Java Programming (4343203) - Summer 2024 Solution by Milav Dabgar

Question 1(a) [3 marks]

Explain Garbage collection in java.

Answer:
Garbage collection in Java automatically reclaims memory by removing unused objects.

Table: Garbage Collection Process

Phase Description

Mark JVM identifies all live objects in memory

Sweep Unused objects are removed

Compact Remaining objects are reorganized to free up space

e Automatic: No manual memory management required

e Background: Runs in separate low-priority thread

Mnemonic: "MSC: Mark-Sweep-Compact frees memory automatically"

Question 1(b) [4 marks]

Explain JVM in detail.

Answer:
JVM (Java Virtual Machine) is a virtual machine that enables Java's platform independence by converting

bytecode to machine code.

Diagram: JVM Architecture

JVM

Class Runtime Data Execution Engine

Java Code Compiler Bytecode JVM Machine

¢ Platform Independence: Write once, run anywhere
e Security: Bytecode verification prevents dangerous operations

e Optimization: Just-in-time compilation improves performance

Mnemonic: "CLASS: Class Loader Leads All System Security"

Question 1(c) [7 marks]

Write a program in java to print Fibonacci series for N terms.

No. 1/ 24

Java Programming (4343203) - Summer 2024 Solution by Milav Dabgar

Answer:
Fibonacci series generates numbers where each is the sum of the two preceding ones.

Code Block:
import java.util.Scanner;
public class FibonacciSeries {
public static void main(String[] args) {

Scanner input = new Scanner(System.in);

System.out.print("Enter number of terms: ");

int n = input.nextInt();
int first = 0, second = 1;
System.out.print("Fibonacci Series: ");

for (int i = 1; i <= n; i++) {

System.out.print(first + " ");

int next = first + second;
first = second;

second = next;

input.close();

Initialize: Start with 0 and 1

Loop: Iterate N times to generate sequence

Calculation: Each number is sum of previous two

Mnemonic: "FSN: First + Second = Next number in sequence"

Question 1(c OR) [7 marks]

Write a program in java to find out minimum from any ten numbers using command line argument.

Answer:
Command line arguments allow passing input values directly when executing a Java program.

Code Block:

public class FindMinimum {
public static void main(String[] args) {
if (args.length < 10) {
System.out.println("Please provide 10 numbers");

return;

No. 2 /24

Java Programming (4343203) - Summer 2024 Solution by Milav Dabgar

int min = Integer.parseInt(args[0]);

for (int i = 1; i < 10; i++) {

int current Integer.parseInt(args[i]);

if (current < min) {

min = current;

System.out.println("Minimum number is: + min);

e Parse Arguments: Convert string arguments to integers
e Initialize: Set first number as minimum

e Compare: Check each number against current minimum

Mnemonic: "ICU: Initialize, Compare, Update the minimum"

Question 2(a) [3 marks]

List out basic concepts of Java OOP. Explain any one in details.

Answer:
Java Object-Oriented Programming is built on fundamental concepts for modeling real-world entities.

Table: OOP Concepts in Java

Concept Description

Encapsulation Binding data and methods together as a single unit
Inheritance Creating new classes from existing ones
Polymorphism One interface, multiple implementations
Abstraction Hiding implementation details, showing functionality

e Encapsulation: Protects data through access control

e Data Hiding: Private variables accessible through methods

Mnemonic: "PEAI: Programming Encapsulates Abstracts Inherits"

Question 2(b) [4 marks]

Explain final keyword with example.

Answer:
The final keyword in Java restricts modification and creates constants, unchangeable methods, and non-
inheritable classes.

No. 3 /24

Java Programming (4343203) - Summer 2024 Solution by Milav Dabgar

Table: Uses of final Keyword

Usage Effect Example

final variable Cannot be changed final int MAX = 100;

final method Cannot be overridden final void display() {}

final class Cannot be extended final class Math {}
Code Block:

public class FinalDemo {
final int MAX VALUE = 100; // constant

final void display() {

System.out.println("This method cannot be overridden");

final class MathOperations {

// This class cannot be inherited

Mnemonic: "VCM: Variables Constants Methods can't change"

Question 2(c) [7 marks]

What is constructor? Explain parameterized constructor with example.

Answer:
A constructor initializes objects when created, with the same name as its class and no return type.

