
Java Programming
As per Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021)

Milav Dabgar

ii

Java Programming Milav Dabgar

Contents

1 Introduction to Java Programming Language 1
1.1 Java Overview . 1

1.1.1 Brief History & Evolution of Java . 1
1.1.2 Java Features . 1
1.1.3 Java Applications . 1

1.2 Java Environment Setup & Basic Java Syntax . 2
1.2.1 Java Components . 2
1.2.2 Setting up Java Development Environment . 2
1.2.3 Structure of a Java Program . 2
1.2.4 Compilation and Execution of Java Program . 4
1.2.5 Importance of Bytecode & Garbage Collection . 4

1.3 Data Types . 4
1.3.1 Primitive Data Types . 4
1.3.2 Non-Primitive Data Types . 5
1.3.3 Type Conversion and Casting . 5

1.4 Identifiers . 6
1.4.1 Naming Rules & Conventions . 6
1.4.2 Variables . 6
1.4.3 Constants (final Keyword) . 7
1.4.4 Scope of Variables . 7

1.5 Arrays . 7
1.5.1 One-dimensional Arrays . 7
1.5.2 Multidimensional Arrays . 8

1.6 Operators . 8
1.6.1 Arithmetic Operators . 9
1.6.2 Assignment Operators . 9
1.6.3 Relational (Comparison) Operators . 9
1.6.4 Logical Operators . 10
1.6.5 Bitwise Operators . 10
1.6.6 Conditional (Ternary) Operator . 10
1.6.7 Operator Precedence . 11

1.7 Control Flow Statements . 11
1.7.1 Selection Statements . 11
1.7.2 Looping Statements . 14
1.7.3 Jump Statements . 15

2 Object-Oriented Programming 17
2.1 Procedure-Oriented vs. Object-Oriented Programming . 17

2.1.1 Characteristics . 17
2.1.2 Differences . 17

2.2 OOP Concepts . 18
2.2.1 Classes and Objects . 18
2.2.2 Encapsulation . 18
2.2.3 Abstraction . 18
2.2.4 Inheritance . 19
2.2.5 Polymorphism . 19

2.3 Classes and Objects . 20
2.3.1 Creating Classes . 20

iii

CONTENTS iv

2.3.2 Creating Objects . 21
2.4 Class Attributes . 22

2.4.1 Accessing Attributes . 22
2.4.2 Modify Attributes . 22
2.4.3 Attributes of Multiple Objects . 23
2.4.4 Multiple Attributes of same Object . 23

2.5 Class Methods . 24
2.5.1 Create a Method . 24
2.5.2 Call a Method . 24
2.5.3 Method Parameters and Arguments . 25
2.5.4 Return Values . 26
2.5.5 Access Methods With an Object . 26
2.5.6 Method Signatures . 27
2.5.7 Passing Arguments . 27
2.5.8 Returning Values . 27

2.6 Constructors . 27
2.6.1 Types of Constructors . 28
2.6.2 Constructor Overloading . 29

2.7 Modifiers . 29
2.7.1 Access Modifiers . 29
2.7.2 Non-Access Modifiers . 30

2.8 String Class . 32
2.8.1 Strings - Special Characters . 33
2.8.2 Common String Methods . 33

2.9 Scanner Class (User Input) . 34
2.9.1 Input Types . 34
2.9.2 Using Scanner Class . 35

2.10 Command-line Arguments . 35

3 Inheritance, Packages, and Interfaces 37
3.1 Inheritance . 37

3.1.1 Basics of Inheritance . 37
3.1.2 Types of Inheritance . 37
3.1.3 extends Keyword . 38
3.1.4 super Keyword . 38
3.1.5 Polymorphism . 38
3.1.6 Method Dynamic Dispatch . 40

3.2 Interfaces . 41
3.2.1 Defining Interfaces . 41
3.2.2 Implementing Interfaces . 41
3.2.3 Multiple Inheritance Using Interfaces . 41

3.3 Abstraction . 42
3.3.1 Abstract Class . 43
3.3.2 Abstract Method . 43
3.3.3 Differences from Interfaces . 43

3.4 Final Class . 44
3.4.1 Final Class Syntax . 44
3.4.2 Final Method . 44

3.5 Inner Classes . 45
3.5.1 Private Inner Class . 45
3.5.2 Static Inner Class . 45
3.5.3 Access Outer Class From Inner Class . 46

3.6 Packages & API . 46
3.6.1 Built-in Packages . 46
3.6.2 Import a Class . 47
3.6.3 Import a Package . 47
3.6.4 User-defined Packages . 47
3.6.5 Access Rules: Access Control Within Packages . 48
3.6.6 Example: Access Control . 48

4 Exception Handling and Multithreading 49

Java Programming Milav Dabgar

CONTENTS v

4.1 Exception Handling in Java . 49
4.1.1 Errors vs. Exceptions . 49
4.1.2 Java try and catch . 49
4.1.3 try-catch-finally Blocks . 50

4.2 Throwing Exceptions . 50
4.2.1 Common Built-in Exceptions . 51
4.2.2 Creating Custom Exceptions . 51
4.2.3 Benefits of Exception Handling . 51

4.3 Multi-threading in Java . 52
4.3.1 Concepts of Threads and Processes . 52
4.3.2 Multi-threading Benefits . 52
4.3.3 Creating a Thread . 52
4.3.4 Running Threads . 52
4.3.5 Concurrency Problems . 53
4.3.6 Thread Lifecycle . 54
4.3.7 Thread Priority . 54
4.3.8 Thread Exception Handling . 54
4.3.9 Synchronization . 54

5 File Handling and Collections Framework 57
5.1 File Handling using File Class . 57

5.1.1 Create a File . 57
5.1.2 Write To a File . 58
5.1.3 Read a File . 58
5.1.4 Get File Information . 59
5.1.5 Delete a File . 59
5.1.6 Delete a Folder . 60

5.2 File Handling using Streams Class . 60
5.2.1 Streams and Stream Classes . 60
5.2.2 FileInputStream and FileOutputStream . 60
5.2.3 FileOutputStream to Write to File . 61
5.2.4 FileInputStream to Read from a File . 61
5.2.5 Closing Streams . 62

5.3 Collections Framework in Java . 62
5.3.1 Overview and Hierarchy . 62
5.3.2 ArrayList . 62
5.3.3 LinkedList . 65
5.3.4 HashMap . 66
5.3.5 HashSet . 68
5.3.6 Iterator . 70

6 Java Programming GTU Paper Solutions 73
6.1 4341602 - Java: Winter 2023 Paper Solution . 73

6.1.1 Q1a: List out basic concepts of Java OOP. Explain any one in detail. 73
6.1.2 Q1b: Explain JVM in detail. 74
6.1.3 Q1c: Write a program in java to print Fibonacci series for n terms. 75
6.1.4 Q1c: Write a program in java to find out minimum from any ten numbers using

command line argument. 75
6.1.5 Q2a: What is Java wrapper class? Explain with example. 76
6.1.6 Q2b: List out different features of java. Explain any two. 77
6.1.7 Q2c: What is method overload in Java ? Explain with example. 78
6.1.8 Q2a: Explain Garbage collection in java. 79
6.1.9 Q2b: Explain final keyword in Java with example. 80
6.1.10 Q2c: What is constructor in Java? Explain parameterized constructor with example. 81
6.1.11 Q3a: Explain super keyword in Java with example. 82
6.1.12 Q3b: List out different types of inheritance in Java. Explain multilevel inheritance. 83
6.1.13 Q3c: What is Java interface? Explain multiple inheritance with example. 84
6.1.14 Q3a: Explain Java static keyword with example. 85
6.1.15 Q3b: Explain different access controls in Java. 86
6.1.16 Q3c: What is Java package? Write steps to create a package in Java and give

example of it. 87

Java Programming Milav Dabgar

CONTENTS vi

6.1.17 Q4a: Explain Java thread priorities with suitable example. 88
6.1.18 Q4b: What is Java Thread? Explain Thread life cycle. 89
6.1.19 Q4c: Write a program in java that create the multiple threads by implementing the

Thread class. 90
6.1.20 Q4a: List four different inbuilt exceptions of Java. Explain any one inbuilt exception. 91
6.1.21 Q4b: Explain multiple catch with suitable example in Java. 92
6.1.22 Q4c: What is Java Exception? Write a program that show the use of Arithmetic

Exception in Java. 93
6.1.23 Q5a: Explain ArrayIndexOutOfBound Exception in Java with example. 93
6.1.24 Q5b: Explain basics of Java stream classes. 94
6.1.25 Q5c: Write a java program to create a text file and perform read operation on the

text file. 95
6.1.26 Q5a: Explain Divide by Zero Exception in Java with example. 96
6.1.27 Q5b: Explain java I/O process. 96
6.1.28 Q5c: Write a java program to display the content of a text file and perform append

operation on the text file. 97
6.2 4341602 - Java: Summer 2023 Paper Solution . 98

6.2.1 Q1a: Differentiate between Procedure-Oriented Programming (POP) and Object-
Oriented Programming (OOP). 98

6.2.2 Q1b: Explain Super keyword in inheritance with suitable example. 99
6.2.3 Q1c: Define: Method Overriding. List out Rules for method overriding. Write a

java program that implements method overriding. 100
6.2.4 Q1cOR: Describe: Interface. Write a java program using interface to demonstrate

multiple inheritance. 101
6.2.5 Q2a: Explain the Java Program Structure with example. 104
6.2.6 Q2b: Explain static keyword with suitable example. 105
6.2.7 Q2c: Define: Constructor. List out types of it. Explain Parameterized and copy

constructor with suitable example. 106
6.2.8 Q2a: Explain the Primitive Data Types and User Defined DataTypes in java. . . . 107
6.2.9 Q2b: Explain this keyword with suitable example. 108
6.2.10 Q2c: Define Inheritance. List out types of it. Explain multilevel and hierarchical

inheritance with suitable example. 109
6.2.11 Q3a: Explain Type Conversion and Casting in java. 111
6.2.12 Q3b: Explain different visibility controls used in Java. 112
6.2.13 Q3c: Define: Thread. List different methods used to create Thread. Explain Thread

life cycle in detail. 112
6.2.14 Q3a: Explain the purpose of JVM in java. 114
6.2.15 Q3b: Define: Package. Write the steps to create a Package with suitable example. 115
6.2.16 Q3c: Explain Synchronization in Thread with suitable example. 117
6.2.17 Q4a: Differentiate between String class and StringBuffer class. 118
6.2.18 Q4b: Write a Java Program to find sum and average of 10 numbers of an array. . . 119
6.2.19 Q4c: Explain abstract class with suitable example. Explain final class with suitable

example. 120
6.2.20 Q4a: Explain Garbage Collection in Java. 122
6.2.21 Q4b: Write a Java program to handle user defined exception for ‘DividebyZero’ error.123
6.2.22 Q4c: Write a java program to demonstrate multiple try block and multiple catch

block exception. 124
6.2.23 Q5a: Write a program in Java to create a file and perform write operation on this file.125
6.2.24 Q5b: Explain throw and finally in Exception Handling with example. 125
6.2.25 Q5c: Describe: Polymorphism. Explain run time polymorphism with suitable

example in java. 127
6.2.26 Q5a: Write a program in Java that read the content of a file byte by byte and copy

it into another file. 128
6.2.27 Q5b: Explain the different I/O Classes available with Java. 128
6.2.28 Q5c: Write a java program that executes two threads. One thread displays “Java

Programming” every 3 seconds, and the other displays “Semester - 4th IT” every 6
seconds.(Create the threads by extending the Thread class) 129

Java Programming Milav Dabgar

Chapter 1

Introduction to Java Programming
Language

1.1 Java Overview
Java is a high-level, class-based, object-oriented programming language that is designed to have as
few implementation dependencies as possible. It was originally developed by James Gosling at Sun
Microsystems (which is now a subsidiary of Oracle Corporation) and released in 1995 as a core component
of Sun Microsystems’ Java platform.

1.1.1 Brief History & Evolution of Java
• Inception (1991): Sun Microsystems initiated the Java project under James Gosling, aiming for

embedded devices. Java was originally called “Oak”.
• Public Debut (1995): Java was unveiled, focusing on web applets and its “Write Once, Run

Anywhere” (WORA) philosophy.
• Growth & Refinement: Subsequent releases (Java 2 and beyond) introduced major platforms

(J2SE, J2EE, J2ME), significant language improvements, and vast libraries.
• Oracle Acquisition (2010): Oracle took ownership, driving Java’s evolution.
• Modern Era: Java remains a powerhouse, adapting to cloud computing, big data, and modern

development paradigms.

1.1.2 Java Features
• Platform Independent: Java code is compiled into bytecode, which can run on any device

equipped with a JVM, enabling the famous principle of “write once, run anywhere” (WORA).

• Object-Oriented: Java strictly follows the object-oriented programming model, including concepts
like inheritance, encapsulation, polymorphism, and abstraction.

• Robust and Secure: Java offers strong memory management, exception handling, and type-
checking mechanisms. Its security features include the sandbox environment of the JVM.

• Multithreaded: Java supports multithreaded programming, allowing developers to build applica-
tions that can perform multiple tasks simultaneously.

• Rich API: Java provides a comprehensive standard library (API) that includes tools for networking,
I/O, data structures, concurrency, and more.

• High Performance: While the early versions were criticized for performance, Java has signifi-
cantly improved with the introduction of Just-In-Time (JIT) compilation and various optimization
techniques.

1.1.3 Java Applications
• Desktop Applications: Java is used to develop cross-platform desktop applications. Swing and

JavaFX are notable APIs for creating rich graphical user interfaces.

1

Java Environment Setup & Basic Java Syntax 2

• Web Applications: Java is widely used in web development, with technologies such as Servlets,
JSPs (JavaServer Pages), and frameworks like Spring and Hibernate facilitating the development of
robust web applications.

• Mobile Applications: Java was the official language for Android app development until the
introduction of Kotlin as an alternative. It remains widely used for Android development.

• Enterprise Applications: Java EE (Enterprise Edition) provides APIs and runtime environments
for developing and running large-scale, multi-tiered, scalable, and secure network applications.

• Big Data: Tools within the Java ecosystem (like Hadoop, Spark) are widely used for processing
vast datasets.

• Embedded Systems: Java finds use in certain embedded systems and IoT (Internet of Things)
devices.

• Scientific Applications: Popular for computation, modeling, and simulation.

Java’s versatility, robustness, and widespread adoption have cemented its place as a cornerstone of modern
software development, covering a wide array of computing platforms from embedded devices to enterprise
servers and supercomputers.

1.2 Java Environment Setup & Basic Java Syntax

1.2.1 Java Components
• JVM (Java Virtual Machine): JVM is an abstract computing machine that enables Java

bytecode to be executed on different platforms. It interprets the bytecode into machine-specific
instructions.

• JRE (Java Runtime Environment): A subset of the JDK, focused on running Java programs.
JRE includes JVM along with libraries and other components required to run Java applications but
does not include development tools.

• JDK (Java Development Kit): The essential package for developing Java applications. JDK is
a full-featured software development kit that includes JRE, compilers, debuggers, and other tools
necessary for developing Java applications.

1.2.2 Setting up Java Development Environment
To set up a Java development environment:

1. Download JDK: Visit the official Oracle website or adopt openJDK distributions and download
the JDK appropriate for your operating system.

2. Install JDK: Follow the installation instructions provided by Oracle or the respective distribution.
This usually involves running an installer program.

3. Set up Environment Variables: Set the JAVA_HOME environment variable to point to the
JDK installation directory and add the JDK’s bin directory to the PATH environment variable.

4. Verify Installation: Open a command prompt or terminal and type java −version and javac −
↪→ version to verify that Java and the Java compiler are installed correctly.

1.2.3 Structure of a Java Program
A basic Java program consists of:

public class MyFirstProgram {
public stat ic void main (St r ing [] a rgs) {

System . out . p r i n t l n (" Hel lo , ␣World ! ") ; // Output
}

}

1.2.3.1 Class Declaration

Every Java program begins with a class declaration. The class name should match the filename.

Java Programming Milav Dabgar

Java Environment Setup & Basic Java Syntax 3

1.2.3.2 Main Method

The main method is the entry point of a Java program. It has the following syntax:

• ‘Public’ means the class/method is accessible from anywhere.
• ‘static’ allows the JVM to call this method without creating an object of the class.
• ‘void’ means the method doesn’t return a value.
• ‘main’ is a special method name.

public stat ic void main (St r ing [] a rgs) {
// Program l o g i c goes here

}

1.2.3.3 Output in Java

Output in Java is typically achieved using the System.out.println() method. System is a built-in Java
class that contains useful members, such as out, which is short for “output”.

1.2.3.3.1 The println() Method The println () method, short for “print line”, is used to print a
value to the screen (or a file). You should also note that each code statement must end with a semicolon
(;).
System . out . p r i n t l n (" Hel lo , ␣World ! ") ;

1.2.3.3.2 The print() Method There is also a print() method, which is similar to println (). The
only difference is that it does not insert a new line at the end of the output:
System . out . p r i n t (" He l lo ␣World ! ␣ ") ;
System . out . p r i n t (" I ␣ w i l l ␣ p r i n t ␣on␣ the ␣same␣ l i n e . ") ;

You can also use the println () method to print numbers. However, unlike text, we don’t put numbers
inside double quotes:
System . out . p r i n t l n (3) ;
System . out . p r i n t l n (358) ;
System . out . p r i n t l n (50000) ;
System . out . p r i n t l n (3 + 3) ;
System . out . p r i n t l n (2 ∗ 5) ;

1.2.3.4 Comments

Java supports single-line (//) and multi-line (/∗ ∗/) comments for documenting code.

Comments can be used to explain Java code, and to make it more readable. It can also be used to prevent
execution when testing alternative code.

1.2.3.4.1 Single-line Comments Single-line comments start with two forward slashes (//). Any
text between // and the end of the line is ignored by Java (will not be executed). This example uses a
single-line comment before a line of code:
// This i s a comment
System . out . p r i n t l n (" He l lo ␣World ") ;

This example uses a single-line comment at the end of a line of code:
System . out . p r i n t l n (" He l lo ␣World ") ; // This i s a comment

1.2.3.4.2 Multi-line Comments Multi-line comments start with /∗ and ends with ∗/. Any text
between /∗ and ∗/ will be ignored by Java. This example uses a multi-line comment (a comment block)
to explain the code:
/∗ The code below w i l l p r i n t the words He l l o World
to the screen , and i t i s amazing ∗/
System . out . p r i n t l n (" He l lo ␣World ") ;

Java Programming Milav Dabgar

Data Types 4

1.2.4 Compilation and Execution of Java Program
To compile and execute a Java program:

1. Write Code: Create a Java source file with the . java extension containing the Java code.

2. Compile Code: Open a terminal or command prompt, navigate to the directory containing the
Java file, and use the javac command to compile the code:

javac YourProgram . java

3. Execute Program: After successfully compiling, use the java command followed by the name of
the class containing the main method (without the . class extension) to execute the program:

java YourProgram

1.2.5 Importance of Bytecode & Garbage Collection
• Bytecode: Java source code is compiled into bytecode, which is a platform-independent intermediate

representation. This bytecode can be executed on any device with a JVM, enabling Java’s “write
once, run anywhere” capability.

• Garbage Collection: Java employs automatic memory management through garbage collection. It
automatically deallocates memory occupied by objects that are no longer in use, preventing memory
leaks and simplifying memory management for developers. Garbage collection helps ensure memory
efficiency and program stability in Java applications.

1.3 Data Types
A variable in Java must be a specified data type:

int myNum = 5 ; // In t e g e r (whole number)
f loat myFloatNum = 5.99 f ; // F loa t ing po in t number
char myLetter = 'D ' ; // Character
boolean myBool = true ; // Boolean
St r ing myText = " He l lo " ; // S t r ing

Data types are divided into two groups:

• Primitive data types - includes byte, short, int, long, float , double, boolean and char
• Non-primitive data types - such as String, Arrays and Classes.

1.3.1 Primitive Data Types
A primitive data type specifies the size and type of variable values, and it has no additional methods.
There are eight primitive data types in Java.

Data
Type Size Description
byte 1 byte Stores whole numbers from -128 to 127
short 2 bytes Stores whole numbers from -32,768 to 32,767
int 4 bytes Stores whole numbers from -2,147,483,648 to 2,147,483,647
long 8 bytes Stores whole numbers from -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
float 4 bytes Stores fractional numbers. Sufficient for storing 6 to 7 decimal digits
double 8 bytes Stores fractional numbers. Sufficient for storing 15 decimal digits
boolean 1 bit Stores true or false values
char 2 bytes Stores a single character/letter or ASCII values

• Numeric:
– Integer Types:

∗ byte (8 bits): The byte data type can store whole numbers from -128 to 127. This can
be used instead of int or other integer types to save memory when you are certain that
the value will be within -128 and 127

Java Programming Milav Dabgar

Data Types 5

∗ short (16 bits):The short data type can store whole numbers from -32768 to 32767:
∗ int (32 bits): The int data type can store whole numbers from -2147483648 to 2147483647.
In general, and in our topic, the int data type is the preferred data type when we create
variables with a numeric value.

∗ long (64 bits):The long data type can store whole numbers from -9223372036854775808
to 9223372036854775807. This is used when int is not large enough to store the value.
Note that you should end the value with an “L”:

– Floating-Point Types: You should use a floating point type whenever you need a number
with a decimal, such as 9.99 or 3.14515. The float and double data types can store fractional
numbers. Note that you should end the value with an “f” for floats and “d” for doubles:

∗ float (32-bit single precision):
∗ double (64-bit double precision):

• Character:
– char (16-bit Unicode character): The char data type is used to store a single character.

The character must be surrounded by single quotes, like ‘A’ or ‘c’:
• Boolean:

– boolean (true or false): Very often in programming, you will need a data type that can
only have one of two values, like: YES / NO, ON / OFF, TRUE / FALSE. For this, Java has
a boolean data type, which can only take the values true or false

1.3.2 Non-Primitive Data Types
Non-primitive data types are called reference types because they refer to objects. The main difference
between primitive and non-primitive data types are:

• Primitive types are predefined (already defined) in Java. Non-primitive types are created by the
programmer and is not defined by Java (except for String).

• Non-primitive types can be used to call methods to perform certain operations, while primitive
types cannot.

• A primitive type has always a value, while non-primitive types can be null.
• A primitive type starts with a lowercase letter, while non-primitive types starts with an uppercase

letter.

Examples of non-primitive types are Strings, Arrays, Classes, Interface, etc.

1.3.3 Type Conversion and Casting
1.3.3.1 Implicit Conversion (Widening)

Java automatically converts smaller data types to larger ones to prevent loss of data. For example, int
can be implicitly converted to long.

byte -> short -> char -> int -> long -> float -> double

public class Main {
public stat ic void main (St r ing [] a rgs) {

int myInt = 9 ;
double myDouble = myInt ; // Automatic c a s t i n g : i n t to doub le

System . out . p r i n t l n (myInt) ; // Outputs 9
System . out . p r i n t l n (myDouble) ; // Outputs 9 .0

}
}

1.3.3.2 Explicit Conversion (Narrowing)

When converting larger data types to smaller ones, explicit casting is required to avoid loss of data. For
example: int myInt = (int) 3.14;

double -> float -> long -> int -> char -> short -> byte

public class Main {
public stat ic void main (St r ing [] a rgs) {

double myDouble = 9 .78d ;

Java Programming Milav Dabgar

Identifiers 6

int myInt = (int) myDouble ; // Manual c a s t i n g : doub le to i n t

System . out . p r i n t l n (myDouble) ; // Outputs 9.78
System . out . p r i n t l n (myInt) ; // Outputs 9

}
}

1.4 Identifiers
Identifiers are names given to classes, methods, variables, etc., in Java. They must start with a letter,
underscore (_), or dollar sign ($), followed by letters, digits, underscores, or dollar signs.

1.4.1 Naming Rules & Conventions
1.4.1.1 Naming Rules

• Names can contain letters, digits, underscores, and dollar signs

• Names must begin with a letter

• Names should start with a lowercase letter, and cannot contain whitespace

• Names can also begin with $ and _ (but we will not use it here)

• Names are case-sensitive (“myVar” and “myvar” are different variables)

• Reserved words (like Java keywords, such as int or boolean) cannot be used as names

1.4.1.2 Naming Conventions

• Class names should start with an uppercase letter and follow CamelCase (e.g., MyClass).
• Variable and method names should start with a lowercase letter and follow camelCase (e.g.,

myVariable, myMethod).
• Constants should be all uppercase with underscores separating words (e.g., MAX_SIZE).

1.4.2 Variables
• Variable Declaration: Variables are containers for storing data values. Variables are declared

with a data type followed by a name:

int myVariable ;

• Variable Initialization: Variables can be initialized at the time of declaration or later in the code:

int myVariable = 10 ; // I n i t i a l i z a t i o n at d e c l a r a t i o n
myVariable = 20 ; // Later i n i t i a l i z a t i o n

• Declare Many Variables: To declare more than one variable of the same type, you can use a
comma-separated list:

int x = 5 , y = 6 , z = 50 ;
System . out . p r i n t l n (x + y + z) ;

• One Value to Multiple Variables: You can also assign the same value to multiple variables in
one line:

int x , y , z ;
x = y = z = 50 ;
System . out . p r i n t l n (x + y + z) ;

Java Programming Milav Dabgar

Arrays 7

1.4.3 Constants (final Keyword)
If you don’t want others (or yourself) to overwrite existing values, use the final keyword (this will declare
the variable as “final” or “constant”, which means unchangeable and read-only):

• Declaration: Constants in Java are declared using the final keyword.

f ina l int myNum = 15 ;
myNum = 20 ; // w i l l genera te an error : cannot a s s i gn a va lue to a

↪→ f i n a l v a r i a b l e

• Immutable: The value of a constant cannot be changed once initialized.

• By convention, constant names are written in uppercase letters with underscores separating words.

1.4.4 Scope of Variables
• Instance Variables: Variables declared within a class but outside any method are instance variables.

They exist as long as the object they belong to exists.

• Local Variables: Variables declared within a method or block have local scope. They exist only
within the method or block where they are declared.

pub l i c c l a s s Main {
pub l i c s t a t i c void main (St r ing [] a rgs) {

// Code here CANNOT use x
{ // This i s a b lock

// Code here CANNOT use x
i n t x = 100 ;
// Code here CAN use x
System . out . p r i n t l n (x) ;

} // The block ends here
// Code here CANNOT use x
}

}

• Class Variables (Static Variables): Variables declared with the static keyword within a class
are class variables. They are shared among all instances of the class.

1.5 Arrays
An array is a data structure that stores a fixed-size collection of elements of the same data type. Each
element is accessed by its index (position) within the array.

1.5.1 One-dimensional Arrays
• Declaration: To declare a one-dimensional array, specify the type of elements followed by square

brackets []:

int [] numbers ;

• Initialization: Arrays can be initialized using the new keyword followed by the type and the
number of elements, or directly with values enclosed in curly braces {}:

int [] numbers = new int [5] ; // I n i t i a l i z i n g wi th s i z e
int [] numbers = {1 , 2 , 3 , 4 , 5} ; // I n i t i a l i z i n g wi th va l u e s

• Accessing Elements: Elements of an array are accessed using the index (starting from 0):

int [] numbers = {1 , 2 , 3 , 4 , 5} ;
int f i r s tE l ement = numbers [0] ; // Access ing f i r s t e lement

• Key points

– Array indices start at 0 and go up to the length of the array minus 1.

Java Programming Milav Dabgar

Operators 8

– Trying to access an element outside the array bounds will result in an ArrayIndexOutOfBoundsException
↪→ .

1.5.2 Multidimensional Arrays
• Declaration: To declare a two-dimensional array, specify the type of elements followed by two sets

of square brackets [][]:

int [] [] matrix ;

• Initialization: Two-dimensional arrays can be initialized similarly to one-dimensional arrays, with
each row enclosed in curly braces {}:

int [] [] matrix = new int [3] [3] ; // I n s t a n t i a t i o n wi th s i z e
int [] [] matrix = {{1 , 2 , 3} , {4 , 5 , 6} , {7 , 8 , 9}} ; // I n i t i a l i z i n g

↪→ with va l u e s

• Accessing Elements: Elements of a two-dimensional array are accessed using row and column
indices:

int [] [] matrix = {{1 , 2 , 3} , {4 , 5 , 6} , {7 , 8 , 9}} ;
int element = matrix [1] [2] ; // Access ing element at row 1 , column 2 (

↪→ va lue : 6)

• Iterating Through a Two-dimensional Array: Nested loops are commonly used to iterate
through all elements of a two-dimensional array:

for (int i = 0 ; i < matrix . l ength ; i++) {
for (int j = 0 ; j < matrix [i] . l ength ; j++) {

// Access ing each element us ing matrix [i] [j]
System . out . p r i n t l n (matrix [i] [j]) ;

}
}

Things to remember

• Multidimensional arrays can have more than two dimensions.
• Rows and columns in a multidimensional array can have different lengths.
• Two-dimensional arrays can represent matrices, tables, grids, etc., and are useful for storing and

processing structured data in Java.

1.6 Operators
Operators are used to perform operations on variables and values. In the example below, we use the +
operator to add together two values:

int x = 100 + 50 ;

Although the + operator is often used to add together two values, like in the example above, it can also
be used to add together a variable and a value, or a variable and another variable:

int sum1 = 100 + 50 ; // 150 (100 + 50)
int sum2 = sum1 + 250 ; // 400 (150 + 250)
int sum3 = sum2 + sum2 ; // 800 (400 + 400)

Java divides the operators into the following groups:

• Arithmetic operators
• Assignment operators
• Comparison operators
• Logical operators
• Bitwise operators

Java Programming Milav Dabgar

Operators 9

1.6.1 Arithmetic Operators
Arithmetic operators are used to perform mathematical operations.

Operator Name Description Example
+ Addition Adds together two values x + y
- Subtraction Subtracts one value from another x - y
* Multiplication Multiplies two values x * y
/ Division Divides one value by another x / y
% Modulus Returns the division remainder x % y
++ Increment Increases the value of a variable by 1 ++x
– Decrement Decreases the value of a variable by 1 –x

int a = 10 ;
int b = 3 ;
int sum = a + b ; // Addit ion
int d i f f e r e n c e = a − b ; // Sub t rac t i on
int product = a ∗ b ; // M u l t i p l i c a t i o n
int quot i ent = a / b ; // Div i s i on
int remainder = a % b ; // Modulus (remainder)

1.6.2 Assignment Operators
Assignment operators are used to assign values to variables.

Operator Example Same As
= x = 5 x = 5
+= x += 3 x = x + 3
-= x -= 3 x = x - 3
*= x *= 3 x = x * 3
/= x /= 3 x = x / 3
%= x %= 3 x = x % 3
&= x &= 3 x = x & 3
|= x |= 3 x = x | 3
ˆ= x ˆ= 3 x = x ˆ 3
»= x »= 3 x = x » 3
«= x «= 3 x = x « 3

int a = 10 ;
a += 5 ; // Equ iva l en t to a = a + 5;

1.6.3 Relational (Comparison) Operators
Relational operators are used to establish relationships between two values. This is important in
programming, because it helps us to find answers and make decisions. The return value of a comparison
is either true or false . These values are known as Boolean values, and you will learn more about them in
the Booleans and If..Else topic.

Operator Name Example
== Equal to x == y
!= Not equal x != y
> Greater than x > y
< Less than x < y
>= Greater than or equal to x >= y
<= Less than or equal to x <= y

Java Programming Milav Dabgar

Operators 10

int a = 10 ;
int b = 5 ;
boolean g r e a t e r = a > b ;
boolean l e s se rOrEqua l = a <= b ;
boolean i sEqua l = a == b ;
boolean notEqual = a != b ;

1.6.4 Logical Operators
You can also test for true or false values with logical operators. Logical operators are used to determine
the logic between variables or values.

Operator Name Description Example
&& Logical and Returns true if both statements are true x < 5 && x < 10
|| Logical or Returns true if one of the statements is true x < 5 || x < 4
! Logical not Reverse the result, returns false if the result is true !(x < 5 && x <

10)

boolean x = true ;
boolean y = fa l se ;
boolean r e s u l t 1 = x && y ; // Log i ca l AND
boolean r e s u l t 2 = x | | y ; // Log i ca l OR
boolean r e s u l t 3 = ! x ; // Log i ca l NOT (negat ion)

1.6.5 Bitwise Operators
Bitwise operators perform bitwise operations on integer operands.

int a = 5 ; // Binary : 101
int b = 3 ; // Binary : 011
int bitwiseAnd = a & b ; // Bi tw i se AND
int bitwiseOr = a | b ; // Bi tw i se OR
int bitwiseXor = a ^ b ; // Bi tw i se XOR
int bitwiseComplement = ~a ; // Bi tw i se complement
int l e f t S h i f t = a << 1 ; // Le f t s h i f t
int r i g h t S h i f t = a >> 1 ; // Right s h i f t

1.6.6 Conditional (Ternary) Operator
The conditional operator is a ternary operator that evaluates a boolean expression and returns one of two
values depending on whether the expression is true or false.

• This is also called as a short-hand if else.
• It is known as the ternary operator because it consists of three operands.
• It can be used to replace multiple lines of code with a single line, and is most often used to replace

simple if else statements:

Syntax: \∗variable\∗ = (\∗condition\∗) ? \∗expressionTrue\∗ : \∗expressionFalse\∗;

Instead of writing:

int time = 20 ;
i f (time < 18) {

System . out . p r i n t l n ("Good␣day . ") ;
} else {

System . out . p r i n t l n ("Good␣ evening . ") ;
}

You can simply write:

Java Programming Milav Dabgar

Control Flow Statements 11

int time = 20 ;
S t r ing r e s u l t = (time < 18) ? "Good␣day . " : "Good␣ evening . " ;
System . out . p r i n t l n (r e s u l t) ;

These operators are fundamental in Java for performing various operations and making decisions based on
conditions.

1.6.7 Operator Precedence
Java follows a specific order for evaluating expressions with multiple operators (similar to mathematical
order of operations). You can find a detailed precedence table online.

int x = 5 + 3 ∗ 2 ; // x w i l l be 11 (M u l t i p l i c a t i o n f i r s t)
boolean i sGrea t e r = 10 >= 5 ; // i sGrea te r w i l l be t rue
int y = 10 ;
y++; // P o s t f i x increment , y i s now 11
++y ; // Pre f i x increment , y i s now 12
int r e s u l t = (2 > 3) ? 10 : 20 ; // r e s u l t w i l l be 20

1.7 Control Flow Statements
Control flow statements in Java are used to control the flow of execution in a program based on certain
conditions or loops.

1.7.1 Selection Statements
Java has the following conditional statements:

• Use if to specify a block of code to be executed, if a specified condition is true
• Use else to specify a block of code to be executed, if the same condition is false
• Use else if to specify a new condition to test, if the first condition is false
• Use switch to specify many alternative blocks of code to be executed

1.7.1.1 The if Statement

Use the if statement to specify a block of Java code to be executed if a condition is true.

// Syntax
i f (cond i t i on) {

// b l o c k o f code to be executed i f the cond i t i on i s t rue
}

Note that if is in lowercase letters. Uppercase letters (If or IF) will generate an error.

In the example below, we test two values to find out if 20 is greater than 18. If the condition is true, print
some text:

// Example
i f (20 > 18) {

System . out . p r i n t l n (" 20␣ i s ␣ g r e a t e r ␣ than␣18 ") ;
}

We can also test variables:

int x = 20 ;
int y = 18 ;
i f (x > y) {

System . out . p r i n t l n (" x␣ i s ␣ g r e a t e r ␣ than␣y ") ;
}

In the example above we use two variables, x and y, to test whether x is greater than y (using the >
operator). As x is 20, and y is 18, and we know that 20 is greater than 18, we print to the screen that “x
is greater than y”.

Java Programming Milav Dabgar

Control Flow Statements 12

1.7.1.2 The if-else Statement

Use the else statement to specify a block of code to be executed if the condition is false .
// Syntax
i f (cond i t i on) {

// b l o c k o f code to be executed i f the cond i t i on i s t rue
} else {

// b l o c k o f code to be executed i f the cond i t i on i s f a l s e
}

// Example
int time = 20 ;
i f (time < 18) {

System . out . p r i n t l n ("Good␣day . ") ;
} else {

System . out . p r i n t l n ("Good␣ evening . ") ;
}
// Outputs "Good evening . "

In the example above, time (20) is greater than 18, so the condition is false . Because of this, we move on
to the else condition and print to the screen “Good evening”. If the time was less than 18, the program
would print “Good day”.

