
Domain Description

System Software Operating systems, device drivers

Application Software Word processors, games, business apps

Engineering/Scientific Software CAD, simulation tools

Embedded Software Real-time control systems

Web Applications Browser-based applications

AI Software Machine learning, expert systems

Activity Purpose

Communication Gather requirements from stakeholders

Planning Define work plan and schedule

Modeling Create analysis and design models

Construction Code generation and testing

Deployment Software delivery and support

Question 1(a) [3 marks]
Enlist Software Application Domain and explain Embedded Software

Answer:

Software Application Domains:

Embedded Software is specialized software that runs on embedded systems with dedicated hardware. It controls
specific functions in devices like washing machines, cars, and medical equipment.

Real-time operation: Must respond within strict time limits

Resource constraints: Limited memory and processing power

Hardware dependency: Closely integrated with specific hardware

Mnemonic: "SAEEWA" - System, Application, Engineering, Embedded, Web, AI

Question 1(b) [4 marks]
Explain Generic Framework activities and umbrella activities

Answer:

Generic Framework Activities:

Umbrella Activities:

Software Engineering (4353202) - Summer 2025 Solution by Milav Dabgar

No. 1 / 23

Activity Purpose

Project Management Track progress and control

Risk Management Identify and mitigate risks

Quality Assurance Ensure software quality

Configuration Management Control changes

Work Product Preparation Document creation

Requirements Analysis

System Design

Implementation

Testing

Deployment

Maintenance

Framework activities: Core sequential activities in every project

Umbrella activities: Continuous activities throughout project lifecycle

Mnemonic: "CPMCD" for Framework, "PRQCW" for Umbrella

Question 1(c) [7 marks]
Recreate the software development life cycle diagram and explain it's phases

Answer:

SDLC Diagram:

Software Engineering (4353202) - Summer 2025 Solution by Milav Dabgar

No. 2 / 23

Phase Activities Deliverables

Requirements Analysis Gather user needs, create SRS SRS Document

System Design Architecture design, UI design Design Document

Implementation Code development, unit testing Source Code

Testing Integration, system testing Test Reports

Deployment Installation, user training Deployed System

Maintenance Bug fixes, enhancements Updated System

Model Characteristics

Waterfall Model Sequential, linear approach

Iterative Model Repeated cycles of development

Spiral Model Risk-driven, iterative

Agile Model Flexible, customer collaboration

RAD Model Rapid prototyping

V-Model Verification and validation focus

SDLC Phases:

Systematic approach: Each phase has specific inputs and outputs

Quality gates: Reviews between phases ensure quality

Iterative nature: Feedback improves subsequent cycles

Mnemonic: "Real Systems Implement Tests During Maintenance"

Question 1(c) OR [7 marks]
List software development models and explain any two models with necessary diagrams

Answer:

Software Development Models:

1. Waterfall Model:

Software Engineering (4353202) - Summer 2025 Solution by Milav Dabgar

No. 3 / 23

Requirements

Design

Implementation

Testing

Deployment

Maintenance

Planning

Risk
Analysis

Engineering

Evaluation

2. Spiral Model:

Software Engineering (4353202) - Summer 2025 Solution by Milav Dabgar

No. 4 / 23

Aspect SCRUM SPIRAL

Approach Agile, iterative Risk-driven, iterative

Duration Fixed sprints (2-4 weeks) Variable spiral cycles

Focus Customer collaboration Risk management

Planning Sprint planning Comprehensive planning

Documentation Minimal documentation Detailed documentation

Team Size Small teams (5-9 members) Any team size

Technique Description

Interviews Direct conversation with stakeholders

Questionnaires Structured written questions

Observation Watch users perform tasks

Document Analysis Review existing documents

Prototyping Build working models

Brainstorming Group idea generation

Waterfall: Simple, suitable for well-understood requirements

Spiral: Handles high-risk projects with iterative risk assessment

Mnemonic: "WIRRAV" - Waterfall, Iterative, RAD, Risk-driven, Agile, V-model

Question 2(a) [3 marks]
Differentiate SCRUM Agile process model with SPIRAL process model

Answer:

SCRUM: Emphasizes rapid delivery and customer feedback

SPIRAL: Focuses on risk identification and mitigation

Mnemonic: "SCRUM=Speed, SPIRAL=Safety"

Question 2(b) [4 marks]
List requirement gathering techniques and explain anyone

Answer:

Requirement Gathering Techniques:

Interview Technique Explained:

Structured interviews: Predetermined questions, formal approach

Unstructured interviews: Open-ended discussion, flexible

Semi-structured: Combination of both approaches

Software Engineering (4353202) - Summer 2025 Solution by Milav Dabgar

No. 5 / 23

Component Symbol Purpose

Actor Stick figure External entity

Use Case Oval System function

Association Line Actor-use case relationship

System Boundary Rectangle System scope

Librarian

Issue
Book

Return Book

Add
Book

Student

Search Book

Benefits: Direct stakeholder input, clarification possible, detailed information
Challenges: Time-consuming, interviewer bias, incomplete information

Mnemonic: "IQDPBB" - Interview, Questionnaire, Document, Prototype, Brainstorm, Observe

Question 2(c) [7 marks]
Define use case diagram. Explain it with example

Answer:

Use Case Diagram Definition:
A use case diagram shows the functional requirements of a system by depicting actors and their interactions with use
cases.

Components:

Example: Library Management System

Relationships:

Include: Common functionality shared by use cases

Extend: Optional functionality added to base use case

Generalization: Inheritance between actors or use cases

Software Engineering (4353202) - Summer 2025 Solution by Milav Dabgar

No. 6 / 23

Aspect Waterfall Model Iterative Waterfall

Phases Sequential, one-time Repeated in iterations

Feedback At end of project After each iteration

Risk High risk detection late Early risk identification

Flexibility Rigid, no changes Accommodates changes

Testing After development Continuous testing

Delivery Single final delivery Multiple incremental deliveries

Type Functional Non-Functional

Definition System behavior System quality

Examples Login, Calculate, Store Performance, Security

Testing Black-box testing Load, stress testing

Documentation Use cases, scenarios Quality metrics

Benefits: Clear functional overview, communication tool, basis for testing

Mnemonic: "Actors Use Cases Inside Systems"

Question 2(a) OR [3 marks]
Compare Water fall model and Iterative waterfall model

Answer:

Waterfall: Suitable for stable, well-defined requirements

Iterative Waterfall: Better for evolving requirements with feedback

Mnemonic: "PFRTFD" - Phases, Feedback, Risk, Testing, Flexibility, Delivery

Question 2(b) OR [4 marks]
Define Functional and non-Functional Requirement and give examples of both

Answer:

Functional Requirements:
Requirements that define what the system should do - specific behaviors and functions.

Non-Functional Requirements:
Requirements that define how the system should perform - quality attributes and constraints.

Functional Examples:

User authentication and login

Calculate total bill amount

Generate monthly reports

Non-Functional Examples:

Software Engineering (4353202) - Summer 2025 Solution by Milav Dabgar

No. 7 / 23

Type Description Example

Functional Single, well-defined task Calculate square root

Sequential Output of one = input of next Read→Process→Write

Communicational Operate on same data Update customer record

Procedural Follow sequence of execution Process payroll steps

Temporal Execute at same time System initialization

Logical Similar logical functions All input/output operations

Coincidental No meaningful relationship Random utilities

System response time < 2 seconds (Performance)

99.9% system availability (Reliability)

Support 1000 concurrent users (Scalability)

Mnemonic: "Functional=What, Non-Functional=How"

Question 2(c) OR [7 marks]
Define cohesion. Explain classification of cohesion

Answer:

Cohesion Definition:
Cohesion measures how closely related elements within a module are. High cohesion indicates a well-designed module.