Diagram: Constructor Types

Constructors

Default Constructor Parameterized Copy Constructor

Code Block:

public class Student {
String name;

int age;

No. 4 /24

Java Programming (4343203) - Summer 2024 Solution by Milav Dabgar

// Parameterized constructor
Student (String n, int a) {
name = n;

age = a;

void display() {

System.out.println("Name: + name + ", Age: + age);

public static void main(String[] args) {
// Object creation using parameterized constructor
Student sl = new Student("John", 20);
sl.display();

e Parameters: Accept values during object creation
¢ Initialization: Set object properties with passed values

e Overloading: Multiple constructors with different parameters

Mnemonic: "SPO: Student Parameters Object initializes properties"

Question 2(a OR) [3 marks]

Explain the Java Program Structure with example.

Answer:
Java program structure follows a specific hierarchy of elements organized logically.

Diagram: Java Program Structure

| Documentation |
| package statement |

| import statements |

|

[e +|
	variables	
	Constructors	
	Methods	
[+|
Procommonocoanonoooooe +

Package: Groups related classes

Import: Includes external classes

Class: Contains variables and methods

Mnemonic: "PIC: Package Imports Class in every program"

No. 5/ 24

Java Programming (4343203) - Summer 2024 Solution by Milav Dabgar

Question 2(b OR) [4 marks]

Explain static keyword with suitable example.

Answer:
Static keyword creates class-level variables and methods shared by all objects, accessible without creating

instances.

Table: Static vs Non-Static

Feature Static Non-Static

Memory Single copy Multiple copies

Access Without object Through object

Reference Class name Object name

When loaded Class loading Object creation
Code Block:

public class Counter {
static int count = 0; // Shared by all objects

int instanceCount = 0; // Unique to each object
Counter () {

count++;

instanceCount++;

public static void main(String[] args) {

Counter cl new Counter();

Counter c2 new Counter();

System.out.println("Static count: + Counter.count);

System.out.println("cl's instance count: + cl.instanceCount);

System.out.println("c2's instance count: " + c2.instanceCount);

Mnemonic: "SCM: Static Creates Memory once for all objects"

Question 2(c OR) [7 marks]

Define Inheritance. List out types of it. Explain multilevel and hierarchical inheritance with suitable
example.

Answer:
Inheritance is an OOP principle where a new class acquires properties and behaviors from an existing class.

No. 6 /24

Table: Types of Inheritance in Java

Type
Single
Multilevel
Hierarchical

Multiple

Java Programming (4343203) - Summer 2024 Solution by Milav Dabgar

Description

One subclass extends one superclass

Chain of inheritance (A—B—C()

Multiple subclasses extend one superclass

One class extends multiple classes (via interfaces)

Diagram: Multilevel vs Hierarchical Inheritance

Code Block:

Animal

Dog

Vehicle

Car

Labrador

// Multilevel inheritance

class Animal {

void eat() { System.out.println("eating"); }

class Dog extends Animal {

void bark() { System.out.println("barking");

class Labrador extends Dog {

void color()

{ System.out.println("golden");

No.7 /24

Bike

Truck

}

}

Java Programming (4343203) - Summer 2024 Solution by Milav Dabgar

// Hierarchical inheritance
class Vehicle {

void move() { System.out.println("moving"); }

class Car extends Vehicle {
void wheels() { System.out.println("4 wheels"); }

class Bike extends Vehicle {
void wheels() { System.out.println("2 wheels"); }

Mnemonic: "SMHM: Single Multilevel Hierarchical Makes inheritance types"

Question 3(a) [3 marks]

Explain this keyword with suitable example.

Answer:
The 'this' keyword in Java refers to the current object, used to differentiate between instance variables and

parameters.

Table: Uses of 'this' Keyword

Use Purpose
this.variable Access instance variables
this() Call current class constructor
return this Return current object

Code Block:

public class Student {

String name;
Student (String name) {

this.name = name; // Refers to instance variable

void display() {

System.out.println("Name: + this.name);

Mnemonic: "VAR: Variables Access Resolution using this"

Question 3(b) [4 marks]

No. 8 /24

Java Programming (4343203) - Summer 2024 Solution by Milav Dabgar

Explain different access controls in Java.

Answer:
Access controls in Java regulate visibility and accessibility of classes, methods, and variables.

