, the usual flexible linked list

Efficient to add and remove elements
at arbitrary positions

Concrete generic class ArrayList<E>

extends AbstractList

Flexible size array, supports random
access

Madhavan Mukund Concrete Collections Programming Concepts using Java 5 / 10

The AbstractList interface

Recall that AbstractCollection is
the “usable” version of Collection

Correspondingly, AbstractList
extends AbstractCollection

Inherits default implementations

AbstractSequentialList extends
AbstractList

A further subclass to distinguish lists
without random access

Concrete generic class LinkedList<E>

extends AbstractSequentialList

Internally, the usual flexible linked list

Efficient to add and remove elements
at arbitrary positions

Concrete generic class ArrayList<E>

extends AbstractList

Flexible size array, supports random
access

Madhavan Mukund Concrete Collections Programming Concepts using Java 5 / 10

The AbstractList interface

Recall that AbstractCollection is
the “usable” version of Collection

Correspondingly, AbstractList
extends AbstractCollection

Inherits default implementations

AbstractSequentialList extends
AbstractList

A further subclass to distinguish lists
without random access

Concrete generic class LinkedList<E>

extends AbstractSequentialList

Internally, the usual flexible linked list

Efficient to add and remove elements
at arbitrary positions

Concrete generic class ArrayList<E>

extends AbstractList

Flexible size array, supports random
access

Madhavan Mukund Concrete Collections Programming Concepts using Java 5 / 10

The AbstractList interface

Recall that AbstractCollection is
the “usable” version of Collection

Correspondingly, AbstractList
extends AbstractCollection

Inherits default implementations

AbstractSequentialList extends
AbstractList

A further subclass to distinguish lists
without random access

Concrete generic class LinkedList<E>

extends AbstractSequentialList

Internally, the usual flexible linked list

Efficient to add and remove elements
at arbitrary positions

Concrete generic class ArrayList<E>

extends AbstractList

Flexible size array, supports random
access

Madhavan Mukund Concrete Collections Programming Concepts using Java 5 / 10

Using concrete list classes

Concrete generic class LinkedList<E>

extends AbstractSequentialList

Not random access

But random access methods of
AbstractList are still available

This loop will execute a fresh scan
from start to element i in each
iteration!

Two versions of add() available

add() from Collection appends to
the end of the list

add() from ListIterator inserts a
value before current position of the
iterator

In Collection, add() returns boolean
— did the add update the collection?

add() may not update a set, always
works for lists

add() in ListIterator returns void

Madhavan Mukund Concrete Collections Programming Concepts using Java 6 / 10

Using concrete list classes

Concrete generic class LinkedList<E>

extends AbstractSequentialList

Not random access

But random access methods of
AbstractList are still available

This loop will execute a fresh scan
from start to element i in each
iteration!

Two versions of add() available

add() from Collection appends to
the end of the list

add() from ListIterator inserts a
value before current position of the
iterator

In Collection, add() returns boolean
— did the add update the collection?

add() may not update a set, always
works for lists

add() in ListIterator returns void

Madhavan Mukund Concrete Collections Programming Concepts using Java 6 / 10

Using concrete list classes

Concrete generic class LinkedList<E>

extends AbstractSequentialList

Not random access

But random access methods of
AbstractList are still available

This loop will execute a fresh scan
from start to element i in each
iteration!

LinkedList<String> list = new ...;

for (int i = 0; i < list.size(); i++)

// do something with list.get(i);

Two versions of add() available

add() from Collection appends to
the end of the list

add() from ListIterator inserts a
value before current position of the
iterator

In Collection, add() returns boolean
— did the add update the collection?

add() may not update a set, always
works for lists

add() in ListIterator returns void

Madhavan Mukund Concrete Collections Programming Concepts using Java 6 / 10

Using concrete list classes

Concrete generic class LinkedList<E>

extends AbstractSequentialList

Not random access

But random access methods of
AbstractList are still available

This loop will execute a fresh scan
from start to element i in each
iteration!

LinkedList<String> list = new ...;

for (int i = 0; i < list.size(); i++)

// do something with list.get(i);

Two versions of add() available

add() from Collection appends to
the end of the list

add() from ListIterator inserts a
value before current position of the
iterator

In Collection, add() returns boolean
— did the add update the collection?

add() may not update a set, always
works for lists

add() in ListIterator returns void

Madhavan Mukund Concrete Collections Programming Concepts using Java 6 / 10

Using concrete list classes

Concrete generic class LinkedList<E>

extends AbstractSequentialList

Not random access

But random access methods of
AbstractList are still available

This loop will execute a fresh scan
from start to element i in each
iteration!

LinkedList<String> list = new ...;

for (int i = 0; i < list.size(); i++)

// do something with list.get(i);

Two versions of add() available

add() from Collection appends to
the end of the list

add() from ListIterator inserts a
value before current position of the
iterator

In Collection, add() returns boolean
— did the add update the collection?

add() may not update a set, always
works for lists

add() in ListIterator returns void

Madhavan Mukund Concrete Collections Programming Concepts using Java 6 / 10

Using concrete list classes

Concrete generic class LinkedList<E>

extends AbstractSequentialList

Not random access

But random access methods of
AbstractList are still available

This loop will execute a fresh scan
from start to element i in each
iteration!

LinkedList<String> list = new ...;

for (int i = 0; i < list.size(); i++)

// do something with list.get(i);

Two versions of add() available

add() from Collection appends to
the end of the list

add() from ListIterator inserts a
value before current position of the
iterator

In Collection, add() returns boolean
— did the add update the collection?

add() may not update a set, always
works for lists

add() in ListIterator returns void

Madhavan Mukund Concrete Collections Programming Concepts using Java 6 / 10

The Set interface

A set is a collection without duplicates

Set interface is identical to
Collection, but behaviour is more
constrained

add() should have no effect, and
return false, if the element already
exists

equals() should return true if
contents match after disregarding
order

Two interfaces, same signature?

Use Set to constrain values to satisfy
additional constraints

Set implementations typically designed
to allow efficient membership tests

Ordered collections loop through a
sequence to find an element

Instead, map the value to its position

Hash function

Or arrange values in a two dimensional
structure

Balanced search tree

As usual, concrete set implementations
extend AbstractSet, which extends
AbstractCollection

Madhavan Mukund Concrete Collections Programming Concepts using Java 7 / 10

The Set interface

A set is a collection without duplicates

Set interface is identical to
Collection, but behaviour is more
constrained

add() should have no effect, and
return false, if the element already
exists

equals() should return true if
contents match after disregarding
order

Two interfaces, same signature?

Use Set to constrain values to satisfy
additional constraints

Set implementations typically designed
to allow efficient membership tests

Ordered collections loop through a
sequence to find an element

Instead, map the value to its position

Hash function

Or arrange values in a two dimensional
structure

Balanced search tree

As usual, concrete set implementations
extend AbstractSet, which extends
AbstractCollection

Madhavan Mukund Concrete Collections Programming Concepts using Java 7 / 10

The Set interface

A set is a collection without duplicates

Set interface is identical to
Collection, but behaviour is more
constrained

add() should have no effect, and
return false, if the element already
exists

equals() should return true if
contents match after disregarding
order

Two interfaces, same signature?

Use Set to constrain values to satisfy
additional constraints

Set implementations typically designed
to allow efficient membership tests

Ordered collections loop through a
sequence to find an element

Instead, map the value to its position

Hash function

Or arrange values in a two dimensional
structure

Balanced search tree

As usual, concrete set implementations
extend AbstractSet, which extends
AbstractCollection

Madhavan Mukund Concrete Collections Programming Concepts using Java 7 / 10

The Set interface

A set is a collection without duplicates

Set interface is identical to
Collection, but behaviour is more
constrained

add() should have no effect, and
return false, if the element already
exists

equals() should return true if
contents match after disregarding
order

Two interfaces, same signature?

Use Set to constrain values to satisfy
additional constraints

Set implementations typically designed
to allow efficient membership tests

Ordered collections loop through a
sequence to find an element

Instead, map the value to its position

Hash function

Or arrange values in a two dimensional
structure

Balanced search tree

As usual, concrete set implementations
extend AbstractSet, which extends
AbstractCollection

Madhavan Mukund Concrete Collections Programming Concepts using Java 7 / 10

The Set interface

A set is a collection without duplicates

Set interface is identical to
Collection, but behaviour is more
constrained

add() should have no effect, and
return false, if the element already
exists

equals() should return true if
contents match after disregarding
order

Two interfaces, same signature?

Use Set to constrain values to satisfy
additional constraints

Set implementations typically designed
to allow efficient membership tests

Ordered collections loop through a
sequence to find an element

Instead, map the value to its position

Hash function

Or arrange values in a two dimensional
structure

Balanced search tree

As usual, concrete set implementations
extend AbstractSet, which extends
AbstractCollection

Madhavan Mukund Concrete Collections Programming Concepts using Java 7 / 10

The Set interface

A set is a collection without duplicates

Set interface is identical to
Collection, but behaviour is more
constrained

add() should have no effect, and
return false, if the element already
exists

equals() should return true if
contents match after disregarding
order

Two interfaces, same signature?

Use Set to constrain values to satisfy
additional constraints

Set implementations typically designed
to allow efficient membership tests

Ordered collections loop through a
sequence to find an element

Instead, map the value to its position

Hash function

Or arrange values in a two dimensional
structure

Balanced search tree

As usual, concrete set implementations
extend AbstractSet, which extends
AbstractCollection

Madhavan Mukund Concrete Collections Programming Concepts using Java 7 / 10

The Set interface

A set is a collection without duplicates

Set interface is identical to
Collection, but behaviour is more
constrained

add() should have no effect, and
return false, if the element already
exists

equals() should return true if
contents match after disregarding
order

Two interfaces, same signature?

Use Set to constrain values to satisfy
additional constraints

Set implementations typically designed
to allow efficient membership tests

Ordered collections loop through a
sequence to find an element

Instead, map the value to its position

Hash function

Or arrange values in a two dimensional
structure

Balanced search tree

As usual, concrete set implementations
extend AbstractSet, which extends
AbstractCollection

Madhavan Mukund Concrete Collections Programming Concepts using Java 7 / 10

The Set interface

A set is a collection without duplicates

Set interface is identical to
Collection, but behaviour is more
constrained

add() should have no effect, and
return false, if the element already
exists

equals() should return true if
contents match after disregarding
order

Two interfaces, same signature?

Use Set to constrain values to satisfy
additional constraints

Set implementations typically designed
to allow efficient membership tests

Ordered collections loop through a
sequence to find an element

Instead, map the value to its position

Hash function

Or arrange values in a two dimensional
structure

Balanced search tree

As usual, concrete set implementations
extend AbstractSet, which extends
AbstractCollection

Madhavan Mukund Concrete Collections Programming Concepts using Java 7 / 10

The Set interface

A set is a collection without duplicates

Set interface is identical to
Collection, but behaviour is more
constrained

add() should have no effect, and
return false, if the element already
exists

equals() should return true if
contents match after disregarding
order

Two interfaces, same signature?

Use Set to constrain values to satisfy
additional constraints

Set implementations typically designed
to allow efficient membership tests

Ordered collections loop through a
sequence to find an element

Instead, map the value to its position

Hash function

Or arrange values in a two dimensional
structure

Balanced search tree

As usual, concrete set implementations
extend AbstractSet, which extends
AbstractCollection

Madhavan Mukund Concrete Collections Programming Concepts using Java 7 / 10

Concrete sets

HashSet implements a hash table

Underlying storage is an array

Map value v to a position h(v)

If h(v) is unoccupied, store v at that
position

Otherwise, collision — different
strategies to handle this case

Checking membership is fast — check if
v is at position h(v)

Unordered, but supports iterator()

Scan elements in unspecified order

Visit each element exactly once

TreeSet uses a tree representation

Values are ordered

Maintains a sorted collection

Iterator will visit elements in sorted
order

Insertion is more complex than a hash
table

Time O(log n) if the set has n
elements

Madhavan Mukund Concrete Collections Programming Concepts using Java 8 / 10

Concrete sets

HashSet implements a hash table

Underlying storage is an array

Map value v to a position h(v)

If h(v) is unoccupied, store v at that
position

Otherwise, collision — different
strategies to handle this case

Checking membership is fast — check if
v is at position h(v)

Unordered, but supports iterator()

Scan elements in unspecified order

Visit each element exactly once

TreeSet uses a tree representation

Values are ordered

Maintains a sorted collection

Iterator will visit elements in sorted
order

Insertion is more complex than a hash
table

Time O(log n) if the set has n
elements

Madhavan Mukund Concrete Collections Programming Concepts using Java 8 / 10

Concrete sets

HashSet implements a hash table

Underlying storage is an array

Map value v to a position h(v)

If h(v) is unoccupied, store v at that
position

Otherwise, collision — different
strategies to handle this case

Checking membership is fast — check if
v is at position h(v)

Unordered, but supports iterator()

Scan elements in unspecified order

Visit each element exactly once

TreeSet uses a tree representation

Values are ordered

Maintains a sorted collection

Iterator will visit elements in sorted
order

Insertion is more complex than a hash
table

Time O(log n) if the set has n
elements

Madhavan Mukund Concrete Collections Programming Concepts using Java 8 / 10

Concrete sets

HashSet implements a hash table

Underlying storage is an array

Map value v to a position h(v)

If h(v) is unoccupied, store v at that
position

Otherwise, collision — different
strategies to handle this case

Checking membership is fast — check if
v is at position h(v)

Unordered, but supports iterator()

Scan elements in unspecified order

Visit each element exactly once

TreeSet uses a tree representation

Values are ordered

Maintains a sorted collection

Iterator will visit elements in sorted
order

Insertion is more complex than a hash
table

Time O(log n) if the set has n
elements

Madhavan Mukund Concrete Collections Programming Concepts using Java 8 / 10

Concrete sets

HashSet implements a hash table

Underlying storage is an array

Map value v to a position h(v)

If h(v) is unoccupied, store v at that
position

Otherwise, collision — different
strategies to handle this case

Checking membership is fast — check if
v is at position h(v)

Unordered, but supports iterator()

Scan elements in unspecified order

Visit each element exactly once

TreeSet uses a tree representation

Values are ordered

Maintains a sorted collection

Iterator will visit elements in sorted
order

Insertion is more complex than a hash
table

Time O(log n) if the set has n
elements

Madhavan Mukund Concrete Collections Programming Concepts using Java 8 / 10

Concrete sets

HashSet implements a hash table

Underlying storage is an array

Map value v to a position h(v)

If h(v) is unoccupied, store v at that
position

Otherwise, collision — different
strategies to handle this case

Checking membership is fast — check if
v is at position h(v)

Unordered, but supports iterator()

Scan elements in unspecified order

Visit each element exactly once

TreeSet uses a tree representation

Values are ordered

Maintains a sorted collection

Iterator will visit elements in sorted
order

Insertion is more complex than a hash
table

Time O(log n) if the set has n
elements

Madhavan Mukund Concrete Collections Programming Concepts using Java 8 / 10

Concrete sets

HashSet implements a hash table

Underlying storage is an array

Map value v to a position h(v)

If h(v) is unoccupied, store v at that
position

Otherwise, collision — different
strategies to handle this case

Checking membership is fast — check if
v is at position h(v)

Unordered, but supports iterator()

Scan elements in unspecified order

Visit each element exactly once

TreeSet uses a tree representation

Values are ordered

Maintains a sorted collection

Iterator will visit elements in sorted
order

Insertion is more complex than a hash
table

Time O(log n) if the set has n
elements

Madhavan Mukund Concrete Collections Programming Concepts using Java 8 / 10

Concrete sets

HashSet implements a hash table

Underlying storage is an array

Map value v to a position h(v)

If h(v) is unoccupied, store v at that
position

Otherwise, collision — different
strategies to handle this case

Checking membership is fast — check if
v is at position h(v)

Unordered, but supports iterator()

Scan elements in unspecified order

Visit each element exactly once

TreeSet uses a tree representation

Values are ordered

Maintains a sorted collection

Iterator will visit elements in sorted
order

Insertion is more complex than a hash
table

Time O(log n) if the set has n
elements

Madhavan Mukund Concrete Collections Programming Concepts using Java 8 / 10

The Queue interface

Ordered, remove front, insert rear

Queue interface supports the following

If queue full, add() flags an error
If queue empty, remove() flags an
error

Gentler versions of add(), remove()

Return false or null, respectively, if
not possible

Inspect the head, no update

Interface Deque, double ended queue

Interface PriorityQueue

remove() returns highest priority item

Concrete implementations

LinkedList — implements Queue

ArrayDeque — circular array Deque

Madhavan Mukund Concrete Collections Programming Concepts using Java 9 / 10

The Queue interface

Ordered, remove front, insert rear

Queue interface supports the following

boolean add(E element);

E remove();

If queue full, add() flags an error
If queue empty, remove() flags an
error

Gentler versions of add(), remove()

Return false or null, respectively, if
not possible

Inspect the head, no update

Interface Deque, double ended queue

Interface PriorityQueue

remove() returns highest priority item

Concrete implementations

LinkedList — implements Queue

ArrayDeque — circular array Deque

Madhavan Mukund Concrete Collections Programming Concepts using Java 9 / 10

The Queue interface

Ordered, remove front, insert rear

Queue interface supports the following

boolean add(E element);

E remove();

If queue full, add() flags an error
If queue empty, remove() flags an
error

Gentler versions of add(), remove()

boolean offer(E element);

E poll();

Return false or null, respectively, if
not possible

Inspect the head, no update

Interface Deque, double ended queue

Interface PriorityQueue

remove() returns highest priority item

Concrete implementations

LinkedList — implements Queue

ArrayDeque — circular array Deque

Madhavan Mukund Concrete Collections Programming Concepts using Java 9 / 10

The Queue interface

Ordered, remove front, insert rear

Queue interface supports the following

boolean add(E element);

E remove();

If queue full, add() flags an error
If queue empty, remove() flags an
error

Gentler versions of add(), remove()

boolean offer(E element);

E poll();

Return false or null, respectively, if
not possible

Inspect the head, no update

E element(); // Throws exception

E peek(); // Returns null

Interface Deque, double ended queue

Interface PriorityQueue

remove() returns highest priority item

Concrete implementations

LinkedList — implements Queue

ArrayDeque — circular array Deque

Madhavan Mukund Concrete Collections Programming Concepts using Java 9 / 10

The Queue interface

Ordered, remove front, insert rear

Queue interface supports the following

boolean add(E element);

E remove();

If queue full, add() flags an error
If queue empty, remove() flags an
error

Gentler versions of add(), remove()

boolean offer(E element);

E poll();

Return false or null, respectively, if
not possible

Inspect the head, no update

E element(); // Throws exception

E peek(); // Returns null

Interface Deque, double ended queue

boolean addFirst(E element);

boolean addLast(E element);

boolean offerFirst(E element);

boolean offerLast(E element);

E pollFirst();

E pollLast();

E getFirst();

E getLast();

E peekFirst();

E peekLast();

Interface PriorityQueue

remove() returns highest priority item

Concrete implementations

LinkedList — implements Queue

ArrayDeque — circular array Deque

Madhavan Mukund Concrete Collections Programming Concepts using Java 9 / 10

The Queue interface

Ordered, remove front, insert rear

Queue interface supports the following

boolean add(E element);

E remove();

If queue full, add() flags an error
If queue empty, remove() flags an
error

Gentler versions of add(), remove()

boolean offer(E element);

E poll();

Return false or null, respectively, if
not possible

Inspect the head, no update

E element(); // Throws exception

E peek(); // Returns null

Interface Deque, double ended queue

boolean addFirst(E element);

boolean addLast(E element);

boolean offerFirst(E element);

boolean offerLast(E element);

E pollFirst();

E pollLast();

E getFirst();

E getLast();

E peekFirst();

E peekLast();

Interface PriorityQueue

remove() returns highest priority item

Concrete implementations

LinkedList — implements Queue

ArrayDeque — circular array Deque

Madhavan Mukund Concrete Collections Programming Concepts using Java 9 / 10

The Queue interface

Ordered, remove front, insert rear

Queue interface supports the following

boolean add(E element);

E remove();

If queue full, add() flags an error
If queue empty, remove() flags an
error

Gentler versions of add(), remove()

boolean offer(E element);

E poll();

Return false or null, respectively, if
not possible

Inspect the head, no update

E element(); // Throws exception

E peek(); // Returns null

Interface Deque, double ended queue

boolean addFirst(E element);

boolean addLast(E element);

boolean offerFirst(E element);

boolean offerLast(E element);

E pollFirst();

E pollLast();

E getFirst();

E getLast();

E peekFirst();

E peekLast();

Interface PriorityQueue

remove() returns highest priority item

Concrete implementations

LinkedList — implements Queue

ArrayDeque — circular array Deque

Madhavan Mukund Concrete Collections Programming Concepts using Java 9 / 10

Summary

Different types of Collection are specified by subinterfaces

List, Set, Queue

List allows random access, more functional ListIterator

Set constrains collection to not have duplicates

Queue supports restricted add and remove methods

Each interface has corresponding version under AbstractCollection

Concrete implementations extend AbstractList, AbstractSet and
AbstractQueue

Madhavan Mukund Concrete Collections Programming Concepts using Java 10 / 10

Maps

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 6

https://www.cmi.ac.in/~madhavan

Maps

The Collection interface abstracts
properties of grouped data

Arrays, lists, sets, . . .

But not key-value structures like
dictionaries

Key-value structures come under the
Map interface

Two type parameters

K is the type for keys

V is the type for values

get(k) fetches value for key k

put(k,v) updates value for key k

As expected, keys form a set

Only one entry per key-value

Assigning a fresh value to existing key
overwrite the old value

put(k,v) returns the previous value
associated with k, or null

Madhavan Mukund Maps Programming Concepts using Java 2 / 6

Maps

The Collection interface abstracts
properties of grouped data

Arrays, lists, sets, . . .

But not key-value structures like
dictionaries

Key-value structures come under the
Map interface

Two type parameters

K is the type for keys

V is the type for values

get(k) fetches value for key k

put(k,v) updates value for key k

public interface Map<K,V>{

V get(Object key);

V put(K key, V Value);

boolean containsKey(Object key);

boolean containsValue(Object value);

...

}

As expected, keys form a set

Only one entry per key-value

Assigning a fresh value to existing key
overwrite the old value

put(k,v) returns the previous value
associated with k, or null

Madhavan Mukund Maps Programming Concepts using Java 2 / 6

Maps

The Collection interface abstracts
properties of grouped data

Arrays, lists, sets, . . .

But not key-value structures like
dictionaries

Key-value structures come under the
Map interface

Two type parameters

K is the type for keys

V is the type for values

get(k) fetches value for key k

put(k,v) updates value for key k

public interface Map<K,V>{

V get(Object key);

V put(K key, V Value);

boolean containsKey(Object key);

boolean containsValue(Object value);

...

}

As expected, keys form a set

Only one entry per key-value

Assigning a fresh value to existing key
overwrite the old value

put(k,v) returns the previous value
associated with k, or null

Madhavan Mukund Maps Programming Concepts using Java 2 / 6

Updating a map

Key-value stores are useful to
accumulate quantities

Frequencies of words in a text

Total runs in a tournament

The initialization problem

Update the value if the key exists

Otherwise, create a new entry

Map has the following default method

For instance
sets score to 0 if key bat is not present

Now, we can update the entry for key
bat as follows

Alternatively, use putIfAbsent() to
initialize a missing key

Or use merge()

Initialize to newscore if no key bat

Otherwise, combine current value with
newscore using Integer::sum

Madhavan Mukund Maps Programming Concepts using Java 3 / 6

Updating a map

Key-value stores are useful to
accumulate quantities

Frequencies of words in a text

Total runs in a tournament

The initialization problem

Update the value if the key exists

Otherwise, create a new entry

Map has the following default method

For instance
sets score to 0 if key bat is not present

Now, we can update the entry for key
bat as follows

Alternatively, use putIfAbsent() to
initialize a missing key

Or use merge()

Initialize to newscore if no key bat

Otherwise, combine current value with
newscore using Integer::sum

Madhavan Mukund Maps Programming Concepts using Java 3 / 6

Updating a map

Key-value stores are useful to
accumulate quantities

Frequencies of words in a text

Total runs in a tournament

The initialization problem

Update the value if the key exists

Otherwise, create a new entry

Map has the following default method

V getOrDefault(Object key, V defaultValue)

For instance
sets score to 0 if key bat is not present

Now, we can update the entry for key
bat as follows

Alternatively, use putIfAbsent() to
initialize a missing key

Or use merge()

Initialize to newscore if no key bat

Otherwise, combine current value with
newscore using Integer::sum

Madhavan Mukund Maps Programming Concepts using Java 3 / 6

Updating a map

Key-value stores are useful to
accumulate quantities

Frequencies of words in a text

Total runs in a tournament

The initialization problem

Update the value if the key exists

Otherwise, create a new entry

Map has the following default method

V getOrDefault(Object key, V defaultValue)

For instance

Map<String, Integer> scores = ...;

int score = scores.getOrDefault(bat,0);

sets score to 0 if key bat is not present

Now, we can update the entry for key
bat as follows

Alternatively, use putIfAbsent() to
initialize a missing key

Or use merge()

Initialize to newscore if no key bat

Otherwise, combine current value with
newscore using Integer::sum

Madhavan Mukund Maps Programming Concepts using Java 3 / 6

Updating a map

Key-value stores are useful to
accumulate quantities

Frequencies of words in a text

Total runs in a tournament

The initialization problem

Update the value if the key exists

Otherwise, create a new entry

Map has the following default method

V getOrDefault(Object key, V defaultValue)

For instance

Map<String, Integer> scores = ...;

int score = scores.getOrDefault(bat,0);

sets score to 0 if key bat is not present

Now, we can update the entry for key
bat as follows

scores.put(bat,

scores.getOrDefault(bat,0)+newscore);

// Add newscore to value of bat

Alternatively, use putIfAbsent() to
initialize a missing key

Or use merge()

Initialize to newscore if no key bat

Otherwise, combine current value with
newscore using Integer::sum

Madhavan Mukund Maps Programming Concepts using Java 3 / 6

Updating a map

Key-value stores are useful to
accumulate quantities

Frequencies of words in a text

Total runs in a tournament

The initialization problem

Update the value if the key exists

Otherwise, create a new entry

Map has the following default method

V getOrDefault(Object key, V defaultValue)

For instance

Map<String, Integer> scores = ...;

int score = scores.getOrDefault(bat,0);

sets score to 0 if key bat is not present

Now, we can update the entry for key
bat as follows

scores.put(bat,

scores.getOrDefault(bat,0)+newscore);

// Add newscore to value of bat

Alternatively, use putIfAbsent() to
initialize a missing key

scores.putIfAbsent(bat,0);

scores.put(bat,scores.get(bat)+newscore);

Or use merge()

scores.merge(bat,newscore,Integer::sum);

Initialize to newscore if no key bat

Otherwise, combine current value with
newscore using Integer::sum

Madhavan Mukund Maps Programming Concepts using Java 3 / 6

Updating a map

Key-value stores are useful to
accumulate quantities

Frequencies of words in a text

Total runs in a tournament

The initialization problem

Update the value if the key exists

Otherwise, create a new entry

Map has the following default method

V getOrDefault(Object key, V defaultValue)

For instance

Map<String, Integer> scores = ...;

int score = scores.getOrDefault(bat,0);

sets score to 0 if key bat is not present

Now, we can update the entry for key
bat as follows

scores.put(bat,

scores.getOrDefault(bat,0)+newscore);

// Add newscore to value of bat

Alternatively, use putIfAbsent() to
initialize a missing key

scores.putIfAbsent(bat,0);

scores.put(bat,scores.get(bat)+newscore);

Or use merge()

scores.merge(bat,newscore,Integer::sum);

Initialize to newscore if no key bat

Otherwise, combine current value with
newscore using Integer::sum

Madhavan Mukund Maps Programming Concepts using Java 3 / 6

Extracting keys and values

Methods to extract keys and values

Set<K> keySet();

Collection<V> values();

Set<Map.Entry<K, V>> entrySet()

Keys form a Set while values form an
arbitrary Collection

Key-value pairs form a set over a
special type Map.Entry

Java calls these views

Can now iterate through a Map

Use entrySet() to operate on key and
associated value without looking up
map again

Madhavan Mukund Maps Programming Concepts using Java 4 / 6

Extracting keys and values

Methods to extract keys and values

Set<K> keySet();

Collection<V> values();

Set<Map.Entry<K, V>> entrySet()

Keys form a Set while values form an
arbitrary Collection

Key-value pairs form a set over a
special type Map.Entry

Java calls these views

Can now iterate through a Map

Use entrySet() to operate on key and
associated value without looking up
map again

Madhavan Mukund Maps Programming Concepts using Java 4 / 6

Extracting keys and values

Methods to extract keys and values

Set<K> keySet();

Collection<V> values();

Set<Map.Entry<K, V>> entrySet()

Keys form a Set while values form an
arbitrary Collection

Key-value pairs form a set over a
special type Map.Entry

Java calls these views

Can now iterate through a Map

Use entrySet() to operate on key and
associated value without looking up
map again

Madhavan Mukund Maps Programming Concepts using Java 4 / 6

Extracting keys and values

Methods to extract keys and values

Set<K> keySet();

Collection<V> values();

Set<Map.Entry<K, V>> entrySet()

Keys form a Set while values form an
arbitrary Collection

Key-value pairs form a set over a
special type Map.Entry

Java calls these views

Can now iterate through a Map

Use entrySet() to operate on key and
associated value without looking up
map again

Madhavan Mukund Maps Programming Concepts using Java 4 / 6

Extracting keys and values

Methods to extract keys and values

Set<K> keySet();

Collection<V> values();

Set<Map.Entry<K, V>> entrySet()

Keys form a Set while values form an
arbitrary Collection

Key-value pairs form a set over a
special type Map.Entry

Java calls these views

Can now iterate through a Map

Set<String> keys = strmap.keySet();

for (String key : keys) {

do something with key

}

Use entrySet() to operate on key and
associated value without looking up
map again

Madhavan Mukund Maps Programming Concepts using Java 4 / 6

Extracting keys and values

Methods to extract keys and values

Set<K> keySet();

Collection<V> values();

Set<Map.Entry<K, V>> entrySet()

Keys form a Set while values form an
arbitrary Collection

Key-value pairs form a set over a
special type Map.Entry

Java calls these views

Can now iterate through a Map

Set<String> keys = strmap.keySet();

for (String key : keys) {

do something with key

}

Use entrySet() to operate on key and
associated value without looking up
map again

for (Map.Entry<String, Employee> entry :

staff.entrySet()){

String k = entry.getKey();

Employee v = entry.getValue();

do something with k, v

}

Madhavan Mukund Maps Programming Concepts using Java 4 / 6

Concrete implementations of Map

HashMap

Similar to HashSet

Use a hash table to store keys and
values

No fixed order over keys returned by
keySet()

Similar to TreeSet

Use a balanced search tree to store keys
and values

Iterator over keySet() will process keys
in sorted order

Remembers the order in which keys
were inserted

Hash table entries are also connected as
a (doubly) linked list

Iterators over both keySet() and
value() enumerate in order of insertion

Can also use access order

Each get() or put() moves key-value
pair to end of list

Process entries in least recently used
order — scheduling, caching

Similarly, LinkedHashSet

Madhavan Mukund Maps Programming Concepts using Java 5 / 6

Concrete implementations of Map

HashMap

Similar to HashSet

Use a hash table to store keys and
values

No fixed order over keys returned by
keySet()

TreeMap

Similar to TreeSet

Use a balanced search tree to store keys
and values

Iterator over keySet() will process keys
in sorted order

Remembers the order in which keys
were inserted

Hash table entries are also connected as
a (doubly) linked list

Iterators over both keySet() and
value() enumerate in order of insertion

Can also use access order

Each get() or put() moves key-value
pair to end of list

Process entries in least recently used
order — scheduling, caching

Similarly, LinkedHashSet

Madhavan Mukund Maps Programming Concepts using Java 5 / 6

Concrete implementations of Map

HashMap

Similar to HashSet

Use a hash table to store keys and
values

No fixed order over keys returned by
keySet()

TreeMap

Similar to TreeSet

Use a balanced search tree to store keys
and values

Iterator over keySet() will process keys
in sorted order

LinkedHashMap

Remembers the order in which keys
were inserted

Hash table entries are also connected as
a (doubly) linked list

Iterators over both keySet() and
value() enumerate in order of insertion

Can also use access order

Each get() or put() moves key-value
pair to end of list

Process entries in least recently used
order — scheduling, caching

Similarly, LinkedHashSet

Madhavan Mukund Maps Programming Concepts using Java 5 / 6

Concrete implementations of Map

HashMap

Similar to HashSet

Use a hash table to store keys and
values

No fixed order over keys returned by
keySet()

TreeMap

Similar to TreeSet

Use a balanced search tree to store keys
and values

Iterator over keySet() will process keys
in sorted order

LinkedHashMap

Remembers the order in which keys
were inserted

Hash table entries are also connected as
a (doubly) linked list

Iterators over both keySet() and
value() enumerate in order of insertion

Can also use access order

Each get() or put() moves key-value
pair to end of list

Process entries in least recently used
order — scheduling, caching

Similarly, LinkedHashSet

Madhavan Mukund Maps Programming Concepts using Java 5 / 6

Concrete implementations of Map

HashMap

Similar to HashSet

Use a hash table to store keys and
values

No fixed order over keys returned by
keySet()

TreeMap

Similar to TreeSet

Use a balanced search tree to store keys
and values

Iterator over keySet() will process keys
in sorted order

LinkedHashMap

Remembers the order in which keys
were inserted

Hash table entries are also connected as
a (doubly) linked list

Iterators over both keySet() and
value() enumerate in order of insertion

Can also use access order

Each get() or put() moves key-value
pair to end of list

Process entries in least recently used
order — scheduling, caching

Similarly, LinkedHashSet

Madhavan Mukund Maps Programming Concepts using Java 5 / 6

Summary

The Map interface captures properties of key-value stores

get(), put(), containsKey(), containsValue(), . . .

Parameterized by two type variables, K for keys and V for values

Keys form a set

Different ways to update a key entry, depending on whether the key already exists

getOrDefault(), putIfAbsent(), merge()

Extract keys as a Set, values as a Collection, key-value pairs as a Set

keySet(), values(), entrySet()

Use these “views” to iterate over all key-value pairs in the map

Concrete implementations: HashMap, TreeMap, LinkedHashMap

Madhavan Mukund Maps Programming Concepts using Java 6 / 6

Dealing with errors

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 7

https://www.cmi.ac.in/~madhavan

When things go wrong

Our code could encounter many types of errors

User input — enter invalid filenames or URLs

Device errors — printer jam, network connection drops

Resource limitations — disk full

Code errors — invalid array index, key not present in hash table, refer to a variable
that is null, divide by zero, . . .

Signalling errors

Return an invalid value: −1 at end of file, null

What if there is no obvious invalid value?

Madhavan Mukund Dealing with errors Programming Concepts using Java 2 / 5

When things go wrong

Our code could encounter many types of errors

User input — enter invalid filenames or URLs

Device errors — printer jam, network connection drops

Resource limitations — disk full

Code errors — invalid array index, key not present in hash table, refer to a variable
that is null, divide by zero, . . .

Signalling errors

Return an invalid value: −1 at end of file, null

What if there is no obvious invalid value?

Madhavan Mukund Dealing with errors Programming Concepts using Java 2 / 5

Exception handling

Code that generates error raises or throws an exception

Notify the type of error

Information about the nature of the exception

Natural to structure an exception as an object

Caller catches the exception and takes corrective action

Extract information about the error from the exception object

Graceful interruption rather than program crash

. . . or passes the exception back up the calling chain

Declare if a method can throw an exception

Compiler can check whether calling code has made a provision to handle the exception

Madhavan Mukund Dealing with errors Programming Concepts using Java 3 / 5

Exception handling

Code that generates error raises or throws an exception

Notify the type of error

Information about the nature of the exception

Natural to structure an exception as an object

Caller catches the exception and takes corrective action

Extract information about the error from the exception object

Graceful interruption rather than program crash

. . . or passes the exception back up the calling chain

Declare if a method can throw an exception

Compiler can check whether calling code has made a provision to handle the exception

Madhavan Mukund Dealing with errors Programming Concepts using Java 3 / 5

Exception handling

Code that generates error raises or throws an exception

Notify the type of error

Information about the nature of the exception

Natural to structure an exception as an object

Caller catches the exception and takes corrective action

Extract information about the error from the exception object

Graceful interruption rather than program crash

. . . or passes the exception back up the calling chain

Declare if a method can throw an exception

Compiler can check whether calling code has made a provision to handle the exception

Madhavan Mukund Dealing with errors Programming Concepts using Java 3 / 5

Exception handling

Code that generates error raises or throws an exception

Notify the type of error

Information about the nature of the exception

Natural to structure an exception as an object

Caller catches the exception and takes corrective action

Extract information about the error from the exception object

Graceful interruption rather than program crash

. . . or passes the exception back up the calling chain

Declare if a method can throw an exception

Compiler can check whether calling code has made a provision to handle the exception

Madhavan Mukund Dealing with errors Programming Concepts using Java 3 / 5

Exception handling

Code that generates error raises or throws an exception

Notify the type of error

Information about the nature of the exception

Natural to structure an exception as an object

Caller catches the exception and takes corrective action

Extract information about the error from the exception object

Graceful interruption rather than program crash

. . . or passes the exception back up the calling chain

Declare if a method can throw an exception

Compiler can check whether calling code has made a provision to handle the exception

Madhavan Mukund Dealing with errors Programming Concepts using Java 3 / 5

Java’s classification of errors

All exceptions descend from class Throwable

Two branches, Error and Exception

Error — relatively rare, “not the programmer’s fault”

Internal errors, resource limitations within Java runtime

No realistic corrective action possible, notify caller and terminate gracefully

Exception — two sub branches

RunTimeException, checked exceptions

RunTimeException — programming errors that should have been caught by code

Array index out of bounds, invalid hash key, . . .

Checked exceptions

Typically user-defined, code assumptions violated

In a list of orders, quantities should be positive integers

Madhavan Mukund Dealing with errors Programming Concepts using Java 4 / 5

Java’s classification of errors

All exceptions descend from class Throwable

Two branches, Error and Exception

Error — relatively rare, “not the programmer’s fault”

Internal errors, resource limitations within Java runtime

No realistic corrective action possible, notify caller and terminate gracefully

Exception — two sub branches

RunTimeException, checked exceptions

RunTimeException — programming errors that should have been caught by code

Array index out of bounds, invalid hash key, . . .

Checked exceptions

Typically user-defined, code assumptions violated

In a list of orders, quantities should be positive integers

Madhavan Mukund Dealing with errors Programming Concepts using Java 4 / 5

Java’s classification of errors

All exceptions descend from class Throwable

Two branches, Error and Exception

Error — relatively rare, “not the programmer’s fault”

Internal errors, resource limitations within Java runtime

No realistic corrective action possible, notify caller and terminate gracefully

Exception — two sub branches

RunTimeException, checked exceptions

RunTimeException — programming errors that should have been caught by code

Array index out of bounds, invalid hash key, . . .

Checked exceptions

Typically user-defined, code assumptions violated

In a list of orders, quantities should be positive integers

Madhavan Mukund Dealing with errors Programming Concepts using Java 4 / 5

Java’s classification of errors

All exceptions descend from class Throwable

Two branches, Error and Exception

Error — relatively rare, “not the programmer’s fault”

Internal errors, resource limitations within Java runtime

No realistic corrective action possible, notify caller and terminate gracefully

Exception — two sub branches

RunTimeException, checked exceptions

RunTimeException — programming errors that should have been caught by code

Array index out of bounds, invalid hash key, . . .

Checked exceptions

Typically user-defined, code assumptions violated

In a list of orders, quantities should be positive integers

Madhavan Mukund Dealing with errors Programming Concepts using Java 4 / 5

Java’s classification of errors

All exceptions descend from class Throwable

Two branches, Error and Exception

Error — relatively rare, “not the programmer’s fault”

Internal errors, resource limitations within Java runtime

No realistic corrective action possible, notify caller and terminate gracefully

Exception — two sub branches

RunTimeException, checked exceptions

RunTimeException — programming errors that should have been caught by code

Array index out of bounds, invalid hash key, . . .

Checked exceptions

Typically user-defined, code assumptions violated

In a list of orders, quantities should be positive integers

Madhavan Mukund Dealing with errors Programming Concepts using Java 4 / 5

Summary

Exception handling — gracefully recover from errors that occur when running code

Throw an exception — generate an object encapsulating information about the error

Catch an exception — decode the nature of the error and take corrective action

Java organizes exceptions in a hierarchy, by type

Error — internal errors within JVM, “not the programmer’s fault”

RunTimeException — coding errors, could have been avoided by runtime checks in
code

Checked exceptions — user-defined, violations of assumptions made by code

To contrast, Error and RunTimeException are called unchecked exceptions

Madhavan Mukund Dealing with errors Programming Concepts using Java 5 / 5

Exceptions in Java

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 7

https://www.cmi.ac.in/~madhavan

Java’s classification of errors

All exceptions descend from class Throwable

Two branches, Error and Exception

Error — relatively rare, “not the programmer’s fault”

Internal errors, resource limitations within Java runtime

No realistic corrective action possible, notify caller and terminate gracefully

Exception — two sub branches

RunTimeException, checked exceptions

RunTimeException — programming errors that should have been caught by code

Array index out of bounds, invalid hash key, . . .

Checked exceptions

Typically user-defined, code assumptions violated

In a list of orders, quantities should be positive integers

Madhavan Mukund Exceptions in Java Programming Concepts using Java 2 / 12

Catching and handling exceptions

try–catch

Enclose code that may generate
exception in a try block

Exception handler in catch block

Similar to Python

If try encounters an exception, rest of
the code in the block is skipped

If exception matches the type in catch,
handler code executes

Otherwise, uncaught exception is passed
back to the code that called this code

Top level uncaught exception —
program crash

try {

...

call a function that may

throw an exception

..

}

catch (ExceptionType e){

...

examine e and handle it

...

}

Madhavan Mukund Exceptions in Java Programming Concepts using Java 3 / 12

Catching and handling exceptions

try–catch

Enclose code that may generate
exception in a try block

Exception handler in catch block

Similar to Python

If try encounters an exception, rest of
the code in the block is skipped

If exception matches the type in catch,
handler code executes

Otherwise, uncaught exception is passed
back to the code that called this code

Top level uncaught exception —
program crash

try {

...

call a function that may

throw an exception

..

}

catch (ExceptionType e){

...

examine e and handle it

...

}

Madhavan Mukund Exceptions in Java Programming Concepts using Java 3 / 12

Catching and handling exceptions

try–catch

Enclose code that may generate
exception in a try block

Exception handler in catch block

Similar to Python

If try encounters an exception, rest of
the code in the block is skipped

If exception matches the type in catch,
handler code executes

Otherwise, uncaught exception is passed
back to the code that called this code

Top level uncaught exception —
program crash

try {

...

call a function that may

throw an exception

..