1.7.1.3 The if-else-if Ladder

Use the else if statement to specify a new condition if the first condition is false .
// Syntax
i f (cond i t i on1) {

// b l o c k o f code to be executed i f cond i t i on1 i s t rue
} else i f (cond i t i on2) {

// b l o c k o f code to be executed i f the cond i t i on1 i s f a l s e and cond i t i on2
↪→ i s t rue

} else {
// b l o c k o f code to be executed i f the cond i t i on1 i s f a l s e and cond i t i on2

↪→ i s f a l s e
}

// Example
int time = 22 ;
i f (time < 10) {

System . out . p r i n t l n ("Good␣morning . ") ;
} else i f (time < 18) {

System . out . p r i n t l n ("Good␣day . ") ;
} else {

System . out . p r i n t l n ("Good␣ evening . ") ;
}
// Outputs "Good evening . "

In the example above, time (22) is greater than 10, so the first condition is false . The next condition, in
the else if statement, is also false , so we move on to the else condition since condition1 and condition2
is both false - and print to the screen “Good evening”.

However, if the time was 14, our program would print “Good day.”

1.7.1.4 Switch-Case Statements

Instead of writing many if .. else statements, you can use the switch statement.

The switch statement selects one of many code blocks to be executed:
// Syntax
switch (exp r e s s i on) {

case x :

Java Programming Milav Dabgar

Control Flow Statements 13

// code b l o c k
break ;

case y :
// code b l o c k
break ;

default :
// code b l o c k

}

This is how it works:

• The switch expression is evaluated once.
• The value of the expression is compared with the values of each case.
• If there is a match, the associated block of code is executed.
• The break and default keywords are optional, and will be described later here

The example below uses the weekday number to calculate the weekday name:

// Example
int day = 4 ;
switch (day) {

case 1 :
System . out . p r i n t l n ("Monday") ;
break ;

case 2 :
System . out . p r i n t l n (" Tuesday ") ;
break ;

case 3 :
System . out . p r i n t l n ("Wednesday ") ;
break ;

case 4 :
System . out . p r i n t l n (" Thursday ") ;
break ;

case 5 :
System . out . p r i n t l n (" Friday ") ;
break ;

case 6 :
System . out . p r i n t l n (" Saturday ") ;
break ;

case 7 :
System . out . p r i n t l n (" Sunday ") ;
break ;

}
// Outputs " Thursday " (day 4)

1.7.1.4.1 break Keyword When Java reaches a break keyword, it breaks out of the switch block.

1.7.1.4.2 default Keyword The default keyword specifies some code to run if there is no case
match:

int day = 4 ;
switch (day) {

case 6 :
System . out . p r i n t l n ("Today␣ i s ␣Saturday ") ;
break ;

case 7 :
System . out . p r i n t l n ("Today␣ i s ␣Sunday ") ;
break ;

default :
System . out . p r i n t l n (" Looking␣ forward ␣ to ␣ the ␣Weekend ") ;

}
// Outputs " Looking forward to the Weekend"

Java Programming Milav Dabgar

Control Flow Statements 14

Note that if the default statement is used as the last statement in a switch block, it does not need a break.

1.7.2 Looping Statements
Loops can execute a block of code as long as a specified condition is reached. Loops are handy because
they save time, reduce errors, and they make code more readable.

1.7.2.1 While Loop

The while loop loops through a block of code as long as a specified condition is true:

// Syntax
while (cond i t i on) {

// code b l o c k to be executed
}

In the example below, the code in the loop will run, over and over again, as long as a variable (i) is less
than 5:

int i = 0 ;
while (i < 5) {

System . out . p r i n t l n (i) ;
i++;

}

Note: Do not forget to increase the variable used in the condition, otherwise the loop will never end!

1.7.2.2 Do/While Loop

The do/while loop is a variant of the while loop. This loop will execute the code block once, before
checking if the condition is true, then it will repeat the loop as long as the condition is true.

// Syntax
do {

// code b l o c k to be executed
}
while (cond i t i on) ;

The example below uses a do/while loop. The loop will always be executed at least once, even if the
condition is false, because the code block is executed before the condition is tested:

int i = 0 ;do {
System . out . p r i n t l n (i) ;
i++;

}
while (i < 5) ;

Do not forget to increase the variable used in the condition, otherwise the loop will never end!

1.7.2.3 For Loop

When you know exactly how many times you want to loop through a block of code, use the for loop
instead of a while loop:

// Syntax
for (statement 1 ; statement 2 ; statement 3) {

// code b l o c k to be executed
}

Statement 1 is executed (one time) before the execution of the code block. Statement 2 defines the
condition for executing the code block. Statement 3 is executed (every time) after the code block has
been executed.

The example below will print the numbers 0 to 4:

Java Programming Milav Dabgar

Control Flow Statements 15

for (int i = 0 ; i < 5 ; i++) {
System . out . p r i n t l n (i) ;

}

Statement 1 sets a variable before the loop starts (int i = 0). Statement 2 defines the condition for the
loop to run (i must be less than 5). If the condition is true, the loop will start over again, if it is false, the
loop will end. Statement 3 increases a value (i++) each time the code block in the loop has been executed.

This example will only print even values between 0 and 10:

for (int i = 0 ; i <= 10 ; i = i + 2) {
System . out . p r i n t l n (i) ;

}

1.7.2.4 The For-Each Loop

The for-each loop, also known as the enhanced for loop, provides a simple way to iterate over collections
and arrays in Java.

The following example outputs all elements in the cars array, using a “for-each” loop:

S t r ing [] c a r s = { " Volvo " , "BMW" , " Ford " , "Mazda" } ;
for (S t r ing i : c a r s) {

System . out . p r i n t l n (i) ;
}

The for-each loop iterates over each element in the collection sequentially, without the need for explicit
indexing or iterators.

ArrayList<Str ing> l i s t = new ArrayList <>() ;
l i s t . add (" Java ") ;
l i s t . add (" Python ") ;
l i s t . add ("C++") ;

for (S t r ing language : l i s t) {
System . out . p r i n t l n (language) ;

}

1.7.2.5 Nested Loops

It is also possible to place a loop inside another loop. This is called a nested loop. The “inner loop” will
be executed one time for each iteration of the “outer loop”:

// Outer loop
for (int i = 1 ; i <= 2 ; i++) {

System . out . p r i n t l n (" Outer : ␣ " + i) ; // Executes 2 t imes

// Inner loop
for (int j = 1 ; j <= 3 ; j++) {

System . out . p r i n t l n (" ␣ Inner : ␣ " + j) ; // Executes 6 t imes (2 ∗ 3)
}

}

1.7.3 Jump Statements
1.7.3.1 break Statement

Terminates the loop or switch statement and transfers control to the statement immediately following the
loop or switch.

for (int i = 0 ; i < 5 ; i++) {
i f (i == 3) {

break ; // Terminates the loop when i e qua l s 3
}

Java Programming Milav Dabgar

Control Flow Statements 16

System . out . p r i n t l n (" I t e r a t i o n : ␣ " + i) ;
}

1.7.3.2 continue Statement

The continue statement breaks one iteration (in the loop), if a specified condition occurs, and continues
with the next iteration in the loop.

for (int i = 0 ; i < 5 ; i++) {
i f (i == 3) {

continue ; // Sk ips i t e r a t i o n when i e qua l s 3
}
System . out . p r i n t l n (" I t e r a t i o n : ␣ " + i) ;

}

1.7.3.3 return Statement

Exits the current method and returns a value (if applicable) to the caller.

public int add (int a , int b) {
return a + b ; // Returns the sum of a and b

}

These control flow statements provide essential mechanisms for directing the flow of execution in Java
programs, allowing developers to implement conditional logic and repetitive tasks efficiently.

Java Programming Milav Dabgar

Chapter 2

Object-Oriented Programming

2.1 Procedure-Oriented vs. Object-Oriented Programming
2.1.1 Characteristics
Procedure-Oriented Programming (POP):

1. Focus: POP focuses on functions or procedures that operate on data.
2. Data and Functions: Data and functions are separate entities.
3. Global Data: Relies heavily on global data, which can lead to data integrity issues.
4. Procedural Abstraction: Emphasizes procedural abstraction, breaking down a problem into a

sequence of steps.
5. Top-Down Approach: Follows a top-down approach, where the problem is broken down into

smaller sub-problems.
6. Examples: C, FORTRAN, Pascal, BASIC

Object-Oriented Programming (OOP):

1. Focus: OOP focuses on objects that encapsulate data and behavior.
2. Data Encapsulation: Data and functions are encapsulated within objects, promoting data hiding

and encapsulation.
3. Class and Object: Relies on classes and objects to model real-world entities and interactions.
4. Inheritance and Polymorphism: Supports inheritance and polymorphism, enabling code reuse

and flexibility.
5. Bottom-Up Approach: Often follows a bottom-up approach, where objects are identified and

modeled to represent real-world entities.
6. Examples: Java, Python, C++, C#

2.1.2 Differences

Characteristic Procedure-Oriented Object-Oriented
Focus Functions or procedures Objects (data + behavior)
Program
Structure

Top-down approach, functions
within a program

Bottom-up approach, objects as building blocks

Data Global or passed between
functions

Encapsulated within objects, accessed mainly via
methods

Security Less secure – data more
exposed

Improved security through data hiding and access
control

Modularity Code can be less modular High modularity due to objects
Reusability Less reusable Code reusability enhanced through inheritance and

classes
Design
Complexity

Suitable for smaller programs Preferred for large, complex systems due to better
modeling of real-world systems

In summary, while POP emphasizes procedures and functions, OOP revolves around objects and their
interactions, offering better encapsulation, code reusability, and maintainability for complex software

17

OOP Concepts 18

systems. The choice between them often depends on the nature and scale of the project, as well as the
preferences of the development team.

2.2 OOP Concepts
Object-Oriented Programming (OOP) is a programming paradigm that revolves around the concept of
objects, which encapsulate data and behavior. OOP provides several key concepts to facilitate modular
and organized software design.

2.2.1 Classes and Objects
• Class: A class is a blueprint for creating objects. It defines the properties (attributes) and behaviors

(methods) that objects of the class will have.
public class Car {

St r ing c o l o r ;
int speed ;

void a c c e l e r a t e () {
// Method to inc rea se speed

}

void brake () {
// Method to decrease speed

}
}

• Object: An object is an instance of a class. It represents a real-world entity and encapsulates both
data (attributes) and behavior (methods).
Car myCar = new Car () ;
myCar . c o l o r = "Red" ;
myCar . speed = 60 ;
myCar . a c c e l e r a t e () ;

2.2.2 Encapsulation
• Bundling: Combining data (attributes) and code (methods) that operates on that data within a

single unit (class).
• Protection: Controlling the visibility of data members using access modifiers (public, private,

protected) to protect data integrity and hide implementation details.

Example:

The attributes of a BankAccount object are encapsulated within the class, accessible and modifiable
mainly through its methods.
public class BankAccount {

private double balance ;

public void depos i t (double amount) {
// Method to d e p o s i t money

}

public void withdraw (double amount) {
// Method to withdraw money

}
}

2.2.3 Abstraction
Abstraction refers to the process of hiding the implementation details of a class and showing only the
essential features to the outside world. It focuses on what an object does rather than how it does it.

Java Programming Milav Dabgar

OOP Concepts 19

• Simplification: Focusing on essential characteristics and hiding complex details. Exposing only
the necessary interface.

• Levels of Abstraction: Can be achieved through classes, abstract classes, and interfaces.

Example:

interface Shape {
void draw () ;

}

class Ci r c l e implements Shape {
public void draw () {

// Method to draw a c i r c l e
}

}

class Rectangle implements Shape {
public void draw () {

// Method to draw a r e c t a n g l e
}

}

2.2.4 Inheritance
Inheritance is a mechanism in which a new class (derived class or subclass) inherits properties and
behaviors from an existing class (base class or superclass). It promotes code reuse and establishes a
hierarchical relationship between classes.

• Hierarchy: Creating new classes (subclasses) that inherit properties and behaviors of existing
classes (superclasses)

• Code Reusability: Subclasses can reuse code from the superclass.
• Extensibility: Subclasses can add their own unique properties and behaviors.

Example:

class Animal {
void eat () {

// Method to ea t
}

}

class Dog extends Animal {
void bark () {

// Method to bark
}

}

2.2.5 Polymorphism
Polymorphism allows objects to be treated as instances of their superclass or as instances of their subclass.
It enables flexibility and dynamic behaviour in the program.

• Many Forms: The ability of an object to take on different forms or behaviours depending on the
situation.

• Method Overloading: Multiple methods in a class with the same name but different parameters.
• Method Overriding: A subclass provides a specific implementation of a method inherited from

its superclass.

Example:

class Animal {
void makeSound () {

// Method to make a gener i c animal sound
}

Java Programming Milav Dabgar

Classes and Objects 20

}

class Dog extends Animal {
void makeSound () {

// Method to make a dog sound
}

}

class Cat extends Animal {
void makeSound () {

// Method to make a cat sound
}

}

These OOP concepts form the foundation of object-oriented design and programming. They enable
developers to create modular, maintainable, and scalable software systems by modeling real-world entities
and interactions in a structured and organized manner.

2.3 Classes and Objects
2.3.1 Creating Classes
In Java, a class is a blueprint for creating objects. It defines the structure and behavior of objects of that
type.

Syntax

public class MyClass {
// Class body

}

Example

public class Car { // ' p u b l i c ' a l l o w s acces s from anywhere
// F i e l d s (member v a r i a b l e s) d e f i n e a t t r i b u t e s
private St r ing model ; // ' p r i v a t e ' l i m i t s acces s to w i th in the c l a s s
private int year ;
private St r ing c o l o r ;

// Constructor : S p e c i a l method to i n i t i a l i z e an o b j e c t
public Car (St r ing model , int year , S t r ing c o l o r) {

this . model = model ; // ' t h i s ' r e f e r s to the curren t o b j e c t
this . year = year ;
this . c o l o r = co l o r ;

}

// Methods d e f i n e behav io r s
public void s ta r tEng ine () {

System . out . p r i n t l n (" Engine␣ S ta r t i ng . . . ") ;
}

public void brake () {
System . out . p r i n t l n (" Braking . . . ") ;

}

// Get ter s and s e t t e r s (acce s so r s and mutators) f o r c o n t r o l l e d acces s
public St r ing getModel () {

return model ;
}

public void setModel (S t r ing model) {
this . model = model ;

Java Programming Milav Dabgar

Classes and Objects 21

}

// . . . more g e t t e r s and s e t t e r s
}

2.3.2 Creating Objects
In Java, an object is created from a class. Objects are instances of classes. They are created using the
new keyword followed by the class constructor

To create an object of Main, specify the class name, followed by the object name, and use the keyword
new: Create an object called “myObj” and print the value of x:

public class Main {
int x = 5 ;

public stat ic void main (St r ing [] a rgs) {
Main myObj = new Main () ;
System . out . p r i n t l n (myObj . x) ;

}
}

2.3.2.1 Multiple Objects

You can create multiple objects of one class:

Create two objects of Main:

public class Main {
int x = 5 ;

public stat ic void main (St r ing [] a rgs) {
Main myObj1 = new Main () ; // Object 1
Main myObj2 = new Main () ; // Object 2
System . out . p r i n t l n (myObj1 . x) ;
System . out . p r i n t l n (myObj2 . x) ;

}
}

2.3.2.2 Using Multiple Classes

You can also create an object of a class and access it in another class. This is often used for better
organization of classes (one class has all the attributes and methods, while the other class holds the main()
method (code to be executed)).

Remember that the name of the java file should match the class name. In this example, we have created
two files in the same directory/folder:

• Main.java
• Second.java

//Main . java
public class Main {

int x = 5 ;
}

//Second . java
class Second {

public stat ic void main (St r ing [] a rgs) {
Main myObj = new Main () ;
System . out . p r i n t l n (myObj . x) ;

}
}

Java Programming Milav Dabgar

Class Attributes 22

2.3.2.3 this Keyword

Inside a method or constructor, this refers to the current object. It is used to differentiate between
instance variables and local variables with the same name.

public class Person {
St r ing name ;

public void setName (St r ing name) {
this . name = name ; // Ass igning the parameter va lue to the in s tance

↪→ v a r i a b l e
}

}

2.4 Class Attributes
Attributes are variables that define the state of objects. They represent the data associated with objects
of the class.

Create a class called “Main” with two attributes: x and y:

public class Main {
int x = 5 ;
int y = 3 ;

}

Another term for class attributes is fields.

2.4.1 Accessing Attributes
You can access attributes by creating an object of the class, and by using the dot syntax (.):

The following example will create an object of the Main class, with the name myObj. We use the x
attribute on the object to print its value:

Create an object called “myObj” and print the value of x:

public class Main {
int x = 5 ;

public stat ic void main (St r ing [] a rgs) {
Main myObj = new Main () ;
System . out . p r i n t l n (myObj . x) ;

}
}

2.4.2 Modify Attributes
You can also modify attribute values: Set the value of x to 40:

public class Main {
int x ;

public stat ic void main (St r ing [] a rgs) {
Main myObj = new Main () ;
myObj . x = 40 ;
System . out . p r i n t l n (myObj . x) ;

}
}

Or override existing values: Change the value of x to 25:

Java Programming Milav Dabgar

Class Attributes 23

public class Main {
int x = 10 ;

public stat ic void main (St r ing [] a rgs) {
Main myObj = new Main () ;
myObj . x = 25 ; // x i s now 25
System . out . p r i n t l n (myObj . x) ;

}
}

If you don’t want the ability to override existing values, declare the attribute as final :

public class Main {
f ina l int x = 10 ;

public stat ic void main (St r ing [] a rgs) {
Main myObj = new Main () ;
myObj . x = 25 ; // w i l l genera te an error : cannot a s s i gn a va lue to a

↪→ f i n a l v a r i a b l e
System . out . p r i n t l n (myObj . x) ;

}
}

The final keyword is useful when you want a variable to always store the same value, like PI (3.14159. . .).

2.4.3 Attributes of Multiple Objects
If you create multiple objects of one class, you can change the attribute values in one object, without
affecting the attribute values in the other: Change the value of x to 25 in myObj2, and leave x in myObj1
unchanged:

public class Main {
int x = 5 ;

public stat ic void main (St r ing [] a rgs) {
Main myObj1 = new Main () ; // Object 1
Main myObj2 = new Main () ; // Object 2
myObj2 . x = 25 ;
System . out . p r i n t l n (myObj1 . x) ; // Outputs 5
System . out . p r i n t l n (myObj2 . x) ; // Outputs 25

}
}

2.4.4 Multiple Attributes of same Object
You can specify as many attributes as you want:

public class Main {
St r ing fname = " John " ;
S t r ing lname = "Doe " ;
int age = 24 ;

public stat ic void main (St r ing [] a rgs) {
Main myObj = new Main () ;
System . out . p r i n t l n ("Name : ␣ " + myObj . fname + " ␣ " + myObj . lname) ;
System . out . p r i n t l n ("Age : ␣ " + myObj . age) ;

}
}

• Methods: Methods are functions that define the behavior of objects. They represent the actions
that objects of the class can perform.

Java Programming Milav Dabgar

Class Methods 24

public class Car {
void a c c e l e r a t e () {

// Method to inc rea se speed
}

void brake () {
// Method to decrease speed

}
}

2.5 Class Methods
• A method is a block of code which only runs when it is called.

• You can pass data, known as parameters, into a method.

• Methods are used to perform certain actions, and they are also known as functions.

• Why use methods? To reuse code: define the code once, and use it many times.

2.5.1 Create a Method
A method must be declared within a class. It is defined with the name of the method, followed by
parentheses (). Java provides some pre-defined methods, such as System.out.println(), but you can also
create your own methods to perform certain actions:

Create a method inside Main:
public class Main {

stat ic void myMethod () {
// code to be executed

}
}

• myMethod() is the name of the method
• static means that the method belongs to the Main class and not an object of the Main class. You

will learn more about objects and how to access methods through objects later here.
• void means that this method does not have a return value. You will learn more about return values

later here

2.5.2 Call a Method
To call a method in Java, write the method’s name followed by two parentheses () and a semicolon;

In the following example, myMethod() is used to print a text (the action), when it is called:

Inside main, call the myMethod() method:
public class Main {

stat ic void myMethod () {
System . out . p r i n t l n (" I ␣ j u s t ␣ got ␣ executed ! ") ;

}

public stat ic void main (St r ing [] a rgs) {
myMethod () ;

}
}

// Outputs " I j u s t go t executed ! "

A method can also be called multiple times:
public class Main {

stat ic void myMethod () {
System . out . p r i n t l n (" I ␣ j u s t ␣ got ␣ executed ! ") ;

Java Programming Milav Dabgar

Class Methods 25

}

public stat ic void main (St r ing [] a rgs) {
myMethod () ;
myMethod () ;
myMethod () ;

}
}

// I j u s t go t executed !
// I j u s t go t executed !
// I j u s t go t executed !

2.5.3 Method Parameters and Arguments
Information can be passed to methods as parameter. Parameters act as variables inside the method.

Parameters are specified after the method name, inside the parentheses. You can add as many parameters
as you want, just separate them with a comma.

The following example has a method that takes a String called fname as parameter. When the method is
called, we pass along a first name, which is used inside the method to print the full name:

public class Main {
stat ic void myMethod(St r ing fname) {

System . out . p r i n t l n (fname + " ␣Refsnes ") ;
}

public stat ic void main (St r ing [] a rgs) {
myMethod("Liam") ;
myMethod(" Jenny ") ;
myMethod("Anja ") ;

}
}
// Liam Refsnes
// Jenny Refsnes
// Anja Refsnes

When a parameter is passed to the method, it is called an argument. So, from the example above:
fname is a parameter, while Liam, Jenny and Anja are arguments.

2.5.3.1 Multiple Parameters

You can have as many parameters as you like:

public class Main {
stat ic void myMethod(St r ing fname , int age) {

System . out . p r i n t l n (fname + " ␣ i s ␣ " + age) ;
}

public stat ic void main (St r ing [] a rgs) {
myMethod("Liam" , 5) ;
myMethod(" Jenny " , 8) ;
myMethod("Anja " , 31) ;

}
}

// Liam i s 5
// Jenny i s 8
// Anja i s 31

Note that when you are working with multiple parameters, the method call must have the same number
of arguments as there are parameters, and the arguments must be passed in the same order.

Java Programming Milav Dabgar

Class Methods 26

2.5.4 Return Values
The void keyword, used in the examples above, indicates that the method should not return a value. If
you want the method to return a value, you can use a primitive data type (such as int, char, etc.) instead
of void, and use the return keyword inside the method:

public class Main {
stat ic int myMethod(int x) {

return 5 + x ;
}

public stat ic void main (St r ing [] a rgs) {
System . out . p r i n t l n (myMethod (3)) ;

}
}
// Outputs 8 (5 + 3)

This example returns the sum of a method’s two parameters:

public class Main {
stat ic int myMethod(int x , int y) {

return x + y ;
}

public stat ic void main (St r ing [] a rgs) {
System . out . p r i n t l n (myMethod(5 , 3)) ;

}
}
// Outputs 8 (5 + 3)

You can also store the result in a variable (recommended, as it is easier to read and maintain):

public class Main {
stat ic int myMethod(int x , int y) {

return x + y ;
}

public stat ic void main (St r ing [] a rgs) {
int z = myMethod(5 , 3) ;
System . out . p r i n t l n (z) ;

}
}
// Outputs 8 (5 + 3)

2.5.5 Access Methods With an Object
Create a Car object named myCar. Call the fullThrottle () and speed() methods on the myCar object,
and run the program:

// Create a Main c l a s s
public class Main {

// Create a f u l l T h r o t t l e () method
public void f u l l T h r o t t l e () {

System . out . p r i n t l n ("The␣ car ␣ i s ␣ going ␣ as ␣ f a s t ␣ as ␣ i t ␣can ! ") ;
}

// Create a speed () method and add a parameter
public void speed (int maxSpeed) {

System . out . p r i n t l n ("Max␣ speed␣ i s : ␣ " + maxSpeed) ;
}

// In s i d e main , c a l l the methods on the myCar o b j e c t

Java Programming Milav Dabgar

Constructors 27

public stat ic void main (St r ing [] a rgs) {
Main myCar = new Main () ; // Create a myCar o b j e c t
myCar . f u l l T h r o t t l e () ; // Ca l l the f u l l T h r o t t l e () method
myCar . speed (200) ; // Ca l l the speed () method

}
}

// The car i s go ing as f a s t as i t can !
// Max speed i s : 200

2.5.6 Method Signatures
A method signature consists of the method name and the parameter list (type and order of parameters).
The return type may also be considered part of the method signature, but it’s not required for method
overloading.

The unique identifier of a method. It consists of:

• Name: What the method is called.
• Parameter List: The types and order of arguments the method accepts.
• Return Type: The type of value returned by the method (void if it doesn’t return anything).

public void methodName(int parameter1 , S t r ing parameter2) {
// Method body

}

2.5.7 Passing Arguments
• Passing by Value: Primitive data types are passed by value, meaning a copy of the value is passed

to the method. Changes to the parameter inside the method do not affect the original value.

public void modifyValue (int x) {
x = x + 1 ; // Changes made to x are l o c a l to t h i s method

}

• Passing by Reference: Objects are passed by reference, meaning the reference to the object is
passed to the method. Changes to the object’s state inside the method affect the original object.

public void modifyObjectValue (MyObject obj) {
obj . setValue (10) ; // Changes made to the o b j e c t ' s s t a t e a f f e c t the

↪→ o r i g i n a l o b j e c t
}

2.5.8 Returning Values
Methods can return values using the return statement.

• The return statement exits the method and sends a value back to where the method was called.
• The return type in the method signature must match the data type of the value being returned.
• Methods with a void return type don’t return anything.

public int add (int a , int b) {
return a + b ;

}

These concepts help in organizing code, improving code reusability, and managing resources effectively in
Java programs.

2.6 Constructors
A constructor in Java is a special method that is used to initialize objects. The constructor is called
when an object of a class is created. It can be used to set initial values for object attributes

Java Programming Milav Dabgar

Constructors 28

• Have the same name as the class.
• Do not have a return type, not even void.

// Create a Main c l a s s
public class Main {

int x ; // Create a c l a s s a t t r i b u t e
// Create a c l a s s cons t ruc t o r f o r the Main c l a s s
public Main () {

x = 5 ; // Set the i n i t i a l va lue f o r the c l a s s a t t r i b u t e x
}

public stat ic void main (St r ing [] a rgs) {
Main myObj = new Main () ; // Create an o b j e c t o f c l a s s Main (This w i l l

↪→ c a l l the cons t ruc t o r)
System . out . p r i n t l n (myObj . x) ; // Print the va lue o f x

}
}

// Outputs 5

All classes have constructors by default: if you do not create a class constructor yourself, Java creates one
for you. However, then you are not able to set initial values for object attributes.

2.6.1 Types of Constructors
2.6.1.1 Default Constructors

• If you don’t define a constructor, Java provides a no-argument default constructor.
• It typically initializes members to their default values (e.g., 0 for numbers, null for objects).

2.6.1.2 Parameterized Constructors

Parameterized constructors allow initialisation of object attributes with specific values passed as arguments
during object creation. Used to provide flexibility when creating objects.

public class Student {
private St r ing name ;
private int rollNumber ;

// Parameterized cons t ruc t o r
public Student (S t r ing name , int rollNumber) {

this . name = name ;
this . rollNumber = rollNumber ;

}
}

2.6.1.3 Copy Constructors

A copy constructor creates a new object by copying the attributes of an existing object. It takes an object
of the same class as a parameter.

public class Student {
// . . . (f i e l d s and o ther c o n s t r u c t o r s)

// Copy cons t ruc t o r
public Student (Student otherStudent) {

this . name = otherStudent . name ;
this . rollNumber = otherStudent . rollNumber ;

}
}

Java Programming Milav Dabgar

Modifiers 29

2.6.2 Constructor Overloading
Constructor overloading allows a class to have multiple constructors with different parameter lists. Java
differentiates between constructors based on the number and types of parameters.

public class MyClass {
int value ;

// Non Parameterized cons t ruc t o r
public MyClass () {

va lue = 0 ;
}

// Parameterized cons t ruc t o r
public MyClass (int v) {

value = v ;
}

// Overloaded cons t ruc t o r
public MyClass (int v1 , int v2) {

value = v1 + v2 ;
}

}

In the example above, MyClass has three constructors: a default constructor, a parameterized constructor
with one parameter, and an overloaded constructor with two parameters.

Constructors are essential for initializing objects and setting up their initial state. They provide flexibility
in object creation and initialization in Java.

2.7 Modifiers
We divide modifiers into two groups:

• Access Modifiers - controls the access level
• Non-Access Modifiers - do not control access level, but provides other functionality

2.7.1 Access Modifiers
Access modifiers control the visibility of classes, attributes, methods, and constructors.

These access modifiers help in encapsulating and controlling the access to the members of a class, ensuring
data hiding and security in Java programs.

For classes, you can use either public or default:

ModifierDescription
public
↪→

The class is accessible by any other class

default The class is only accessible by classes in the same package. This is used when you don’t specify a
modifier. You will learn more about packages in the Packages topic

For attributes, methods and constructors, you can use the one of the following:

ModifierDescription
public
↪→

Class, Package, Other Packages: The code is accessible for all classes

private
↪→

Class only: The code is only accessible within the declared class

default Class, Package: The code is only accessible in the same package. This is used when you don’t
specify a modifier. You will learn more about packages in the Packages topic

Java Programming Milav Dabgar

Modifiers 30

ModifierDescription
protected
↪→

Class, Package, Subclasses (even in different packages): The code is accessible in the
same package and subclasses. You will learn more about subclasses and superclasses in the
Inheritance topic

public class MyClass {
public int pub l i cAt t r i bu t e ;
protected int pro t e c t edAtt r ibu t e ;
private int pr i va t eAt t r i bu t e ;
int de f au l tAt t r i bu t e ;

public void publicMethod () {
// Code

}

protected void protectedMethod () {
// Code

}

private void privateMethod () {
// Code

}

void defaultMethod () {
// Code

}
}

2.7.2 Non-Access Modifiers
For classes, you can use either final or abstract:

ModifierDescription
final
↪→

The class cannot be inherited by other classes (You will learn more about inheritance in the
Inheritance topic)

abstract
↪→

The class cannot be used to create objects (To access an abstract class, it must be inherited from
another class. You will learn more about inheritance and abstraction in the Inheritance and
Abstraction topics)

For attributes and methods, you can use the one of the following:

ModifierDescription
final
↪→

Attributes and methods cannot be overridden/modified

static
↪→

Attributes and methods belongs to the class, rather than an object

abstract
↪→

Can only be used in an abstract class, and can only be used on methods. The method does not
have a body, for example abstract void run();. The body is provided by the subclass (inherited
from). You will learn more about inheritance and abstraction in the Inheritance and Abstraction
topics

transient
↪→

Attributes and methods are skipped when serializing the object containing them

synchronized
↪→

Methods can only be accessed by one thread at a time

volatile
↪→

The value of an attribute is not cached thread-locally, and is always read from the “main memory”

Java Programming Milav Dabgar

Modifiers 31

2.7.2.1 final

If you don’t want the ability to override existing attribute values, declare attributes as final :

public class Main {
f ina l int x = 10 ;
f ina l double PI = 3 . 1 4 ;

public stat ic void main (St r ing [] a rgs) {
Main myObj = new Main () ;
myObj . x = 50 ; // w i l l genera te an error : cannot a s s i gn a va lue to a

↪→ f i n a l v a r i a b l e
myObj . PI = 25 ; // w i l l genera te an error : cannot a s s i gn a va lue to a

↪→ f i n a l v a r i a b l e
System . out . p r i n t l n (myObj . x) ;

}
}

2.7.2.2 static

The static keyword is used to create class-level variables and methods. These belong to the class rather
than to individual objects of the class. They can be accessed without creating an instance of the class.

• Class-level Methods: Methods declared static don’t require an instance of the class to be called.
They belong to the class itself. Use Cases:

– Utility methods not tied to a specific object.

– The main method is static since it’s your program’s entry point.

A static method means that it can be accessed without creating an object of the class, unlike public.

An example to demonstrate the differences between static and public methods:

public class Main {
// S t a t i c method
stat ic void myStaticMethod () {

System . out . p r i n t l n (" S t a t i c ␣methods␣can␣be␣ c a l l e d ␣without ␣ c r e a t i n g ␣
↪→ ob j e c t s ") ;

}

// Pub l i c method
public void myPublicMethod () {

System . out . p r i n t l n (" Publ ic ␣methods␣must␣be␣ c a l l e d ␣by␣ c r e a t i n g ␣ ob j e c t s ")
↪→ ;

}

// Main method
public stat ic void main (St r ing [] a rgs) {

myStaticMethod () ; // Ca l l the s t a t i c method
// myPublicMethod () ; This would output an error

Main myObj = new Main () ; // Create an o b j e c t o f Main
myObj . myPublicMethod () ; // Ca l l the p u b l i c method

}
}

• Accessing Members: static methods can only directly access other static members and cannot
use the this keyword (since they don’t operate on an object).

public class MathUtils {
public stat ic double f indCircumference (double rad iu s) {

return 2 ∗ Math . PI ∗ rad iu s ;
}

}

Java Programming Milav Dabgar

String Class 32

• Static Variables:
public class MyClass {

stat ic int count ;
}

• Static Methods:
public class MyClass {

stat ic void printMessage () {
System . out . p r i n t l n (" Hel lo , ␣world ! ") ;

}
}

Static methods can be accessed using the class name:
MyClass . pr intMessage () ;

Static variables and methods are shared among all instances of the class and can be accessed directly
from the class itself.

2.7.2.3 abstract

An abstract method belongs to an abstract class, and it does not have a body. The body is provided by
the subclass:
// Code from f i l ename : Main . java
// a b s t r a c t c l a s s a b s t r a c t c l a s s Main {

public St r ing fname = " John " ;
public int age = 24 ;
public abstract void study () ; // a b s t r a c t method

}

// Subc l a s s (i n h e r i t from Main)
class Student extends Main {

public int graduationYear = 2018 ;
public void study () { // the body o f the a b s t r a c t method i s prov ided here

System . out . p r i n t l n (" Studying␣ a l l ␣day␣ long ") ;
}

}
// End code from f i l ename : Main . java

// Code from f i l ename : Second . java
class Second {

public stat ic void main (St r ing [] a rgs) {
// crea t e an o b j e c t o f the Student c l a s s (which i n h e r i t s a t t r i b u t e s and

↪→ methods from Main)
Student myObj = new Student () ;

System . out . p r i n t l n ("Name : ␣ " + myObj . fname) ;
System . out . p r i n t l n ("Age : ␣ " + myObj . age) ;
System . out . p r i n t l n (" Graduation␣Year : ␣ " + myObj . graduationYear) ;
myObj . study () ; // c a l l a b s t r a c t method }

}

2.8 String Class
• In Java, strings are treated as objects of the String class. This class provides numerous methods for

manipulating and working with strings.
• Immutability: It’s important to remember that String objects in Java are immutable. Once a

String is created, its contents cannot be changed.
S t r ing s t r = " Hel lo , ␣World ! " ;

Java Programming Milav Dabgar

String Class 33

2.8.1 Strings - Special Characters
Because strings must be written within quotes, Java will misunderstand this string, and generate an error:

S t r ing txt = "We␣ are ␣ the ␣so−c a l l e d ␣ " Vik ings " ␣ from␣ the ␣north . " ;

The solution to avoid this problem, is to use the backslash escape character. The backslash (\) escape
character turns special characters into string characters:

Escape character Result Description
’ ’ Single quote
" ” Double quote
\ \ Backslash

The sequence \" inserts a double quote in a string:

S t r ing txt = "We␣ are ␣ the ␣so−c a l l e d ␣ \" Vik ings \" ␣ from␣ the ␣north . " ;

The sequence \' inserts a single quote in a string:

S t r ing txt = " I t \ ' s ␣ a l r i g h t . " ;

The sequence \\ inserts a single backslash in a string:

S t r ing txt = "The␣ charac t e r ␣\\␣ i s ␣ c a l l e d ␣ backs la sh . " ;

Other common escape sequences that are valid in Java are:

Code Result
\n New Line
|̊ Carriage Return
�| Tab
|
¯
Backspace

\f Form Feed

2.8.2 Common String Methods
• String Concatenation: The + operator can be used between strings to combine them. This is

called concatenation:

S t r ing f i rstName = " John " ;
S t r ing lastName = "Doe " ;
System . out . p r i n t l n (f i rstName + " ␣ " + lastName) ;

Note that we have added an empty text (” “) to create a space between firstName and lastName on
print. You can also use the concat() method to concatenate two strings:

S t r ing f i rstName = " John␣ " ;
S t r ing lastName = "Doe " ;
System . out . p r i n t l n (f i rstName . concat (lastName)) ;

• charAt(int index): Returns the character at the specified index.

char ch = s t r . charAt (0) ; // Returns 'H'

• contains(CharSequence s): Checks if the string contains the specified sequence of characters.

boolean conta in s = s t r . conta in s ("World ") ; // Returns t rue

• format(String format, Object. . . args): Returns a formatted string using the specified format
string and arguments.

