Embedded System (4343204) - Winter 2024 Solution by Milav Dabgar

Question 1(a) [3 marks]

Write the size of RAM, Flash and EEPROM memory in ATmega32 and explain its need in
microcontroller.

Answer:
ATmega32 memory specifications and their importance in microcontroller operation:

Table: Memory Sizes in ATmega32

Memory Type Size Purpose

SRAM (RAM) 2 KB Variables and stack storage
Flash 32 KB Program storage

EEPROM 1 KB Non-volatile data storage

e RAM: Temporary storage for variables during program execution
e Flash: Permanent storage for program instructions and constants

e EEPROM: Long-term storage for data that must survive power cycles

Mnemonic: "RAM for Run, Flash for Function, EEPROM for Eternity"

Question 1(b) [4 marks]

Discuss RAM memory of ATmega32.
Answer:
ATmega32's RAM (SRAM) is organized into different sections for specific purposes.

Diagram:

ATmega32 RAM (2KB)

T + 0x0000
| 32 General Registers |
S — + 0x0020
| 64 I/0 Registers |
L + 0x0060
| 160 Extended I/O Regs |
L S + 0x0100

Internal SRAM |
(1.85 KB) |

. + 0xX085F

e Register File: First 32 locations (0x0000-0x001F)

No. 1/ 24

Embedded System (4343204) - Winter 2024 Solution by Milav Dabgar

e |/0 Registers: Standard I/0 space (0x0020-0x005F)
e Extended I/0: Additional peripheral registers (0x0060-0x00FF)
e Data Memory: General purpose SRAM (0x0100-0x085F)

Mnemonic: "Registers, I/0, Extended, Data - RAM's Efficient Design"

Question 1(c) [7 marks]

Define Real Time Operating System and Explain Characteristics of it.
Answer:

A Real-Time Operating System (RTOS) is a specialized operating system designed to process data and
events with precise timing constraints.

Table: Key Characteristics of RTOS

Characteristic Description

Determinism Guaranteed response times for tasks

Preemptive Scheduling Higher priority tasks can interrupt lower ones

Low Latency Minimal delay between event and response

Priority-Based Tasks are assigned priorities for execution

Task Management Provides mechanisms for task creation, deletion, and synchronization
Resource Management Prevents resource conflicts and deadlocks

Reliability Robust operation even under peak loads

e Multitasking: Supports concurrent execution of multiple tasks
e Small Footprint: Optimized for embedded systems with limited resources
e Time Management: Precise timing services with microsecond resolution

e Kernel Services: IPC, mutex, semaphores for task coordination

Mnemonic: "Deterministic Preemptive Tasks Run On Strict Timelines"

Question 1(c OR) [7 marks]

What is Embedded System? Draw and Explain General block diagram of Embedded system.
Answer:

An Embedded System is a dedicated computer system designed to perform specific functions within a
larger mechanical or electrical system, often with real-time constraints.

Diagram:

No. 2 /24

Embedded System (4343204) - Winter 2024 Solution by Milav Dabgar

oo +
I
v
oo + P eeeos + | + oo oeees +
I I I I | | I I
Input	--->	Processing	--->	Output		Memory
Devices		Unit		Devices		
					I	
oo + Pommmmmmoeoos +	. + oo +					
v v v						
S N S +) NN S N +	NN +					
I	I I					
Sensors		Communication]	Storage			
		Interface				
Fe———————— TP Femm - T Fe—————————— TP
Table: Embedded System Components
Component Function
Processing Unit Executes program instructions (microcontroller/microprocessor)
Memory Stores program and data (RAM, ROM, Flash)
Input/Output Interfaces with external devices
Communication Connects to other systems or networks
Power Supply Provides regulated power
Sensors Gather environmental data

Application-Specific: Designed for dedicated tasks
e Resource-Constrained: Limited processing power and memory
e Real-Time: Responds to events within timing constraints

¢ High Reliability: Must operate continuously without failure

Mnemonic: "Process, Memory, I/O - Every System Must Include"

Question 2(a) [3 marks]

Write different Criteria for choosing microcontroller for any application design in embedded system.
Answer:

Selecting the right microcontroller requires evaluating multiple criteria based on application requirements.