}

catch (ExceptionType e){

...

examine e and handle it

...

}

Madhavan Mukund Exceptions in Java Programming Concepts using Java 3 / 12

Catching and handling exceptions

try–catch

Enclose code that may generate
exception in a try block

Exception handler in catch block

Similar to Python

If try encounters an exception, rest of
the code in the block is skipped

If exception matches the type in catch,
handler code executes

Otherwise, uncaught exception is passed
back to the code that called this code

Top level uncaught exception —
program crash

try {

...

call a function that may

throw an exception

..

}

catch (ExceptionType e){

...

examine e and handle it

...

}

Madhavan Mukund Exceptions in Java Programming Concepts using Java 3 / 12

Catching and handling exceptions

try–catch

Enclose code that may generate
exception in a try block

Exception handler in catch block

Similar to Python

If try encounters an exception, rest of
the code in the block is skipped

If exception matches the type in catch,
handler code executes

Otherwise, uncaught exception is passed
back to the code that called this code

Top level uncaught exception —
program crash

try {

...

call a function that may

throw an exception

..

}

catch (ExceptionType e){

...

examine e and handle it

...

}

Madhavan Mukund Exceptions in Java Programming Concepts using Java 3 / 12

Catching and handling exceptions

Can catch more than one type of
exception

Multiple catch blocks

Exceptions are classes in the Java class
hiearachy

catch (ExceptionType e) matches
any subtype of ExceptionType

Catch blocks are tried in sequence

Match exception type against each
one in turn

Order catch blocks by argument type,
more specific to less specific

IOException would intercept
FileNotFoundException

try {

code that might throw exceptions

}

catch (FileNotFoundException e) {

handle missing files

}

catch (UnknownHostException e) {

handle unknown hosts

}

catch (IOException e) {

handle all other I/O issues

}

Madhavan Mukund Exceptions in Java Programming Concepts using Java 4 / 12

Catching and handling exceptions

Can catch more than one type of
exception

Multiple catch blocks

Exceptions are classes in the Java class
hiearachy

catch (ExceptionType e) matches
any subtype of ExceptionType

Catch blocks are tried in sequence

Match exception type against each
one in turn

Order catch blocks by argument type,
more specific to less specific

IOException would intercept
FileNotFoundException

try {

code that might throw exceptions

}

catch (FileNotFoundException e) {

handle missing files

}

catch (UnknownHostException e) {

handle unknown hosts

}

catch (IOException e) {

handle all other I/O issues

}

Madhavan Mukund Exceptions in Java Programming Concepts using Java 4 / 12

Catching and handling exceptions

Can catch more than one type of
exception

Multiple catch blocks

Exceptions are classes in the Java class
hiearachy

catch (ExceptionType e) matches
any subtype of ExceptionType

Catch blocks are tried in sequence

Match exception type against each
one in turn

Order catch blocks by argument type,
more specific to less specific

IOException would intercept
FileNotFoundException

try {

code that might throw exceptions

}

catch (FileNotFoundException e) {

handle missing files

}

catch (UnknownHostException e) {

handle unknown hosts

}

catch (IOException e) {

handle all other I/O issues

}

Madhavan Mukund Exceptions in Java Programming Concepts using Java 4 / 12

Catching and handling exceptions

Can catch more than one type of
exception

Multiple catch blocks

Exceptions are classes in the Java class
hiearachy

catch (ExceptionType e) matches
any subtype of ExceptionType

Catch blocks are tried in sequence

Match exception type against each
one in turn

Order catch blocks by argument type,
more specific to less specific

IOException would intercept
FileNotFoundException

try {

code that might throw exceptions

}

catch (FileNotFoundException e) {

handle missing files

}

catch (UnknownHostException e) {

handle unknown hosts

}

catch (IOException e) {

handle all other I/O issues

}

Madhavan Mukund Exceptions in Java Programming Concepts using Java 4 / 12

Generating exceptions

When does a function generate an exception?

Error — JVM runtime issue

RunTimeException

Array index out of bounds, invalid hash key, . . .

Code calls another function that generates an exception

Your code detects an error and generates an exception

throw a checked exception

Madhavan Mukund Exceptions in Java Programming Concepts using Java 5 / 12

Generating exceptions

When does a function generate an exception?

Error — JVM runtime issue

RunTimeException

Array index out of bounds, invalid hash key, . . .

Code calls another function that generates an exception

Your code detects an error and generates an exception

throw a checked exception

Madhavan Mukund Exceptions in Java Programming Concepts using Java 5 / 12

Generating exceptions

When does a function generate an exception?

Error — JVM runtime issue

RunTimeException

Array index out of bounds, invalid hash key, . . .

Code calls another function that generates an exception

Your code detects an error and generates an exception

throw a checked exception

Madhavan Mukund Exceptions in Java Programming Concepts using Java 5 / 12

Generating exceptions

When does a function generate an exception?

Error — JVM runtime issue

RunTimeException

Array index out of bounds, invalid hash key, . . .

Code calls another function that generates an exception

Your code detects an error and generates an exception

throw a checked exception

Madhavan Mukund Exceptions in Java Programming Concepts using Java 5 / 12

Generating exceptions

When does a function generate an exception?

Error — JVM runtime issue

RunTimeException

Array index out of bounds, invalid hash key, . . .

Code calls another function that generates an exception

Your code detects an error and generates an exception

throw a checked exception

Madhavan Mukund Exceptions in Java Programming Concepts using Java 5 / 12

Notifying checked exceptions

Example: you write a method readData()

Header line provides length of data

Content-Length: 2048

Actual data read is less than promised length

Search Java documentation for suitable pre-defined exception

EOFException, subtype of IOException

“Signals that EOF has been reached unexpectedly during input”

Create an object of exception type and throw it

Can also pass a diagnostic message when constructing exception object

Madhavan Mukund Exceptions in Java Programming Concepts using Java 6 / 12

Notifying checked exceptions

Example: you write a method readData()

Header line provides length of data

Content-Length: 2048

Actual data read is less than promised length

Search Java documentation for suitable pre-defined exception

EOFException, subtype of IOException

“Signals that EOF has been reached unexpectedly during input”

Create an object of exception type and throw it

Can also pass a diagnostic message when constructing exception object

Madhavan Mukund Exceptions in Java Programming Concepts using Java 6 / 12

Notifying checked exceptions

Example: you write a method readData()

Header line provides length of data

Content-Length: 2048

Actual data read is less than promised length

Search Java documentation for suitable pre-defined exception

EOFException, subtype of IOException

“Signals that EOF has been reached unexpectedly during input”

Create an object of exception type and throw it

throw new EOFException();

Can also pass a diagnostic message when constructing exception object

Madhavan Mukund Exceptions in Java Programming Concepts using Java 6 / 12

Notifying checked exceptions

Example: you write a method readData()

Header line provides length of data

Content-Length: 2048

Actual data read is less than promised length

Search Java documentation for suitable pre-defined exception

EOFException, subtype of IOException

“Signals that EOF has been reached unexpectedly during input”

Create an object of exception type and throw it

throw new EOFException();

Can also pass a diagnostic message when constructing exception object

String errormsg = "Content-Length:" + contentlen + ", Received: " + rcvdlen;

throw new EOFException(errormsg);

Madhavan Mukund Exceptions in Java Programming Concepts using Java 6 / 12

Throwing exceptions . . .

How does caller know that readData()
generates EOFException?

Declare exceptions thrown in header

Can throw multiple types of exceptions

Can throw any subtype of declared
exception type

Can throw FileNotFoundException,
EOFException, both subclasses of
IOException

Madhavan Mukund Exceptions in Java Programming Concepts using Java 7 / 12

Throwing exceptions . . .

How does caller know that readData()
generates EOFException?

Declare exceptions thrown in header

Can throw multiple types of exceptions

Can throw any subtype of declared
exception type

Can throw FileNotFoundException,
EOFException, both subclasses of
IOException

String readData(Scanner in)

throws EOFException {

...

while (...) {

if (!in.hasNext()) {

// EOF encountered

if (n < len) {

String errmsg = ...

throw new EOFException(errmsg);

}

...

}

return(s);

}

Madhavan Mukund Exceptions in Java Programming Concepts using Java 7 / 12

Throwing exceptions . . .

How does caller know that readData()
generates EOFException?

Declare exceptions thrown in header

Can throw multiple types of exceptions

String readFile(String filename)

throws FileNotFoundException,

EOFException { ... }

Can throw any subtype of declared
exception type

Can throw FileNotFoundException,
EOFException, both subclasses of
IOException

String readData(Scanner in)

throws EOFException {

...

while (...) {

if (!in.hasNext()) {

// EOF encountered

if (n < len) {

String errmsg = ...

throw new EOFException(errmsg);

}

...

}

return(s);

}

Madhavan Mukund Exceptions in Java Programming Concepts using Java 7 / 12

Throwing exceptions . . .

How does caller know that readData()
generates EOFException?

Declare exceptions thrown in header

Can throw multiple types of exceptions

String readFile(String filename)

throws FileNotFoundException,

EOFException { ... }

Can throw any subtype of declared
exception type

String readFile(String filename)

throws IOException { ... }

Can throw FileNotFoundException,
EOFException, both subclasses of
IOException

String readData(Scanner in)

throws EOFException {

...

while (...) {

if (!in.hasNext()) {

// EOF encountered

if (n < len) {

String errmsg = ...

throw new EOFException(errmsg);

}

...

}

return(s);

}

Madhavan Mukund Exceptions in Java Programming Concepts using Java 7 / 12

Throwing exceptions . . .

Method declares the exceptions it throws

If you call such a method, you must
handle it

... or pass it on; your method should
advertise that it throws the same
exception

Need not advertise unchecked exceptions

Error, RunTimeException

Should not normally generate
RunTimeException

Fix the error or report suitable checked
exception

String readData(Scanner in)

throws EOFException {

...

while (...) {

if (!in.hasNext()) {

// EOF encountered

if (n < len) {

String errmsg = ...

throw new EOFException(errmsg);

}

...

}

return(s);

}

Madhavan Mukund Exceptions in Java Programming Concepts using Java 8 / 12

Throwing exceptions . . .

Method declares the exceptions it throws

If you call such a method, you must
handle it

... or pass it on; your method should
advertise that it throws the same
exception

Need not advertise unchecked exceptions

Error, RunTimeException

Should not normally generate
RunTimeException

Fix the error or report suitable checked
exception

String readData(Scanner in)

throws EOFException {

...

while (...) {

if (!in.hasNext()) {

// EOF encountered

if (n < len) {

String errmsg = ...

throw new EOFException(errmsg);

}

...

}

return(s);

}

Madhavan Mukund Exceptions in Java Programming Concepts using Java 8 / 12

Throwing exceptions . . .

Method declares the exceptions it throws

If you call such a method, you must
handle it

... or pass it on; your method should
advertise that it throws the same
exception

Need not advertise unchecked exceptions

Error, RunTimeException

Should not normally generate
RunTimeException

Fix the error or report suitable checked
exception

String readData(Scanner in)

throws EOFException {

...

while (...) {

if (!in.hasNext()) {

// EOF encountered

if (n < len) {

String errmsg = ...

throw new EOFException(errmsg);

}

...

}

return(s);

}

Madhavan Mukund Exceptions in Java Programming Concepts using Java 8 / 12

Throwing exceptions . . .

Method declares the exceptions it throws

If you call such a method, you must
handle it

... or pass it on; your method should
advertise that it throws the same
exception

Need not advertise unchecked exceptions

Error, RunTimeException

Should not normally generate
RunTimeException

Fix the error or report suitable checked
exception

String readData(Scanner in)

throws EOFException {

...

while (...) {

if (!in.hasNext()) {

// EOF encountered

if (n < len) {

String errmsg = ...

throw new EOFException(errmsg);

}

...

}

return(s);

}

Madhavan Mukund Exceptions in Java Programming Concepts using Java 8 / 12

Throwing exceptions . . .

Method declares the exceptions it throws

If you call such a method, you must
handle it

... or pass it on; your method should
advertise that it throws the same
exception

Need not advertise unchecked exceptions

Error, RunTimeException

Should not normally generate
RunTimeException

Fix the error or report suitable checked
exception

String readData(Scanner in)

throws EOFException {

...

while (...) {

if (!in.hasNext()) {

// EOF encountered

if (n < len) {

String errmsg = ...

throw new EOFException(errmsg);

}

...

}

return(s);

}

Madhavan Mukund Exceptions in Java Programming Concepts using Java 8 / 12

Customized exceptions

Don’t want negative numbers in
a LinearList

Define a new class extending
Exception

Throw this from LinearList

Note that add advertises the
fact that it throws a
NegativeException

Madhavan Mukund Exceptions in Java Programming Concepts using Java 9 / 12

Customized exceptions

Don’t want negative numbers in
a LinearList

Define a new class extending
Exception

Throw this from LinearList

Note that add advertises the
fact that it throws a
NegativeException

public class NegativeException extends Exception{

private int error_value;

// Negative value that generated exception

public NegativeException(String message, int i){

super(message); // Appeal to superclass

error_value = i; // constructor to set message

}

public int report_error_value(){

return error_value;

}

}

Madhavan Mukund Exceptions in Java Programming Concepts using Java 9 / 12

Customized exceptions

Don’t want negative numbers in
a LinearList

Define a new class extending
Exception

Throw this from LinearList

Note that add advertises the
fact that it throws a
NegativeException

public class NegativeException extends Exception{

...

}

public class LinearList{

...

public add(int i) throws NegativeException{

...

if (i < 0){

throw new NegativeException("Negative input",i);

}

...

}

}

Madhavan Mukund Exceptions in Java Programming Concepts using Java 9 / 12

More on catching exceptions

Can extract information about the
exception

Chaining exceptions

Process and throw a new exception
from catch

Throwable has additional methods to
track chain of exceptions

getCause(), initCause()

Add information when you chain
exceptions

Retrieve information when you catch
exception

try {

...

call a function that may

throw an exception

..

}

catch (ExceptionType e){

...

String errormsg = e.getMessage();

...

}

Madhavan Mukund Exceptions in Java Programming Concepts using Java 10 / 12

More on catching exceptions

Can extract information about the
exception

Chaining exceptions

Process and throw a new exception
from catch

Throwable has additional methods to
track chain of exceptions

getCause(), initCause()

Add information when you chain
exceptions

Retrieve information when you catch
exception

try {

...

access database

..

}

catch (SQLException e){

...

String errormsg =

"database error" + e.getMessage();

throw new ServletException(errormsg);

...

}

Madhavan Mukund Exceptions in Java Programming Concepts using Java 10 / 12

More on catching exceptions

Can extract information about the
exception

Chaining exceptions

Process and throw a new exception
from catch

Throwable has additional methods to
track chain of exceptions

getCause(), initCause()

Add information when you chain
exceptions

Retrieve information when you catch
exception

try {

...

access database

..

}

catch (SQLException e){

...

String errormsg =

"database error" + e.getMessage();

throw new ServletException(errormsg);

...

}

Madhavan Mukund Exceptions in Java Programming Concepts using Java 10 / 12

More on catching exceptions

Can extract information about the
exception

Chaining exceptions

Process and throw a new exception
from catch

Throwable has additional methods to
track chain of exceptions

getCause(), initCause()

Add information when you chain
exceptions

Retrieve information when you catch
exception

try {

...

access database

..

}

catch (SQLException e){

...

String errormsg =

"database error" + e.getMessage();

ServletException newe =

new ServletException(errormsg);

newe.initCause(e);

throw newe;

...

}

Madhavan Mukund Exceptions in Java Programming Concepts using Java 10 / 12

More on catching exceptions

Can extract information about the
exception

Chaining exceptions

Process and throw a new exception
from catch

Throwable has additional methods to
track chain of exceptions

getCause(), initCause()

Add information when you chain
exceptions

Retrieve information when you catch
exception

try {

...

}

catch (ServletException e){

...

Throwable original = e.getCause();

...

}

Madhavan Mukund Exceptions in Java Programming Concepts using Java 10 / 12

Cleaning up resources

When exception occurs, rest of the try

block is skipped

May need to do some clean up (close files,
deallocate resources, . . .)

Add a block labelled finally

Different scenarios

No error — 1,2,5,6

IOException in try,
no exception in catch — 1,3,4,5,6

IOException in try,
chained exception in catch — 1,3,5

Madhavan Mukund Exceptions in Java Programming Concepts using Java 11 / 12

Cleaning up resources

When exception occurs, rest of the try

block is skipped

May need to do some clean up (close files,
deallocate resources, . . .)

Add a block labelled finally

Different scenarios

No error — 1,2,5,6

IOException in try,
no exception in catch — 1,3,4,5,6

IOException in try,
chained exception in catch — 1,3,5

Madhavan Mukund Exceptions in Java Programming Concepts using Java 11 / 12

Cleaning up resources

When exception occurs, rest of the try

block is skipped

May need to do some clean up (close files,
deallocate resources, . . .)

Add a block labelled finally

Different scenarios

No error — 1,2,5,6

IOException in try,
no exception in catch — 1,3,4,5,6

IOException in try,
chained exception in catch — 1,3,5

try{

...

}

catch (ExceptionType1 e){...}

catch (ExceptionType2 e){...}

finally{

...

// Always executed, whether try

// terminates normally or

// exceptionally. Use for clean up.

}

Madhavan Mukund Exceptions in Java Programming Concepts using Java 11 / 12

Cleaning up resources

When exception occurs, rest of the try

block is skipped

May need to do some clean up (close files,
deallocate resources, . . .)

Add a block labelled finally

Different scenarios

No error — 1,2,5,6

IOException in try,
no exception in catch — 1,3,4,5,6

IOException in try,
chained exception in catch — 1,3,5

FileInputStream in =

new FileInputStream(...);

try {

// 1

code that might throw exceptions

// 2

}

catch (IOException e) {

// 3

show error message

// 4

}

finally {

// 5

in.close();

}

// 6

Madhavan Mukund Exceptions in Java Programming Concepts using Java 11 / 12

Cleaning up resources

When exception occurs, rest of the try

block is skipped

May need to do some clean up (close files,
deallocate resources, . . .)

Add a block labelled finally

Different scenarios

No error — 1,2,5,6

IOException in try,
no exception in catch — 1,3,4,5,6

IOException in try,
chained exception in catch — 1,3,5

FileInputStream in =

new FileInputStream(...);

try {

// 1

code that might throw exceptions

// 2

}

catch (IOException e) {

// 3

show error message

// 4

}

finally {

// 5

in.close();

}

// 6

Madhavan Mukund Exceptions in Java Programming Concepts using Java 11 / 12

Cleaning up resources

When exception occurs, rest of the try

block is skipped

May need to do some clean up (close files,
deallocate resources, . . .)

Add a block labelled finally

Different scenarios

No error — 1,2,5,6

IOException in try,
no exception in catch — 1,3,4,5,6

IOException in try,
chained exception in catch — 1,3,5

FileInputStream in =

new FileInputStream(...);

try {

// 1

code that might throw exceptions

// 2

}

catch (IOException e) {

// 3

show error message

// 4

}

finally {

// 5

in.close();

}

// 6

Madhavan Mukund Exceptions in Java Programming Concepts using Java 11 / 12

Cleaning up resources

When exception occurs, rest of the try

block is skipped

May need to do some clean up (close files,
deallocate resources, . . .)

Add a block labelled finally

Different scenarios

No error — 1,2,5,6

IOException in try,
no exception in catch — 1,3,4,5,6

IOException in try,
chained exception in catch — 1,3,5

FileInputStream in =

new FileInputStream(...);

try {

// 1

code that might throw exceptions

// 2

}

catch (IOException e) {

// 3

show error message

// 4

}

finally {

// 5

in.close();

}

// 6

Madhavan Mukund Exceptions in Java Programming Concepts using Java 11 / 12

Summary

Use try-catch to safely call functions that may generate errors

Can throw an exception — usually checked exception

Must advertise checked exceptions that are thrown in function header

Java compiler enforces that code that calls such a function handles the exception or
passes it on

Can inspect exceptions and chain them with information about original source

Use finally to clean up resources that may be left open when code is interrupted
by an exception

Madhavan Mukund Exceptions in Java Programming Concepts using Java 12 / 12

Packages

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 7

https://www.cmi.ac.in/~madhavan

Packages

Java has an organizational unit called package

Can use import to use packages directly

All classes in .../java/math

Note that * is not recursive. Cannot write

Madhavan Mukund Packages Programming Concepts using Java 2 / 4

Packages

Java has an organizational unit called package

Can use import to use packages directly

import java.math.BigDecimal

All classes in .../java/math

Note that * is not recursive. Cannot write

Madhavan Mukund Packages Programming Concepts using Java 2 / 4

Packages

Java has an organizational unit called package

Can use import to use packages directly

import java.math.BigDecimal

All classes in .../java/math

import java.math.*

Note that * is not recursive. Cannot write

Madhavan Mukund Packages Programming Concepts using Java 2 / 4

Packages

Java has an organizational unit called package

Can use import to use packages directly

import java.math.BigDecimal

All classes in .../java/math

import java.math.*

Note that * is not recursive. Cannot write

import java.*

Madhavan Mukund Packages Programming Concepts using Java 2 / 4

Creating and naming packages

Can create our own hierarchy of packages

Naming convention is similar to Internet domain name, but in reverse

Internet domain: onlinedegree.iitm.ac.in

Package name: in.ac.iitm.onlinedegree

Add a package header to include a class in a package

By default, all classes in a directory belong to same anonymous package

Madhavan Mukund Packages Programming Concepts using Java 3 / 4

Creating and naming packages

Can create our own hierarchy of packages

Naming convention is similar to Internet domain name, but in reverse

Internet domain: onlinedegree.iitm.ac.in

Package name: in.ac.iitm.onlinedegree

Add a package header to include a class in a package

By default, all classes in a directory belong to same anonymous package

Madhavan Mukund Packages Programming Concepts using Java 3 / 4

Creating and naming packages

Can create our own hierarchy of packages

Naming convention is similar to Internet domain name, but in reverse

Internet domain: onlinedegree.iitm.ac.in

Package name: in.ac.iitm.onlinedegree

Add a package header to include a class in a package

package in.ac.iitm.onlinedegree;

public class Employee { ... }

By default, all classes in a directory belong to same anonymous package

Madhavan Mukund Packages Programming Concepts using Java 3 / 4

Creating and naming packages

Can create our own hierarchy of packages

Naming convention is similar to Internet domain name, but in reverse

Internet domain: onlinedegree.iitm.ac.in

Package name: in.ac.iitm.onlinedegree

Add a package header to include a class in a package

package in.ac.iitm.onlinedegree;

public class Employee { ... }

By default, all classes in a directory belong to same anonymous package

Madhavan Mukund Packages Programming Concepts using Java 3 / 4

More about visibility

We have seen modifiers public and private

If we omit these, the default visibility is public within the package

This applies to both methods and variables

Can also restrict visibility with respect to inheritance hierarchy

protected means visible within subtree, so all subclasses

Normally, a subclass cannot expand visibility of a function

However, protected can be made public

Madhavan Mukund Packages Programming Concepts using Java 4 / 4

More about visibility

We have seen modifiers public and private

If we omit these, the default visibility is public within the package

This applies to both methods and variables

Can also restrict visibility with respect to inheritance hierarchy

protected means visible within subtree, so all subclasses

Normally, a subclass cannot expand visibility of a function

However, protected can be made public

Madhavan Mukund Packages Programming Concepts using Java 4 / 4

More about visibility

We have seen modifiers public and private

If we omit these, the default visibility is public within the package

This applies to both methods and variables

Can also restrict visibility with respect to inheritance hierarchy

protected means visible within subtree, so all subclasses

Normally, a subclass cannot expand visibility of a function

However, protected can be made public

Madhavan Mukund Packages Programming Concepts using Java 4 / 4

More about visibility

We have seen modifiers public and private

If we omit these, the default visibility is public within the package

This applies to both methods and variables

Can also restrict visibility with respect to inheritance hierarchy

protected means visible within subtree, so all subclasses

Normally, a subclass cannot expand visibility of a function

However, protected can be made public

Madhavan Mukund Packages Programming Concepts using Java 4 / 4

More about visibility

We have seen modifiers public and private

If we omit these, the default visibility is public within the package

This applies to both methods and variables

Can also restrict visibility with respect to inheritance hierarchy

protected means visible within subtree, so all subclasses

Normally, a subclass cannot expand visibility of a function

However, protected can be made public

Madhavan Mukund Packages Programming Concepts using Java 4 / 4

More about visibility

We have seen modifiers public and private

If we omit these, the default visibility is public within the package

This applies to both methods and variables

Can also restrict visibility with respect to inheritance hierarchy

protected means visible within subtree, so all subclasses

Normally, a subclass cannot expand visibility of a function

However, protected can be made public

Madhavan Mukund Packages Programming Concepts using Java 4 / 4

More about visibility

We have seen modifiers public and private

If we omit these, the default visibility is public within the package

This applies to both methods and variables

Can also restrict visibility with respect to inheritance hierarchy

protected means visible within subtree, so all subclasses

Normally, a subclass cannot expand visibility of a function

However, protected can be made public

Madhavan Mukund Packages Programming Concepts using Java 4 / 4

Assertions

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 7

https://www.cmi.ac.in/~madhavan

Documenting and checking assumptions

Functions may have constraints on the
parameters

We could check the condition and
throw an exception

What if myfn is only used internally by
our own code

Flag errors during development,
debugging

But diagnostic code should not trigger
at run time

Performance, and other considerations

Instead, “assert” the property you
assume to hold

public static double myfn(double x){

// Assume x >= 0

...

}

Madhavan Mukund Assertions Programming Concepts using Java 2 / 5

Documenting and checking assumptions

Functions may have constraints on the
parameters

We could check the condition and
throw an exception

What if myfn is only used internally by
our own code

Flag errors during development,
debugging

But diagnostic code should not trigger
at run time

Performance, and other considerations

Instead, “assert” the property you
assume to hold

public static double myfn(double x)

throws IllegalArgumentException {

// Assume x >= 0

if (x < 0){

throw new

IllegalArgumentException("x < 0");

}

}

Madhavan Mukund Assertions Programming Concepts using Java 2 / 5

Documenting and checking assumptions

Functions may have constraints on the
parameters

We could check the condition and
throw an exception

What if myfn is only used internally by
our own code

Flag errors during development,
debugging

But diagnostic code should not trigger
at run time

Performance, and other considerations

Instead, “assert” the property you
assume to hold

public static double myfn(double x)

throws IllegalArgumentException {

// Assume x >= 0

if (x < 0){

throw new

IllegalArgumentException("x < 0");

}

}

Madhavan Mukund Assertions Programming Concepts using Java 2 / 5

Documenting and checking assumptions

Functions may have constraints on the
parameters

We could check the condition and
throw an exception

What if myfn is only used internally by
our own code

Flag errors during development,
debugging

But diagnostic code should not trigger
at run time

Performance, and other considerations

Instead, “assert” the property you
assume to hold

public static double myfn(double x){

assert x >= 0;

}

Madhavan Mukund Assertions Programming Concepts using Java 2 / 5

Assertions

If assertion fails, code throws
AssertionError

This should not be caught

Abort and print diagnostic information
(stack trace)

Can provide additional information to
be printed with diagnostic message

public static double myfn(double x){

assert x >= 0;

}

Madhavan Mukund Assertions Programming Concepts using Java 3 / 5

Assertions

If assertion fails, code throws
AssertionError

This should not be caught

Abort and print diagnostic information
(stack trace)

Can provide additional information to
be printed with diagnostic message

public static double myfn(double x){

assert x >= 0;

}

Madhavan Mukund Assertions Programming Concepts using Java 3 / 5

Assertions

If assertion fails, code throws
AssertionError

This should not be caught

Abort and print diagnostic information
(stack trace)

Can provide additional information to
be printed with diagnostic message

public static double myfn(double x){

assert x >= 0 : x;

}

Madhavan Mukund Assertions Programming Concepts using Java 3 / 5

Enabling and disabling assertions

Assertions are enabled or disabled at
runtime

Does not require recompilation

Use the following flag to run with
assertions enabled

Can use -ea as abbreviation for
-enableassertions

Can selectively turn on assertions for a
class

. . . or a package

Similarly, disable assertions globally or
selectively

Can combine the two

Separate switch to enable assertions for
system classes

Madhavan Mukund Assertions Programming Concepts using Java 4 / 5

Enabling and disabling assertions

Assertions are enabled or disabled at
runtime

Does not require recompilation

Use the following flag to run with
assertions enabled

java -enableassertions MyCode

Can use -ea as abbreviation for
-enableassertions

Can selectively turn on assertions for a
class

. . . or a package

Similarly, disable assertions globally or
selectively

Can combine the two

Separate switch to enable assertions for
system classes

Madhavan Mukund Assertions Programming Concepts using Java 4 / 5

Enabling and disabling assertions

Assertions are enabled or disabled at
runtime

Does not require recompilation

Use the following flag to run with
assertions enabled

java -enableassertions MyCode

Can use -ea as abbreviation for
-enableassertions

Can selectively turn on assertions for a
class

. . . or a package

Similarly, disable assertions globally or
selectively

Can combine the two

Separate switch to enable assertions for
system classes

Madhavan Mukund Assertions Programming Concepts using Java 4 / 5

Enabling and disabling assertions

Assertions are enabled or disabled at
runtime

Does not require recompilation

Use the following flag to run with
assertions enabled

java -enableassertions MyCode

Can use -ea as abbreviation for
-enableassertions

Can selectively turn on assertions for a
class

java -ea:Myclass MyCode

. . . or a package

Similarly, disable assertions globally or
selectively

Can combine the two

Separate switch to enable assertions for
system classes

Madhavan Mukund Assertions Programming Concepts using Java 4 / 5

Enabling and disabling assertions

Assertions are enabled or disabled at
runtime

Does not require recompilation

Use the following flag to run with
assertions enabled

java -enableassertions MyCode

Can use -ea as abbreviation for
-enableassertions

Can selectively turn on assertions for a
class

java -ea:Myclass MyCode

. . . or a package

java -ea:in.ac.iitm.onlinedegree MyCode

Similarly, disable assertions globally or
selectively

Can combine the two

Separate switch to enable assertions for
system classes

Madhavan Mukund Assertions Programming Concepts using Java 4 / 5

Enabling and disabling assertions

Assertions are enabled or disabled at
runtime

Does not require recompilation

Use the following flag to run with
assertions enabled

java -enableassertions MyCode

Can use -ea as abbreviation for
-enableassertions

Can selectively turn on assertions for a
class

java -ea:Myclass MyCode

. . . or a package

java -ea:in.ac.iitm.onlinedegree MyCode

Similarly, disable assertions globally or
selectively

java -disableassertions MyCode

java -da:MyClass MyCode

Can combine the two

Separate switch to enable assertions for
system classes

Madhavan Mukund Assertions Programming Concepts using Java 4 / 5

Enabling and disabling assertions

Assertions are enabled or disabled at
runtime

Does not require recompilation

Use the following flag to run with
assertions enabled

java -enableassertions MyCode

Can use -ea as abbreviation for
-enableassertions

Can selectively turn on assertions for a
class

java -ea:Myclass MyCode

. . . or a package

java -ea:in.ac.iitm.onlinedegree MyCode

Similarly, disable assertions globally or
selectively

java -disableassertions MyCode

java -da:MyClass MyCode

Can combine the two

java -ea in.ac.iitm.onlinedegree

-da:MyClass MyCode

Separate switch to enable assertions for
system classes

Madhavan Mukund Assertions Programming Concepts using Java 4 / 5

Enabling and disabling assertions

Assertions are enabled or disabled at
runtime

Does not require recompilation

Use the following flag to run with
assertions enabled

java -enableassertions MyCode

Can use -ea as abbreviation for
-enableassertions

Can selectively turn on assertions for a
class

java -ea:Myclass MyCode

. . . or a package

java -ea:in.ac.iitm.onlinedegree MyCode

Similarly, disable assertions globally or
selectively

java -disableassertions MyCode

java -da:MyClass MyCode

Can combine the two

java -ea in.ac.iitm.onlinedegree

-da:MyClass MyCode

Separate switch to enable assertions for
system classes

java -enablesystemassertions MyCode

java -esa MyCode

Madhavan Mukund Assertions Programming Concepts using Java 4 / 5

Summary

Assertion checks are supposed to flag fatal, unrecoverable errors

Do not catch them!

If you need to flag the error and take corrective action, use exceptions instead

Turned on only during development and testing

Not checked at run time after deployment

Madhavan Mukund Assertions Programming Concepts using Java 5 / 5

Logging

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 7

https://www.cmi.ac.in/~madhavan

Diagnostic messages

Typical to generate messages within code for diagnosis

Naive approach is to use print statements

Need to add / subtract as we go along

Enable and disable explicitly

Instead log diagnostic messages separately

Logs are arranged hierarchically — choose the level of logging needed

Can be displayed in different formats

Logs can be processed by other code — handlers

Can filter out uninteresting entries

Logging controlled by a configuration file

Madhavan Mukund Logging Programming Concepts using Java 2 / 5

Diagnostic messages

Typical to generate messages within code for diagnosis

Naive approach is to use print statements

Need to add / subtract as we go along

Enable and disable explicitly

Instead log diagnostic messages separately

Logs are arranged hierarchically — choose the level of logging needed

Can be displayed in different formats

Logs can be processed by other code — handlers

Can filter out uninteresting entries

Logging controlled by a configuration file

Madhavan Mukund Logging Programming Concepts using Java 2 / 5

Diagnostic messages

Typical to generate messages within code for diagnosis

Naive approach is to use print statements

Need to add / subtract as we go along

Enable and disable explicitly

Instead log diagnostic messages separately

Logs are arranged hierarchically — choose the level of logging needed

Can be displayed in different formats

Logs can be processed by other code — handlers

Can filter out uninteresting entries

Logging controlled by a configuration file

Madhavan Mukund Logging Programming Concepts using Java 2 / 5

Logging

Simplest: call info() method of global logger:

Logger.getGlobal().info("Edit->Copy menu item selected");

This prints the following

Suppress logging by executing the following code

Create a custom logger

Logger names are hierarchical, like package names

Setting a property for in.ac.iitm automatically sets it for
in.ac.iitm.onlinedegree

Madhavan Mukund Logging Programming Concepts using Java 3 / 5

Logging

Simplest: call info() method of global logger:

Logger.getGlobal().info("Edit->Copy menu item selected");

This prints the following

January 10, 2022 10:12:15 PM LoggingImageViewer myFunction

INFO: Edit->Copy menu item selected

Suppress logging by executing the following code

Create a custom logger

Logger names are hierarchical, like package names

Setting a property for in.ac.iitm automatically sets it for
in.ac.iitm.onlinedegree

Madhavan Mukund Logging Programming Concepts using Java 3 / 5

Logging

Simplest: call info() method of global logger:

Logger.getGlobal().info("Edit->Copy menu item selected");

This prints the following

January 10, 2022 10:12:15 PM LoggingImageViewer myFunction

INFO: Edit->Copy menu item selected

Suppress logging by executing the following code

Logger.getGlobal().setLevel(Level.OFF);

Create a custom logger

Logger names are hierarchical, like package names

Setting a property for in.ac.iitm automatically sets it for
in.ac.iitm.onlinedegree

Madhavan Mukund Logging Programming Concepts using Java 3 / 5

Logging

Simplest: call info() method of global logger:

Logger.getGlobal().info("Edit->Copy menu item selected");

This prints the following

January 10, 2022 10:12:15 PM LoggingImageViewer myFunction

INFO: Edit->Copy menu item selected

Suppress logging by executing the following code

Logger.getGlobal().setLevel(Level.OFF);

Create a custom logger

private static final Logger myLogger =

Logger.getLogger("in.ac.iitm.onlinedegree");

Logger names are hierarchical, like package names

Setting a property for in.ac.iitm automatically sets it for
in.ac.iitm.onlinedegree

Madhavan Mukund Logging Programming Concepts using Java 3 / 5

Logging

Simplest: call info() method of global logger:

Logger.getGlobal().info("Edit->Copy menu item selected");

This prints the following

January 10, 2022 10:12:15 PM LoggingImageViewer myFunction

INFO: Edit->Copy menu item selected

Suppress logging by executing the following code

Logger.getGlobal().setLevel(Level.OFF);

Create a custom logger

private static final Logger myLogger =

Logger.getLogger("in.ac.iitm.onlinedegree");

Logger names are hierarchical, like package names

Setting a property for in.ac.iitm automatically sets it for
in.ac.iitm.onlinedegree

Madhavan Mukund Logging Programming Concepts using Java 3 / 5

Logging levels

Seven logging levels

SEVERE, WARNING, INFO, CONFIG, FINE, FINER, FINEST

By default, first three levels are logged

Can set a different level

Turn on all levels, or turn off all logging

Can also change logging properties through a configuration file

Look up the documentation

Madhavan Mukund Logging Programming Concepts using Java 4 / 5

Logging levels

Seven logging levels

SEVERE, WARNING, INFO, CONFIG, FINE, FINER, FINEST

By default, first three levels are logged

Can set a different level

Turn on all levels, or turn off all logging

Can also change logging properties through a configuration file

Look up the documentation

Madhavan Mukund Logging Programming Concepts using Java 4 / 5

Logging levels

Seven logging levels

SEVERE, WARNING, INFO, CONFIG, FINE, FINER, FINEST

By default, first three levels are logged

Can set a different level

logger.setLevel(Level.FINE);

Turn on all levels, or turn off all logging

logger.setLevel(Level.ALL);

logger.setLevel(Level.OFF);

Can also change logging properties through a configuration file

Look up the documentation

Madhavan Mukund Logging Programming Concepts using Java 4 / 5

Logging levels

Seven logging levels

SEVERE, WARNING, INFO, CONFIG, FINE, FINER, FINEST

By default, first three levels are logged

Can set a different level

logger.setLevel(Level.FINE);

Turn on all levels, or turn off all logging

logger.setLevel(Level.ALL);

logger.setLevel(Level.OFF);

Can also change logging properties through a configuration file

Look up the documentation

Madhavan Mukund Logging Programming Concepts using Java 4 / 5

Logging levels

Seven logging levels

SEVERE, WARNING, INFO, CONFIG, FINE, FINER, FINEST

By default, first three levels are logged

Can set a different level

logger.setLevel(Level.FINE);

Turn on all levels, or turn off all logging

logger.setLevel(Level.ALL);

logger.setLevel(Level.OFF);

Can also change logging properties through a configuration file

Look up the documentation

Madhavan Mukund Logging Programming Concepts using Java 4 / 5

Summary

Logging gives us more flexibility and control over tracking diagnostic messages than
simple print statements

Can define a hierarchy of loggers

Seven levels of messages — control which levels are printed

Control logging from within code or through external configuration file

Madhavan Mukund Logging Programming Concepts using Java 5 / 5

Cloning

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 8

https://www.cmi.ac.in/~madhavan

Copying an object

Normal assignment creates two
references to the same object

Updates via either name update the
object

What if we want two separate but
identical objects?

e2 should be initialized to a disjoint
copy of e1

How does one make a faithful copy?

public class Employee {

private String name;

private double salary;

public Employee(String n, double s){

name = n;

salary = s;

}

public void setname(String n){

name = n;

}

}

...

Employee e1 = new Employee("Dhruv", 21500.0);

Employee e2 = e1;

e2.setname("Eknath"); // e1 also updated

Madhavan Mukund Cloning Programming Concepts using Java 2 / 8

Copying an object

Normal assignment creates two
references to the same object

Updates via either name update the
object

What if we want two separate but
identical objects?

e2 should be initialized to a disjoint
copy of e1

How does one make a faithful copy?

public class Employee {

private String name;

private double salary;

public Employee(String n, double s){

name = n;

salary = s;

}

public void setname(String n){

name = n;

}

}

...

Employee e1 = new Employee("Dhruv", 21500.0);

Employee e2 = e1;

e2.setname("Eknath"); // e1 also updated

Madhavan Mukund Cloning Programming Concepts using Java 2 / 8

Copying an object

Normal assignment creates two
references to the same object

Updates via either name update the
object

What if we want two separate but
identical objects?

e2 should be initialized to a disjoint
copy of e1

How does one make a faithful copy?

public class Employee {

private String name;

private double salary;

public Employee(String n, double s){

name = n;

salary = s;

}

public void setname(String n){

name = n;

}

}

...

Employee e1 = new Employee("Dhruv", 21500.0);

Employee e2 = e1;

e2.setname("Eknath"); // e1 also updated

Madhavan Mukund Cloning Programming Concepts using Java 2 / 8

The clone() method

Object defines a method clone()

e1.clone() returns a bitwise copy of
e1

Why a bitwise copy?

Object does not have access to
private instance variables

Cannot build up a fresh copy of e1
from scratch

What could go wrong with a bitwise
copy?

public class Employee {

private String name;

private double salary;

public Employee(String n, double s){

name = n;

salary = s;

}

public void setname(String n){

name = n;

}

}

Madhavan Mukund Cloning Programming Concepts using Java 3 / 8

The clone() method

Object defines a method clone()

e1.clone() returns a bitwise copy of
e1

Why a bitwise copy?

Object does not have access to
private instance variables

Cannot build up a fresh copy of e1
from scratch

What could go wrong with a bitwise
copy?

public class Employee {

private String name;

private double salary;

public Employee(String n, double s){

name = n;

salary = s;

}

public void setname(String n){

name = n;

}

}

...

Employee e1 = new Employee("Dhruv", 21500.0);

Employee e2 = e1.clone();

e2.setname("Eknath"); // e1 not updated

Madhavan Mukund Cloning Programming Concepts using Java 3 / 8

The clone() method

Object defines a method clone()

e1.clone() returns a bitwise copy of
e1

Why a bitwise copy?

Object does not have access to
private instance variables

Cannot build up a fresh copy of e1
from scratch

What could go wrong with a bitwise
copy?

public class Employee {

private String name;

private double salary;

public Employee(String n, double s){

name = n;

salary = s;

}

public void setname(String n){

name = n;

}

}

...

Employee e1 = new Employee("Dhruv", 21500.0);

Employee e2 = e1.clone();

e2.setname("Eknath"); // e1 not updated

Madhavan Mukund Cloning Programming Concepts using Java 3 / 8

The clone() method

Object defines a method clone()

e1.clone() returns a bitwise copy of
e1

Why a bitwise copy?

Object does not have access to
private instance variables

Cannot build up a fresh copy of e1
from scratch

What could go wrong with a bitwise
copy?

public class Employee {

private String name;

private double salary;

public Employee(String n, double s){

name = n;

salary = s;

}

public void setname(String n){

name = n;

}

}

...

Employee e1 = new Employee("Dhruv", 21500.0);

Employee e2 = e1.clone();

e2.setname("Eknath"); // e1 not updated

Madhavan Mukund Cloning Programming Concepts using Java 3 / 8

Shallow copy

What if we add an instance variable
Date to Employee?