Table: Java Access Modifiers

Modifier Class Package Subclass World
private 4 X X X
default 4 4 X X
protected v v v X
public v v v 4

e Private: Only within the same class
e Default: Within the same package
e Protected: Within package and subclasses

e Public: Accessible everywhere

Mnemonic: "PDPP: Private Default Protected Public from narrow to wide"

Question 3(c) [7 marks]

What is interface? Explain multiple inheritance using interface with example.

Answer:
An interface is a contract that specifies what a class must do, containing abstract methods, constants, and
(since Java 8) default methods.

Diagram: Multiple Inheritance with Interfaces

No.9 /24

Java Programming (4343203) - Summer 2024 Solution by Milav Dabgar

Printable

Scannable

<<interface>>

<<interface>>

+print() +scan()

. Printer ‘

+print()
+scan()

Code Block:

interface Printable {

void print();

interface Scannable {

void scan();

// Multiple inheritance using interfaces

class Printer implements Printable, Scannable {
public void print() {

"I);

System.out.println("Printing..

public void scan() {

System.out.println("Scanning...");

public static void main(String[] args) {
Printer p = new Printer();
p.print();

p.scan();

e Contract: Defines behavior without implementation

No. 10 / 24

Java Programming (4343203) - Summer 2024 Solution by Milav Dabgar

¢ Implements: Classes fulfill the contract

¢ Multiple: Can implement many interfaces

Mnemonic: "CIM: Contract Implements Multiple interfaces"

Question 3(a OR) [3 marks]

Explain super keyword with example.

Answer:
The super keyword refers to the parent class, used to access parent methods, constructors, and variables.

Table: Uses of super Keyword

Use Purpose

super.variable Access parent variable

super.method() Call parent method

super() Call parent constructor
Code Block:

class Vehicle {
String color = "white";

void display() {
System.out.println("Vehicle class");

class Car extends Vehicle {

String color = "black";

void display() {
super.display(); // Calls parent method

+ color);

System.out.println("Car color:

System.out.println("Vehicle color: + super.color);

Mnemonic: "VMC: Variables Methods Constructors accessed by super"

Question 3(b OR) [4 marks]

What is package? Write steps to create a package and give example of it.

Answer:
A package in Java is a namespace that organizes related classes and interfaces, preventing naming conflicts.

No. 11/ 24

Java Programming (4343203) - Summer 2024 Solution by Milav Dabgar

Table: Steps to Create a Package

Step Action
1 Declare package name at top of file
2 Create directory structure matching package name
3 Save Java file in the directory
4 Compile with -d option
5 Import package to use it
Code Block:

// Step 1l: Declare package (save as Calculator.java)

package mathematics;

public class Calculator {
public int add(int a, int b) {

return a + b;

// In another file (UseCalculator.java)

import mathematics.Calculator;

class UseCalculator {
public static void main(String[] args) {
Calculator calc = new Calculator();

System.out.println(calc.add (10, 20));

Mnemonic: "DISCO: Declare Import Save Compile Organize"

Question 3(c OR) [7 marks]

Define: Method Overriding. List out Rules for method overriding. Write a java program that
implements method overriding.

Answer:
Method overriding occurs when a subclass provides a specific implementation for a method already
defined in its parent class.

Table: Rules for Method Overriding

No. 12 [24

Java Programming (4343203) - Summer 2024 Solution by Milav Dabgar

Rule Description
Same name Method must have same name
Same parameters Parameter count and type must match
Same return type Return type must be same or subtype (covariant)
Access modifier Can't be more restrictive
Exceptions Can't throw broader checked exceptions
Code Block:

class Animal {
void makeSound() {

System.out.println("Animal makes a sound");

class Dog extends Animal {
// Method overriding
@Override
void makeSound() {

System.out.println("Dog barks");

class Cat extends Animal {
// Method overriding
@Override
void makeSound() {

System.out.println("Cat meows");

public class MethodOverridingDemo {
public static void main(String[] args) {
Animal animal = new Animal();
Animal dog = new Dog();

Animal cat = new Cat();
animal.makeSound(); // Output: Animal makes a sound

dog.makeSound(); // Output: Dog barks

cat.makeSound(); // Output: Cat meows

e Runtime Polymorphism: Method resolution at runtime

e @Override: Annotation ensures method is overriding

No. 13 /24

Java Programming (4343203) - Summer 2024 Solution by Milav Dabgar

¢ Inheritance: Requires IS-A relationship

Mnemonic: "SPARE: Same Parameters Access Return Exceptions"

Question 4(a) [3 marks]

Explain abstract class with suitable example.