No. 3 /24

Embedded System (4343204) - Winter 2024 Solution by Milav Dabgar

Table: Microcontroller Selection Criteria

Criterion Considerations

Performance CPU speed, MIPS, bit width (8/16/32)
Memory Flash, RAM, EEPROM capacity

Power Consumption Operating voltage, sleep modes

I/0 Capabilities Number of ports, special functions
Peripherals ADC, timers, communication interfaces
Cost Unit price, development tools

Form Factor Size, package type, pin count

e Application Requirements: Specific features needed for the application
e Development Environment: Available compilers, debuggers, libraries

e Future Expansion: Scalability for future enhancements

Mnemonic: "Performance Memory Power I/0O Cost"

Question 2(b) [4 marks]

Draw and Explain TCCRO register.
Answer:

Timer/Counter Control Register 0 (TCCRO) controls the operation of Timer/Counter0 in ATmega32.

Diagram:
o o —— o oo o oo oo oo +
| FOCO| WGMOO| COMO1|COMOO|WGMO1l| CS02| CSO0l| CS00|
o e — o Fom—— o o o o +
7 6 5 4 3 2 1 0

Table: TCCRO Bit Functions

Bits Name Function

7 FOCO Force Output Compare

6,3 WGMO01:0 Waveform Generation Mode
54 COMO01:0 Compare Match Output Mode
2,1,0 CS02:0 Clock Select (Prescaler)

No. 4 /24

Embedded System (4343204) - Winter 2024 Solution by Milav Dabgar

e WGMO01:0: Determines timer operating mode (Normal, CTC, PWM)
e COMO01:0: Controls OCO pin output behavior

e (S02:0: Selects clock source and prescaler value

Mnemonic: "Force Waveform Compare Clock Select"

Question 2(c) [7 marks]

List timers of ATmega32 and Explain working modes of any one timer in detail.
Answer:
ATmega32 features multiple timers with various capabilities and operating modes.

Table: Timers in ATmega32

Timer Type Size Features

Timer0 General Purpose 8-bit Simple timing, PWM
Timer1 Advanced 16-bit Input capture, dual PWM
Timer2 General Purpose 8-bit Asynchronous operation

Timer0 Operating Modes:

1. Normal Mode:
o Counter increments from 0 to 255 then overflows back to 0
o Overflow interrupt can be generated
o Used for simple timing and delay generation

2. CTC (Clear Timer on Compare) Mode:
o Counter resets when it reaches OCRO value
o Allows precise frequency generation
o Compare match interrupt can be generated

3. Fast PWM Mode:
o Counter counts from 0 to 255
o Output toggles at overflow and compare match
o High frequency PWM generation

4. Phase Correct PWM Mode:
o Counter counts up then down (0—255—0)
o Symmetric PWM waveform generation

o Lower frequency but better resolution than Fast PWM

Mnemonic: "Normal Compares Fast Phase - Timer Modes Matter"

No. 5/ 24

Embedded System (4343204) - Winter 2024 Solution by Milav Dabgar

Question 2(a OR) [3 marks]

List various embedded system applications. Explain any one in brief.
Answer:
Embedded systems are found in numerous applications across various domains.

Table: Embedded System Applications

Domain Applications

Consumer Smart appliances, entertainment systems
Automotive Engine control, safety systems, infotainment
Industrial Process control, automation, robotics

Medical Patient monitoring, imaging, implantable devices
Communications Routers, modems, network switches

Aerospace Flight control, navigation, life support

Smart Home Automation System:

A smart home system uses embedded controllers to monitor and control household devices. Sensors
detect environmental conditions like temperature and motion, while microcontrollers process this data and
control actuators such as HVAC systems, lighting, and security devices. The system can be programmed for
autonomous operation or user control via smartphone apps, providing convenience, energy efficiency, and
enhanced security.

Mnemonic: "Consumers Automate Industry Medical Communications Aerospace”

Question 2(b OR) [4 marks]

Explain the function of DDRA, PINA and PORTA registers in ATmega32 microcontroller.
Answer:
The three registers control the operation of Port A in ATmega32, each serving a distinct purpose.