Assume update() updates the
components of a Date object

Bitwise copy made by e1.clone()

copies the reference to the embedded
Date

e2.birthday and e1.birthday refer
to the same object

e2.setbday() affects e1.birthday

Bitwise copy is a shallow copy

Nested mutable references are copied
verbatim

Deep copy would recursively clone
internal components

public class Employee {

private String name;

private double salary;

private Date birthday;

...

public void setname(String n){

name = n;

}

public void setbday(int dd, int mm, int yy){

birthday.update(dd,mm,yy);

}

}

Madhavan Mukund Cloning Programming Concepts using Java 4 / 8

Shallow copy

What if we add an instance variable
Date to Employee?

Assume update() updates the
components of a Date object

Bitwise copy made by e1.clone()

copies the reference to the embedded
Date

e2.birthday and e1.birthday refer
to the same object

e2.setbday() affects e1.birthday

Bitwise copy is a shallow copy

Nested mutable references are copied
verbatim

Deep copy would recursively clone
internal components

public class Employee {

private String name;

private double salary;

private Date birthday;

...

public void setname(String n){

name = n;

}

public void setbday(int dd, int mm, int yy){

birthday.update(dd,mm,yy);

}

}

...

Employee e1 = new Employee("Dhruv", 21500.0);

Employee e2 = e1.clone();

e2.setname("Eknath"); // e1 name not updated

e2.setbday(16,4,1997); // e1 bday updated!

Madhavan Mukund Cloning Programming Concepts using Java 4 / 8

Shallow copy

What if we add an instance variable
Date to Employee?

Assume update() updates the
components of a Date object

Bitwise copy made by e1.clone()

copies the reference to the embedded
Date

e2.birthday and e1.birthday refer
to the same object

e2.setbday() affects e1.birthday

Bitwise copy is a shallow copy

Nested mutable references are copied
verbatim

Deep copy would recursively clone
internal components

public class Employee {

private String name;

private double salary;

private Date birthday;

...

public void setname(String n){

name = n;

}

public void setbday(int dd, int mm, int yy){

birthday.update(dd,mm,yy);

}

}

...

Employee e1 = new Employee("Dhruv", 21500.0);

Employee e2 = e1.clone();

e2.setname("Eknath"); // e1 name not updated

e2.setbday(16,4,1997); // e1 bday updated!

Madhavan Mukund Cloning Programming Concepts using Java 4 / 8

Shallow copy

What if we add an instance variable
Date to Employee?

Assume update() updates the
components of a Date object

Bitwise copy made by e1.clone()

copies the reference to the embedded
Date

e2.birthday and e1.birthday refer
to the same object

e2.setbday() affects e1.birthday

Bitwise copy is a shallow copy

Nested mutable references are copied
verbatim

Deep copy would recursively clone
internal components

public class Employee {

private String name;

private double salary;

private Date birthday;

...

public void setname(String n){

name = n;

}

public void setbday(int dd, int mm, int yy){

birthday.update(dd,mm,yy);

}

}

...

Employee e1 = new Employee("Dhruv", 21500.0);

Employee e2 = e1.clone();

e2.setname("Eknath"); // e1 name not updated

e2.setbday(16,4,1997); // e1 bday updated!

Madhavan Mukund Cloning Programming Concepts using Java 4 / 8

Deep copy

Deep copy recursively clones nested
objects

Override the shallow clone() from
Object

Object.clone() returns an Object

Cast super.clone()

Employee.clone() returns an
Employee

Allowed to change the return type

public class Employee {

private String name;

private double salary;

private Date birthday;

...

public void setname(String n){...}

public void setbday(...){...}

}

Madhavan Mukund Cloning Programming Concepts using Java 5 / 8

Deep copy

Deep copy recursively clones nested
objects

Override the shallow clone() from
Object

Object.clone() returns an Object

Cast super.clone()

Employee.clone() returns an
Employee

Allowed to change the return type

public class Employee {

private String name;

private double salary;

private Date birthday;

...

public void setname(String n){...}

public void setbday(...){...}

public Employee clone(){

Employee newemp =

(Employee) super.clone()

Date newbday = birthday.clone();

newemp.birthday = newbday;

return newmp;

}

}

Madhavan Mukund Cloning Programming Concepts using Java 5 / 8

Deep copy

Deep copy recursively clones nested
objects

Override the shallow clone() from
Object

Object.clone() returns an Object

Cast super.clone()

Employee.clone() returns an
Employee

Allowed to change the return type

public class Employee {

private String name;

private double salary;

private Date birthday;

...

public void setname(String n){...}

public void setbday(...){...}

public Employee clone(){

Employee newemp =

(Employee) super.clone()

Date newbday = birthday.clone();

newemp.birthday = newbday;

return newmp;

}

}

Madhavan Mukund Cloning Programming Concepts using Java 5 / 8

Deep copy

Deep copy recursively clones nested
objects

Override the shallow clone() from
Object

Object.clone() returns an Object

Cast super.clone()

Employee.clone() returns an
Employee

Allowed to change the return type

public class Employee {

private String name;

private double salary;

private Date birthday;

...

public void setname(String n){...}

public void setbday(...){...}

public Employee clone(){

Employee newemp =

(Employee) super.clone()

Date newbday = birthday.clone();

newemp.birthday = newbday;

return newmp;

}

}

Madhavan Mukund Cloning Programming Concepts using Java 5 / 8

Deep copy . . .

What if Manager extends Employee?

New instance variable promodate

Manager inherits deep copy clone()

from Employee

However Employee.clone() does not
know that it has to deep copy
promodate!

Cloning is subtle, so Java puts in some
restrictions

public class Employee {

private String name;

private double salary;

private Date birthday;

...

public void setname(String n){...}

public void setbday(...){...}

public Employee clone(){...}

}

Madhavan Mukund Cloning Programming Concepts using Java 6 / 8

Deep copy . . .

What if Manager extends Employee?

New instance variable promodate

Manager inherits deep copy clone()

from Employee

However Employee.clone() does not
know that it has to deep copy
promodate!

Cloning is subtle, so Java puts in some
restrictions

public class Employee {

private String name;

private double salary;

private Date birthday;

...

public void setname(String n){...}

public void setbday(...){...}

public Employee clone(){...}

}

public class Manager extends Employee {

private Date promodate;

...

}

Madhavan Mukund Cloning Programming Concepts using Java 6 / 8

Deep copy . . .

What if Manager extends Employee?

New instance variable promodate

Manager inherits deep copy clone()

from Employee

However Employee.clone() does not
know that it has to deep copy
promodate!

Cloning is subtle, so Java puts in some
restrictions

public class Employee {

private String name;

private double salary;

private Date birthday;

...

public void setname(String n){...}

public void setbday(...){...}

public Employee clone(){...}

}

public class Manager extends Employee {

private Date promodate;

...

}

Madhavan Mukund Cloning Programming Concepts using Java 6 / 8

Deep copy . . .

What if Manager extends Employee?

New instance variable promodate

Manager inherits deep copy clone()

from Employee

However Employee.clone() does not
know that it has to deep copy
promodate!

Cloning is subtle, so Java puts in some
restrictions

public class Employee {

private String name;

private double salary;

private Date birthday;

...

public void setname(String n){...}

public void setbday(...){...}

public Employee clone(){...}

}

public class Manager extends Employee {

private Date promodate;

...

}

Madhavan Mukund Cloning Programming Concepts using Java 6 / 8

Deep copy . . .

What if Manager extends Employee?

New instance variable promodate

Manager inherits deep copy clone()

from Employee

However Employee.clone() does not
know that it has to deep copy
promodate!

Cloning is subtle, so Java puts in some
restrictions

public class Employee {

private String name;

private double salary;

private Date birthday;

...

public void setname(String n){...}

public void setbday(...){...}

public Employee clone(){...}

}

public class Manager extends Employee {

private Date promodate;

...

}

Madhavan Mukund Cloning Programming Concepts using Java 6 / 8

Restrictions on clone()

To allow clone() to be used, a class
has to implement Cloneable interface

Marker interface

clone() in Object is protected

Only Employee objects can clone()

Redefine clone() as public to allow
other classes to clone Employee

Expanding visibility from protected

to public is allowed

Object.clone() throws
CloneNotSupportedException

Catch or report this exception

Call clone() in try block

public class Employee implements Cloneable {

private String name;

private double salary;

private Date birthday;

...

public void setname(String n){...}

public void setbday(...){...}

}

...

Employee e1 = new Employee("Dhruv", 21500.0);

Employee e2 = e1.clone();

e2.setname("Eknath"); // e1 not updated

Madhavan Mukund Cloning Programming Concepts using Java 7 / 8

Restrictions on clone()

To allow clone() to be used, a class
has to implement Cloneable interface

Marker interface

clone() in Object is protected

Only Employee objects can clone()

Redefine clone() as public to allow
other classes to clone Employee

Expanding visibility from protected

to public is allowed

Object.clone() throws
CloneNotSupportedException

Catch or report this exception

Call clone() in try block

public class Employee implements Cloneable {

private String name;

private double salary;

private Date birthday;

...

public void setname(String n){...}

public void setbday(...){...}

}

...

Employee e1 = new Employee("Dhruv", 21500.0);

Employee e2 = e1.clone();

e2.setname("Eknath"); // e1 not updated

Madhavan Mukund Cloning Programming Concepts using Java 7 / 8

Restrictions on clone()

To allow clone() to be used, a class
has to implement Cloneable interface

Marker interface

clone() in Object is protected

Only Employee objects can clone()

Redefine clone() as public to allow
other classes to clone Employee

Expanding visibility from protected

to public is allowed

Object.clone() throws
CloneNotSupportedException

Catch or report this exception

Call clone() in try block

public class Employee implements Cloneable {

private String name;

private double salary;

private Date birthday;

...

public void setname(String n){...}

public void setbday(...){...}

public Employee clone(){...}

}

Madhavan Mukund Cloning Programming Concepts using Java 7 / 8

Restrictions on clone()

To allow clone() to be used, a class
has to implement Cloneable interface

Marker interface

clone() in Object is protected

Only Employee objects can clone()

Redefine clone() as public to allow
other classes to clone Employee

Expanding visibility from protected

to public is allowed

Object.clone() throws
CloneNotSupportedException

Catch or report this exception

Call clone() in try block

public class Employee implements Cloneable {

private String name;

private double salary;

private Date birthday;

...

public void setname(String n){...}

public void setbday(...){...}

public Employee clone()

throws CloneNotSupportedException {...}

}

Madhavan Mukund Cloning Programming Concepts using Java 7 / 8

Summary

Making a faithful copy of an object is a tricky problem

Java provides a clone() function in Object that does shallow copy

However, shallow copy aliases nested objects

Deep copy solves the problem, but inheritance can create complications

To force programmers to consciously think about these subtleties, Java puts in some
checks to using clone()

Must implement marker interface Cloneable to allow clone()

clone() is protected by default. override as public if needed

clone() in Object throws CloneNotSupportedException, which must be taken
into account when overriding

Madhavan Mukund Cloning Programming Concepts using Java 8 / 8

Summary

Making a faithful copy of an object is a tricky problem

Java provides a clone() function in Object that does shallow copy

However, shallow copy aliases nested objects

Deep copy solves the problem, but inheritance can create complications

To force programmers to consciously think about these subtleties, Java puts in some
checks to using clone()

Must implement marker interface Cloneable to allow clone()

clone() is protected by default. override as public if needed

clone() in Object throws CloneNotSupportedException, which must be taken
into account when overriding

Madhavan Mukund Cloning Programming Concepts using Java 8 / 8

Summary

Making a faithful copy of an object is a tricky problem

Java provides a clone() function in Object that does shallow copy

However, shallow copy aliases nested objects

Deep copy solves the problem, but inheritance can create complications

To force programmers to consciously think about these subtleties, Java puts in some
checks to using clone()

Must implement marker interface Cloneable to allow clone()

clone() is protected by default. override as public if needed

clone() in Object throws CloneNotSupportedException, which must be taken
into account when overriding

Madhavan Mukund Cloning Programming Concepts using Java 8 / 8

Summary

Making a faithful copy of an object is a tricky problem

Java provides a clone() function in Object that does shallow copy

However, shallow copy aliases nested objects

Deep copy solves the problem, but inheritance can create complications

To force programmers to consciously think about these subtleties, Java puts in some
checks to using clone()

Must implement marker interface Cloneable to allow clone()

clone() is protected by default. override as public if needed

clone() in Object throws CloneNotSupportedException, which must be taken
into account when overriding

Madhavan Mukund Cloning Programming Concepts using Java 8 / 8

Summary

Making a faithful copy of an object is a tricky problem

Java provides a clone() function in Object that does shallow copy

However, shallow copy aliases nested objects

Deep copy solves the problem, but inheritance can create complications

To force programmers to consciously think about these subtleties, Java puts in some
checks to using clone()

Must implement marker interface Cloneable to allow clone()

clone() is protected by default. override as public if needed

clone() in Object throws CloneNotSupportedException, which must be taken
into account when overriding

Madhavan Mukund Cloning Programming Concepts using Java 8 / 8

Type inference

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 8

https://www.cmi.ac.in/~madhavan

Type declarations vs type inference

Java insists that all variables are
declared in advance, with type
information

The compiler can then check whether
the program is well-typed

An alternative approach is to do type
inference

Derive type information from context.
For instance, s should be String

Propagate type information: now t is
also String

public class Employee {...}

public class Manager extends Employee {...}

Employee e;

Manager m;

Madhavan Mukund Type inference Programming Concepts using Java 2 / 6

Type declarations vs type inference

Java insists that all variables are
declared in advance, with type
information

The compiler can then check whether
the program is well-typed

An alternative approach is to do type
inference

Derive type information from context.
For instance, s should be String

Propagate type information: now t is
also String

public class Employee {...}

public class Manager extends Employee {...}

Employee e;

Manager m;

...

m = new Manager(...);

e = m; // Allowed by subtyping

Madhavan Mukund Type inference Programming Concepts using Java 2 / 6

Type declarations vs type inference

Java insists that all variables are
declared in advance, with type
information

The compiler can then check whether
the program is well-typed

An alternative approach is to do type
inference

Derive type information from context.
For instance, s should be String

Propagate type information: now t is
also String

public class Employee {...}

public class Manager extends Employee {...}

Employee e;

Manager m;

...

m = new Manager(...);

e = m; // Allowed by subtyping

Madhavan Mukund Type inference Programming Concepts using Java 2 / 6

Type declarations vs type inference

Java insists that all variables are
declared in advance, with type
information

The compiler can then check whether
the program is well-typed

An alternative approach is to do type
inference

Derive type information from context.
For instance, s should be String

s = "Hello, " + "world";

Propagate type information: now t is
also String

public class Employee {...}

public class Manager extends Employee {...}

Employee e;

Manager m;

...

m = new Manager(...);

e = m; // Allowed by subtyping

Madhavan Mukund Type inference Programming Concepts using Java 2 / 6

Type declarations vs type inference

Java insists that all variables are
declared in advance, with type
information

The compiler can then check whether
the program is well-typed

An alternative approach is to do type
inference

Derive type information from context.
For instance, s should be String

s = "Hello, " + "world";

Propagate type information: now t is
also String

t = s + 5;

public class Employee {...}

public class Manager extends Employee {...}

Employee e;

Manager m;

...

m = new Manager(...);

e = m; // Allowed by subtyping

Madhavan Mukund Type inference Programming Concepts using Java 2 / 6

Type inference

Assume code is well-typed, derive most
general types

Use information from constants to
determine type

s = "Hello, " + "world";

Propagate type information based on
already inferred types

t = s + 5;

More ambitious?

If x.bonus() is legal, x must be
Manager rather than Employee

Keep track of and validate type
obligations

Madhavan Mukund Type inference Programming Concepts using Java 3 / 6

Type inference

Assume code is well-typed, derive most
general types

Use information from constants to
determine type

s = "Hello, " + "world";

Propagate type information based on
already inferred types

t = s + 5;

More ambitious?

If x.bonus() is legal, x must be
Manager rather than Employee

Keep track of and validate type
obligations

Madhavan Mukund Type inference Programming Concepts using Java 3 / 6

Type inference

Assume code is well-typed, derive most
general types

Use information from constants to
determine type

s = "Hello, " + "world";

Propagate type information based on
already inferred types

t = s + 5;

More ambitious?

If x.bonus() is legal, x must be
Manager rather than Employee

Keep track of and validate type
obligations

public class Employee {...}

public class Manager extends Employee {

...

public double bonus (...) {...}

}

...

public static f(Employee x){

...

double d = x.bonus(...);

// x must be a Manager?

...

}

Madhavan Mukund Type inference Programming Concepts using Java 3 / 6

Type inference

Assume code is well-typed, derive most
general types

Use information from constants to
determine type

s = "Hello, " + "world";

Propagate type information based on
already inferred types

t = s + 5;

More ambitious?

If x.bonus() is legal, x must be
Manager rather than Employee

Keep track of and validate type
obligations

public class Employee {...}

public class Manager extends Employee {

...

public double bonus (...) {...}

}

...

public static f(Employee x){

...

double d = x.bonus(...);

// x must be a Manager?

...

}

Madhavan Mukund Type inference Programming Concepts using Java 3 / 6

Type inference

Assume program is type-safe, derive
most general types compatible with
code

Use information from constants to
determine type

Propagate type information based on
already inferred types

Typing judgements should ideally be
made at compile-time, not at run-time

Static analysis of code

Balance flexibility with algorithmic
tractability

public class Employee {...}

public class Manager extends Employee {

...

public double bonus (...) {...}

}

...

public static f(Employee x){

...

double d = x.bonus(...);

// x must be a Manager?

...

}

Madhavan Mukund Type inference Programming Concepts using Java 4 / 6

Type inference

Assume program is type-safe, derive
most general types compatible with
code

Use information from constants to
determine type

Propagate type information based on
already inferred types

Typing judgements should ideally be
made at compile-time, not at run-time

Static analysis of code

Balance flexibility with algorithmic
tractability

public class Employee {...}

public class Manager extends Employee {

...

public double bonus (...) {...}

}

...

public static f(Employee x){

...

double d = x.bonus(...);

// x must be a Manager?

...

}

Madhavan Mukund Type inference Programming Concepts using Java 4 / 6

Type inference

Assume program is type-safe, derive
most general types compatible with
code

Use information from constants to
determine type

Propagate type information based on
already inferred types

Typing judgements should ideally be
made at compile-time, not at run-time

Static analysis of code

Balance flexibility with algorithmic
tractability

public class Employee {...}

public class Manager extends Employee {

...

public double bonus (...) {...}

}

...

public static f(Employee x){

...

double d = x.bonus(...);

// x must be a Manager?

...

}

Madhavan Mukund Type inference Programming Concepts using Java 4 / 6

Type inference in Java

Java allows limited type inference

Only for local variables in functions

Not for instance variables of a class

Use generic var to declare variables

Must be initialized when declared

Type is inferred from initial value

Be careful about format for numeric
constants

For classes, infer most constrained type

e is inferred to be Manager

Manager extends Employee

If e should be Employee, declare
explicitly

Madhavan Mukund Type inference Programming Concepts using Java 5 / 6

Type inference in Java

Java allows limited type inference

Only for local variables in functions

Not for instance variables of a class

Use generic var to declare variables

Must be initialized when declared

Type is inferred from initial value

Be careful about format for numeric
constants

For classes, infer most constrained type

e is inferred to be Manager

Manager extends Employee

If e should be Employee, declare
explicitly

var b = false; // boolean

var s = "Hello, world"; // String

Madhavan Mukund Type inference Programming Concepts using Java 5 / 6

Type inference in Java

Java allows limited type inference

Only for local variables in functions

Not for instance variables of a class

Use generic var to declare variables

Must be initialized when declared

Type is inferred from initial value

Be careful about format for numeric
constants

For classes, infer most constrained type

e is inferred to be Manager

Manager extends Employee

If e should be Employee, declare
explicitly

var b = false; // boolean

var s = "Hello, world"; // String

var d = 2.0; // double

var f = 3.141f; // float

Madhavan Mukund Type inference Programming Concepts using Java 5 / 6

Type inference in Java

Java allows limited type inference

Only for local variables in functions

Not for instance variables of a class

Use generic var to declare variables

Must be initialized when declared

Type is inferred from initial value

Be careful about format for numeric
constants

For classes, infer most constrained type

e is inferred to be Manager

Manager extends Employee

If e should be Employee, declare
explicitly

var b = false; // boolean

var s = "Hello, world"; // String

var d = 2.0; // double

var f = 3.141f; // float

var e = new Manager(...); // Manager

Madhavan Mukund Type inference Programming Concepts using Java 5 / 6

Summary

Automatic type inference can avoid redundancy in declarations

Manager m = new Manager(...);

Assuming the program is type-safe, derive most general types compatible with the
code

Compiler can infer type from expressions used to assign values

Inferred type information can be propagated

Challenge is to do this statically, at compile-time

Java allows limited type inference

Only local variables that are initialized when they are declared

Madhavan Mukund Type inference Programming Concepts using Java 6 / 6

Higher order functions

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 8

https://www.cmi.ac.in/~madhavan

Passing functions

Recall callbacks

Myclass m creates a Timer t

t starts running in parallel

t notifies m when the time limit expires

m needs to pass timerdone() to t

Achieved this through an interface

Myclass m Timer t

• start()

•timerdone()

Madhavan Mukund Higher order functions Programming Concepts using Java 2 / 9

Passing functions

Recall callbacks

Myclass m creates a Timer t

t starts running in parallel

t notifies m when the time limit expires

m needs to pass timerdone() to t

Achieved this through an interface

Myclass m Timer t

• start()

•timerdone()

Madhavan Mukund Higher order functions Programming Concepts using Java 2 / 9

Passing functions

Recall callbacks

Myclass m creates a Timer t

t starts running in parallel

t notifies m when the time limit expires

m needs to pass timerdone() to t

Achieved this through an interface

public interface Timerowner{

public abstract void timerdone();

}

public class Myclass

extends Timerowner{

...

}

Myclass m Timer t

• start()

•timerdone()

public class Timer implements Runnable{

private Timerowner owner;

...

public void start(){

...

owner.timerdone();

}

}

Madhavan Mukund Higher order functions Programming Concepts using Java 2 / 9

Passing functions

Customize Arrays.sort

Comparator interface provides
signature for comparison function

Implement Comparator

Pass to Arrays.sort

Madhavan Mukund Higher order functions Programming Concepts using Java 3 / 9

Passing functions

Customize Arrays.sort

Comparator interface provides
signature for comparison function

Implement Comparator

Pass to Arrays.sort

public interface Comparator<T>{

public abstract int compare(T o1, T o2);

}

Madhavan Mukund Higher order functions Programming Concepts using Java 3 / 9

Passing functions

Customize Arrays.sort

Comparator interface provides
signature for comparison function

Implement Comparator

Pass to Arrays.sort

public interface Comparator<T>{

public abstract int compare(T o1, T o2);

}

public class StringCompare

implements Comparator<String>{

public int compare(String s1, String s2){

return s1.length() - s2.length();

}

}

Madhavan Mukund Higher order functions Programming Concepts using Java 3 / 9

Passing functions

Customize Arrays.sort

Comparator interface provides
signature for comparison function

Implement Comparator

Pass to Arrays.sort

public interface Comparator<T>{

public abstract int compare(T o1, T o2);

}

public class StringCompare

implements Comparator<String>{

public int compare(String s1, String s2){

return s1.length() - s2.length();

}

}

String[] strarr = new ...;

Arrays.sort(strarr,StringCompare);

Madhavan Mukund Higher order functions Programming Concepts using Java 3 / 9

Functional interfaces

Interfaces that define a single function
are called functional interfaces

Comparator, Timerowner

How can we directly pass the required
function?

In Python, function names are similar to
variable names

Define a function

Pass it as an argument to another
function

map is a higher order function

public interface Comparator<T>{

public abstract int compare(T o1, T o2);

}

public interface Timerowner{

public abstract void timerdone();

}

Madhavan Mukund Higher order functions Programming Concepts using Java 4 / 9

Functional interfaces

Interfaces that define a single function
are called functional interfaces

Comparator, Timerowner

How can we directly pass the required
function?

In Python, function names are similar to
variable names

Define a function

Pass it as an argument to another
function

map is a higher order function

public interface Comparator<T>{

public abstract int compare(T o1, T o2);

}

public interface Timerowner{

public abstract void timerdone();

}

Madhavan Mukund Higher order functions Programming Concepts using Java 4 / 9

Functional interfaces

Interfaces that define a single function
are called functional interfaces

Comparator, Timerowner

How can we directly pass the required
function?

In Python, function names are similar to
variable names

Define a function

Pass it as an argument to another
function

map is a higher order function

public interface Comparator<T>{

public abstract int compare(T o1, T o2);

}

public interface Timerowner{

public abstract void timerdone();

}

def square(x):

return(x*x)

l = list(map(square,range(100)))

Madhavan Mukund Higher order functions Programming Concepts using Java 4 / 9

Lambda expressions

Lambda expressions denote anonymous
functions

(Parameters) -> Body

Return value and type are implicit

From λ-calculus (Alonzo Church)

Foundational model for computing,
parallel to Alan Turing’s machines

Basis for functional programming:
Lisp, Scheme, ML, Haskell, . . .

Substitute wherever a functional
interface is specified

Limited type inference is also possible

Java infers s1 and s2 are String

(String s1, String s2) ->

s1.length() - s2.length()

Madhavan Mukund Higher order functions Programming Concepts using Java 5 / 9

Lambda expressions

Lambda expressions denote anonymous
functions

(Parameters) -> Body

Return value and type are implicit

From λ-calculus (Alonzo Church)

Foundational model for computing,
parallel to Alan Turing’s machines

Basis for functional programming:
Lisp, Scheme, ML, Haskell, . . .

Substitute wherever a functional
interface is specified

Limited type inference is also possible

Java infers s1 and s2 are String

(String s1, String s2) ->

s1.length() - s2.length()

Madhavan Mukund Higher order functions Programming Concepts using Java 5 / 9

Lambda expressions

Lambda expressions denote anonymous
functions

(Parameters) -> Body

Return value and type are implicit

From λ-calculus (Alonzo Church)

Foundational model for computing,
parallel to Alan Turing’s machines

Basis for functional programming:
Lisp, Scheme, ML, Haskell, . . .

Substitute wherever a functional
interface is specified

Limited type inference is also possible

Java infers s1 and s2 are String

(String s1, String s2) ->

s1.length() - s2.length()

String[] strarr = new ...;

Arrays.sort(strarr,

(String s1, String s2) ->

s1.length() - s2.length());

Madhavan Mukund Higher order functions Programming Concepts using Java 5 / 9

Lambda expressions

Lambda expressions denote anonymous
functions

(Parameters) -> Body

Return value and type are implicit

From λ-calculus (Alonzo Church)

Foundational model for computing,
parallel to Alan Turing’s machines

Basis for functional programming:
Lisp, Scheme, ML, Haskell, . . .

Substitute wherever a functional
interface is specified

Limited type inference is also possible

Java infers s1 and s2 are String

(String s1, String s2) ->

s1.length() - s2.length()

String[] strarr = new ...;

Arrays.sort(strarr,

(String s1, String s2) ->

s1.length() - s2.length());

String[] strarr = new ...;

Arrays.sort(strarr,

(s1, s2) ->

s1.length() - s2.length());

Madhavan Mukund Higher order functions Programming Concepts using Java 5 / 9

Lambda expressions

More complicated function body can be
defined as a block

Note that the function is anonymous
only for the caller

The function that receives the lambda
expression still needs to use a functional
interface for the parameter type

Inside Arrays.sort(), refer to the
function by the name compare()

defined in the Comparator interface

(String s1, String s2) -> {

if s1.length() < s2.length()

return -1;

else if s1.length() > s2.length()

return 1;

else

return 0;

}

Madhavan Mukund Higher order functions Programming Concepts using Java 6 / 9

Lambda expressions

More complicated function body can be
defined as a block

Note that the function is anonymous
only for the caller

The function that receives the lambda
expression still needs to use a functional
interface for the parameter type

Inside Arrays.sort(), refer to the
function by the name compare()

defined in the Comparator interface

(String s1, String s2) -> {

if s1.length() < s2.length()

return -1;

else if s1.length() > s2.length()

return 1;

else

return 0;

}

Madhavan Mukund Higher order functions Programming Concepts using Java 6 / 9

Lambda expressions

More complicated function body can be
defined as a block

Note that the function is anonymous
only for the caller

The function that receives the lambda
expression still needs to use a functional
interface for the parameter type

public static <T> void

Arrays.sort(T[] a, Comparator<T> c)}

Inside Arrays.sort(), refer to the
function by the name compare()

defined in the Comparator interface

(String s1, String s2) -> {

if s1.length() < s2.length()

return -1;

else if s1.length() > s2.length()

return 1;

else

return 0;

}

Madhavan Mukund Higher order functions Programming Concepts using Java 6 / 9

Passing named functions

If the lambda expression consists of a
single function call, we can pass that
function by name

Method reference

We saw an example with adding entries
to a Map object

Here sum is a static method in
Integer

Here is the corresponding expression,
assuming type inference

Expression should call a function, and
nothing else — this expression cannot
be replaced by a method reference

Madhavan Mukund Higher order functions Programming Concepts using Java 7 / 9

Passing named functions

If the lambda expression consists of a
single function call, we can pass that
function by name

Method reference

We saw an example with adding entries
to a Map object

Here sum is a static method in
Integer

Here is the corresponding expression,
assuming type inference

Expression should call a function, and
nothing else — this expression cannot
be replaced by a method reference

Map<String, Integer> scores = ...;

scores.merge(bat,newscore,Integer::sum);

Madhavan Mukund Higher order functions Programming Concepts using Java 7 / 9

Passing named functions

If the lambda expression consists of a
single function call, we can pass that
function by name

Method reference

We saw an example with adding entries
to a Map object

Here sum is a static method in
Integer

Here is the corresponding expression,
assuming type inference

Expression should call a function, and
nothing else — this expression cannot
be replaced by a method reference

Map<String, Integer> scores = ...;

scores.merge(bat,newscore,Integer::sum);

(i,j) -> Integer::sum(i,j)

Madhavan Mukund Higher order functions Programming Concepts using Java 7 / 9

Passing named functions

If the lambda expression consists of a
single function call, we can pass that
function by name

Method reference

We saw an example with adding entries
to a Map object

Here sum is a static method in
Integer

Here is the corresponding expression,
assuming type inference

Expression should call a function, and
nothing else — this expression cannot
be replaced by a method reference

Map<String, Integer> scores = ...;

scores.merge(bat,newscore,Integer::sum);

(i,j) -> Integer::sum(i,j)

(i,j) -> Integer::sum(i,j) > 0

Madhavan Mukund Higher order functions Programming Concepts using Java 7 / 9

Method references

ClassName::StaticMethod

Method reference is C::f

Corresponding expression with as
many arguments as f has

ClassName::InstanceMethod

Method reference is C::f

Called with respect to an object that
becomes implicit parameter

object::InstanceMethod

Method reference is o::f

Arguments are passed to o.f

Can also pass references to constructors

(x1,x2,..,xk) -> f(x1,x2,...,xk)

Madhavan Mukund Higher order functions Programming Concepts using Java 8 / 9

Method references

ClassName::StaticMethod

Method reference is C::f

Corresponding expression with as
many arguments as f has

ClassName::InstanceMethod

Method reference is C::f

Called with respect to an object that
becomes implicit parameter

object::InstanceMethod

Method reference is o::f

Arguments are passed to o.f

Can also pass references to constructors

(x1,x2,..,xk) -> f(x1,x2,...,xk)

(o,x1,x2,...,xk) -> o.f(x1,x2,...,xk)

Madhavan Mukund Higher order functions Programming Concepts using Java 8 / 9

Method references

ClassName::StaticMethod

Method reference is C::f

Corresponding expression with as
many arguments as f has

ClassName::InstanceMethod

Method reference is C::f

Called with respect to an object that
becomes implicit parameter

object::InstanceMethod

Method reference is o::f

Arguments are passed to o.f

Can also pass references to constructors

(x1,x2,..,xk) -> f(x1,x2,...,xk)

(o,x1,x2,...,xk) -> o.f(x1,x2,...,xk)

(x1,x2,..,xk) -> o.f(x1,x2,...,xk)

Madhavan Mukund Higher order functions Programming Concepts using Java 8 / 9

Method references

ClassName::StaticMethod

Method reference is C::f

Corresponding expression with as
many arguments as f has

ClassName::InstanceMethod

Method reference is C::f

Called with respect to an object that
becomes implicit parameter

object::InstanceMethod

Method reference is o::f

Arguments are passed to o.f

Can also pass references to constructors

(x1,x2,..,xk) -> f(x1,x2,...,xk)

(o,x1,x2,...,xk) -> o.f(x1,x2,...,xk)

(x1,x2,..,xk) -> o.f(x1,x2,...,xk)

Madhavan Mukund Higher order functions Programming Concepts using Java 8 / 9

Summary

Many languages support higher-order functions

Passing a function as an argument to another function

In object-oriented programming, this is achieved using interfaces

Encapsulate the function to be passed as an object

Java allows functions to be passed directly in place of functional interfaces

Interface consists of a single function

Lambda expressions describe anonymous functions

Cannot pass lambda expressions in general

Only when the argument is a functional interface

Can pass a method reference if the lambda expression consists of a single function
call

Madhavan Mukund Higher order functions Programming Concepts using Java 9 / 9

Streams

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 8

https://www.cmi.ac.in/~madhavan

Operating on collections

We usually use an iterator to process a
collection

Suppose we have split a text file as a
list of words

We want to count the number of long
words in the list

An iterator generates all elements from
a collection as a sequence

Alternative approach

Generate a stream of values from a
collection

Operations transform input streams to
output streams

Terminate with a result

List<String> words =;

long count = 0;

for (String w : words) {

if (w.length() > 10) {

count++;

}

}

Madhavan Mukund Streams Programming Concepts using Java 2 / 9

Operating on collections

We usually use an iterator to process a
collection

Suppose we have split a text file as a
list of words

We want to count the number of long
words in the list

An iterator generates all elements from
a collection as a sequence

Alternative approach

Generate a stream of values from a
collection

Operations transform input streams to
output streams

Terminate with a result

List<String> words =;

long count = 0;

for (String w : words) {

if (w.length() > 10) {

count++;

}

}

Madhavan Mukund Streams Programming Concepts using Java 2 / 9

Operating on collections

We usually use an iterator to process a
collection

Suppose we have split a text file as a
list of words

We want to count the number of long
words in the list

An iterator generates all elements from
a collection as a sequence

Alternative approach

Generate a stream of values from a
collection

Operations transform input streams to
output streams

Terminate with a result

List<String> words =;

long count = 0;

for (String w : words) {

if (w.length() > 10) {

count++;

}

}

long count = words.stream()

.filter(w -> w.length() > 10)

.count();

}

Madhavan Mukund Streams Programming Concepts using Java 2 / 9

Why streams?

Stream processing is declarative

Recall, declarative vs imperative

Focus on what to compute, rather
than how

Processing can be parallelized

filter() and count() in parallel

Lazy evaluation is possible

Suppose we want first 10 long words

Stop generating the stream once we
find 10 such words

Need not generate the entire stream in
advance

Can even work, in principle, with
infinite streams!

long count = words.stream()

.filter(w -> w.length() > 10)

.count();

}

Madhavan Mukund Streams Programming Concepts using Java 3 / 9

Why streams?

Stream processing is declarative

Recall, declarative vs imperative

Focus on what to compute, rather
than how

Processing can be parallelized

filter() and count() in parallel

Lazy evaluation is possible

Suppose we want first 10 long words

Stop generating the stream once we
find 10 such words

Need not generate the entire stream in
advance

Can even work, in principle, with
infinite streams!

long count = words.stream()

.filter(w -> w.length() > 10)

.count();

}

long count = words.parallelStream()

.filter(w -> w.length() > 10)

.count();

}

Madhavan Mukund Streams Programming Concepts using Java 3 / 9

Why streams?

Stream processing is declarative

Recall, declarative vs imperative

Focus on what to compute, rather
than how

Processing can be parallelized

filter() and count() in parallel

Lazy evaluation is possible

Suppose we want first 10 long words

Stop generating the stream once we
find 10 such words

Need not generate the entire stream in
advance

Can even work, in principle, with
infinite streams!

long count = words.stream()

.filter(w -> w.length() > 10)

.count();

}

long count = words.parallelStream()

.filter(w -> w.length() > 10)

.count();

}

Madhavan Mukund Streams Programming Concepts using Java 3 / 9

Working with streams

Create a stream

Pass through intermediate operations
that transform streams

Apply a terminal operation to get a
result

A stream does not store its elements

Elements stored in an underlying
collection

Or generated by a function, on
demand

Stream operations are non-destructive

Input stream is untouched

long count = words.stream()

.filter(w -> w.length() > 10)

.count();

}

long count = words.parallelStream()

.filter(w -> w.length() > 10)

.count();

}

Madhavan Mukund Streams Programming Concepts using Java 4 / 9

Working with streams

Create a stream

Pass through intermediate operations
that transform streams

Apply a terminal operation to get a
result

A stream does not store its elements

Elements stored in an underlying
collection

Or generated by a function, on
demand

Stream operations are non-destructive

Input stream is untouched

long count = words.stream()

.filter(w -> w.length() > 10)

.count();

}

long count = words.parallelStream()

.filter(w -> w.length() > 10)

.count();

}

Madhavan Mukund Streams Programming Concepts using Java 4 / 9

Working with streams

Create a stream

Pass through intermediate operations
that transform streams

Apply a terminal operation to get a
result

A stream does not store its elements

Elements stored in an underlying
collection

Or generated by a function, on
demand

Stream operations are non-destructive

Input stream is untouched

long count = words.stream()

.filter(w -> w.length() > 10)

.count();

}

long count = words.parallelStream()

.filter(w -> w.length() > 10)

.count();

}

Madhavan Mukund Streams Programming Concepts using Java 4 / 9

Working with streams

Create a stream

Pass through intermediate operations
that transform streams

Apply a terminal operation to get a
result

A stream does not store its elements

Elements stored in an underlying
collection

Or generated by a function, on
demand

Stream operations are non-destructive

Input stream is untouched

long count = words.stream()

.filter(w -> w.length() > 10)

.count();

}

long count = words.parallelStream()

.filter(w -> w.length() > 10)

.count();

}

Madhavan Mukund Streams Programming Concepts using Java 4 / 9

Working with streams

Create a stream

Pass through intermediate operations
that transform streams

Apply a terminal operation to get a
result

A stream does not store its elements

Elements stored in an underlying
collection

Or generated by a function, on
demand

Stream operations are non-destructive

Input stream is untouched

long count = words.stream()

.filter(w -> w.length() > 10)

.count();

}

long count = words.parallelStream()

.filter(w -> w.length() > 10)

.count();

}

Madhavan Mukund Streams Programming Concepts using Java 4 / 9

Creating streams

Apply stream() to a collection

Part of Collections interface

Use static method Stream.of() for
arrays

Static method Stream.generate()

generates a stream from a function

Provide a function that produces
values on demand, with no argument

Stream.iterate() — a stream of
dependent values

Initial value, function to generate the
next value from the previous one

Terminate using a predicate

List<String> wordlist = ...;

Stream<String> wordstream = wordlist.stream();

Madhavan Mukund Streams Programming Concepts using Java 5 / 9

Creating streams

Apply stream() to a collection

Part of Collections interface

Use static method Stream.of() for
arrays

Static method Stream.generate()

generates a stream from a function

Provide a function that produces
values on demand, with no argument

Stream.iterate() — a stream of
dependent values

Initial value, function to generate the
next value from the previous one

Terminate using a predicate

List<String> wordlist = ...;

Stream<String> wordstream = wordlist.stream();

String[] wordarr = ...;

Stream<String> wordstream = Stream.of(wordarr);

Madhavan Mukund Streams Programming Concepts using Java 5 / 9

Creating streams

Apply stream() to a collection

Part of Collections interface

Use static method Stream.of() for
arrays

Static method Stream.generate()

generates a stream from a function

Provide a function that produces
values on demand, with no argument

Stream.iterate() — a stream of
dependent values

Initial value, function to generate the
next value from the previous one

Terminate using a predicate

List<String> wordlist = ...;

Stream<String> wordstream = wordlist.stream();

String[] wordarr = ...;

Stream<String> wordstream = Stream.of(wordarr);

Stream<String> echos =

Stream.generate(() -> "Echo");

Stream<Double> randomds =

Stream.generate(Math::random);

Madhavan Mukund Streams Programming Concepts using Java 5 / 9

Creating streams

Apply stream() to a collection

Part of Collections interface

Use static method Stream.of() for
arrays

Static method Stream.generate()

generates a stream from a function

Provide a function that produces
values on demand, with no argument

Stream.iterate() — a stream of
dependent values

Initial value, function to generate the
next value from the previous one

Terminate using a predicate

List<String> wordlist = ...;

Stream<String> wordstream = wordlist.stream();

String[] wordarr = ...;

Stream<String> wordstream = Stream.of(wordarr);

Stream<String> echos =

Stream.generate(() -> "Echo");

Stream<Double> randomds =

Stream.generate(Math::random);

Stream<Integer> integers =

Stream.iterate(0, n -> n+1)

Madhavan Mukund Streams Programming Concepts using Java 5 / 9

Creating streams

Apply stream() to a collection

Part of Collections interface

Use static method Stream.of() for
arrays

Static method Stream.generate()

generates a stream from a function

Provide a function that produces
values on demand, with no argument

Stream.iterate() — a stream of
dependent values

Initial value, function to generate the
next value from the previous one

Terminate using a predicate

List<String> wordlist = ...;

Stream<String> wordstream = wordlist.stream();

String[] wordarr = ...;

Stream<String> wordstream = Stream.of(wordarr);

Stream<String> echos =

Stream.generate(() -> "Echo");

Stream<Double> randomds =

Stream.generate(Math::random);

Stream<Integer> integers =

Stream.iterate(0, n -> n+1)

Stream<Integer> integers =

Stream.iterate(0, n -> n < 100, n -> n+1)

Madhavan Mukund Streams Programming Concepts using Java 5 / 9

Processing streams

filter() to select elements

Takes a predicate as argument

Filter out the long words

map() applies a function to each
element in the stream.

Extract the first letter of each long
word

What if map() function generates a list?

Suppose we have explode(s) that
returns the list of letters in s

map() produces stream with nested
lists

flatMap() flattens (collapses) nested
list into a single stream

List<String> wordlist = ...;

Stream<String> longwords =

wordlist.stream()

.filter(w -> w.length() > 10);

Madhavan Mukund Streams Programming Concepts using Java 6 / 9

Processing streams

filter() to select elements

Takes a predicate as argument

Filter out the long words

map() applies a function to each
element in the stream.