Java Programming Milav Dabgar

Scanner Class (User Input) 34

St r ing fo rmattedStr ing = St r ing . format (" Hel lo , ␣%s ! " , " John ") ; //
↪→ Returns " Hel lo , John ! "

• length(): Returns the length of the string.

int l ength = s t r . l ength () ; // Returns 13

• split(String regex): Splits the string into an array of substrings based on the specified regular
expression.

S t r ing [] par t s = s t r . s p l i t (" , ␣ ") ; // S p l i t s the s t r i n g in to par t s
↪→ separa ted by " , "

• substring(int beginIndex): Returns a substring starting from the specified index.

S t r ing sub s t r i ng = s t r . sub s t r i ng (7) ; // Returns " World ! "

• substring(int beginIndex, int endIndex): Returns a substring from the specified begin index
(inclusive) to the specified end index (exclusive).

S t r ing sub s t r i ng = s t r . sub s t r i ng (7 , 12) ; // Returns " World "

• toLowerCase(): Converts all characters in the string to lowercase.

S t r ing lowercase = s t r . toLowerCase () ; // Returns " h e l l o , world ! "

• toUpperCase(): Converts all characters in the string to uppercase.

S t r ing uppercase = s t r . toUpperCase () ; // Returns "HELLO, WORLD! "

• trim(): Removes leading and trailing whitespace from the string.

S t r ing trimmed = " ␣␣Hel lo , ␣World ! ␣␣ " . tr im () ; // Returns " Hel lo , World ! "

These are some of the commonly used methods provided by the String class in Java for manipulating
and working with strings. They enable various operations such as substring extraction, case conversion,
searching, and splitting.

Additional points

• String Concatenation: You can use the + operator to join strings together.
• String Comparison:

– Use .equals() for content comparison.
– == in the case of strings compares object references, not always the content.

• StringBuilder: For frequent modifications, look into the StringBuilder class, which is mutable and
may be more efficient.

2.9 Scanner Class (User Input)
In Java, the Scanner class is commonly used to read user input from the console. It provides various
methods to read different types of input, such as integers, floating-point numbers, and strings.

2.9.1 Input Types
In the example above, we used the nextLine() method, which is used to read Strings. To read other types,
look at the table below:

Method Description
nextBoolean() Reads a boolean value from the user
nextByte() Reads a byte value from the user
nextDouble() Reads a double value from the user
nextFloat() Reads a float value from the user
nextInt() Reads a int value from the user
nextLine() Reads a String value from the user

Java Programming Milav Dabgar

Command-line Arguments 35

Method Description
nextLong() Reads a long value from the user
nextShort() Reads a short value from the user

2.9.2 Using Scanner Class
1. Import Scanner class: First, import the Scanner class from the java. util package.

import java . u t i l . Scanner ;

2. Create a Scanner object: Create an instance of the Scanner class to read input.

Scanner scanner = new Scanner (System . in) ;

3. Read input: Use the Scanner object’s methods to read input from the console.

System . out . p r i n t l n (" Enter ␣your␣name : ␣ ") ;
S t r ing name = scanner . nextLine () ; // Read a l i n e o f t e x t

System . out . p r i n t l n (" Enter ␣your␣age : ␣ ") ;
int age = scanner . next Int () ; // Read an i n t e g e r

4. Close the Scanner: It’s good practice to close the Scanner object after reading input to release
system resources.

scanner . c l o s e () ;

In the example below, we use different methods to read data of various types:

import java . u t i l . Scanner ;

class Main {
public stat ic void main (St r ing [] a rgs) {

Scanner myObj = new Scanner (System . in) ;

System . out . p r i n t l n (" Enter ␣name , ␣age␣and␣ s a l a r y : ") ;

// S t r ing input
St r ing name = myObj . nextLine () ;

// Numerical input
int age = myObj . next Int () ;
double s a l a r y = myObj . nextDouble () ;

// Output input by user
System . out . p r i n t l n ("Name : ␣ " + name) ;
System . out . p r i n t l n ("Age : ␣ " + age) ;
System . out . p r i n t l n (" Sa lary : ␣ " + sa l a r y) ;

}
}

Note: If you enter wrong input (e.g. text in a numerical input), you will get an exception/error message
(like “InputMismatchException”).

2.10 Command-line Arguments
Java programs can also accept command-line arguments, which are passed to the main method when the
program is executed from the command line.

Command-line arguments can be accessed from the args array within the main method. Each element of
the array corresponds to a command-line argument passed to the program.

• Arguments passed to your program when it’s started from the command line.

Java Programming Milav Dabgar

Command-line Arguments 36

• Accessed in the String [] args parameter of the main method.

Example

public class CommandLineDemo {
public stat ic void main (St r ing [] a rgs) {

i f (args . l ength > 0) {
System . out . p r i n t l n ("The␣ f i r s t ␣argument␣ i s : ␣ " + args [0]) ;
System . out . p r i n t l n (" There␣were␣ " + args . l ength + " ␣arguments␣

↪→ passed . ") ;
} else {

System . out . p r i n t l n ("No␣command−l i n e ␣arguments␣ provided . ") ;
}

}
}

Run this from the command line like:

java CommandLineDemo h e l l o world

Command-line arguments are useful for passing information to a Java program when it is executed, such
as configuration settings or file paths. They can be accessed and processed as needed within the program.

Java Programming Milav Dabgar

Chapter 3

Inheritance, Packages, and Interfaces

3.1 Inheritance
Inheritance is a key concept in object-oriented programming (OOP) that allows a class to inherit properties
and behavior from another class. It promotes code reuse and establishes a hierarchical relationship between
classes.

3.1.1 Basics of Inheritance
• Base Class (Superclass): The class whose properties and behavior are inherited by another class

is called the base class or superclass.

• Derived Class (Subclass): The class that inherits properties and behavior from another class is
called the derived class or subclass.

• Syntax: In Java, inheritance is achieved using the extends keyword.

// Base c l a s s
class Vehic l e {

// Proper t i e s and methods
}

// Derived c l a s s i n h e r i t i n g from Vehic l e
class Car extends Vehic l e {

// Add i t i ona l p r o p e r t i e s and methods
}

3.1.2 Types of Inheritance
1. Single Inheritance: A subclass inherits from only one superclass.

class Animal { . . . }
class Dog extends Animal { . . . }

2. Multiple Inheritance (Not directly supported in Java): A subclass inheriting from multiple
superclasses. Java avoids this using interfaces (we’ll cover interfaces later).

3. Multilevel Inheritance: A subclass inherits from a class that is itself a subclass.

class Animal { . . . }
class Dog extends Animal { . . . }
class GoldenRetr iever extends Dog { . . . }

4. Hierarchical Inheritance: Multiple subclasses inherit from a single superclass.

class Vehic l e { . . . }
class Car extends Vehic l e { . . . }
class Truck extends Vehic l e { . . . }

37

Inheritance 38

5. Hybrid Inheritance: A combination of multiple inheritance types. This can get complex, and
Java doesn’t directly support all variations.

3.1.3 extends Keyword
The extends keyword is used to establish an inheritance relationship between classes in Java.

class Subc las s extends Supe r c l a s s {
// Subc l a s s d e f i n i t i o n

}

3.1.4 super Keyword
The super keyword is used to refer to the superclass or call superclass constructors and methods from the
subclass.

• Referring to Superclass Members: Use super to access superclass members (fields and methods)
from the subclass.

class Subc las s extends Supe r c l a s s {
void d i sp l ay () {

super . d i s p l ay () ; // Ca l l s u p e r c l a s s method
// Add i t i ona l s u b c l a s s code

}
}

• Calling Superclass Constructor: Use super() to call the superclass constructor from the subclass
constructor.

class Subc las s extends Supe r c l a s s {
Subc las s () {

super () ; // Ca l l s u p e r c l a s s cons t ruc t o r
// Subc l a s s cons t ruc t o r code

}
}

In summary, inheritance allows classes to inherit properties and behavior from other classes, promoting
code reuse and establishing a hierarchical relationship between classes. Java supports various types of
inheritance, and the extends and super keywords are used to implement and work with inheritance in
Java programs.

3.1.5 Polymorphism
The word “polymorphism” means “many forms.” In Java, it refers to the ability of objects to behave
differently depending on their specific type, enabling us to write more flexible and reusable code.

Polymorphism means “many forms”, and it occurs when we have many classes that are related to each
other by inheritance.

Like we specified in the previous topic; Inheritance lets us inherit attributes and methods from another
class. Polymorphism uses those methods to perform different tasks. This allows us to perform a single
action in different ways.

For example, think of a superclass called Animal that has a method called animalSound(). Subclasses of
Animals could be Pigs, Cats, Dogs, Birds - And they also have their own implementation of an animal
sound (the pig oinks, and the cat meows, etc.):

class Animal {
public void animalSound () {

System . out . p r i n t l n ("The␣animal ␣makes␣a␣sound ") ;
}

}

class Pig extends Animal {
public void animalSound () {

Java Programming Milav Dabgar

Inheritance 39

System . out . p r i n t l n ("The␣ pig ␣ says : ␣wee␣wee ") ;
}

}

class Dog extends Animal {
public void animalSound () {

System . out . p r i n t l n ("The␣dog␣ says : ␣bow␣wow") ;
}

}

Remember from the Inheritance topic that we use the extends keyword to inherit from a class.

Now we can create Pig and Dog objects and call the animalSound() method on both of them:

class Animal {
public void animalSound () {

System . out . p r i n t l n ("The␣animal ␣makes␣a␣sound ") ;
}

}

class Pig extends Animal {
public void animalSound () {

System . out . p r i n t l n ("The␣ pig ␣ says : ␣wee␣wee ") ;
}

}

class Dog extends Animal {
public void animalSound () {

System . out . p r i n t l n ("The␣dog␣ says : ␣bow␣wow") ;
}

}

class Main {
public stat ic void main (St r ing [] a rgs) {

Animal myAnimal = new Animal () ; // Create a Animal o b j e c t
Animal myPig = new Pig () ; // Create a Pig o b j e c t
Animal myDog = new Dog () ; // Create a Dog o b j e c t
myAnimal . animalSound () ;
myPig . animalSound () ;
myDog . animalSound () ;

}
}

3.1.5.1 Method Overloading

Method overloading allows a class to have multiple methods with the same name but different parameter
lists. The methods must have different parameter types or a different number of parameters.

• Definition: Having multiple methods with the same name within the same class, but with different
parameter lists (different number of parameters or different parameter types).

• Resolution at Compile Time: The compiler determines at compile time which version of the
method to call based on the arguments provided.

class Calcu la to r {
int add (int a , int b) {

return a + b ;
}

double add (double a , double b) {
return a + b ;

}
}

Java Programming Milav Dabgar

Inheritance 40

3.1.5.2 Method Overriding

Method overriding occurs when a subclass provides a specific implementation of a method that is already
defined in its superclass. The method signature (name and parameters) must be the same.

• Definition: A subclass redefines a method it inherits from a superclass. The subclass provides its
own specific implementation of the inherited method.

• Resolution at Runtime: The JVM determines at runtime which version to call (subclass or
superclass) based on the type of the object. This is the essence of dynamic dispatch.

• Use of @Override Annotation: Marking overridden methods with @Override helps avoid errors.
class Animal {

void makeSound () {
System . out . p r i n t l n ("Animal␣makes␣a␣sound ") ;

}
}

class Dog extends Animal {
@Override
void makeSound () {

System . out . p r i n t l n ("Dog␣barks ") ;
}

}

3.1.5.2.1 Overriding Object Class Methods Java provides a set of methods in the Object class
that can be overridden in subclasses to provide custom behavior. Commonly overridden methods include:

• equals(Object obj): Compares two objects for equality.
• toString(): Returns a string representation of the object.
• finalize(): Called by the garbage collector before reclaiming the object’s memory.
• hashCode(): Returns a hash code value for the object.

class Student {
int id ;
S t r ing name ;

// Overr id ing equa l s method
@Override
public boolean equa l s (Object obj) {

// Custom e q u a l i t y check l o g i c
}

// Overr id ing t o S t r i n g method
@Override
public St r ing toS t r i ng () {

return " Student [id=" + id + " , ␣name=" + name + "] " ;
}

}

3.1.6 Method Dynamic Dispatch
Method dynamic dispatch (or dynamic method dispatch) is the process by which the correct version of a
method is invoked at runtime, based on the actual type of the object.
Animal animal = new Dog () ;
animal . makeSound () ; // Dynamic d i s pa t ch invokes Dog ' s makeSound () method

In the example above, even though the reference animal is of type Animal, the makeSound() method of
the Dog class is invoked because animal is referring to a Dog object. This allows for polymorphic behavior,
where the same method call can exhibit different behavior depending on the actual type of the object at
runtime.

Polymorphism, achieved through method overloading, overriding, and dynamic dispatch, allows for flexible
and reusable code by enabling objects of different types to be treated uniformly.

Java Programming Milav Dabgar

Interfaces 41

3.2 Interfaces
• An interface is like a contract. It defines a set of methods that a class must implement, ensuring

certain behaviors are guaranteed by the class.
• Abstract: Interfaces cannot be instantiated directly. They are used to achieve abstraction and

provide a way to achieve multiple inheritance in Java through interface implementation.
• Methods without Bodies: Methods in an interface are by default abstract (without a body).
• implements Keyword: Classes implement interfaces using the implements keyword.

3.2.1 Defining Interfaces
An interface is declared using the interface keyword followed by the interface name and a list of method
signatures (without method bodies).

interface Shape {
double area () ;
double per imeter () ;

}

3.2.2 Implementing Interfaces
To implement an interface, a class uses the implements keyword followed by the interface name. The class
must provide implementations for all the methods declared in the interface.

class Ci r c l e implements Shape {
double rad iu s ;

// Implementing area method
@Override
public double area () {

return Math . PI ∗ rad iu s ∗ rad iu s ;
}

// Implementing per imeter method
@Override
public double per imeter () {

return 2 ∗ Math . PI ∗ rad iu s ;
}

}

3.2.3 Multiple Inheritance Using Interfaces
Java supports multiple inheritance through interfaces, as a class can implement multiple interfaces. This
allows a class to inherit from multiple sources, providing flexibility in code design.

interface Drawable {
void draw () ;

}

interface Colorab le {
void s e tCo lo r (S t r ing c o l o r) ;

}

class Rectangle implements Drawable , Co lorab le {
// Implementing draw method
@Override
public void draw () {

// Draw r e c t a n g l e
}

// Implementing se tCo lor method
@Override

Java Programming Milav Dabgar

Abstraction 42

public void s e tCo lo r (S t r ing c o l o r) {
// Set r e c t a n g l e co l o r

}
}

In the example above, the Rectangle class implements both the Drawable and Colorable interfaces, allowing
it to provide implementations for methods defined in both interfaces.

Notes on Interfaces:

• Like abstract classes, interfaces cannot be used to create objects (in the example above, it is not
possible to create an “Animal” object in the MyMainClass)

• Interface methods do not have a body - the body is provided by the “implement” class
• On implementation of an interface, you must override all of its methods
• Interface methods are by default abstract and public
• Interface attributes are by default public, static and final
• An interface cannot contain a constructor (as it cannot be used to create objects)

Why And When To Use Interfaces?

1) To achieve security - hide certain details and only show the important details of an object (interface).
2) Java does not support “multiple inheritance” (a class can only inherit from one superclass). However,

it can be achieved with interfaces, because the class can implement multiple interfaces. Note: To
implement multiple interfaces, separate them with a comma (see example below).

Benefits of Interfaces:

• Polymorphism: You can treat objects of different classes that implement the same interface
uniformly.

• Multiple Inheritance (via Interfaces): A class can implement multiple interfaces, overcoming
Java’s restriction on direct multiple inheritance of classes.

• Abstraction: Interfaces help to enforce a separation between interface (what an object can do)
and implementation (how it does it).

• Loose Coupling: Using interfaces helps to reduce dependencies between classes, making your code
more flexible and maintainable.

Interfaces provide a way to achieve abstraction, decoupling the definition of methods from their imple-
mentation. They also enable code reuse and multiple inheritance, making Java programs more flexible
and maintainable.

3.3 Abstraction
Data abstraction is the process of hiding certain details and showing only essential information to the
user. Abstraction can be achieved with either abstract classes or interfaces (which you will learn more
about in the next topic).

The abstract keyword is a non-access modifier, used for classes and methods:

• Abstract class: is a restricted class that cannot be used to create objects (to access it, it must be
inherited from another class).

• Abstract method: can only be used in an abstract class, and it does not have a body. The body
is provided by the subclass (inherited from).

// Abs t rac t c l a s s
abstract class Animal {

// Abs t rac t method (does not have a body)
public abstract void animalSound () ;
// Regular method
public void s l e e p () {

System . out . p r i n t l n (" Zzz ") ;
}

}

// Subc l a s s (i n h e r i t from Animal)
class Pig extends Animal {

Java Programming Milav Dabgar

Abstraction 43

public void animalSound () {
// The body o f animalSound () i s prov ided here
System . out . p r i n t l n ("The␣ pig ␣ says : ␣wee␣wee ") ;

}
}

class Main {
public stat ic void main (St r ing [] a rgs) {

Pig myPig = new Pig () ; // Create a Pig o b j e c t
myPig . animalSound () ;
myPig . s l e e p () ;

}
}

3.3.1 Abstract Class
An abstract class in Java is a class that cannot be instantiated directly and may contain abstract methods,
which are declared but not implemented in the abstract class itself. Abstract classes are used to define a
common interface for a group of subclasses while allowing subclasses to provide specific implementations
for abstract methods.

An abstract class is declared using the abstract keyword. It can contain both abstract and non-abstract
methods.

• abstract Keyword: Abstract classes are declared using the abstract keyword.
• Abstract Methods: Can contain abstract methods (methods declared without a body, ending

with a semicolon). Subclasses must implement these methods.
• Concrete Methods: Can also have regular methods with implementations.

abstract class Shape {
abstract double area () ; // Abs t rac t method
double per imeter () { // Non−a b s t r a c t method

return 0 ;
}

}

3.3.2 Abstract Method
An abstract method is declared using the abstract keyword and does not have an implementation in the
abstract class. Subclasses must provide implementations for all abstract methods.

Example

abstract class Vehic l e {
private St r ing model ;

public Vehic l e (S t r ing model) {
this . model = model ;

}

// Abs t rac t method
public abstract void s ta r tEng ine () ;

// Concrete method
public void a c c e l e r a t e () {

System . out . p r i n t l n (" Acce l e r a t i ng . . . ") ;
}

}

3.3.3 Differences from Interfaces

Java Programming Milav Dabgar

Final Class 44

Feature Interface Abstract Class
Instantiation Cannot be instantiated directly Cannot be instantiated directly
Method
Declaration

Only abstract method declarations Can have abstract methods AND concrete
methods

Implementation Provides no default implementation Can provide default implementations for some
methods

Multiple
Inheritance

A class can implement multiple
interfaces

A class can extend only one abstract class

When to Use an Abstract Class

• Common functionality across subclasses, but not all methods make sense at the base level.
• Default implementations exist for some behaviors.
• You want to enforce a certain structure on your class hierarchy.

3.4 Final Class
• Definition: A class declared final cannot have any subclasses. It’s like the end of an inheritance

chain.
• Use Cases:

– Prevent unwanted inheritance.
– Classes with immutable characteristics (like String).
– Classes with security-sensitive functionality.

Final classes are typically used when a class should not be extended or when all its methods are already
implemented and should not be overridden.

3.4.1 Final Class Syntax
A final class is declared using the final keyword.
f ina l class Fina lC la s s {

// Class d e f i n i t i o n
}

3.4.2 Final Method
In addition to final classes, individual methods can also be marked as final. A final method cannot be
overridden by subclasses.
class Parent {

f ina l void d i sp l ay () {
// Method implementat ion

}
}

class Child extends Parent {
// This w i l l cause a compile−time error
void d i sp l ay () {

// Method implementat ion
}

}

Summary

• Abstract classes provide a way to define a common interface for a group of subclasses and allow for
both abstract and non-abstract methods.

• Final classes cannot be subclassed, and final methods cannot be overridden.
• Abstract classes are used when a class should not be instantiated directly, while final classes are

used when a class should not be extended.
• You cannot have a class that is both abstract and final . They represent opposite concepts in terms

of inheritance.

Java Programming Milav Dabgar

Inner Classes 45

3.5 Inner Classes
In Java, it is also possible to nest classes (a class within a class). The purpose of nested classes is to group
classes that belong together, which makes your code more readable and maintainable.

To access the inner class, create an object of the outer class, and then create an object of the inner class:

class OuterClass {
int x = 10 ;

class InnerClas s {
int y = 5 ;

}
}

public class Main {
public stat ic void main (St r ing [] a rgs) {

OuterClass myOuter = new OuterClass () ;
OuterClass . InnerClas s myInner = myOuter .new InnerClas s () ;
System . out . p r i n t l n (myInner . y + myOuter . x) ;

}
}

// Outputs 15 (5 + 10)

3.5.1 Private Inner Class
Unlike a “regular” class, an inner class can be private or protected. If you don’t want outside objects to
access the inner class, declare the class as private:

class OuterClass {
int x = 10 ;

private class InnerClas s {
int y = 5 ;

}
}

public class Main {
public stat ic void main (St r ing [] a rgs) {

OuterClass myOuter = new OuterClass () ;
OuterClass . InnerClas s myInner = myOuter .new InnerClas s () ;
System . out . p r i n t l n (myInner . y + myOuter . x) ;

}
}

If you try to access a private inner class from an outside class, an error occurs:

Main . java : 1 3 : e r r o r : OuterClass . InnerClas s has p r i va t e a c c e s s in OuterClass
↪→ OuterClass . InnerClas s myInner = myOuter . new InnerClas s () ; ^

3.5.2 Static Inner Class
An inner class can also be static , which means that you can access it without creating an object of the
outer class:

class OuterClass {
int x = 10 ;

stat ic class InnerClas s {
int y = 5 ;

}
}

Java Programming Milav Dabgar

Packages & API 46

public class Main {
public stat ic void main (St r ing [] a rgs) {

OuterClass . InnerClas s myInner = new OuterClass . InnerClas s () ;
System . out . p r i n t l n (myInner . y) ;

}
}

// Outputs 5

Note: just like static attributes and methods, a static inner class does not have access to members of
the outer class.

3.5.3 Access Outer Class From Inner Class
One advantage of inner classes, is that they can access attributes and methods of the outer class:
class OuterClass {

int x = 10 ;

class InnerClas s {
public int myInnerMethod () {

return x ;
}

}
}

public class Main {
public stat ic void main (St r ing [] a rgs) {

OuterClass myOuter = new OuterClass () ;
OuterClass . InnerClas s myInner = myOuter .new InnerClas s () ;
System . out . p r i n t l n (myInner . myInnerMethod ()) ;

}
}

// Outputs 10

3.6 Packages & API
A package in Java is used to group related classes. Think of it as a folder in a file directory. We use
packages to avoid name conflicts, and to write a better maintainable code.

Packages in Java are used to group related classes, interfaces, and sub-packages, making the code easier
to manage and modularize. They help avoid naming conflicts and can also control access to classes and
class members (methods and fields) due to their access levels.

They provide:

• Organisation: Help manage large projects by avoiding naming conflicts.
• Access Control: Control the visibility of classes and members.
• Namespace: Create a unique namespace for your classes and interfaces.

Packages are divided into two categories:

• Built-in Packages (packages from the Java API)
• User-defined Packages (create your own packages)

3.6.1 Built-in Packages
The Java API is a library of prewritten classes, that are free to use, included in the Java Development
Environment.

The library contains components for managing input, database programming, and much much more. The
complete list can be found at Oracles website: https://docs.oracle.com/javase/8/docs/api/.

Java Programming Milav Dabgar

Packages & API 47

The library is divided into packages and classes. Meaning you can either import a single class (along
with its methods and attributes), or a whole package that contain all the classes that belong to the
specified package.

Java comes with a rich set of built-in packages in the Java API. Examples:

• java.lang (String, Math, System, etc.)
• java. util (List, ArrayList, Scanner, etc.)
• java. io (File, InputStream, etc.)

To use a class or a package from the library, you need to use the import keyword:

import package . name . Class ; // Import a s i n g l e c l a s s
import package . name . ∗ ; // Import the whole package

3.6.2 Import a Class
If you find a class you want to use, for example, the Scanner class, which is used to get user input,
write the following code:

import java . u t i l . Scanner ;

In the example above, java. util is a package, while Scanner is a class of the java. util package.

To use the Scanner class, create an object of the class and use any of the available methods found in the
Scanner class documentation. In our example, we will use the nextLine() method, which is used to read a
complete line:

Using the Scanner class to get user input:

import java . u t i l . Scanner ;

class MyClass {
public stat ic void main (St r ing [] a rgs) {

Scanner myObj = new Scanner (System . in) ;
System . out . p r i n t l n (" Enter ␣username ") ;

S t r ing userName = myObj . nextLine () ;
System . out . p r i n t l n ("Username␣ i s : ␣ " + userName) ;

}
}

3.6.3 Import a Package
There are many packages to choose from. In the previous example, we used the Scanner class from the
java. util package. This package also contains date and time facilities, random-number generator and
other utility classes.

To import a whole package, end the sentence with an asterisk sign (∗). The following example will import
ALL the classes in the java. util package:

import java . u t i l . ∗ ;

3.6.4 User-defined Packages
To create a package, you use the package keyword at the top of your Java source file. Each file can only
declare one package, and all types (classes, interfaces, enums) declared in the file will belong to that
package.

Package Declaration: At the top of your . java files, use the package keyword followed by the package
name.

To create your own package, you need to understand that Java uses a file system directory to store them.
Just like folders on your computer: root/mypack/MyPackageClass.java

To create a package, use the package keyword:

Java Programming Milav Dabgar

Packages & API 48

// MyPackageClass . java
package mypack ;
class MyPackageClass {

public stat ic void main (St r ing [] a rgs) {
System . out . p r i n t l n (" This ␣ i s ␣my␣package ! ") ;

}
}

Save the file as MyPackageClass.java, and compile it, Then compile the package.

The −d keyword specifies the destination for where to save the class file. You can use any directory name,
like c:/user (windows), or, if you want to keep the package within the same directory, you can use the dot
sign “.”, like in the example above.

Note: The package name should be written in lower case to avoid conflict with class names.

When we compiled the package in the example above, a new folder was created, called “mypack”.

3.6.5 Access Rules: Access Control Within Packages
Java uses access modifiers to control access levels for classes, constructors, methods, and variables. The
access levels impact how members can be accessed from within their own package and from other packages.

Access Modifier Access Within
public Class, Package, Other Packages
protected Class, Package, Subclasses (even in different packages)
default (no modifier) Class, Package
private Class only

• public: The member is accessible from any other class or package.
• protected: The member is accessible within its own package and by subclasses (including those in

other packages).
• default (no modifier): The member is accessible only within its own package. If no access

modifier is specified, the default access level is applied.
• private: The member is accessible only within its own class.

3.6.6 Example: Access Control
package packageOne ;

public class ClassOne {
public void publicMethod () {} // A c c e s s i b l e from any c l a s s
protected void protectedMethod () {} // A c c e s s i b l e w i th in package and

↪→ s u b c l a s s e s
void defaultMethod () {} // A c c e s s i b l e on ly w i th in packageOne
private void privateMethod () {} // A c c e s s i b l e on ly w i th in ClassOne

}

If another class in a different package tries to access these methods, only publicMethod() and, under
certain conditions, protectedMethod() (from a subclass) would be accessible.

Packages and access modifiers together provide a robust mechanism for encapsulating and organizing
code, ensuring that internal implementations are well-protected and that the public interface of classes is
clearly defined.

Java Programming Milav Dabgar

Chapter 4

Exception Handling and
Multithreading

4.1 Exception Handling in Java
Exception handling in Java is a powerful mechanism that handles runtime errors to maintain normal
application flow. An exception is an event that disrupts the normal flow of the program’s instructions.

4.1.1 Errors vs. Exceptions
• Errors: Indicate serious problems that a reasonable application should not try to catch. Most

errors are abnormal conditions. Examples include OutOfMemoryError and StackOverflowError.
• Exceptions: Are conditions that a reasonable application might want to catch. Exceptions are

divided into two categories: checked exceptions (those that must be caught or declared to be thrown)
and unchecked exceptions (those that don’t need to be explicitly caught or declared thrown).

4.1.2 Java try and catch
The try statement allows you to define a block of code to be tested for errors while it is being executed.

The catch statement allows you to define a block of code to be executed, if an error occurs in the try
block.

The try and catch keywords come in pairs:

// Syntax
try {

// Block o f code to t r y
}
catch (Exception e) {

// Block o f code to handle e r ro r s
}

Consider the following example:

This will generate an error, because myNumbers[10] does not exist.

public class Main {
public stat ic void main (St r ing [] a rgs) {

int [] myNumbers = {1 , 2 , 3} ;
System . out . p r i n t l n (myNumbers [1 0]) ; // error !

}
}

The output will be something like this:

Exception in thread "main " java . lang . ArrayIndexOutOfBoundsException : 10
↪→ at Main . main (Main . java : 4)

49

Throwing Exceptions 50

If an error occurs, we can use try ... catch to catch the error and execute some code to handle it:

//Example
public class Main {

public stat ic void main (St r ing [] a rgs) {
try {

int [] myNumbers = {1 , 2 , 3} ;
System . out . p r i n t l n (myNumbers [1 0]) ;

} catch (Exception e) {
System . out . p r i n t l n (" Something␣went␣wrong . ") ;

}
}

}

The output will be:

Something went wrong .

4.1.3 try-catch-finally Blocks
• try block: Contains code that might throw an exception.
• catch block: Catches and handles the exception thrown by the try block.
• finally block: Executes after the try/catch block has completed. The finally block will execute

whether or not an exception is caught or thrown. It’s typically used for cleanup code.

The finally statement lets you execute code, after try ... catch, regardless of the result:

// Syntax
try {

// Code t h a t may throw an excep t i on
} catch (ExceptionType name) {

// Code to handle the excep t i on
} f ina l ly {

// Code to be executed a f t e r t r y b l o c k ends
}

// Example
try {

int r e s u l t = 10 / 0 ; // Might throw an Ari thmet icExcept ion
} catch (Arithmet icExcept ion e) {

System . out . p r i n t l n (" Error : ␣Cannot␣ d iv id e ␣by␣ zero ") ;
} f ina l ly {

System . out . p r i n t l n (" This ␣ code␣always ␣ execute s . ") ;
}

4.2 Throwing Exceptions
• throw keyword: Used within a method to throw an exception. Either the method must handle the

exception using a try-catch block, or it must be declared to throw the exception using the throws
keyword in the method signature.

• throws keyword: Indicates that a method may throw one or more exceptions. The calling method
must handle these exceptions.

public void myMethod () throws MyException {
throw new MyException (" Something␣went␣wrong ") ;

}

The throw statement is used together with an exception type. There are many exception types
available in Java: ArithmeticException, FileNotFoundException, ArrayIndexOutOfBoundsException,
SecurityException, etc.

Java Programming Milav Dabgar

Throwing Exceptions 51

4.2.1 Common Built-in Exceptions
• ArithmeticException: Thrown for issues like division by zero.
• NullPointerException: Attempting to access or modify a null object reference.
• ArrayIndexOutOfBoundsException: Accessing an array with an illegal index.
• ClassCastException: Attempting to cast an object to a subclass of which it is not an instance.
• NumberFormatException: Attempting to convert a string to a numeric type but the string doesn’t

have an appropriate format.
• IOException: Signals problems during input/output operations.
• IllegalArgumentException: When a method passes an invalid argument.

Throw an exception if age is below 18 (print “Access denied”). If age is 18 or older, print “Access granted”:

public class Main {
stat ic void checkAge (int age) {

i f (age < 18) {
throw new Arithmet icExcept ion (" Access ␣ denied ␣−␣You␣must␣be␣ at ␣ l e a s t ␣

↪→ 18␣ years ␣ o ld . ") ;
}
else {

System . out . p r i n t l n (" Access ␣ granted ␣−␣You␣ are ␣ o ld ␣enough ! ") ;
}

}

public stat ic void main (St r ing [] a rgs) {
checkAge (15) ; // Set age to 15 (which i s be low 1 8 . . .)

}
}

The output will be:

Exception in thread "main " java . lang . Ar ithmet icExcept ion : Access denied −
↪→ You must be at l e a s t 18 years o ld . at Main . checkAge (Main . java : 4)
↪→ at Main . main (Main . java : 1 2)

If age was 20, you would not get an exception:

checkAge (20) ;

The output will be:

Access granted − You are o ld enough !

4.2.2 Creating Custom Exceptions
You can create custom exceptions by extending the Exception class (for checked exceptions) or the
RuntimeException class (for unchecked exceptions).

class MyCustomException extends Exception {
public MyCustomException (St r ing message) {

super (message) ;
}

}

Custom exceptions allow you to create specific error types for your application, improving readability and
maintainability.

4.2.3 Benefits of Exception Handling
• Separation of Error-handling Code: Improves readability and maintainability.
• Graceful Recovery: Allows your program to recover from errors instead of crashing.
• Propagation: Exceptions can bubble up the call stack if not handled locally.

Java Programming Milav Dabgar

Multi-threading in Java 52

4.3 Multi-threading in Java
Multi-threading in Java allows concurrent execution of multiple threads within a single process, enabling
better utilization of CPU resources and improved application responsiveness. Here’s an overview of key
concepts and features:

4.3.1 Concepts of Threads and Processes
• Process: A process is an executing instance of a program that has its own memory space, resources,

and state.
• Thread: A thread is the smallest unit of execution within a process. Threads share the same

memory space and resources within a process.

4.3.2 Multi-threading Benefits
• Responsiveness: UI remains responsive even during long-running tasks.
• Resource Utilization: Maximize CPU usage by allowing multiple threads to run concurrently.
• Simplification: Can break down complex tasks into smaller, independently running threads.

4.3.3 Creating a Thread
There are two ways to create a thread.

It can be created by extending the Thread class and overriding its run() method:

4.3.3.1 Extend Syntax

public class Main extends Thread {
public void run () {

System . out . p r i n t l n (" This ␣ code␣ i s ␣ running ␣ in ␣a␣ thread ") ;
}

}

Another way to create a thread is to implement the Runnable interface:

4.3.3.2 Implement Syntax

public class Main implements Runnable {
public void run () {

System . out . p r i n t l n (" This ␣ code␣ i s ␣ running ␣ in ␣a␣ thread ") ;
}

}

4.3.4 Running Threads
If the class extends the Thread class, the thread can be run by creating an instance of the class and call
its start () method:

4.3.4.1 Extend Example

public class Main extends Thread {
public stat ic void main (St r ing [] a rgs) {

Main thread = new Main () ;
thread . s t a r t () ;
System . out . p r i n t l n (" This ␣ code␣ i s ␣ out s id e ␣ o f ␣ the ␣ thread ") ;

}
public void run () {

System . out . p r i n t l n (" This ␣ code␣ i s ␣ running ␣ in ␣a␣ thread ") ;
}

}

If the class implements the Runnable interface, the thread can be run by passing an instance of the class
to a Thread object’s constructor and then calling the thread’s start () method:

Java Programming Milav Dabgar

Multi-threading in Java 53

4.3.4.2 Implement Example

public class Main implements Runnable {
public stat ic void main (St r ing [] a rgs) {

Main obj = new Main () ;
Thread thread = new Thread (obj) ;
thread . s t a r t () ;
System . out . p r i n t l n (" This ␣ code␣ i s ␣ out s id e ␣ o f ␣ the ␣ thread ") ;

}
public void run () {

System . out . p r i n t l n (" This ␣ code␣ i s ␣ running ␣ in ␣a␣ thread ") ;
}

}

4.3.4.3 Differences between “extending” and “implementing” Threads

The major difference is that when a class extends the Thread class, you cannot extend any other class,
but by implementing the Runnable interface, it is possible to extend from another class as well, like: class
MyClass extends OtherClass implements Runnable.