Table: Port A Registers

Register Function Operation

DDRA Data Direction Configures pins as input (0) or output (1)
PORTA Data Register Sets output values or enables pull-ups
PINA Port Input Pins Reads actual pin states

Example Configurations:

No. 6 /24

Embedded System (4343204) - Winter 2024 Solution by Milav Dabgar

DDRA = OxFF; // All pins as output
PORTA = 0xA5; // Set alternating pattern (10100101)

DDRA = 0x00; // All pins as input
PORTA = OxFF; // Enable internal pull-ups on all pins
data = PINA; // Read current pin states

e Bit-Level Control: Each bit controls corresponding pin
e Atomic Operations: Individual bits can be modified

e Read-Modify-Write: Common operation pattern

Mnemonic: "Direction Determines, Port Provides, PIN Perceives"

Question 2(c OR) [7 marks]

Draw Status Register of ATmega32 and explain it in detail.
Answer:

The Status Register (SREG) in ATmega32 contains processor status flags affected by arithmetic operations
and controls interrupts.

Diagram:
PR S S
Tl lH|s[Vv]N]|]z]cC]|

S S R S S S
7 6 5 4 3 2 1 0

Table: SREG Bit Functions

Bit Name Function Set When

7 I Global Interrupt Enable Programmatically enabled

6 T Bit Copy Storage Used for bit copy instructions

5 H Half Carry Flag Half-carry in BCD operations

4 S Sign Flag NeV (used for signed operations)
3 \Y Two's Complement Overflow Arithmetic overflow occurs

2 N Negative Flag Result is negative (MSB=1)

1 z Zero Flag Result is zero

0 C Carry Flag Carry occurs in arithmetic

e Arithmetic Feedback: Indicates result status

No.7 /24

Embedded System (4343204) - Winter 2024 Solution by Milav Dabgar

e Conditional Branches: Used by branch instructions
¢ Interrupt Control: I-bit enables/disables all interrupts

e Access Methods: Directly addressable via IN/OUT instructions

Mnemonic: "Interrupts Track Half Sign Overflow Negative Zero Carry"

Question 3(a) [3 marks]

Write a short note on Harvard Architecture of AVR microcontroller.
Answer:

Harvard Architecture is a fundamental design principle of AVR microcontrollers, separating program and
data memory.

Diagram:
CPU Core
Instructlion Bus Datal Bus
Program Memory Data
Flash Memory

e Separate Buses: Independent buses for program and data memory
e Parallel Access: Can fetch instructions and access data simultaneously
e Performance: Increases execution speed by eliminating memory bottlenecks

¢ Different Widths: Program memory is organized in 16-bit words, data memory in 8-bit bytes

Mnemonic: "Program and Data Paths Are Separate"

Question 3(b) [4 marks]

List Registers associated with Serial Communication (R$232) and explain steps to interface it with
ATmega32.

Answer:

ATmega32 uses USART (Universal Synchronous Asynchronous Receiver Transmitter) for serial
communication.

Table: USART Registers

No. 8 /24

Embedded System (4343204) - Winter 2024 Solution by Milav Dabgar

Register Function

UDR USART Data Register (transmit/receive)
UCSRA USART Control and Status Register A
UCSRB USART Control and Status Register B
UCSRC USART Control and Status Register C
UBRRH/UBRRL USART Baud Rate Registers

Steps to Interface RS232:
1. Hardware Connection:
o Connect ATmega32's TXD (PD1) and RXD (PDO0) to MAX232
o Connect MAX232 to RS232 port or connector
2. Initialize USART:
o Set baud rate (UBRR)
o Set frame format (data bits, parity, stop bits)
o Enable transmitter and/or receiver
3. Data Transmission/Reception:
o Check status flags before operation
o Write to UDR to transmit

o Read from UDR to receive

Mnemonic: "Connect, Configure Baud, Enable, Transmit/Receive"

Question 3(c) [7 marks]

Explain Bit-wise logical operations in AVR C programming with necessary examples.
Answer:
Bit-wise operations manipulate individual bits in a byte or word, essential for embedded programming.

Table: Bit-wise Operators in AVR C

No.9 /24

Embedded System (4343204) - Winter 2024 Solution by Milav Dabgar

Operator Operation Example Result
& AND OxA5 & OxOF 0x05
| OR 0x50 | OxOF Ox5F
A XOR 0x55 A OxFF OxAA
= NOT ~0x55 OxAA
<< Left Shift 0x01 << 3 0x08
>> Right Shift 0x80 >>3 0x10

Example: Setting and Clearing Bits

// Set bit 3 of PORTB
PORTB |= (1 << 3); // PORTB

PORTB | 0b00001000

// Clear bit 5 of PORTB
PORTB &= ~(1 << 5); // PORTB

PORTB & 0b11011111

// Toggle bit 2 of PORTB
PORTB "= (1 << 2); // PORTB

PORTB ~ 0b00000100

// Check if bit 4 is set
if (PINB & (1 << 4)) {
// Bit 4 is set

Mnemonic: "AND clears, OR sets, XOR toggles, Shift multiplies/divides"

Question 3(a OR) [3 marks]

Explain RESET circuit for the ATmega32 microcontroller.