Extract the first letter of each long
word

What if map() function generates a list?

Suppose we have explode(s) that
returns the list of letters in s

map() produces stream with nested
lists

flatMap() flattens (collapses) nested
list into a single stream

List<String> wordlist = ...;

Stream<String> longwords =

wordlist.stream()

.filter(w -> w.length() > 10);

List<String> wordlist = ...;

Stream<String> startlongwords =

wordlist.stream()

.filter(w -> w.length() > 10)

.map(s -> s.substring(0,1));

Madhavan Mukund Streams Programming Concepts using Java 6 / 9

Processing streams

filter() to select elements

Takes a predicate as argument

Filter out the long words

map() applies a function to each
element in the stream.

Extract the first letter of each long
word

What if map() function generates a list?

Suppose we have explode(s) that
returns the list of letters in s

map() produces stream with nested
lists

flatMap() flattens (collapses) nested
list into a single stream

List<String> wordlist = ...;

Stream<String> longwords =

wordlist.stream()

.filter(w -> w.length() > 10);

List<String> wordlist = ...;

Stream<String> startlongwords =

wordlist.stream()

.filter(w -> w.length() > 10)

.map(s -> s.substring(0,1));

List<String> wordlist = ...;

Stream<String> startlongwords =

wordlist.stream()

.filter(w -> w.length() > 10)

.map(s -> explode(s));

Madhavan Mukund Streams Programming Concepts using Java 6 / 9

Processing streams

filter() to select elements

Takes a predicate as argument

Filter out the long words

map() applies a function to each
element in the stream.

Extract the first letter of each long
word

What if map() function generates a list?

Suppose we have explode(s) that
returns the list of letters in s

map() produces stream with nested
lists

flatMap() flattens (collapses) nested
list into a single stream

List<String> wordlist = ...;

Stream<String> longwords =

wordlist.stream()

.filter(w -> w.length() > 10);

List<String> wordlist = ...;

Stream<String> startlongwords =

wordlist.stream()

.filter(w -> w.length() > 10)

.map(s -> s.substring(0,1));

List<String> wordlist = ...;

Stream<String> startlongwords =

wordlist.stream()

.filter(w -> w.length() > 10)

.flatMap(s -> explode(s));

Madhavan Mukund Streams Programming Concepts using Java 6 / 9

Stream transformations

Make a stream finite — limit(n)

Generate 100 random numbers

Skip n elements — skip(n)

Discard first 10 random numbers

Stop when element matches a criterion
— takeWhile()

Stop with number smaller than 0.5

Start after element matches a criterion
— dropWhile()

Start after number larger than 0.05

Can also combine streams, extract
distinct elements, sort, . . .

Stream<Double> randomds =

Stream.generate(Math::random).limit(100);

Madhavan Mukund Streams Programming Concepts using Java 7 / 9

Stream transformations

Make a stream finite — limit(n)

Generate 100 random numbers

Skip n elements — skip(n)

Discard first 10 random numbers

Stop when element matches a criterion
— takeWhile()

Stop with number smaller than 0.5

Start after element matches a criterion
— dropWhile()

Start after number larger than 0.05

Can also combine streams, extract
distinct elements, sort, . . .

Stream<Double> randomds =

Stream.generate(Math::random).limit(100);

Stream<Double> randomds =

Stream.generate(Math::random).skip(10);

Madhavan Mukund Streams Programming Concepts using Java 7 / 9

Stream transformations

Make a stream finite — limit(n)

Generate 100 random numbers

Skip n elements — skip(n)

Discard first 10 random numbers

Stop when element matches a criterion
— takeWhile()

Stop with number smaller than 0.5

Start after element matches a criterion
— dropWhile()

Start after number larger than 0.05

Can also combine streams, extract
distinct elements, sort, . . .

Stream<Double> randomds =

Stream.generate(Math::random).limit(100);

Stream<Double> randomds =

Stream.generate(Math::random).skip(10);

Stream<Double> randomds =

Stream.generate(Math::random)

.takeWhile(n -> n >= 0.5);

Madhavan Mukund Streams Programming Concepts using Java 7 / 9

Stream transformations

Make a stream finite — limit(n)

Generate 100 random numbers

Skip n elements — skip(n)

Discard first 10 random numbers

Stop when element matches a criterion
— takeWhile()

Stop with number smaller than 0.5

Start after element matches a criterion
— dropWhile()

Start after number larger than 0.05

Can also combine streams, extract
distinct elements, sort, . . .

Stream<Double> randomds =

Stream.generate(Math::random).limit(100);

Stream<Double> randomds =

Stream.generate(Math::random).skip(10);

Stream<Double> randomds =

Stream.generate(Math::random)

.takeWhile(n -> n >= 0.5);

Stream<Double> randomds =

Stream.generate(Math::random)

.dropWhile(n -> n <= 0.05);

Madhavan Mukund Streams Programming Concepts using Java 7 / 9

Stream transformations

Make a stream finite — limit(n)

Generate 100 random numbers

Skip n elements — skip(n)

Discard first 10 random numbers

Stop when element matches a criterion
— takeWhile()

Stop with number smaller than 0.5

Start after element matches a criterion
— dropWhile()

Start after number larger than 0.05

Can also combine streams, extract
distinct elements, sort, . . .

Stream<Double> randomds =

Stream.generate(Math::random).limit(100);

Stream<Double> randomds =

Stream.generate(Math::random).skip(10);

Stream<Double> randomds =

Stream.generate(Math::random)

.takeWhile(n -> n >= 0.5);

Stream<Double> randomds =

Stream.generate(Math::random)

.dropWhile(n -> n <= 0.05);

Madhavan Mukund Streams Programming Concepts using Java 7 / 9

Reducing a stream to a result

Number of elements — count()

Count random numbers larger than 0.1

Largest and smallest values seen

max() and min()

Requires a comparison function

What happens if the stream is empty?
Return value is optional type — later

First element — findFirst()

First random number above 0.999

Again, deal with empty stream

And more . . .

long countrand =

Stream.generate(Math::random)

.limit(100).

.filter(n -> n > 0.1)

.count();

Madhavan Mukund Streams Programming Concepts using Java 8 / 9

Reducing a stream to a result

Number of elements — count()

Count random numbers larger than 0.1

Largest and smallest values seen

max() and min()

Requires a comparison function

What happens if the stream is empty?
Return value is optional type — later

First element — findFirst()

First random number above 0.999

Again, deal with empty stream

And more . . .

long countrand =

Stream.generate(Math::random)

.limit(100).

.filter(n -> n > 0.1)

.count();

Optional<Double> maxrand =

Stream.generate(Math::random)

.limit(10)

.max(Double::compareTo);

Madhavan Mukund Streams Programming Concepts using Java 8 / 9

Reducing a stream to a result

Number of elements — count()

Count random numbers larger than 0.1

Largest and smallest values seen

max() and min()

Requires a comparison function

What happens if the stream is empty?
Return value is optional type — later

First element — findFirst()

First random number above 0.999

Again, deal with empty stream

And more . . .

long countrand =

Stream.generate(Math::random)

.limit(100).

.filter(n -> n > 0.1)

.count();

Optional<Double> maxrand =

Stream.generate(Math::random)

.limit(100)

.filter(n -> n < 0.001)

.max(Double::compareTo);

Madhavan Mukund Streams Programming Concepts using Java 8 / 9

Reducing a stream to a result

Number of elements — count()

Count random numbers larger than 0.1

Largest and smallest values seen

max() and min()

Requires a comparison function

What happens if the stream is empty?
Return value is optional type — later

First element — findFirst()

First random number above 0.999

Again, deal with empty stream

And more . . .

long countrand =

Stream.generate(Math::random)

.limit(100).

.filter(n -> n > 0.1)

.count();

Optional<Double> maxrand =

Stream.generate(Math::random)

.limit(100)

.filter(n -> n < 0.001)

.max(Double::compareTo);

Optional<Double> firstrand =

Stream.generate(Math::random)

.limit(100)

.filter(n -> n > 0.999)

.findFirst();

Madhavan Mukund Streams Programming Concepts using Java 8 / 9

Streams

We can view a collection as a stream of elements

Process the stream rather than use an iterator

Declarative way of computing over collections — popular in functional programming

Create a stream, transform it, reduce it to a result

Can create a stream from any collection, or generate from a function

Stream transformations are non-destructive: filter, map, limit to a finite number,
skip elements, . . .

Various functions to reduce to a result — deal with empty streams

Madhavan Mukund Streams Programming Concepts using Java 9 / 9

Optional Types

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 9

https://www.cmi.ac.in/~madhavan

Dealing with empty streams

Largest and smallest values seen

max() and min()

Requires a comparison function

What happens if the stream is empty?

max() of empty stream is undefined

Return value could be Double or null

Optional<T> object

Wrapper

May contain an object of type T

Value is present

Or no object

Optional<Double> maxrand =

Stream.generate(Math::random)

.limit(100)

.filter(n -> n < 0.001)

.max(Double::compareTo);

Madhavan Mukund Optional Types Programming Concepts using Java 2 / 9

Dealing with empty streams

Largest and smallest values seen

max() and min()

Requires a comparison function

What happens if the stream is empty?

max() of empty stream is undefined

Return value could be Double or null

Optional<T> object

Wrapper

May contain an object of type T

Value is present

Or no object

Optional<Double> maxrand =

Stream.generate(Math::random)

.limit(100)

.filter(n -> n < 0.001)

.max(Double::compareTo);

Madhavan Mukund Optional Types Programming Concepts using Java 2 / 9

Dealing with empty streams

Largest and smallest values seen

max() and min()

Requires a comparison function

What happens if the stream is empty?

max() of empty stream is undefined

Return value could be Double or null

Optional<T> object

Wrapper

May contain an object of type T

Value is present

Or no object

Optional<Double> maxrand =

Stream.generate(Math::random)

.limit(100)

.filter(n -> n < 0.001)

.max(Double::compareTo);

Madhavan Mukund Optional Types Programming Concepts using Java 2 / 9

Handling missing optional values

Use orElse() to pass a default value

Use orElseGet() to call a function to
generate replacement for a missing
value

Use orElseThrow() to generate an
exception when a missing value is
encountered

Optional<Double> maxrand =

Stream.generate(Math::random)

.limit(100)

.filter(n -> n < 0.001)

.max(Double::compareTo);

Double fixrand = maxrand.orElse(-1.0);

Madhavan Mukund Optional Types Programming Concepts using Java 3 / 9

Handling missing optional values

Use orElse() to pass a default value

Use orElseGet() to call a function to
generate replacement for a missing
value

Use orElseThrow() to generate an
exception when a missing value is
encountered

Optional<Double> maxrand =

Stream.generate(Math::random)

.limit(100)

.filter(n -> n < 0.001)

.max(Double::compareTo);

Double fixrand = maxrand.orElseGet(

() -> SomeFunctionToGenerateDouble

);

Madhavan Mukund Optional Types Programming Concepts using Java 3 / 9

Handling missing optional values

Use orElse() to pass a default value

Use orElseGet() to call a function to
generate replacement for a missing
value

Use orElseThrow() to generate an
exception when a missing value is
encountered

Optional<Double> maxrand =

Stream.generate(Math::random)

.limit(100)

.filter(n -> n < 0.001)

.max(Double::compareTo);

Double fixrand =

maxrand.orElseThrow(

IllegalStateException::new

);

Madhavan Mukund Optional Types Programming Concepts using Java 3 / 9

Ignoring missing values

Use ifPresent() to test if a value is
present, and process it

Missing value is ignored

For instance, add maxrand to a
collection results, if it is present

As usual, pass the function in different
forms

Specify an alternative action if the value
is not present

optionalValue.ifPresent(v -> Process v);

Madhavan Mukund Optional Types Programming Concepts using Java 4 / 9

Ignoring missing values

Use ifPresent() to test if a value is
present, and process it

Missing value is ignored

For instance, add maxrand to a
collection results, if it is present

As usual, pass the function in different
forms

Specify an alternative action if the value
is not present

Optional<Double> maxrand =

Stream.generate(Math::random)

.limit(100)

.filter(n -> n < 0.001)

.max(Double::compareTo);

var results = new ArrayList<Double>();

maxrand.ifPresent(v -> results.add(v));

Madhavan Mukund Optional Types Programming Concepts using Java 4 / 9

Ignoring missing values

Use ifPresent() to test if a value is
present, and process it

Missing value is ignored

For instance, add maxrand to a
collection results, if it is present

As usual, pass the function in different
forms

Specify an alternative action if the value
is not present

Optional<Double> maxrand =

Stream.generate(Math::random)

.limit(100)

.filter(n -> n < 0.001)

.max(Double::compareTo);

var results = new ArrayList<Double>();

maxrand.ifPresent(results::add);

Madhavan Mukund Optional Types Programming Concepts using Java 4 / 9

Ignoring missing values

Use ifPresent() to test if a value is
present, and process it

Missing value is ignored

For instance, add maxrand to a
collection results, if it is present

As usual, pass the function in different
forms

Specify an alternative action if the value
is not present

Optional<Double> maxrand =

Stream.generate(Math::random)

.limit(100)

.filter(n -> n < 0.001)

.max(Double::compareTo);

var results = new ArrayList<Double>();

maxrand.ifPresentOrElse(

v -> results.add(v),

() -> System.out.println("No max")

);

Madhavan Mukund Optional Types Programming Concepts using Java 4 / 9

Creating an optional value

Creating an optional value

Optional.of(v) creates value v

Optional.empty creates empty
optional

Use ofNullable() to transform null

automatically into an empty optional

Useful when working with functions
that return object of type T or null,
rather than Optional<T>

public static Optional<Double>

inverse(Double x){

if (x == 0) {

return Optional.empty();

}else{

return Optional.of(1 / x);

}

}

Madhavan Mukund Optional Types Programming Concepts using Java 5 / 9

Creating an optional value

Creating an optional value

Optional.of(v) creates value v

Optional.empty creates empty
optional

Use ofNullable() to transform null

automatically into an empty optional

Useful when working with functions
that return object of type T or null,
rather than Optional<T>

public static Optional<Double>

inverse(Double x) {

return Optional.ofNullable(1 / x);

}

Madhavan Mukund Optional Types Programming Concepts using Java 5 / 9

Passing on optional values

Can produce an output Optional value
from an input Optional

map applies function to value, if present

If input is empty, so is output

Another example

Supply an alternative for a missing
value

If value is present, it is passed as is

If value is empty, value generated by
or() is passed

Madhavan Mukund Optional Types Programming Concepts using Java 6 / 9

Passing on optional values

Can produce an output Optional value
from an input Optional

map applies function to value, if present

If input is empty, so is output

Another example

Supply an alternative for a missing
value

If value is present, it is passed as is

If value is empty, value generated by
or() is passed

Optional<Double> maxrand =

Stream.generate(Math::random)

.limit(100)

.filter(n -> n < 0.001)

.max(Double::compareTo);

Optional<Double> maxrandsqr =

maxrand.map(v -> v*v);

Madhavan Mukund Optional Types Programming Concepts using Java 6 / 9

Passing on optional values

Can produce an output Optional value
from an input Optional

map applies function to value, if present

If input is empty, so is output

Another example

Supply an alternative for a missing
value

If value is present, it is passed as is

If value is empty, value generated by
or() is passed

Optional<Double> maxrand =

Stream.generate(Math::random)

.limit(100)

.filter(n -> n < 0.001)

.max(Double::compareTo);

var results = new ArrayList<Double>();

maxrand.map(results::add);

Madhavan Mukund Optional Types Programming Concepts using Java 6 / 9

Passing on optional values

Can produce an output Optional value
from an input Optional

map applies function to value, if present

If input is empty, so is output

Another example

Supply an alternative for a missing
value

If value is present, it is passed as is

If value is empty, value generated by
or() is passed

Optional<Double> maxrand =

Stream.generate(Math::random)

.limit(100)

.filter(n -> n < 0.001)

.max(Double::compareTo);

Optional<Double> fixrand =

maxrand.or(() -> Optional.of(-1.0));

Madhavan Mukund Optional Types Programming Concepts using Java 6 / 9

Composing optional values of different types

Suppose that

f() returns Optional<T>

Class T defines g(), returning
Optional<U>

Cannot compose s.f().g()

s.f() has type Optional<T>, not T

Instead, use flatMap

s.f().flatMap(T::g)

If s.f() is present, apply g()

Otherwise return empty Optional<U>

For example, pass output of earlier safe
inverse() to safe squareRoot()

Madhavan Mukund Optional Types Programming Concepts using Java 7 / 9

Composing optional values of different types

Suppose that

f() returns Optional<T>

Class T defines g(), returning
Optional<U>

Cannot compose s.f().g()

s.f() has type Optional<T>, not T

Instead, use flatMap

s.f().flatMap(T::g)

If s.f() is present, apply g()

Otherwise return empty Optional<U>

For example, pass output of earlier safe
inverse() to safe squareRoot()

Madhavan Mukund Optional Types Programming Concepts using Java 7 / 9

Composing optional values of different types

Suppose that

f() returns Optional<T>

Class T defines g(), returning
Optional<U>

Cannot compose s.f().g()

s.f() has type Optional<T>, not T

Instead, use flatMap

s.f().flatMap(T::g)

If s.f() is present, apply g()

Otherwise return empty Optional<U>

For example, pass output of earlier safe
inverse() to safe squareRoot()

Optional<U> result = s.f().flatMap(T::g);

Madhavan Mukund Optional Types Programming Concepts using Java 7 / 9

Composing optional values of different types

Suppose that

f() returns Optional<T>

Class T defines g(), returning
Optional<U>

Cannot compose s.f().g()

s.f() has type Optional<T>, not T

Instead, use flatMap

s.f().flatMap(T::g)

If s.f() is present, apply g()

Otherwise return empty Optional<U>

For example, pass output of earlier safe
inverse() to safe squareRoot()

public static Optional<Double>

inverse(Double x) {

if (x == 0) {

return Optional.empty();

}else{

return Optional.of(1 / x);

}

}

public static Optional<Double>

squareRoot(Double x){

if (x < 0) {

return Optional.empty();

}else{

return Optional.of(Math.sqrt(x));

}

}

Optional<Double> result =

inverse(x).flatMap(MyClass::squareRoot);

Madhavan Mukund Optional Types Programming Concepts using Java 7 / 9

Turning an optional into a stream

Suppose lookup(u) returns a User if u
is a valid username

Want to convert a stream of userids
into a stream of users

Input is Stream<String>

Output is Stream<User>

But lookup returns Optional<User>

Pass through a flatMap

What if lookup was implemented
without using Optional?

oldLookup returns User or null

Use ofNullable to regenerate
Optional<User>

Optional<User> lookup(String id) {...}

Madhavan Mukund Optional Types Programming Concepts using Java 8 / 9

Turning an optional into a stream

Suppose lookup(u) returns a User if u
is a valid username

Want to convert a stream of userids
into a stream of users

Input is Stream<String>

Output is Stream<User>

But lookup returns Optional<User>

Pass through a flatMap

What if lookup was implemented
without using Optional?

oldLookup returns User or null

Use ofNullable to regenerate
Optional<User>

Optional<User> lookup(String id) {...}

Madhavan Mukund Optional Types Programming Concepts using Java 8 / 9

Turning an optional into a stream

Suppose lookup(u) returns a User if u
is a valid username

Want to convert a stream of userids
into a stream of users

Input is Stream<String>

Output is Stream<User>

But lookup returns Optional<User>

Pass through a flatMap

What if lookup was implemented
without using Optional?

oldLookup returns User or null

Use ofNullable to regenerate
Optional<User>

Stream<String> ids = ...;

Stream<User> users = ids.map(Users::lookup)

.flatMap(Optional::stream);

Madhavan Mukund Optional Types Programming Concepts using Java 8 / 9

Turning an optional into a stream

Suppose lookup(u) returns a User if u
is a valid username

Want to convert a stream of userids
into a stream of users

Input is Stream<String>

Output is Stream<User>

But lookup returns Optional<User>

Pass through a flatMap

What if lookup was implemented
without using Optional?

oldLookup returns User or null

Use ofNullable to regenerate
Optional<User>

Stream<String> ids = ...;

Stream<User> users = ids.flatMap(

id -> Stream.ofNullable(

Users.oldLookup(id)

)

);

Madhavan Mukund Optional Types Programming Concepts using Java 8 / 9

Summary

Optional<T> is a clean way to encapsulate a value that may be absent

Different ways to process values of type Optional<T>

Replace the missing value by a default

Ignore missing values

Can create values of type Optional<T> where outcome may be undefined

Can write functions that transform optional values to optional values

flatMap allows us to cascade functions with optional types

Use flatMap to regenerate a stream from optional values

Madhavan Mukund Optional Types Programming Concepts using Java 9 / 9

Collecting results from streams

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 9

https://www.cmi.ac.in/~madhavan

Collecting values from a stream

Convert collections into sequences of
values — streams

Process a stream as a collection?

Stream defines a standard iterator, use
to loop through values in a stream

Alternatively, use forEach with a
suitable function

Can convert a stream into an array
using toArray()

Creates an array of Object by default

Pass array constructor to get a more
specific array type

Madhavan Mukund Collecting results from streams Programming Concepts using Java 2 / 7

Collecting values from a stream

Convert collections into sequences of
values — streams

Process a stream as a collection?

Stream defines a standard iterator, use
to loop through values in a stream

Alternatively, use forEach with a
suitable function

Can convert a stream into an array
using toArray()

Creates an array of Object by default

Pass array constructor to get a more
specific array type

Madhavan Mukund Collecting results from streams Programming Concepts using Java 2 / 7

Collecting values from a stream

Convert collections into sequences of
values — streams

Process a stream as a collection?

Stream defines a standard iterator, use
to loop through values in a stream

Alternatively, use forEach with a
suitable function

Can convert a stream into an array
using toArray()

Creates an array of Object by default

Pass array constructor to get a more
specific array type

Madhavan Mukund Collecting results from streams Programming Concepts using Java 2 / 7

Collecting values from a stream

Convert collections into sequences of
values — streams

Process a stream as a collection?

Stream defines a standard iterator, use
to loop through values in a stream

Alternatively, use forEach with a
suitable function

Can convert a stream into an array
using toArray()

Creates an array of Object by default

Pass array constructor to get a more
specific array type

mystream.forEach(System.out::println);

Madhavan Mukund Collecting results from streams Programming Concepts using Java 2 / 7

Collecting values from a stream

Convert collections into sequences of
values — streams

Process a stream as a collection?

Stream defines a standard iterator, use
to loop through values in a stream

Alternatively, use forEach with a
suitable function

Can convert a stream into an array
using toArray()

Creates an array of Object by default

Pass array constructor to get a more
specific array type

mystream.forEach(System.out::println);

Object[] result = mystream.toArray();

Madhavan Mukund Collecting results from streams Programming Concepts using Java 2 / 7

Collecting values from a stream

Convert collections into sequences of
values — streams

Process a stream as a collection?

Stream defines a standard iterator, use
to loop through values in a stream

Alternatively, use forEach with a
suitable function

Can convert a stream into an array
using toArray()

Creates an array of Object by default

Pass array constructor to get a more
specific array type

mystream.forEach(System.out::println);

Object[] result = mystream.toArray();

String[] result =

mystream.toArray(String[]::new);

// mystream.toArray() has type Object[]

Madhavan Mukund Collecting results from streams Programming Concepts using Java 2 / 7

Storing a stream as a collection

What if we want to convert the stream
back into a collection?

Use collect()

Pass appropriate factory method from
Collectors

Static method that directly calls a
constructor

Create a list from a stream

. . . or a set

To create a concrete collection, provide
a constructor

Madhavan Mukund Collecting results from streams Programming Concepts using Java 3 / 7

Storing a stream as a collection

What if we want to convert the stream
back into a collection?

Use collect()

Pass appropriate factory method from
Collectors

Static method that directly calls a
constructor

Create a list from a stream

. . . or a set

To create a concrete collection, provide
a constructor

Madhavan Mukund Collecting results from streams Programming Concepts using Java 3 / 7

Storing a stream as a collection

What if we want to convert the stream
back into a collection?

Use collect()

Pass appropriate factory method from
Collectors

Static method that directly calls a
constructor

Create a list from a stream

. . . or a set

To create a concrete collection, provide
a constructor

List<String> result =

mystream.collect(Collectors.toList());

Madhavan Mukund Collecting results from streams Programming Concepts using Java 3 / 7

Storing a stream as a collection

What if we want to convert the stream
back into a collection?

Use collect()

Pass appropriate factory method from
Collectors

Static method that directly calls a
constructor

Create a list from a stream

. . . or a set

To create a concrete collection, provide
a constructor

List<String> result =

mystream.collect(Collectors.toList());

Set<String> result =

mystream.collect(Collectors.toSet());

Madhavan Mukund Collecting results from streams Programming Concepts using Java 3 / 7

Storing a stream as a collection

What if we want to convert the stream
back into a collection?

Use collect()

Pass appropriate factory method from
Collectors

Static method that directly calls a
constructor

Create a list from a stream

. . . or a set

To create a concrete collection, provide
a constructor

List<String> result =

mystream.collect(Collectors.toList());

Set<String> result =

mystream.collect(Collectors.toSet());

TreeSet<String> result =

stream.collect(

Collectors.toCollection(

TreeSet::new

)

);

Madhavan Mukund Collecting results from streams Programming Concepts using Java 3 / 7

Stream summaries

We saw how to reduce a stream to a
single result value — count(), max(),
. . .

In general, need a stream of numbers

Collectors has methods to aggregate
summaries in a single object

summarizingInt works for a stream
of integers

Pass function to convert given stream
to numbers — here String::length

Returns IntSummaryStatistics that
stores count, max, min, sum, average

Methods to access relevant statistics

getCount(),getMax(), getMin(),
getSum(), getAverage(),

Similarly, summarizingLong() and
summarizingDouble() return
LongSummaryStatistics and
DoubleSummaryStatistics

Madhavan Mukund Collecting results from streams Programming Concepts using Java 4 / 7

Stream summaries

We saw how to reduce a stream to a
single result value — count(), max(),
. . .

In general, need a stream of numbers

Collectors has methods to aggregate
summaries in a single object

summarizingInt works for a stream
of integers

Pass function to convert given stream
to numbers — here String::length

Returns IntSummaryStatistics that
stores count, max, min, sum, average

IntSummaryStatistics summary =

mystream.collect(

Collectors.summarizingInt(

String::length)

);

Methods to access relevant statistics

getCount(),getMax(), getMin(),
getSum(), getAverage(),

Similarly, summarizingLong() and
summarizingDouble() return
LongSummaryStatistics and
DoubleSummaryStatistics

Madhavan Mukund Collecting results from streams Programming Concepts using Java 4 / 7

Stream summaries

We saw how to reduce a stream to a
single result value — count(), max(),
. . .

In general, need a stream of numbers

Collectors has methods to aggregate
summaries in a single object

summarizingInt works for a stream
of integers

Pass function to convert given stream
to numbers — here String::length

Returns IntSummaryStatistics that
stores count, max, min, sum, average

IntSummaryStatistics summary =

mystream.collect(

Collectors.summarizingInt(

String::length)

);

double averageWordLength = summary.getAverage();

double maxWordLength = summary.getMax();

Methods to access relevant statistics

getCount(),getMax(), getMin(),
getSum(), getAverage(),

Similarly, summarizingLong() and
summarizingDouble() return
LongSummaryStatistics and
DoubleSummaryStatistics

Madhavan Mukund Collecting results from streams Programming Concepts using Java 4 / 7

Stream summaries

We saw how to reduce a stream to a
single result value — count(), max(),
. . .

In general, need a stream of numbers

Collectors has methods to aggregate
summaries in a single object

summarizingInt works for a stream
of integers

Pass function to convert given stream
to numbers — here String::length

Returns IntSummaryStatistics that
stores count, max, min, sum, average

IntSummaryStatistics summary =

mystream.collect(

Collectors.summarizingInt(

String::length)

);

double averageWordLength = summary.getAverage();

double maxWordLength = summary.getMax();

Methods to access relevant statistics

getCount(),getMax(), getMin(),
getSum(), getAverage(),

Similarly, summarizingLong() and
summarizingDouble() return
LongSummaryStatistics and
DoubleSummaryStatistics

Madhavan Mukund Collecting results from streams Programming Concepts using Java 4 / 7

Converting a stream to a map

Convert a stream of Person to a map

For Person p, p.getID() is key and
p.getName() is value

To store entire object as value, use
Function.identity()

What happens if we use name for key
and id for value?

Likely to have duplicate keys —
IllegalStateException

Provide a function to fix such problems

Stream<Person> people = ...;

Map<Integer, String> idToName =

people.collect(

Collectors.toMap(

Person::getId,

Person::getName

)

);

Madhavan Mukund Collecting results from streams Programming Concepts using Java 5 / 7

Converting a stream to a map

Convert a stream of Person to a map

For Person p, p.getID() is key and
p.getName() is value

To store entire object as value, use
Function.identity()

What happens if we use name for key
and id for value?

Likely to have duplicate keys —
IllegalStateException

Provide a function to fix such problems

Stream<Person> people = ...;

Map<Integer, Person> idToPerson =

people.collect(

Collectors.toMap(

Person::getId,

Function.identity()

)

);

Madhavan Mukund Collecting results from streams Programming Concepts using Java 5 / 7

Converting a stream to a map

Convert a stream of Person to a map

For Person p, p.getID() is key and
p.getName() is value

To store entire object as value, use
Function.identity()

What happens if we use name for key
and id for value?

Likely to have duplicate keys —
IllegalStateException

Provide a function to fix such problems

Stream<Person> people = ...;

Map<String, Integer> nameToID =

people.collect(

Collectors.toMap(

Person::getName,

Person::getId

)

);

Madhavan Mukund Collecting results from streams Programming Concepts using Java 5 / 7

Converting a stream to a map

Convert a stream of Person to a map

For Person p, p.getID() is key and
p.getName() is value

To store entire object as value, use
Function.identity()

What happens if we use name for key
and id for value?

Likely to have duplicate keys —
IllegalStateException

Provide a function to fix such problems

Stream<Person> people = ...;

Map<String, Integer> nameToID =

people.collect(

Collectors.toMap(

Person::getName,

Person::getId

)

);

Madhavan Mukund Collecting results from streams Programming Concepts using Java 5 / 7

Converting a stream to a map

Convert a stream of Person to a map

For Person p, p.getID() is key and
p.getName() is value

To store entire object as value, use
Function.identity()

What happens if we use name for key
and id for value?

Likely to have duplicate keys —
IllegalStateException

Provide a function to fix such problems

Stream<Person> people = ...;

Map<String, Integer> nameToID =

people.collect(

Collectors.toMap(

Person::getName,

Person::getId,

(existingValue, newValue) ->

existingValue

)

);

Madhavan Mukund Collecting results from streams Programming Concepts using Java 5 / 7

Grouping and partitioning values

Instead of discarding values with
duplicate keys, group them

Collect all ids with the same name in a
list

Instead, may want to partition the
stream using a predicate

Partition names into those that start
with A and the rest

Key values of resulting map are true

and false

Madhavan Mukund Collecting results from streams Programming Concepts using Java 6 / 7

Grouping and partitioning values

Instead of discarding values with
duplicate keys, group them

Collect all ids with the same name in a
list

Instead, may want to partition the
stream using a predicate

Partition names into those that start
with A and the rest

Key values of resulting map are true

and false

Stream<Person> people = ...;

Map<String, List<Person>> nameTopersons =

people.collect(

Collectors.groupingBy(

Person::getName

)

);

Madhavan Mukund Collecting results from streams Programming Concepts using Java 6 / 7

Grouping and partitioning values

Instead of discarding values with
duplicate keys, group them

Collect all ids with the same name in a
list

Instead, may want to partition the
stream using a predicate

Partition names into those that start
with A and the rest

Key values of resulting map are true

and false

Stream<Person> people = ...;

Map<String, List<Person>> nameTopersons =

people.collect(

Collectors.groupingBy(

Person::getName

)

);

Madhavan Mukund Collecting results from streams Programming Concepts using Java 6 / 7

Grouping and partitioning values

Instead of discarding values with
duplicate keys, group them

Collect all ids with the same name in a
list

Instead, may want to partition the
stream using a predicate

Partition names into those that start
with A and the rest

Key values of resulting map are true

and false

Stream<Person> people = ...;

Map<Boolean, List<Person>> aAndOtherPersons =

people.collect(

Collectors.partitioningBy(

p -> p.getName().substr(0,1).equals("A")

)

);

List<Person> startingLetterA =

aAndOtherPersons.get(true);

Madhavan Mukund Collecting results from streams Programming Concepts using Java 6 / 7

Summary

We converted collections into sequences and processed them as streams

After transformations, we may want to process a stream as a collection

Use iterators, forEach() to process a stream element by element

Use toArray() to convert to an array

Factory methods in Collector allow us to convert a stream back into a collection
of our choice

Can convert an arbitrary stream into a stream of numbers and collect summary
statistics

Can convert a stream into a map

Can group values by a key, or partition by a predicate

Madhavan Mukund Collecting results from streams Programming Concepts using Java 7 / 7

Input/output streams

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 9

https://www.cmi.ac.in/~madhavan

Input and output streams

Input: read a sequence of bytes from
some source

A file, an internet connection, memory
. . .

Output: write a sequence of bytes to
some source

A file, an internet connection, memory
. . .

Java refers to these as input and output
streams

Not the same as stream objects in
class Stream

Input and output values could be of
different types

Ultimately, input and output are raw
uninterpreted bytes of data

Interpret as text — different Unicode
encodings

Or as binary data — integers, floats,
doubles, . . .

Use a pipeline of input/output stream
transformers

Read raw bytes from a file, pass to a
stream that reads text

Generate binary data, pass to a stream
that writes raw bytes to a file

Madhavan Mukund Input/output streams Programming Concepts using Java 2 / 8

Input and output streams

Input: read a sequence of bytes from
some source

A file, an internet connection, memory
. . .

Output: write a sequence of bytes to
some source

A file, an internet connection, memory
. . .

Java refers to these as input and output
streams

Not the same as stream objects in
class Stream

Input and output values could be of
different types

Ultimately, input and output are raw
uninterpreted bytes of data

Interpret as text — different Unicode
encodings

Or as binary data — integers, floats,
doubles, . . .

Use a pipeline of input/output stream
transformers

Read raw bytes from a file, pass to a
stream that reads text

Generate binary data, pass to a stream
that writes raw bytes to a file

Madhavan Mukund Input/output streams Programming Concepts using Java 2 / 8

Input and output streams

Input: read a sequence of bytes from
some source

A file, an internet connection, memory
. . .

Output: write a sequence of bytes to
some source

A file, an internet connection, memory
. . .

Java refers to these as input and output
streams

Not the same as stream objects in
class Stream

Input and output values could be of
different types

Ultimately, input and output are raw
uninterpreted bytes of data

Interpret as text — different Unicode
encodings

Or as binary data — integers, floats,
doubles, . . .

Use a pipeline of input/output stream
transformers

Read raw bytes from a file, pass to a
stream that reads text

Generate binary data, pass to a stream
that writes raw bytes to a file

Madhavan Mukund Input/output streams Programming Concepts using Java 2 / 8

Input and output streams

Input: read a sequence of bytes from
some source

A file, an internet connection, memory
. . .

Output: write a sequence of bytes to
some source

A file, an internet connection, memory
. . .

Java refers to these as input and output
streams

Not the same as stream objects in
class Stream

Input and output values could be of
different types

Ultimately, input and output are raw
uninterpreted bytes of data

Interpret as text — different Unicode
encodings

Or as binary data — integers, floats,
doubles, . . .

Use a pipeline of input/output stream
transformers

Read raw bytes from a file, pass to a
stream that reads text

Generate binary data, pass to a stream
that writes raw bytes to a file

Madhavan Mukund Input/output streams Programming Concepts using Java 2 / 8

Reading and writing raw bytes

Classes InputStream and
OutputStream

Read one or more bytes — abstract
methods are implemented by subclasses
of InputStream

Check availability before reading

Write bytes to output

Close a stream when done — release
resources

Flush an output stream — output is
buffered

Madhavan Mukund Input/output streams Programming Concepts using Java 3 / 8

Reading and writing raw bytes

Classes InputStream and
OutputStream

Read one or more bytes — abstract
methods are implemented by subclasses
of InputStream

Check availability before reading

Write bytes to output

Close a stream when done — release
resources

Flush an output stream — output is
buffered

abstract int read();

int read(byte[] b);

byte[] readAllBytes();

// ... and more

Madhavan Mukund Input/output streams Programming Concepts using Java 3 / 8

Reading and writing raw bytes

Classes InputStream and
OutputStream

Read one or more bytes — abstract
methods are implemented by subclasses
of InputStream

Check availability before reading

Write bytes to output

Close a stream when done — release
resources

Flush an output stream — output is
buffered

abstract int read();

int read(byte[] b);

byte[] readAllBytes();

// ... and more

InputStream in =

int bytesAvailable = in.available();

if (bytesAvailable > 0)

{

var data = new byte[bytesAvailable];

in.read(data);

}

Madhavan Mukund Input/output streams Programming Concepts using Java 3 / 8

Reading and writing raw bytes

Classes InputStream and
OutputStream

Read one or more bytes — abstract
methods are implemented by subclasses
of InputStream

Check availability before reading

Write bytes to output

Close a stream when done — release
resources

Flush an output stream — output is
buffered

abstract void write(int b);

void write(byte[] b);

// ... and more

OutputStream out = ...

byte[] values = ...;

out.write(values);

Madhavan Mukund Input/output streams Programming Concepts using Java 3 / 8

Reading and writing raw bytes

Classes InputStream and
OutputStream

Read one or more bytes — abstract
methods are implemented by subclasses
of InputStream

Check availability before reading

Write bytes to output

Close a stream when done — release
resources

Flush an output stream — output is
buffered

abstract void write(int b);

void write(byte[] b);

// ... and more

OutputStream out = ...

byte[] values = ...;

out.write(values);

in.close();

Madhavan Mukund Input/output streams Programming Concepts using Java 3 / 8

Reading and writing raw bytes

Classes InputStream and
OutputStream

Read one or more bytes — abstract
methods are implemented by subclasses
of InputStream

Check availability before reading

Write bytes to output

Close a stream when done — release
resources

Flush an output stream — output is
buffered

abstract void write(int b);

void write(byte[] b);

// ... and more

OutputStream out = ...

byte[] values = ...;

out.write(values);

in.close();

out.flush();

Madhavan Mukund Input/output streams Programming Concepts using Java 3 / 8

Connecting a stream to an external source

Input and output streams ultimately
connect to external resources

A file, an internet connection, memory
. . .

We limit ourselves to files

Create an input stream attached to a
file

Create an output stream attached to a
file

Overwrite or append?

Pass a boolean second argument to
the constructor

Madhavan Mukund Input/output streams Programming Concepts using Java 4 / 8

Connecting a stream to an external source

Input and output streams ultimately
connect to external resources

A file, an internet connection, memory
. . .

We limit ourselves to files

Create an input stream attached to a
file

Create an output stream attached to a
file

Overwrite or append?

Pass a boolean second argument to
the constructor

var in = new FileInputStream("input.class");

Madhavan Mukund Input/output streams Programming Concepts using Java 4 / 8

Connecting a stream to an external source

Input and output streams ultimately
connect to external resources

A file, an internet connection, memory
. . .

We limit ourselves to files

Create an input stream attached to a
file

Create an output stream attached to a
file

Overwrite or append?

Pass a boolean second argument to
the constructor

var in = new FileInputStream("input.class");

var out = new FileOutputStream("output.bin");

Madhavan Mukund Input/output streams Programming Concepts using Java 4 / 8

Connecting a stream to an external source

Input and output streams ultimately
connect to external resources

A file, an internet connection, memory
. . .

We limit ourselves to files

Create an input stream attached to a
file

Create an output stream attached to a
file

Overwrite or append?

Pass a boolean second argument to
the constructor

var in = new FileInputStream("input.class");

var out = new FileOutputStream("output.bin");

var out = new

FileOutputStream("newoutput.bin",false);

// Overwrite

var out = new

FileOutputStream("sameoutput.bin",true);

// Append

Madhavan Mukund Input/output streams Programming Concepts using Java 4 / 8

Reading and writing text

Recall Scanner class

Can apply to any input stream

Many read methods

To write text, use PrintWriter class

Apply to any output stream

Use println(), print() to write txt

Example: Copy input text file to output
text file

Beware: input/output methods generate
many different kinds of exceptions

Need to wrap code with try blocks

var fin = new FileInputStream("input.txt");

var scin = new Scanner(fin);

var scin = new Scanner(

new FileInputStream("input.txt")

);

Madhavan Mukund Input/output streams Programming Concepts using Java 5 / 8

Reading and writing text

Recall Scanner class

Can apply to any input stream

Many read methods

To write text, use PrintWriter class

Apply to any output stream

Use println(), print() to write txt

Example: Copy input text file to output
text file

Beware: input/output methods generate
many different kinds of exceptions

Need to wrap code with try blocks

var fin = new FileInputStream("input.txt");

var scin = new Scanner(fin);

var scin = new Scanner(

new FileInputStream("input.txt")

);

String s = scin.nextLine(); // One line

String w = scin.next(); // One word

int i = scin.nextInt(); // Read an int

boolean b = scin.hasNext(); // Any more words?