Answer:
An abstract class cannot be instantiated and may contain abstract methods that must be implemented by
subclasses.

Table: Abstract Class vs Interface

Feature Abstract Class Interface
Instantiation Cannot Cannot
Methods Concrete and abstract Abstract (+ default since Java 8)
Variables Any type Only constants
Constructor Has Doesn't have
Code Block:

abstract class Shape {
// Abstract method - no implementation

abstract double area();
// Concrete method

void display() {

System.out.println("This is a shape");

class Circle extends Shape {

double radius;

Circle(double r) {

radius = r;

// Implementation of abstract method
double area() {

return 3.14 * radius * radius;

Mnemonic: "PAl: Partial Abstract Implementation is key"

No. 14 / 24

Java Programming (4343203) - Summer 2024 Solution by Milav Dabgar

Question 4(b) [4 marks]

What is Thread? Explain Thread life cycle.

Answer:
A thread is a lightweight subprocess, the smallest unit of processing that allows concurrent execution.

Diagram: Thread Life Cycle

notify/timeout
k(////////”—-——_— Blocked
it/sleep/IO
@ —Thread createdstart() wait/sleep.

scheduler selects
run completes O,

e New: Thread created but not started

e Runnable: Ready to run when CPU time is given
¢ Running: Currently executing

¢ Blocked/Waiting: Temporarily inactive

e Terminated: Completed execution

Mnemonic: "NRRBT: New Runnable Running Blocked Terminated"

Question 4(c) [7 marks]

Write a program in java that creates the multiple threads by implementing the Thread class.

Answer:
Creating threads by implementing Thread class allows multiple tasks to execute concurrently.

Code Block:

class MyThread extends Thread {
private String threadName;

MyThread(String name) {

this.threadName = name;

@override
public void run() {
try {
for (int i = 1; i <= 5; i++) {
System.out.println(threadName + ": " + 1i);
Thread.sleep(500);

}
} catch (InterruptedException e) {

System.out.println(threadName + interrupted");

No. 15/ 24

Java Programming (4343203) - Summer 2024 Solution by Milav Dabgar

System.out.println(threadName + completed");

public class MultiThreadDemo {
public static void main(String[] args) {
MyThread threadl = new MyThread("Thread-1");
MyThread thread2 = new MyThread("Thread-2");
MyThread thread3 = new MyThread("Thread-3");

threadl.start();
thread2.start();
thread3.start();

Extend Thread: Create thread by extending Thread class

Override run(): Define task in run method

start(): Begin thread execution

Mnemonic: "ERS: Extend Run Start to create threads"

Question 4(a OR) [3 marks]

Explain final class with suitable example.

Answer:
A final class cannot be extended, preventing inheritance and modification of its design.

Table: Final Class Characteristics

Feature Description
Inheritance Cannot be subclassed
Methods Implicitly final
Security Prevents design alteration
Example String, Math classes

Code Block:

No. 16 / 24

Java Programming (4343203) - Summer 2024 Solution by Milav Dabgar

final class Security {
void secureMethod() {

System.out.println("Secure implementation");

// Error: Cannot extend final class

// class HackAttempt extends Security { }

e Security: Protects sensitive implementations
¢ Immutability: Helps create immutable classes

e Optimization: VM can optimize final classes

Mnemonic: "SIO: Security Immutability Optimization"

Question 4(b OR) [4 marks]

Explain thread priorities with suitable example.

Answer:
Thread priorities determine the order in which threads are scheduled for execution, from 1 (lowest) to 10
(highest).

Table: Thread Priority Constants

Constant Value Description

MIN_PRIORITY 1 Lowest priority

NORM_PRIORITY 5 Default priority

MAX_PRIORITY 10 Highest priority
Code Block:

class PriorityThread extends Thread {
PriorityThread(String name) {

super (name) ;

public void run() {
System.out.println("Running: " + getName() +

with priority: " + getPriority());

public class ThreadPriorityDemo {
public static void main(String[] args) {
PriorityThread low = new PriorityThread("Low Priority");

PriorityThread norm = new PriorityThread("Normal Priority");

No. 17 [24

Java Programming (4343203) - Summer 2024 Solution by Milav Dabgar

PriorityThread high = new PriorityThread("High Priority");

low.setPriority(Thread.MIN PRIORITY);
high.setPriority(Thread.MAX PRIORITY);

low.start();
norm.start();
high.start();

Mnemonic: "HNL: High Normal Low priorities in threads"

Question 4(c OR) [7 marks]

What is Exception? Write a program that shows the use of Arithmetic Exception.