Answer:

The reset circuit ensures proper initialization of ATmega32 when power is applied or during system reset.
Diagram:

VCC

+++
| | 10KQ (Pull-up)
+++

No. 10 / 24

Embedded System (4343204) - Winter 2024 Solution by Milav Dabgar

|
|
+——+-—+ 100nF |
|
|

| mMcu | GND

Active-Low RESET: Held low to reset the microcontroller

External Reset: Manual reset button connects RESET pin to ground
e Power-on Reset: Auto-reset when power is first applied
e Brown-out Detection: Reset when voltage drops below threshold

e Watchdog Timer: Reset on software malfunction

Mnemonic: "Pull Up, Push Button, Power Starts, Voltage Drops"

Question 3(b OR) [4 marks]

List Registers associated with EEPROM and write steps to interface EEPROM of ATmega32.
Answer:
ATmega32 has on-chip EEPROM with dedicated registers for access control.

Table: EEPROM Registers

Register Function

EEARH/EEARL EEPROM Address Registers
EEDR EEPROM Data Register
EECR EEPROM Control Register

Steps to Interface EEPROM:

1. Wait for Completion:

o Check if previous write operation is complete (EEWE bit in EECR)
2. Set Address:

o Load address into EEARH:EEARL (16-bit address)
3. Read or Write Operation:
o For read: Set EERE bit in EECR, then read EEDR

o For write: Write data to EEDR, then set EEMWE and EEWE bits in EECR
4. Wait for Completion:

o Poll EEWE bit until it becomes zero

Mnemonic: "Wait, Address, Data, Control, Wait"

No. 11/ 24

Embedded System (4343204) - Winter 2024 Solution by Milav Dabgar

Question 3(c OR) [7 marks]

Write a C program to generate square wave of 1KHz on the PORTC.2 pin continuously. Use TimerO0,

Normal mode, and 1:8 pre-scaler to create the delay. Assume XTAL = 8 MHz.

Answer:

#include <avr/io.h>

int main(void)

{
// Configure PORTC.2 as output
DDRC |= (1 << 2); // Set PC2 as output
// Timer0 configuration - Normal mode, 1:8 prescaler
TCCRO = (0 << WGMOl) | (0 << WGM0O) | (0 << CS02) | (1 << CSO0l) | (0 << CS00);
// Calculate timer value for 1KHz (500Us period, 250Us half-period)
// 8MHz/8 = 1MHz timer clock, 250 cycles for 250Us
// 256-250 = 6 (starting value for 250Us)
while (1)
{
// Toggle PORTC.?2
PORTC "= (1 << 2);
// Reset timer
TCNTO = 6;
// Wait until timer overflows
while (!(TIFR & (1 << TOV0)));
// Clear overflow flag
TIFR |= (1 << TOVO);
}
return 0;
}

Frequency Calculation: 1KHz = 1000Hz = 1ms period = 500us half-period

Timer Clock: 8MHz + 8 = TMHz = 1ps per tick

Timer Ticks: 250pus + 1ps = 250 ticks

Initial Value: 256 - 250 = 6 (for overflow after 250 ticks)

Mnemonic: "Configure, Calculate, Toggle, Reset, Wait, Clear, Repeat"

Question 4(a) [3 marks]

Draw and Explain SPI based device interfacing diagram with ATmega32.

No. 12 [24

Embedded System (4343204) - Winter 2024 Solution by Milav Dabgar

Answer:

SPI (Serial Peripheral Interface) is a synchronous serial communication protocol used to interface
ATmega32 with peripheral devices.

Diagram:
ATmega32 SPI Device
PFocoooooooos + o +
| | | |
(SS) PB4 ————————— | ——m e > CS |
(MOSI) PB5 ————————- [> SDI |
(MISO) PB6 <————————m B SDO |
(SCK) PB7 ————————— | ——— e > SCK |
| | | |
= + o +

MOSI (Master Out Slave In): Data from master to slave

MISO (Master In Slave Out): Data from slave to master

SCK (Serial Clock): Synchronization clock provided by master

SS (Slave Select): Active-low signal to select specific slave device

Mnemonic: "Master Outputs, Slave Inputs, Clock Keeps Synchronization"

Question 4(b) [4 marks]

Draw and explain interfacing of Relay using ULN2803 with ATmega32.