Classification of Cohesion (Strongest to Weakest):

Software Engineering (4353202) - Summer 2025 Solution by Milav Dabgar

No. 8 / 23

Functional - Strongest

Sequential

Communicational

Procedural

Temporal

Logical

Coincidental -
Weakest

Goal: Achieve functional cohesion for maintainable, reliable modules

Mnemonic: "Frank's Smart Cat Plays Tennis Like Crazy"

Question 3(a) [3 marks]
List characteristics of good software design

Answer:

Characteristics of Good Software Design:

Software Engineering (4353202) - Summer 2025 Solution by Milav Dabgar

No. 9 / 23

Characteristic Description

Modularity Divided into independent modules

Abstraction Hide implementation details

Encapsulation Bundle data and methods together

Hierarchy Organized in layers/levels

Simplicity Easy to understand and maintain

Flexibility Accommodate future changes

Category Drivers Impact

Product Reliability, Complexity Effort multiplier

Hardware Execution time, Storage Performance constraints

Personnel Analyst capability, Experience Team skills

Project Modern practices, Schedule Development environment

High cohesion: Related elements grouped together

Low coupling: Minimal dependencies between modules

Reusability: Components can be reused in other systems

Mnemonic: "MAEHSF" - Modularity, Abstraction, Encapsulation, Hierarchy, Simplicity, Flexibility

Question 3(b) [4 marks]
Explain Project Estimation Techniques using intermediate COCOMO model

Answer:

Intermediate COCOMO Model:
Extends basic COCOMO by considering cost drivers that affect productivity.

Formula:
Effort = a × (KLOC)^b × EAF

Cost Drivers:

Effort Adjustment Factor (EAF):
EAF = Product of all cost driver multipliers

Steps:

1. Estimate KLOC (thousands of lines of code)

2. Select appropriate a, b values based on project type

3. Evaluate cost drivers (scale 0.70 to 1.65)

4. Calculate EAF

5. Apply formula to get effort in person-months

Mnemonic: "PHPP" - Product, Hardware, Personnel, Project drivers

Question 3(c) [7 marks]

Software Engineering (4353202) - Summer 2025 Solution by Milav Dabgar

No. 10 / 23

Process Input Output Description

Process Order Customer order Order confirmation Handle order placement

Process Payment Payment details Payment status Process transactions

Manage Inventory Stock queries Stock status Track product availability

Question 3(c) [7 marks]
Draw and explain level-1 Data flow diagram for Online shopping system

Answer:

Level-1 DFD for Online Shopping System:

Processes:

Data Stores:

Product Database: Store product information

Order Database: Store order details

Customer Database: Store customer profiles

External Entities:

Customer: Places orders, makes payments

Payment Gateway: Processes payments

Inventory Manager: Updates stock levels

Mnemonic: "PPMI" - Process order, Process payment, Manage inventory

Question 3(a) OR [3 marks]
Differentiate analysis and design

Answer:

 +----------+ +----------+
	Order Info	
Customer	<------------------>	Process
	Product Info	Order
+----------+ +----------+		
Order Details		
v		
+----------+ Payment Info +----------+		
Payment	<------------------>	Process
Gateway		Payment
+----------+ +----------+		
Inventory Update		
v		
+----------+ Stock Info +----------+		
Inventory	<------------------>	Manage
Manager		Inventory
 +----------+ +----------+

Software Engineering (4353202) - Summer 2025 Solution by Milav Dabgar

No. 11 / 23

Aspect Analysis Design

Focus What system should do How system will work

Phase Requirements phase Design phase

Output Problem understanding Solution structure

Models Use cases, requirements Architecture, classes

Perspective User's viewpoint Developer's viewpoint

Level Abstract, conceptual Concrete, detailed

Type a b c d Description

Organic 2.4 1.05 2.5 0.38 Small, experienced team

Semi-detached 3.0 1.12 2.5 0.35 Medium size, mixed team

Embedded 3.6 1.20 2.5 0.32 Complex, tight constraints

Analysis: Problem-focused, understanding requirements

Design: Solution-focused, creating system architecture

Mnemonic: "Analysis=WHAT, Design=HOW"

Question 3(b) OR [4 marks]
Explain Project Estimation Techniques using basic COCOMO model

Answer:

Basic COCOMO Model:
Estimates software development effort based on lines of code.