4.3.5 Concurrency Problems
Because threads run at the same time as other parts of the program, there is no way to know in which
order the code will run. When the threads and main program are reading and writing the same variables,
the values are unpredictable. The problems that result from this are called concurrency problems.

A code example where the value of the variable amount is unpredictable:

public class Main extends Thread {
public stat ic int amount = 0 ;

public stat ic void main (St r ing [] a rgs) {
Main thread = new Main () ;
thread . s t a r t () ;
System . out . p r i n t l n (amount) ;
amount++;
System . out . p r i n t l n (amount) ;

}

public void run () {
amount++;

}
}

To avoid concurrency problems, it is best to share as few attributes between threads as possible. If
attributes need to be shared, one possible solution is to use the isAlive () method of the thread to check
whether the thread has finished running before using any attributes that the thread can change.

Use isAlive () to prevent concurrency problems:

public class Main extends Thread {
public stat ic int amount = 0 ;

public stat ic void main (St r ing [] a rgs) {
Main thread = new Main () ;
thread . s t a r t () ;
// Wait f o r the thread to f i n i s h
while (thread . i sA l i v e ()) {
System . out . p r i n t l n ("Waiting . . . ") ;

}
// Update amount and p r i n t i t s va lue
System . out . p r i n t l n ("Main : ␣ " + amount) ;
amount++;

Java Programming Milav Dabgar

Multi-threading in Java 54

System . out . p r i n t l n ("Main : ␣ " + amount) ;
}
public void run () {

amount++;
}

}

4.3.6 Thread Lifecycle
The lifecycle of a thread in Java consists of several states:

• New: The thread is in the new state before it is started.
• Runnable: The thread is in the runnable state when it’s ready to run, but the scheduler has not

selected it to be the running thread.
• Running: The thread is in the running state when the processor is actively executing its code.
• Blocked/Waiting: The thread is in the blocked/waiting state when it’s waiting for a resource or

another thread to perform a task.
• Terminated: The thread is in the terminated state when it has completed its execution.

4.3.7 Thread Priority
Thread priority is used by the scheduler to determine the order of thread execution.

• Range from 1 (lowest) to 10 (highest), default is 5, where higher values indicate higher priority.
• thread. setPriority (), thread.getPriority ()
• The OS scheduler uses priorities as suggestions, the behavior might be OS-dependent.

thread . s e tP r i o r i t y (Thread .MAX_PRIORITY) ; // Set h i g h e s t p r i o r i t y
thread . s e tP r i o r i t y (Thread .MIN_PRIORITY) ; // Set l owe s t p r i o r i t y

4.3.8 Thread Exception Handling
Exception handling in threads is similar to exception handling in other Java programs.

• Uncaught Exceptions: If an exception isn’t caught within a thread’s run method, it terminates
the thread.

• UncaughtExceptionHandler: Set a default handler per thread (thread.setUncaughtExceptionHandler
↪→ ()) or for all threads (Thread.setDefaultUncaughtExceptionHandler()) to log or handle these
exceptions.

• You can catch exceptions within the run() method or propagate them to the caller using throws
clause.

class MyThread extends Thread {
public void run () {

try {
// Code t h a t may throw an excep t i on

} catch (Exception e) {
// Handle the excep t i on

}
}

}

4.3.9 Synchronization
Synchronization in Java is used to control access to shared resources by multiple threads. It prevents
concurrent access to shared resources, avoiding data corruption and inconsistency.

• Critical Sections: Code blocks that should be executed by only one thread at a time.

• synchronized keyword: Use on methods or blocks to acquire a lock (monitor) on the object.

• wait(), notify (), notifyAll (): For more advanced thread coordination inside synchronized
blocks.

Java Programming Milav Dabgar

Multi-threading in Java 55

• Synchronized methods:

public synchronized void synchronizedMethod () {
// Synchronized method body

}

• Synchronized blocks:

synchronized (obj) {
// Synchronized b l o c k

}

Summary

Multithreading in Java allows concurrent execution of multiple threads within a single process. It
enables better utilization of CPU resources, improves application responsiveness, and supports concurrent
programming paradigms. Understanding thread concepts, lifecycle, synchronization, and exception
handling is crucial for building robust multithreaded applications.

Java Programming Milav Dabgar

Multi-threading in Java 56

Java Programming Milav Dabgar

Chapter 5

File Handling and Collections
Framework

File handling in Java involves reading from and writing to files. Java has several methods for creating,
reading, updating, and deleting files.

5.1 File Handling using File Class
The File class from the java. io package, allows us to work with files.

To use the File class, create an object of the class, and specify the filename or directory name:

import java . i o . F i l e ; // Import the F i l e c l a s s

F i l e myObj = new F i l e (" f i l ename . txt ") ; // Spec i f y the f i l ename

The File class has many useful methods for creating and getting information about files. For example:

Method Type Description
canRead() Boolean Tests whether the file is readable or not
canWrite() Boolean Tests whether the file is writable or not
createNewFile() Boolean Creates an empty file
delete () Boolean Deletes a file
exists () Boolean Tests whether the file exists
getName() String Returns the name of the file
getAbsolutePath() String Returns the absolute pathname of the file
length() Long Returns the size of the file in bytes
list () String[] Returns an array of the files in the directory
mkdir() Boolean Creates a directory

5.1.1 Create a File
To create a file in Java, you can use the createNewFile() method. This method returns a boolean value:
true if the file was successfully created, and false if the file already exists. Note that the method is
enclosed in a try ... catch block. This is necessary because it throws an IOException if an error occurs (if
the file cannot be created for some reason):

import java . i o . F i l e ; // Import the F i l e c l a s s
import java . i o . IOException ; // Import the IOException c l a s s to handle

↪→ e r ro r s

public class CreateF i l e {
public stat ic void main (St r ing [] a rgs) {

try {
F i l e myObj = new F i l e (" f i l ename . txt ") ;

57

File Handling using File Class 58

i f (myObj . createNewFi le ()) {
System . out . p r i n t l n (" F i l e ␣ c rea ted : ␣ " + myObj . getName ()) ;

} else {
System . out . p r i n t l n (" F i l e ␣ a l r eady ␣ e x i s t s . ") ;

}
} catch (IOException e) {

System . out . p r i n t l n ("An␣ e r r o r ␣ occurred . ") ;
e . pr intStackTrace () ;

}
}

}

The output will be:

F i l e c r ea ted : f i l ename . txt

To create a file in a specific directory (requires permission), specify the path of the file and use double
backslashes to escape the “\” character (for Windows). On Mac and Linux you can just write the path,
like: /Users/name/filename.txt

F i l e myObj = new F i l e ("C:\\ Users \\MyName\\ f i l ename . txt ") ;

5.1.2 Write To a File
In the following example, we use the FileWriter class together with its write() method to write some text
to the file we created in the example above. Note that when you are done writing to the file, you should
close it with the close () method:

import java . i o . F i l eWr i t e r ; // Import the Fi l eWri ter c l a s s
import java . i o . IOException ; // Import the IOException c l a s s to handle

↪→ e r ro r s

public class WriteToFile {
public stat ic void main (St r ing [] a rgs) {

try {
F i l eWr i t e r myWriter = new Fi l eWr i t e r (" f i l ename . txt ") ;
myWriter . wr i t e (" F i l e s ␣ in ␣Java␣might␣be␣ t r i cky , ␣but␣ i t ␣ i s ␣ fun␣enough ! "

↪→) ;
myWriter . c l o s e () ;
System . out . p r i n t l n (" S u c c e s s f u l l y ␣wrote ␣ to ␣ the ␣ f i l e . ") ;

} catch (IOException e) {
System . out . p r i n t l n ("An␣ e r r o r ␣ occurred . ") ;
e . pr intStackTrace () ;

}
}

}

The output will be:

S u c c e s s f u l l y wrote to the f i l e .

5.1.3 Read a File
In the previous topic, you learned how to create and write to a file.

In the following example, we use the Scanner class to read the contents of the text file we created in the
previous topic:

import java . i o . F i l e ; // Import the F i l e c l a s s
import java . i o . FileNotFoundException ; // Import t h i s c l a s s to handle

↪→ e r ro r s
import java . u t i l . Scanner ; // Import the Scanner c l a s s to read t e x t f i l e s

Java Programming Milav Dabgar

File Handling using File Class 59

public class ReadFile {
public stat ic void main (St r ing [] a rgs) {

try {
F i l e myObj = new F i l e (" f i l ename . txt ") ;
Scanner myReader = new Scanner (myObj) ;
while (myReader . hasNextLine ()) {

St r ing data = myReader . nextLine () ;
System . out . p r i n t l n (data) ;

}
myReader . c l o s e () ;

} catch (FileNotFoundException e) {
System . out . p r i n t l n ("An␣ e r r o r ␣ occurred . ") ;
e . pr intStackTrace () ;

}
}

}

The output will be:

F i l e s in Java might be t r i cky , but i t i s fun enough !

5.1.4 Get File Information
To get more information about a file, use any of the File methods:

import java . i o . F i l e ; // Import the F i l e c l a s s

public class GetF i l e In f o { public stat ic void main (St r ing [] a rgs) {
F i l e myObj = new F i l e (" f i l ename . txt ") ;
i f (myObj . e x i s t s ()) {

System . out . p r i n t l n (" F i l e ␣name : ␣ " + myObj . getName ()) ;
System . out . p r i n t l n (" Absolute ␣path : ␣ " + myObj . getAbsolutePath ()) ;
System . out . p r i n t l n (" Writeable : ␣ " + myObj . canWrite ()) ;
System . out . p r i n t l n (" Readable␣ " + myObj . canRead ()) ;
System . out . p r i n t l n (" F i l e ␣ s i z e ␣ in ␣ bytes ␣ " + myObj . l ength ()) ;

} else {
System . out . p r i n t l n ("The␣ f i l e ␣ does ␣not␣ e x i s t . ") ;

}
}

}

The output will be:

F i l e name : f i l ename . txtAbso lute path : C: \ Users \MyName\ f i l ename . txtWri teab le
↪→ : trueReadable : t r u eF i l e s i z e in bytes : 0

Note: There are many available classes in the Java API that can be used to read and write files
in Java: FileReader, BufferedReader, Files , Scanner, FileInputStream, FileWriter, BufferedWriter,
↪→ FileOutputStream, etc. Which one to use depends on the Java version you’re working with and
whether you need to read bytes or characters, and the size of the file/lines etc.

Tip: To delete a file, read our Java Delete Files topic.

5.1.5 Delete a File
To delete a file in Java, use the delete () method:

import java . i o . F i l e ; // Import the F i l e c l a s s

public class De l e t eF i l e {
public stat ic void main (St r ing [] a rgs) {

F i l e myObj = new F i l e (" f i l ename . txt ") ;
i f (myObj . d e l e t e ()) {

Java Programming Milav Dabgar

File Handling using Streams Class 60

System . out . p r i n t l n (" Deleted ␣ the ␣ f i l e : ␣ " + myObj . getName ()) ;
} else {

System . out . p r i n t l n (" Fa i l ed ␣ to ␣ d e l e t e ␣ the ␣ f i l e . ") ;
}

}
}

The output will be:

Deleted the f i l e : f i l ename . txt

5.1.6 Delete a Folder
You can also delete a folder. However, it must be empty:

import java . i o . F i l e ;

public class DeleteFo lder {
public stat ic void main (St r ing [] a rgs) {

F i l e myObj = new F i l e ("C:\\ Users \\MyName\\Test ") ;
i f (myObj . d e l e t e ()) {

System . out . p r i n t l n (" Deleted ␣ the ␣ f o l d e r : ␣ " + myObj . getName ()) ;
} else {

System . out . p r i n t l n (" Fa i l ed ␣ to ␣ d e l e t e ␣ the ␣ f o l d e r . ") ;
}

}
}

The output will be:

Deleted the f o l d e r : Test

5.2 File Handling using Streams Class
5.2.1 Streams and Stream Classes
File handling in Java can be achieved using streams and various stream classes provided by the java. io
package.

• Stream: A sequence of data elements made available over time. In Java, streams are used to
perform input and output operations.

• Types:
– Byte Streams: Handle raw binary data (files, network).
– Character Streams: Handle character-based data (text files).

• Stream Classes: Java provides a variety of stream classes for handling input and output operations.
These include byte streams (InputStream, OutputStream) and character streams (Reader, Writer).

5.2.2 FileInputStream and FileOutputStream

• FileInputStream: Used for reading data from a file as a stream of bytes.
• FileOutputStream: Used for writing data to a file as a stream of bytes.

// Example o f us ing Fi leInputStream to read from a f i l e
try (Fi le InputStream f i s = new Fi leInputStream (" input . txt ")) {

int data ;
while ((data = f i s . read ()) != −1) {

// Process the data
}

} catch (IOException e) {
e . pr intStackTrace () ;

}

Java Programming Milav Dabgar

File Handling using Streams Class 61

// Example o f us ing Fi leOutputStream to wr i t e to a f i l e
try (FileOutputStream f o s = new FileOutputStream (" output . txt ")) {

St r ing data = " Hel lo , ␣world ! " ;
f o s . wr i t e (data . getBytes ()) ;

} catch (IOException e) {
e . pr intStackTrace () ;

}

5.2.3 FileOutputStream to Write to File
You can use file output streams (FileOutputStream, FileWriter) to write to a file.

try (Buf feredWriter wr i t e r = new Buf feredWriter (new Fi l eWr i t e r (" output . txt "
↪→))) {
wr i t e r . wr i t e (" Hel lo , ␣world ! ") ;

} catch (IOException e) {
e . pr intStackTrace () ;

}

import java . i o . FileOutputStream ;
import java . i o . IOException ;

public class WriteToFile {
public stat ic void main (St r ing [] a rgs) {

try (FileOutputStream outputStream = new FileOutputStream ("
↪→ myNewFile . txt ")) {
St r ing text = " Hel lo , ␣ t h i s ␣ i s ␣some␣ text ␣ f o r ␣ the ␣ f i l e . " ;
byte [] data = text . getBytes () ;
outputStream . wr i t e (data) ;
System . out . p r i n t l n ("Data␣wr i t t en ␣ s u c c e s s f u l l y ! ") ;

} catch (IOException e) {
System . out . p r i n t l n ("An␣ e r r o r ␣ occurred . ") ;
e . pr intStackTrace () ;

}
}

}

5.2.4 FileInputStream to Read from a File
You can use file input streams (FileInputStream, FileReader) to read from a file.

import java . i o . Fi le InputStream ;
import java . i o . IOException ;

public class ReadFromFile {
public stat ic void main (St r ing [] a rgs) {

try (Fi le InputStream inputStream = new Fi leInputStream ("myNewFile .
↪→ txt ")) {
int data ;
while ((data = inputStream . read ()) != −1) { // Read by t e by

↪→ by t e
System . out . p r i n t ((char) data) ;

}
} catch (IOException e) {

System . out . p r i n t l n ("An␣ e r r o r ␣ occurred . ") ;
e . pr intStackTrace () ;

}
}

}

Java Programming Milav Dabgar

Collections Framework in Java 62

5.2.5 Closing Streams
It’s important to close streams after using them to release system resources.
try (Fi le InputStream f i s = new Fi leInputStream (" input . txt ")) {

// Code to read from the input stream
} catch (IOException e) {

e . pr intStackTrace () ;
} // Stream w i l l be c l o s e d a u t o m a t i c a l l y a f t e r the t r y b l o c k

Summary

File handling in Java involves reading from and writing to files using streams and stream classes.
FileInputStream and FileOutputStream are used for byte-level file handling, while FileReader and
FileWriter are used for character-level file handling. It’s essential to properly handle exceptions and close
streams after using them to avoid resource leaks.

Important Considerations

• Closing Streams: Always close streams using close () or try-with-resources to release resources.
• Character Encoding: Be mindful of character encoding when dealing with text files (e.g., UTF-8).
• Other File Operations: Java provides classes for deleting, renaming, and getting file metadata.
• Buffered Streams: For performance optimization, use BufferedInputStream and BufferedOutputStream

↪→ to wrap file streams.

5.3 Collections Framework in Java
The Collections Framework in Java provides a unified architecture for representing and manipulating
collections of objects. It includes interfaces, implementations, and algorithms for working with collections
efficiently.

5.3.1 Overview and Hierarchy
The Collections Framework includes several key interfaces and classes organized in a hierarchy:

• Foundation: The java. util package contains the core classes and interfaces.
• Interfaces: Collection, List, Set, Map, etc.
• Classes: ArrayList, LinkedList, HashSet, HashMap, etc.
• Hierarchy:

– Collection: Root interface – represents a group of objects.
∗ List: Ordered collection with duplicates allowed (e.g., ArrayList, LinkedList)
∗ Set: Unordered collection with no duplicates (e.g., HashSet)

– Map: Key-value pairs (e.g., HashMap)
Co l l e c t i on

|
+−−−Li s t
| |−− ArrayList
| |−− LinkedLis t
|
+−−−Set
| |−− HashSet
|
+−−−Map

|−− HashMap

5.3.2 ArrayList

The ArrayList class is a resizable [array], which can be found in the java. util package.

The difference between a built-in array and an ArrayList in Java, is that the size of an array cannot be
modified (if you want to add or remove elements to/from an array, you have to create a new one). While
elements can be added and removed from an ArrayList whenever you want.

• Implements the List interface.

Java Programming Milav Dabgar

Collections Framework in Java 63

• Resizable-array implementation of the List interface.
• Provides dynamic resizing, fast random access, and fast iteration.
• Efficient for accessing elements by index, but less efficient for insertion and deletion in the middle of

the list.

5.3.2.1 Creating an ArrayList

import java . u t i l . ArrayList ; // import the ArrayLis t c l a s s
ArrayList<Str ing> car s = new ArrayList<Str ing >() ; // Create an ArrayLis t

↪→ o b j e c t

5.3.2.2 Add Items

The ArrayList class has many useful methods. For example, to add elements to the ArrayList, use the
add() method:

import java . u t i l . ArrayList ;

public class Main {
public stat ic void main (St r ing [] a rgs) {

ArrayList<Str ing> car s = new ArrayList<Str ing >() ;
ca r s . add (" Volvo ") ;
ca r s . add ("BMW") ;
ca r s . add (" Ford ") ;
ca r s . add ("Mazda") ;
System . out . p r i n t l n (ca r s) ;

}
}

5.3.2.3 Access an Item

To access an element in the ArrayList, use the get() method and refer to the index number:

ca r s . get (0) ;

Remember: Array indexes start with 0: [0] is the first element. [1] is the second element, etc.

5.3.2.4 Change an Item

To modify an element, use the set () method and refer to the index number:

ca r s . s e t (0 , " Opel ") ;

5.3.2.5 Remove an Item

To remove an element, use the remove() method and refer to the index number:

ca r s . remove (0) ;

To remove all the elements in the ArrayList, use the clear () method:

ca r s . c l e a r () ;

5.3.2.6 ArrayList Size

To find out how many elements an ArrayList have, use the size method:

ca r s . s i z e () ;

Java Programming Milav Dabgar

Collections Framework in Java 64

5.3.2.7 Loop Through an ArrayList

Loop through the elements of an ArrayList with a for loop, and use the size () method to specify how
many times the loop should run:

public class Main {
public stat ic void main (St r ing [] a rgs) {

ArrayList<Str ing> car s = new ArrayList<Str ing >() ;
ca r s . add (" Volvo ") ;
ca r s . add ("BMW") ;
ca r s . add (" Ford ") ;
ca r s . add ("Mazda") ;
for (int i = 0 ; i < ca r s . s i z e () ; i++) {

System . out . p r i n t l n (ca r s . get (i)) ;
}

}
}

You can also loop through an ArrayList with the for-each loop:

public class Main {
public stat ic void main (St r ing [] a rgs) {

ArrayList<Str ing> car s = new ArrayList<Str ing >() ;
ca r s . add (" Volvo ") ;
ca r s . add ("BMW") ;
ca r s . add (" Ford ") ;
ca r s . add ("Mazda") ;
for (S t r ing i : c a r s) {

System . out . p r i n t l n (i) ;
}

}
}

5.3.2.8 Other Types

Elements in an ArrayList are actually objects. In the examples above, we created elements (objects) of
type “String”. Remember that a String in Java is an object (not a primitive type). To use other types,
such as int, you must specify an equivalent wrapper class: Integer. For other primitive types, use: Boolean
for boolean, Character for char, Double for double, etc:

Create an ArrayList to store numbers (add elements of type Integer):

import java . u t i l . ArrayList ;

public class Main {
public stat ic void main (St r ing [] a rgs) {

ArrayList<Integer> myNumbers = new ArrayList<Integer >() ;
myNumbers . add (10) ;
myNumbers . add (15) ;
myNumbers . add (20) ;
myNumbers . add (25) ;
for (int i : myNumbers) {

System . out . p r i n t l n (i) ;
}

}
}

5.3.2.9 Sort an ArrayList

Another useful class in the java. util package is the Collections class, which include the sort () method
for sorting lists alphabetically or numerically:

Sort an ArrayList of Strings:

Java Programming Milav Dabgar

Collections Framework in Java 65

import java . u t i l . ArrayList ;
import java . u t i l . Co l l e c t i o n s ; // Import the C o l l e c t i o n s c l a s s

public class Main {
public stat ic void main (St r ing [] a rgs) {

ArrayList<Str ing> car s = new ArrayList<Str ing >() ;
ca r s . add (" Volvo ") ;
ca r s . add ("BMW") ;
ca r s . add (" Ford ") ;
ca r s . add ("Mazda") ;
Co l l e c t i o n s . s o r t (ca r s) ; // Sort cars
for (S t r ing i : c a r s) {

System . out . p r i n t l n (i) ;
}

}
}

Sort an ArrayList of Integers:

import java . u t i l . ArrayList ;
import java . u t i l . Co l l e c t i o n s ; // Import the C o l l e c t i o n s c l a s s

public class Main {
public stat ic void main (St r ing [] a rgs) {

ArrayList<Integer> myNumbers = new ArrayList<Integer >() ;
myNumbers . add (33) ;
myNumbers . add (15) ;
myNumbers . add (20) ;
myNumbers . add (34) ;
myNumbers . add (8) ;
myNumbers . add (12) ;

Co l l e c t i o n s . s o r t (myNumbers) ; // Sort myNumbers

for (int i : myNumbers) {
System . out . p r i n t l n (i) ;

}
}

}

5.3.3 LinkedList

In the previous topic, you learned about the ArrayList class. The LinkedList class is almost identical to
the ArrayList.

• Implements the List interface.
• Doubly-linked list implementation of the List interface.
• Provides fast insertion and deletion operations at both ends of the list.
• Less efficient for random access compared to ArrayList.

// Import the L inkedLi s t c l a s s
import java . u t i l . L inkedLis t ;

public class Main {
public stat ic void main (St r ing [] a rgs) {

LinkedList<Str ing> car s = new LinkedList<Str ing >() ;
ca r s . add (" Volvo ") ;
ca r s . add ("BMW") ;
ca r s . add (" Ford ") ;
ca r s . add ("Mazda") ;
System . out . p r i n t l n (ca r s) ;

}

Java Programming Milav Dabgar

Collections Framework in Java 66

}

5.3.3.1 ArrayList vs. LinkedList

The LinkedList class is a collection which can contain many objects of the same type, just like the
ArrayList.

The LinkedList class has all of the same methods as the ArrayList class because they both implement the
List interface. This means that you can add items, change items, remove items and clear the list in the
same way.

However, while the ArrayList class and the LinkedList class can be used in the same way, they are built
very differently.

5.3.3.2 How the ArrayList works

The ArrayList class has a regular array inside it. When an element is added, it is placed into the array.
If the array is not big enough, a new, larger array is created to replace the old one and the old one is
removed.

5.3.3.3 How the LinkedList works

The LinkedList stores its items in “containers.” The list has a link to the first container and each container
has a link to the next container in the list. To add an element to the list, the element is placed into a new
container and that container is linked to one of the other containers in the list.

5.3.3.4 When To Use

Use an ArrayList for storing and accessing data, and LinkedList to manipulate data.

5.3.3.5 LinkedList Methods

For many cases, the ArrayList is more efficient as it is common to need access to random items in the list,
but the LinkedList provides several methods to do certain operations more efficiently:

Method Description
addFirst() Adds an item to the beginning of the list.
addLast() Add an item to the end of the list
removeFirst() Remove an item from the beginning of the list.
removeLast() Remove an item from the end of the list
getFirst() Get the item at the beginning of the list
getLast() Get the item at the end of the list

5.3.4 HashMap

In the ArrayList topic, you learned that Arrays store items as an ordered collection, and you have to
access them with an index number (int type). A HashMap however, store items in “key/value” pairs,
and you can access them by an index of another type (e.g. a String).

One object is used as a key (index) to another object (value). It can store different types: String keys and
Integer values, or the same type, like: String keys and String values.

• Implements the Map interface.
• Hash table-based implementation of the Map interface.
• Stores key-value pairs.
• Provides constant-time performance for the basic operations (get and put) on average.

Create a HashMap object called capitalCities that will store String keys and String values:

import java . u t i l . HashMap ; // import the HashMap c l a s s

HashMap<Str ing , Str ing> c a p i t a l C i t i e s = new HashMap<Str ing , Str ing >() ;

Java Programming Milav Dabgar

Collections Framework in Java 67

5.3.4.1 Add Items

The HashMap class has many useful methods. For example, to add items to it, use the put() method:
// Import the HashMap c l a s s
import java . u t i l . HashMap ;

public class Main {
public stat ic void main (St r ing [] a rgs) {

// Create a HashMap o b j e c t c a l l e d c a p i t a l C i t i e s
HashMap<Str ing , Str ing> c a p i t a l C i t i e s = new HashMap<Str ing , Str ing >() ;

// Add keys and va l u e s (Country , City)
c a p i t a l C i t i e s . put (" England " , " London ") ;
c a p i t a l C i t i e s . put ("Germany" , " Be r l i n ") ;
c a p i t a l C i t i e s . put ("Norway " , " Oslo ") ;
c a p i t a l C i t i e s . put ("USA" , "Washington␣DC") ;
System . out . p r i n t l n (c a p i t a l C i t i e s) ;

}
}

5.3.4.2 Access an Item

To access a value in the HashMap, use the get() method and refer to its key:
c a p i t a l C i t i e s . get (" England ") ;

5.3.4.3 Remove an Item

To remove an item, use the remove() method and refer to the key:
c a p i t a l C i t i e s . remove (" England ") ;

To remove all items, use the clear () method:
c a p i t a l C i t i e s . c l e a r () ;

5.3.4.4 HashMap Size

To find out how many items there are, use the size () method:
c a p i t a l C i t i e s . s i z e () ;

5.3.4.5 Loop Through a HashMap

Loop through the items of a HashMap with a for-each loop.

Note: Use the keySet() method if you only want the keys, and use the values() method if you only want
the values:
// Print keys
for (S t r ing i : c a p i t a l C i t i e s . keySet ()) {

System . out . p r i n t l n (i) ;
}

// Print va l u e s
for (S t r ing i : c a p i t a l C i t i e s . va lue s ()) {

System . out . p r i n t l n (i) ;
}

// Print keys and va l u e s
for (S t r ing i : c a p i t a l C i t i e s . keySet ()) {

System . out . p r i n t l n (" key : ␣ " + i + " ␣ value : ␣ " + c a p i t a l C i t i e s . get (i)) ;
}

Java Programming Milav Dabgar

Collections Framework in Java 68

5.3.4.6 Other Types

Keys and values in a HashMap are actually objects. In the examples above, we used objects of type
“String”. Remember that a String in Java is an object (not a primitive type). To use other types, such as
int, you must specify an equivalent wrapper class: Integer. For other primitive types, use: Boolean for
boolean, Character for char, Double for double, etc:

Create a HashMap object called people that will store String keys and Integer values:

// Import the HashMap c l a s s
import java . u t i l . HashMap ;

public class Main {
public stat ic void main (St r ing [] a rgs) {

// Create a HashMap o b j e c t c a l l e d peop l e
HashMap<Str ing , Integer> people = new HashMap<Str ing , Integer >() ;
// Add keys and va l u e s (Name, Age)
people . put (" John " , 32) ;
people . put (" Steve " , 30) ;
people . put (" Angie " , 33) ;
for (S t r ing i : people . keySet ()) {

System . out . p r i n t l n (" key : ␣ " + i + " ␣ value : ␣ " + people . get (i)) ;
}

}
}

5.3.5 HashSet

A HashSet is a collection of items where every item is unique, and it is found in the java. util package.

• Implements the Set interface.
• Hash table-based implementation of the Set interface.
• Stores unique elements, does not allow duplicates.
• Provides constant-time performance for the basic operations (add, remove, contains) on average.

Create a HashSet object called cars that will store strings:

import java . u t i l . HashSet ; // Import the HashSet c l a s s

HashSet<Str ing> car s = new HashSet<Str ing >() ;

5.3.5.1 Add Items

The HashSet class has many useful methods. For example, to add items to it, use the add() method:

// Import the HashSet c l a s s
import java . u t i l . HashSet ;

public class Main {
public stat ic void main (St r ing [] a rgs) {

HashSet<Str ing> car s = new HashSet<Str ing >() ;
ca r s . add (" Volvo ") ;
ca r s . add ("BMW") ;
ca r s . add (" Ford ") ;
ca r s . add ("BMW") ;
ca r s . add ("Mazda") ;
System . out . p r i n t l n (ca r s) ;

}
}

Note: In the example above, even though BMW is added twice it only appears once in the set because
every item in a set has to be unique.

Java Programming Milav Dabgar

Collections Framework in Java 69

5.3.5.2 Check If an Item Exists

To check whether an item exists in a HashSet, use the contains() method:
ca r s . conta in s ("Mazda") ;

5.3.5.3 Remove an Item

To remove an item, use the remove() method:
ca r s . remove (" Volvo ") ;

To remove all items, use the clear () method:
ca r s . c l e a r () ;

5.3.5.4 HashSet Size

To find out how many items there are, use the size method:
ca r s . s i z e () ;

5.3.5.5 Loop Through a HashSet

Loop through the items of an HashSet with a for-each loop:
for (S t r ing i : c a r s) {

System . out . p r i n t l n (i) ;
}

5.3.5.6 Other Types

Items in an HashSet are actually objects. In the examples above, we created items (objects) of type
“String”. Remember that a String in Java is an object (not a primitive type). To use other types, such as
int, you must specify an equivalent wrapper class: Integer. For other primitive types, use: Boolean for
boolean, Character for char, Double for double, etc:

Use a HashSet that stores Integer objects:
import java . u t i l . HashSet ;

public class Main {
public stat ic void main (St r ing [] a rgs) {

// Create a HashSet o b j e c t c a l l e d numbers
HashSet<Integer> numbers = new HashSet<Integer >() ;

// Add va l u e s to the s e t
numbers . add (4) ;
numbers . add (7) ;
numbers . add (8) ;

// Show which numbers between 1 and 10 are in the s e t
for (int i = 1 ; i <= 10 ; i++) {

i f (numbers . conta in s (i)) {
System . out . p r i n t l n (i + " ␣was␣ found␣ in ␣ the ␣ s e t . ") ;

} else {
System . out . p r i n t l n (i + " ␣was␣not␣ found␣ in ␣ the ␣ s e t . ") ;

}
}

}
}

The Collections Framework in Java provides a powerful and efficient way to work with collections of
objects. Understanding its interfaces and implementations, such as ArrayList, LinkedList, HashMap, and
HashSet, along with the for-each loop, is essential for effective Java programming.

Java Programming Milav Dabgar

Collections Framework in Java 70

5.3.6 Iterator
An Iterator is an object that can be used to loop through collections, like ArrayList and HashSet. It is
called an “iterator” because “iterating” is the technical term for looping.

To use an Iterator, you must import it from the java. util package.

5.3.6.1 Getting an Iterator

The iterator () method can be used to get an Iterator for any collection:

// Import the ArrayLis t c l a s s and the I t e r a t o r c l a s s
import java . u t i l . ArrayList ;
import java . u t i l . I t e r a t o r ;

public class Main {
public stat ic void main (St r ing [] a rgs) {

// Make a c o l l e c t i o n
ArrayList<Str ing> car s = new ArrayList<Str ing >() ;
ca r s . add (" Volvo ") ;
ca r s . add ("BMW") ;
ca r s . add (" Ford ") ;
ca r s . add ("Mazda") ;

// Get the i t e r a t o r
I t e r a t o r <Str ing> i t = car s . i t e r a t o r () ;

// Print the f i r s t item
System . out . p r i n t l n (i t . next ()) ;

}
}

5.3.6.2 Looping Through a Collection

To loop through a collection, use the hasNext() and next() methods of the Iterator :

while (i t . hasNext ()) {
System . out . p r i n t l n (i t . next ()) ;

}

5.3.6.3 Removing Items from a Collection

Iterators are designed to easily change the collections that they loop through. The remove() method can
remove items from a collection while looping.

Use an iterator to remove numbers less than 10 from a collection:

import java . u t i l . ArrayList ;
import java . u t i l . I t e r a t o r ;

public class Main {
public stat ic void main (St r ing [] a rgs) {

ArrayList<Integer> numbers = new ArrayList<Integer >() ;
numbers . add (12) ;
numbers . add (8) ;
numbers . add (2) ;
numbers . add (23) ;
I t e r a t o r <Integer> i t = numbers . i t e r a t o r () ;
while (i t . hasNext ()) {

In t eg e r i = i t . next () ;
i f (i < 10) {

i t . remove () ;
}

Java Programming Milav Dabgar

Collections Framework in Java 71

}
System . out . p r i n t l n (numbers) ;

}
}

Note: Trying to remove items using a for loop or a for-each loop would not work correctly because
the collection is changing size at the same time that the code is trying to loop.

Java Programming Milav Dabgar

Collections Framework in Java 72

Java Programming Milav Dabgar

Chapter 6

Java Programming GTU Paper
Solutions

6.1 4341602 - Java: Winter 2023 Paper Solution
6.1.1 Q1a: List out basic concepts of Java OOP. Explain any one in detail.
Basic Concepts of Java OOP (Object-Oriented Programming):

1. Classes and Objects: Classes are blueprints for objects. They define the properties (attributes)
and behaviors (methods) that objects of that class will have. Objects are instances of classes.

2. Encapsulation: Encapsulation refers to the bundling of data (attributes) and methods that operate
on the data into a single unit or class. It hides the internal state of an object from the outside world
and only exposes the necessary functionalities.

3. Inheritance: Inheritance is a mechanism in which a new class inherits properties and behaviors
from an existing class. The new class (subclass or derived class) can reuse the code of the existing
class (superclass or base class) and can also add its own unique features.

4. Polymorphism: Polymorphism allows objects of different classes to be treated as objects of a
common superclass. It allows methods to be called on objects of different classes through a common
interface, often resulting in different behaviors depending on the type of object.

5. Abstraction: Abstraction is the process of hiding the implementation details and showing only the
essential features of the object. It helps in reducing programming complexity and effort.

6. Association: Association represents a relationship between two or more classes where objects of
one class are connected with objects of another class through a specific type of relationship. It can
be one-to-one, one-to-many, or many-to-many.

7. Composition: Composition is a special form of association where one class contains objects of
another class as part of its state. The composed objects cannot exist independently of the containing
class.

One of the concepts I’ll explain in detail is Inheritance:

Inheritance:

Inheritance is one of the fundamental concepts of object-oriented programming. It allows a class (subclass
or derived class) to inherit properties and behaviors from another class (superclass or base class). This
promotes code reusability and establishes a hierarchical relationship between classes.

Example:

// Base c l a s s or s u p e r c l a s s
class Animal {

void eat () {
System . out . p r i n t l n ("Animal␣ i s ␣ ea t ing . . . ") ;

}
}

73

4341602 - Java: Winter 2023 Paper Solution 74

// Derived c l a s s or s u b c l a s s i n h e r i t i n g from Animal
class Dog extends Animal {

void bark () {
System . out . p r i n t l n ("Dog␣ i s ␣ barking . . . ") ;

}
}

public class Main {
public stat ic void main (St r ing [] a rgs) {

Dog dog = new Dog () ;
dog . eat () ; // i n h e r i t e d from Animal
dog . bark () ; // unique to Dog

}
}

In this example, Animal is the superclass, and Dog is the subclass. The Dog class inherits the eat()
method from the Animal class. By using inheritance, we can avoid rewriting the eat() method in the Dog
class, thus promoting code reuse.

Inheritance supports the concept of code extensibility, as the subclass can add its own unique features
(such as the bark() method in this example) while retaining the features of the superclass.

Inheritance also facilitates polymorphism, as objects of the subclass can be treated as objects of the
superclass, enabling more flexible and generic code.