Answer:
An exception is an abnormal condition that disrupts the normal flow of program execution.

Diagram: Exception Hierarchy

Throwable

F

Exception Error

RuntimeException

ArithmeticException NullPointerException

No. 18 / 24

Java Programming (4343203) - Summer 2024 Solution by Milav Dabgar

Code Block:

public class ArithmeticExceptionDemo {
public static void main(String[] args) {

try {

// This will cause ArithmeticException

int result = 100 / 0;

System.out.println("Result: " + result);

}

catch (ArithmeticException e) {

System.out.println("ArithmeticException caught:

System.out.println("Cannot divide by zero");

}
finally {

System.out.println("This block always executes");
}

+ e.getMessage());

System.out.println("Program continues after exception handling");

Catch Block: Handles the specific exception

Mnemonic: "TCF: Try Catch Finally handles exceptions"

Question 5(a) [3 marks]

Try Block: Contains code that might throw exceptions

Finally Block: Always executes regardless of exception

Write a Java Program to find sum and average of 10 numbers of an array.

Answer:

Arrays store multiple values of the same type, enabling sequential processing of elements.

Code Block:

public class ArraySumAverage {
public static void main(String[] args) {

int[] numbers = {10, 20, 30, 40, 50, 60, 70, 80,
int sum = 0;
// Calculate sum
for (int i = 0; i < numbers.length; i++) {
sum += numbers[i];
}
// Calculate average
double average = (double) sum / numbers.length;

No. 19 /24

90,

100};

Java Programming (4343203) - Summer 2024 Solution by Milav Dabgar

System.out.println("Sum = + sum);

System.out.println("Average = + average);

Declaration: Creates fixed-size collection

Iteration: Sequential access to elements

Calculation: Process values for results

Mnemonic: "DIC: Declare Iterate Calculate for array processing"

Question 5(b) [4 marks]

Write a Java program to handle user defined exception for 'Divide by Zero' error.

Answer:
User-defined exceptions allow creating custom exception types for specific application requirements.

Code Block:

// Custom exception class
class DivideByZeroException extends Exception {
public DivideByZeroException(String message) {

super (message) ;

public class CustomExceptionDemo {
// Method that throws custom exception
static double divide(int numerator, int denominator) throws DivideByZeroException {
if (denominator == 0) {
throw new DivideByZeroException("Cannot divide by zero!");

}

return (double) numerator / denominator;

public static void main(String[] args) {
try {
System.out.println(divide (10, 2));
System.out.println(divide (20, 0));
} catch (DivideByZeroException e) {

System.out.println("Custom exception caught: + e.getMessage());

Custom Class: Extends Exception class

Throwing: Use throw keyword with new instance

Handling: Catch specific exception type

No. 20/ 24

Java Programming (4343203) - Summer 2024 Solution by Milav Dabgar

Mnemonic: "CTE: Create Throw Exception when needed"

Question 5(c) [7 marks]

Write a java program to create a text file and perform read operation on the text file.

Answer:
Java provides I/0 classes to work with files, allowing creation, writing, and reading operations.

Code Block:

import java.io.FileWriter;
import java.io.FileReader;
import java.io.IOException;

import java.io.BufferedReader;

public class FileOperationsDemo {
public static void main(String[] args) {
try {
// Create and write to file
FileWriter writer = new FileWriter("sample.txt");
writer.write("Hello World!\n");
writer.write("Welcome to Java File Handling.\n");
writer.write("This is the third line.");
writer.close();
System.out.println("Successfully wrote to the file.");

// Read from file
FileReader reader = new FileReader("sample.txt");

BufferedReader buffReader = new BufferedReader (reader);

String line;
System.out.println("\nFile contents:");
while ((line = buffReader.readLine()) != null) {

System.out.println(line);

reader.close();

} catch (IOException e) {

System.out.println("An error occurred: + e.getMessage());

e FileWriter: Creates and writes to files
e FileReader: Reads character data from files

e BufferedReader: Efficiently reads text by lines

Mnemonic: "WRC: Write Read Close for file operations"

No. 21/ 24

Java Programming (4343203) - Summer 2024 Solution by Milav Dabgar

Question 5(a OR) [3 marks]

Explain java 1/0 process.