Formula:

Effort = a × (KLOC)^b person-months

Time = c × (Effort)^d months

Project Types:

Steps:

1. Estimate KLOC (thousands of lines of code)

2. Identify project type (organic/semi-detached/embedded)

3. Apply appropriate coefficients

4. Calculate effort and development time

Example: 10 KLOC organic project

Effort = 2.4 × (10)^1.05 = 25.2 person-months

Time = 2.5 × (25.2)^0.38 = 8.4 months

Mnemonic: "OSE" - Organic, Semi-detached, Embedded

Question 3(c) OR [7 marks]

Software Engineering (4353202) - Summer 2025 Solution by Milav Dabgar

No. 12 / 23

Library

+name:
String+address: String

+addBook()
+removeBook()
+searchBook()

Book

+bookId:
String+title: String

+author:
String+ISBN:
String+isAvailable:

Boolean
+getDetails()

Member

+memberId:
String+name:

String+email:
String+phone: String

+issueBook()
+returnBook()

Transaction

+transactionId: String
+issueDate:

Date+returnDate: Date
+fine: Double

+calculateFine()

Question 3(c) OR [7 marks]
Draw and explain Class Diagram for Library Management system

Answer:

Class Diagram for Library Management System:

Relationships:

Software Engineering (4353202) - Summer 2025 Solution by Milav Dabgar

No. 13 / 23

Relationship Description Multiplicity

Library-Book Library contains books 1 to many

Member-Transaction Member has transactions 1 to many

Book-Transaction Book involved in transactions 1 to many

Metric Definition Usage

Lines of Code (LOC) Count of executable code lines Traditional sizing

Function Points (FP) Measure based on functionality Language-independent

Feature Points Extended function points Real-time systems

Object Points Count of objects and methods Object-oriented systems

Use Case Points Based on use case complexity Requirements-based

Key Features:

Attributes: Data members of each class

Methods: Functions that operate on class data

Associations: Relationships between classes showing how they interact

Mnemonic: "LBMT" - Library, Book, Member, Transaction

Question 4(a) [3 marks]
List Project Size Estimation Metrics and define them

Answer:

Project Size Estimation Metrics:

Function Points Components:

External Inputs: Data entry screens

External Outputs: Reports, messages

External Inquiries: Interactive queries

Internal Files: Master files

External Interfaces: Shared data

Benefits: Early estimation, technology-independent, standardized approach

Mnemonic: "LFFOU" - LOC, Function Points, Feature Points, Object Points, Use Case Points

Question 4(b) [4 marks]
Explain Risk identification in detail

Answer:

Risk Identification:
Process of finding, recognizing, and describing potential risks that could affect project success.

Software Engineering (4353202) - Summer 2025 Solution by Milav Dabgar

No. 14 / 23

Category Examples Impact

Technical New technology, complexity Development delays

Project Schedule, budget constraints Cost overruns

Business Market changes, competition Project cancellation

External Vendor issues, regulations Dependencies

Task Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8

Requirements
Analysis

████████ ████████

System
Design

 ████████ ████████

Database
Design

 ████████ ████████

UI
Development

 ████████ ████████

Backend
Development

 ████████ ████████

Testing ████████ ████████

Deployment ████████ ████████

Risk Categories:

Identification Techniques:

Brainstorming: Team discussions to identify risks

Checklists: Standard risk categories review

Expert judgment: Experience-based identification

SWOT analysis: Strengths, Weaknesses, Opportunities, Threats

Risk Register:
Document containing identified risks with:

Risk description

Probability of occurrence

Impact severity

Risk category

Responsible person

Mnemonic: "TPBE" - Technical, Project, Business, External risks

Question 4(c) [7 marks]
Prepare Gantt Chart for any system of your choice

Answer:

Gantt Chart for Online Banking System:

Project Tasks:

Software Engineering (4353202) - Summer 2025 Solution by Milav Dabgar

No. 15 / 23

Task Duration Dependencies Resources

Requirements Analysis 2 weeks None Business Analyst

System Design 2 weeks Requirements System Designer

Database Design 2 weeks System Design Database Designer

UI Development 2 weeks System Design UI Developer

Backend Development 2 weeks Database Design Backend Developer

Testing 2 weeks UI + Backend QA Tester

Deployment 2 weeks Testing DevOps Engineer

Area Responsibilities

Planning Create project plans, define scope

Organizing Allocate resources, form teams

Leading Motivate team, resolve conflicts

Controlling Monitor progress, manage changes

Communication Stakeholder updates, team coordination

Risk Management Identify and mitigate risks

Benefits: Visual progress tracking, resource allocation, dependency management

Mnemonic: "RSDUBtd" - Requirements, System design, Database, UI, Backend, Testing, Deployment