6.1.2 Q1b: Explain JVM in detail.
The Java Virtual Machine (JVM) is a crucial component of the Java Runtime Environment (JRE). It
plays a central role in executing Java bytecode, which is the compiled form of Java source code. Below,
I’ll explain the JVM in detail:

1. Execution Environment: - The JVM provides a runtime environment for executing Java bytecode.
It abstracts away the underlying hardware and operating system details, providing platform independence.
- JVM implementations are available for various platforms, including Windows, Linux, macOS, and others.

2. Just-In-Time (JIT) Compilation: - The JVM employs a combination of interpretation and
Just-In-Time (JIT) compilation techniques for bytecode execution. - Initially, bytecode is interpreted,
which involves executing the bytecode instructions one by one. This allows for quick startup and adaptive
optimization. - As the program runs, the JVM identifies frequently executed code segments (hot spots) and
applies JIT compilation to translate these segments into native machine code for improved performance.

3. Memory Management: - The JVM manages memory allocation and deallocation for Java objects
through automatic memory management, known as garbage collection. - It divides the memory into
different areas such as the heap, method area (or permgen space), and stack. - The heap is used for
storing objects dynamically allocated during program execution. Garbage collection is responsible for
reclaiming memory occupied by unreachable objects in the heap. - The stack is used for storing method
invocations and local variables.

4. Class Loading and Dynamic Class Loading: - The JVM dynamically loads Java classes into
memory as they are referenced during program execution. - Class loading involves locating the binary
representation of a class, reading it into memory, and then defining it within the JVM. - JVM supports
dynamic class loading, allowing classes to be loaded at runtime based on specific conditions or requirements,
such as through the use of reflection or custom class loaders.

5. Security and Sandboxing: - The JVM incorporates various security features to ensure safe execution
of Java programs. - Security Manager: It defines a security policy that specifies the permissions granted
to Java code based on its origin and other factors. - Bytecode Verification: Before executing bytecode,
the JVM performs bytecode verification to ensure it adheres to the language specifications, preventing
malicious code from being executed.

6. Performance Monitoring and Profiling: - JVMs often include tools for performance monitoring and
profiling, allowing developers to analyze the runtime behavior of Java applications. - These tools provide
insights into CPU utilization, memory usage, garbage collection activity, and other performance-related
metrics, helping developers optimize their code.

Java Programming Milav Dabgar

4341602 - Java: Winter 2023 Paper Solution 75

In summary, the JVM provides a robust execution environment for Java programs, abstracting away
hardware and operating system details while offering features such as memory management, dynamic
class loading, security, and performance monitoring. Its ability to execute Java bytecode efficiently makes
it a key component of the Java platform, enabling the development of portable and scalable applications.

6.1.3 Q1c: Write a program in java to print Fibonacci series for n terms.
Sure, here’s a Java program to print the Fibonacci series for n terms:

import java . u t i l . Scanner ;

public class F ibonac c i S e r i e s {
public stat ic void main (St r ing [] a rgs) {

Scanner scanner = new Scanner (System . in) ;
System . out . p r i n t (" Enter ␣ the ␣number␣ o f ␣ terms␣ in ␣ the ␣Fibonacc i ␣ s e r i e s

↪→ : ␣ ") ;
int n = scanner . next Int () ;
scanner . c l o s e () ;

System . out . p r i n t l n (" Fibonacc i ␣ s e r i e s ␣ f o r ␣ " + n + " ␣ terms : ") ;
int f i r s tTerm = 0 , secondTerm = 1 ;

// Print the f i r s t two terms
System . out . p r i n t (f i r s tTerm + " ␣ " + secondTerm + " ␣ ") ;

// Generate and p r i n t the r e s t o f the terms
for (int i = 3 ; i <= n ; i++) {

int nextTerm = f i r s tTerm + secondTerm ;
System . out . p r i n t (nextTerm + " ␣ ") ;
f i r s tTerm = secondTerm ;
secondTerm = nextTerm ;

}
}

}

This program prompts the user to enter the number of terms (n) they want in the Fibonacci series. It then
calculates and prints the Fibonacci series for n terms. The Fibonacci series starts with 0 and 1, and each
subsequent term is the sum of the previous two terms. The loop iterates from the third term onwards,
calculating each term based on the previous two terms. Finally, it prints each term of the Fibonacci series.

6.1.4 Q1c: Write a program in java to find out minimum from any ten
numbers using command line argument.

Sure, here’s a Java program that finds the minimum from any ten numbers using command-line arguments:

public class MinimumNumberFinder {
public stat ic void main (St r ing [] a rgs) {

i f (args . l ength != 10) {
System . out . p r i n t l n (" P lease ␣ prov ide ␣ exac t l y ␣10␣numbers␣ as ␣

↪→ command␣ l i n e ␣arguments . ") ;
return ;

}

// Parse the command l i n e arguments and f i n d the minimum
int min = In t eg e r . pa r s e In t (args [0]) ; // Assume the f i r s t number as

↪→ the minimum i n i t i a l l y

for (int i = 1 ; i < args . l ength ; i++) {
int num = Int eg e r . pa r s e In t (args [i]) ;
i f (num < min) {

min = num; // Update min i f a sma l l e r number i s found
}

Java Programming Milav Dabgar

4341602 - Java: Winter 2023 Paper Solution 76

}

System . out . p r i n t l n ("The␣minimum␣number␣among␣ the ␣ g iven ␣ ten ␣numbers␣
↪→ i s : ␣ " + min) ;

}
}

To run this program, compile it using javac MinimumNumberFinder.java and then execute it with ten
numbers as command-line arguments:

java MinimumNumberFinder 5 3 9 2 8 1 7 6 4 10

This will output:

The minimum number among the g iven ten numbers i s : 1

Ensure that exactly ten numbers are provided as command-line arguments when running the program,
otherwise, it will display an error message.

6.1.5 Q2a: What is Java wrapper class? Explain with example.
In Java, a wrapper class is a class that encapsulates (or “wraps”) primitive data types into objects. While
primitive data types represent simple values, wrapper classes provide a way to treat these values as objects.
This is particularly useful when dealing with collections, as many collection classes in Java require objects,
not primitives.

The Java platform provides a set of predefined wrapper classes for each primitive data type:

1. Byte for byte
2. Short for short
3. Integer for int
4. Long for long
5. Float for float
6. Double for double
7. Character for char
8. Boolean for boolean

Here’s an example to illustrate the usage of wrapper classes:

public class WrapperExample {
public stat ic void main (St r ing [] a rgs) {

// Using p r i m i t i v e data t ype s
int num1 = 10 ;
double num2 = 3 . 1 4 ;
char l e t t e r = 'A ' ;
boolean f l a g = true ;

// Using wrapper c l a s s e s
I n t eg e r numObj1 = In t eg e r . valueOf (num1) ; // Wrapping i n t i n t o

↪→ In t e g e r
Double numObj2 = Double . valueOf (num2) ; // Wrapping doub le in t o

↪→ Double
Character charObj = Character . valueOf (l e t t e r) ; // Wrapping char

↪→ i n t o Character
Boolean f lagObj = Boolean . valueOf (f l a g) ; // Wrapping boo lean in to

↪→ Boolean

// Disp lay ing va l u e s
System . out . p r i n t l n ("Wrapped␣ In t eg e r ␣ value : ␣ " + numObj1) ;
System . out . p r i n t l n ("Wrapped␣Double␣ value : ␣ " + numObj2) ;
System . out . p r i n t l n ("Wrapped␣Character ␣ value : ␣ " + charObj) ;
System . out . p r i n t l n ("Wrapped␣Boolean␣ value : ␣ " + f lagObj) ;

}
}

Java Programming Milav Dabgar

4341602 - Java: Winter 2023 Paper Solution 77

In this example, we have primitive variables (num1, num2, letter , flag) representing different data types.
We then use the corresponding wrapper classes (Integer, Double, Character, Boolean) to wrap these
primitive values into objects (numObj1, numObj2, charObj, flagObj). Finally, we print out the values of
these wrapped objects.

Wrapper classes also provide utility methods to convert strings into primitive values and vice versa, and to
perform various operations on the wrapped values. They also facilitate interoperability between primitive
types and objects in Java.

6.1.6 Q2b: List out different features of java. Explain any two.
Java is a versatile programming language known for its rich set of features that contribute to its popularity
and widespread use. Here are some key features of Java:

1. Simple: Java was designed to be easy to learn and use. It has a concise, readable syntax, automatic
memory management (garbage collection), and eliminates complex features such as pointers and
operator overloading found in languages like C++.

2. Object-Oriented: Java is an object-oriented programming language, which means it supports
the creation of modular, reusable code through classes and objects. It embodies concepts like
encapsulation, inheritance, polymorphism, and abstraction, promoting better code organization and
maintenance.

3. Platform-Independent: Java programs are compiled into bytecode, which can be executed on any
platform with a Java Virtual Machine (JVM). This “write once, run anywhere” capability makes
Java platform-independent, enabling the development of cross-platform applications.

4. Secure: Java’s security features help protect systems from malicious code and unauthorized access.
It incorporates a robust security model with features like bytecode verification, class loaders, and a
Security Manager that enforces access control policies.

5. Multithreaded: Java provides built-in support for multithreading, allowing concurrent execution
of multiple threads within a single program. This enables developers to write efficient, responsive
applications that can perform tasks concurrently, enhancing performance and responsiveness.

6. Dynamic: Java supports dynamic memory allocation and dynamic class loading, enabling applica-
tions to adapt to changing runtime conditions. Dynamic features like reflection allow Java programs
to introspect and modify their own structure and behavior at runtime.

7. High Performance: While Java’s interpreted nature might suggest slower performance compared
to languages like C or C++, modern Java implementations use techniques like Just-In-Time (JIT)
compilation and adaptive optimization to achieve high performance, often rivaling or surpassing
native code performance.

8. Distributed: Java’s built-in networking capabilities and Remote Method Invocation (RMI) frame-
work facilitate the development of distributed applications. Java’s networking APIs allow seamless
communication between distributed components, making it suitable for building networked systems.

Let’s delve into explanations for two of these features:

1. Platform-Independence: Java achieves platform-independence through its bytecode compilation.
When you compile a Java source file, it’s translated into bytecode, which is a platform-independent
intermediate representation of the program. This bytecode can then be executed on any device or platform
that has a Java Virtual Machine (JVM). The JVM interprets the bytecode and translates it into machine
code that is specific to the underlying hardware and operating system. This allows Java programs to
run on diverse platforms without modification, making it an ideal choice for developing cross-platform
applications.

2. Object-Oriented: Java is a pure object-oriented programming language, which means it revolves
around the concept of objects. Everything in Java is an object, which has attributes (fields or properties)
and behaviors (methods). Object-oriented programming promotes modularity, reusability, and extensibility
of code. Encapsulation ensures that the internal state of an object is hidden from the outside world,
providing data security and abstraction. Inheritance allows classes to inherit properties and behaviors
from other classes, facilitating code reuse and hierarchical organization. Polymorphism enables objects to
exhibit different behaviors based on their types, enhancing flexibility and code maintainability. Java’s
object-oriented features make it well-suited for building large-scale, maintainable software systems.

Java Programming Milav Dabgar

4341602 - Java: Winter 2023 Paper Solution 78

6.1.7 Q2c: What is method overload in Java ? Explain with example.
Method overloading in Java refers to the ability to define multiple methods within the same class with
the same name but different parameter lists. These methods can have different numbers or types of
parameters. Java distinguishes between overloaded methods based on the number, type, and sequence of
their parameters.

When a method is invoked, Java determines which overloaded method to call based on the arguments
provided at the time of invocation. This process is known as compile-time polymorphism or static
polymorphism because the decision on which method to call is made by the compiler at compile time,
rather than at runtime.

Here’s an example to illustrate method overloading in Java:

public class Calcu la to r {

// Method to add two i n t e g e r s
public int add (int a , int b) {

return a + b ;
}

// Method to add th r ee i n t e g e r s
public int add (int a , int b , int c) {

return a + b + c ;
}

// Method to add two doub l e s
public double add (double a , double b) {

return a + b ;
}

// Method to concatenate two s t r i n g s
public St r ing add (St r ing a , S t r ing b) {

return a + b ;
}

// Method to add an i n t e g e r and a doub le
public double add (int a , double b) {

return a + b ;
}

}

In this example, the Calculator class contains multiple overloaded add methods:

1. add(int a, int b): Adds two integers and returns the result.
2. add(int a, int b, int c): Adds three integers and returns the result.
3. add(double a, double b): Adds two doubles and returns the result.
4. add(String a, String b): Concatenates two strings and returns the result.
5. add(int a, double b): Adds an integer and a double and returns the result.

These methods have the same name (add) but different parameter lists. Depending on the arguments
passed during the method invocation, Java determines which overloaded method to call. For example:

public class Main {
public stat ic void main (St r ing [] a rgs) {

Ca l cu la to r c a l c u l a t o r = new Calcu la to r () ;

int sum1 = ca l c u l a t o r . add (5 , 3) ; // C a l l s add (i n t a , i n t b)
int sum2 = ca l c u l a t o r . add (5 , 3 , 2) ; // C a l l s add (i n t a , i n t b , i n t

↪→ c)
double sum3 = ca l c u l a t o r . add (2 . 5 , 3 . 7) ; // C a l l s add (doub le a ,

↪→ doub le b)
St r ing concatenatedStr ing = c a l c u l a t o r . add (" He l lo ␣ " , " world ! ") ; //

↪→ C a l l s add (S t r ing a , S t r ing b)

Java Programming Milav Dabgar

4341602 - Java: Winter 2023 Paper Solution 79

double sum4 = ca l c u l a t o r . add (5 , 3 . 7) ; // C a l l s add (i n t a , doub le b)

System . out . p r i n t l n ("Sum␣ 1 : ␣ " + sum1) ;
System . out . p r i n t l n ("Sum␣ 2 : ␣ " + sum2) ;
System . out . p r i n t l n ("Sum␣ 3 : ␣ " + sum3) ;
System . out . p r i n t l n (" Concatenated␣ St r ing : ␣ " + concatenatedStr ing) ;
System . out . p r i n t l n ("Sum␣ 4 : ␣ " + sum4) ;

}
}

Output:

Sum 1 : 8
Sum 2 : 10
Sum 3 : 6 .2
Concatenated St r ing : He l lo world !
Sum 4 : 8 .7

In this example, depending on the type and number of arguments provided, Java resolves the method
calls to the appropriate overloaded add method during compilation.

6.1.8 Q2a: Explain Garbage collection in java.
Garbage collection in Java is the automatic process of reclaiming memory occupied by objects that
are no longer in use or reachable by the application. It is a fundamental feature of the Java Virtual
Machine (JVM) that helps manage memory efficiently, prevents memory leaks, and reduces the risk of
memory-related errors such as segmentation faults.

Here’s how garbage collection works in Java:

1. Object Allocation: When you create objects in Java using the new keyword, memory is allocated
from the heap to store those objects. The JVM keeps track of all allocated memory.

2. Reachability Analysis: The JVM periodically performs reachability analysis starting from a set
of root objects, typically references held by active threads, static variables, and local variables. It
traverses the object graph, marking objects that are reachable as live objects. Objects that are not
reachable from any root are considered garbage.

3. Garbage Collection Process: Once the reachability analysis identifies garbage objects, the garbage
collector (GC) is invoked to reclaim the memory occupied by those objects. The garbage collector
uses different algorithms to reclaim memory, such as the Mark-Sweep algorithm, Mark-Compact
algorithm, or Generational Garbage Collection.

4. Reclamation and Compaction: During garbage collection, the memory occupied by garbage
objects is reclaimed, and the memory space is compacted to reduce fragmentation. This involves
moving live objects together to create contiguous free space.

5. Finalization: Before reclaiming the memory of objects, the JVM calls the finalize () method
of those objects (if it’s overridden) to perform any necessary cleanup operations. However, it’s
important to note that the finalize () method is deprecated and is not guaranteed to be called
promptly or at all by the garbage collector.

6. Performance Considerations: Garbage collection can impact application performance, as it
involves stopping application threads temporarily to perform garbage collection tasks. To minimize
the impact on application responsiveness, modern JVMs use techniques like concurrent garbage
collection, where garbage collection runs concurrently with the application, and incremental garbage
collection, where garbage collection tasks are divided into smaller increments.

Here are some key benefits of garbage collection in Java:

• Automatic Memory Management: Developers do not need to manually allocate and deallocate
memory, reducing the risk of memory leaks and memory-related bugs.

• Simplified Memory Management: Garbage collection eliminates the need for explicit memory
management techniques like manual memory deallocation, reducing the complexity of programming.

• Improved Application Reliability: By preventing memory leaks and segmentation faults caused
by dangling pointers, garbage collection enhances the reliability and stability of Java applications.

Java Programming Milav Dabgar

4341602 - Java: Winter 2023 Paper Solution 80

Overall, garbage collection is a critical feature of the Java platform that helps manage memory efficiently,
allowing developers to focus on writing robust and reliable software.

6.1.9 Q2b: Explain final keyword in Java with example.
In Java, the final keyword is used to restrict the behavior of classes, methods, and variables. When
applied to different elements, it signifies different meanings:

1. Final Variables: When applied to a variable, the final keyword indicates that the variable’s value
cannot be changed once initialized. It creates a constant.

2. Final Methods: When applied to a method, the final keyword indicates that the method cannot
be overridden by subclasses. It effectively prevents method overriding.

3. Final Classes: When applied to a class, the final keyword indicates that the class cannot be
subclassed. It prevents inheritance.

Here’s how final keyword works with examples:

1. Final Variables:

public class FinalExample {
// Dec lar ing f i n a l v a r i a b l e
f ina l int constantValue = 10 ;

public stat ic void main (St r ing [] a rgs) {
FinalExample obj = new FinalExample () ;
// Trying to modify the f i n a l v a r i a b l e w i l l r e s u l t in a compi la t ion

↪→ error
// ob j . constantValue = 20; // Compilat ion error : The f i n a l f i e l d

↪→ FinalExample . constantValue cannot be as s i gned
System . out . p r i n t l n (" Constant␣ value : ␣ " + obj . constantValue) ;

}
}

In this example, constantValue is declared as a final variable. Attempting to modify its value after
initialization will result in a compilation error.

2. Final Methods:

public class Parent {
// Fina l method
public f ina l void d i sp l ay () {

System . out . p r i n t l n (" This ␣ i s ␣a␣ f i n a l ␣method . ") ;
}

}

public class Child extends Parent {
// Trying to ove r r i d e the f i n a l method w i l l r e s u l t in a compi la t ion

↪→ error
// @Override
// p u b l i c vo id d i s p l a y () {
// System . out . p r i n t l n (" Attempting to ove r r i d e a f i n a l method . ") ;
// }

}

In this example, the display() method in the Parent class is declared as final. Attempting to override this
method in the Child class will result in a compilation error.

3. Final Classes:

f ina l public class Fina lC la s s {
// Some code

}

// Trying to s u b c l a s s a f i n a l c l a s s w i l l r e s u l t in a compi la t ion error

Java Programming Milav Dabgar

4341602 - Java: Winter 2023 Paper Solution 81

// c l a s s SubClass ex tends Fina lC las s {
// // Some code
// }

In this example, the FinalClass is declared as a final class. Attempting to subclass FinalClass will result
in a compilation error.

In summary, the final keyword in Java is used to create constants, prevent method overriding, and prevent
class inheritance, depending on where it’s applied. It helps enforce immutability, security, and design
constraints in Java programs.

6.1.10 Q2c: What is constructor in Java? Explain parameterized constructor
with example.

In Java, a constructor is a special type of method that is automatically called when an instance (object)
of a class is created. It is used to initialize the newly created object and perform any necessary setup
operations. Constructors have the same name as the class and do not have a return type, not even void.

There are two types of constructors in Java:

1. Default Constructor: A constructor with no parameters is called a default constructor. If you do
not explicitly define any constructors in a class, Java provides a default constructor automatically.
Its purpose is to initialize instance variables to default values.

2. Parameterized Constructor: A constructor with parameters is called a parameterized constructor.
It allows you to initialize instance variables with specified values when the object is created.
Parameterized constructors give more flexibility and control over object initialization.

Here’s an example of a parameterized constructor:

public class Person {
private St r ing name ;
private int age ;

// Parameterized cons t ruc t o r
public Person (St r ing name , int age) {

this . name = name ;
this . age = age ;

}

// Get ter methods
public St r ing getName () {

return name ;
}

public int getAge () {
return age ;

}

public stat ic void main (St r ing [] a rgs) {
// Creat ing o b j e c t s us ing parameter i zed cons t ruc t o r
Person person1 = new Person (" A l i c e " , 30) ;
Person person2 = new Person ("Bob" , 25) ;

// Access ing o b j e c t p r o p e r t i e s
System . out . p r i n t l n (" Person␣1␣−␣Name : ␣ " + person1 . getName () + " , ␣Age

↪→ : ␣ " + person1 . getAge ()) ;
System . out . p r i n t l n (" Person␣2␣−␣Name : ␣ " + person2 . getName () + " , ␣Age

↪→ : ␣ " + person2 . getAge ()) ;
}

}

In this example:

Java Programming Milav Dabgar

4341602 - Java: Winter 2023 Paper Solution 82

• We have a Person class with private instance variables name and age.
• The Person class has a parameterized constructor that takes two parameters: name and age.
• Inside the constructor, the values of name and age parameters are assigned to the corresponding

instance variables using the this keyword.
• We then create two Person objects (person1 and person2) using the parameterized constructor,

passing different values for name and age.
• Finally, we use getter methods (getName() and getAge()) to retrieve the values of name and age for

each object and print them out.

6.1.11 Q3a: Explain super keyword in Java with example.
In Java, the super keyword is used to refer to the superclass (parent class) of the current object or to
access members (fields or methods) of the superclass. It is often used in subclasses (child classes) to access
superclass constructors, methods, or variables. The super keyword is particularly useful when there is a
need to differentiate between superclass and subclass members with the same name.

Here are the main uses of the super keyword:

1. Accessing Superclass Constructors: The super() constructor call is used to invoke the constructor
of the superclass from within the constructor of the subclass. It is typically used when the
subclass constructor needs to perform additional initialization that is not handled by the superclass
constructor.

2. Accessing Superclass Methods and Variables: The super keyword can also be used to access
methods and variables of the superclass. This is useful when a subclass overrides a method from the
superclass but still needs to call the superclass implementation of that method.

Here’s an example to illustrate the use of the super keyword:
class Vehic l e {

int speed ;

Veh ic l e (int speed) {
this . speed = speed ;

}

void d i sp l ay () {
System . out . p r i n t l n (" Veh ic l e ␣ speed : ␣ " + speed + " ␣km/h") ;

}
}

class Car extends Vehic l e {
int mileage ;

Car (int speed , int mileage) {
super (speed) ; // invok ing s u p e r c l a s s cons t ruc t o r
this . mi leage = mileage ;

}

// o v e r r i d i n g s u p e r c l a s s method
void d i sp l ay () {

super . d i s p l ay () ; // c a l l i n g s u p e r c l a s s method
System . out . p r i n t l n ("Car␣mi leage : ␣ " + mileage + " ␣km/ l ") ;

}
}

public class Main {
public stat ic void main (St r ing [] a rgs) {

Car car = new Car (100 , 15) ;
car . d i sp l ay () ; // invok ing overr idden method

}
}

In this example:

Java Programming Milav Dabgar

4341602 - Java: Winter 2023 Paper Solution 83

• We have a superclass Vehicle with a field speed and a constructor to initialize the speed.
• We then have a subclass Car that extends the Vehicle class. The Car class has an additional field

mileage and a constructor to initialize both speed and mileage. Inside the Car constructor, we use
super(speed) to call the constructor of the superclass Vehicle.

• The Car class also overrides the display() method of the superclass. Inside the overridden display()
method, we use super.display() to call the display() method of the superclass before displaying the
mileage of the car.

• In the main() method, we create an instance of the Car class and invoke its display() method. This
will print both the vehicle speed and the car mileage.

6.1.12 Q3b: List out different types of inheritance in Java. Explain multilevel
inheritance.

In Java, there are several types of inheritance, each representing different relationships between classes.
These types include:

1. Single Inheritance: In single inheritance, a subclass inherits from only one superclass. Java
supports single inheritance only, meaning a class can have only one direct superclass.

2. Multilevel Inheritance: In multilevel inheritance, a subclass inherits from a superclass, and then
another subclass inherits from the first subclass, creating a chain of inheritance.

3. Hierarchical Inheritance: In hierarchical inheritance, multiple subclasses inherit from a single
superclass, creating a tree-like structure.

4. Multiple Inheritance (not supported in Java): In multiple inheritance, a subclass inherits from
multiple superclasses. Java does not support multiple inheritance of classes to avoid the diamond
problem, where the same member can be inherited from multiple superclasses, leading to ambiguity.

5. Hybrid Inheritance (not supported in Java): Hybrid inheritance is a combination of multiple
inheritance and hierarchical inheritance. It is also not supported in Java to avoid complications and
ambiguity.

Let’s focus on explaining multilevel inheritance:

Multilevel Inheritance:

In multilevel inheritance, a subclass extends a class that is itself a subclass of another class. This creates a
chain of inheritance, where each subclass inherits the properties and behaviors of its immediate superclass,
as well as all of its ancestor classes up the hierarchy chain.

Here’s an example of multilevel inheritance:

// Superc l a s s
class Animal {

void eat () {
System . out . p r i n t l n ("Animal␣ i s ␣ ea t ing . . . ") ;

}
}

// Subc l a s s i n h e r i t i n g from Animal
class Dog extends Animal {

void bark () {
System . out . p r i n t l n ("Dog␣ i s ␣ barking . . . ") ;

}
}

// Subc l a s s i n h e r i t i n g from Dog
class Labrador extends Dog {

void c o l o r () {
System . out . p r i n t l n (" Labrador␣ i s ␣ black . . . ") ;

}
}

public class Main {
public stat ic void main (St r ing [] a rgs) {

Java Programming Milav Dabgar

4341602 - Java: Winter 2023 Paper Solution 84

Labrador labrador = new Labrador () ;
l abrador . eat () ; // i n h e r i t e d from Animal
l abrador . bark () ; // i n h e r i t e d from Dog
l abrador . c o l o r () ; // unique to Labrador

}
}

In this example:

• Animal is the superclass, Dog is a subclass of Animal, and Labrador is a subclass of Dog.
• Labrador inherits the eat() method from Animal, the bark() method from Dog, and it adds its own

method color () to represent the unique characteristic of a Labrador.
• When an instance of Labrador is created, it can access methods from all levels of the inheritance

hierarchy, including methods from its superclass (Animal) and its immediate superclass (Dog).
Additionally, it can access methods specific to the Labrador class.

Multilevel inheritance allows for the creation of a hierarchy of classes, where each subclass can inherit and
extend the functionality of its parent classes, leading to better code organization and reuse. However, it’s
important to use multilevel inheritance judiciously to avoid creating overly complex class hierarchies.

6.1.13 Q3c: What is Java interface? Explain multiple inheritance with
example.

In Java, an interface is a reference type similar to a class that defines a set of abstract methods and
constants. An interface can also contain default methods, static methods, and nested types. It provides a
way to achieve abstraction and multiple inheritance of type. Interfaces are used to specify a contract that
classes must adhere to by implementing the methods declared in the interface.

Here’s the syntax for declaring an interface in Java:

interface MyInter face {
// Constant d e c l a r a t i o n s
int CONSTANT1 = 1 ;
S t r ing CONSTANT2 = " He l lo " ;

// Abs t rac t method d e c l a r a t i o n s
void method1 () ;
int method2 (int x) ;

}

In the above example, MyInterface is an interface that declares a constant CONSTANT1 and CONSTANT2
↪→ , along with two abstract methods method1() and method2(int x).

Now, let’s discuss multiple inheritance with interfaces:

Multiple Inheritance with Interfaces:

Java supports multiple inheritance of type through interfaces, but it does not support multiple inheritance
of implementation. This means a class can implement multiple interfaces, inheriting abstract method
signatures from all of them, but it cannot extend multiple classes.

Here’s an example to illustrate multiple inheritance with interfaces:

interface A {
void methodA () ;

}

interface B {
void methodB () ;

}

class MyClass implements A, B {
// Implementation o f methodA from i n t e r f a c e A
public void methodA () {

System . out . p r i n t l n ("Method␣A␣ implementation ") ;

Java Programming Milav Dabgar

4341602 - Java: Winter 2023 Paper Solution 85

}

// Implementation o f methodB from i n t e r f a c e B
public void methodB () {

System . out . p r i n t l n ("Method␣B␣ implementation ") ;
}

}

public class Main {
public stat ic void main (St r ing [] a rgs) {

MyClass obj = new MyClass () ;
obj . methodA () ; // Method A implementat ion
obj . methodB () ; // Method B implementat ion

}
}

In this example:

• interface A declares an abstract method methodA().
• interface B declares an abstract method methodB().
• MyClass implements both interfaces A and B and provides implementations for both methodA()

and methodB().
• In the main method, we create an instance of MyClass and call both methodA() and methodB(),

which will print their respective implementation messages.

By implementing multiple interfaces, MyClass inherits the abstract method signatures from both A and
B, effectively achieving multiple inheritance of type. This allows for increased flexibility and code reuse
while avoiding the complications associated with multiple inheritance of implementation.

6.1.14 Q3a: Explain Java static keyword with example.
In Java, the static keyword is used to define members (variables and methods) that belong to the class
itself, rather than to instances of the class (objects). These members are shared among all instances of
the class and can be accessed directly through the class name, without the need to create an object of the
class.

Here’s how static keyword works with examples:

1. Static Variables (Class Variables): Static variables are shared among all instances of a class.
They are declared using the static keyword and are initialized only once, at the start of the program
execution.

class MyClass {
stat ic int count = 0 ; // s t a t i c v a r i a b l e

MyClass () {
count++; // increment count on each o b j e c t c r ea t i on

}
}

public class Main {
public stat ic void main (St r ing [] a rgs) {

MyClass obj1 = new MyClass () ;
MyClass obj2 = new MyClass () ;
MyClass obj3 = new MyClass () ;

System . out . p r i n t l n (" Total ␣ ob j e c t s ␣ c rea ted : ␣ " + MyClass . count) ; //
↪→ acce s s ing s t a t i c v a r i a b l e

}
}

In this example, count is a static variable that keeps track of the total number of objects created from
the MyClass. Since it’s static, its value is shared among all instances of the class. The output will be
Total objects created: 3.

Java Programming Milav Dabgar

4341602 - Java: Winter 2023 Paper Solution 86

2. Static Methods (Class Methods): Static methods are associated with the class itself, rather
than with instances of the class. They are declared using the static keyword and can be called
directly through the class name, without the need to create an object of the class.

class MathUtils {
stat ic int add (int a , int b) { // s t a t i c method

return a + b ;
}

}

public class Main {
public stat ic void main (St r ing [] a rgs) {

int r e s u l t = MathUtils . add (5 , 3) ; // c a l l i n g s t a t i c method
System . out . p r i n t l n (" Result ␣ o f ␣ add i t i on : ␣ " + r e s u l t) ;

}
}

In this example, add is a static method of the MathUtils class. It can be called directly using the class
name MathUtils.add(5, 3) without creating an object of MathUtils.

Key Points: - Static members belong to the class, not to individual objects. - They can be accessed
using the class name directly. - Static variables are initialized only once, at the start of the program
execution. - Static methods cannot access non-static members directly, as they are not associated with
any specific instance of the class. - Static members are commonly used for utility methods, constants, and
for maintaining global state within a class.

6.1.15 Q3b: Explain different access controls in Java.
In Java, access controls are used to restrict the visibility and accessibility of classes, variables, methods,
and constructors. This helps in encapsulating the implementation details, promoting code reusability, and
enhancing security. Java provides four types of access controls, also known as access modifiers:

1. Default (No Modifier):
• Accessible within the same package only.
• If no access modifier is specified, it is considered as default.
• Members with default access are not accessible outside the package.

package com . example ;

class MyClass {
void method () {

// This method i s a c c e s s i b l e w i th in the same package
}

}

2. Public:
• Accessible from anywhere, both within and outside the package.
• Public members can be accessed by any other class.

package com . example ;

public class MyClass {
public void method () {

// This method i s a c c e s s i b l e from anywhere
}

}

3. Private:
• Accessible only within the same class.
• Private members are not visible outside the class, including subclasses.

package com . example ;

public class MyClass {

Java Programming Milav Dabgar

4341602 - Java: Winter 2023 Paper Solution 87

private int num;

private void method () {
// This method i s a c c e s s i b l e on ly w i th in t h i s c l a s s

}
}

4. Protected:
• Accessible within the same package and by subclasses, even if they are in different packages.
• Protected members are not accessible by classes outside the package that are not subclasses.

package com . example ;

public class MyClass {
protected int num;

protected void method () {
// This method i s a c c e s s i b l e w i th in the same package and by

↪→ s u b c l a s s e s
}

}

These access controls provide a way to manage the visibility and accessibility of members in Java classes,
allowing developers to design and implement classes with appropriate encapsulation and access restrictions
based on their requirements. Proper use of access controls helps in creating more modular, maintainable,
and secure Java applications.

6.1.16 Q3c: What is Java package? Write steps to create a package in Java
and give example of it.

In Java, a package is a way to organize related classes and interfaces into a single namespace. It helps
in avoiding naming conflicts, improving code organization, and providing access control. Packages can
contain classes, interfaces, sub-packages, and other resources.

Here are the steps to create a package in Java:

1. Choose a Package Name: Determine a meaningful name for your package. Typically, package
names are in reverse domain name notation to ensure uniqueness.

2. Create a Directory Structure: Create a directory structure that matches the package name.
Each component of the package name corresponds to a directory in the file system.

3. Place Java Files in the Directory: Create Java files (. java) containing classes or interfaces
within the directory structure. Each file should contain at most one public class or interface, and
the file name should match the class or interface name.

4. Define the Package Declaration: At the top of each Java file, include a package declaration
statement specifying the package name.

5. Compile Java Files: Compile the Java files using the javac compiler. Make sure the compiler is
invoked from the root directory of the package structure.

Here’s an example of creating and using a package in Java:

Suppose we want to create a package named com.example.utils containing a class named StringUtils with
a method to capitalize a string.

Step 1: Choose a Package Name:

com . example . u t i l s

Step 2: Create a Directory Structure:

− com
− example

− u t i l s

Java Programming Milav Dabgar

4341602 - Java: Winter 2023 Paper Solution 88

Step 3: Place Java Files in the Directory: Create a Java file named StringUtils . java containing the
StringUtils class within the com/example/utils directory.

Step 4: Define the Package Declaration: At the top of StringUtils . java, include the package declaration:

package com . example . u t i l s ;

Step 5: Define the Class: Define the StringUtils class with a method to capitalize a string:

package com . example . u t i l s ;

public class S t r i n gU t i l s {
public stat ic St r ing c a p i t a l i z e (S t r ing s t r) {

i f (s t r == null | | s t r . isEmpty ()) {
return s t r ;

}
return s t r . s ub s t r i ng (0 , 1) . toUpperCase () + s t r . s ub s t r i ng (1) ;

}
}

Step 6: Compile Java Files: Compile the StringUtils . java file. Make sure the current directory is the
parent directory of com.

javac com/example/ u t i l s / S t r i n gU t i l s . java

After compiling, you can use the StringUtils class in other Java files by importing the package:

import com . example . u t i l s . S t r i n gU t i l s ;

public class Main {
public stat ic void main (St r ing [] a rgs) {

St r ing s t r = " h e l l o " ;
S t r ing c a p i t a l i z e d = S t r i n gU t i l s . c a p i t a l i z e (s t r) ;
System . out . p r i n t l n (c a p i t a l i z e d) ; // Output : He l l o

}
}

By following these steps, you’ve created and used a package in Java, demonstrating the organization and
encapsulation benefits it provides.

6.1.17 Q4a: Explain Java thread priorities with suitable example.
In Java, thread priorities are used to indicate the importance or urgency of a thread’s execution relative
to other threads. Thread priorities are represented by integer values ranging from 1 to 10, where 1 is the
lowest priority and 10 is the highest priority. The default priority for a thread is typically inherited from
its parent thread, but it can be explicitly set using the setPriority () method.

Thread priorities are used by the Java Virtual Machine’s thread scheduler to determine the order in which
threads are scheduled for execution. However, thread priorities are merely hints to the scheduler, and the
JVM’s implementation of thread scheduling may vary across different platforms.