Madhavan Mukund Input/output streams Programming Concepts using Java 5 / 8

Reading and writing text

Recall Scanner class

Can apply to any input stream

Many read methods

To write text, use PrintWriter class

Apply to any output stream

Use println(), print() to write txt

Example: Copy input text file to output
text file

Beware: input/output methods generate
many different kinds of exceptions

Need to wrap code with try blocks

var fout = new FileOutputStream("output.txt");

var pout = new PrintWriter(fout);

pout var = new PrintWriter(

new FileOutputStream("output.txt");

);

Madhavan Mukund Input/output streams Programming Concepts using Java 5 / 8

Reading and writing text

Recall Scanner class

Can apply to any input stream

Many read methods

To write text, use PrintWriter class

Apply to any output stream

Use println(), print() to write txt

Example: Copy input text file to output
text file

Beware: input/output methods generate
many different kinds of exceptions

Need to wrap code with try blocks

var fout = new FileOutputStream("output.txt");

var pout = new PrintWriter(fout);

pout var = new PrintWriter(

new FileOutputStream("output.txt");

);

String msg = "Hello, world";

pout.println(msg);

Madhavan Mukund Input/output streams Programming Concepts using Java 5 / 8

Reading and writing text

Recall Scanner class

Can apply to any input stream

Many read methods

To write text, use PrintWriter class

Apply to any output stream

Use println(), print() to write txt

Example: Copy input text file to output
text file

Beware: input/output methods generate
many different kinds of exceptions

Need to wrap code with try blocks

var in = new Scanner(...);

var out = new PrintWriter(...);

while (in.hasNext()){

String line = in.nextLine();

out.println(line);

}

Madhavan Mukund Input/output streams Programming Concepts using Java 5 / 8

Reading and writing text

Recall Scanner class

Can apply to any input stream

Many read methods

To write text, use PrintWriter class

Apply to any output stream

Use println(), print() to write txt

Example: Copy input text file to output
text file

Beware: input/output methods generate
many different kinds of exceptions

Need to wrap code with try blocks

var in = new Scanner(...);

var out = new PrintWriter(...);

while (in.hasNext()){

String line = in.nextLine();

out.println(line);

}

Madhavan Mukund Input/output streams Programming Concepts using Java 5 / 8

Reading and writing binary data

To read binary data, use
DataInputStream class

Can apply to any input stream

Many read methods

To write binary data, use
DataOutputStream class

Apply to any output stream

Many write methods

Example: Copy input binary file to
output binary file

Again, be careful to catch exceptions

var fin = new FileInputStream("input.class");

var din = new DataInputStream(fin);

var din = new DataInputStream(

new FileInputStream("input.class")

);

Madhavan Mukund Input/output streams Programming Concepts using Java 6 / 8

Reading and writing binary data

To read binary data, use
DataInputStream class

Can apply to any input stream

Many read methods

To write binary data, use
DataOutputStream class

Apply to any output stream

Many write methods

Example: Copy input binary file to
output binary file

Again, be careful to catch exceptions

var fin = new FileInputStream("input.class");

var din = new DataInputStream(fin);

var din = new DataInputStream(

new FileInputStream("input.class")

);

readInt, readShort, readLong

readFloat, readDouble,

readChar, readUTF

readBoolean

Madhavan Mukund Input/output streams Programming Concepts using Java 6 / 8

Reading and writing binary data

To read binary data, use
DataInputStream class

Can apply to any input stream

Many read methods

To write binary data, use
DataOutputStream class

Apply to any output stream

Many write methods

Example: Copy input binary file to
output binary file

Again, be careful to catch exceptions

var fout = new FileOutputStream("output.bin");

var dout = new DataOutputStream(fout);

var dout = new DataOutputStream(

new FileOutputStream("output.bin")

);

Madhavan Mukund Input/output streams Programming Concepts using Java 6 / 8

Reading and writing binary data

To read binary data, use
DataInputStream class

Can apply to any input stream

Many read methods

To write binary data, use
DataOutputStream class

Apply to any output stream

Many write methods

Example: Copy input binary file to
output binary file

Again, be careful to catch exceptions

var fout = new FileOutputStream("output.bin");

var dout = new DataOutputStream(fout);

var dout = new DataOutputStream(

new FileOutputStream("output.bin")

);

writeInt, writeShort, writeLong

writeFloat, writeDouble

writeChar, writeUTF

writeBoolean

writeChars

writeByte

Madhavan Mukund Input/output streams Programming Concepts using Java 6 / 8

Reading and writing binary data

To read binary data, use
DataInputStream class

Can apply to any input stream

Many read methods

To write binary data, use
DataOutputStream class

Apply to any output stream

Many write methods

Example: Copy input binary file to
output binary file

Again, be careful to catch exceptions

var in = new DataInputStream(...);

var out = new DataOutputStream(...);

int bytesAvailable = in.available();

while (bytesAvailable > 0){

var data = new byte[bytesAvailable];

in.read(data);

out.write(data);

bytesAvailable = in.available();

}

Madhavan Mukund Input/output streams Programming Concepts using Java 6 / 8

Other features

Buffering an input stream

Reads blocks of data

More efficient

Speculative reads

Examine the first element

Return to stream if necessary

Streams are specialized

PushBackStream can only read()

and unread()

Feed to a DataInputStream to read
meaningful data

var din = new DataInputStream(

new BufferedInputStream(

new FileInputStream("grades.dat")

)

);

Java has a whole zoo of streams for
different tasks

Random access files, zipped data, . . .

Chain together streams in a pipeline

Read binary data from a zipped file

FileInputStream →
ZipInputStream →
DataInputStream

Madhavan Mukund Input/output streams Programming Concepts using Java 7 / 8

Other features

Buffering an input stream

Reads blocks of data

More efficient

Speculative reads

Examine the first element

Return to stream if necessary

Streams are specialized

PushBackStream can only read()

and unread()

Feed to a DataInputStream to read
meaningful data

var din = new DataInputStream(

new BufferedInputStream(

new FileInputStream("grades.dat")

)

);

var pbin = new PushbackInputStream(

new BufferedInputStream(

new FileInputStream("grades.dat")));

int b = pbin.read();

if (b != ’<’) pbin.unread(b);

Java has a whole zoo of streams for
different tasks

Random access files, zipped data, . . .

Chain together streams in a pipeline

Read binary data from a zipped file

FileInputStream →
ZipInputStream →
DataInputStream

Madhavan Mukund Input/output streams Programming Concepts using Java 7 / 8

Other features

Buffering an input stream

Reads blocks of data

More efficient

Speculative reads

Examine the first element

Return to stream if necessary

Streams are specialized

PushBackStream can only read()

and unread()

Feed to a DataInputStream to read
meaningful data

var pbin = new PushbackInputStream(

new BufferedInputStream(

new FileInputStream("grades.dat")));

var din = new DataInputStream(pbin);

Java has a whole zoo of streams for
different tasks

Random access files, zipped data, . . .

Chain together streams in a pipeline

Read binary data from a zipped file

FileInputStream →
ZipInputStream →
DataInputStream

Madhavan Mukund Input/output streams Programming Concepts using Java 7 / 8

Other features

Buffering an input stream

Reads blocks of data

More efficient

Speculative reads

Examine the first element

Return to stream if necessary

Streams are specialized

PushBackStream can only read()

and unread()

Feed to a DataInputStream to read
meaningful data

var pbin = new PushbackInputStream(

new BufferedInputStream(

new FileInputStream("grades.dat")));

var din = new DataInputStream(pbin);

Java has a whole zoo of streams for
different tasks

Random access files, zipped data, . . .

Chain together streams in a pipeline

Read binary data from a zipped file

FileInputStream →
ZipInputStream →
DataInputStream

Madhavan Mukund Input/output streams Programming Concepts using Java 7 / 8

Other features

Buffering an input stream

Reads blocks of data

More efficient

Speculative reads

Examine the first element

Return to stream if necessary

Streams are specialized

PushBackStream can only read()

and unread()

Feed to a DataInputStream to read
meaningful data

var pbin = new PushbackInputStream(

new BufferedInputStream(

new FileInputStream("grades.dat")));

var din = new DataInputStream(pbin);

Java has a whole zoo of streams for
different tasks

Random access files, zipped data, . . .

Chain together streams in a pipeline

Read binary data from a zipped file

FileInputStream →
ZipInputStream →
DataInputStream

Madhavan Mukund Input/output streams Programming Concepts using Java 7 / 8

Summary

Java’s approach to input/output is to separate out concerns

Chain together different types of input/output streams

Connect an external source as input or output

Read and write raw bytes

Interpret raw bytes as text

Interpret raw bytes as data

Buffering, speculative read, random access files, zipped data, . . .

Chaining together streams appears tedious, but adds flexibility

Madhavan Mukund Input/output streams Programming Concepts using Java 8 / 8

Serialization

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 9

https://www.cmi.ac.in/~madhavan

Reading and writing objects

We can read and write binary data

DataInputStream, DataOutputStream

Read and write low level units

Bytes, integers, floats, characters, . . .

Can we export and import objects directly?

Why would we want to do this?

Backup objects onto disk, with state

Restore objects from disk

Send objects across a network

Serialization and deserialization

Madhavan Mukund Serialization Programming Concepts using Java 2 / 7

Reading and writing objects

We can read and write binary data

DataInputStream, DataOutputStream

Read and write low level units

Bytes, integers, floats, characters, . . .

Can we export and import objects directly?

Why would we want to do this?

Backup objects onto disk, with state

Restore objects from disk

Send objects across a network

Serialization and deserialization

Madhavan Mukund Serialization Programming Concepts using Java 2 / 7

Reading and writing objects

We can read and write binary data

DataInputStream, DataOutputStream

Read and write low level units

Bytes, integers, floats, characters, . . .

Can we export and import objects directly?

Why would we want to do this?

Backup objects onto disk, with state

Restore objects from disk

Send objects across a network

Serialization and deserialization

Madhavan Mukund Serialization Programming Concepts using Java 2 / 7

Reading and writing objects

We can read and write binary data

DataInputStream, DataOutputStream

Read and write low level units

Bytes, integers, floats, characters, . . .

Can we export and import objects directly?

Why would we want to do this?

Backup objects onto disk, with state

Restore objects from disk

Send objects across a network

Serialization and deserialization

Madhavan Mukund Serialization Programming Concepts using Java 2 / 7

Reading and writing objects

We can read and write binary data

DataInputStream, DataOutputStream

Read and write low level units

Bytes, integers, floats, characters, . . .

Can we export and import objects directly?

Why would we want to do this?

Backup objects onto disk, with state

Restore objects from disk

Send objects across a network

Serialization and deserialization

Madhavan Mukund Serialization Programming Concepts using Java 2 / 7

Reading and writing objects . . .

To write objects, Java has another
output stream type,
ObjectOutputStream

Use writeObject() to write out an
object

To read back objects, use
ObjectInputStream

Retrieve objects in the same order they
were written, using readObject()

Class has to allow serialization —
implement marker interface
Serializable

var out = new ObjectOutputStream(

new FileOutputStream("employee.dat"));

Madhavan Mukund Serialization Programming Concepts using Java 3 / 7

Reading and writing objects . . .

To write objects, Java has another
output stream type,
ObjectOutputStream

Use writeObject() to write out an
object

To read back objects, use
ObjectInputStream

Retrieve objects in the same order they
were written, using readObject()

Class has to allow serialization —
implement marker interface
Serializable

var out = new ObjectOutputStream(

new FileOutputStream("employee.dat"));

var emp = new Employee(...);

var boss = new Manager(...);

out.writeObject(emp);

out.writeObject(boss);

Madhavan Mukund Serialization Programming Concepts using Java 3 / 7

Reading and writing objects . . .

To write objects, Java has another
output stream type,
ObjectOutputStream

Use writeObject() to write out an
object

To read back objects, use
ObjectInputStream

Retrieve objects in the same order they
were written, using readObject()

Class has to allow serialization —
implement marker interface
Serializable

var out = new ObjectOutputStream(

new FileOutputStream("employee.dat"));

var emp = new Employee(...);

var boss = new Manager(...);

out.writeObject(emp);

out.writeObject(boss);

var in = new ObjectInputStream(

new FileInputStream("employee.dat"));

Madhavan Mukund Serialization Programming Concepts using Java 3 / 7

Reading and writing objects . . .

To write objects, Java has another
output stream type,
ObjectOutputStream

Use writeObject() to write out an
object

To read back objects, use
ObjectInputStream

Retrieve objects in the same order they
were written, using readObject()

Class has to allow serialization —
implement marker interface
Serializable

var out = new ObjectOutputStream(

new FileOutputStream("employee.dat"));

var emp = new Employee(...);

var boss = new Manager(...);

out.writeObject(emp);

out.writeObject(boss);

var in = new ObjectInputStream(

new FileInputStream("employee.dat"));

var e1 = (Employee) in.readObject();

var e2 = (Employee) in.readObject();

Madhavan Mukund Serialization Programming Concepts using Java 3 / 7

Reading and writing objects . . .

To write objects, Java has another
output stream type,
ObjectOutputStream

Use writeObject() to write out an
object

To read back objects, use
ObjectInputStream

Retrieve objects in the same order they
were written, using readObject()

Class has to allow serialization —
implement marker interface
Serializable

var out = new ObjectOutputStream(

new FileOutputStream("employee.dat"));

var emp = new Employee(...);

var boss = new Manager(...);

out.writeObject(emp);

out.writeObject(boss);

var in = new ObjectInputStream(

new FileInputStream("employee.dat"));

var e1 = (Employee) in.readObject();

var e2 = (Employee) in.readObject();

public class Employee

implements Serializable {...}

Madhavan Mukund Serialization Programming Concepts using Java 3 / 7

How serialization works

ObjectOutputStream examines all the fields and saves their contents

ObjectInputStream “reconstructs” the object, effectively calls a constructor

What happens when many objects share the same object as an instance variable?

Two managers have the same secretary

How do we avoid duplicating objects when serializing?

Each object is assigned a serial number

When first encountered, save the data to output stream

If saved previously, record serial number

Reverse the process when reading

Madhavan Mukund Serialization Programming Concepts using Java 4 / 7

How serialization works

ObjectOutputStream examines all the fields and saves their contents

ObjectInputStream “reconstructs” the object, effectively calls a constructor

What happens when many objects share the same object as an instance variable?

Two managers have the same secretary

How do we avoid duplicating objects when serializing?

Each object is assigned a serial number

When first encountered, save the data to output stream

If saved previously, record serial number

Reverse the process when reading

Madhavan Mukund Serialization Programming Concepts using Java 4 / 7

How serialization works

ObjectOutputStream examines all the fields and saves their contents

ObjectInputStream “reconstructs” the object, effectively calls a constructor

What happens when many objects share the same object as an instance variable?

class Manager extends Employee {

private Employee secretary;

....

}

Two managers have the same secretary

How do we avoid duplicating objects when serializing?

Each object is assigned a serial number

When first encountered, save the data to output stream

If saved previously, record serial number

Reverse the process when reading

Madhavan Mukund Serialization Programming Concepts using Java 4 / 7

How serialization works

ObjectOutputStream examines all the fields and saves their contents

ObjectInputStream “reconstructs” the object, effectively calls a constructor

What happens when many objects share the same object as an instance variable?

class Manager extends Employee {

private Employee secretary;

....

}

Two managers have the same secretary

How do we avoid duplicating objects when serializing?

Each object is assigned a serial number

When first encountered, save the data to output stream

If saved previously, record serial number

Reverse the process when reading

Madhavan Mukund Serialization Programming Concepts using Java 4 / 7

How serialization works

ObjectOutputStream examines all the fields and saves their contents

ObjectInputStream “reconstructs” the object, effectively calls a constructor

What happens when many objects share the same object as an instance variable?

class Manager extends Employee {

private Employee secretary;

....

}

Two managers have the same secretary

How do we avoid duplicating objects when serializing?

Each object is assigned a serial number — hence serialization

When first encountered, save the data to output stream

If saved previously, record serial number

Reverse the process when reading

Madhavan Mukund Serialization Programming Concepts using Java 4 / 7

Customizing serialization

Some objects should not be serialized
— values of file handles, . . .

Mark such fields as transient

Can override writeObject()

defaultWriteObject() writes out
the object with all non-transient fields

Then explicitly write relevant details of
transient fields

. . . and readObject()

defaultReadObject() reconstructs
object with all non-transient fields

Then explicitly reconstruct transient
fields

Madhavan Mukund Serialization Programming Concepts using Java 5 / 7

Customizing serialization

Some objects should not be serialized
— values of file handles, . . .

Mark such fields as transient

Can override writeObject()

defaultWriteObject() writes out
the object with all non-transient fields

Then explicitly write relevant details of
transient fields

. . . and readObject()

defaultReadObject() reconstructs
object with all non-transient fields

Then explicitly reconstruct transient
fields

public class LabeledPoint

implements Serializable{

private String label;

private transient Point2D.Double point;

...

}

Madhavan Mukund Serialization Programming Concepts using Java 5 / 7

Customizing serialization

Some objects should not be serialized
— values of file handles, . . .

Mark such fields as transient

Can override writeObject()

defaultWriteObject() writes out
the object with all non-transient fields

Then explicitly write relevant details of
transient fields

. . . and readObject()

defaultReadObject() reconstructs
object with all non-transient fields

Then explicitly reconstruct transient
fields

private void

writeObject(ObjectOutputStream out)

throws IOException{

out.defaultWriteObject();

out.writeDouble(point.getX());

out.writeDouble(point.getY());

}

Madhavan Mukund Serialization Programming Concepts using Java 5 / 7

Customizing serialization

Some objects should not be serialized
— values of file handles, . . .

Mark such fields as transient

Can override writeObject()

defaultWriteObject() writes out
the object with all non-transient fields

Then explicitly write relevant details of
transient fields

. . . and readObject()

defaultReadObject() reconstructs
object with all non-transient fields

Then explicitly reconstruct transient
fields

private void

writeObject(ObjectOutputStream out)

throws IOException{

out.defaultWriteObject();

out.writeDouble(point.getX());

out.writeDouble(point.getY());

}

private void

readObject(ObjectInputStream in)

throws IOException {

in.defaultReadObject();

double x = in.readDouble();

double y = in.readDouble();

point = new Point2D.Double(x, y);

}

Madhavan Mukund Serialization Programming Concepts using Java 5 / 7

Handle with care!

Serialization is a good option to share data within an application

Over time, older serialized objects may be incompatible with newer versions

Some mechanisms for version control, but still some pitfalls possible

Deserialization implicitly invokes a constructor

Running code from an external source

Always a security risk

Madhavan Mukund Serialization Programming Concepts using Java 6 / 7

Handle with care!

Serialization is a good option to share data within an application

Over time, older serialized objects may be incompatible with newer versions

Some mechanisms for version control, but still some pitfalls possible

Deserialization implicitly invokes a constructor

Running code from an external source

Always a security risk

Madhavan Mukund Serialization Programming Concepts using Java 6 / 7

Handle with care!

Serialization is a good option to share data within an application

Over time, older serialized objects may be incompatible with newer versions

Some mechanisms for version control, but still some pitfalls possible

Deserialization implicitly invokes a constructor

Running code from an external source

Always a security risk

Madhavan Mukund Serialization Programming Concepts using Java 6 / 7

Summary

Serialization allows us to export and import objects, with state

Backup objects onto disk, with state

Restore objects from disk

Send objects across a network

Use ObjectOutputStream and ObjectInputStream to write and read objects

Serial numbers are used to ensure only a single copy of each shared object is archived

Mark fields that should not be serialized as transient

Customize writeObject() and readObject()

Serialization carries risks

Version control of objects

Running unknown code

Madhavan Mukund Serialization Programming Concepts using Java 7 / 7

Concurrency: Threads and Processes

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 10

https://www.cmi.ac.in/~madhavan

Concurrent programming

Multiprocessing

Single processor executes several
computations “in parallel”

Time-slicing to share access

Logically parallel actions within a single
application

Clicking Stop terminates a download
in a browser

User-interface is running in parallel
with network access

Process

Private set of local variables

Time-slicing involves saving the state
of one process and loading the
suspended state of another

Threads

Operated on same local variables

Communicate via “shared memory”

Context switches are easier

Henceforth, we use process and thread
interchangeably

Madhavan Mukund Concurrency: Threads and Processes Programming Concepts using Java 2 / 6

Concurrent programming

Multiprocessing

Single processor executes several
computations “in parallel”

Time-slicing to share access

Logically parallel actions within a single
application

Clicking Stop terminates a download
in a browser

User-interface is running in parallel
with network access

Process

Private set of local variables

Time-slicing involves saving the state
of one process and loading the
suspended state of another

Threads

Operated on same local variables

Communicate via “shared memory”

Context switches are easier

Henceforth, we use process and thread
interchangeably

Madhavan Mukund Concurrency: Threads and Processes Programming Concepts using Java 2 / 6

Concurrent programming

Multiprocessing

Single processor executes several
computations “in parallel”

Time-slicing to share access

Logically parallel actions within a single
application

Clicking Stop terminates a download
in a browser

User-interface is running in parallel
with network access

Process

Private set of local variables

Time-slicing involves saving the state
of one process and loading the
suspended state of another

Threads

Operated on same local variables

Communicate via “shared memory”

Context switches are easier

Henceforth, we use process and thread
interchangeably

Madhavan Mukund Concurrency: Threads and Processes Programming Concepts using Java 2 / 6

Concurrent programming

Multiprocessing

Single processor executes several
computations “in parallel”

Time-slicing to share access

Logically parallel actions within a single
application

Clicking Stop terminates a download
in a browser

User-interface is running in parallel
with network access

Process

Private set of local variables

Time-slicing involves saving the state
of one process and loading the
suspended state of another

Threads

Operated on same local variables

Communicate via “shared memory”

Context switches are easier

Henceforth, we use process and thread
interchangeably

Madhavan Mukund Concurrency: Threads and Processes Programming Concepts using Java 2 / 6

Concurrent programming

Multiprocessing

Single processor executes several
computations “in parallel”

Time-slicing to share access

Logically parallel actions within a single
application

Clicking Stop terminates a download
in a browser

User-interface is running in parallel
with network access

Process

Private set of local variables

Time-slicing involves saving the state
of one process and loading the
suspended state of another

Threads

Operated on same local variables

Communicate via “shared memory”

Context switches are easier

Henceforth, we use process and thread
interchangeably

Madhavan Mukund Concurrency: Threads and Processes Programming Concepts using Java 2 / 6

Shared variables

Browser example: download thread and user-interface thread run in parallel

Shared boolean variable terminate indicates whether download should be interrupted

terminate is initially false

Clicking Stop sets it to true

Download thread checks the value of this variable periodically and aborts if it is set to
true

Watch out for race conditions

Shared variables must be updated consistently

Madhavan Mukund Concurrency: Threads and Processes Programming Concepts using Java 3 / 6

Shared variables

Browser example: download thread and user-interface thread run in parallel

Shared boolean variable terminate indicates whether download should be interrupted

terminate is initially false

Clicking Stop sets it to true

Download thread checks the value of this variable periodically and aborts if it is set to
true

Watch out for race conditions

Shared variables must be updated consistently

Madhavan Mukund Concurrency: Threads and Processes Programming Concepts using Java 3 / 6

Creating threads in Java

Have a class extend Thread

Define a function run() where
execution can begin in parallel

Invoking p[i].start() initiates
p[i].run() in a separate thread

Directly calling p[i].run() does not
execute in separate thread!

sleep(t) suspends thread for t
milliseconds

Static function — use
Thread.sleep() if current class does
not extend Thread

Throws InterruptedException —
later

public class Parallel extends Thread{

private int id;

public Parallel(int i){ id = i; }

}

Madhavan Mukund Concurrency: Threads and Processes Programming Concepts using Java 4 / 6

Creating threads in Java

Have a class extend Thread

Define a function run() where
execution can begin in parallel

Invoking p[i].start() initiates
p[i].run() in a separate thread

Directly calling p[i].run() does not
execute in separate thread!

sleep(t) suspends thread for t
milliseconds

Static function — use
Thread.sleep() if current class does
not extend Thread

Throws InterruptedException —
later

public class Parallel extends Thread{

private int id;

public Parallel(int i){ id = i; }

public void run(){

for (int j = 0; j < 100; j++){

System.out.println("My id is "+id);

try{

sleep(1000); // Sleep for 1000 ms

}

catch(InterruptedException e){}

}

}

}

Madhavan Mukund Concurrency: Threads and Processes Programming Concepts using Java 4 / 6

Creating threads in Java

Have a class extend Thread

Define a function run() where
execution can begin in parallel

Invoking p[i].start() initiates
p[i].run() in a separate thread

Directly calling p[i].run() does not
execute in separate thread!

sleep(t) suspends thread for t
milliseconds

Static function — use
Thread.sleep() if current class does
not extend Thread

Throws InterruptedException —
later

public class Parallel extends Thread{

private int id;

public Parallel(int i){ id = i; }

public void run(){

for (int j = 0; j < 100; j++){

System.out.println("My id is "+id);

try{

sleep(1000); // Sleep for 1000 ms

}

catch(InterruptedException e){}

}

}

}

public class TestParallel {

public static void main(String[] args){

Parallel p[] = new Parallel[5];

for (int i = 0; i < 5; i++){

p[i] = new Parallel(i);

p[i].start(); // Start p[i].run()

} // in concurrent thread

}

}
Madhavan Mukund Concurrency: Threads and Processes Programming Concepts using Java 4 / 6

Creating threads in Java

Have a class extend Thread

Define a function run() where
execution can begin in parallel

Invoking p[i].start() initiates
p[i].run() in a separate thread

Directly calling p[i].run() does not
execute in separate thread!

sleep(t) suspends thread for t
milliseconds

Static function — use
Thread.sleep() if current class does
not extend Thread

Throws InterruptedException —
later

public class Parallel extends Thread{

private int id;

public Parallel(int i){ id = i; }

public void run(){

for (int j = 0; j < 100; j++){

System.out.println("My id is "+id);

try{

sleep(1000); // Sleep for 1000 ms

}

catch(InterruptedException e){}

}

}

}

public class TestParallel {

public static void main(String[] args){

Parallel p[] = new Parallel[5];

for (int i = 0; i < 5; i++){

p[i] = new Parallel(i);

p[i].start(); // Start p[i].run()

} // in concurrent thread

}

}
Madhavan Mukund Concurrency: Threads and Processes Programming Concepts using Java 4 / 6

Creating threads in Java

Have a class extend Thread

Define a function run() where
execution can begin in parallel

Invoking p[i].start() initiates
p[i].run() in a separate thread

Directly calling p[i].run() does not
execute in separate thread!

sleep(t) suspends thread for t
milliseconds

Static function — use
Thread.sleep() if current class does
not extend Thread

Throws InterruptedException —
later

public class Parallel extends Thread{

private int id;

public Parallel(int i){ id = i; }

public void run(){

for (int j = 0; j < 100; j++){

System.out.println("My id is "+id);

try{

sleep(1000); // Sleep for 1000 ms

}

catch(InterruptedException e){}

}

}

}

public class TestParallel {

public static void main(String[] args){

Parallel p[] = new Parallel[5];

for (int i = 0; i < 5; i++){

p[i] = new Parallel(i);

p[i].start(); // Start p[i].run()

} // in concurrent thread

}

}
Madhavan Mukund Concurrency: Threads and Processes Programming Concepts using Java 4 / 6

Creating threads in Java

Have a class extend Thread

Define a function run() where
execution can begin in parallel

Invoking p[i].start() initiates
p[i].run() in a separate thread

Directly calling p[i].run() does not
execute in separate thread!

sleep(t) suspends thread for t
milliseconds

Static function — use
Thread.sleep() if current class does
not extend Thread

Throws InterruptedException —
later

Typical output

My id is 0

My id is 3

My id is 2

My id is 1

My id is 4

My id is 0

My id is 2

My id is 3

My id is 4

My id is 1

My id is 0

My id is 3

My id is 1

My id is 2

My id is 4

My id is 0

...

Madhavan Mukund Concurrency: Threads and Processes Programming Concepts using Java 4 / 6

Java threads . . .

Cannot always extend Thread

Single inheritance

Instead, implement Runnable

To use Runnable class, explicitly create
a Thread and start() it

Madhavan Mukund Concurrency: Threads and Processes Programming Concepts using Java 5 / 6

Java threads . . .

Cannot always extend Thread

Single inheritance

Instead, implement Runnable

To use Runnable class, explicitly create
a Thread and start() it

public class Parallel implements Runnable{

// only the line above has changed

private int id;

public Parallel(int i){ ... } // Constructor

public void run(){ ... }

}

Madhavan Mukund Concurrency: Threads and Processes Programming Concepts using Java 5 / 6

Java threads . . .

Cannot always extend Thread

Single inheritance

Instead, implement Runnable

To use Runnable class, explicitly create
a Thread and start() it

public class Parallel implements Runnable{

// only the line above has changed

private int id;

public Parallel(int i){ ... } // Constructor

public void run(){ ... }

}

public class TestParallel {

public static void main(String[] args){

Parallel p[] = new Parallel[5];

Thread t[] = new Thread[5];

for (int i = 0; i < 5; i++){

p[i] = new Parallel(i);

t[i] = new Thread(p[i]);

// Make a thread t[i] from p[i]

t[i].start(); // Start off p[i].run()

// Note: t[i].start(),

} // not p[i].start()

}

}

Madhavan Mukund Concurrency: Threads and Processes Programming Concepts using Java 5 / 6

Summary

Common to have logically parallel actions with a single application

Download from one webpage while browsing another

Threads are lightweight processes with shared variables that can run in parallel

Use Thread class or Runnable interface to create parallel threads in Java

Madhavan Mukund Concurrency: Threads and Processes Programming Concepts using Java 6 / 6

Race conditions

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 10

https://www.cmi.ac.in/~madhavan

Threads and shared variables

Threads are lightweight processes with shared variables that can run in parallel

Browser example: download thread and user-interface thread run in parallel

Shared boolean variable terminate indicates whether download should be interrupted

terminate is initially false

Clicking Stop sets it to true

Download thread checks the value of this variable periodically and aborts if it is set to
true

Watch out for race conditions

Shared variables must be updated consistently

Madhavan Mukund Race conditions Programming Concepts using Java 2 / 7

Maintaining data consistency

double accounts[100] describes 100
bank accounts

Two functions that operate on accounts:
transfer() and audit()

What are the possibilities when we
execute the following?

Madhavan Mukund Race conditions Programming Concepts using Java 3 / 7

Maintaining data consistency

double accounts[100] describes 100
bank accounts

Two functions that operate on accounts:
transfer() and audit()

What are the possibilities when we
execute the following?

boolean transfer (double amount,

int source,

int target){

if (accounts[source] < amount){

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit(){

// total balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; i++){

balance += accounts[i];

}

return balance;

}

Madhavan Mukund Race conditions Programming Concepts using Java 3 / 7

Maintaining data consistency

double accounts[100] describes 100
bank accounts

Two functions that operate on accounts:
transfer() and audit()

What are the possibilities when we
execute the following?

Thread 1 Thread 2

... ...

status = System.out.

transfer(500.00,7,8); print(audit());

... ...

boolean transfer (double amount,

int source,

int target){

if (accounts[source] < amount){

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit(){

// total balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; i++){

balance += accounts[i];

}

return balance;

}

Madhavan Mukund Race conditions Programming Concepts using Java 3 / 7

Maintaining data consistency . . .

What are the possibilities when we
execute the following?

Thread 1 Thread 2

... ...

status = System.out.

transfer(500.00,7,8); print(audit());

... ...

audit() can report an overall total that
is 500 more or less than the actual assets

Depends on how actions of transfer
are interleaved with actions of audit

Can even report an error if transfer
happens atomically

boolean transfer (double amount,

int source,

int target){

if (accounts[source] < amount){

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit(){

// total balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; i++){

balance += accounts[i];

}

return balance;

}

Madhavan Mukund Race conditions Programming Concepts using Java 4 / 7

Maintaining data consistency . . .

What are the possibilities when we
execute the following?

Thread 1 Thread 2

... ...

status = System.out.

transfer(500.00,7,8); print(audit());

... ...

audit() can report an overall total that
is 500 more or less than the actual assets

Depends on how actions of transfer
are interleaved with actions of audit

Can even report an error if transfer
happens atomically

boolean transfer (double amount,

int source,

int target){

if (accounts[source] < amount){

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit(){

// total balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; i++){

balance += accounts[i];

}

return balance;

}

Madhavan Mukund Race conditions Programming Concepts using Java 4 / 7

Maintaining data consistency . . .

What are the possibilities when we
execute the following?

Thread 1 Thread 2

... ...

status = System.out.

transfer(500.00,7,8); print(audit());

... ...

audit() can report an overall total that
is 500 more or less than the actual assets

Depends on how actions of transfer
are interleaved with actions of audit

Can even report an error if transfer
happens atomically

boolean transfer (double amount,

int source,

int target){

if (accounts[source] < amount){

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit(){

// total balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; i++){

balance += accounts[i];

}

return balance;

}

Madhavan Mukund Race conditions Programming Concepts using Java 4 / 7

Atomicity of updates

Two threads increment a shared variable n

Thread 1 Thread 2

... ...

m = n; k = n;

m++; k++;

n = m; n = k;

... ...

Expect n to increase by 2 . . .

. . . but, time-slicing may order execution as follows

Madhavan Mukund Race conditions Programming Concepts using Java 5 / 7

Atomicity of updates

Two threads increment a shared variable n

Thread 1 Thread 2

... ...

m = n; k = n;

m++; k++;

n = m; n = k;

... ...

Expect n to increase by 2 . . .

. . . but, time-slicing may order execution as follows

Madhavan Mukund Race conditions Programming Concepts using Java 5 / 7

Atomicity of updates

Two threads increment a shared variable n

Thread 1 Thread 2

... ...

m = n; k = n;

m++; k++;

n = m; n = k;

... ...

Expect n to increase by 2 . . .

. . . but, time-slicing may order execution as follows

Thread 1: m = n;

Thread 1: m++;

Thread 2: k = n; // k gets the original value of n

Thread 2: k++;

Thread 1: n = m;

Thread 2: n = k; // Same value as that set by Thread 1

Madhavan Mukund Race conditions Programming Concepts using Java 5 / 7

Race conditions and mutual exclusion

Race condition — concurrent update of
shared variables, unpredictable outcome

Executing transfer() and audit()

concurrently can cause audit() to
report more or less than the actual assets

Avoid this by insisting that transfer()
and audit() do not interleave

Never simultaneously have current control
point of one thread within transfer()

and another thread within audit()

Mutually exclusive access to critical
regions of code

boolean transfer (double amount,

int source,

int target){

if (accounts[source] < amount){

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit(){

// total balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; i++){

balance += accounts[i];

}

return balance;

}

Madhavan Mukund Race conditions Programming Concepts using Java 6 / 7

Race conditions and mutual exclusion

Race condition — concurrent update of
shared variables, unpredictable outcome

Executing transfer() and audit()

concurrently can cause audit() to
report more or less than the actual assets

Avoid this by insisting that transfer()
and audit() do not interleave

Never simultaneously have current control
point of one thread within transfer()

and another thread within audit()

Mutually exclusive access to critical
regions of code

boolean transfer (double amount,

int source,

int target){

if (accounts[source] < amount){

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit(){

// total balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; i++){

balance += accounts[i];

}

return balance;

}

Madhavan Mukund Race conditions Programming Concepts using Java 6 / 7

Race conditions and mutual exclusion

Race condition — concurrent update of
shared variables, unpredictable outcome

Executing transfer() and audit()

concurrently can cause audit() to
report more or less than the actual assets

Avoid this by insisting that transfer()
and audit() do not interleave

Never simultaneously have current control
point of one thread within transfer()

and another thread within audit()

Mutually exclusive access to critical
regions of code

boolean transfer (double amount,

int source,

int target){

if (accounts[source] < amount){

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit(){

// total balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; i++){

balance += accounts[i];

}

return balance;

}

Madhavan Mukund Race conditions Programming Concepts using Java 6 / 7

Race conditions and mutual exclusion

Race condition — concurrent update of
shared variables, unpredictable outcome

Executing transfer() and audit()

concurrently can cause audit() to
report more or less than the actual assets

Avoid this by insisting that transfer()
and audit() do not interleave

Never simultaneously have current control
point of one thread within transfer()

and another thread within audit()

Mutually exclusive access to critical
regions of code

boolean transfer (double amount,

int source,

int target){

if (accounts[source] < amount){

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit(){

// total balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; i++){

balance += accounts[i];

}

return balance;

}

Madhavan Mukund Race conditions Programming Concepts using Java 6 / 7

Summary

Concurrent update of a shared variable can lead to data inconsistenccy

Race condition

Control behaviour of threads to regulate concurrent updates

Critical sections — sections of code where shared variables are updated

Mutual exclusion — at most one thread at a time can be in a critical section

Madhavan Mukund Race conditions Programming Concepts using Java 7 / 7

Mutual Exclusion

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 10

https://www.cmi.ac.in/~madhavan

Mutual exclusion

Concurrent update of a shared variable can lead to data inconsistenccy

Race condition

Control behaviour of threads to regulate concurrent updates

Critical sections — sections of code where shared variables are updated

Mutual exclusion — at most one thread at a time can be in a critical section

Madhavan Mukund Mutual Exclusion Programming Concepts using Java 2 / 7

Mutual exclusion for two processes

First attempt

Thread 1 Thread 2

... ...

while (turn != 1){ while (turn != 2){

// "Busy" wait // "Busy" wait

} }

// Enter critical section // Enter critical section

... ...

// Leave critical section // Leave critical section

turn = 2; turn = 1;

... ...

Shared variable turn — no assumption about initial value, atomic update

Mutually exclusive access is guaranteed . . .

. . . but one thread is locked out permanently if other thread shuts down

Starvation!

Madhavan Mukund Mutual Exclusion Programming Concepts using Java 3 / 7

Mutual exclusion for two processes

First attempt

Thread 1 Thread 2

... ...

while (turn != 1){ while (turn != 2){

// "Busy" wait // "Busy" wait

} }

// Enter critical section // Enter critical section

... ...

// Leave critical section // Leave critical section

turn = 2; turn = 1;

... ...

Shared variable turn — no assumption about initial value, atomic update

Mutually exclusive access is guaranteed . . .

. . . but one thread is locked out permanently if other thread shuts down

Starvation!

Madhavan Mukund Mutual Exclusion Programming Concepts using Java 3 / 7

Mutual exclusion for two processes

First attempt

Thread 1 Thread 2

... ...

while (turn != 1){ while (turn != 2){

// "Busy" wait // "Busy" wait

} }

// Enter critical section // Enter critical section

... ...

// Leave critical section // Leave critical section

turn = 2; turn = 1;

... ...

Shared variable turn — no assumption about initial value, atomic update

Mutually exclusive access is guaranteed . . .

. . . but one thread is locked out permanently if other thread shuts down

Starvation!

Madhavan Mukund Mutual Exclusion Programming Concepts using Java 3 / 7

Mutual exclusion for two processes

First attempt

Thread 1 Thread 2

... ...

while (turn != 1){ while (turn != 2){

// "Busy" wait // "Busy" wait

} }

// Enter critical section // Enter critical section

... ...

// Leave critical section // Leave critical section

turn = 2; turn = 1;

... ...

Shared variable turn — no assumption about initial value, atomic update

Mutually exclusive access is guaranteed . . .

. . . but one thread is locked out permanently if other thread shuts down

Starvation!

Madhavan Mukund Mutual Exclusion Programming Concepts using Java 3 / 7

Mutual exclusion for two processes . . .

Second attempt

Thread 1 Thread 2

... ...

request_1 = true; request_2 = true;

while (request_2){ while (request_1)

// "Busy" wait // "Busy" wait

} }

// Enter critical section // Enter critical section

... ...

// Leave critical section // Leave critical section

request_1 = false; request_2 = false;

... ...

Mutually exclusive access is guaranteed . . .

. . . but if both threads try simultaneously, they block each other

Deadlock!

Madhavan Mukund Mutual Exclusion Programming Concepts using Java 4 / 7

Mutual exclusion for two processes . . .

Second attempt

Thread 1 Thread 2

... ...

request_1 = true; request_2 = true;

while (request_2){ while (request_1)

// "Busy" wait // "Busy" wait

} }

// Enter critical section // Enter critical section

... ...

// Leave critical section // Leave critical section

request_1 = false; request_2 = false;

... ...

Mutually exclusive access is guaranteed . . .

. . . but if both threads try simultaneously, they block each other

Deadlock!

Madhavan Mukund Mutual Exclusion Programming Concepts using Java 4 / 7

Mutual exclusion for two processes . . .

Second attempt

Thread 1 Thread 2

... ...

request_1 = true; request_2 = true;

while (request_2){ while (request_1)

// "Busy" wait // "Busy" wait

} }

// Enter critical section // Enter critical section

... ...

// Leave critical section // Leave critical section

request_1 = false; request_2 = false;

... ...

Mutually exclusive access is guaranteed . . .

. . . but if both threads try simultaneously, they block each other

Deadlock!

Madhavan Mukund Mutual Exclusion Programming Concepts using Java 4 / 7

Peterson’s algorithm

Thread 1 Thread 2

... ...

request_1 = true; request_2 = true;

turn = 2; turn = 1;

while (request_2 && while (request_1 &&

turn != 1){ turn != 2){

// "Busy" wait // "Busy" wait

} }

// Enter critical section // Enter critical section

... ...

// Leave critical section // Leave critical section

request_1 = false; request_2 = false;

... ...

Combines the previous two approaches

If both try simultaneously, turn decides who goes through

If only one is alive, request for that process is stuck at false and turn is irrelevant

Madhavan Mukund Mutual Exclusion Programming Concepts using Java 5 / 7

Peterson’s algorithm

Thread 1 Thread 2

... ...

request_1 = true; request_2 = true;

turn = 2; turn = 1;

while (request_2 && while (request_1 &&

turn != 1){ turn != 2){

// "Busy" wait // "Busy" wait

} }

// Enter critical section // Enter critical section

... ...

// Leave critical section // Leave critical section

request_1 = false; request_2 = false;

... ...

Combines the previous two approaches

If both try simultaneously, turn decides who goes through

If only one is alive, request for that process is stuck at false and turn is irrelevant

Madhavan Mukund Mutual Exclusion Programming Concepts using Java 5 / 7

Peterson’s algorithm

Thread 1 Thread 2

... ...

request_1 = true; request_2 = true;

turn = 2; turn = 1;

while (request_2 && while (request_1 &&

turn != 1){ turn != 2){

// "Busy" wait // "Busy" wait

} }

// Enter critical section // Enter critical section

... ...

// Leave critical section // Leave critical section

request_1 = false; request_2 = false;

... ...