Answer:

ULN2803 is an array of Darlington transistor pairs used to drive high-current devices like relays from
microcontroller pins.

Diagram:

ATmega3?2 ULN2803 Relay
Fmm e ———— + Fmm e ——— + Fmm e ———— +
PDO	----- >	IN1 OUT1l	---=—-- >	+ K
PDl	-———- >	IN2 ouT2	--	
I				
VNNV +			NIV EN I +	

| COM |-=————- >| GND |
VCC ——————- >| vce | | |
Procooomoooo= + o +

|

vce

No. 13 /24

Embedded System (4343204) - Winter 2024 Solution by Milav Dabgar

Current Amplification: ULN2803 can sink up to 500mA per channel

Voltage Isolation: Built-in diodes protect against inductive kickback

Multiple Channels: 8 Darlington pairs in one package

High Voltage Rating: Can handle up to 50V at outputs

Mnemonic: "Low Current Controls High Current Loads"

Question 4(c) [7 marks]

Draw an interfacing diagram of LM35 connected on ADCO (pin 40) of ATmega32 and write AVR C
program to display digital result on Port B. (use ADC in 8-bit mode).

Answer:
LM35 is a precision temperature sensor that outputs an analog voltage proportional to temperature.

Circuit Diagram:

Fomm e > To ADCO (PAO/Pin 40)

C Program:

#include <avr/io.h>
#include <util/delay.h>

int main(void)

{
// Configure PORTB as output for displaying result
DDRB = 0xFF;

// Configure ADC
ADMUX = (0 << REFS1) | (1 << REFS0) | // AvVCC as reference

(1 << ADLAR) | // Left adjust result for 8-bit

(0 << MUX4) | (0 << MUX3) | (0 << MUX2) | (0 << MUX1l) | (0 << MUX0); // ADCO
ADCSRA = (1 << ADEN) | // Enable ADC

(1 << ADPS2) | (1 << ADPS1l) | (1 << ADPS0); // Prescaler 128

No. 14 / 24

Embedded System (4343204) - Winter 2024 Solution by Milav Dabgar

while (1)
{

// Start conversion
ADCSRA |= (1 << ADSC);

// Wait for conversion to complete
while (ADCSRA & (1 << ADSC));

// Display result on PORTB (8-bit from ADCH)
PORTB = ADCH;

// Wait before next reading

_delay ms(500);

return 0;

e Temperature Calculation: LM35 outputs 10mV/°C

ADC Configuration: Left-adjusted for easy 8-bit reading

Resolution: Using 8-bit mode gives approximately 1°C resolution with 5V reference

Range: Can measure 0-255°C range (limited by 8-bit register)

Mnemonic: "Connect, Configure, Convert, Capture, Display"

Question 4(a OR) [3 marks]

Write an AVR C program to continuous monitor PAO pin of port A. If it is HIGH, send HIGH to PCO pin
of port C; otherwise, send LOW to PCO pin of port C.

Answer:

#include <avr/io.h>

int main(void)

{
// Configure PA0 as input
DDRA &= ~(1 << PAO);

// Enable pull-up resistor on PAQ
PORTA |= (1 << PAO);

// Configure PCO0 as output
DDRC |= (1 << PCO);

while (1)

{
// Check if PA0 is HIGH
if (PINA & (1 << PA0))
{

No. 15/ 24

Embedded System (4343204) - Winter 2024 Solution by Milav Dabgar

// Set PCO HIGH

PORTC |= (1 << PCO);
}
else
{
// Set PCO LOW
PORTC &= ~(1 << PCO);
}
}
return 0;

Input Configuration: Set as input with pull-up resistor

Continuous Monitoring: Infinite loop checks pin state

Output Action: PCO mirrors PAQO state

e Efficient Code: Simple conditional statement for pin monitoring

Mnemonic: "Configure, Monitor, Mirror"

Question 4(b OR) [4 marks]

Draw ATmega32 pin diagram and write function of Vcc, AVcc and Aref pin.
Answer:
ATmega32 has 40 pins organized in a DIP package, with power supply pins having distinct functions.