Here’s an example to illustrate Java thread priorities:

public class PriorityDemo {
public stat ic void main (St r ing [] a rgs) {

Thread thread1 = new Thread (new Worker () , " Thread␣1 ") ;
Thread thread2 = new Thread (new Worker () , " Thread␣2 ") ;
Thread thread3 = new Thread (new Worker () , " Thread␣3 ") ;

// Set thread p r i o r i t i e s
thread1 . s e tP r i o r i t y (Thread .MIN_PRIORITY) ; // Lowest p r i o r i t y
thread2 . s e tP r i o r i t y (Thread .NORM_PRIORITY) ; // De fau l t p r i o r i t y
thread3 . s e tP r i o r i t y (Thread .MAX_PRIORITY) ; // Highes t p r i o r i t y

// S ta r t the threads

Java Programming Milav Dabgar

4341602 - Java: Winter 2023 Paper Solution 89

thread1 . s t a r t () ;
thread2 . s t a r t () ;
thread3 . s t a r t () ;

}

stat ic class Worker implements Runnable {
public void run () {

for (int i = 1 ; i <= 5 ; i++) {
System . out . p r i n t l n (Thread . currentThread () . getName () + " : ␣ "

↪→ + i) ;
try {

Thread . s l e e p (1000) ; // S leep f o r 1 second
} catch (Inter ruptedExcept ion e) {

e . pr intStackTrace () ;
}

}
}

}
}

In this example:

• We create three threads (thread1, thread2, and thread3) and assign them instances of the Worker
class, which implements the Runnable interface.

• We set different priorities for each thread using the setPriority () method. thread1 is set to the
lowest priority (MIN_PRIORITY), thread2 is set to the default priority (NORM_PRIORITY),
and thread3 is set to the highest priority (MAX_PRIORITY).

• Each thread runs a simple loop printing numbers from 1 to 5 with a one-second delay between each
iteration.

• When you run this program, the output may vary depending on the thread scheduler’s behavior, but
in general, you may observe that thread3 (highest priority) gets more CPU time compared to the
other threads, followed by thread2 (default priority), and finally thread1 (lowest priority). However,
thread scheduling behavior is platform-dependent, and thread priorities should be used with caution
as they may not always have the desired effect.

6.1.18 Q4b: What is Java Thread? Explain Thread life cycle.
In Java, a thread is the smallest unit of execution within a process. It represents an independent path of
execution that can run concurrently with other threads in a Java program. Threads allow programs to
perform multiple tasks simultaneously, making efficient use of CPU resources and enabling concurrent
and parallel processing.

Thread Life Cycle:

The life cycle of a thread in Java consists of several states, and a thread transitions through these
states during its lifetime. The states are typically represented by constants defined in the Thread.State
enumeration. The thread life cycle states are as follows:

1. New: When a thread is created but not yet started, it is in the new state. The Thread object has
been created, but the start () method has not been called.

2. Runnable: After the start () method is called, the thread becomes runnable. In this state, the
thread is eligible to run, but it may or may not be executing, depending on the availability of CPU
resources. Once the scheduler selects the thread for execution, it moves to the running state.

3. Running: When the thread is executing its code, it is in the running state. The thread scheduler
has allocated CPU time for the thread, and the thread’s run() method is being executed.

4. Blocked/Waiting: A thread can transition to a blocked or waiting state for various reasons, such
as waiting for I/O operations to complete, waiting for locks, or waiting for other threads to complete.
In these cases, the thread temporarily gives up the CPU and waits for the condition to be satisfied.

5. Timed Waiting: Similar to the blocked/waiting state, but with a specified timeout. Threads enter
this state when they invoke methods such as sleep() or join () with a timeout parameter.

Java Programming Milav Dabgar

4341602 - Java: Winter 2023 Paper Solution 90

6. Terminated: When the run() method of the thread completes or when the thread is explicitly
terminated using the interrupt() method, the thread enters the terminated state. Once terminated,
a thread cannot be restarted or transitioned to any other state.

Here’s a simple visual representation of the thread life cycle:

New −> Runnable −> Running −> Terminated
| | ^ ^
v v | |

Blocked Waiting | |
| |

Timed Waiting

Understanding the thread life cycle is crucial for writing multithreaded Java applications efficiently, as it
helps in managing and coordinating the execution of concurrent tasks. It allows developers to control
thread behavior, handle synchronization, and avoid common concurrency issues such as race conditions
and deadlocks.

6.1.19 Q4c: Write a program in java that create the multiple threads by
implementing the Thread class.

Here’s a simple Java program that creates multiple threads by implementing the Thread class:

class MyThread extends Thread {
private St r ing threadName ;

public MyThread(St r ing name) {
this . threadName = name ;

}

public void run () {
System . out . p r i n t l n (" Thread␣ " + threadName + " ␣ i s ␣ running . ") ;
try {

// Simula t ing some work be ing done by the thread
Thread . s l e e p (2000) ; // S leep f o r 2 seconds

} catch (Inter ruptedExcept ion e) {
System . out . p r i n t l n (" Thread␣ " + threadName + " ␣ in t e r rup t ed . ") ;

}
System . out . p r i n t l n (" Thread␣ " + threadName + " ␣ e x i t i n g . ") ;

}
}

public class MultiThreadExample {
public stat ic void main (St r ing [] a rgs) {

MyThread thread1 = new MyThread(" Thread␣1 ") ;
MyThread thread2 = new MyThread(" Thread␣2 ") ;
MyThread thread3 = new MyThread(" Thread␣3 ") ;

// S ta r t the threads
thread1 . s t a r t () ;
thread2 . s t a r t () ;
thread3 . s t a r t () ;

}
}

In this program:

• We define a class MyThread that extends the Thread class. This class represents a simple thread
that prints a message, does some simulated work (sleeps for 2 seconds), and then exits.

• The run() method is overridden to define the behavior of the thread.
• In the MultiThreadExample class, we create three instances of MyThread with different names

(Thread 1, Thread 2, and Thread 3).

Java Programming Milav Dabgar

4341602 - Java: Winter 2023 Paper Solution 91

• We start each thread using the start () method. This method initiates the execution of the thread
by invoking its run() method in a separate thread of control.

• As a result, all three threads are running concurrently, executing their tasks independently.
• The output may vary on each run, but you’ll see messages indicating that each thread is running,

then after a 2-second delay, it exits.

This example demonstrates how to create multiple threads by extending the Thread class and starting
them concurrently to achieve parallel execution of tasks.

6.1.20 Q4a: List four different inbuilt exceptions of Java. Explain any one
inbuilt exception.

In Java, there are many built-in exceptions provided by the Java API, which are organized in a hierarchy
under the java.lang.Exception class. Here are four commonly encountered built-in exceptions:

1. NullPointerException: This exception occurs when you try to access or perform an operation on
an object reference that is null.

2. ArrayIndexOutOfBoundsException: This exception occurs when you try to access an element
of an array at an invalid index (i.e., an index that is less than 0 or greater than or equal to the
length of the array).

3. NumberFormatException: This exception occurs when you try to convert a string to a numeric
format (e.g., using Integer .parseInt() or Double.parseDouble()) but the string does not contain a
valid numeric value.

4. FileNotFoundException: This exception occurs when an attempt to open a file or a file pathname
specified by a string in the code fails because the file with the specified pathname does not exist or
cannot be opened for reading.

Let’s explain the NullPointerException in more detail:

NullPointerException:

A NullPointerException is one of the most common exceptions encountered by Java programmers. It
occurs when you try to access or perform an operation on an object reference that is null, i.e., it does not
refer to any object in memory.

Here’s an example to illustrate a NullPointerException:

public class NullPointerExceptionExample {
public stat ic void main (St r ing [] a rgs) {

St r ing s t r = null ;
System . out . p r i n t l n (s t r . l ength ()) ; // This l i n e w i l l throw a

↪→ Nul lPo in terExcep t ion
}

}

In this example, we have a String variable str that is initialized to null. When we try to access the
length() method of str, a NullPointerException will be thrown at runtime because we are attempting to
invoke a method on a null reference.

To handle a NullPointerException, you can either check if the reference is null before accessing it or use
try-catch blocks to catch and handle the exception gracefully:

public class NullPointerExceptionExample {
public stat ic void main (St r ing [] a rgs) {

St r ing s t r = null ;

// Using i f s ta tement to check f o r n u l l r e f e r ence
i f (s t r != null) {

System . out . p r i n t l n (s t r . l ength ()) ;
} else {

System . out . p r i n t l n (" S t r ing ␣ i s ␣ nu l l . ") ;
}

// Using try −catch b l o c k to handle Nu l lPo in terExcep t ion

Java Programming Milav Dabgar

4341602 - Java: Winter 2023 Paper Solution 92

try {
System . out . p r i n t l n (s t r . l ength ()) ;

} catch (Nul lPo interExcept ion e) {
System . out . p r i n t l n (" Nul lPo interExcept ion ␣ caught : ␣ " + e .

↪→ getMessage ()) ;
}

}
}

It’s important to handle NullPointerExceptions properly in your code to prevent unexpected crashes and
ensure the robustness of your Java applications.

6.1.21 Q4b: Explain multiple catch with suitable example in Java.
In Java, you can use multiple catch blocks to handle different types of exceptions that may occur within
a try block. This allows you to handle each type of exception differently, based on the specific error
conditions that may arise during the execution of the code.

Here’s an example to illustrate the usage of multiple catch blocks:
public class MultipleCatchExample {

public stat ic void main (St r ing [] a rgs) {
try {

int [] numbers = {1 , 2 , 3} ;
System . out . p r i n t l n (" Element␣ at ␣ index ␣ 3 : ␣ " + numbers [3]) ; //

↪→ This w i l l throw ArrayIndexOutOfBoundsException
St r ing s t r = null ;
System . out . p r i n t l n (" Length␣ o f ␣ s t r i n g : ␣ " + s t r . l ength ()) ; //

↪→ This w i l l throw Nul lPo in terExcep t ion
} catch (ArrayIndexOutOfBoundsException e) {

System . out . p r i n t l n (" ArrayIndexOutOfBoundsException␣ caught : ␣ " +
↪→ e . getMessage ()) ;

} catch (Nul lPo interExcept ion e) {
System . out . p r i n t l n (" Nul lPo interExcept ion ␣ caught : ␣ " + e .

↪→ getMessage ()) ;
} catch (Exception e) {

System . out . p r i n t l n (" Generic ␣Exception ␣ caught : ␣ " + e . getMessage
↪→ ()) ;

}
}

}

In this example:

• We have a try block containing two statements that may throw different types of exceptions:
– Accessing an element at index 3 of an array (numbers[3]), which may throw an

ArrayIndexOutOfBoundsException.
– Attempting to get the length of a null string (str .length()), which may throw a

NullPointerException.
• We have multiple catch blocks to handle each type of exception separately:

– The first catch block catches ArrayIndexOutOfBoundsException, prints a message, and handles
the exception.

– The second catch block catches NullPointerException, prints a message, and handles the
exception.

• We also have a generic catch block (catch (Exception e)) at the end to catch any other type of
exception that may occur. This is optional but can be useful for handling unexpected exceptions or
providing a fallback mechanism.

When you run this program, if an ArrayIndexOutOfBoundsException occurs, the first catch block will
handle it and print a message. Similarly, if a NullPointerException occurs, the second catch block will
handle it. If any other type of exception occurs, the generic catch block will handle it.

Using multiple catch blocks allows you to handle different exceptions gracefully and provide appropriate
error messages or recovery mechanisms based on the specific type of exception encountered.

Java Programming Milav Dabgar

4341602 - Java: Winter 2023 Paper Solution 93

6.1.22 Q4c: What is Java Exception? Write a program that show the use of
Arithmetic Exception in Java.

In Java, an exception is an event that occurs during the execution of a program that disrupts the normal
flow of instructions. When an exceptional condition arises, an object representing that condition is created
and thrown in the method that caused the error. This object is an instance of a subclass of the Throwable
class, which can be either an Exception or an Error.

An ArithmeticException is a subclass of RuntimeException and is thrown when an arithmetic operation
fails due to certain conditions, such as division by zero or integer overflow.

Here’s a program that demonstrates the use of ArithmeticException in Java:
public class ArithmeticExceptionExample {

public stat ic void main (St r ing [] a rgs) {
int div idend = 10 ;
int d i v i s o r = 0 ;

try {
int quot i ent = div idend / d i v i s o r ; // Div i s i on by zero w i l l

↪→ throw Ari thmet icExcept ion
System . out . p r i n t l n (" Quotient : ␣ " + quot i ent) ;

} catch (Arithmet icExcept ion e) {
System . out . p r i n t l n (" Arithmet icExcept ion ␣ caught : ␣ " + e .

↪→ getMessage ()) ;
}

}
}

In this program:

• We have two integers, dividend and divisor , where divisor is initialized to 0.
• We attempt to perform a division operation (dividend / divisor), which will result in an

ArithmeticException when divisor is 0.
• We have a try−catch block to handle the potential ArithmeticException. Inside the try block, the

division operation is performed, and if an ArithmeticException occurs, it is caught by the catch
block.

• Inside the catch block, we print a message indicating that an ArithmeticException was caught, along
with the error message provided by the exception object (e.getMessage()).

When you run this program, it will output:
Ar ithmet icExcept ion caught : / by zero

This demonstrates how to use try-catch blocks to handle ArithmeticException and gracefully handle the
error condition, preventing the program from crashing. It’s important to handle exceptions appropriately
in your code to ensure robustness and provide meaningful error messages to users.

6.1.23 Q5a: Explain ArrayIndexOutOfBound Exception in Java with example.
In Java, ArrayIndexOutOfBoundsException is a runtime exception that occurs when you try to access an
element of an array at an index that is outside the valid range of indices for that array. This means you
are trying to access an array element with an index that is either negative or greater than or equal to the
length of the array.

Here’s an example to illustrate ArrayIndexOutOfBoundsException:
public class ArrayIndexOutOfBoundsExceptionExample {

public stat ic void main (St r ing [] a rgs) {
int [] numbers = {1 , 2 , 3} ;

// Access ing an element at an i n v a l i d index
System . out . p r i n t l n (" Element␣ at ␣ index ␣ 3 : ␣ " + numbers [3]) ; // This

↪→ w i l l throw ArrayIndexOutOfBoundsException
}

}

Java Programming Milav Dabgar

4341602 - Java: Winter 2023 Paper Solution 94

In this example:

• We have an integer array numbers containing three elements: 1, 2, and 3.
• We attempt to access the element at index 3 using numbers[3].
• However, the valid indices for the array numbers are 0, 1, and 2. Since we are trying

to access an element at an index (3) that is beyond the valid range, it will result in an
ArrayIndexOutOfBoundsException at runtime.

When you run this program, it will throw an ArrayIndexOutOfBoundsException with an error message
similar to:

Exception in thread "main " java . lang . ArrayIndexOutOfBoundsException : Index
↪→ 3 out o f bounds f o r l ength 3
at ArrayIndexOutOfBoundsExceptionExample . main (

↪→ ArrayIndexOutOfBoundsExceptionExample . java : 7)

To prevent ArrayIndexOutOfBoundsException, you should always ensure that the index used to access
an array element is within the valid range of indices (i.e., between 0 and array.length − 1). You can use
conditional statements or loop constructs to check the validity of array indices before accessing elements
to handle such exceptions gracefully in your code.

6.1.24 Q5b: Explain basics of Java stream classes.
In Java, stream classes are part of the Java I/O (Input/Output) API, which provides a way to efficiently
read from and write to data sources and destinations, such as files, network connections, and memory
buffers. Stream classes are used to handle input and output operations in Java programs, allowing data
to be transferred between an application and external sources or sinks.

There are two main types of stream classes in Java:

1. Byte Streams:
• Byte streams, represented by classes such as InputStream and OutputStream, are used for

reading and writing raw bytes of data.
• Byte streams are suitable for handling binary data or text data where character encoding is

not a concern.
• Examples of byte stream classes include FileInputStream, FileOutputStream, BufferedInputStream

↪→ , BufferedOutputStream, etc.
2. Character Streams:

• Character streams, represented by classes such as Reader and Writer, are used for reading and
writing character data.

• Character streams handle character encoding automatically, converting characters to and from
bytes using the specified character encoding.

• Character streams are suitable for reading and writing text data from/to external sources,
ensuring proper character encoding and decoding.

• Examples of character stream classes include FileReader, FileWriter, BufferedReader,
BufferedWriter, etc.

Basics of using Java stream classes:

• Reading from Streams: To read data from a stream, you typically create an appropriate input
stream class object (e.g., FileInputStream or BufferedReader), and then use methods provided by
the stream class to read data from the source. For example:

BufferedReader reader = new BufferedReader (new Fi leReader (" f i l e . txt ")) ;
S t r ing l i n e = reader . readLine () ;

• Writing to Streams: To write data to a stream, you create an appropriate output stream class
object (e.g., FileOutputStream or BufferedWriter), and then use methods provided by the stream
class to write data to the destination. For example:

Buf feredWriter wr i t e r = new Buf feredWriter (new Fi l eWr i t e r (" output . txt ")
↪→) ;

w r i t e r . wr i t e (" Hel lo , ␣World ! ") ;

Java Programming Milav Dabgar

4341602 - Java: Winter 2023 Paper Solution 95

• Closing Streams: It’s important to close streams after using them to release system resources. You
can use the close () method provided by stream classes to close the stream. Alternatively, you can
use try-with-resources statement introduced in Java 7 to automatically close streams. For example:
try (BufferedReader reader = new BufferedReader (new Fi leReader (" f i l e .

↪→ txt "))) {
St r ing l i n e = reader . readLine () ;
// Process the data

} catch (IOException e) {
// Handle excep t i on

}

Java stream classes provide a flexible and efficient way to perform input and output operations in Java
programs, making it easy to interact with external data sources and sinks. Whether you’re reading from
files, network connections, or writing data to them, Java stream classes offer a consistent and convenient
API for handling I/O operations.

6.1.25 Q5c: Write a java program to create a text file and perform read
operation on the text file.

To create a text file and perform a read operation using FileInputStream in Java, you need to use
FileOutputStream for writing to the file since FileInputStream is designed for reading bytes from a file.
Below is a Java program that demonstrates how to create a text file using FileOutputStream and then
reads it back using FileInputStream.
import java . i o . Fi le InputStream ;
import java . i o . FileOutputStream ;
import java . i o . IOException ;

public class FileStreamExample {
public stat ic void main (St r ing [] a rgs) {

St r ing f i leName = " sample . txt " ;
S t r ing content = " Hel lo , ␣World ! \ nThis␣ i s ␣a␣ sample␣ text ␣ f i l e . " ;

// Write content to f i l e
try (FileOutputStream f o s = new FileOutputStream (f i leName)) {

f o s . wr i t e (content . getBytes ()) ;
System . out . p r i n t l n (" F i l e ␣has␣been␣wr i t t en ␣ s u c c e s s f u l l y . ") ;

} catch (IOException e) {
System . e r r . p r i n t l n (" Error ␣ wr i t i ng ␣ to ␣ f i l e : ␣ " + e . getMessage ()) ;

}

// Read content from f i l e
try (Fi le InputStream f i s = new Fi leInputStream (f i leName)) {

int i ;
System . out . p r i n t l n (" Reading␣ from␣ f i l e : ␣ ") ;
while ((i = f i s . read ()) != −1) {

// i i s a by t e . Convert i t to char and p r i n t i t
System . out . p r i n t ((char) i) ;

}
} catch (IOException e) {

System . e r r . p r i n t l n (" Error ␣ read ing ␣ from␣ f i l e : ␣ " + e . getMessage ()
↪→) ;

}
}

}

In this program:

1. The main method defines a fileName for the file to be created and a String named content that
holds the text to be written to the file.

2. It uses a FileOutputStream to write the text content to the file. The String content is converted to
bytes using the getBytes() method before writing, as FileOutputStream works with bytes.

Java Programming Milav Dabgar

4341602 - Java: Winter 2023 Paper Solution 96

3. After writing the content to the file, it uses a FileInputStream to read the bytes from the file. It
reads the file byte by byte in the while loop until read() returns −1, indicating the end of the file.

4. Each byte read from the file is cast to a char and printed to the console, allowing the text content
of the file to be displayed.

This program demonstrates the basic use of FileInputStream and FileOutputStream for reading and
writing text files, though it’s worth noting that these classes are primarily intended for binary data. For
reading and writing character data, consider using FileReader and FileWriter or BufferedReader and
BufferedWriter for efficiency and simplicity.

6.1.26 Q5a: Explain Divide by Zero Exception in Java with example.
In Java, a DivideByZeroException is not explicitly provided as a standard exception class. Instead, the
exception that occurs when you attempt to divide by zero is called ArithmeticException. This exception
is thrown when an arithmetic operation fails due to certain conditions, such as division by zero.

Here’s an example to illustrate ArithmeticException (which commonly occurs due to divide by zero):
public class DivideByZeroExceptionExample {

public stat ic void main (St r ing [] a rgs) {
int div idend = 10 ;
int d i v i s o r = 0 ;

try {
int quot i ent = div idend / d i v i s o r ; // Div i s i on by zero w i l l

↪→ throw Ari thmet icExcept ion
System . out . p r i n t l n (" Quotient : ␣ " + quot i ent) ;

} catch (Arithmet icExcept ion e) {
System . out . p r i n t l n (" Arithmet icExcept ion ␣ caught : ␣ " + e .

↪→ getMessage ()) ;
}

}
}

In this example:

• We have two integers, dividend and divisor , where divisor is initialized to 0.
• We attempt to perform a division operation (dividend / divisor), which will result in an

ArithmeticException when divisor is 0.
• We have a try−catch block to handle the potential ArithmeticException. Inside the try block, the

division operation is performed, and if an ArithmeticException occurs, it is caught by the catch
block.

• Inside the catch block, we print a message indicating that an ArithmeticException was caught, along
with the error message provided by the exception object (e.getMessage()).

When you run this program, it will output:
Ar ithmet icExcept ion caught : / by zero

This demonstrates how attempting to divide by zero results in an ArithmeticException being thrown at
runtime in Java. To prevent such exceptions, it’s important to ensure that you handle cases where division
by zero may occur or validate input data to avoid such scenarios.

6.1.27 Q5b: Explain java I/O process.
In Java, Input/Output (I/O) operations involve the exchange of data between a Java program and external
sources or destinations, such as files, network connections, or other programs. The Java I/O process
encompasses several key concepts and classes provided by the Java API to facilitate reading from and
writing to various data sources and sinks.

The Java I/O process typically involves the following steps:

1. Selecting a Data Source or Destination:
• Determine the source or destination of the data you want to read from or write to. This could

be a file, network socket, standard input/output streams (e.g., System.in and System.out), or
any other data stream.

Java Programming Milav Dabgar

4341602 - Java: Winter 2023 Paper Solution 97

2. Creating Stream Objects:
• Once you’ve identified the source or destination, you need to create appropriate stream objects

to interact with it.
• For reading data, you typically use input stream classes such as InputStream or Reader.
• For writing data, you typically use output stream classes such as OutputStream or Writer.
• Stream classes provide methods for reading/writing data in the form of bytes or characters,

depending on the type of data source or destination.
3. Reading from or Writing to Streams:

• Use the methods provided by the stream classes to read data from or write data to the associated
data source or destination.

• For example, you can use methods like read() or write() to read/write bytes, or readLine() or
writeLine() to read/write characters.

4. Closing Streams:
• After you’ve finished reading from or writing to streams, it’s important to close them to release

system resources and ensure proper cleanup.
• You can use the close () method provided by stream classes to close the streams.
• Alternatively, you can use the try-with-resources statement introduced in Java 7 to automatically

close streams when they are no longer needed.
5. Handling Exceptions:

• I/O operations can throw exceptions due to various reasons, such as file not found, network
errors, or invalid data formats.

• It’s essential to handle these exceptions gracefully using try-catch blocks or propagate them to
the calling code for proper error handling and recovery.

6. Optional: Buffering and Efficiency:
• To improve performance and efficiency, you can use buffered stream classes such as

BufferedReader, BufferedWriter, BufferedInputStream, or BufferedOutputStream.
• Buffered stream classes reduce the number of actual I/O operations by reading/writing data in

larger chunks, resulting in improved performance.

Overall, the Java I/O process involves selecting the appropriate stream classes, reading from or writing
to streams, closing streams after use, handling exceptions, and optionally using buffering for improved
efficiency. Understanding these concepts and using the provided Java I/O classes effectively is crucial for
performing input/output operations in Java programs.

6.1.28 Q5c: Write a java program to display the content of a text file and
perform append operation on the text file.

Below is a Java program that displays the content of a text file and performs an append operation on the
text file using FileInputStream and FileOutputStream:

import java . i o . Fi le InputStream ;
import java . i o . FileOutputStream ;
import java . i o . IOException ;

public class FileDisplayAndAppend {
public stat ic void main (St r ing [] a rgs) {

St r ing f i leName = " sample . txt " ;

// Disp lay the content o f the t e x t f i l e
d i sp layF i l eContent (f i leName) ;

// Perform append opera t ion on the t e x t f i l e
performAppendOperation (f i leName) ;

}

// Method to d i s p l a y the content o f the t e x t f i l e
private stat ic void d i sp layF i l eContent (S t r ing f i leName) {

try (Fi le InputStream f i s = new Fi leInputStream (f i leName)) {
int i ;
System . out . p r i n t l n (" Contents ␣ o f ␣ the ␣ text ␣ f i l e : ") ;
while ((i = f i s . read ()) != −1) {

System . out . p r i n t ((char) i) ;

Java Programming Milav Dabgar

4341602 - Java: Summer 2023 Paper Solution 98

}
System . out . p r i n t l n (" \n ") ;

} catch (IOException e) {
System . e r r . p r i n t l n (" Error ␣ read ing ␣ from␣ f i l e : ␣ " + e . getMessage ()

↪→) ;
}

}

// Method to perform append opera t ion on the t e x t f i l e
private stat ic void performAppendOperation (St r ing f i leName) {

St r ing appendContent = " \nThis␣ l i n e ␣ i s ␣appended␣ to ␣ the ␣ f i l e . " ;

try (FileOutputStream f o s = new FileOutputStream (fi leName , true)) {
f o s . wr i t e (appendContent . getBytes ()) ;
System . out . p r i n t l n ("Append␣ operat i on ␣ completed␣ s u c c e s s f u l l y . ") ;

} catch (IOException e) {
System . e r r . p r i n t l n (" Error ␣appending␣ to ␣ f i l e : ␣ " + e . getMessage ()

↪→) ;
}

}
}

In this program:

1. The displayFileContent() method reads and displays the content of the specified text file using
FileInputStream.

2. The performAppendOperation() method appends a new line of content to the end of the text file
using FileOutputStream with the append parameter set to true.

3. In the main() method, both methods are called sequentially to display the initial content of the file
and then perform the append operation.

4. The content to be appended (appendContent) is specified as a String and converted to bytes using
the getBytes() method before writing to the file.

When you run this program, it will display the initial content of the text file (if it exists) and then append
a new line of content to the file. Make sure to replace "sample.txt" with the actual file name you want to
read from and append to.

6.2 4341602 - Java: Summer 2023 Paper Solution
6.2.1 Q1a: Differentiate between Procedure-Oriented Programming (POP)

and Object-Oriented Programming (OOP).
Procedure-Oriented Programming (POP) and Object-Oriented Programming (OOP) are two distinct
paradigms in software development. Here’s a differentiation between the two:

1. Fundamental Unit:
• POP: In POP, the fundamental unit of the program is a function or a procedure, which operates

on data.
• OOP: In OOP, the fundamental unit is an object, which combines data (attributes) and

behaviors (methods) into a single entity.
2. Data and Functionality:

• POP: Data and functionality are separate entities. Functions operate on data that is often
stored in data structures.

• OOP: Data and functionality are bundled together within objects. Objects encapsulate both
data (attributes) and functionality (methods) related to that data.

3. Data Encapsulation:
• POP: Encapsulation is not a primary concern. Data can be accessed and modified by any

function that has access to it.
• OOP: Encapsulation is a key principle. Data within objects is typically hidden from external

access, and can only be manipulated through defined methods, providing better control and
security.

4. Inheritance:

Java Programming Milav Dabgar

4341602 - Java: Summer 2023 Paper Solution 99

• POP: Inheritance is not directly supported.
• OOP: Inheritance allows objects to inherit attributes and methods from parent classes, pro-

moting code reusability and establishing hierarchical relationships.
5. Polymorphism:

• POP: Polymorphism is achieved through function overloading and procedure overriding.
• OOP: Polymorphism allows objects of different classes to be treated as objects of a common

superclass, enabling flexibility and extensibility in code design.
6. Modifiability and Scalability:

• POP: Modifying and scaling code can be more challenging as the program grows larger, due to
the lack of modularization inherent in the procedural approach.

• OOP: OOP promotes modularity and scalability through the use of classes and objects, making
it easier to manage and extend code as requirements change.

7. Example Languages:
• POP: Languages like C, Fortran, and Pascal primarily follow the procedural paradigm.
• OOP: Languages like Java, Python, and C++ are designed with OOP principles in mind,

although many also support procedural programming.

In summary, while both paradigms aim to organize code and facilitate software development, they differ
significantly in their approach to data organization, code structure, and principles of modularity and
reusability.

6.2.2 Q1b: Explain Super keyword in inheritance with suitable example.
In Java, the super keyword is used to refer to the superclass (parent class) of a subclass (child class). It
can be used to access superclass methods, constructor, and instance variables. This is particularly useful
when the subclass overrides a method or hides an instance variable of the superclass and you want to
access the superclass version.

Let’s illustrate the usage of the super keyword with an example involving inheritance and method
overriding:

// Parent c l a s s
class Animal {

St r ing c o l o r = "White " ;

void d i sp l ay () {
System . out . p r i n t l n ("Animal␣ i s ␣ " + co l o r) ;

}
}

// Subc l a s s i n h e r i t i n g from Animal
class Dog extends Animal {

St r ing c o l o r = " Black " ; // h id ing the co l o r v a r i a b l e in parent c l a s s

void d i sp l ay () {
System . out . p r i n t l n ("Dog␣ i s ␣ " + co l o r) ;
System . out . p r i n t l n (" Supe r c l a s s ␣Animal␣ i s ␣ " + super . c o l o r) ; //

↪→ acce s s ing s u p e r c l a s s v a r i a b l e
super . d i s p l ay () ; // c a l l i n g s u p e r c l a s s method

}
}

// Main c l a s s
public class Main {

public stat ic void main (St r ing [] a rgs) {
Dog dog = new Dog () ;
dog . d i sp l ay () ;

}
}

In this example: - The Animal class defines a variable color and a method display() which prints the
color. - The Dog class extends Animal and defines its own color variable, hiding the color variable of the

Java Programming Milav Dabgar

4341602 - Java: Summer 2023 Paper Solution 100

superclass. It also overrides the display() method to print the dog’s color and then calls super.display()
to call the superclass’s display() method. - In the main() method, we create an instance of Dog and call
its display() method.

Output:

Dog i s Black
Supe r c l a s s Animal i s White
Animal i s White

Here’s what’s happening: - The display() method in the Dog class prints the color of the dog, then it uses
super.color to access the color variable of the superclass (which is “White”). - super.display() invokes
the display() method of the superclass, printing “Animal is White”.

This demonstrates how super can be used to access superclass members from a subclass, allowing for
controlled access to overridden methods and hidden variables.

6.2.3 Q1c: Define: Method Overriding. List out Rules for method overriding.
Write a java program that implements method overriding.

Method overriding is a feature in object-oriented programming that allows a subclass to provide a
specific implementation of a method that is already defined in its superclass. This means that a subclass
can redefine the implementation of a method that it inherits from its superclass according to its own
requirements.

Rules for method overriding in Java:

1. Method Signature:
• The method in the subclass must have the same name, return type, and parameter list (including

order and type of parameters) as the method in the superclass. Changing the return type or
parameter list results in method overloading instead of overriding.

2. Access Modifier:
• The access modifier of the overriding method in the subclass should not be more restrictive

than the access modifier of the overridden method in the superclass. However, it can be less
restrictive or the same.

• Access levels in Java: public, protected, package-private (default), and private.
• The order of access modifiers from least restrictive to most restrictive is: public, protected,

package-private, and private.
3. Exception Handling:

• The subclass method can only throw exceptions that are subclasses of the exceptions thrown
by the superclass method, or it can choose not to throw any exceptions (this is also known as
“covariant return types”).

4. Return Type:
• If the return type of the method in the subclass is a subclass of the return type of the method

in the superclass, it’s considered a valid overriding (covariant return types).
• In Java 5 and later versions, covariant return types allow the return type of the overriding

method to be a subclass of the return type of the overridden method.
5. Method Visibility:

• If a method in the superclass is declared as final , it cannot be overridden in any subclass.
• If a method in the superclass is declared as static , it cannot be overridden because static

methods belong to the class, not to the instance.
• Constructors and private methods cannot be overridden because they are not inherited by

subclasses.
6. Super Keyword:

• Within the overriding method, you can use the super keyword to call the overridden method
from the superclass.

• This can be useful for extending the functionality of the superclass method while still utilizing
its original implementation.

Method overriding allows for polymorphism in Java, enabling different behavior for objects of the same
superclass type based on their actual runtime types.

Sure, here’s a Java program that demonstrates method overriding:

// Parent c l a s s

Java Programming Milav Dabgar

4341602 - Java: Summer 2023 Paper Solution 101

class Animal {
void makeSound () {

System . out . p r i n t l n (" Generic ␣ animal ␣sound ") ;
}

}

// Subc l a s s i n h e r i t i n g from Animal
class Dog extends Animal {

// Override makeSound method
@Override
void makeSound () {

System . out . p r i n t l n ("Woof ! ") ;
}

}

// Another s u b c l a s s i n h e r i t i n g from Animal
class Cat extends Animal {

// Override makeSound method
@Override
void makeSound () {

System . out . p r i n t l n ("Meow! ") ;
}

}

// Main c l a s s
public class Main {

public stat ic void main (St r ing [] a rgs) {
Animal animal1 = new Dog () ; // Animal re f e rence , Dog o b j e c t
Animal animal2 = new Cat () ; // Animal re f e rence , Cat o b j e c t

animal1 . makeSound () ; // C a l l s Dog ' s makeSound method
animal2 . makeSound () ; // C a l l s Cat ' s makeSound method

}
}

Output:

Woof !
Meow!

Explanation: - We have a superclass Animal with a method makeSound(). - The Dog class and Cat class
both extend Animal and override the makeSound() method with their own implementations. - In the
Main class, we create instances of Dog and Cat but store them in Animal references. - When we call
the makeSound() method on these instances, Java dynamically dispatches the call to the appropriate
overridden method based on the actual type of the object at runtime, demonstrating polymorphism
through method overriding.

6.2.4 Q1cOR: Describe: Interface. Write a java program using interface to
demonstrate multiple inheritance.

In Java, an interface is a reference type that defines a set of abstract methods along with constants (static
final variables). Interfaces cannot have instance fields (non-static variables) or concrete methods (methods
with a body) until Java 8, where default and static methods were introduced in interfaces.

Interfaces serve as a contract or blueprint for classes, specifying methods that implementing classes must
provide. They facilitate abstraction, allowing for the separation of specification and implementation in
software design. Here are key features and characteristics of interfaces in Java:

1. Declaration:
• Interfaces are declared using the interface keyword.
• Example: interface MyInterface { ... }

2. Abstract Methods:

Java Programming Milav Dabgar

4341602 - Java: Summer 2023 Paper Solution 102

• An interface can contain abstract methods, which are method declarations without a body.
• All methods in an interface are implicitly public and abstract.
• Example:

interface MyInter face {
void method1 () ;
int method2 () ;

}
3. Constants:

• Interfaces can declare constants, which are implicitly public, static , and final .
• Constants are typically used to define immutable values that are relevant to the interface.
• Example:

interface MyInter face {
int CONSTANT_VALUE = 10 ;

}
4. Default Methods (Java 8+):

• Java 8 introduced the concept of default methods in interfaces, allowing interfaces to have
concrete methods with a default implementation.

• Default methods are declared using the default keyword and can be overridden by implementing
classes if needed.

• Default methods were introduced to provide backward compatibility when introducing new
methods to existing interfaces.

• Example:
interface MyInter face {

default void defaultMethod () {
System . out . p r i n t l n (" Defau l t ␣method␣ implementation ") ;

}
}

5. Static Methods (Java 8+):
• Java 8 also introduced static methods in interfaces, allowing interfaces to contain static utility

methods.
• Static methods are declared using the static keyword and can be invoked using the interface

name.
• Example:

interface MyInter face {
stat ic void stat icMethod () {

System . out . p r i n t l n (" S t a t i c ␣method␣ implementation ") ;
}

}
6. Multiple Inheritance:

• Java allows interfaces to support multiple inheritance, meaning a class can implement multiple
interfaces.