Combines the previous two approaches

If both try simultaneously, turn decides who goes through

If only one is alive, request for that process is stuck at false and turn is irrelevant

Madhavan Mukund Mutual Exclusion Programming Concepts using Java 5 / 7

Beyond two processes

Generalizing Peterson’s solution to more than two processes is not trivial

For n process mutual exclusion other solutions exist

Lamport’s Bakery Algorithm

Each new process picks up a token (increments a counter) that is larger than all
waiting processes

Lowest token number gets served next

Still need to break ties — token counter is not atomic

Need specific clever solutions for different situations

Need to argue correctness in each case

Instead, provide higher level support in programming language for synchronization

Madhavan Mukund Mutual Exclusion Programming Concepts using Java 6 / 7

Beyond two processes

Generalizing Peterson’s solution to more than two processes is not trivial

For n process mutual exclusion other solutions exist

Lamport’s Bakery Algorithm

Each new process picks up a token (increments a counter) that is larger than all
waiting processes

Lowest token number gets served next

Still need to break ties — token counter is not atomic

Need specific clever solutions for different situations

Need to argue correctness in each case

Instead, provide higher level support in programming language for synchronization

Madhavan Mukund Mutual Exclusion Programming Concepts using Java 6 / 7

Beyond two processes

Generalizing Peterson’s solution to more than two processes is not trivial

For n process mutual exclusion other solutions exist

Lamport’s Bakery Algorithm

Each new process picks up a token (increments a counter) that is larger than all
waiting processes

Lowest token number gets served next

Still need to break ties — token counter is not atomic

Need specific clever solutions for different situations

Need to argue correctness in each case

Instead, provide higher level support in programming language for synchronization

Madhavan Mukund Mutual Exclusion Programming Concepts using Java 6 / 7

Beyond two processes

Generalizing Peterson’s solution to more than two processes is not trivial

For n process mutual exclusion other solutions exist

Lamport’s Bakery Algorithm

Each new process picks up a token (increments a counter) that is larger than all
waiting processes

Lowest token number gets served next

Still need to break ties — token counter is not atomic

Need specific clever solutions for different situations

Need to argue correctness in each case

Instead, provide higher level support in programming language for synchronization

Madhavan Mukund Mutual Exclusion Programming Concepts using Java 6 / 7

Beyond two processes

Generalizing Peterson’s solution to more than two processes is not trivial

For n process mutual exclusion other solutions exist

Lamport’s Bakery Algorithm

Each new process picks up a token (increments a counter) that is larger than all
waiting processes

Lowest token number gets served next

Still need to break ties — token counter is not atomic

Need specific clever solutions for different situations

Need to argue correctness in each case

Instead, provide higher level support in programming language for synchronization

Madhavan Mukund Mutual Exclusion Programming Concepts using Java 6 / 7

Beyond two processes

Generalizing Peterson’s solution to more than two processes is not trivial

For n process mutual exclusion other solutions exist

Lamport’s Bakery Algorithm

Each new process picks up a token (increments a counter) that is larger than all
waiting processes

Lowest token number gets served next

Still need to break ties — token counter is not atomic

Need specific clever solutions for different situations

Need to argue correctness in each case

Instead, provide higher level support in programming language for synchronization

Madhavan Mukund Mutual Exclusion Programming Concepts using Java 6 / 7

Summary

We can construct protocols that guarantee mutual exclusion to critical sections

Watch out for starvation and deadlock

These protocols cleverly use regular variables

No assumptions about initial values, atomicity of updates

Difficult to generalize such protocols to arbitrary situations

Look to programming language for features that control synchronization

Madhavan Mukund Mutual Exclusion Programming Concepts using Java 7 / 7

Test and Set

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 10

https://www.cmi.ac.in/~madhavan

Test and set

The fundamental issue preventing consistent concurrent updates of shared varuables
is test-and-set

To increment a counter, check its current value, then add 1

If more than one thread does this in parallel, updates may overlap and get lost

Need to combine test and set into an atomic, indivisible step

Cannot be guaranteed without adding this as a language primitive

Madhavan Mukund Test and Set Programming Concepts using Java 2 / 6

Test and set

The fundamental issue preventing consistent concurrent updates of shared varuables
is test-and-set

To increment a counter, check its current value, then add 1

If more than one thread does this in parallel, updates may overlap and get lost

Need to combine test and set into an atomic, indivisible step

Cannot be guaranteed without adding this as a language primitive

Madhavan Mukund Test and Set Programming Concepts using Java 2 / 6

Test and set

The fundamental issue preventing consistent concurrent updates of shared varuables
is test-and-set

To increment a counter, check its current value, then add 1

If more than one thread does this in parallel, updates may overlap and get lost

Need to combine test and set into an atomic, indivisible step

Cannot be guaranteed without adding this as a language primitive

Madhavan Mukund Test and Set Programming Concepts using Java 2 / 6

Test and set

The fundamental issue preventing consistent concurrent updates of shared varuables
is test-and-set

To increment a counter, check its current value, then add 1

If more than one thread does this in parallel, updates may overlap and get lost

Need to combine test and set into an atomic, indivisible step

Cannot be guaranteed without adding this as a language primitive

Madhavan Mukund Test and Set Programming Concepts using Java 2 / 6

Test and set

The fundamental issue preventing consistent concurrent updates of shared varuables
is test-and-set

To increment a counter, check its current value, then add 1

If more than one thread does this in parallel, updates may overlap and get lost

Need to combine test and set into an atomic, indivisible step

Cannot be guaranteed without adding this as a language primitive

Madhavan Mukund Test and Set Programming Concepts using Java 2 / 6

Semaphores

Programming language support for
mutual exclusion

Dijkstra’s semaphores

Integer variable with atomic
test-and-set operation

A semaphore S supports two atomic
operations

P(s) — from Dutch passeren, to pass

V(s) — from Dutch vrygeven, to
release

P(S) atomically executes the following

V(S) atomically executes the following

Madhavan Mukund Test and Set Programming Concepts using Java 3 / 6

Semaphores

Programming language support for
mutual exclusion

Dijkstra’s semaphores

Integer variable with atomic
test-and-set operation

A semaphore S supports two atomic
operations

P(s) — from Dutch passeren, to pass

V(s) — from Dutch vrygeven, to
release

P(S) atomically executes the following

V(S) atomically executes the following

Madhavan Mukund Test and Set Programming Concepts using Java 3 / 6

Semaphores

Programming language support for
mutual exclusion

Dijkstra’s semaphores

Integer variable with atomic
test-and-set operation

A semaphore S supports two atomic
operations

P(s) — from Dutch passeren, to pass

V(s) — from Dutch vrygeven, to
release

P(S) atomically executes the following

V(S) atomically executes the following

Madhavan Mukund Test and Set Programming Concepts using Java 3 / 6

Semaphores

Programming language support for
mutual exclusion

Dijkstra’s semaphores

Integer variable with atomic
test-and-set operation

A semaphore S supports two atomic
operations

P(s) — from Dutch passeren, to pass

V(s) — from Dutch vrygeven, to
release

P(S) atomically executes the following

if (S > 0)

decrement S;

else

wait for S to become positive;

V(S) atomically executes the following

Madhavan Mukund Test and Set Programming Concepts using Java 3 / 6

Semaphores

Programming language support for
mutual exclusion

Dijkstra’s semaphores

Integer variable with atomic
test-and-set operation

A semaphore S supports two atomic
operations

P(s) — from Dutch passeren, to pass

V(s) — from Dutch vrygeven, to
release

P(S) atomically executes the following

if (S > 0)

decrement S;

else

wait for S to become positive;

V(S) atomically executes the following

if (there are threads waiting

for S to become positive)

wake one of them up;

//choice is nondeterministic

else

increment S;

Madhavan Mukund Test and Set Programming Concepts using Java 3 / 6

Using semaphores

Mutual exclusion using semaphores

Thread 1 Thread 2

... ...

P(S); P(S);

// Enter critical section // Enter critical section

... ...

// Leave critical section // Leave critical section

V(S); V(S);

... ...

Semaphores guarantee

Mutual exclusion

Freedom from starvation

Freedom from deadlock

Madhavan Mukund Test and Set Programming Concepts using Java 4 / 6

Using semaphores

Mutual exclusion using semaphores

Thread 1 Thread 2

... ...

P(S); P(S);

// Enter critical section // Enter critical section

... ...

// Leave critical section // Leave critical section

V(S); V(S);

... ...

Semaphores guarantee

Mutual exclusion

Freedom from starvation

Freedom from deadlock

Madhavan Mukund Test and Set Programming Concepts using Java 4 / 6

Problems with semaphores

Too low level

No clear relationship between a semaphore and the critical region that it protects

All threads must cooperate to correctly reset semaphore

Cannot enforce that each P(S) has a matching V(S)

Can even execute V(S) without having done P(S)

Madhavan Mukund Test and Set Programming Concepts using Java 5 / 6

Problems with semaphores

Too low level

No clear relationship between a semaphore and the critical region that it protects

All threads must cooperate to correctly reset semaphore

Cannot enforce that each P(S) has a matching V(S)

Can even execute V(S) without having done P(S)

Madhavan Mukund Test and Set Programming Concepts using Java 5 / 6

Problems with semaphores

Too low level

No clear relationship between a semaphore and the critical region that it protects

All threads must cooperate to correctly reset semaphore

Cannot enforce that each P(S) has a matching V(S)

Can even execute V(S) without having done P(S)

Madhavan Mukund Test and Set Programming Concepts using Java 5 / 6

Problems with semaphores

Too low level

No clear relationship between a semaphore and the critical region that it protects

All threads must cooperate to correctly reset semaphore

Cannot enforce that each P(S) has a matching V(S)

Can even execute V(S) without having done P(S)

Madhavan Mukund Test and Set Programming Concepts using Java 5 / 6

Problems with semaphores

Too low level

No clear relationship between a semaphore and the critical region that it protects

All threads must cooperate to correctly reset semaphore

Cannot enforce that each P(S) has a matching V(S)

Can even execute V(S) without having done P(S)

Madhavan Mukund Test and Set Programming Concepts using Java 5 / 6

Summary

Test-and-set is at the heart of most race conditions

Need a high level primitive for atomic test-and-set in the programming language

Semaphores provide one such solution

Solutions based on test-and-set are low level and prone to programming errors

Madhavan Mukund Test and Set Programming Concepts using Java 6 / 6

Monitors

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 10

https://www.cmi.ac.in/~madhavan

Atomic test-and-set

Test-and-set is at the heart of most race conditions

Need a high level primitive for atomic test-and-set in the programming language

Semaphores provide one such solution

Solutions based on test-and-set are low level and prone to programming errors

Madhavan Mukund Monitors Programming Concepts using Java 2 / 10

Monitors

Attach synchronization control to the data
that is being protected

Monitors — Per Brinch Hansen and CAR
Hoare

Monitor is like a class in an OO language

Data definition — to which access is
restricted across threads

Collections of functions operating on this
data — all are implicitly mutually
exclusive

Monitor guarantees mutual exclusion — if
one function is active, any other function
will have to wait for it to finish

Madhavan Mukund Monitors Programming Concepts using Java 3 / 10

Monitors

Attach synchronization control to the data
that is being protected

Monitors — Per Brinch Hansen and CAR
Hoare

Monitor is like a class in an OO language

Data definition — to which access is
restricted across threads

Collections of functions operating on this
data — all are implicitly mutually
exclusive

Monitor guarantees mutual exclusion — if
one function is active, any other function
will have to wait for it to finish

Madhavan Mukund Monitors Programming Concepts using Java 3 / 10

Monitors

Attach synchronization control to the data
that is being protected

Monitors — Per Brinch Hansen and CAR
Hoare

Monitor is like a class in an OO language

Data definition — to which access is
restricted across threads

Collections of functions operating on this
data — all are implicitly mutually
exclusive

Monitor guarantees mutual exclusion — if
one function is active, any other function
will have to wait for it to finish

monitor bank_account{

double accounts[100];

boolean transfer (double amount,

int source,

int target){

if (accounts[source] < amount){

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit(){

// compute balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; i++){

balance += accounts[i];

}

return balance;

}

}
Madhavan Mukund Monitors Programming Concepts using Java 3 / 10

Monitors

Attach synchronization control to the data
that is being protected

Monitors — Per Brinch Hansen and CAR
Hoare

Monitor is like a class in an OO language

Data definition — to which access is
restricted across threads

Collections of functions operating on this
data — all are implicitly mutually
exclusive

Monitor guarantees mutual exclusion — if
one function is active, any other function
will have to wait for it to finish

monitor bank_account{

double accounts[100];

boolean transfer (double amount,

int source,

int target){

if (accounts[source] < amount){

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit(){

// compute balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; i++){

balance += accounts[i];

}

return balance;

}

}
Madhavan Mukund Monitors Programming Concepts using Java 3 / 10

Monitors: external queue

Monitor ensures transfer and audit are
mutually exclusive

If Thread 1 is executing transfer and
Thread 2 invokes audit, it must wait

Implicit queue associated with each
monitor

Contains all processes waiting for access

In practice, this may be just a set, not a
queue

monitor bank_account{

double accounts[100];

boolean transfer (double amount,

int source,

int target){

if (accounts[source] < amount){

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit(){

// compute balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; i++){

balance += accounts[i];

}

return balance;

}

}
Madhavan Mukund Monitors Programming Concepts using Java 4 / 10

Monitors: external queue

Monitor ensures transfer and audit are
mutually exclusive

If Thread 1 is executing transfer and
Thread 2 invokes audit, it must wait

Implicit queue associated with each
monitor

Contains all processes waiting for access

In practice, this may be just a set, not a
queue

monitor bank_account{

double accounts[100];

boolean transfer (double amount,

int source,

int target){

if (accounts[source] < amount){

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit(){

// compute balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; i++){

balance += accounts[i];

}

return balance;

}

}
Madhavan Mukund Monitors Programming Concepts using Java 4 / 10

Monitors: external queue

Monitor ensures transfer and audit are
mutually exclusive

If Thread 1 is executing transfer and
Thread 2 invokes audit, it must wait

Implicit queue associated with each
monitor

Contains all processes waiting for access

In practice, this may be just a set, not a
queue

monitor bank_account{

double accounts[100];

boolean transfer (double amount,

int source,

int target){

if (accounts[source] < amount){

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit(){

// compute balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; i++){

balance += accounts[i];

}

return balance;

}

}
Madhavan Mukund Monitors Programming Concepts using Java 4 / 10

Making monitors more flexible

Our definition of monitors may be too restrictive

transfer(500.00,i,j);

transfer(400.00,j,k);

This should always succeed if accounts[i] > 500

If these calls are reordered and accounts[j] < 400 initially, this will fail

A possible fix — let an account wait for pending inflows

Madhavan Mukund Monitors Programming Concepts using Java 5 / 10

Making monitors more flexible

Our definition of monitors may be too restrictive

transfer(500.00,i,j);

transfer(400.00,j,k);

This should always succeed if accounts[i] > 500

If these calls are reordered and accounts[j] < 400 initially, this will fail

A possible fix — let an account wait for pending inflows

Madhavan Mukund Monitors Programming Concepts using Java 5 / 10

Making monitors more flexible

Our definition of monitors may be too restrictive

transfer(500.00,i,j);

transfer(400.00,j,k);

This should always succeed if accounts[i] > 500

If these calls are reordered and accounts[j] < 400 initially, this will fail

A possible fix — let an account wait for pending inflows

Madhavan Mukund Monitors Programming Concepts using Java 5 / 10

Making monitors more flexible

Our definition of monitors may be too restrictive

transfer(500.00,i,j);

transfer(400.00,j,k);

This should always succeed if accounts[i] > 500

If these calls are reordered and accounts[j] < 400 initially, this will fail

A possible fix — let an account wait for pending inflows

boolean transfer (double amount, int source, int target){

if (accounts[source] < amount){

// wait for another transaction to transfer money

// into accounts[source]

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

Madhavan Mukund Monitors Programming Concepts using Java 5 / 10

Monitors — wait()

boolean transfer (double amount, int source, int target){

if (accounts[source] < amount){

// wait for another transaction to transfer money

// into accounts[source]

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

All other processes are blocked out while this process waits!

Need a mechanism for a thread to suspend itself and give up the monitor

A suspended process is waiting for monitor to change its state

Have a separate internal queue, as opposed to external queue where initially blocked
threads wait

Dual operation to notify and wake up suspended processes

Madhavan Mukund Monitors Programming Concepts using Java 6 / 10

Monitors — wait()

boolean transfer (double amount, int source, int target){

if (accounts[source] < amount){

// wait for another transaction to transfer money

// into accounts[source]

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

All other processes are blocked out while this process waits!

Need a mechanism for a thread to suspend itself and give up the monitor

A suspended process is waiting for monitor to change its state

Have a separate internal queue, as opposed to external queue where initially blocked
threads wait

Dual operation to notify and wake up suspended processes

Madhavan Mukund Monitors Programming Concepts using Java 6 / 10

Monitors — wait()

boolean transfer (double amount, int source, int target){

if (accounts[source] < amount){

// wait for another transaction to transfer money

// into accounts[source]

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

All other processes are blocked out while this process waits!

Need a mechanism for a thread to suspend itself and give up the monitor

A suspended process is waiting for monitor to change its state

Have a separate internal queue, as opposed to external queue where initially blocked
threads wait

Dual operation to notify and wake up suspended processes

Madhavan Mukund Monitors Programming Concepts using Java 6 / 10

Monitors — wait()

boolean transfer (double amount, int source, int target){

if (accounts[source] < amount){

// wait for another transaction to transfer money

// into accounts[source]

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

All other processes are blocked out while this process waits!

Need a mechanism for a thread to suspend itself and give up the monitor

A suspended process is waiting for monitor to change its state

Have a separate internal queue, as opposed to external queue where initially blocked
threads wait

Dual operation to notify and wake up suspended processes

Madhavan Mukund Monitors Programming Concepts using Java 6 / 10

Monitors — wait()

boolean transfer (double amount, int source, int target){

if (accounts[source] < amount){

// wait for another transaction to transfer money

// into accounts[source]

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

All other processes are blocked out while this process waits!

Need a mechanism for a thread to suspend itself and give up the monitor

A suspended process is waiting for monitor to change its state

Have a separate internal queue, as opposed to external queue where initially blocked
threads wait

Dual operation to notify and wake up suspended processes

Madhavan Mukund Monitors Programming Concepts using Java 6 / 10

Monitors — notify()

boolean transfer (double amount, int source, int target){

if (accounts[source] < amount){ wait(); }

accounts[source] -= amount;

accounts[target] += amount;

notify();

return true;

}

What happens when a process executes notify()?

Signal and exit — notifying process immediately exits the monitor

notify() must be the last instruction

Signal and wait — notifying process swaps roles and goes into the internal queue of
the monitor

Signal and continue — notifying process keeps control till it completes and then one
of the notified processes steps in

Madhavan Mukund Monitors Programming Concepts using Java 7 / 10

Monitors — notify()

boolean transfer (double amount, int source, int target){

if (accounts[source] < amount){ wait(); }

accounts[source] -= amount;

accounts[target] += amount;

notify();

return true;

}

What happens when a process executes notify()?

Signal and exit — notifying process immediately exits the monitor

notify() must be the last instruction

Signal and wait — notifying process swaps roles and goes into the internal queue of
the monitor

Signal and continue — notifying process keeps control till it completes and then one
of the notified processes steps in

Madhavan Mukund Monitors Programming Concepts using Java 7 / 10

Monitors — notify()

boolean transfer (double amount, int source, int target){

if (accounts[source] < amount){ wait(); }

accounts[source] -= amount;

accounts[target] += amount;

notify();

return true;

}

What happens when a process executes notify()?

Signal and exit — notifying process immediately exits the monitor

notify() must be the last instruction

Signal and wait — notifying process swaps roles and goes into the internal queue of
the monitor

Signal and continue — notifying process keeps control till it completes and then one
of the notified processes steps in

Madhavan Mukund Monitors Programming Concepts using Java 7 / 10

Monitors — notify()

boolean transfer (double amount, int source, int target){

if (accounts[source] < amount){ wait(); }

accounts[source] -= amount;

accounts[target] += amount;

notify();

return true;

}

What happens when a process executes notify()?

Signal and exit — notifying process immediately exits the monitor

notify() must be the last instruction

Signal and wait — notifying process swaps roles and goes into the internal queue of
the monitor

Signal and continue — notifying process keeps control till it completes and then one
of the notified processes steps in

Madhavan Mukund Monitors Programming Concepts using Java 7 / 10

Monitors — notify()

boolean transfer (double amount, int source, int target){

if (accounts[source] < amount){ wait(); }

accounts[source] -= amount;

accounts[target] += amount;

notify();

return true;

}

What happens when a process executes notify()?

Signal and exit — notifying process immediately exits the monitor

notify() must be the last instruction

Signal and wait — notifying process swaps roles and goes into the internal queue of
the monitor

Signal and continue — notifying process keeps control till it completes and then one
of the notified processes steps in

Madhavan Mukund Monitors Programming Concepts using Java 7 / 10

Monitors — wait() and notify()

Should check the wait() condition again on wake up

Change of state may not be sufficient to continue — e.g., not enough inflow into the
account to allow transfer

A thread can be again interleaved between notification and running

At wake-up, the state was fine, but it has changed again due to some other concurrent
action

wait() should be in a while, not in an if

Madhavan Mukund Monitors Programming Concepts using Java 8 / 10

Monitors — wait() and notify()

Should check the wait() condition again on wake up

Change of state may not be sufficient to continue — e.g., not enough inflow into the
account to allow transfer

A thread can be again interleaved between notification and running

At wake-up, the state was fine, but it has changed again due to some other concurrent
action

wait() should be in a while, not in an if

Madhavan Mukund Monitors Programming Concepts using Java 8 / 10

Monitors — wait() and notify()

Should check the wait() condition again on wake up

Change of state may not be sufficient to continue — e.g., not enough inflow into the
account to allow transfer

A thread can be again interleaved between notification and running

At wake-up, the state was fine, but it has changed again due to some other concurrent
action

wait() should be in a while, not in an if

boolean transfer (double amount, int source, int target){

while (accounts[source] < amount){ wait(); }

accounts[source] -= amount;

accounts[target] += amount;

notify();

return true;

}

Madhavan Mukund Monitors Programming Concepts using Java 8 / 10

Condition variables

After transfer, notify() is only
useful for threads waiting for target
account of transfer to change state

Makes sense to have more than one
internal queue

Monitor can have condition variables
to describe internal queues

Madhavan Mukund Monitors Programming Concepts using Java 9 / 10

Condition variables

After transfer, notify() is only
useful for threads waiting for target
account of transfer to change state

Makes sense to have more than one
internal queue

Monitor can have condition variables
to describe internal queues

Madhavan Mukund Monitors Programming Concepts using Java 9 / 10

Condition variables

After transfer, notify() is only
useful for threads waiting for target
account of transfer to change state

Makes sense to have more than one
internal queue

Monitor can have condition variables
to describe internal queues

monitor bank_account{

double accounts[100];

queue q[100]; // one internal queue

// for each account

boolean transfer (double amount,

int source,

int target){

while (accounts[source] < amount){

q[source].wait(); // wait in the queue

// associated with source

}

accounts[source] -= amount;

accounts[target] += amount;

q[target].notify(); // notify the queue

// associated with target

return true;

}

// compute the balance across all accounts

double audit(){ ...}

}

Madhavan Mukund Monitors Programming Concepts using Java 9 / 10

Summary

Concurrent programming with atomic test-and-set primitives is error prone

Monitors are like abstract datatypes for concurrent programming

Encapsulate data and methods to manipulate data

Methods are implicitly atomic, regulate concurrent access

Each object has an implicit external queue of processes waiting to execute a method

wait() and notify() allow more flexible operation

Can have multiple internal queues controlled by condition variables

Madhavan Mukund Monitors Programming Concepts using Java 10 / 10

Monitors in Java

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 11

https://www.cmi.ac.in/~madhavan

Monitors

Monitor is like a class in an OO
language

Data definition — to which access is
restricted across threads

Collections of functions operating on
this data — all are implicitly mutually
exclusive

Monitor guarantees mutual exclusion —
if one function is active, any other
function will have to wait for it to finish

Implicit queue associated with each
monitor

Contains all processes waiting for
access

In practice, this may be just a set, not
a queue

monitor bank_account{

double accounts[100];

boolean transfer (double amount,

int source,

int target){

if (accounts[source] < amount){

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit(){

// compute balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; i++){

balance += accounts[i];

}

return balance;

}

}
Madhavan Mukund Monitors in Java Programming Concepts using Java 2 / 9

Condition variables

Thread suspends itself and waits for a
state change — q[source].wait()

Separate internal queue, vs external
queue for initially blocked threads

Notify change — q[target].notify()

Signal and exit — notifying process
immediately exits the monitor

Signal and wait — notifying process
swaps roles with notified process

Signal and continue — notifying process
keeps control till it completes and then
one of the notified processes steps in

monitor bank_account{

double accounts[100];

queue q[100]; // one internal queue

// for each account

boolean transfer (double amount,

int source,

int target){

while (accounts[source] < amount){

q[source].wait(); // wait in the queue

// associated with source

}

accounts[source] -= amount;

accounts[target] += amount;

q[target].notify(); // notify the queue

// associated with target

return true;

}

// compute the balance across all accounts

double audit(){ ...}

}

Madhavan Mukund Monitors in Java Programming Concepts using Java 3 / 9

Condition variables

Thread suspends itself and waits for a
state change — q[source].wait()

Separate internal queue, vs external
queue for initially blocked threads

Notify change — q[target].notify()

Signal and exit — notifying process
immediately exits the monitor

Signal and wait — notifying process
swaps roles with notified process

Signal and continue — notifying process
keeps control till it completes and then
one of the notified processes steps in

monitor bank_account{

double accounts[100];

queue q[100]; // one internal queue

// for each account

boolean transfer (double amount,

int source,

int target){

while (accounts[source] < amount){

q[source].wait(); // wait in the queue

// associated with source

}

accounts[source] -= amount;

accounts[target] += amount;

q[target].notify(); // notify the queue

// associated with target

return true;

}

// compute the balance across all accounts

double audit(){ ...}

}

Madhavan Mukund Monitors in Java Programming Concepts using Java 3 / 9

Condition variables

Thread suspends itself and waits for a
state change — q[source].wait()

Separate internal queue, vs external
queue for initially blocked threads

Notify change — q[target].notify()

Signal and exit — notifying process
immediately exits the monitor

Signal and wait — notifying process
swaps roles with notified process

Signal and continue — notifying process
keeps control till it completes and then
one of the notified processes steps in

monitor bank_account{

double accounts[100];

queue q[100]; // one internal queue

// for each account

boolean transfer (double amount,

int source,

int target){

while (accounts[source] < amount){

q[source].wait(); // wait in the queue

// associated with source

}

accounts[source] -= amount;

accounts[target] += amount;

q[target].notify(); // notify the queue

// associated with target

return true;

}

// compute the balance across all accounts

double audit(){ ...}

}

Madhavan Mukund Monitors in Java Programming Concepts using Java 3 / 9

Monitors in Java

Monitors incorporated within existing
class definitions

Function declared synchronized is to
be executed atomically

Each object has a lock

To execute a synchronized method,
thread must acquire lock

Thread gives up lock when the
method exits

Only one thread can have the lock at
any time

Wait for lock in external queue

public class bank_account{

double accounts[100];

public synchronized boolean

transfer(double amount, int source, int target){

while (accounts[source] < amount){ wait(); }

accounts[source] -= amount;

accounts[target] += amount;

notifyAll();

return true;

}

public synchronized double audit(){

double balance = 0.0;

for (int i = 0; i < 100; i++)

balance += accounts[i];

return balance;

}

public double current_balance(int i){

return accounts[i]; // not synchronized!

}

}
Madhavan Mukund Monitors in Java Programming Concepts using Java 4 / 9

Monitors in Java

Monitors incorporated within existing
class definitions

Function declared synchronized is to
be executed atomically

Each object has a lock

To execute a synchronized method,
thread must acquire lock

Thread gives up lock when the
method exits

Only one thread can have the lock at
any time

Wait for lock in external queue

public class bank_account{

double accounts[100];

public synchronized boolean

transfer(double amount, int source, int target){

while (accounts[source] < amount){ wait(); }

accounts[source] -= amount;

accounts[target] += amount;

notifyAll();

return true;

}

public synchronized double audit(){

double balance = 0.0;

for (int i = 0; i < 100; i++)

balance += accounts[i];

return balance;

}

public double current_balance(int i){

return accounts[i]; // not synchronized!

}

}
Madhavan Mukund Monitors in Java Programming Concepts using Java 4 / 9

Monitors in Java

Monitors incorporated within existing
class definitions

Function declared synchronized is to
be executed atomically

Each object has a lock

To execute a synchronized method,
thread must acquire lock

Thread gives up lock when the
method exits

Only one thread can have the lock at
any time

Wait for lock in external queue

public class bank_account{

double accounts[100];

public synchronized boolean

transfer(double amount, int source, int target){

while (accounts[source] < amount){ wait(); }

accounts[source] -= amount;

accounts[target] += amount;

notifyAll();

return true;

}

public synchronized double audit(){

double balance = 0.0;

for (int i = 0; i < 100; i++)

balance += accounts[i];

return balance;

}

public double current_balance(int i){

return accounts[i]; // not synchronized!

}

}
Madhavan Mukund Monitors in Java Programming Concepts using Java 4 / 9

Monitors in Java

Monitors incorporated within existing
class definitions

Function declared synchronized is to
be executed atomically

Each object has a lock

To execute a synchronized method,
thread must acquire lock

Thread gives up lock when the
method exits

Only one thread can have the lock at
any time

Wait for lock in external queue

public class bank_account{

double accounts[100];

public synchronized boolean

transfer(double amount, int source, int target){

while (accounts[source] < amount){ wait(); }

accounts[source] -= amount;

accounts[target] += amount;

notifyAll();

return true;

}

public synchronized double audit(){

double balance = 0.0;

for (int i = 0; i < 100; i++)

balance += accounts[i];

return balance;

}

public double current_balance(int i){

return accounts[i]; // not synchronized!

}

}
Madhavan Mukund Monitors in Java Programming Concepts using Java 4 / 9

Monitors in Java

wait() and notify() to suspend and
resume

Wait — single internal queue

Notify

notify() signals one (arbitrary)
waiting process

notifyAll() signals all waiting
processes

Java uses signal and continue

public class bank_account{

double accounts[100];

public synchronized boolean

transfer(double amount, int source, int target){

while (accounts[source] < amount){ wait(); }

accounts[source] -= amount;

accounts[target] += amount;

notifyAll();

return true;

}

public synchronized double audit(){

double balance = 0.0;

for (int i = 0; i < 100; i++)

balance += accounts[i];

return balance;

}

public double current_balance(int i){

return accounts[i]; // not synchronized!

}

}
Madhavan Mukund Monitors in Java Programming Concepts using Java 5 / 9

Monitors in Java

wait() and notify() to suspend and
resume

Wait — single internal queue

Notify

notify() signals one (arbitrary)
waiting process

notifyAll() signals all waiting
processes

Java uses signal and continue

public class bank_account{

double accounts[100];

public synchronized boolean

transfer(double amount, int source, int target){

while (accounts[source] < amount){ wait(); }

accounts[source] -= amount;

accounts[target] += amount;

notifyAll();

return true;

}

public synchronized double audit(){

double balance = 0.0;

for (int i = 0; i < 100; i++)

balance += accounts[i];

return balance;

}

public double current_balance(int i){

return accounts[i]; // not synchronized!

}

}
Madhavan Mukund Monitors in Java Programming Concepts using Java 5 / 9

Monitors in Java

wait() and notify() to suspend and
resume

Wait — single internal queue

Notify

notify() signals one (arbitrary)
waiting process

notifyAll() signals all waiting
processes

Java uses signal and continue

public class bank_account{

double accounts[100];

public synchronized boolean

transfer(double amount, int source, int target){

while (accounts[source] < amount){ wait(); }

accounts[source] -= amount;

accounts[target] += amount;

notifyAll();

return true;

}

public synchronized double audit(){

double balance = 0.0;

for (int i = 0; i < 100; i++)

balance += accounts[i];

return balance;

}

public double current_balance(int i){

return accounts[i]; // not synchronized!

}

}
Madhavan Mukund Monitors in Java Programming Concepts using Java 5 / 9

Object locks . . .

Use object locks to synchronize
arbitrary blocks of code

f() and g() can start in parallel

Only one of the threads can grab the
lock for o

Each object has its own internal queue

Can convert methods from “externally”
synchronized to “internally”
synchronized

“Anonymous” wait(), notify(),
notifyAll() abbreviate this.wait(),
this.notify(), this.notifyAll()

public class XYZ{

Object o = new Object();

public int f(){

..

synchronized(o){ ... }

}

public double g(){

..

synchronized(o){ ... }

}

}

}

Madhavan Mukund Monitors in Java Programming Concepts using Java 6 / 9

Object locks . . .

Use object locks to synchronize
arbitrary blocks of code

f() and g() can start in parallel

Only one of the threads can grab the
lock for o

Each object has its own internal queue

Can convert methods from “externally”
synchronized to “internally”
synchronized

“Anonymous” wait(), notify(),
notifyAll() abbreviate this.wait(),
this.notify(), this.notifyAll()

public class XYZ{

Object o = new Object();

public int f(){

..

synchronized(o){ ... }

}

public double g(){

..

synchronized(o){ ... }

}

}

}

Madhavan Mukund Monitors in Java Programming Concepts using Java 6 / 9

Object locks . . .

Use object locks to synchronize
arbitrary blocks of code

f() and g() can start in parallel

Only one of the threads can grab the
lock for o

Each object has its own internal queue

Can convert methods from “externally”
synchronized to “internally”
synchronized

“Anonymous” wait(), notify(),
notifyAll() abbreviate this.wait(),
this.notify(), this.notifyAll()

Object o = new Object();

public int f(){

..

synchronized(o){

...

o.wait(); // Wait in queue attached to "o"

...

}

}

public double g(){

..

synchronized(o){

...

o.notifyAll(); // Wake up queue attached to "o"

...

}

}

Madhavan Mukund Monitors in Java Programming Concepts using Java 6 / 9

Object locks . . .

Use object locks to synchronize
arbitrary blocks of code

f() and g() can start in parallel

Only one of the threads can grab the
lock for o

Each object has its own internal queue

Can convert methods from “externally”
synchronized to “internally”
synchronized

“Anonymous” wait(), notify(),
notifyAll() abbreviate this.wait(),
this.notify(), this.notifyAll()

public double h(){

synchronized(this){

...

}

}

Madhavan Mukund Monitors in Java Programming Concepts using Java 6 / 9

Object locks . . .

Use object locks to synchronize
arbitrary blocks of code

f() and g() can start in parallel

Only one of the threads can grab the
lock for o

Each object has its own internal queue

Can convert methods from “externally”
synchronized to “internally”
synchronized

“Anonymous” wait(), notify(),
notifyAll() abbreviate this.wait(),
this.notify(), this.notifyAll()

public double h(){

synchronized(this){

...

}

}

Madhavan Mukund Monitors in Java Programming Concepts using Java 6 / 9

Object locks . . .

Actually, wait() can be “interrupted” by an InterruptedException

Should write

Error to use wait(), notify(), notifyAll() outside synchronized method

IllegalMonitorStateException

Likewise, use o.wait(), o.notify(), o.notifyAll() only in block synchronized
on o

Madhavan Mukund Monitors in Java Programming Concepts using Java 7 / 9

Object locks . . .

Actually, wait() can be “interrupted” by an InterruptedException

Should write

try{

wait();

}

catch (InterruptedException e) {

...

};

Error to use wait(), notify(), notifyAll() outside synchronized method

IllegalMonitorStateException

Likewise, use o.wait(), o.notify(), o.notifyAll() only in block synchronized
on o

Madhavan Mukund Monitors in Java Programming Concepts using Java 7 / 9

Object locks . . .

Actually, wait() can be “interrupted” by an InterruptedException

Should write

try{

wait();

}

catch (InterruptedException e) {

...

};

Error to use wait(), notify(), notifyAll() outside synchronized method

IllegalMonitorStateException

Likewise, use o.wait(), o.notify(), o.notifyAll() only in block synchronized
on o

Madhavan Mukund Monitors in Java Programming Concepts using Java 7 / 9

Object locks . . .

Actually, wait() can be “interrupted” by an InterruptedException

Should write

try{

wait();

}

catch (InterruptedException e) {

...

};

Error to use wait(), notify(), notifyAll() outside synchronized method

IllegalMonitorStateException

Likewise, use o.wait(), o.notify(), o.notifyAll() only in block synchronized
on o

Madhavan Mukund Monitors in Java Programming Concepts using Java 7 / 9

Reentrant locks

Separate ReentrantLock class

Similar to a semaphore

lock() is like P(S)

unlock() is like V(S)

Always unlock() in finally — avoid
abort while holding lock

Why reentrant?

Thread holding lock can reacquire it

transfer() may call getBalance()
that also locks bankLock

Hold count increases with lock(),
decreases with unlock()

Lock is available if hold count is 0

public class Bank

{

private Lock bankLock = new ReentrantLock();

...

public void

transfer(int from, int to, int amount) {

bankLock.lock();

try {

accounts[from] -= amount;

accounts[to] += amount;

}

finally {

bankLock.unlock();

}

}

}

Madhavan Mukund Monitors in Java Programming Concepts using Java 8 / 9

Reentrant locks

Separate ReentrantLock class

Similar to a semaphore

lock() is like P(S)

unlock() is like V(S)

Always unlock() in finally — avoid
abort while holding lock

Why reentrant?

Thread holding lock can reacquire it

transfer() may call getBalance()
that also locks bankLock

Hold count increases with lock(),
decreases with unlock()

Lock is available if hold count is 0

public class Bank

{

private Lock bankLock = new ReentrantLock();

...

public void

transfer(int from, int to, int amount) {

bankLock.lock();

try {

accounts[from] -= amount;

accounts[to] += amount;

}

finally {

bankLock.unlock();

}

}

}

Madhavan Mukund Monitors in Java Programming Concepts using Java 8 / 9

Reentrant locks

Separate ReentrantLock class

Similar to a semaphore

lock() is like P(S)

unlock() is like V(S)

Always unlock() in finally — avoid
abort while holding lock

Why reentrant?

Thread holding lock can reacquire it

transfer() may call getBalance()
that also locks bankLock

Hold count increases with lock(),
decreases with unlock()

Lock is available if hold count is 0

public class Bank

{

private Lock bankLock = new ReentrantLock();

...

public void

transfer(int from, int to, int amount) {

bankLock.lock();

try {

accounts[from] -= amount;

accounts[to] += amount;

}

finally {

bankLock.unlock();

}

}

}

Madhavan Mukund Monitors in Java Programming Concepts using Java 8 / 9

Reentrant locks

Separate ReentrantLock class

Similar to a semaphore

lock() is like P(S)

unlock() is like V(S)

Always unlock() in finally — avoid
abort while holding lock

Why reentrant?

Thread holding lock can reacquire it

transfer() may call getBalance()
that also locks bankLock

Hold count increases with lock(),
decreases with unlock()

Lock is available if hold count is 0

public class Bank

{

private Lock bankLock = new ReentrantLock();

...

public void

transfer(int from, int to, int amount) {

bankLock.lock();

try {

accounts[from] -= amount;

accounts[to] += amount;

}

finally {

bankLock.unlock();

}

}

}

Madhavan Mukund Monitors in Java Programming Concepts using Java 8 / 9

Summary

Every object in Java implicitly has a lock

Methods tagged synchronized are executed atomically

Implicitly acquire and release the object’s lock

Associated condition variable, single internal queue

wait(), notify(), notifyAll()

Can synchronize an arbitrary block of code using an object

sycnchronized(o) { ... }
o.wait(), o.notify(), o.notifyAll()

Reentrant locks work like semaphores

Madhavan Mukund Monitors in Java Programming Concepts using Java 9 / 9

Threads in Java

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 11

https://www.cmi.ac.in/~madhavan

Creating threads in Java

Have a class extend Thread

Define a function run() where
execution can begin in parallel

Invoking p[i].start() initiates
p[i].run() in a separate thread

Directly calling p[i].run() does not
execute in separate thread!

sleep(t) suspends thread for t
milliseconds

Static function — use
Thread.sleep() if current class does
not extend Thread

Throws InterruptedException —
later

public class Parallel extends Thread{

private int id;

public Parallel(int i){ id = i; }

public void run(){

for (int j = 0; j < 100; j++){

System.out.println("My id is "+id);

try{

sleep(1000); // Sleep for 1000 ms

}

catch(InterruptedException e){}

}

}

}

public class TestParallel {

public static void main(String[] args){

Parallel p[] = new Parallel[5];

for (int i = 0; i < 5; i++){

p[i] = new Parallel(i);

p[i].start(); // Start p[i].run()

} // in concurrent thread

}

}
Madhavan Mukund Threads in Java Programming Concepts using Java 2 / 7

Creating threads in Java

Have a class extend Thread

Define a function run() where
execution can begin in parallel

Invoking p[i].start() initiates
p[i].run() in a separate thread

Directly calling p[i].run() does not
execute in separate thread!

sleep(t) suspends thread for t
milliseconds

Static function — use
Thread.sleep() if current class does
not extend Thread

Throws InterruptedException —
later

Typical output

My id is 0

My id is 3

My id is 2

My id is 1

My id is 4

My id is 0

My id is 2

My id is 3

My id is 4

My id is 1

My id is 0

My id is 3

My id is 1

My id is 2

My id is 4

My id is 0

...

Madhavan Mukund Threads in Java Programming Concepts using Java 2 / 7

Java threads . . .

Cannot always extend Thread

Single inheritance

Instead, implement Runnable

To use Runnable class, explicitly create
a Thread and start() it

public class Parallel implements Runnable{

// only the line above has changed

private int id;

public Parallel(int i){ ... } // Constructor

public void run(){ ... }

}

public class TestParallel {

public static void main(String[] args){

Parallel p[] = new Parallel[5];

Thread t[] = new Thread[5];

for (int i = 0; i < 5; i++){

p[i] = new Parallel(i);

t[i] = new Thread(p[i]);

// Make a thread t[i] from p[i]

t[i].start(); // Start off p[i].run()

// Note: t[i].start(),

} // not p[i].start()

}

}

Madhavan Mukund Threads in Java Programming Concepts using Java 3 / 7

Life cycle of a Java thread

A thread can be in six states

New: Created but not start()ed.

Runnable: start()ed and ready to be scheduled.

Need not be actually “running”

No guarantee made about how scheduling is done

Most Java implementations use time-slicing

Not available to run

Blocked — waiting for a lock, unblocked when lock is granted

Waiting — suspended by wait(), unblocked by notify() or notfifyAll()

Timed wait — within sleep(..), released when sleep timer expires

Dead: thread terminates.

Madhavan Mukund Threads in Java Programming Concepts using Java 4 / 7

Life cycle of a Java thread

A thread can be in six states

New: Created but not start()ed.

Runnable: start()ed and ready to be scheduled.

Need not be actually “running”

No guarantee made about how scheduling is done

Most Java implementations use time-slicing

Not available to run

Blocked — waiting for a lock, unblocked when lock is granted

Waiting — suspended by wait(), unblocked by notify() or notfifyAll()

Timed wait — within sleep(..), released when sleep timer expires

Dead: thread terminates.

Madhavan Mukund Threads in Java Programming Concepts using Java 4 / 7

Life cycle of a Java thread

A thread can be in six states

New: Created but not start()ed.

Runnable: start()ed and ready to be scheduled.

Need not be actually “running”

No guarantee made about how scheduling is done

Most Java implementations use time-slicing

Not available to run

Blocked — waiting for a lock, unblocked when lock is granted

Waiting — suspended by wait(), unblocked by notify() or notfifyAll()

Timed wait — within sleep(..), released when sleep timer expires

Dead: thread terminates.

Madhavan Mukund Threads in Java Programming Concepts using Java 4 / 7

Life cycle of a Java thread

A thread can be in six states

New: Created but not start()ed.

Runnable: start()ed and ready to be scheduled.

Need not be actually “running”

No guarantee made about how scheduling is done

Most Java implementations use time-slicing

Not available to run

Blocked — waiting for a lock, unblocked when lock is granted

Waiting — suspended by wait(), unblocked by notify() or notfifyAll()

Timed wait — within sleep(..), released when sleep timer expires

Dead: thread terminates.

Madhavan Mukund Threads in Java Programming Concepts using Java 4 / 7

Life cycle of a Java thread

A thread can be in six states

New: Created but not start()ed.