Simplified Pin Diagram:

(XCK) PBO -|1 40 |- PAO (ADCO)

PBlL -|2 39|- PAl (ADC1)
(INT2/AINO) PB2 -|3 38|- PA2 (ADC2)
(OCO/AIN1) PB3 -|4 37|- PA3 (ADC3)
SS PB4 -|5 36|- PA4 (ADC4)

MOSI PB5 -|6 35|- PA5 (ADC5)

MISO PB6 -|7 34|- PA6 (ADC6)

SCK PB7 -|8 33|- PA7 (ADC7)

RESET -|9 32|- AREF
vcc -|10 31|- GND
GND -|11 30|- AvCC
XTAL2 -|12 29|- PC7
XTALl -|13 28|- PC6
(RXD) PDO =-|14 27]|- PC5
(TXD) PD1 -|15 26|- PC4
(INTO) PD2 -|16 25|- PC3
(INT1) PD3 =-|17 24]|- PC2
(0C1B) PD4 -|18 23|- PC1
(OClA) PD5 -|19 22|- PCO
(ICP) PD6 =-|20 21|- PD7 (OC2)

No. 16 / 24

Embedded System (4343204) - Winter 2024 Solution by Milav Dabgar

Table: Power Supply Pins

Pin Function Description

VCC Digital Power Main supply voltage for digital circuits (5V typical)
AVCC Analog Power Supply for analog circuitry, particularly ADC (5V typical)
AREF Analog Reference External reference voltage for ADC

e VCC: Powers digital logic and 1/0 ports
e AVCC: Must be within 0.3V of VCC, even if ADC unused

e AREF: Optional external reference for ADC, otherwise connect to AVCC

Mnemonic: "VCC for Core Circuits, AVCC for Analog, AREF for Reference"

Question 4(c OR) [7 marks]

Draw and explain interfacing of MAX7221 with ATmega32.
Answer:
MAX7221 is an LED display driver IC that interfaces with ATmega32 using SPI communication.

Circuit Diagram:

ATmega3?2 MAX7221 Display

o + romooooos + e +
PB4	———mmmmmm - >	CS/LOAD		
PB5	————mm e >	DIN		
PB6	<———————————	DOUT		7-SEG
PB7	-—————— >	CLK [>	DISPLAY	
rocoooooo + Promcoomos + rocooomos +

Table: Connection Details

ATmega32 Pin MAX7221 Pin Function

PB4 (SS) CS/LOAD Chip select/Load data

PB5 (MOSI) DIN Data input to MAX7221
PB6 (MISO) DOUT Data output (often unused)
PB7 (SCK) CLK Clock signal

Interfacing Steps:

No. 17 [24

Embedded System (4343204) - Winter 2024 Solution by Milav Dabgar

1. Initialize SPI:
o Configure SPl in master mode
o Set appropriate clock polarity and phase
o Set SS (PB4) as output and initially high
2. Initialize MAX7221:
o Set decode mode (BCD decode or no-decode)
o Set scan limit (number of digits)
o Setintensity (brightness)
o Turn on display
3. Send Data:
o Pull SS low
o Send register address followed by data

o Pull SS high to latch the data

// Example initialization code

void MAX7221 init() {
// Initialize SPI
DDRB |= (1<<PB4)| (1<<PB5)|(1<<PB7); // SS, MOSI, SCK as outputs
SPCR = (1<<SPE) | (1<<MSTR) | (1<<SPRO); // Enable SPI, Master, clk/16

// Initialize MAX7221

MAX7221 send(0x09, OxFF); // Decode mode: BCD for all digits
MAX7221 send(0x0A, O0xO0F); // Intensity: 15/32 duty (max)
MAX7221 send(0x0B, 0x07); // Scan limit: display all digits
MAX7221 send(0x0C, 0x0l1); // Shutdown mode: normal operation
MAX7221 send(0xOF, 0x00); // Display test: normal operation

Mnemonic: "Send, Select, Clock, Data, Display"

Question 5(a) [3 marks]

Draw and explain pin diagram of L293D motor driver IC.
Answer:

L293D is a quadruple half-H driver designed for bidirectional control of DC motors.