• This enables a class to inherit behavior from multiple sources, promoting code reuse and
flexibility.

• Example:
interface I n t e r f a c e 1 {

void method1 () ;
}

interface I n t e r f a c e 2 {
void method2 () ;

}

class MyClass implements I n t e r f a c e1 , I n t e r f a c e 2 {
public void method1 () {

// Implementation
}

Java Programming Milav Dabgar

4341602 - Java: Summer 2023 Paper Solution 103

public void method2 () {
// Implementation

}
}

7. Implementation:
• Classes implement interfaces using the implements keyword.
• Implementing classes must provide concrete implementations for all abstract methods declared

in the interface.
• Example:

class MyClass implements MyInter face {
public void method1 () {

// Implementation
}

public int method2 () {
// Implementation

}
}

Interfaces play a crucial role in Java’s abstraction mechanisms, enabling the definition of contracts and
facilitating polymorphism and code reusability in object-oriented programming. They are widely used
in Java APIs and frameworks to define specifications and promote interoperability between different
components.

In Java, multiple inheritance is not directly supported for classes, meaning a class cannot extend multiple
classes simultaneously. However, Java provides a way to achieve a form of multiple inheritance using
interfaces. An interface in Java defines a contract for classes that implement it, specifying a set of methods
that must be implemented by any class that claims to conform to the interface.

Here’s a Java program demonstrating multiple inheritance using interfaces:

// I n t e r f a c e 1
interface Animal {

void eat () ;
}

// I n t e r f a c e 2
interface Mammal {

void run () ;
}

// Class implementing I n t e r f a c e 1
class Dog implements Animal {

@Override
public void eat () {

System . out . p r i n t l n ("Dog␣ ea t s ␣bones ") ;
}

}

// Class implementing I n t e r f a c e 2
class Horse implements Mammal {

@Override
public void run () {

System . out . p r i n t l n (" Horse␣ runs ␣ at ␣high ␣ speed ") ;
}

}

// Class implementing both I n t e r f a c e 1 and I n t e r f a c e 2
class DogHorseHybrid implements Animal , Mammal {

@Override
public void eat () {

Java Programming Milav Dabgar

4341602 - Java: Summer 2023 Paper Solution 104

System . out . p r i n t l n ("Dog−Horse␣Hybrid␣ ea t s ␣bones␣and␣hay ") ;
}

@Override
public void run () {

System . out . p r i n t l n ("Dog−Horse␣Hybrid␣ runs ") ;
}

}

// Main c l a s s
public class Main {

public stat ic void main (St r ing [] a rgs) {
Dog dog = new Dog () ;
Horse horse = new Horse () ;
DogHorseHybrid hybrid = new DogHorseHybrid () ;

dog . eat () ;
horse . run () ;
hybrid . eat () ;
hybrid . run () ;

}
}

Output:

Dog ea t s bones
Horse runs at high speed
Dog−Horse Hybrid ea t s bones and hay
Dog−Horse Hybrid runs

Explanation: - We define two interfaces: Animal and Mammal, each with their own set of methods. -
We define two classes: Dog and Horse, each implementing one of the interfaces. - We define a class
DogHorseHybrid that implements both interfaces, thereby inheriting behavior from both Animal and
Mammal. - In the Main class, we create instances of Dog, Horse, and DogHorseHybrid, and call their
respective methods to demonstrate multiple inheritance through interfaces.

6.2.5 Q2a: Explain the Java Program Structure with example.
In Java, a program is typically structured into classes, which are the fundamental building blocks of Java
applications. Each class encapsulates data (attributes) and behaviors (methods) related to a specific
entity or concept. The overall structure of a Java program involves one or more classes, with one class
containing a special method called main() where the program execution begins.

Here’s an example of a simple Java program structure:

// Main c l a s s
public class HelloWorld {

// Main method where the program execu t ion beg in s
public stat ic void main (St r ing [] a rgs) {

// Program l o g i c
System . out . p r i n t l n (" Hel lo , ␣world ! ") ;

}
}

Let’s break down the structure of this Java program:

1. Class Declaration:
• The program starts with the declaration of a class using the class keyword. In this example,

the class is named HelloWorld.
• Class names in Java must start with an uppercase letter and follow camel case convention.

2. Main Method:
• Inside the class, we define a special method called main(). This is the entry point of the

program where the execution begins.

Java Programming Milav Dabgar

4341602 - Java: Summer 2023 Paper Solution 105

• The main() method must be declared as public, static , and void.
• It accepts a single parameter, an array of strings (String [] args), which allows command-line

arguments to be passed to the program.
3. Program Logic:

• Inside the main() method, we write the logic or instructions that we want the program to
execute.

• In this example, we have a single statement that prints “Hello, world!” to the console using the
System.out.println() method.

4. Comments:
• Comments in Java start with // for single-line comments or /∗ ∗/ for multi-line comments.
• Comments are used to document and explain the code, making it more readable and under-

standable.
5. Semicolons:

• Java statements are terminated by semicolons (;). They indicate the end of a statement.

Overall, this Java program structure demonstrates the basic elements required for a Java program: a class
declaration, a main method, and program logic. This structure forms the foundation for writing Java
applications of varying complexity.

6.2.6 Q2b: Explain static keyword with suitable example.
In Java, the static keyword is used to declare members (variables and methods) that belong to the class
itself rather than to instances of the class. This means that static members are shared among all instances
of the class and can be accessed directly through the class name without the need to create an object of
the class.

Here’s an explanation of the static keyword with a suitable example:

class Counter {
stat ic int count = 0 ; // S t a t i c v a r i a b l e

// S t a t i c method to increment the count
stat ic void increment () {

count++;
}

// S t a t i c method to d i s p l a y the count
stat ic void displayCount () {

System . out . p r i n t l n ("Count : ␣ " + count) ;
}

}

public class Main {
public stat ic void main (St r ing [] a rgs) {

// Access ing s t a t i c v a r i a b l e and method us ing c l a s s name
Counter . increment () ;
Counter . displayCount () ;

// Creat ing m u l t i p l e i n s t ance s o f Counter
Counter c1 = new Counter () ;
Counter c2 = new Counter () ;

// Access ing s t a t i c v a r i a b l e and method us ing in s t ance s
c1 . increment () ;
c2 . increment () ;
Counter . displayCount () ; // Output : Count : 3

}
}

Explanation: - In the Counter class, count is declared as a static variable. This means that all instances
of the Counter class share the same count variable. - increment() and displayCount() are static methods.
These methods can be called directly using the class name (Counter.increment(), Counter.displayCount()),

Java Programming Milav Dabgar

4341602 - Java: Summer 2023 Paper Solution 106

without needing to create an object of the class. - In the Main class, we demonstrate accessing and
modifying the static variable and calling static methods both through the class name and through instances
of the class. - The output demonstrates that the static variable count is shared among all instances of the
Counter class. When we increment count using one instance, it reflects the change when accessed through
another instance or the class name itself.

In summary, the static keyword allows for the creation of class-level variables and methods that are
shared among all instances of the class. It provides a way to manage and manipulate shared data and
behavior within the context of a class.

6.2.7 Q2c: Define: Constructor. List out types of it. Explain Parameterized
and copy constructor with suitable example.

A constructor in Java is a special type of method that is automatically called when an object of a class is
created. It is used to initialize the newly created object. Constructors have the same name as the class
and do not have a return type, not even void. Constructors can be used to set initial values for instance
variables, allocate resources, or perform any other initialization tasks needed by the object.

Types of constructors in Java:

1. Default Constructor:
• A default constructor is automatically created by Java if no other constructor is defined

explicitly.
• It has no parameters and typically initializes instance variables to their default values (e.g., 0

for numeric types, null for reference types).
2. Parameterized Constructor:

• A parameterized constructor accepts parameters which are used to initialize instance variables
with specific values.

• It allows for custom initialization of objects based on the provided arguments.
3. Copy Constructor:

• A copy constructor is a special type of constructor that takes an object of the same class as a
parameter and creates a new object by copying the values of the instance variables from the
passed object.

• It is used to create a new object with the same state as an existing object.

Let’s explain parameterized and copy constructors with suitable examples:

6.2.7.1 Parameterized Constructor Example:

class Student {
St r ing name ;
int age ;

// Parameterized Constructor
public Student (S t r ing name , int age) {

this . name = name ;
this . age = age ;

}

void d i sp l ay () {
System . out . p r i n t l n ("Name : ␣ " + name) ;
System . out . p r i n t l n ("Age : ␣ " + age) ;

}
}

public class Main {
public stat ic void main (St r ing [] a rgs) {

// Creat ing o b j e c t s us ing parameter i zed cons t ruc t o r
Student student1 = new Student (" A l i c e " , 20) ;
Student student2 = new Student ("Bob" , 22) ;

// Disp lay ing s tuden t d e t a i l s
student1 . d i sp l ay () ;

Java Programming Milav Dabgar

4341602 - Java: Summer 2023 Paper Solution 107

student2 . d i sp l ay () ;
}

}

In this example: - We define a Student class with instance variables name and age. - The Student class
has a parameterized constructor that initializes the name and age instance variables with the values
passed as arguments. - We create two Student objects (student1 and student2) using the parameterized
constructor and display their details.

6.2.7.2 Copy Constructor Example:

class Employee {
St r ing name ;
int age ;

// Copy Constructor
public Employee (Employee emp) {

this . name = emp . name ;
this . age = emp . age ;

}

void d i sp l ay () {
System . out . p r i n t l n ("Name : ␣ " + name) ;
System . out . p r i n t l n ("Age : ␣ " + age) ;

}
}

public class Main {
public stat ic void main (St r ing [] a rgs) {

// Creat ing an o b j e c t
Employee emp1 = new Employee () ;
emp1 . name = " John " ;
emp1 . age = 30 ;

// Creat ing another o b j e c t us ing copy cons t ruc t o r
Employee emp2 = new Employee (emp1) ;

// Disp lay ing employee d e t a i l s
emp1 . d i sp l ay () ;
emp2 . d i sp l ay () ;

}
}

In this example: - We define an Employee class with instance variables name and age. - The Employee
class has a copy constructor that takes an Employee object as a parameter and initializes the instance
variables of the new object with the values from the passed object. - We create an Employee object emp1,
set its name and age, and then create another Employee object emp2 using the copy constructor with
emp1 as an argument. - Both emp1 and emp2 have the same state, demonstrating the use of the copy
constructor to create a new object with the same state as an existing object.

6.2.8 Q2a: Explain the Primitive Data Types and User Defined DataTypes
in java.

In Java, data types specify the type of data that a variable can hold. There are two main categories of
data types: primitive data types and user-defined data types.

6.2.8.1 Primitive Data Types:

Primitive data types are the basic building blocks of data manipulation in Java. They are predefined by
the language and represent simple values. Java provides eight primitive data types:

1. byte: 8-bit signed integer.

Java Programming Milav Dabgar

4341602 - Java: Summer 2023 Paper Solution 108

2. short: 16-bit signed integer.
3. int: 32-bit signed integer.
4. long: 64-bit signed integer.
5. float: 32-bit floating-point number.
6. double: 64-bit floating-point number.
7. char: 16-bit Unicode character.
8. boolean: Represents true or false.

Example:

int number = 10 ;
double pi = 3 . 1 4 ;
char l e t t e r = 'A ' ;
boolean isJavaFun = true ;

6.2.8.2 User-Defined Data Types:

User-defined data types are created by the programmer to meet specific requirements. They are derived
from primitive data types and/or other user-defined data types. In Java, user-defined data types include
classes, interfaces, arrays, and enumerated types.

1. Classes: Classes are user-defined data types that encapsulate data for a specific object and provide
methods to operate on that data. java class Car { String brand; String model; int year; }

2. Interfaces: Interfaces define a contract for classes that implement them, specifying a set of methods
that must be implemented. java interface Shape { double area(); double perimeter(); }

3. Arrays: Arrays are collections of elements of the same type that are stored in contiguous memory
locations. java int [] numbers = {1, 2, 3, 4, 5};

4. Enumerated Types (Enums): Enums define a set of named constants representing a fixed
set of values. java enum Day { SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY,
↪→ FRIDAY, SATURDAY }

User-defined data types allow programmers to organize and manipulate complex data structures and
represent real-world entities in their programs. They contribute to the modularity, maintainability, and
extensibility of Java code.

6.2.9 Q2b: Explain this keyword with suitable example.
In Java, the this keyword is a reference to the current object within a method or constructor. It can
be used to access instance variables and methods of the current object, differentiate between instance
variables and local variables with the same name, and to pass the current object as a parameter to other
methods.

Here’s an explanation of the this keyword with a suitable example:

class Student {
St r ing name ;
int age ;

// Parameterized Constructor
public Student (S t r ing name , int age) {

// Use ' t h i s ' to d i s t i n g u i s h between ins tance v a r i a b l e s and
↪→ cons t ruc t o r parameters

this . name = name ;
this . age = age ;

}

// Method to d i s p l a y s tuden t d e t a i l s
void d i sp l ay () {

// Access in s tance v a r i a b l e s us ing ' t h i s '
System . out . p r i n t l n ("Name : ␣ " + this . name) ;
System . out . p r i n t l n ("Age : ␣ " + this . age) ;

}

Java Programming Milav Dabgar

4341602 - Java: Summer 2023 Paper Solution 109

// Method to compare two Student o b j e c t s
public boolean i sO lde r (Student otherStudent) {

// Use ' t h i s ' to r e f e r to the curren t o b j e c t
return this . age > otherStudent . age ;

}
}

public class Main {
public stat ic void main (St r ing [] a rgs) {

// Create a Student o b j e c t
Student student1 = new Student (" A l i c e " , 20) ;

// Ca l l d i s p l a y method
student1 . d i sp l ay () ;

// Create another Student o b j e c t
Student student2 = new Student ("Bob" , 22) ;

// Compare ages us ing i sO lde r method
i f (student1 . i sO lde r (student2)) {

System . out . p r i n t l n (student1 . name + " ␣ i s ␣ o ld e r ␣ than␣ " + student2
↪→ . name) ;

} else {
System . out . p r i n t l n (student2 . name + " ␣ i s ␣ o ld e r ␣ than␣ " + student1

↪→ . name) ;
}

}
}

Explanation: - In the Student class constructor, this .name and this .age are used to refer to the instance
variables of the current object (Student). - In the display() method, this .name and this .age are used to
access the instance variables of the current object. - In the isOlder() method, this .age is used to access
the age of the current object (this) and compare it with the age of another Student object passed as a
parameter. - In the Main class, we create two Student objects (student1 and student2) and call methods
using the this keyword to demonstrate its usage.

6.2.10 Q2c: Define Inheritance. List out types of it. Explain multilevel and
hierarchical inheritance with suitable example.

Inheritance is a fundamental concept in object-oriented programming (OOP) that allows a new class
(subclass or derived class) to inherit attributes and behaviors from an existing class (superclass or base
class). This enables code reuse and promotes the creation of a hierarchy of classes, where classes at
higher levels in the hierarchy share common characteristics, and subclasses can specialize or extend those
characteristics.

Types of Inheritance:

1. Single Inheritance:
• A subclass inherits from only one superclass.

2. Multiple Inheritance:
• A subclass inherits from more than one superclass. This is not directly supported in Java due

to the potential ambiguity and complexity it introduces.
3. Multilevel Inheritance:

• A subclass inherits from a superclass, and another subclass inherits from the first subclass,
forming a chain of inheritance.

4. Hierarchical Inheritance:
• Multiple subclasses inherit from a single superclass, forming a tree-like structure.

6.2.10.1 Multilevel Inheritance Example:

// Superc l a s s

Java Programming Milav Dabgar

4341602 - Java: Summer 2023 Paper Solution 110

class Animal {
void eat () {

System . out . p r i n t l n ("Animal␣ i s ␣ ea t ing ") ;
}

}

// Subc l a s s i n h e r i t i n g from Animal
class Dog extends Animal {

void bark () {
System . out . p r i n t l n ("Dog␣ i s ␣ barking ") ;

}
}

// Subc l a s s i n h e r i t i n g from Dog
class Labrador extends Dog {

void c o l o r () {
System . out . p r i n t l n (" Labrador␣ i s ␣brown ") ;

}
}

public class Main {
public stat ic void main (St r ing [] a rgs) {

Labrador labrador = new Labrador () ;
l abrador . eat () ; // i n h e r i t e d from Animal
l abrador . bark () ; // i n h e r i t e d from Dog
l abrador . c o l o r () ; // own method

}
}

Explanation: - In this example, Animal is the superclass, Dog is a subclass inheriting from Animal, and
Labrador is a subclass inheriting from Dog. - Dog inherits the eat() method from Animal and adds its own
method bark(). - Labrador inherits both eat() and bark() methods from Dog and adds its own method
color (). - The main() method demonstrates calling methods from different levels of the inheritance
hierarchy using an object of the Labrador class.

6.2.10.2 Hierarchical Inheritance Example:

// Superc l a s s
class Animal {

void eat () {
System . out . p r i n t l n ("Animal␣ i s ␣ ea t ing ") ;

}
}

// Subc l a s s 1 i n h e r i t i n g from Animal
class Dog extends Animal {

void bark () {
System . out . p r i n t l n ("Dog␣ i s ␣ barking ") ;

}
}

// Subc l a s s 2 i n h e r i t i n g from Animal
class Cat extends Animal {

void meow() {
System . out . p r i n t l n ("Cat␣ i s ␣meowing ") ;

}
}

public class Main {
public stat ic void main (St r ing [] a rgs) {

Dog dog = new Dog () ;

Java Programming Milav Dabgar

4341602 - Java: Summer 2023 Paper Solution 111

dog . eat () ; // i n h e r i t e d from Animal
dog . bark () ; // own method

Cat cat = new Cat () ;
cat . eat () ; // i n h e r i t e d from Animal
cat .meow() ; // own method

}
}

Explanation: - In this example, both Dog and Cat classes inherit the eat() method from the Animal
superclass. - Dog adds its own method bark(), while Cat adds its own method meow(). - The main()
method demonstrates creating objects of both Dog and Cat classes and calling their respective methods.

6.2.11 Q3a: Explain Type Conversion and Casting in java.
In Java, type conversion refers to the process of converting one data type into another. This can occur
implicitly, where the conversion is done automatically by the compiler, or explicitly, where the programmer
explicitly specifies the conversion using casting.

6.2.11.1 Implicit Type Conversion (Widening Conversion):

• Implicit type conversion occurs when a data type with a smaller range or precision is converted into
a data type with a larger range or precision.

• This conversion is performed by the compiler automatically and does not require any explicit casting.
• It’s also known as widening conversion because the range of the data type is widened.
• For example, converting an integer to a floating-point number.

Example:

int numInt = 10 ;
double numDouble = numInt ; // I m p l i c i t convers ion from i n t to doub le

6.2.11.2 Explicit Type Conversion (Narrowing Conversion):

• Explicit type conversion, also known as casting, occurs when a data type with a larger range or
precision is converted into a data type with a smaller range or precision.

• Casting requires explicit syntax where the programmer specifies the desired type in parentheses
before the value to be converted.

• This conversion may result in loss of data if the target type cannot represent the entire range of the
source type.

• It’s also known as narrowing conversion because the range of the data type is narrowed.
• For example, converting a floating-point number to an integer.

Example:

double numDouble = 10 . 5 ;
int numInt = (int) numDouble ; // E x p l i c i t convers ion (c a s t i n g) from doub le

↪→ to i n t

6.2.11.3 Type Casting:

• Type casting is the process of converting a variable from one data type to another.
• It’s done by explicitly specifying the target data type in parentheses before the variable.
• There are two types of casting: primitive type casting and object casting.
• Primitive type casting is used for converting between primitive data types, while object casting is

used for converting between reference types.

Example of Primitive Type Casting:

double numDouble = 10 . 5 ;
int numInt = (int) numDouble ; // Pr imi t i v e type c a s t i n g from doub le to i n t

Example of Object Casting:

Java Programming Milav Dabgar

4341602 - Java: Summer 2023 Paper Solution 112

class Animal {}
class Dog extends Animal {}

public class Main {
public stat ic void main (St r ing [] a rgs) {

Animal animal = new Dog () ;
Dog dog = (Dog) animal ; // Object c a s t i n g from Animal to Dog

}
}

In summary, type conversion in Java involves converting one data type to another either implicitly
or explicitly through casting. Implicit conversion occurs automatically by the compiler, while explicit
conversion requires the programmer to specify the desired type using casting syntax.

6.2.12 Q3b: Explain different visibility controls used in Java.
In Java, visibility controls, also known as access modifiers, are keywords that determine the accessibility
or visibility of classes, methods, and variables within Java programs. They specify the level of access that
other classes or components have to the members of a class. Java provides four visibility controls:

1. public:
• Members marked as public are accessible from any other class.
• They can be accessed by classes in the same package as well as by classes in different packages.
• Public members form the interface of the class, providing access to its functionality.

2. protected:
• Members marked as protected are accessible within the same package and by subclasses (even

if they are in a different package).
• Protected members are useful when you want to provide access to subclasses while still restricting

access from other classes.
3. default (no modifier):

• If no access modifier is specified, the default visibility is applied.
• Members with default visibility are accessible only within the same package.
• They are not accessible by classes outside the package, even if they are subclasses.

4. private:
• Members marked as private are accessible only within the same class.
• They are not visible to any other class, including subclasses and classes in the same package.
• Private members are used to encapsulate the internal state of a class and hide implementation

details.

By using these visibility controls, you can control the access to your classes, methods, and variables, which
helps in enforcing encapsulation, promoting code maintainability, and reducing coupling between classes.

Example:
package com . example ;

public class MyClass {
public int publ icVar ;
protected int protectedVar ;
int de fau l tVar ; // De fau l t v i s i b i l i t y
private int pr ivateVar ;

}

In this example: - publicVar is accessible from any class, regardless of its location. - protectedVar is
accessible within the same package and by subclasses. - defaultVar is accessible only within the same
package. - privateVar is accessible only within the same class.

6.2.13 Q3c: Define: Thread. List different methods used to create Thread.
Explain Thread life cycle in detail.

6.2.13.1 Definition of Thread:

In Java, a thread refers to a single sequential flow of control within a program. It is the smallest unit
of execution and represents an independent path of execution in a program. Multiple threads can run

Java Programming Milav Dabgar

4341602 - Java: Summer 2023 Paper Solution 113

concurrently within a single Java program, allowing for parallel execution of tasks.

6.2.13.2 Methods to Create Thread:

In Java, there are several ways to create a thread:

1. Extending the Thread Class:
• Create a new class that extends the Thread class.
• Override the run() method to specify the task to be performed by the thread.
• Create an instance of the subclass and call its start () method to start the execution of the

thread.
2. Implementing the Runnable Interface:

• Create a class that implements the Runnable interface.
• Implement the run() method to specify the task to be performed by the thread.
• Create an instance of the class and pass it as a parameter to a Thread object.
• Call the start () method of the Thread object to start the execution of the thread.

3. Using Lambda Expressions (Java 8 and later):
• Define the task to be performed by the thread using a lambda expression.
• Create a Thread object and pass the lambda expression as a parameter to its constructor.
• Call the start () method of the Thread object to start the execution of the thread.

6.2.13.3 Thread Life Cycle:

The life cycle of a thread in Java consists of several states, and the thread can transition between these
states during its execution. The states of a thread in Java are as follows:

1. New:
• The thread is in the new state if it has been created but has not yet started.
• This state is characterized by the creation of a Thread object using the new keyword.

2. Runnable:
• The thread is in the runnable state if it is ready to run but the scheduler has not yet selected

it to be the running thread.
• A runnable thread may be executing or waiting for its turn to be executed by the scheduler.

3. Running:
• The thread is in the running state if it has been selected by the scheduler for execution.
• In this state, the thread is actively executing its task.

4. Blocked/Waiting:
• The thread is in the blocked or waiting state if it is waiting for a specific condition to occur or

for another thread to release a lock.
• A blocked thread cannot proceed until the condition is satisfied or the lock is released.

5. Timed Waiting:
• The thread is in the timed waiting state if it is waiting for a specified period of time.
• This state occurs when a thread calls a method that results in it waiting for a specified amount

of time.
6. Terminated:

• The thread is in the terminated state if it has completed its task or if it has been explicitly
terminated by calling the stop() method.

6.2.13.4 Detailed Explanation of Thread Life Cycle:

1. New:
• The thread is created using the new keyword, but the start () method has not yet been called.

2. Runnable:
• The start () method is called, and the thread becomes ready to run.
• The thread may be selected by the scheduler to run, or it may wait for its turn if other threads

are currently running.
3. Running:

• The scheduler selects the thread to run, and it begins executing its task.
• In this state, the thread is actively executing its code.

4. Blocked/Waiting:
• The thread may enter the blocked or waiting state if it encounters a blocking operation, such

as waiting for I/O or waiting for a lock to be released.
• While in this state, the thread is not executing, but it is not terminated either.

Java Programming Milav Dabgar

4341602 - Java: Summer 2023 Paper Solution 114

5. Timed Waiting:
• Similar to the blocked or waiting state, but the thread waits for a specified period of time

before resuming execution.
6. Terminated:

• The thread completes its task or is explicitly terminated by calling the stop() method.
• Once terminated, the thread cannot be restarted and its resources are released.

Understanding the life cycle of a thread is important for proper thread management and synchronization
in Java programs. It allows developers to control the execution of threads and handle concurrency-related
issues effectively.

6.2.14 Q3a: Explain the purpose of JVM in java.
The Java Virtual Machine (JVM) is a critical component of the Java Runtime Environment (JRE), serving
as the engine that executes Java bytecode. It is the cornerstone of Java’s “write once, run anywhere”
(WORA) philosophy, allowing Java applications to run on any device or operating system that has a
compatible JVM. The purpose and functionalities of the JVM are multifaceted:

6.2.14.1 Platform Independence:

• Code Portability: JVM enables Java applications to be platform-independent. Java programs are
compiled into bytecode, which can be executed on any JVM, regardless of the underlying hardware
and operating system. This means developers can write the code once and run it anywhere, without
needing to modify it for different platforms.

6.2.14.2 Security:

• Safe Execution Environment: The JVM provides a secure execution environment by sandboxing
the execution of bytecode. It enforces access controls and provides various security checks, preventing
unauthorized access to system resources and ensuring that Java applications cannot harm the host
system.

• Bytecode Verification: Before executing bytecode, the JVM verifies the code to ensure it adheres
to Java’s safety rules, further enhancing security.

6.2.14.3 Performance:

• Just-In-Time (JIT) Compilation: While the JVM interprets bytecode, it also employs Just-
In-Time (JIT) compilation to improve the performance of Java applications. The JIT compiler
translates bytecode into native machine code just before execution, which allows for faster execution
compared to interpretation alone.

• Garbage Collection: JVM manages memory through garbage collection, automatically freeing
memory allocated to objects that are no longer needed. This not only helps in managing resources
efficiently but also reduces the likelihood of memory leaks and other memory-related issues.

6.2.14.4 Multithreading and Synchronization:

• Thread Management: The JVM supports multithreaded execution, allowing multiple threads to
run concurrently within a single process. It manages synchronization between threads, ensuring
that resources are properly shared and accessed in a thread-safe manner.

6.2.14.5 Load and Execution of Code:

• Dynamic Loading: JVM dynamically loads, links, and initializes classes and interfaces. This
means classes are loaded as needed at runtime, making the execution process more modular and
efficient.

6.2.14.6 Platform-Specific Features:

• Native Interface and Libraries: While JVM abstracts the details of the underlying platform, it
also provides mechanisms (such as the Java Native Interface - JNI) for Java applications to interact
with native libraries and call platform-specific functions when necessary.

Java Programming Milav Dabgar

4341602 - Java: Summer 2023 Paper Solution 115

6.2.14.7 Tooling and Debugging:

• Support for Development Tools: The JVM ecosystem includes a vast array of development
and debugging tools that leverage JVM capabilities for profiling, debugging, and monitoring Java
applications.

In summary, the JVM is a pivotal technology that not only ensures the portability, security, and performance
of Java applications but also provides a robust platform for developing and executing high-performance,
scalable, and secure applications across diverse computing environments.

6.2.15 Q3b: Define: Package. Write the steps to create a Package with
suitable example.

6.2.15.1 Definition of Java Package:

In Java, a package is a way of organizing classes and interfaces into namespaces to prevent naming conflicts
and provide a hierarchical structure to the Java codebase. It allows for better organization, management,
and modularization of Java code. Packages also facilitate access control and provide a mechanism for
code reuse.

6.2.15.2 Steps to Create a Java Package:

Creating a Java package involves the following steps:

1. Choose a Package Name:
• Select a unique name for your package that reflects its purpose and functionality.
• Package names typically follow the reverse domain naming convention, such as com.example.

↪→ package.
2. Create Package Directory Structure:

• Create a directory structure corresponding to the package name.
• Each level of the package name corresponds to a directory in the file system.
• For example, if the package name is com.example.package, create the directory structure

com/example/package.
3. Place Java Files in the Package Directory:

• Create Java source files (. java files) containing classes or interfaces that belong to the package.
• Place these Java files in the directory corresponding to the package name.
• Ensure that the package declaration in each Java file matches the package name and directory

structure.
4. Compile Java Files:

• Compile the Java source files using the javac command.
• Specify the directory containing the package structure as the source path using the −d option

to ensure that compiled class files are placed in the appropriate package directory.
5. Use the Package:

• Once the package is created and compiled, you can use it in other Java classes by importing it
using the import statement.

• Import the package or specific classes/interfaces from the package into your Java code to access
its functionality.

6.2.15.3 Example of Creating a Java Package:

Suppose we want to create a package named com.example.util containing utility classes for string manipu-
lation. Here are the steps to create and use this package:

1. Create Package Directory Structure:
• Create a directory named com within your project directory.
• Inside the com directory, create a subdirectory named example.
• Inside the example directory, create another subdirectory named util .

2. Place Java Files in the Package Directory:
• Create a Java source file named StringUtils . java containing utility methods for string manipu-

lation.
• Place this Java file in the util directory.
• Add the package declaration package com.example.util; at the beginning of the StringUtils . java

file.
3. Compile Java Files:

Java Programming Milav Dabgar

4341602 - Java: Summer 2023 Paper Solution 116

• Open a terminal or command prompt.
• Navigate to the directory containing the com directory.
• Compile the StringUtils . java file using the following command:

javac com/example/ u t i l / S t r i n gU t i l s . java −d .
• The −d . option specifies that the compiled class file should be placed in the current directory

(.), maintaining the package structure.
4. Use the Package:

• In other Java classes where you want to use the StringUtils class, import it using the import
statement:
import com . example . u t i l . S t r i n gU t i l s ;

• You can then use the methods provided by the StringUtils class in your Java code.

By following these steps, you can create and use Java packages to organize and manage your codebase
effectively, promoting modularity, reusability, and maintainability.

Here’s a code example demonstrating the creation and usage of a Java package named com.example.util
containing a StringUtils class with utility methods for string manipulation:

1. StringUtils.java (inside com/example/util directory):
package com . example . u t i l ;

public class S t r i n gU t i l s {
// Method to r e v e r s e a s t r i n g
public stat ic St r ing r e v e r s e S t r i n g (S t r ing s t r) {

return new St r i ngBu i l d e r (s t r) . r e v e r s e () . t oS t r i ng () ;
}

// Method to check i f a s t r i n g i s pal indrome
public stat ic boolean i sPal indrome (St r ing s t r) {

St r ing r eve r s ed = r ev e r s e S t r i n g (s t r) ;
return s t r . equa l s (r eve r s ed) ;

}
}

2. Main.java (outside the com.example.util package):
import com . example . u t i l . S t r i n gU t i l s ;

public class Main {
public stat ic void main (St r ing [] a rgs) {

St r ing s t r = " radar " ;

// Using S t r i n g U t i l s methods
St r ing r eve r s ed = S t r i n gU t i l s . r e v e r s e S t r i n g (s t r) ;
boolean i sPal indrome = S t r i n gU t i l s . i sPal indrome (s t r) ;

System . out . p r i n t l n (" Or i g i na l ␣ s t r i n g : ␣ " + s t r) ;
System . out . p r i n t l n (" Reversed␣ s t r i n g : ␣ " + reve r s ed) ;
System . out . p r i n t l n (" I s ␣ pal indrome ?␣ " + isPal indrome) ;

}
}

6.2.15.4 Explanation:

• In the StringUtils . java file, we define a StringUtils class inside the com.example.util package.
• This class contains two static methods: reverseString () to reverse a given string and isPalindrome()

to check if a string is a palindrome.
• In the Main.java file, we import the StringUtils class from the com.example.util package using the

import statement.
• We then use the utility methods provided by the StringUtils class (reverseString () and isPalindrome

↪→ ()) in the main() method to demonstrate their functionality.

Java Programming Milav Dabgar

4341602 - Java: Summer 2023 Paper Solution 117

After compiling both files and running the Main class, the output will display the original string, its
reversed form, and whether it is a palindrome or not based on the utility methods provided by the
StringUtils class.

6.2.16 Q3c: Explain Synchronization in Thread with suitable example.
In Java, synchronization refers to the coordination of multiple threads to ensure proper and orderly access
to shared resources, thereby preventing data corruption and race conditions. When multiple threads access
shared data concurrently, synchronization ensures that only one thread can access the shared resource at
a time, maintaining data integrity and consistency. Java provides several mechanisms for synchronization,
including synchronized blocks and methods, locks, and atomic variables. Let’s explore synchronization in
Java in detail with a suitable example.

6.2.16.1 Synchronization with synchronized Keyword:

1. Synchronized Blocks:
• In Java, synchronized blocks allow you to specify a block of code that can be executed by only

one thread at a time.
• You can synchronize on any object, typically using the this keyword to lock the current object.
• Syntax: synchronized (object) { ... }

2. Synchronized Methods:
• You can also declare entire methods as synchronized, ensuring that only one thread can execute

the method at a time for a particular instance of the class.
• Syntax: public synchronized void methodName(){ ... }

6.2.16.2 Example: Bank Account Simulation with Synchronization:

Suppose we have a bank account class BankAccount that allows multiple threads to deposit and withdraw
money. Without synchronization, concurrent access to the account balance could lead to inconsistencies.
Let’s see how synchronization can be applied to ensure thread safety:

public class BankAccount {
private double balance ;

public BankAccount (double balance) {
this . ba lance = balance ;

}

// Synchronized method to d e p o s i t money
public synchronized void depos i t (double amount) {

balance += amount ;
System . out . p r i n t l n (" Deposited : ␣ " + amount) ;

}

// Synchronized method to withdraw money
public synchronized void withdraw (double amount) {

i f (ba lance >= amount) {
balance −= amount ;
System . out . p r i n t l n ("Withdrawn : ␣ " + amount) ;

} else {
System . out . p r i n t l n (" I n s u f f i c i e n t ␣ balance ") ;

}
}

// Method to ge t curren t ba lance
public synchronized double getBalance () {

return balance ;
}

}

In this example: - Both the deposit() and withdraw() methods are declared as synchronized, ensuring that
only one thread can execute them at a time for a particular BankAccount instance. - The getBalance()

Java Programming Milav Dabgar

4341602 - Java: Summer 2023 Paper Solution 118

method is also synchronized to prevent race conditions while accessing the balance. - By using synchronized
methods, we ensure that concurrent threads cannot access the BankAccount methods simultaneously,
maintaining data consistency and integrity.

6.2.16.3 Usage of Bank Account Class in Multiple Threads:

public class Main {
public stat ic void main (St r ing [] a rgs) {

BankAccount account = new BankAccount (1000) ;

// Thread to d e p o s i t money
Thread depositThread = new Thread (() −> {

for (int i = 0 ; i < 5 ; i++) {
account . depo s i t (100) ;
System . out . p r i n t l n (" Current ␣ balance ␣ (depo s i t ␣ thread) : ␣ " +

↪→ account . getBalance ()) ;
}

}) ;

// Thread to withdraw money
Thread withdrawThread = new Thread (() −> {

for (int i = 0 ; i < 5 ; i++) {
account . withdraw (200) ;
System . out . p r i n t l n (" Current ␣ balance ␣ (withdraw␣ thread) : ␣ " +

↪→ account . getBalance ()) ;
}

}) ;

// S ta r t d e p o s i t and withdraw threads
depositThread . s t a r t () ;
withdrawThread . s t a r t () ;

}
}

In this example: - We create two threads, depositThread and withdrawThread, each performing deposit
and withdrawal operations on the BankAccount instance concurrently. - The synchronized methods in the
BankAccount class ensure that deposit and withdrawal operations are performed atomically, preventing
inconsistencies due to concurrent access.