Runnable: start()ed and ready to be scheduled.

Need not be actually “running”

No guarantee made about how scheduling is done

Most Java implementations use time-slicing

Not available to run

Blocked — waiting for a lock, unblocked when lock is granted

Waiting — suspended by wait(), unblocked by notify() or notfifyAll()

Timed wait — within sleep(..), released when sleep timer expires

Dead: thread terminates.

Madhavan Mukund Threads in Java Programming Concepts using Java 4 / 7

Life cycle of a Java thread

A thread can be in six states — thread status via t.getState()

New: Created but not start()ed.

Runnable: start()ed and ready to be scheduled.

Need not be actually “running”

No guarantee made about how scheduling is done

Most Java implementations use time-slicing

Not available to run

Blocked — waiting for a lock, unblocked when lock is granted

Waiting — suspended by wait(), unblocked by notify() or notfifyAll()

Timed wait — within sleep(..), released when sleep timer expires

Dead: thread terminates.

Madhavan Mukund Threads in Java Programming Concepts using Java 4 / 7

Interrupts

One thread can interrupt another using
interrupt()

p[i].interrupt(); interrupts thread
p[i]

Raises InterruptedException within
wait(), sleep()

No exception raised if thread is running!

interrupt() sets a status flag

interrupted() checks interrupt status
and clears the flag

Detecting an interrupt while running or
waiting

Madhavan Mukund Threads in Java Programming Concepts using Java 5 / 7

Interrupts

One thread can interrupt another using
interrupt()

p[i].interrupt(); interrupts thread
p[i]

Raises InterruptedException within
wait(), sleep()

No exception raised if thread is running!

interrupt() sets a status flag

interrupted() checks interrupt status
and clears the flag

Detecting an interrupt while running or
waiting

Madhavan Mukund Threads in Java Programming Concepts using Java 5 / 7

Interrupts

One thread can interrupt another using
interrupt()

p[i].interrupt(); interrupts thread
p[i]

Raises InterruptedException within
wait(), sleep()

No exception raised if thread is running!

interrupt() sets a status flag

interrupted() checks interrupt status
and clears the flag

Detecting an interrupt while running or
waiting

public void run(){

try{

j = 0;

while(!interrupted() && j < 100){

System.out.println("My id is "+id);

sleep(1000); // Sleep for 1000 ms

j++;

}

}

catch(InterruptedException e){}

}

Madhavan Mukund Threads in Java Programming Concepts using Java 5 / 7

More about threads . . .

Check a thread’s interrupt status

Use t.isInterrupted() to check status of t’s interrupt flag

Does not clear flag

Can give up running status

yield() gives up active state to another thread

Static method in Thread

Normally, scheduling of threads is handled by OS — preemptive

Some mobile platforms use cooperative scheduling — thread loses control only if it
yields

Waiting for other threads

t.join() waits for t to terminate

Madhavan Mukund Threads in Java Programming Concepts using Java 6 / 7

More about threads . . .

Check a thread’s interrupt status

Use t.isInterrupted() to check status of t’s interrupt flag

Does not clear flag

Can give up running status

yield() gives up active state to another thread

Static method in Thread

Normally, scheduling of threads is handled by OS — preemptive

Some mobile platforms use cooperative scheduling — thread loses control only if it
yields

Waiting for other threads

t.join() waits for t to terminate

Madhavan Mukund Threads in Java Programming Concepts using Java 6 / 7

More about threads . . .

Check a thread’s interrupt status

Use t.isInterrupted() to check status of t’s interrupt flag

Does not clear flag

Can give up running status

yield() gives up active state to another thread

Static method in Thread

Normally, scheduling of threads is handled by OS — preemptive

Some mobile platforms use cooperative scheduling — thread loses control only if it
yields

Waiting for other threads

t.join() waits for t to terminate

Madhavan Mukund Threads in Java Programming Concepts using Java 6 / 7

More about threads . . .

Check a thread’s interrupt status

Use t.isInterrupted() to check status of t’s interrupt flag

Does not clear flag

Can give up running status

yield() gives up active state to another thread

Static method in Thread

Normally, scheduling of threads is handled by OS — preemptive

Some mobile platforms use cooperative scheduling — thread loses control only if it
yields

Waiting for other threads

t.join() waits for t to terminate

Madhavan Mukund Threads in Java Programming Concepts using Java 6 / 7

Summary

To run in parallel, need to extend Thread or implement Runnable

When implmenting Runnable, first create a Thread from Runnable object

t.start() invokes method run() in parallel

Threads can become inactive for different reasons

Block waiting for a lock

Wait in internal queue for a condition to be notified

Wait for a sleep timer to elapse

Threads can be interrupted

Be careful to check both interrupted status and handle InterruptException

Can yield control, or wait for another thread to terminate

Madhavan Mukund Threads in Java Programming Concepts using Java 7 / 7

Concurrent Programming: An Example

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 11

https://www.cmi.ac.in/~madhavan

An exercise in concurrent programming

A narrow North-South bridge can accommodate traffic only in one direction at a
time.

When a car arrives at the bridge

Cars on the bridge going in the same direction ⇒ can cross

No other car on the bridge ⇒ can cross (implicitly sets direction)

Cars on the bridge going in the opposite direction ⇒ wait for the bridge to be empty

Cars waiting to cross from one side may enter bridge in any order after direction
switches in their favour.

When bridge becomes empty and cars are waiting, yet another car can enter in the
opposite direction and makes them all wait some more.

Madhavan Mukund Concurrent Programming: An Example Programming Concepts using Java 2 / 12

An exercise in concurrent programming

A narrow North-South bridge can accommodate traffic only in one direction at a
time.

When a car arrives at the bridge

Cars on the bridge going in the same direction ⇒ can cross

No other car on the bridge ⇒ can cross (implicitly sets direction)

Cars on the bridge going in the opposite direction ⇒ wait for the bridge to be empty

Cars waiting to cross from one side may enter bridge in any order after direction
switches in their favour.

When bridge becomes empty and cars are waiting, yet another car can enter in the
opposite direction and makes them all wait some more.

Madhavan Mukund Concurrent Programming: An Example Programming Concepts using Java 2 / 12

An exercise in concurrent programming

A narrow North-South bridge can accommodate traffic only in one direction at a
time.

When a car arrives at the bridge

Cars on the bridge going in the same direction ⇒ can cross

No other car on the bridge ⇒ can cross (implicitly sets direction)

Cars on the bridge going in the opposite direction ⇒ wait for the bridge to be empty

Cars waiting to cross from one side may enter bridge in any order after direction
switches in their favour.

When bridge becomes empty and cars are waiting, yet another car can enter in the
opposite direction and makes them all wait some more.

Madhavan Mukund Concurrent Programming: An Example Programming Concepts using Java 2 / 12

An exercise in concurrent programming

A narrow North-South bridge can accommodate traffic only in one direction at a
time.

When a car arrives at the bridge

Cars on the bridge going in the same direction ⇒ can cross

No other car on the bridge ⇒ can cross (implicitly sets direction)

Cars on the bridge going in the opposite direction ⇒ wait for the bridge to be empty

Cars waiting to cross from one side may enter bridge in any order after direction
switches in their favour.

When bridge becomes empty and cars are waiting, yet another car can enter in the
opposite direction and makes them all wait some more.

Madhavan Mukund Concurrent Programming: An Example Programming Concepts using Java 2 / 12

An example . . .

Design a class Bridge to implement consistent one-way access for cars on the
highway

Should permit multiple cars to be on the bridge at one time (all going in the same
direction!)

Bridge has a public method public void cross(int id, boolean d, int s)

id is identity of car

d indicates direction

true is North

false is South

s indicates time taken to cross (milliseconds)

Madhavan Mukund Concurrent Programming: An Example Programming Concepts using Java 3 / 12

An example . . .

Design a class Bridge to implement consistent one-way access for cars on the
highway

Should permit multiple cars to be on the bridge at one time (all going in the same
direction!)

Bridge has a public method public void cross(int id, boolean d, int s)

id is identity of car

d indicates direction

true is North

false is South

s indicates time taken to cross (milliseconds)

Madhavan Mukund Concurrent Programming: An Example Programming Concepts using Java 3 / 12

An example . . .

Design a class Bridge to implement consistent one-way access for cars on the
highway

Should permit multiple cars to be on the bridge at one time (all going in the same
direction!)

Bridge has a public method public void cross(int id, boolean d, int s)

id is identity of car

d indicates direction

true is North

false is South

s indicates time taken to cross (milliseconds)

Madhavan Mukund Concurrent Programming: An Example Programming Concepts using Java 3 / 12

An example . . .

Design a class Bridge to implement consistent one-way access for cars on the
highway

Should permit multiple cars to be on the bridge at one time (all going in the same
direction!)

Bridge has a public method public void cross(int id, boolean d, int s)

id is identity of car

d indicates direction

true is North

false is South

s indicates time taken to cross (milliseconds)

Madhavan Mukund Concurrent Programming: An Example Programming Concepts using Java 3 / 12

An example . . .

Design a class Bridge to implement consistent one-way access for cars on the
highway

Should permit multiple cars to be on the bridge at one time (all going in the same
direction!)

Bridge has a public method public void cross(int id, boolean d, int s)

id is identity of car

d indicates direction

true is North

false is South

s indicates time taken to cross (milliseconds)

Madhavan Mukund Concurrent Programming: An Example Programming Concepts using Java 3 / 12

An example . . .

public void cross(int id, boolean d, int s)

Method cross prints out diagnostics

A car is stuck waiting for the direction to change
Car 10 going South stuck at Fri Feb 25 12:42:13 IST 2022

The direction changes
Car 10 switches bridge direction to South at Fri Feb 25 12:42:13 IST

2022

A car enters the bridge
Car 10 going South enters bridge at Fri Feb 25 12:42:13 IST 2022

A car leaves the bridge
Car 10 leaves at Fri Feb 25 12:42:14 IST 2022

Madhavan Mukund Concurrent Programming: An Example Programming Concepts using Java 4 / 12

An example . . .

public void cross(int id, boolean d, int s)

Method cross prints out diagnostics

A car is stuck waiting for the direction to change
Car 10 going South stuck at Fri Feb 25 12:42:13 IST 2022

The direction changes
Car 10 switches bridge direction to South at Fri Feb 25 12:42:13 IST

2022

A car enters the bridge
Car 10 going South enters bridge at Fri Feb 25 12:42:13 IST 2022

A car leaves the bridge
Car 10 leaves at Fri Feb 25 12:42:14 IST 2022

Madhavan Mukund Concurrent Programming: An Example Programming Concepts using Java 4 / 12

An example . . .

public void cross(int id, boolean d, int s)

Method cross prints out diagnostics

A car is stuck waiting for the direction to change
Car 10 going South stuck at Fri Feb 25 12:42:13 IST 2022

The direction changes
Car 10 switches bridge direction to South at Fri Feb 25 12:42:13 IST

2022

A car enters the bridge
Car 10 going South enters bridge at Fri Feb 25 12:42:13 IST 2022

A car leaves the bridge
Car 10 leaves at Fri Feb 25 12:42:14 IST 2022

Madhavan Mukund Concurrent Programming: An Example Programming Concepts using Java 4 / 12

An example . . .

public void cross(int id, boolean d, int s)

Method cross prints out diagnostics

A car is stuck waiting for the direction to change
Car 10 going South stuck at Fri Feb 25 12:42:13 IST 2022

The direction changes
Car 10 switches bridge direction to South at Fri Feb 25 12:42:13 IST

2022

A car enters the bridge
Car 10 going South enters bridge at Fri Feb 25 12:42:13 IST 2022

A car leaves the bridge
Car 10 leaves at Fri Feb 25 12:42:14 IST 2022

Madhavan Mukund Concurrent Programming: An Example Programming Concepts using Java 4 / 12

An example . . .

public void cross(int id, boolean d, int s)

Method cross prints out diagnostics

A car is stuck waiting for the direction to change
Car 10 going South stuck at Fri Feb 25 12:42:13 IST 2022

The direction changes
Car 10 switches bridge direction to South at Fri Feb 25 12:42:13 IST

2022

A car enters the bridge
Car 10 going South enters bridge at Fri Feb 25 12:42:13 IST 2022

A car leaves the bridge
Car 10 leaves at Fri Feb 25 12:42:14 IST 2022

Madhavan Mukund Concurrent Programming: An Example Programming Concepts using Java 4 / 12

Analysis

The “data” that is shared is the Bridge

State of the bridge is represented by two quantities

Number of cars on bridge — int bcount

Current direction of bridge — boolean direction

The method public void cross(int id, boolean d, int s)

changes the state of the bridge

Concurrent execution of cross can cause problems . . .

. . . but making cross a synchronized method is too restrictive

Only one car on the bridge at a time

Problem description explicitly disallows such a solution

Madhavan Mukund Concurrent Programming: An Example Programming Concepts using Java 5 / 12

Analysis

The “data” that is shared is the Bridge

State of the bridge is represented by two quantities

Number of cars on bridge — int bcount

Current direction of bridge — boolean direction

The method public void cross(int id, boolean d, int s)

changes the state of the bridge

Concurrent execution of cross can cause problems . . .

. . . but making cross a synchronized method is too restrictive

Only one car on the bridge at a time

Problem description explicitly disallows such a solution

Madhavan Mukund Concurrent Programming: An Example Programming Concepts using Java 5 / 12

Analysis

The “data” that is shared is the Bridge

State of the bridge is represented by two quantities

Number of cars on bridge — int bcount

Current direction of bridge — boolean direction

The method public void cross(int id, boolean d, int s)

changes the state of the bridge

Concurrent execution of cross can cause problems . . .

. . . but making cross a synchronized method is too restrictive

Only one car on the bridge at a time

Problem description explicitly disallows such a solution

Madhavan Mukund Concurrent Programming: An Example Programming Concepts using Java 5 / 12

Analysis

The “data” that is shared is the Bridge

State of the bridge is represented by two quantities

Number of cars on bridge — int bcount

Current direction of bridge — boolean direction

The method public void cross(int id, boolean d, int s)

changes the state of the bridge

Concurrent execution of cross can cause problems . . .

. . . but making cross a synchronized method is too restrictive

Only one car on the bridge at a time

Problem description explicitly disallows such a solution

Madhavan Mukund Concurrent Programming: An Example Programming Concepts using Java 5 / 12

Analysis . . .

Break up cross into a sequence of actions

enter — get on the bridge

travel — drive across the bridge

leave — get off the bridge

enter and leave can print out the diagnostics required

Which of these affect the state of the bridge?

enter : increment number of cars, perhaps change direction

leave : decrement number of cars

Make enter and leave synchronized

travel is just a means to let time elapse — use sleep

Madhavan Mukund Concurrent Programming: An Example Programming Concepts using Java 6 / 12

Analysis . . .

Break up cross into a sequence of actions

enter — get on the bridge

travel — drive across the bridge

leave — get off the bridge

enter and leave can print out the diagnostics required

Which of these affect the state of the bridge?

enter : increment number of cars, perhaps change direction

leave : decrement number of cars

Make enter and leave synchronized

travel is just a means to let time elapse — use sleep

Madhavan Mukund Concurrent Programming: An Example Programming Concepts using Java 6 / 12

Analysis . . .

Break up cross into a sequence of actions

enter — get on the bridge

travel — drive across the bridge

leave — get off the bridge

enter and leave can print out the diagnostics required

Which of these affect the state of the bridge?

enter : increment number of cars, perhaps change direction

leave : decrement number of cars

Make enter and leave synchronized

travel is just a means to let time elapse — use sleep

Madhavan Mukund Concurrent Programming: An Example Programming Concepts using Java 6 / 12

Analysis . . .

Break up cross into a sequence of actions

enter — get on the bridge

travel — drive across the bridge

leave — get off the bridge

enter and leave can print out the diagnostics required

Which of these affect the state of the bridge?

enter : increment number of cars, perhaps change direction

leave : decrement number of cars

Make enter and leave synchronized

travel is just a means to let time elapse — use sleep

Madhavan Mukund Concurrent Programming: An Example Programming Concepts using Java 6 / 12

Analysis . . .

Break up cross into a sequence of actions

enter — get on the bridge

travel — drive across the bridge

leave — get off the bridge

enter and leave can print out the diagnostics required

Which of these affect the state of the bridge?

enter : increment number of cars, perhaps change direction

leave : decrement number of cars

Make enter and leave synchronized

travel is just a means to let time elapse — use sleep

Madhavan Mukund Concurrent Programming: An Example Programming Concepts using Java 6 / 12

Analysis . . .

Break up cross into a sequence of actions

enter — get on the bridge

travel — drive across the bridge

leave — get off the bridge

enter and leave can print out the diagnostics required

Which of these affect the state of the bridge?

enter : increment number of cars, perhaps change direction

leave : decrement number of cars

Make enter and leave synchronized

travel is just a means to let time elapse — use sleep

Madhavan Mukund Concurrent Programming: An Example Programming Concepts using Java 6 / 12

Analysis . . .

Break up cross into a sequence of actions

enter — get on the bridge

travel — drive across the bridge

leave — get off the bridge

enter and leave can print out the diagnostics required

Which of these affect the state of the bridge?

enter : increment number of cars, perhaps change direction

leave : decrement number of cars

Make enter and leave synchronized

travel is just a means to let time elapse — use sleep

Madhavan Mukund Concurrent Programming: An Example Programming Concepts using Java 6 / 12

Analysis . . .

Code for cross

public void cross(int id, boolean d, int s){

// Get onto the bridge (if you can!)

enter(id,d);

// Takes time to cross the bridge

try{

Thread.sleep(s);

}

catch(InterruptedException e){}

// Get off the bridge

leave(id);

}

Madhavan Mukund Concurrent Programming: An Example Programming Concepts using Java 7 / 12

Analysis . . .

Entering the bridge

If the direction of this car matches the direction of the bridge, it can enter

If the direction does not match but the number of cars is zero, it can reset the
direction and enter

Otherwise, wait() for the state of the bridge to change

In each case, print a diagnostic message

Madhavan Mukund Concurrent Programming: An Example Programming Concepts using Java 8 / 12

Analysis . . .

Entering the bridge

If the direction of this car matches the direction of the bridge, it can enter

If the direction does not match but the number of cars is zero, it can reset the
direction and enter

Otherwise, wait() for the state of the bridge to change

In each case, print a diagnostic message

Madhavan Mukund Concurrent Programming: An Example Programming Concepts using Java 8 / 12

Analysis . . .

Entering the bridge

If the direction of this car matches the direction of the bridge, it can enter

If the direction does not match but the number of cars is zero, it can reset the
direction and enter

Otherwise, wait() for the state of the bridge to change

In each case, print a diagnostic message

Madhavan Mukund Concurrent Programming: An Example Programming Concepts using Java 8 / 12

Analysis . . .

Entering the bridge

If the direction of this car matches the direction of the bridge, it can enter

If the direction does not match but the number of cars is zero, it can reset the
direction and enter

Otherwise, wait() for the state of the bridge to change

In each case, print a diagnostic message

Madhavan Mukund Concurrent Programming: An Example Programming Concepts using Java 8 / 12

Code for enter

private synchronized void enter(int id, boolean d){

Date date;

// While there are cars going in the wrong direction

while (d != direction && bcount > 0){

date = new Date();

System.out.println("Car "+id+" going "+direction_name(d)+" stuck at "+date);

// Wait for our turn

try{

wait();

}

catch (InterruptedException e){}

}

...

}
Madhavan Mukund Concurrent Programming: An Example Programming Concepts using Java 9 / 12

Code for enter

private synchronized void enter(int id, boolean d){

...

while (d != direction && bcount > 0){ ... wait() ...}

...

if (d != direction){ // Switch direction, if needed

direction = d;

date = new Date();

System.out.println("Car "+id+" switches bridge direction

to "+direction_name(direction)+" at "+date);

}

bcount++; // Register our presence on the bridge

date = new Date();

System.out.println("Car "+id+" going "+direction_name(d)+" enters bridge at "+date);

}

Madhavan Mukund Concurrent Programming: An Example Programming Concepts using Java 10 / 12

Code for leave

Leaving the bridge is much simpler

Decrement the car count

notify() waiting cars

Madhavan Mukund Concurrent Programming: An Example Programming Concepts using Java 11 / 12

Code for leave

Leaving the bridge is much simpler

Decrement the car count

notify() waiting cars

Madhavan Mukund Concurrent Programming: An Example Programming Concepts using Java 11 / 12

Code for leave

Leaving the bridge is much simpler

Decrement the car count

notify() waiting cars

Madhavan Mukund Concurrent Programming: An Example Programming Concepts using Java 11 / 12

Code for leave

Leaving the bridge is much simpler

Decrement the car count

notify() waiting cars . . . provided car count is zero

Madhavan Mukund Concurrent Programming: An Example Programming Concepts using Java 11 / 12

Code for leave

Leaving the bridge is much simpler

Decrement the car count

notify() waiting cars . . . provided car count is zero

private synchronized void leave(int id){

Date date = new Date();

System.out.println("Car "+id+" leaves at "+date);

// "Check out"

bcount--;

// If everyone on the bridge has checked out, notify the

// cars waiting on the opposite side

if (bcount == 0){

notifyAll();

}

}

Madhavan Mukund Concurrent Programming: An Example Programming Concepts using Java 11 / 12

Summary

Concurrent programming can be tricky

Need to synchronize access to shared resources

. . . while allowing concurrency

This bridge crossing example is a prototype for a number of real world requirements

Madhavan Mukund Concurrent Programming: An Example Programming Concepts using Java 12 / 12

Thread safe collections

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 11

https://www.cmi.ac.in/~madhavan

Concurrency and collections

Synchronize access to bank account
array to ensure consistent updates

Noninterfering updates can safely
happen in parallel

Updates to different accounts,
accounts[i] and accounts[j]

Insistence on sequential access affects
performance

Can we implement collections to allow
such concurrent updates in a safe
manner — make them thread safe?

monitor bank_account{

double accounts[100];

boolean transfer (double amount,

int source,

int target){

if (accounts[source] < amount){

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit(){

// compute balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; i++){

balance += accounts[i];

}

return balance;

}

}
Madhavan Mukund Thread safe collections Programming Concepts using Java 2 / 7

Concurrency and collections

Synchronize access to bank account
array to ensure consistent updates

Noninterfering updates can safely
happen in parallel

Updates to different accounts,
accounts[i] and accounts[j]

Insistence on sequential access affects
performance

Can we implement collections to allow
such concurrent updates in a safe
manner — make them thread safe?

monitor bank_account{

double accounts[100];

boolean transfer (double amount,

int source,

int target){

if (accounts[source] < amount){

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit(){

// compute balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; i++){

balance += accounts[i];

}

return balance;

}

}
Madhavan Mukund Thread safe collections Programming Concepts using Java 2 / 7

Concurrency and collections

Synchronize access to bank account
array to ensure consistent updates

Noninterfering updates can safely
happen in parallel

Updates to different accounts,
accounts[i] and accounts[j]

Insistence on sequential access affects
performance

Can we implement collections to allow
such concurrent updates in a safe
manner — make them thread safe?

monitor bank_account{

double accounts[100];

boolean transfer (double amount,

int source,

int target){

if (accounts[source] < amount){

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit(){

// compute balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; i++){

balance += accounts[i];

}

return balance;

}

}
Madhavan Mukund Thread safe collections Programming Concepts using Java 2 / 7

Concurrency and collections

Synchronize access to bank account
array to ensure consistent updates

Noninterfering updates can safely
happen in parallel

Updates to different accounts,
accounts[i] and accounts[j]

Insistence on sequential access affects
performance

Can we implement collections to allow
such concurrent updates in a safe
manner — make them thread safe?

monitor bank_account{

double accounts[100];

boolean transfer (double amount,

int source,

int target){

if (accounts[source] < amount){

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit(){

// compute balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; i++){

balance += accounts[i];

}

return balance;

}

}
Madhavan Mukund Thread safe collections Programming Concepts using Java 2 / 7

Thread safety and correctness

Thread safety guarantees consistency of
individual updates

If two threads increment accounts[i],
neither update is lost

Individual updates are implemented in
an atomic manner

Does not say anything about sequences
of updates

Formally, linearizability

Contrast with serializability in
databases, where transactions
(sequences of updates) appear atomic

monitor bank_account{

double accounts[100];

boolean transfer (double amount,

int source,

int target){

if (accounts[source] < amount){

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit(){

// compute balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; i++){

balance += accounts[i];

}

return balance;

}

}
Madhavan Mukund Thread safe collections Programming Concepts using Java 3 / 7

Thread safety and correctness

Thread safety guarantees consistency of
individual updates

If two threads increment accounts[i],
neither update is lost

Individual updates are implemented in
an atomic manner

Does not say anything about sequences
of updates

Formally, linearizability

Contrast with serializability in
databases, where transactions
(sequences of updates) appear atomic

monitor bank_account{

double accounts[100];

boolean transfer (double amount,

int source,

int target){

if (accounts[source] < amount){

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit(){

// compute balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; i++){

balance += accounts[i];

}

return balance;

}

}
Madhavan Mukund Thread safe collections Programming Concepts using Java 3 / 7

Thread safety and correctness

Thread safety guarantees consistency of
individual updates

If two threads increment accounts[i],
neither update is lost

Individual updates are implemented in
an atomic manner

Does not say anything about sequences
of updates

Formally, linearizability

Contrast with serializability in
databases, where transactions
(sequences of updates) appear atomic

monitor bank_account{

double accounts[100];

boolean transfer (double amount,

int source,

int target){

if (accounts[source] < amount){

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit(){

// compute balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; i++){

balance += accounts[i];

}

return balance;

}

}
Madhavan Mukund Thread safe collections Programming Concepts using Java 3 / 7

Thread safety and correctness

Thread safety guarantees consistency of
individual updates

If two threads increment accounts[i],
neither update is lost

Individual updates are implemented in
an atomic manner

Does not say anything about sequences
of updates

Formally, linearizability

Contrast with serializability in
databases, where transactions
(sequences of updates) appear atomic

monitor bank_account{

double accounts[100];

boolean transfer (double amount,

int source,

int target){

if (accounts[source] < amount){

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit(){

// compute balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; i++){

balance += accounts[i];

}

return balance;

}

}
Madhavan Mukund Thread safe collections Programming Concepts using Java 3 / 7

Thread safety and correctness

Thread safety guarantees consistency of
individual updates

If two threads increment accounts[i],
neither update is lost

Individual updates are implemented in
an atomic manner

Does not say anything about sequences
of updates

Formally, linearizability

Contrast with serializability in
databases, where transactions
(sequences of updates) appear atomic

monitor bank_account{

double accounts[100];

boolean transfer (double amount,

int source,

int target){

if (accounts[source] < amount){

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit(){

// compute balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; i++){

balance += accounts[i];

}

return balance;

}

}
Madhavan Mukund Thread safe collections Programming Concepts using Java 3 / 7

Thread safety and correctness

Thread safety guarantees consistency of
individual updates

If two threads increment accounts[i],
neither update is lost

Individual updates are implemented in
an atomic manner

Does not say anything about sequences
of updates

Formally, linearizability

Contrast with serializability in
databases, where transactions
(sequences of updates) appear atomic

monitor bank_account{

double accounts[100];

boolean transfer (double amount,

int source,

int target){

if (accounts[source] < amount){

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit(){

// compute balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; i++){

balance += accounts[i];

}

return balance;

}

}
Madhavan Mukund Thread safe collections Programming Concepts using Java 3 / 7

Thread safe collections

To implement thread safe collections, use locks to make local updates atomic

Granularity of locking depends on data structure

In an array, sufficient to protect a[i]

In a linked list, restrict access to nodes on either side of insert/delete

Java provides built-in collection types that are thread safe

ConcurrentMap interface, implemented as ConcurrentHashMap

BlockingQueue, ConcurrentSkipList, . . .

Appropriate low level locking is done automatically to ensure consistent local updates

Remember that these only guarantee atomicity of individual updates

Sequences of updates (transfer from one account to another) still need to be
manually synchronized to work properly

Madhavan Mukund Thread safe collections Programming Concepts using Java 4 / 7

Thread safe collections

To implement thread safe collections, use locks to make local updates atomic

Granularity of locking depends on data structure

In an array, sufficient to protect a[i]

In a linked list, restrict access to nodes on either side of insert/delete

Java provides built-in collection types that are thread safe

ConcurrentMap interface, implemented as ConcurrentHashMap

BlockingQueue, ConcurrentSkipList, . . .

Appropriate low level locking is done automatically to ensure consistent local updates

Remember that these only guarantee atomicity of individual updates

Sequences of updates (transfer from one account to another) still need to be
manually synchronized to work properly

Madhavan Mukund Thread safe collections Programming Concepts using Java 4 / 7

Thread safe collections

To implement thread safe collections, use locks to make local updates atomic

Granularity of locking depends on data structure

In an array, sufficient to protect a[i]

In a linked list, restrict access to nodes on either side of insert/delete

Java provides built-in collection types that are thread safe

ConcurrentMap interface, implemented as ConcurrentHashMap

BlockingQueue, ConcurrentSkipList, . . .

Appropriate low level locking is done automatically to ensure consistent local updates

Remember that these only guarantee atomicity of individual updates

Sequences of updates (transfer from one account to another) still need to be
manually synchronized to work properly

Madhavan Mukund Thread safe collections Programming Concepts using Java 4 / 7

Thread safe collections

To implement thread safe collections, use locks to make local updates atomic

Granularity of locking depends on data structure

In an array, sufficient to protect a[i]

In a linked list, restrict access to nodes on either side of insert/delete

Java provides built-in collection types that are thread safe

ConcurrentMap interface, implemented as ConcurrentHashMap

BlockingQueue, ConcurrentSkipList, . . .

Appropriate low level locking is done automatically to ensure consistent local updates

Remember that these only guarantee atomicity of individual updates

Sequences of updates (transfer from one account to another) still need to be
manually synchronized to work properly

Madhavan Mukund Thread safe collections Programming Concepts using Java 4 / 7

Thread safe collections

To implement thread safe collections, use locks to make local updates atomic

Granularity of locking depends on data structure

In an array, sufficient to protect a[i]

In a linked list, restrict access to nodes on either side of insert/delete

Java provides built-in collection types that are thread safe

ConcurrentMap interface, implemented as ConcurrentHashMap

BlockingQueue, ConcurrentSkipList, . . .

Appropriate low level locking is done automatically to ensure consistent local updates

Remember that these only guarantee atomicity of individual updates

Sequences of updates (transfer from one account to another) still need to be
manually synchronized to work properly

Madhavan Mukund Thread safe collections Programming Concepts using Java 4 / 7

Usings thread safe queues for synchronization

Use a thread safe queue for simpler synchronization of shared objects

Producer–Consumer system

Producer threads insert items into the queue

Consumer threads retrieve them.

Bank account example

Transfer threads insert transfer instructions into shared queue

Update thread processes instructions from the queue, modifies bank accounts

Only the update thread modifies the data structure

No synchronization necessary

How does a consumer thread know when to check the queue?

Madhavan Mukund Thread safe collections Programming Concepts using Java 5 / 7

Usings thread safe queues for synchronization

Use a thread safe queue for simpler synchronization of shared objects

Producer–Consumer system

Producer threads insert items into the queue

Consumer threads retrieve them.

Bank account example

Transfer threads insert transfer instructions into shared queue

Update thread processes instructions from the queue, modifies bank accounts

Only the update thread modifies the data structure

No synchronization necessary

How does a consumer thread know when to check the queue?

Madhavan Mukund Thread safe collections Programming Concepts using Java 5 / 7

Usings thread safe queues for synchronization

Use a thread safe queue for simpler synchronization of shared objects

Producer–Consumer system

Producer threads insert items into the queue

Consumer threads retrieve them.

Bank account example

Transfer threads insert transfer instructions into shared queue

Update thread processes instructions from the queue, modifies bank accounts

Only the update thread modifies the data structure

No synchronization necessary

How does a consumer thread know when to check the queue?

Madhavan Mukund Thread safe collections Programming Concepts using Java 5 / 7

Usings thread safe queues for synchronization

Use a thread safe queue for simpler synchronization of shared objects

Producer–Consumer system

Producer threads insert items into the queue

Consumer threads retrieve them.

Bank account example

Transfer threads insert transfer instructions into shared queue

Update thread processes instructions from the queue, modifies bank accounts

Only the update thread modifies the data structure

No synchronization necessary

How does a consumer thread know when to check the queue?

Madhavan Mukund Thread safe collections Programming Concepts using Java 5 / 7

Blocking queues

Blocking queues block when . . .

. . . you try to add an element when the queue is full

. . . you try to remove an element when the queue is empty

Update thread tries to remove an item to process, waits if nothing is available

In general, use blocking queues to coordinate multiple producer and consumer
threads

Producers write intermediate results into the queue

Consumers retrieve these results and make further updates

Blocking automatically balances the workload

Producers wait if consumers are slow and the queue fills up

Consumers wait if producers are slow to provide items to process

Madhavan Mukund Thread safe collections Programming Concepts using Java 6 / 7

Blocking queues

Blocking queues block when . . .

. . . you try to add an element when the queue is full

. . . you try to remove an element when the queue is empty

Update thread tries to remove an item to process, waits if nothing is available

In general, use blocking queues to coordinate multiple producer and consumer
threads

Producers write intermediate results into the queue

Consumers retrieve these results and make further updates

Blocking automatically balances the workload

Producers wait if consumers are slow and the queue fills up

Consumers wait if producers are slow to provide items to process

Madhavan Mukund Thread safe collections Programming Concepts using Java 6 / 7

Blocking queues

Blocking queues block when . . .

. . . you try to add an element when the queue is full

. . . you try to remove an element when the queue is empty

Update thread tries to remove an item to process, waits if nothing is available

In general, use blocking queues to coordinate multiple producer and consumer
threads

Producers write intermediate results into the queue

Consumers retrieve these results and make further updates

Blocking automatically balances the workload

Producers wait if consumers are slow and the queue fills up

Consumers wait if producers are slow to provide items to process

Madhavan Mukund Thread safe collections Programming Concepts using Java 6 / 7

Blocking queues

Blocking queues block when . . .

. . . you try to add an element when the queue is full

. . . you try to remove an element when the queue is empty

Update thread tries to remove an item to process, waits if nothing is available

In general, use blocking queues to coordinate multiple producer and consumer
threads

Producers write intermediate results into the queue

Consumers retrieve these results and make further updates

Blocking automatically balances the workload

Producers wait if consumers are slow and the queue fills up

Consumers wait if producers are slow to provide items to process

Madhavan Mukund Thread safe collections Programming Concepts using Java 6 / 7

Summary

When updating collections, locking the entire data structure for individual updates
is wasteful

Sufficient to protect access within a local portion of the structure

Ensure that two updates do not overlap

Region to protect depends on the type of collection

Implement using lower level locks of suitable granularity

Java provides built-in thread safe collections

One of these is a blocking queue

Use a blocking queue to coordinate producers and consumers

Ensure safe access to a shared data structure without explicit synchronization

Madhavan Mukund Thread safe collections Programming Concepts using Java 7 / 7

Graphical interfaces and event-driven programming

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 12

https://www.cmi.ac.in/~madhavan

GUIs and events

How do we design graphical user interfaces?

Multiple applications simultaneously displayed on screen

Keystrokes, mouse clicks have to be sent to appropriate window

In parallel to main activity, record and respond to these events

Web browser renders current page

Clicking on a link loads a different page

Madhavan Mukund Graphical interfaces and event-driven programming Programming Concepts using Java 2 / 8

GUIs and events

How do we design graphical user interfaces?

Multiple applications simultaneously displayed on screen

Keystrokes, mouse clicks have to be sent to appropriate window

In parallel to main activity, record and respond to these events

Web browser renders current page

Clicking on a link loads a different page

Madhavan Mukund Graphical interfaces and event-driven programming Programming Concepts using Java 2 / 8

GUIs and events

How do we design graphical user interfaces?

Multiple applications simultaneously displayed on screen

Keystrokes, mouse clicks have to be sent to appropriate window

In parallel to main activity, record and respond to these events

Web browser renders current page

Clicking on a link loads a different page

Madhavan Mukund Graphical interfaces and event-driven programming Programming Concepts using Java 2 / 8

GUIs and events

How do we design graphical user interfaces?

Multiple applications simultaneously displayed on screen

Keystrokes, mouse clicks have to be sent to appropriate window

In parallel to main activity, record and respond to these events

Web browser renders current page

Clicking on a link loads a different page

Madhavan Mukund Graphical interfaces and event-driven programming Programming Concepts using Java 2 / 8

Keeping track of events

Remember coordinates and extent of each window

Track coordinates of mouse

OS reports mouse click at (x , y)

Check which windows are positioned at (x , y)

Check if one of them is “active”

Inform that window about mouse click

Tedious and error-prone

Programming language support for higher level events

Run time support for language maps low level events to high level events

OS reports low level events: mouse clicked at (x , y), key ’a’ pressed

Program sees high level events: Button was clicked, box was ticked . . .

Madhavan Mukund Graphical interfaces and event-driven programming Programming Concepts using Java 3 / 8

Keeping track of events

Remember coordinates and extent of each window

Track coordinates of mouse

OS reports mouse click at (x , y)

Check which windows are positioned at (x , y)

Check if one of them is “active”

Inform that window about mouse click

Tedious and error-prone

Programming language support for higher level events

Run time support for language maps low level events to high level events

OS reports low level events: mouse clicked at (x , y), key ’a’ pressed

Program sees high level events: Button was clicked, box was ticked . . .

Madhavan Mukund Graphical interfaces and event-driven programming Programming Concepts using Java 3 / 8

Keeping track of events

Remember coordinates and extent of each window

Track coordinates of mouse

OS reports mouse click at (x , y)

Check which windows are positioned at (x , y)

Check if one of them is “active”

Inform that window about mouse click

Tedious and error-prone

Programming language support for higher level events

Run time support for language maps low level events to high level events

OS reports low level events: mouse clicked at (x , y), key ’a’ pressed

Program sees high level events: Button was clicked, box was ticked . . .

Madhavan Mukund Graphical interfaces and event-driven programming Programming Concepts using Java 3 / 8

Keeping track of events

Remember coordinates and extent of each window

Track coordinates of mouse

OS reports mouse click at (x , y)

Check which windows are positioned at (x , y)

Check if one of them is “active”

Inform that window about mouse click

Tedious and error-prone

Programming language support for higher level events

Run time support for language maps low level events to high level events

OS reports low level events: mouse clicked at (x , y), key ’a’ pressed

Program sees high level events: Button was clicked, box was ticked . . .

Madhavan Mukund Graphical interfaces and event-driven programming Programming Concepts using Java 3 / 8

Keeping track of events

Remember coordinates and extent of each window

Track coordinates of mouse

OS reports mouse click at (x , y)

Check which windows are positioned at (x , y)

Check if one of them is “active”

Inform that window about mouse click

Tedious and error-prone

Programming language support for higher level events

Run time support for language maps low level events to high level events

OS reports low level events: mouse clicked at (x , y), key ’a’ pressed

Program sees high level events: Button was clicked, box was ticked . . .

Madhavan Mukund Graphical interfaces and event-driven programming Programming Concepts using Java 3 / 8

Keeping track of events

Remember coordinates and extent of each window

Track coordinates of mouse

OS reports mouse click at (x , y)

Check which windows are positioned at (x , y)

Check if one of them is “active”

Inform that window about mouse click

Tedious and error-prone

Programming language support for higher level events

Run time support for language maps low level events to high level events

OS reports low level events: mouse clicked at (x , y), key ’a’ pressed

Program sees high level events: Button was clicked, box was ticked . . .

Madhavan Mukund Graphical interfaces and event-driven programming Programming Concepts using Java 3 / 8

Keeping track of events

Remember coordinates and extent of each window

Track coordinates of mouse

OS reports mouse click at (x , y)

Check which windows are positioned at (x , y)

Check if one of them is “active”

Inform that window about mouse click

Tedious and error-prone

Programming language support for higher level events

Run time support for language maps low level events to high level events

OS reports low level events: mouse clicked at (x , y), key ’a’ pressed

Program sees high level events: Button was clicked, box was ticked . . .

Madhavan Mukund Graphical interfaces and event-driven programming Programming Concepts using Java 3 / 8

Keeping track of events

Remember coordinates and extent of each window

Track coordinates of mouse

OS reports mouse click at (x , y)

Check which windows are positioned at (x , y)

Check if one of them is “active”

Inform that window about mouse click

Tedious and error-prone

Programming language support for higher level events

Run time support for language maps low level events to high level events

OS reports low level events: mouse clicked at (x , y), key ’a’ pressed

Program sees high level events: Button was clicked, box was ticked . . .

Madhavan Mukund Graphical interfaces and event-driven programming Programming Concepts using Java 3 / 8

Better PL support for events

Programmer directly defines components such as windows, buttons, . . . that
“generate” high level events

Each event is associated with a listener that knows what to do

e.g., clicking Close window exits application

Programming language has mechanisms for

Describing what types of events a component can generate

Setting up an association between components and listeners

Different events invoke different functions

Window frame has Maximize, Iconify, Close buttons

Language “sorts” out events and automatically calls the correct function in the
listener

Madhavan Mukund Graphical interfaces and event-driven programming Programming Concepts using Java 4 / 8

Better PL support for events

Programmer directly defines components such as windows, buttons, . . . that
“generate” high level events

Each event is associated with a listener that knows what to do

e.g., clicking Close window exits application

Programming language has mechanisms for

Describing what types of events a component can generate

Setting up an association between components and listeners

Different events invoke different functions

Window frame has Maximize, Iconify, Close buttons

Language “sorts” out events and automatically calls the correct function in the
listener

Madhavan Mukund Graphical interfaces and event-driven programming Programming Concepts using Java 4 / 8

Better PL support for events

Programmer directly defines components such as windows, buttons, . . . that
“generate” high level events

Each event is associated with a listener that knows what to do

e.g., clicking Close window exits application

Programming language has mechanisms for

Describing what types of events a component can generate

Setting up an association between components and listeners

Different events invoke different functions

Window frame has Maximize, Iconify, Close buttons

Language “sorts” out events and automatically calls the correct function in the
listener

Madhavan Mukund Graphical interfaces and event-driven programming Programming Concepts using Java 4 / 8

Better PL support for events

Programmer directly defines components such as windows, buttons, . . . that
“generate” high level events

Each event is associated with a listener that knows what to do

e.g., clicking Close window exits application

Programming language has mechanisms for

Describing what types of events a component can generate

Setting up an association between components and listeners

Different events invoke different functions

Window frame has Maximize, Iconify, Close buttons

Language “sorts” out events and automatically calls the correct function in the
listener

Madhavan Mukund Graphical interfaces and event-driven programming Programming Concepts using Java 4 / 8

An example

A Button with one event, press button

Pressing the button invokes the
function buttonpush(..) in a listener

We have set up an association between
Button b and a listener
ButtonListener m

Nothing more needs to be done!