Diagram:

No. 18 / 24

Embedded System (4343204) - Winter 2024 Solution by Milav Dabgar

Fom— +
| 1 16|
EN1-| | -vcel
IN1-| | -IN4
OUT1- | | -ouT4
GND-| L293D|-GND
GND- | | -GND
oUT2-| | -ouT3
IN2-| | -IN3
vCC2- | | -EN2
Procoooo +

Table: L293D Pin Functions

Pin Name Function

1,9 EN1, EN2 Enable inputs (can be PWM signals)
2,7,10,15 INT-IN4 Logic inputs

3,6,11,14 OuUT1-OUT4 Output pins to motors

4,5,12,13 GND Ground connections

8 VCC2 Motor supply voltage (4.5V-36V)

16 VCC1 Logic supply voltage (5V)

e Dual H-Bridges: Can control two DC motors independently
e Heat Sink: Ground pins provide heat dissipation
e High Current: Can drive up to 600mA per channel

e Protection Diodes: Internal flyback diodes for inductive loads

Mnemonic: "Enable, Input, Output, Power"

Question 5(b) [4 marks]

Draw and explain ADMUX register.
Answer:

ADMUX (ADC Multiplexer Selection Register) controls analog channel selection and result format in
ATmega32.

Diagram:
e [oo fromooos e e oo fromooos +
| REFS1| REFSO| ADLAR| -- | MUX3 | MUX2 | MUX1 | MUXO |
- S| N o o e — oo) NENENENENENS B - +
7 6 5 4 3 2 1 0

No. 19 /24

Embedded System (4343204) - Winter 2024 Solution by Milav Dabgar

Table: ADMUX Bit Functions

Bits

7:6

3:0

REFS1:0 Settings:

Name

REFS1:0

ADLAR

MUX3:0

e 00: AREF pin (external reference)

e 01: AVCC with external capacitor

e 11:Internal 2.56V reference

Function

Reference voltage selection

ADC Left Adjust Result

Analog channel selection

e Channel Selection: MUX3:0 selects which ADC input to connect

e Result Alignment: ADLAR=1 shifts result left (for 8-bit readings)

e Differential Inputs: Some MUX combinations allow differential measurements

Mnemonic: "Reference, Alignment, Multiplexer"

Question 5(c) [7 marks]

Explain Smart Irrigation System.

Answer:

A Smart Irrigation System uses embedded technology to efficiently manage water for plant cultivation
based on environmental conditions.

Diagram:
Weather Water Level
Forecast Sensors
Microcontroller
/ e \
Soil Temperature Humidity Water Valve User
Moisture Sensors Sensors Pump Control Interface

Table: Smart Irrigation Components

No. 20/ 24

Embedded System (4343204) - Winter 2024 Solution by Milav Dabgar

Component Function

Soil Moisture Sensors Measure water content in soil
Temperature/Humidity Sensors Monitor environmental conditions
Valves Control water flow to different zones
Pump Control Activate water pumps when needed
Microcontroller Process sensor data and control outputs
User Interface Allow monitoring and manual control

Key Features:

1. Automated Watering: Waters plants only when soil moisture falls below threshold
. Weather Adaptation: Adjusts watering schedule based on temperature, humidity, and rain forecast

. Zone Control: Different areas can have individual watering schedules

2
3
4. Water Conservation: Uses minimum necessary water for optimal plant growth
5. Remote Monitoring: Mobile app or web interface for system status and control
6

. Scheduling: Time-based and condition-based watering options

Mnemonic: "Sense, Decide, Conserve, Grow"

Question 5(a OR) [3 marks]

Draw circuit diagram to interface DC motor with ATmega32 using L293D motor driver.
Answer:
The circuit connects a DC motor to ATmega32 through L293D for bidirectional control.

Circuit Diagram:

ATmega32 L293D DC Motor
f + Fom - + o +
PBO	-==—————— - >	IN1		
PBl	-————————— >	IN2		
PB2	-————————- >	EN1		
		OUT1 >—e	mmmmm e >	+
		OUT2 >——	—mmmm e > -	
f + Fom + Foccooooooo +

| vcc2 (Motor power)
bt

No. 21/ 24

Embedded System (4343204) - Winter 2024 Solution by Milav Dabgar

o +
Control Logic:

PBO (IN1) PB1 (IN2) PB2 (EN1) Motor Status

0 0 1 Stop (brake)

1 0 1 Rotate clockwise

0 1 1 Rotate counter-clockwise

1 1 1 Stop (brake)

X X 0 Motor disabled

e Speed Control: PWM signal on EN1 can control motor speed
e Direction Control: IN1 and IN2 control rotation direction

e Power Separation: Logic powered by microcontroller, motor by separate supply

Mnemonic: "Enable and Direction Control Motor"

Question 5(b OR) [4 marks]

Draw and Explain 12C based device interfacing diagram with ATmega32.
Answer:

I2C (Inter-Integrated Circuit) is a two-wire serial bus for connecting multiple devices to a microcontroller.