By synchronizing critical sections of code, we ensure thread safety and prevent data corruption in
multithreaded environments, maintaining the integrity and consistency of shared resources.

6.2.17 Q4a: Differentiate between String class and StringBuffer class.
In Java, both the String class and StringBuffer class are used for handling strings, but they have different
characteristics and behaviors. Here’s a comparison between the String class and the StringBuffer class:

6.2.17.1 String Class:

1. Immutable:
• Objects of the String class are immutable, meaning once a String object is created, its value

cannot be changed.
• Any operation that appears to modify a String object actually creates a new String object with

the modified value.
• Example: String str = "Hello"; str = str + " World"; creates a new String object with the

value “Hello World”.
2. Thread-Safe:

• Since String objects are immutable, they are inherently thread-safe.
• Multiple threads can safely share and access String objects without the risk of data corruption

or race conditions.
3. Performance Implications:

Java Programming Milav Dabgar

4341602 - Java: Summer 2023 Paper Solution 119

• Immutable nature leads to frequent object creation, which can impact memory usage and
performance, especially in scenarios involving string concatenation or manipulation.

6.2.17.2 StringBuffer Class:

1. Mutable:
• Objects of the StringBuffer class are mutable, meaning their value can be modified after

creation.
• StringBuffer provides methods for appending, inserting, deleting, and modifying characters

within the string.
2. Not Thread-Safe:

• Unlike String, StringBuffer is not inherently thread-safe. Multiple threads accessing a
StringBuffer object concurrently without proper synchronization can lead to data corruption
or inconsistencies.

3. Better Performance for String Manipulation:
• StringBuffer is optimized for string manipulation operations such as concatenation, appending,

and inserting.
• It avoids frequent object creation by modifying the contents of the existing buffer, resulting in

better performance compared to String for such operations.

6.2.17.3 Example:

St r ing s t r = " He l lo " ;
s t r = s t r + " ␣World " ; // New St r ing o b j e c t i s c rea t ed

St r i ngBu f f e r bu f f e r = new St r i ngBu f f e r (" He l lo ") ;
bu f f e r . append (" ␣World ") ; // Modi f i es e x i s t i n g S t r i n gBu f f e r o b j e c t

In summary, the main differences between the String class and the StringBuffer class lie in their mutability,
thread safety, and performance characteristics. Use String when dealing with immutable strings or when
thread safety is a concern, and use StringBuffer when performing extensive string manipulation operations
or when mutability is required.

6.2.18 Q4b: Write a Java Program to find sum and average of 10 numbers of
an array.

Here’s a Java program to find the sum and average of 10 numbers in an array:

public class SumAndAverage {
public stat ic void main (St r ing [] a rgs) {

// Define an array o f 10 numbers
int [] numbers = {10 , 20 , 30 , 40 , 50 , 60 , 70 , 80 , 90 , 100} ;

// Ca l cu l a t e sum of numbers
int sum = 0 ;
for (int number : numbers) {

sum += number ;
}

// Ca l cu l a t e average o f numbers
double average = (double) sum / numbers . l ength ;

// Disp lay sum and average
System . out . p r i n t l n ("Sum␣ o f ␣numbers : ␣ " + sum) ;
System . out . p r i n t l n (" Average␣ o f ␣numbers : ␣ " + average) ;

}
}

This program defines an array of 10 numbers and then iterates through the array to calculate the sum of
all numbers. It then calculates the average by dividing the sum by the total number of elements in the
array. Finally, it prints the sum and average of the numbers.

Java Programming Milav Dabgar

4341602 - Java: Summer 2023 Paper Solution 120

6.2.19 Q4c: Explain abstract class with suitable example. Explain final class
with suitable example.

An abstract class in Java is a class that cannot be instantiated, meaning you cannot create objects of an
abstract class. However, it can be subclassed. Abstract classes are used to provide a base for other classes
to extend and implement abstract methods, alongside providing full implementations of other methods.
Abstract classes allow you to define a template for a group of subclasses.

An abstract class may contain abstract methods, which are methods declared without an implementation.
The subclasses of an abstract class must provide implementations for the abstract methods unless the
subclass is also abstract.

6.2.19.1 Key Points:

• If a class includes at least one abstract method, the class itself must be declared abstract.
• Abstract classes can include both abstract methods (without a body) and regular methods (with a

body).
• You cannot create instances of an abstract class directly.
• Abstract classes are useful for defining common templates for a family of subclasses.

6.2.19.2 Example:

Let’s consider an example with a simple hierarchy for shapes where we define an abstract class Shape and
concrete classes Circle and Rectangle that extend Shape.

abstract class Shape {
St r ing c o l o r ;

// Constructor
public Shape (St r ing c o l o r) {

this . c o l o r = co l o r ;
}

// Abs t rac t method
abstract double area () ;

// Concrete method
public St r ing getColor () {

return c o l o r ;
}

}

class Ci r c l e extends Shape {
double rad iu s ;

public Ci r c l e (S t r ing co lo r , double rad iu s) {
super (c o l o r) ; // c a l l i n g Shape cons t ruc t o r
this . r ad iu s = rad iu s ;

}

// Implementing the a b s t r a c t method
@Override
double area () {

return Math . PI ∗ Math . pow(radius , 2) ;
}

}

class Rectangle extends Shape {
double width ;
double he ight ;

public Rectangle (S t r ing co lo r , double width , double he ight) {
super (c o l o r) ; // c a l l i n g Shape cons t ruc t o r

Java Programming Milav Dabgar

4341602 - Java: Summer 2023 Paper Solution 121

this . width = width ;
this . he ight = he ight ;

}

// Implementing the a b s t r a c t method
@Override
double area () {

return width ∗ he ight ;
}

}

public class Main {
public stat ic void main (St r ing [] a rgs) {

Shape c i r c l e = new Ci r c l e ("Red" , 2 . 5) ;
Shape r e c t ang l e = new Rectangle (" Blue " , 4 . 0 , 5 . 0) ;

System . out . p r i n t l n (" C i r c l e ␣ c o l o r : ␣ " + c i r c l e . getColor () + " ␣and␣
↪→ area : ␣ " + c i r c l e . area ()) ;

System . out . p r i n t l n (" Rectangle ␣ c o l o r : ␣ " + r e c t ang l e . getColor () + " ␣
↪→ and␣ area : ␣ " + r e c t ang l e . area ()) ;

}
}

6.2.19.3 Explanation:

• The Shape class is abstract and contains one abstract method area() and a concrete method
getColor().

• The Circle and Rectangle classes extend Shape and provide concrete implementations for the area()
method.

• The Shape class cannot be instantiated directly due to its abstract nature, but we can reference
Circle and Rectangle objects using a Shape reference.

• This design allows for flexibility and reusability, as other types of shapes can be easily added to the
hierarchy by extending the Shape class and providing an implementation for the area() method.

In Java, a final class is a class that cannot be subclassed or extended. When a class is declared as final, it
means that no other class can inherit from it. This is useful when you want to prevent the class from
being modified or extended further, ensuring that its behavior remains unchanged.

6.2.19.4 Key Points:

• A final class cannot have any subclasses.
• All methods in a final class are implicitly final, meaning they cannot be overridden by subclasses.
• Final classes are typically used for utility classes, immutable classes, or classes with a fixed imple-

mentation that should not be extended.

6.2.19.5 Example:

f ina l class Fina lC la s s {
private f ina l int value ;

// Constructor
public Fina lC la s s (int value) {

this . va lue = value ;
}

// Get ter method
public int getValue () {

return value ;
}

// This method cannot be overr idden in s u b c l a s s e s
public f ina l void d i sp l ay () {

Java Programming Milav Dabgar

4341602 - Java: Summer 2023 Paper Solution 122

System . out . p r i n t l n (" Value : ␣ " + value) ;
}

}

In this example: - The FinalClass is declared as final, indicating that it cannot be subclassed. - It contains
a private field value and a constructor to initialize it. - The getValue() method provides read-only access to
the value field. - The display() method is declared as final, meaning it cannot be overridden by subclasses.

Attempting to subclass a final class will result in a compilation error:

// Compilat ion error : cannot i n h e r i t from f i n a l F ina lC las s
class SubClass extends Fina lC la s s {

// Attempting to extend a f i n a l c l a s s
}

By making a class final, you ensure that its behavior remains consistent and cannot be altered by subclasses,
enhancing code stability and predictability. Final classes are particularly useful for creating utility classes,
such as helper methods or constants, where you want to prevent unintended subclassing or modification
of the class’s behavior.

6.2.20 Q4a: Explain Garbage Collection in Java.
Garbage Collection (GC) in Java is a process by which the JVM automatically manages memory by
reclaiming memory occupied by objects that are no longer referenced or needed by the program. The
main goal of garbage collection is to free up memory resources by identifying and reclaiming objects that
are no longer in use, thereby preventing memory leaks and allowing for efficient memory management.

6.2.20.1 Key Concepts:

1. Automatic Memory Management:
• Unlike languages such as C or C++, where developers manually allocate and deallocate memory

using malloc() and free () functions, Java employs automatic memory management through
garbage collection.

• Developers do not need to explicitly free memory occupied by objects. Instead, the JVM
handles memory allocation and deallocation automatically.

2. Garbage Collector:
• The Garbage Collector (GC) is a component of the JVM responsible for reclaiming memory

occupied by objects that are no longer reachable or referenced by the program.
• The GC periodically scans the heap (the region of memory where objects are allocated) to

identify and mark objects that are still in use and reachable from the program.
• Objects that are not reachable, either directly or indirectly, from any live threads are considered

garbage and can be safely reclaimed.
3. Heap Memory Management:

• In Java, objects are allocated memory on the heap using the new keyword. The heap is divided
into generations (Young Generation, Old Generation, and Permanent Generation in older JVM
versions).

• The garbage collection process typically focuses on reclaiming memory from objects in the
Young Generation, as they are short-lived and often become garbage quickly.

• Older objects in the Old Generation undergo less frequent garbage collection cycles.

6.2.20.2 Garbage Collection Process:

1. Mark Phase:
• The garbage collector traverses the object graph starting from the root objects (such as global

variables, local variables, and method call stacks).
• It marks objects that are reachable and in use as live objects, typically using a technique like

Depth-First Search (DFS) or Tracing.
2. Sweep Phase:

• After marking live objects, the garbage collector identifies and reclaims memory occupied by
objects that are not marked (i.e., unreachable objects).

• Reclaimed memory is returned to the heap for future allocations.
3. Compact Phase (Optional):

Java Programming Milav Dabgar

4341602 - Java: Summer 2023 Paper Solution 123

• Some garbage collectors perform memory compaction after reclaiming memory to reduce
fragmentation and optimize memory usage.

• Memory compaction involves moving live objects closer together to reduce fragmentation and
improve memory access performance.

6.2.20.3 Advantages of Garbage Collection:

• Automatic Memory Management: Developers do not need to manually manage memory,
reducing the risk of memory leaks and segmentation faults.

• Improved Developer Productivity: Developers can focus on application logic rather than
memory management, leading to faster development cycles and fewer bugs related to memory
management.

• Dynamic Memory Allocation: Garbage collection enables dynamic memory allocation and
resizing of objects, allowing for flexible memory usage without the need for manual memory
management.

In summary, garbage collection in Java is a crucial mechanism for automatic memory management,
ensuring efficient use of memory resources and preventing memory-related issues such as memory leaks
and segmentation faults. By automatically reclaiming memory occupied by unreachable objects, garbage
collection allows Java applications to run reliably and efficiently.

6.2.21 Q4b: Write a Java program to handle user defined exception for
‘DividebyZero’ error.

To handle a user-defined exception for a “DivideByZero” error in Java, you can create a custom exception
class that extends the Exception class. Then, you can throw this custom exception when encountering a
divide-by-zero situation. Below is an example Java program demonstrating this:

// Custom excep t i on c l a s s f o r DivideByZero error
class DivideByZeroException extends Exception {

public DivideByZeroException (St r ing message) {
super (message) ;

}
}

// Class t h a t performs d i v i s i o n and throws DivideByZeroException
class Divider {

public stat ic double d iv id e (int numerator , int denominator) throws
↪→ DivideByZeroException {

i f (denominator == 0) {
throw new DivideByZeroException (" Error : ␣ D iv i s i on ␣by␣ zero ␣ i s ␣not

↪→ ␣ al lowed . ") ;
}
return (double) numerator / denominator ;

}
}

// Main c l a s s to demonstrate hand l ing o f DivideByZeroException
public class Main {

public stat ic void main (St r ing [] a rgs) {
int numerator = 10 ;
int denominator = 0 ;

try {
double r e s u l t = Div ider . d i v id e (numerator , denominator) ;
System . out . p r i n t l n (" Result ␣ o f ␣ d i v i s i o n : ␣ " + r e s u l t) ;

} catch (DivideByZeroException e) {
System . out . p r i n t l n (" Error : ␣ " + e . getMessage ()) ;
// Add i t i ona l hand l ing can be done here , such as l o g g i n g or

↪→ in forming the user
}

}

Java Programming Milav Dabgar

4341602 - Java: Summer 2023 Paper Solution 124

}

In this example: - We define a custom exception class DivideByZeroException that extends Exception. -
The Divider class provides a divide method that takes a numerator and a denominator as parameters and
performs division. If the denominator is zero, it throws a DivideByZeroException. - In the Main class,
we attempt to divide by zero within a try-catch block. If a DivideByZeroException is thrown during the
division operation, it is caught, and an appropriate error message is displayed.

This program demonstrates how to handle user-defined exceptions for divide-by-zero errors in Java.
Custom exception classes provide flexibility in handling different types of errors and allow for more
meaningful error messages and error handling strategies.

6.2.22 Q4c: Write a java program to demonstrate multiple try block and
multiple catch block exception.

Certainly! Below is a Java program demonstrating the use of multiple try blocks and multiple catch
blocks to handle different types of exceptions:

public class MultipleTryCatchDemo {
public stat ic void main (St r ing [] a rgs) {

try {
// Div i s i on by zero excep t i on
int r e s u l t = divideByZero (10 , 0) ;
System . out . p r i n t l n (" Result ␣ o f ␣ d i v i s i o n : ␣ " + r e s u l t) ;

} catch (Arithmet icExcept ion e) {
System . out . p r i n t l n (" Arithmet icExcept ion ␣ caught : ␣ " + e .

↪→ getMessage ()) ;
}

try {
// Array index out o f bounds excep t i on
int [] numbers = {1 , 2 , 3} ;
int index = 4 ;
int value = accessArrayElement (numbers , index) ;
System . out . p r i n t l n (" Value␣ at ␣ index ␣ " + index + " : ␣ " + value) ;

} catch (ArrayIndexOutOfBoundsException e) {
System . out . p r i n t l n (" ArrayIndexOutOfBoundsException␣ caught : ␣ " +

↪→ e . getMessage ()) ;
}

try {
// Nu l lPo in terExcep t ion
St r ing s t r = null ;
int l ength = s t r . l ength () ;
System . out . p r i n t l n (" Length␣ o f ␣ s t r i n g : ␣ " + length) ;

} catch (Nul lPo interExcept ion e) {
System . out . p r i n t l n (" Nul lPo interExcept ion ␣ caught : ␣ " + e .

↪→ getMessage ()) ;
}

}

// Method to perform d i v i s i o n and throw Ari thmet icExcept ion
public stat ic int divideByZero (int numerator , int denominator) {

return numerator / denominator ;
}

// Method to acces s array element and throw
↪→ ArrayIndexOutOfBoundsException

public stat ic int accessArrayElement (int [] array , int index) {
return array [index] ;

}
}

Java Programming Milav Dabgar

4341602 - Java: Summer 2023 Paper Solution 125

In this program: - We have three different try blocks, each attempting an operation that can potentially
throw a different type of exception. - Each try block is followed by a corresponding catch block that handles
the specific type of exception thrown within that try block. - The first try block attempts division by zero,
and the catch block catches the ArithmeticException. - The second try block attempts to access an element
beyond the bounds of an array, and the catch block catches the ArrayIndexOutOfBoundsException. - The
third try block attempts to invoke a method on a null object reference, leading to a NullPointerException,
which is caught by the corresponding catch block.

This program demonstrates how multiple try blocks and multiple catch blocks can be used to handle
different types of exceptions separately, allowing for more precise error handling in Java programs.

6.2.23 Q5a: Write a program in Java to create a file and perform write
operation on this file.

Below is a Java program that demonstrates how to create a file and perform write operations on it using
the File and FileOutputStream classes:
import java . i o . F i l e ;
import java . i o . FileOutputStream ;
import java . i o . IOException ;

public class FileWriteDemo {
public stat ic void main (St r ing [] a rgs) {

// Spec i f y the f i l e name and content
St r ing f i leName = " example . txt " ;
S t r ing content = " Hel lo , ␣world ! ␣This ␣ i s ␣a␣ sample␣ text ␣ f i l e . " ;

// Create a F i l e o b j e c t
F i l e f i l e = new F i l e (f i leName) ;

try {
// Create a Fi leOutputStream to wr i t e to the f i l e
FileOutputStream f o s = new FileOutputStream (f i l e) ;

// Convert the content s t r i n g to b y t e s and wr i t e to the f i l e
f o s . wr i t e (content . getBytes ()) ;

// Close the Fi leOutputStream
f o s . c l o s e () ;

System . out . p r i n t l n (" F i l e ␣ ' " + fi leName + " ' ␣has␣been␣ crea ted ␣
↪→ and␣wr i t t en ␣ s u c c e s s f u l l y . ") ;

} catch (IOException e) {
System . out . p r i n t l n ("An␣ e r r o r ␣ occurred : ␣ " + e . getMessage ()) ;
e . pr intStackTrace () ;

}
}

}

In this program: - We specify the file name (example.txt) and the content that we want to write to the
file (Hello, world! This is a sample text file .). - We create a File object named file with the specified
file name. - We create a FileOutputStream named fos to write to the file. - We convert the content
string to bytes using the getBytes() method and write these bytes to the file using the write() method of
FileOutputStream. - We close the FileOutputStream after writing to the file. - If an IOException occurs
during file creation or writing, we handle it and print an error message.

After running this program, a file named example.txt will be created in the same directory as the Java
program, and the specified content will be written to it.

6.2.24 Q5b: Explain throw and finally in Exception Handling with example.
In Java, exception handling is a powerful mechanism that allows you to manage runtime errors, ensuring
the program’s flow can be maintained even when unexpected events occur. Two key components of this

Java Programming Milav Dabgar

4341602 - Java: Summer 2023 Paper Solution 126

mechanism are the throw keyword and the finally block.

6.2.24.1 The throw Keyword

The throw keyword in Java is used to explicitly throw an exception from a method or any block of code.
You can throw either checked or unchecked exceptions. The thrown exception must be either caught by a
catch block surrounding the throw statement or declared to be thrown by the method using the throws
keyword.

Example of throw keyword:

public class ThrowExample {
stat ic void checkAge (int age) {

i f (age < 18) {
throw new Arithmet icExcept ion (" Access ␣ denied ␣−␣You␣must␣be␣ at ␣

↪→ l e a s t ␣18␣ years ␣ o ld . ") ;
} else {

System . out . p r i n t l n (" Access ␣ granted ␣−␣You␣ are ␣ o ld ␣enough ! ") ;
}

}

public stat ic void main (St r ing [] a rgs) {
try {

checkAge (15) ;
} catch (Arithmet icExcept ion e) {

System . out . p r i n t l n (" Exception ␣ caught : ␣ " + e . getMessage ()) ;
}

}
}

In this example, the checkAge method throws an ArithmeticException if the age parameter is less than
18. The exception is caught in the main method’s catch block.

6.2.24.2 The finally Block

The finally block is used to execute a block of code after a try-catch block has completed, regardless of
whether an exception was thrown or caught. It is the ideal place to put cleanup code, such as closing file
streams or releasing resources, ensuring that these operations are carried out regardless of what happens
within the try block.

Example of finally block:

public class Final lyExample {
public stat ic void main (St r ing [] a rgs) {

try {
int data = 25 / 5 ;
System . out . p r i n t l n (data) ;

} catch (Nul lPo interExcept ion e) {
System . out . p r i n t l n (e) ;

} f ina l ly {
System . out . p r i n t l n (" F ina l l y ␣ block ␣ i s ␣ always ␣ executed ") ;

}
System . out . p r i n t l n (" Rest ␣ o f ␣ the ␣ code . . . ") ;

}
}

In this example, the try block executes successfully, so the catch block is skipped. However, the finally
block is executed regardless, ensuring the message “Finally block is always executed” is printed to the
console.

Key Points: - The throw keyword allows for manually throwing exceptions, providing control over error
reporting. - The finally block ensures certain code is executed after a try-catch block, regardless of the
outcome, making it ideal for cleanup operations.

Java Programming Milav Dabgar

4341602 - Java: Summer 2023 Paper Solution 127

6.2.25 Q5c: Describe: Polymorphism. Explain run time polymorphism with
suitable example in java.

6.2.25.1 Polymorphism:

Polymorphism is a fundamental concept in object-oriented programming that allows objects of different
classes to be treated as objects of a common superclass. It enables a single interface to represent multiple
underlying forms. There are two types of polymorphism in Java: compile-time polymorphism (method
overloading) and runtime polymorphism (method overriding).

6.2.25.2 Runtime Polymorphism:

Runtime polymorphism, also known as dynamic polymorphism, occurs when a subclass provides a specific
implementation of a method that is already defined in its superclass. It allows a method to be overridden
in a subclass with a different implementation, and the decision of which method to execute is made at
runtime based on the actual type of the object.

6.2.25.3 Example of Runtime Polymorphism in Java:

// Superc l a s s
class Animal {

void sound () {
System . out . p r i n t l n ("Animal␣makes␣a␣sound ") ;

}
}

// Subc l a s s 1
class Dog extends Animal {

@Override
void sound () {

System . out . p r i n t l n ("Dog␣barks ") ;
}

}

// Subc l a s s 2
class Cat extends Animal {

@Override
void sound () {

System . out . p r i n t l n ("Cat␣meows") ;
}

}

public class Main {
public stat ic void main (St r ing [] a rgs) {

// Creat ing o b j e c t s o f d i f f e r e n t s u b c l a s s e s
Animal animal1 = new Dog () ; // Upcast ing
Animal animal2 = new Cat () ; // Upcast ing

// C a l l i n g overr idden methods
animal1 . sound () ; // C a l l s Dog ' s sound method
animal2 . sound () ; // C a l l s Cat ' s sound method

}
}

In this example: - We have a superclass Animal with a method sound(). - We have two subclasses Dog
and Cat, each overriding the sound() method with specific implementations. - In the main() method, we
create objects of the subclasses and assign them to references of the superclass (Animal). This is called
upcasting. - When we call the sound() method on these objects, Java determines which implementation
to execute based on the actual type of the object at runtime. This is runtime polymorphism. - As a result,
the output of the program is: Dog barks Cat meows

Java Programming Milav Dabgar

4341602 - Java: Summer 2023 Paper Solution 128

6.2.25.4 Benefits of Runtime Polymorphism:

• It allows for flexibility and extensibility in code, enabling subclasses to provide their own implemen-
tations of methods.

• It promotes code reusability by allowing common interfaces to be shared across multiple classes.

Runtime polymorphism is a powerful mechanism in Java that facilitates code organization, maintenance,
and flexibility by enabling dynamic method invocation based on the actual type of the object at runtime.

6.2.26 Q5a: Write a program in Java that read the content of a file byte by
byte and copy it into another file.

Below is a Java program that reads the content of a file byte by byte and copies it into another file:

import java . i o . Fi le InputStream ;
import java . i o . FileOutputStream ;
import java . i o . IOException ;

public class FileCopyByteByByte {
public stat ic void main (St r ing [] a rgs) {

St r ing sourceFileName = " source . txt " ;
S t r ing dest inat ionFi leName = " de s t i n a t i on . txt " ;

try (Fi le InputStream f i s = new Fi leInputStream (sourceFileName) ;
FileOutputStream f o s = new FileOutputStream (

↪→ dest inat ionFi leName)) {

int byteRead ;
while ((byteRead = f i s . read ()) != −1) {

f o s . wr i t e (byteRead) ;
}

System . out . p r i n t l n (" F i l e ␣ copied ␣ s u c c e s s f u l l y . ") ;
} catch (IOException e) {

System . out . p r i n t l n ("An␣ e r r o r ␣ occurred : ␣ " + e . getMessage ()) ;
e . pr intStackTrace () ;

}
}

}

In this program: - We specify the name of the source file (source.txt) and the destination file (destination
↪→ . txt). - We use FileInputStream to read bytes from the source file and FileOutputStream to write
bytes to the destination file. - Inside the try-with-resources block, we create instances of FileInputStream
and FileOutputStream. - We use a while loop to read bytes from the source file until the read() method
returns −1, indicating the end of the file. - Within the loop, each byte read from the source file is written
to the destination file using the write() method. - Any IOException that occurs during file operations is
caught and handled, displaying an error message.

After running this program, the content of the source file (source.txt) will be copied byte by byte into the
destination file (destination .txt).

6.2.27 Q5b: Explain the different I/O Classes available with Java.
In Java, the I/O (Input/Output) classes are used to perform input and output operations, such as reading
from or writing to files, streams, consoles, and network connections. These classes are part of the java. io
package and provide various functionalities for handling different types of I/O operations. Here are some
of the commonly used I/O classes available in Java:

1. InputStream and OutputStream:
• InputStream and OutputStream are abstract classes representing input and output streams of

bytes, respectively.
• They serve as the base classes for all byte-oriented I/O classes in Java.

2. Reader and Writer:

Java Programming Milav Dabgar

4341602 - Java: Summer 2023 Paper Solution 129

• Reader and Writer are abstract classes representing input and output streams of characters,
respectively.

• They serve as the base classes for all character-oriented I/O classes in Java.
• InputStreamReader and OutputStreamWriter are bridge classes that convert byte streams to

character streams and vice versa.
3. FileInputStream and FileOutputStream:

• FileInputStream and FileOutputStream are used to read from and write to files, respectively,
as streams of bytes.

• They are commonly used for file I/O operations.
4. FileReader and FileWriter:

• FileReader and FileWriter are used to read from and write to files, respectively, as streams of
characters.

• They are commonly used for text file I/O operations.
5. BufferedInputStream and BufferedOutputStream:

• BufferedInputStream and BufferedOutputStream are used for buffered input and output oper-
ations, respectively.

• They improve I/O performance by reducing the number of physical I/O operations.
6. BufferedReader and BufferedWriter:

• BufferedReader and BufferedWriter are used for buffered character input and output operations,
respectively.

• They provide efficient reading and writing of characters by buffering input and output streams.
7. DataInputStream and DataOutputStream:

• DataInputStream and DataOutputStream are used for reading and writing primitive data
types as binary data, respectively.

• They provide methods for reading and writing Java primitive data types (e.g., int, double,
boolean) from and to streams.

8. ObjectInputStream and ObjectOutputStream:
• ObjectInputStream and ObjectOutputStream are used for reading and writing Java objects,

respectively.
• They allow objects to be serialized (converted into a stream of bytes) and deserialized (recon-

structed from the stream of bytes).

These are some of the commonly used I/O classes available in Java. They provide a wide range of
functionalities for performing input and output operations in Java programs, facilitating interactions with
files, streams, consoles, and other I/O sources.

6.2.28 Q5c: Write a java program that executes two threads. One thread
displays “Java Programming” every 3 seconds, and the other displays
“Semester - 4th IT” every 6 seconds.(Create the threads by extending
the Thread class)

Below is a Java program that creates two threads by extending the Thread class. One thread displays
“Java Programming” every 3 seconds, and the other thread displays “Semester - 4th IT” every 6 seconds:

class DisplayThread extends Thread {
private St r ing message ;
private int i n t e r v a l ;

public DisplayThread (St r ing message , int i n t e r v a l) {
this . message = message ;
this . i n t e r v a l = i n t e r v a l ;

}

@Override
public void run () {

while (true) {
System . out . p r i n t l n (message) ;
try {

Thread . s l e e p (i n t e r v a l ∗ 1000) ; // Convert seconds to
↪→ m i l l i s e c o n d s

} catch (Inter ruptedExcept ion e) {

Java Programming Milav Dabgar

4341602 - Java: Summer 2023 Paper Solution 130

e . pr intStackTrace () ;
}

}
}

}

public class Main {
public stat ic void main (St r ing [] a rgs) {

DisplayThread thread1 = new DisplayThread (" Java␣Programming " , 3) ;
DisplayThread thread2 = new DisplayThread (" Semester ␣−␣4th␣IT " , 6) ;

thread1 . s t a r t () ;
thread2 . s t a r t () ;

}
}

In this program: - We create a DisplayThread class that extends the Thread class. This class takes a
message and an interval as parameters in its constructor. - In the run() method of DisplayThread, the
thread continuously prints the message and then sleeps for the specified interval. - In the main() method,
we create two instances of DisplayThread, one for each message with their respective intervals. - We start
both threads using the start () method, which causes the run() method of each thread to be executed
concurrently.

As a result, the program will continuously display “Java Programming” every 3 seconds and “Semester -
4th IT” every 6 seconds in separate threads.

Java Programming Milav Dabgar

	Introduction to Java Programming Language
	Java Overview
	Brief History & Evolution of Java
	Java Features
	Java Applications

	Java Environment Setup & Basic Java Syntax
	Java Components
	Setting up Java Development Environment
	Structure of a Java Program
	Compilation and Execution of Java Program
	Importance of Bytecode & Garbage Collection

	Data Types
	Primitive Data Types
	Non-Primitive Data Types
	Type Conversion and Casting

	Identifiers
	Naming Rules & Conventions
	Variables
	Constants (final Keyword)
	Scope of Variables

	Arrays
	One-dimensional Arrays
	Multidimensional Arrays

	Operators
	Arithmetic Operators
	Assignment Operators
	Relational (Comparison) Operators
	Logical Operators
	Bitwise Operators
	Conditional (Ternary) Operator
	Operator Precedence

	Control Flow Statements
	Selection Statements
	Looping Statements
	Jump Statements

	Object-Oriented Programming
	Procedure-Oriented vs. Object-Oriented Programming
	Characteristics
	Differences

	OOP Concepts
	Classes and Objects
	Encapsulation
	Abstraction
	Inheritance
	Polymorphism

	Classes and Objects
	Creating Classes
	Creating Objects

	Class Attributes
	Accessing Attributes
	Modify Attributes
	Attributes of Multiple Objects
	Multiple Attributes of same Object

	Class Methods
	Create a Method
	Call a Method
	Method Parameters and Arguments
	Return Values
	Access Methods With an Object
	Method Signatures
	Passing Arguments
	Returning Values

	Constructors
	Types of Constructors
	Constructor Overloading

	Modifiers
	Access Modifiers
	Non-Access Modifiers

	String Class
	Strings - Special Characters
	Common String Methods

	Scanner Class (User Input)
	Input Types
	Using Scanner Class

	Command-line Arguments

	Inheritance, Packages, and Interfaces
	Inheritance
	Basics of Inheritance
	Types of Inheritance
	extends Keyword
	super Keyword
	Polymorphism
	Method Dynamic Dispatch

	Interfaces
	Defining Interfaces
	Implementing Interfaces
	Multiple Inheritance Using Interfaces

	Abstraction
	Abstract Class
	Abstract Method
	Differences from Interfaces

	Final Class
	Final Class Syntax
	Final Method

	Inner Classes
	Private Inner Class
	Static Inner Class
	Access Outer Class From Inner Class

	Packages & API
	Built-in Packages
	Import a Class
	Import a Package
	User-defined Packages
	Access Rules: Access Control Within Packages
	Example: Access Control

	Exception Handling and Multithreading
	Exception Handling in Java
	Errors vs. Exceptions
	Java try and catch
	try-catch-finally Blocks

	Throwing Exceptions
	Common Built-in Exceptions
	Creating Custom Exceptions
	Benefits of Exception Handling

	Multi-threading in Java
	Concepts of Threads and Processes
	Multi-threading Benefits
	Creating a Thread
	Running Threads
	Concurrency Problems
	Thread Lifecycle
	Thread Priority
	Thread Exception Handling
	Synchronization

	File Handling and Collections Framework
	File Handling using File Class
	Create a File
	Write To a File
	Read a File
	Get File Information
	Delete a File
	Delete a Folder

	File Handling using Streams Class
	Streams and Stream Classes
	FileInputStream and FileOutputStream
	FileOutputStream to Write to File
	FileInputStream to Read from a File
	Closing Streams

	Collections Framework in Java
	Overview and Hierarchy
	ArrayList
	LinkedList
	HashMap
	HashSet
	Iterator

	Java Programming GTU Paper Solutions
	4341602 - Java: Winter 2023 Paper Solution
	Q1a: List out basic concepts of Java OOP. Explain any one in detail.
	Q1b: Explain JVM in detail.
	Q1c: Write a program in java to print Fibonacci series for n terms.
	Q1c: Write a program in java to find out minimum from any ten numbers using command line argument.
	Q2a: What is Java wrapper class? Explain with example.
	Q2b: List out different features of java. Explain any two.
	Q2c: What is method overload in Java ? Explain with example.
	Q2a: Explain Garbage collection in java.
	Q2b: Explain final keyword in Java with example.
	Q2c: What is constructor in Java? Explain parameterized constructor with example.
	Q3a: Explain super keyword in Java with example.
	Q3b: List out different types of inheritance in Java. Explain multilevel inheritance.
	Q3c: What is Java interface? Explain multiple inheritance with example.
	Q3a: Explain Java static keyword with example.
	Q3b: Explain different access controls in Java.
	Q3c: What is Java package? Write steps to create a package in Java and give example of it.
	Q4a: Explain Java thread priorities with suitable example.
	Q4b: What is Java Thread? Explain Thread life cycle.
	Q4c: Write a program in java that create the multiple threads by implementing the Thread class.
	Q4a: List four different inbuilt exceptions of Java. Explain any one inbuilt exception.
	Q4b: Explain multiple catch with suitable example in Java.
	Q4c: What is Java Exception? Write a program that show the use of Arithmetic Exception in Java.
	Q5a: Explain ArrayIndexOutOfBound Exception in Java with example.
	Q5b: Explain basics of Java stream classes.
	Q5c: Write a java program to create a text file and perform read operation on the text file.
	Q5a: Explain Divide by Zero Exception in Java with example.
	Q5b: Explain java I/O process.
	Q5c: Write a java program to display the content of a text file and perform append operation on the text file.

	4341602 - Java: Summer 2023 Paper Solution
	Q1a: Differentiate between Procedure-Oriented Programming (POP) and Object-Oriented Programming (OOP).
	Q1b: Explain Super keyword in inheritance with suitable example.
	Q1c: Define: Method Overriding. List out Rules for method overriding. Write a java program that implements method overriding.
	Q1cOR: Describe: Interface. Write a java program using interface to demonstrate multiple inheritance.
	Q2a: Explain the Java Program Structure with example.
	Q2b: Explain static keyword with suitable example.
	Q2c: Define: Constructor. List out types of it. Explain Parameterized and copy constructor with suitable example.
	Q2a: Explain the Primitive Data Types and User Defined DataTypes in java.
	Q2b: Explain this keyword with suitable example.
	Q2c: Define Inheritance. List out types of it. Explain multilevel and hierarchical inheritance with suitable example.
	Q3a: Explain Type Conversion and Casting in java.
	Q3b: Explain different visibility controls used in Java.
	Q3c: Define: Thread. List different methods used to create Thread. Explain Thread life cycle in detail.
	Q3a: Explain the purpose of JVM in java.
	Q3b: Define: Package. Write the steps to create a Package with suitable example.
	Q3c: Explain Synchronization in Thread with suitable example.
	Q4a: Differentiate between String class and StringBuffer class.
	Q4b: Write a Java Program to find sum and average of 10 numbers of an array.
	Q4c: Explain abstract class with suitable example. Explain final class with suitable example.
	Q4a: Explain Garbage Collection in Java.
	Q4b: Write a Java program to handle user defined exception for ‘DividebyZero’ error.
	Q4c: Write a java program to demonstrate multiple try block and multiple catch block exception.
	Q5a: Write a program in Java to create a file and perform write operation on this file.
	Q5b: Explain throw and finally in Exception Handling with example.
	Q5c: Describe: Polymorphism. Explain run time polymorphism with suitable example in java.
	Q5a: Write a program in Java that read the content of a file byte by byte and copy it into another file.
	Q5b: Explain the different I/O Classes available with Java.
	Q5c: Write a java program that executes two threads. One thread displays “Java Programming” every 3 seconds, and the other displays “Semester - 4th IT” every 6 seconds.(Create the threads by extending the Thread class)