Madhavan Mukund Graphical interfaces and event-driven programming Programming Concepts using Java 5 / 8

An example

A Button with one event, press button

Pressing the button invokes the
function buttonpush(..) in a listener

We have set up an association between
Button b and a listener
ButtonListener m

Nothing more needs to be done!

interface ButtonListener{

public abstract void buttonpush(...);

}

class MyClass implements ButtonListener{

...

public void buttonpush(...){

... // what to do when

// a button is pushed

}

}

Madhavan Mukund Graphical interfaces and event-driven programming Programming Concepts using Java 5 / 8

An example

A Button with one event, press button

Pressing the button invokes the
function buttonpush(..) in a listener

We have set up an association between
Button b and a listener
ButtonListener m

Nothing more needs to be done!

interface ButtonListener{

public abstract void buttonpush(...);

}

class MyClass implements ButtonListener{

...

public void buttonpush(...){

... // what to do when

// a button is pushed

}

}

Button b = new Button();

MyClass m = new MyClass();

b.add_listener(m); // Tell b to notify

// m when pushed

Madhavan Mukund Graphical interfaces and event-driven programming Programming Concepts using Java 5 / 8

An example

A Button with one event, press button

Pressing the button invokes the
function buttonpush(..) in a listener

We have set up an association between
Button b and a listener
ButtonListener m

Nothing more needs to be done!

interface ButtonListener{

public abstract void buttonpush(...);

}

class MyClass implements ButtonListener{

...

public void buttonpush(...){

... // what to do when

// a button is pushed

}

}

Button b = new Button();

MyClass m = new MyClass();

b.add_listener(m); // Tell b to notify

// m when pushed

Madhavan Mukund Graphical interfaces and event-driven programming Programming Concepts using Java 5 / 8

An example . . .

Communicating each button push to
the listener is done automatically by the
run-time system

Information about the button push
event is passed as an object to the
listener

buttonpush(...) has arguments

Listener can decipher source of event,
for instance

interface ButtonListener{

public abstract void buttonpush(...);

}

class MyClass implements ButtonListener{

...

public void buttonpush(...){

... // what to do when

// a button is pushed

}

}

Button b = new Button();

MyClass m = new MyClass();

b.add_listener(m); // Tell b to notify

// m when pushed

Madhavan Mukund Graphical interfaces and event-driven programming Programming Concepts using Java 6 / 8

An example . . .

Communicating each button push to
the listener is done automatically by the
run-time system

Information about the button push
event is passed as an object to the
listener

buttonpush(...) has arguments

Listener can decipher source of event,
for instance

interface ButtonListener{

public abstract void buttonpush(...);

}

class MyClass implements ButtonListener{

...

public void buttonpush(...){

... // what to do when

// a button is pushed

}

}

Button b = new Button();

MyClass m = new MyClass();

b.add_listener(m); // Tell b to notify

// m when pushed

Madhavan Mukund Graphical interfaces and event-driven programming Programming Concepts using Java 6 / 8

An example . . .

Communicating each button push to
the listener is done automatically by the
run-time system

Information about the button push
event is passed as an object to the
listener

buttonpush(...) has arguments

Listener can decipher source of event,
for instance

interface ButtonListener{

public abstract void buttonpush(...);

}

class MyClass implements ButtonListener{

...

public void buttonpush(...){

... // what to do when

// a button is pushed

}

}

Button b = new Button();

MyClass m = new MyClass();

b.add_listener(m); // Tell b to notify

// m when pushed

Madhavan Mukund Graphical interfaces and event-driven programming Programming Concepts using Java 6 / 8

Timer

Recall Timer example

Myclass m creates a Timer t that runs in parallel

Timer t notifies a Timerowner when it is done, via a function timerdone()

Abstractly, timer duration elapsing is an event, and Timerowner is notified when
the event occurs

In the timer, the notification is done explicitly, manually

In the button example, the notification is handled internally, automatically

In our example, Myclass m was itself the Timerowner to be notified

In principle, Timer t could be passed a reference to any object that implements
Timerowner interface

Madhavan Mukund Graphical interfaces and event-driven programming Programming Concepts using Java 7 / 8

Timer

Recall Timer example

Myclass m creates a Timer t that runs in parallel

Timer t notifies a Timerowner when it is done, via a function timerdone()

Abstractly, timer duration elapsing is an event, and Timerowner is notified when
the event occurs

In the timer, the notification is done explicitly, manually

In the button example, the notification is handled internally, automatically

In our example, Myclass m was itself the Timerowner to be notified

In principle, Timer t could be passed a reference to any object that implements
Timerowner interface

Madhavan Mukund Graphical interfaces and event-driven programming Programming Concepts using Java 7 / 8

Timer

Recall Timer example

Myclass m creates a Timer t that runs in parallel

Timer t notifies a Timerowner when it is done, via a function timerdone()

Abstractly, timer duration elapsing is an event, and Timerowner is notified when
the event occurs

In the timer, the notification is done explicitly, manually

In the button example, the notification is handled internally, automatically

In our example, Myclass m was itself the Timerowner to be notified

In principle, Timer t could be passed a reference to any object that implements
Timerowner interface

Madhavan Mukund Graphical interfaces and event-driven programming Programming Concepts using Java 7 / 8

Timer

Recall Timer example

Myclass m creates a Timer t that runs in parallel

Timer t notifies a Timerowner when it is done, via a function timerdone()

Abstractly, timer duration elapsing is an event, and Timerowner is notified when
the event occurs

In the timer, the notification is done explicitly, manually

In the button example, the notification is handled internally, automatically

In our example, Myclass m was itself the Timerowner to be notified

In principle, Timer t could be passed a reference to any object that implements
Timerowner interface

Madhavan Mukund Graphical interfaces and event-driven programming Programming Concepts using Java 7 / 8

Timer

Recall Timer example

Myclass m creates a Timer t that runs in parallel

Timer t notifies a Timerowner when it is done, via a function timerdone()

Abstractly, timer duration elapsing is an event, and Timerowner is notified when
the event occurs

In the timer, the notification is done explicitly, manually

In the button example, the notification is handled internally, automatically

In our example, Myclass m was itself the Timerowner to be notified

In principle, Timer t could be passed a reference to any object that implements
Timerowner interface

Madhavan Mukund Graphical interfaces and event-driven programming Programming Concepts using Java 7 / 8

Timer

Recall Timer example

Myclass m creates a Timer t that runs in parallel

Timer t notifies a Timerowner when it is done, via a function timerdone()

Abstractly, timer duration elapsing is an event, and Timerowner is notified when
the event occurs

In the timer, the notification is done explicitly, manually

In the button example, the notification is handled internally, automatically

In our example, Myclass m was itself the Timerowner to be notified

In principle, Timer t could be passed a reference to any object that implements
Timerowner interface

Madhavan Mukund Graphical interfaces and event-driven programming Programming Concepts using Java 7 / 8

Summary

Event driven programming is a natural way of dealing with graphical user interface
interactions

User interacts with object through mouse clicks etc

These are automatically translated into events and passed to listeners

Listeners implement methods that react appropriately to different types of events

Madhavan Mukund Graphical interfaces and event-driven programming Programming Concepts using Java 8 / 8

The Swing toolkit

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 12

https://www.cmi.ac.in/~madhavan

Event driven programming in Java

Swing toolkit to define high-level components

Built on top of lower level event handling system called AWT

Relationship between components generating events and listeners is flexible

One listener can listen to multiple objects

Three buttons on window frame all report to common listener

One component can inform multiple listeners

Exit browser reported to all windows currently open

Must explicitly set up association between component and listener

Events are “lost” if nobody is listening!

Madhavan Mukund The Swing toolkit Programming Concepts using Java 2 / 7

Event driven programming in Java

Swing toolkit to define high-level components

Built on top of lower level event handling system called AWT

Relationship between components generating events and listeners is flexible

One listener can listen to multiple objects

Three buttons on window frame all report to common listener

One component can inform multiple listeners

Exit browser reported to all windows currently open

Must explicitly set up association between component and listener

Events are “lost” if nobody is listening!

Madhavan Mukund The Swing toolkit Programming Concepts using Java 2 / 7

Event driven programming in Java

Swing toolkit to define high-level components

Built on top of lower level event handling system called AWT

Relationship between components generating events and listeners is flexible

One listener can listen to multiple objects

Three buttons on window frame all report to common listener

One component can inform multiple listeners

Exit browser reported to all windows currently open

Must explicitly set up association between component and listener

Events are “lost” if nobody is listening!

Madhavan Mukund The Swing toolkit Programming Concepts using Java 2 / 7

Event driven programming in Java

Swing toolkit to define high-level components

Built on top of lower level event handling system called AWT

Relationship between components generating events and listeners is flexible

One listener can listen to multiple objects

Three buttons on window frame all report to common listener

One component can inform multiple listeners

Exit browser reported to all windows currently open

Must explicitly set up association between component and listener

Events are “lost” if nobody is listening!

Madhavan Mukund The Swing toolkit Programming Concepts using Java 2 / 7

Event driven programming in Java

Swing toolkit to define high-level components

Built on top of lower level event handling system called AWT

Relationship between components generating events and listeners is flexible

One listener can listen to multiple objects

Three buttons on window frame all report to common listener

One component can inform multiple listeners

Exit browser reported to all windows currently open

Must explicitly set up association between component and listener

Events are “lost” if nobody is listening!

Madhavan Mukund The Swing toolkit Programming Concepts using Java 2 / 7

Event driven programming in Java

Swing toolkit to define high-level components

Built on top of lower level event handling system called AWT

Relationship between components generating events and listeners is flexible

One listener can listen to multiple objects

Three buttons on window frame all report to common listener

One component can inform multiple listeners

Exit browser reported to all windows currently open

Must explicitly set up association between component and listener

Events are “lost” if nobody is listening!

Madhavan Mukund The Swing toolkit Programming Concepts using Java 2 / 7

Event driven programming in Java

Swing toolkit to define high-level components

Built on top of lower level event handling system called AWT

Relationship between components generating events and listeners is flexible

One listener can listen to multiple objects

Three buttons on window frame all report to common listener

One component can inform multiple listeners

Exit browser reported to all windows currently open

Must explicitly set up association between component and listener

Events are “lost” if nobody is listening!

Madhavan Mukund The Swing toolkit Programming Concepts using Java 2 / 7

A button that paints its background red

JButton is Swing class for buttons

Corresponding listener class is
ActionListener

Only one type of event, button push

Invokes actionPerformed(...) in
listener

Button push is an ActionEvent

Madhavan Mukund The Swing toolkit Programming Concepts using Java 3 / 7

A button that paints its background red

JButton is Swing class for buttons

Corresponding listener class is
ActionListener

Only one type of event, button push

Invokes actionPerformed(...) in
listener

Button push is an ActionEvent

Madhavan Mukund The Swing toolkit Programming Concepts using Java 3 / 7

A button that paints its background red

JButton is Swing class for buttons

Corresponding listener class is
ActionListener

Only one type of event, button push

Invokes actionPerformed(...) in
listener

Button push is an ActionEvent

Madhavan Mukund The Swing toolkit Programming Concepts using Java 3 / 7

A button that paints its background red

JButton is Swing class for buttons

Corresponding listener class is
ActionListener

Only one type of event, button push

Invokes actionPerformed(...) in
listener

Button push is an ActionEvent

Madhavan Mukund The Swing toolkit Programming Concepts using Java 3 / 7

A button that paints its background red

JButton is Swing class for buttons

Corresponding listener class is
ActionListener

Only one type of event, button push

Invokes actionPerformed(...) in
listener

Button push is an ActionEvent

public class MyButtons{

private JButton b;

public MyButtons(ActionListener a){

b = new JButton("MyButton");

// Set the label on the button

b.addActionListener(a);

// Associate an listener

}

}

Madhavan Mukund The Swing toolkit Programming Concepts using Java 3 / 7

A button that paints its background red

JButton is Swing class for buttons

Corresponding listener class is
ActionListener

Only one type of event, button push

Invokes actionPerformed(...) in
listener

Button push is an ActionEvent

public class MyButtons{

private JButton b;

public MyButtons(ActionListener a){

b = new JButton("MyButton");

// Set the label on the button

b.addActionListener(a);

// Associate an listener

}

}

public class MyListener implements ActionListener{

public void actionPerformed(ActionEvent e){...}

// What to do when a button is pressed

}

public class XYZ{

MyListener l = new MyListener();

// ActionListener l

MyButtons m = new MyButtons(l);

// Button m, reports to l

}
Madhavan Mukund The Swing toolkit Programming Concepts using Java 3 / 7

Embedding the button in a panel

To actually display the button, we
have to do more

Embed the button in a panel —
JPanel

First import required Java packages

The panel will also serve as the
event listener

Create the button, make the panel
a listener and add the button to the
panel

Listener sets the panel background to
red when the button is clicked

Madhavan Mukund The Swing toolkit Programming Concepts using Java 4 / 7

Embedding the button in a panel

To actually display the button, we
have to do more

Embed the button in a panel —
JPanel

First import required Java packages

The panel will also serve as the
event listener

Create the button, make the panel
a listener and add the button to the
panel

Listener sets the panel background to
red when the button is clicked

Madhavan Mukund The Swing toolkit Programming Concepts using Java 4 / 7

Embedding the button in a panel

To actually display the button, we
have to do more

Embed the button in a panel —
JPanel

First import required Java packages

The panel will also serve as the
event listener

Create the button, make the panel
a listener and add the button to the
panel

Listener sets the panel background to
red when the button is clicked

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

Madhavan Mukund The Swing toolkit Programming Concepts using Java 4 / 7

Embedding the button in a panel

To actually display the button, we
have to do more

Embed the button in a panel —
JPanel

First import required Java packages

The panel will also serve as the
event listener

Create the button, make the panel
a listener and add the button to the
panel

Listener sets the panel background to
red when the button is clicked

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class ButtonPanel extends JPanel

implements ActionListener{

...

}

Madhavan Mukund The Swing toolkit Programming Concepts using Java 4 / 7

Embedding the button in a panel

To actually display the button, we
have to do more

Embed the button in a panel —
JPanel

First import required Java packages

The panel will also serve as the
event listener

Create the button, make the panel
a listener and add the button to the
panel

Listener sets the panel background to
red when the button is clicked

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class ButtonPanel extends JPanel

implements ActionListener{

private JButton redButton;

public ButtonPanel(){

redButton = new JButton("Red");

redButton.addActionListener(this);

add(redButton);

}

...

}

Madhavan Mukund The Swing toolkit Programming Concepts using Java 4 / 7

Embedding the button in a panel

To actually display the button, we
have to do more

Embed the button in a panel —
JPanel

First import required Java packages

The panel will also serve as the
event listener

Create the button, make the panel
a listener and add the button to the
panel

Listener sets the panel background to
red when the button is clicked

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class ButtonPanel extends JPanel

implements ActionListener{

private JButton redButton;

public ButtonPanel(){

redButton = new JButton("Red");

redButton.addActionListener(this);

add(redButton);

}

public void actionPerformed(ActionEvent evt){

Color color = Color.red;

setBackground(color);

repaint();

}

}
Madhavan Mukund The Swing toolkit Programming Concepts using Java 4 / 7

Embedding the panel in a frame

Embed the panel in a frame —
JFrame

Corresponding listener class is
WindowListener

JFrame generates seven different
types of events

Each of the seven events
automatically calls a different
function in WindowListener

Need to implement windowClosing
event to terminate the window

Other six types of events can be
ignored

public class ButtonFrame extends JFrame

implements WindowListener {

public ButtonFrame(){ ... }

// Implement WindowListener

..

}

Madhavan Mukund The Swing toolkit Programming Concepts using Java 5 / 7

Embedding the panel in a frame

Embed the panel in a frame —
JFrame

Corresponding listener class is
WindowListener

JFrame generates seven different
types of events

Each of the seven events
automatically calls a different
function in WindowListener

Need to implement windowClosing
event to terminate the window

Other six types of events can be
ignored

public class ButtonFrame extends JFrame

implements WindowListener {

public ButtonFrame(){ ... }

// Implement WindowListener

..

}

Madhavan Mukund The Swing toolkit Programming Concepts using Java 5 / 7

Embedding the panel in a frame

Embed the panel in a frame —
JFrame

Corresponding listener class is
WindowListener

JFrame generates seven different
types of events

Each of the seven events
automatically calls a different
function in WindowListener

Need to implement windowClosing
event to terminate the window

Other six types of events can be
ignored

public class ButtonFrame extends JFrame

implements WindowListener {

public ButtonFrame(){ ... }

...

}

// Seven methods required for

// implementing WindowListener

// Six out of seven are stubs

...

}

Madhavan Mukund The Swing toolkit Programming Concepts using Java 5 / 7

Embedding the panel in a frame

Embed the panel in a frame —
JFrame

Corresponding listener class is
WindowListener

JFrame generates seven different
types of events

Each of the seven events
automatically calls a different
function in WindowListener

Need to implement windowClosing
event to terminate the window

Other six types of events can be
ignored

public class ButtonFrame extends JFrame

implements WindowListener {

public ButtonFrame(){ ... }

...

}

// Six of seven methods required for

// implementing WindowListener are stubs

public void windowClosing(WindowEvent e) {

System.exit(0);

}

public void windowActivated(WindowEvent e){}

public void windowClosed(WindowEvent e){}

public void windowDeactivated(WindowEvent e){}

public void windowDeiconified(WindowEvent e){}

public void windowIconified(WindowEvent e){}

public void windowOpened(WindowEvent e){}

}

Madhavan Mukund The Swing toolkit Programming Concepts using Java 5 / 7

Embedding the panel in a frame

One more complication

JFrame is “complex”, many layers

Items to be displayed have to be
added to ContentPane

public class ButtonFrame extends JFrame

implements WindowListener {

public ButtonFrame(){ ... }

...

}

// Six of seven methods required for

// implementing WindowListener are stubs

public void windowClosing(WindowEvent e) {

System.exit(0);

}

public void windowActivated(WindowEvent e){}

public void windowClosed(WindowEvent e){}

public void windowDeactivated(WindowEvent e){}

public void windowDeiconified(WindowEvent e){}

public void windowIconified(WindowEvent e){}

public void windowOpened(WindowEvent e){}

}

Madhavan Mukund The Swing toolkit Programming Concepts using Java 6 / 7

Embedding the panel in a frame

One more complication

JFrame is “complex”, many layers

Items to be displayed have to be
added to ContentPane

public class ButtonFrame extends JFrame

implements WindowListener {

public ButtonFrame(){ ... }

...

}

// Six of seven methods required for

// implementing WindowListener are stubs

public void windowClosing(WindowEvent e) {

System.exit(0);

}

public void windowActivated(WindowEvent e){}

public void windowClosed(WindowEvent e){}

public void windowDeactivated(WindowEvent e){}

public void windowDeiconified(WindowEvent e){}

public void windowIconified(WindowEvent e){}

public void windowOpened(WindowEvent e){}

}

Madhavan Mukund The Swing toolkit Programming Concepts using Java 6 / 7

Embedding the panel in a frame

One more complication

JFrame is “complex”, many layers

Items to be displayed have to be
added to ContentPane

public class ButtonFrame extends JFrame

implements WindowListener {

Private Container contentPane;

public ButtonFrame(){

setTitle("ButtonTest");

setSize(300, 200);

// ButtonFrame listens to itself

addWindowListener(this);

// ButtonPanel is added to the contentPane

contentPane = this.getContentPane();

contentPane.add(new ButtonPanel());

}

// Six of seven methods required for

// implementing WindowListener are stubs

}
Madhavan Mukund The Swing toolkit Programming Concepts using Java 6 / 7

Finally, a main function

Create a JFrame and make it visible

EventQueue.invokeLater() puts
the Swing object in a separate event
despatch thread

Ensures that GUI processing does not
interfere with other computation

GUI does not get blocked, avoid
subtle synchronization bugs

Output — before the button is
clicked

. . . and after

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class ButtonTest{

public static void main(String[] args) {

EventQueue.invokeLater(

() -> {

JFrame frame = new ButtonFrame();

frame.setVisible(true);

}

);

}

}

Madhavan Mukund The Swing toolkit Programming Concepts using Java 7 / 7

Finally, a main function

Create a JFrame and make it visible

EventQueue.invokeLater() puts
the Swing object in a separate event
despatch thread

Ensures that GUI processing does not
interfere with other computation

GUI does not get blocked, avoid
subtle synchronization bugs

Output — before the button is
clicked

. . . and after

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class ButtonTest{

public static void main(String[] args) {

EventQueue.invokeLater(

() -> {

JFrame frame = new ButtonFrame();

frame.setVisible(true);

}

);

}

}

Madhavan Mukund The Swing toolkit Programming Concepts using Java 7 / 7

Finally, a main function

Create a JFrame and make it visible

EventQueue.invokeLater() puts
the Swing object in a separate event
despatch thread

Ensures that GUI processing does not
interfere with other computation

GUI does not get blocked, avoid
subtle synchronization bugs

Output — before the button is
clicked

. . . and after

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class ButtonTest{

public static void main(String[] args) {

EventQueue.invokeLater(

() -> {

JFrame frame = new ButtonFrame();

frame.setVisible(true);

}

);

}

}

Madhavan Mukund The Swing toolkit Programming Concepts using Java 7 / 7

Finally, a main function

Create a JFrame and make it visible

EventQueue.invokeLater() puts
the Swing object in a separate event
despatch thread

Ensures that GUI processing does not
interfere with other computation

GUI does not get blocked, avoid
subtle synchronization bugs

Output — before the button is
clicked

. . . and after

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class ButtonTest{

public static void main(String[] args) {

EventQueue.invokeLater(

() -> {

JFrame frame = new ButtonFrame();

frame.setVisible(true);

}

);

}

}

Madhavan Mukund The Swing toolkit Programming Concepts using Java 7 / 7

Finally, a main function

Create a JFrame and make it visible

EventQueue.invokeLater() puts
the Swing object in a separate event
despatch thread

Ensures that GUI processing does not
interfere with other computation

GUI does not get blocked, avoid
subtle synchronization bugs

Output — before the button is
clicked

. . . and after

Madhavan Mukund The Swing toolkit Programming Concepts using Java 7 / 7

Finally, a main function

Create a JFrame and make it visible

EventQueue.invokeLater() puts
the Swing object in a separate event
despatch thread

Ensures that GUI processing does not
interfere with other computation

GUI does not get blocked, avoid
subtle synchronization bugs

Output — before the button is
clicked

. . . and after

Madhavan Mukund The Swing toolkit Programming Concepts using Java 7 / 7

Summary

The Swing toolkit has different types of objects

Each object generates its own type of event

Create an appropriate event handler and link it to the object

The unit that Swing displays is a frame

Individual objects have to be embedded in panels which are then added to a frame

Madhavan Mukund The Swing toolkit Programming Concepts using Java 8 / 7

More Swing examples

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming Concepts using Java

Week 12

https://www.cmi.ac.in/~madhavan

Connecting multiple events to a listener

One listener can listen to multiple
objects

A panel with three buttons, to paint
the panel red, yellow or blue

Make the panel listen to all three
buttons

Determine what colour to use by
identifying source of the event

Keep the existing colour if the
source is not one of these three
buttons

Output — before any button is
clicked

Madhavan Mukund More Swing examples Programming Concepts using Java 2 / 6

Connecting multiple events to a listener

One listener can listen to multiple
objects

A panel with three buttons, to paint
the panel red, yellow or blue

Make the panel listen to all three
buttons

Determine what colour to use by
identifying source of the event

Keep the existing colour if the
source is not one of these three
buttons

Output — before any button is
clicked

public class ButtonPanel extends JPanel

implements ActionListener{

// Panel has three buttons

private JButton yellowButton, blueButton,

redButton;

public ButtonPanel(){

yellowButton = new JButton("Yellow");

blueButton = new JButton("Blue");

redButton = new JButton("Red");

...

}

public void actionPerformed(ActionEvent evt){

...

}

}

Madhavan Mukund More Swing examples Programming Concepts using Java 2 / 6

Connecting multiple events to a listener

One listener can listen to multiple
objects

A panel with three buttons, to paint
the panel red, yellow or blue

Make the panel listen to all three
buttons

Determine what colour to use by
identifying source of the event

Keep the existing colour if the
source is not one of these three
buttons

Output — before any button is
clicked

public class ButtonPanel extends JPanel

implements ActionListener{

// Panel has three buttons

private JButton yellowButton, blueButton,

redButton;

public ButtonPanel(){

yellowButton = new JButton("Yellow");

blueButton = new JButton("Blue");

redButton = new JButton("Red");

// ButtonPanel listens to all three buttons

yellowButton.addActionListener(this);

blueButton.addActionListener(this);

redButton.addActionListener(this);

add(yellowButton);

add(blueButton);

add(redButton);

}

...

}
Madhavan Mukund More Swing examples Programming Concepts using Java 2 / 6

Connecting multiple events to a listener

One listener can listen to multiple
objects

A panel with three buttons, to paint
the panel red, yellow or blue

Make the panel listen to all three
buttons

Determine what colour to use by
identifying source of the event

Keep the existing colour if the
source is not one of these three
buttons

Output — before any button is
clicked

public class ButtonPanel extends JPanel

implements ActionListener{

...

public void actionPerformed(ActionEvent evt){

// Find the source of the event

Object source = evt.getSource();

// Get current background colour

Color color = getBackground();

if (source == yellowButton)

color = Color.yellow;

else if (source == blueButton)

color = Color.blue;

else if (source == redButton)

color = Color.red;

setBackground(color);

repaint();

}

}
Madhavan Mukund More Swing examples Programming Concepts using Java 2 / 6

Connecting multiple events to a listener

One listener can listen to multiple
objects

A panel with three buttons, to paint
the panel red, yellow or blue

Make the panel listen to all three
buttons

Determine what colour to use by
identifying source of the event

Keep the existing colour if the
source is not one of these three
buttons

Output — before any button is
clicked

Madhavan Mukund More Swing examples Programming Concepts using Java 2 / 6

Connecting multiple events to a listener

One listener can listen to multiple
objects

A panel with three buttons, to paint
the panel red, yellow or blue

Make the panel listen to all three
buttons

Determine what colour to use by
identifying source of the event

Keep the existing colour if the
source is not one of these three
buttons

Output — before any button is
clicked . . . and after each is clicked

Madhavan Mukund More Swing examples Programming Concepts using Java 2 / 6

Connecting multiple events to a listener

One listener can listen to multiple
objects

A panel with three buttons, to paint
the panel red, yellow or blue

Make the panel listen to all three
buttons

Determine what colour to use by
identifying source of the event

Keep the existing colour if the
source is not one of these three
buttons

Output — before any button is
clicked . . . and after each is clicked

Madhavan Mukund More Swing examples Programming Concepts using Java 2 / 6

Connecting multiple events to a listener

One listener can listen to multiple
objects

A panel with three buttons, to paint
the panel red, yellow or blue

Make the panel listen to all three
buttons

Determine what colour to use by
identifying source of the event

Keep the existing colour if the
source is not one of these three
buttons

Output — before any button is
clicked . . . and after each is clicked

Madhavan Mukund More Swing examples Programming Concepts using Java 2 / 6

Multicasting: multiple listeners for an event

Two panels, each with three buttons,
Red, Blue, Yellow

Clicking a button in either panel
changes background colour in both
panels

Both panels must listen to all six
buttons

However, each panel has references
only for its local buttons

How do we determine the source of
an event from a remote button?

import ...

public class ButtonPanel extends JPanel

implements ActionListener{

private JButton yellowButton, blueButton,

redButton;

public ButtonPanel(){

yellowButton = new JButton("Yellow");

blueButton = new JButton("Blue");

redButton = new JButton("Red");

...

add(yellowButton);

add(blueButton);

add(redButton);

}

...

}

Madhavan Mukund More Swing examples Programming Concepts using Java 3 / 6

Multicasting: multiple listeners for an event

Two panels, each with three buttons,
Red, Blue, Yellow

Clicking a button in either panel
changes background colour in both
panels

Both panels must listen to all six
buttons

However, each panel has references
only for its local buttons

How do we determine the source of
an event from a remote button?

import ...

public class ButtonPanel extends JPanel

implements ActionListener{

private JButton yellowButton, blueButton,

redButton;

public ButtonPanel(){

yellowButton = new JButton("Yellow");

blueButton = new JButton("Blue");

redButton = new JButton("Red");

...

add(yellowButton);

add(blueButton);

add(redButton);

}

...

}

Madhavan Mukund More Swing examples Programming Concepts using Java 3 / 6

Multicasting: multiple listeners for an event

Two panels, each with three buttons,
Red, Blue, Yellow

Clicking a button in either panel
changes background colour in both
panels

Both panels must listen to all six
buttons

However, each panel has references
only for its local buttons

How do we determine the source of
an event from a remote button?

import ...

public class ButtonPanel extends JPanel

implements ActionListener{

private JButton yellowButton, blueButton,

redButton;

public ButtonPanel(){

yellowButton = new JButton("Yellow");

blueButton = new JButton("Blue");

redButton = new JButton("Red");

...

add(yellowButton);

add(blueButton);

add(redButton);

}

...

}

Madhavan Mukund More Swing examples Programming Concepts using Java 3 / 6

Multicasting: multiple listeners for an event

Associate an ActionCommand with a
button

Assign the same action command
to both Red buttons, . . .

Choose colour according to
ActionCommand

Need to add both panels as listeners
for each button

Add a public function to add a new
listener to all buttons in a panel

Add both panels to the same frame

How it works

import ...

public class ButtonPanel extends JPanel

implements ActionListener{

private JButton yellowButton, blueButton,

redButton;

public ButtonPanel(){

yellowButton = new JButton("Yellow");

blueButton = new JButton("Blue");

redButton = new JButton("Red");

yellowButton.setActionCommand("YELLOW");

blueButton.setActionCommand("BLUE");

redButton.setActionCommand("RED");

add(yellowButton);

add(blueButton);

add(redButton);

}

...

}
Madhavan Mukund More Swing examples Programming Concepts using Java 4 / 6

Multicasting: multiple listeners for an event

Associate an ActionCommand with a
button

Assign the same action command
to both Red buttons, . . .

Choose colour according to
ActionCommand

Need to add both panels as listeners
for each button

Add a public function to add a new
listener to all buttons in a panel

Add both panels to the same frame

How it works

public class ButtonPanel extends JPanel

implements ActionListener{

...

public void actionPerformed(ActionEvent evt){

Color color = getBackground();

String cmd = evt.getActionCommand();

if (cmd.equals("YELLOW"))

color = Color.yellow;

else if (cmd.equals("BLUE"))

color = Color.blue;

else if (cmd.equals("RED"))

color = Color.red;

setBackground(color);

repaint();

}

...

}

Madhavan Mukund More Swing examples Programming Concepts using Java 4 / 6

Multicasting: multiple listeners for an event

Associate an ActionCommand with a
button

Assign the same action command
to both Red buttons, . . .

Choose colour according to
ActionCommand

Need to add both panels as listeners
for each button

Add a public function to add a new
listener to all buttons in a panel

Add both panels to the same frame

How it works

public class ButtonPanel extends JPanel

implements ActionListener{

...

public void addListener(ActionListener o){

// Add a commmon listener for all

// buttons in this panel

yellowButton.addActionListener(o);

blueButton.addActionListener(o);

redButton.addActionListener(o);

}

}

Madhavan Mukund More Swing examples Programming Concepts using Java 4 / 6

Multicasting: multiple listeners for an event

Associate an ActionCommand with a
button

Assign the same action command
to both Red buttons, . . .

Choose colour according to
ActionCommand

Need to add both panels as listeners
for each button

Add a public function to add a new
listener to all buttons in a panel

Add both panels to the same frame

How it works

public class ButtonFrame extends JFrame

implements WindowListener{

private Container contentPane;

private ButtonPanel b1, b2;

public ButtonFrame(){

..

b1 = new ButtonPanel(); // Two panels

b2 = new ButtonPanel();

// Each panel listens to both sets of buttons

b1.addListener(b1); b1.addListener(b2);

b2.addListener(b1); b2.addListener(b2);

contentPane = this.getContentPane();

// Set layout to separate out panels in frame

contentPane.setLayout(new BorderLayout());

contentPane.add(b1,"North");

contentPane.add(b2,"South");

} ...

}
Madhavan Mukund More Swing examples Programming Concepts using Java 4 / 6

Multicasting: multiple listeners for an event

Associate an ActionCommand with a
button

Assign the same action command
to both Red buttons, . . .

Choose colour according to
ActionCommand

Need to add both panels as listeners
for each button

Add a public function to add a new
listener to all buttons in a panel

Add both panels to the same frame

How it works

Madhavan Mukund More Swing examples Programming Concepts using Java 4 / 6

Multicasting: multiple listeners for an event

Associate an ActionCommand with a
button

Assign the same action command
to both Red buttons, . . .

Choose colour according to
ActionCommand

Need to add both panels as listeners
for each button

Add a public function to add a new
listener to all buttons in a panel

Add both panels to the same frame

How it works

Madhavan Mukund More Swing examples Programming Concepts using Java 4 / 6

Multicasting: multiple listeners for an event

Associate an ActionCommand with a
button

Assign the same action command
to both Red buttons, . . .

Choose colour according to
ActionCommand

Need to add both panels as listeners
for each button

Add a public function to add a new
listener to all buttons in a panel

Add both panels to the same frame

How it works

Madhavan Mukund More Swing examples Programming Concepts using Java 4 / 6

Multicasting: multiple listeners for an event

Associate an ActionCommand with a
button

Assign the same action command
to both Red buttons, . . .

Choose colour according to
ActionCommand

Need to add both panels as listeners
for each button

Add a public function to add a new
listener to all buttons in a panel

Add both panels to the same frame

How it works

Madhavan Mukund More Swing examples Programming Concepts using Java 4 / 6

Multicasting: multiple listeners for an event

Associate an ActionCommand with a
button

Assign the same action command
to both Red buttons, . . .

Choose colour according to
ActionCommand

Need to add both panels as listeners
for each button

Add a public function to add a new
listener to all buttons in a panel

Add both panels to the same frame

How it works

Madhavan Mukund More Swing examples Programming Concepts using Java 4 / 6

Other elements – checkboxes

JCheckbox: a box that can be ticked

A panel with two checkboxes, Red
and Blue

Only Red ticked, background red

Only Blue ticked, background blue

Both ticked, background green

Only one action — click the box

Listener is again ActionListener

Checkbox state: selected or not

isSelected() returns current state

Rest similar to basic button example

Madhavan Mukund More Swing examples Programming Concepts using Java 5 / 6

Other elements – checkboxes

JCheckbox: a box that can be ticked

A panel with two checkboxes, Red
and Blue

Only Red ticked, background red

Only Blue ticked, background blue

Both ticked, background green

Only one action — click the box

Listener is again ActionListener

Checkbox state: selected or not

isSelected() returns current state

Rest similar to basic button example

import ...

public class CheckBoxPanel extends JPanel

implements ActionListener{

private JCheckBox redBox;

private JCheckBox blueBox;

public CheckBoxPanel(){

redBox = new JCheckBox("Red");

blueBox = new JCheckBox("Blue");

...

}

}

Madhavan Mukund More Swing examples Programming Concepts using Java 5 / 6

Other elements – checkboxes

JCheckbox: a box that can be ticked

A panel with two checkboxes, Red
and Blue

Only Red ticked, background red

Only Blue ticked, background blue

Both ticked, background green

Only one action — click the box

Listener is again ActionListener

Checkbox state: selected or not

isSelected() returns current state

Rest similar to basic button example

import ...

public class CheckBoxPanel extends JPanel

implements ActionListener{

private JCheckBox redBox;

private JCheckBox blueBox;

public CheckBoxPanel(){

redBox = new JCheckBox("Red");

blueBox = new JCheckBox("Blue");

redBox.addActionListener(this);

blueBox.addActionListener(this);

...

}

}

Madhavan Mukund More Swing examples Programming Concepts using Java 5 / 6

Other elements – checkboxes

JCheckbox: a box that can be ticked

A panel with two checkboxes, Red
and Blue

Only Red ticked, background red

Only Blue ticked, background blue

Both ticked, background green

Only one action — click the box

Listener is again ActionListener

Checkbox state: selected or not

isSelected() returns current state

Rest similar to basic button example

import ...

public class CheckBoxPanel extends JPanel

implements ActionListener{

private JCheckBox redBox;

private JCheckBox blueBox;

public CheckBoxPanel(){

redBox = new JCheckBox("Red");

blueBox = new JCheckBox("Blue");

redBox.addActionListener(this);

blueBox.addActionListener(this);

redBox.setSelected(false);

blueBox.setSelected(false);

add(redBox);

add(blueBox);

...

}

}
Madhavan Mukund More Swing examples Programming Concepts using Java 5 / 6

Other elements – checkboxes

JCheckbox: a box that can be ticked

A panel with two checkboxes, Red
and Blue

Only Red ticked, background red

Only Blue ticked, background blue

Both ticked, background green

Only one action — click the box

Listener is again ActionListener

Checkbox state: selected or not

isSelected() returns current state

Rest similar to basic button example

public class CheckBoxPanel extends JPanel

implements ActionListener{

...

public void actionPerformed(ActionEvent evt){

Color color = getBackground();

if (blueBox.isSelected())

color = Color.blue;

if (redBox.isSelected())

color = Color.red;

if (blueBox.isSelected() &&

redBox.isSelected())

color = Color.green;

setBackground(color);

repaint();

}

}
Madhavan Mukund More Swing examples Programming Concepts using Java 5 / 6

Other elements – checkboxes

JCheckbox: a box that can be ticked

A panel with two checkboxes, Red
and Blue

Only Red ticked, background red

Only Blue ticked, background blue

Both ticked, background green

Only one action — click the box

Listener is again ActionListener

Checkbox state: selected or not

isSelected() returns current state

Rest similar to basic button example

Madhavan Mukund More Swing examples Programming Concepts using Java 5 / 6

Other elements – checkboxes

JCheckbox: a box that can be ticked

A panel with two checkboxes, Red
and Blue

Only Red ticked, background red

Only Blue ticked, background blue

Both ticked, background green

Only one action — click the box

Listener is again ActionListener

Checkbox state: selected or not

isSelected() returns current state

Rest similar to basic button example

Madhavan Mukund More Swing examples Programming Concepts using Java 5 / 6

Other elements – checkboxes

JCheckbox: a box that can be ticked

A panel with two checkboxes, Red
and Blue

Only Red ticked, background red

Only Blue ticked, background blue

Both ticked, background green

Only one action — click the box

Listener is again ActionListener

Checkbox state: selected or not

isSelected() returns current state

Rest similar to basic button example

Madhavan Mukund More Swing examples Programming Concepts using Java 5 / 6

Other elements – checkboxes

JCheckbox: a box that can be ticked

A panel with two checkboxes, Red
and Blue

Only Red ticked, background red

Only Blue ticked, background blue

Both ticked, background green

Only one action — click the box

Listener is again ActionListener

Checkbox state: selected or not

isSelected() returns current state

Rest similar to basic button example

Madhavan Mukund More Swing examples Programming Concepts using Java 5 / 6

Other elements – checkboxes

JCheckbox: a box that can be ticked

A panel with two checkboxes, Red
and Blue

Only Red ticked, background red

Only Blue ticked, background blue

Both ticked, background green

Only one action — click the box

Listener is again ActionListener

Checkbox state: selected or not

isSelected() returns current state

Rest similar to basic button example

Madhavan Mukund More Swing examples Programming Concepts using Java 5 / 6

Summary

Swing components such as buttons, checkboxes generate high level events

Each event is automatically sent to a listener

Listener capability is described using an interface

Event is sent as an object — listener can query the event to obtain details such as
event source, action label, . . . and react accordingly

Association between event generators and listeners is flexible

One listener can listen to multiple objects

One component can inform multiple listeners

Must explicitly set up association between component and listener

Events are “lost” if nobody is listening!

Swing objects are the most aesthetically pleasing, but useful to understand how GUI
programming works across other languages

Madhavan Mukund More Swing examples Programming Concepts using Java 6 / 6

	1.1 Intro
	1.2 Types
	1.3 Memory-Management
	1.4 Abstraction-modularity
	1.5 OO-concepts
	1.6 Classes
	1.7 Week 1
	Lecture-1
	Lecture-2
	Lecture-3
	Lecture-4
	Lecture-5
	Lecture-6

	2.1-Week2-Java-Intro
	2.2-Week2-Java-Basic-Types
	2.3-Week2-Java-Control-Flow
	2.4-Week2-Java-Classes
	2.5-Week2-Java-Input-Output
	2.6 Week 2
	Lecture-1
	Lecture-2
	Lecture-3
	Lecture-4
	Lecture-5

	3.1-Week3-OO-design
	3.2-Week3-Java-Subclasses
	3.3-Week3-Java-Polymorphism
	3.4-Week3-Java-Class-Hierarchy
	3.5-Week3-Subtyping-vs-Inheritance
	3.6-Week3-Java-Modifiers
	3.7 Week 3
	Lecture-1
	Lecture-2
	Lecture-3
	Lecture-4
	Lecture-5
	Lecture-6

	4.1-Week4-Java-Abstract-Classes
	4.2-Week4-Java-Interfaces
	4.3-Week4-Java-Private-Classes
	4.4-Week4-Java-Interaction-with-State
	4.5-Week4-Java-Callbacks
	4.6-Week4-Java-Iterators
	4.7 Week 4
	Lecture-1
	Lecture-2
	Lecture-3
	Lecture-4
	Lecture-5
	Lecture-6

	5.1-Week5-Polymorphism-Revisited
	5.2-Week5-Java-Generics
	5.3-Java-Generics-Subtyping
	5.4-Java-Reflection
	5.5-Java-Generics-Erasure
	6.1-Week6-Indirection
	6.2-Week6-Java-Collections
	6.3-Week6-Java-Concrete-Collections
	6.4-Week6-Java-Maps
	7.1-Week7-Errors-and-Exceptions
	7.2-Week7-Java-Exceptions
	7.3-Week7-Java-Packages
	7.4-Week7-Java-Assertions
	7.5-Week7-Java-Logging
	8.1-Week8-Cloning
	8.2-Week8-Type-Inference
	8.3-Week8-Higher-Order-Functions
	8.4-Week8-Streams
	9.1-Week9-Optional-Type
	9.2-Week9-Collecting-Results
	9.3-Week9-IO-Streams
	9.4-Week9-Serializability
	10.1-Week10-Concurrency
	10.2-Week10-Race-Conditions
	10.3-Week10-Mutual-Exclusion
	10.4-Week10-Test-and-Set
	10.5-Week10-Monitors
	11.1-Week11-Java-Monitors
	11.2-Week11-Java-Threads
	11.3-Week11-Concurrent-Programming-Example
	11.4-Week11-Threadsafe-Collections
	12.1-Week12-Event-Driven-Programming
	12.2-Week12-Swing
	12.3-Week12-More-Swing