Answer:
Java I/0 process involves transferring data to and from various sources using streams.

Table: Java I/0 Stream Types

Classification Types

Direction Input, Output

Data Type Byte Streams, Character Streams
Functionality Basic, Buffered, Data, Object

Diagram: Java I/0 Hierarchy

e Stream: Sequence of data flowing between source and destination

¢ Buffering: Improves performance by reducing disk access

Mnemonic: "SBI: Stream Buffered Input/Output”

Question 5(b OR) [4 marks]

Explain throw and finally in Exception Handling with example.

Answer:
Exception handling mechanisms control program flow during errors, ensuring graceful execution.

Table: throw vs finally

No. 22 [24

Java Programming (4343203) - Summer 2024 Solution by Milav Dabgar

Feature throw finally
Purpose Explicitly throws exception Ensures code execution
Placement Inside method After try-catch blocks
Execution When condition met Always, even with return
Usage Control flow Resource cleanup

Code Block:

public class ThrowFinallyDemo {
public static void validateAge(int age) {
try {
if (age < 18) {
throw new ArithmeticException("Not eligible to vote");
} else {
System.out.println("Welcome to vote");
}
} catch (ArithmeticException e) {
System.out.println("Exception caught: " + e.getMessage());
} finally {

System.out.println("Validation process completed");

public static void main(String[] args) {
validateAge(15);
System.out.println("-—-—-—=—=——- ")
validateAge(20);

Mnemonic: "TERA: Throw Exception Regardless Always finally executes"

Question 5(c OR) [7 marks]

Write a java program to display the content of a text file and perform append operation on the text
file.

Code Block:

import java.io.*;

public class FileAppendDemo {
public static void main(String[] args) {
try {
// Create initial file
FileWriter writer = new FileWriter("example.txt");

writer.write("Original content line 1\n");

No. 23 /24

Java Programming (4343203) - Summer 2024 Solution by Milav Dabgar

writer.write("Original content line 2\n");

writer.close();

// Display file content
System.out.println("Original file content:");

readFile("example.txt");

// Append to file

FileWriter appendWriter = new FileWriter("example.txt", true);
appendWriter.write("Appended content line 1\n");
appendWriter.write("Appended content line 2\n");

appendWriter.close();

// Display updated content
System.out.println("\nFile content after append:");

readFile("example.txt");

} catch (IOException e) {

System.out.println("An error occurred: + e.getMessage());

// Method to read and display file content
public static void readFile(String fileName) {
try {
BufferedReader reader = new BufferedReader (new FileReader(fileName));
String line;
while ((line = reader.readLine()) != null) {
System.out.println(line);
}
reader.close();
} catch (IOException e) {

"

System.out.println("Error reading file: + e.getMessage());

FileWriter(file, true): Second parameter enables append mode

BufferedReader: Efficiently reads text by lines

Reusable Method: Encapsulates reading functionality

Mnemonic: "CAD: Create Append Display file operations"

No. 24 / 24

	Question 1(a) [3 marks]
	Question 1(b) [4 marks]
	Question 1(c) [7 marks]
	Question 1(c OR) [7 marks]
	Question 2(a) [3 marks]
	Question 2(b) [4 marks]
	Question 2(c) [7 marks]
	Question 2(a OR) [3 marks]
	Question 2(b OR) [4 marks]
	Question 2(c OR) [7 marks]
	Question 3(a) [3 marks]
	Question 3(b) [4 marks]
	Question 3(c) [7 marks]
	Question 3(a OR) [3 marks]
	Question 3(b OR) [4 marks]
	Question 3(c OR) [7 marks]
	Question 4(a) [3 marks]
	Question 4(b) [4 marks]
	Question 4(c) [7 marks]
	Question 4(a OR) [3 marks]
	Question 4(b OR) [4 marks]
	Question 4(c OR) [7 marks]
	Question 5(a) [3 marks]
	Question 5(b) [4 marks]
	Question 5(c) [7 marks]
	Question 5(a OR) [3 marks]
	Question 5(b OR) [4 marks]
	Question 5(c OR) [7 marks]