Diagram:
vce
|
I
ot S e + Procooomoooos +
I I | | | I
| 4.7K]| | 12C | | 12C |
| ohm | | Device 1 | | Device 2 |
te—t——t | (EEPROM) | | (Sensor) |
I I | | |
I | | | I
ATmega32 | | | | |
Hommmmee + | | | |
I] I | | |
| PCO | =4 m e | -SDA-—————— | ——mmm - | -SDA-—————- |
| I | | | I
| PCL|——t—mmmm e | -SCL-—————- | === | -SCL-—————- |
I | I I | I
Fmmm—_—— + oo + | S +
I

No. 22 [24

Embedded System (4343204) - Winter 2024 Solution by Milav Dabgar

et

| 4.7K|
| ohm |
oot

VCC

Key Components:

e SDA (Serial Data Line): Bidirectional data transfer line
e SCL (Serial Clock Line): Clock signal generated by master
e Pull-up Resistors: Required on both lines (typically 4.7kQ)

e Multiple Devices: Each 12C device has a unique address
Communication Process:

1. Start Condition: SDA transitions high-to-low while SCL is high

2. Address Transmission: 7-bit device address followed by R/W bit
3. Acknowledgment: Receiving device pulls SDA low

4. Data Transfer: 8-bit data bytes with acknowledgment

5.

Stop Condition: SDA transitions low-to-high while SCL is high

Mnemonic: "Start, Address, Acknowledge, Data, Stop"

Question 5(c OR) [7 marks]

Explain loT based Home Automation System.
Answer:

An loT-based Home Automation System connects household devices to the internet for remote monitoring
and control.

Diagram:

No. 23 /24

Embedded System (4343204) - Winter 2024 Solution by Milav Dabgar

/

_—

Cloud Services

v

Internet Gateway

Home Controller
ATmega32/ESP32

v

\

Mobile

Voice Assistants

v

—

Light Control

HVAC

Security System

Appliance

Sensors Network

Table: Home Automation Components

Component
Controller
Sensors
Actuators
Gateway

User Interface

Cloud Services

Key Features:

—_

Function

Central processing unit (microcontroller/SBC)

Monitor temperature, motion, light, humidity

. Remote Access: Control home devices from anywhere

Control lights, appliances, locks, HVAC
Connects to internet and local devices
Mobile app, voice control, web dashboard

Data storage, processing, and remote access

. Voice Control: Integration with voice assistants (Alexa, Google Home)

. Energy Management: Monitor and optimize power consumption

. Scheduling: Automate device operation based on time or events

. Scene Setting: Predefined configurations for multiple devices

2
3
4. Security: Control and monitor doors, windows, and cameras
5
6
7

. Adaptive Control: Learning user preferences and patterns

Mnemonic: "Connect, Control, Monitor, Automate, Learn"

No. 24 / 24

	Question 1(a) [3 marks]
	Question 1(b) [4 marks]
	Question 1(c) [7 marks]
	Question 1(c OR) [7 marks]
	Question 2(a) [3 marks]
	Question 2(b) [4 marks]
	Question 2(c) [7 marks]
	Question 2(a OR) [3 marks]
	Question 2(b OR) [4 marks]
	Question 2(c OR) [7 marks]
	Question 3(a) [3 marks]
	Question 3(b) [4 marks]
	Question 3(c) [7 marks]
	Question 3(a OR) [3 marks]
	Question 3(b OR) [4 marks]
	Question 3(c OR) [7 marks]
	Question 4(a) [3 marks]
	Question 4(b) [4 marks]
	Question 4(c) [7 marks]
	Question 4(a OR) [3 marks]
	Question 4(b OR) [4 marks]
	Question 4(c OR) [7 marks]
	Question 5(a) [3 marks]
	Question 5(b) [4 marks]
	Question 5(c) [7 marks]
	Question 5(a OR) [3 marks]
	Question 5(b OR) [4 marks]
	Question 5(c OR) [7 marks]