Question 4(a) OR [3 marks]
List Responsibilities of Project manager

Answer:

Project Manager Responsibilities:

Key Activities:

Project initiation: Define objectives and constraints

Schedule management: Create and maintain timelines

Budget control: Monitor costs and expenses

Quality assurance: Ensure deliverable standards

Team management: Lead and develop team members

Mnemonic: "POLCR" - Planning, Organizing, Leading, Controlling, Risk management

Question 4(b) OR [4 marks]
Explain Risk Assessment in detail

Answer:

Risk Assessment:

Software Engineering (4353202) - Summer 2025 Solution by Milav Dabgar

No. 16 / 23

Component Scale Description

Probability 1-5 or % Likelihood of risk occurrence

Impact 1-5 or $ Severity if risk occurs

Risk Score P × I Overall risk priority

Probability/Impact Low (1) Medium (2) High (3)

Low (1) 1 2 3

Medium (2) 2 4 6

High (3) 3 6 9

Process of evaluating identified risks to determine their probability and impact on project success.

Assessment Components:

Risk Assessment Matrix:

Assessment Techniques:

Qualitative assessment: Descriptive scales (High/Medium/Low)

Quantitative assessment: Numerical values and calculations

Expert judgment: Experience-based evaluation

Historical data: Past project analysis

Risk Categorization:

High risk (7-9): Immediate attention required

Medium risk (4-6): Monitor and plan mitigation

Low risk (1-3): Accept or minimal mitigation

Mnemonic: "PIS" - Probability, Impact, Score

Question 4(c) OR [7 marks]
Prepare Sprint burn down chart for any system of your choice

Answer:

Sprint Burn Down Chart for E-commerce Mobile App (2-week Sprint):

Story Points
 |
 40 +---*
 | \
 35 + *
 | \
 30 + *
 | \
 25 + *---*
 | \
 20 + *

Software Engineering (4353202) - Summer 2025 Solution by Milav Dabgar

No. 17 / 23

Day Ideal Remaining Actual Remaining Work Completed

Day 1 36 40 Sprint planning

Day 2 32 35 User login feature

Day 3 28 30 Product catalog

Day 4 24 25 Shopping cart

Day 5 20 25 Blocked by API issue

Day 6 16 20 Payment integration

Day 7 12 15 Order management

Day 8 8 10 Testing and fixes

Day 9 4 5 Final testing

Day 10 0 0 Sprint completed

Sprint Details:

Key Insights:

Slope: Progress rate compared to ideal

Flat areas: Blocked work or scope changes

Below ideal: Ahead of schedule

Above ideal: Behind schedule

Mnemonic: "DABC" - Days, Actual, Burn-down, Chart

Question 5(a) [3 marks]
List Code Review Techniques and explain anyone

Answer:

Code Review Techniques:

 | \
 15 + *
 | \
 10 + *
 | \
 5 + *
 | \
 0 +________________________*
 1 2 3 4 5 6 7 8 9 10 Days

 * = Actual Progress
 --- = Ideal Progress

Software Engineering (4353202) - Summer 2025 Solution by Milav Dabgar

No. 18 / 23

Technique Description Participants

Code Walkthrough Informal review by author Author + reviewers

Code Inspection Formal, systematic review Trained inspectors

Peer Review Colleague examines code Developer peers

Tool-based Review Automated analysis Tools + developers

Test Case ID Test Scenario Test Steps Expected Result

TC001 User Registration
1. Enter valid details
2. Click Register

Account created successfully

TC002 User Login
1. Enter username/password
2. Click Login

User logged in

TC003 Add to Cart
1. Select product
2. Click Add to Cart

Product added to cart

TC004 Checkout Process
1. Go to cart
2. Click Checkout
3. Enter payment details

Order placed successfully

Code Inspection Explained:

Process:

1. Planning: Select code, assign roles

2. Overview: Author explains code structure

3. Preparation: Individual review of code

4. Inspection meeting: Group examines code

5. Rework: Fix identified defects

6. Follow-up: Verify corrections

Roles:

Moderator: Leads the inspection process

Author: Code developer, explains logic

Reviewers: Find defects and issues

Recorder: Documents findings

Benefits: High defect detection rate, knowledge sharing, improved code quality

Mnemonic: "CWIP" - Code Walkthrough, Inspection, Peer review

Question 5(b) [4 marks]
Prepare test cases for online shopping system

Answer:

Test Cases for Online Shopping System:

Software Engineering (4353202) - Summer 2025 Solution by Milav Dabgar

No. 19 / 23

Technique Coverage Criteria Purpose

Statement Coverage All statements executed Basic code coverage

Branch Coverage All branches taken Decision testing

Path Coverage All paths executed Complete flow testing

Condition Coverage All conditions tested Logical expression testing

Loop Testing All loop variations Iterative structure testing

Detailed Test Case Example:

Test Case ID: TC003
Test Title: Add Product to Shopping Cart
Pre-conditions: User is logged in, product is available
Test Steps:

1. Navigate to product catalog

2. Select a product

3. Choose quantity

4. Click "Add to Cart" button

Expected Result: Product appears in cart with correct quantity and price
Post-conditions: Cart count increases, total amount updates

Mnemonic: "RAULC" - Registration, Authentication, User cart, Login, Checkout

Question 5(c) [7 marks]
Define White box technique. List various white box technique. Explain any two

Answer:

White Box Testing Definition:
Testing technique that examines internal code structure, logic paths, and implementation details.

White Box Techniques:

1. Statement Coverage:
Ensures every executable statement in code is executed at least once.

Formula: (Executed statements / Total statements) × 100%

Example:

Test Cases: x = 5 (covers statements 1,2,4), x = -1 (covers statements 1,3,4)
Coverage: 100% statement coverage achieved

2. Branch Coverage:
Ensures every branch (true/false) of decision points is executed.

if (x > 0) // Statement 1
 y = x + 1; // Statement 2
else
 y = x - 1; // Statement 3
z = y * 2; // Statement 4

Software Engineering (4353202) - Summer 2025 Solution by Milav Dabgar

No. 20 / 23

Type Purpose Audience

Internal Documentation Code understanding Developers

External Documentation System usage Users, operators

System Documentation Design and architecture Maintainers

User Documentation Operation instructions End users

Example:

Test Cases:

a=5, b=3, c=7, d=2 (true branch)

a=1, b=3, c=7, d=2 (false branch)

Benefits: Higher defect detection than statement coverage

Mnemonic: "SBPCL" - Statement, Branch, Path, Condition, Loop

Question 5(a) OR [3 marks]
Explain software documentation

Answer:

Software Documentation:
Written material that describes software system, its design, implementation, and usage.

Types of Documentation:

Internal Documentation:

Comments: Explain code logic and purpose

Code structure: Class and method descriptions

Design rationale: Why specific approaches chosen

External Documentation:

User manuals: Step-by-step usage instructions

Installation guides: Setup procedures

API documentation: Interface specifications

Benefits: Easier maintenance, knowledge transfer, reduced training time

Mnemonic: "IESU" - Internal, External, System, User documentation

Question 5(b) OR [4 marks]
Prepare at least 4 test cases for ATM System

Answer:

if (a > b && c > d) // Two conditions
 result = 1; // True branch
else
 result = 0; // False branch

Software Engineering (4353202) - Summer 2025 Solution by Milav Dabgar

No. 21 / 23

Test Case ID Test Scenario Test Steps Expected Result

TC001 Valid PIN Entry
1. Insert card
2. Enter correct PIN
3. Press Enter

Access granted to main menu

TC002 Invalid PIN Entry
1. Insert card
2. Enter wrong PIN
3. Press Enter

"Invalid PIN" message displayed

TC003 Cash Withdrawal

1. Login successfully
2. Select "Withdraw Cash"
3. Enter amount
4. Confirm

Cash dispensed, balance updated

TC004 Insufficient Balance
1. Login successfully
2. Select "Withdraw Cash"
3. Enter amount > balance

"Insufficient funds" message

Method Purpose Input Focus

Equivalence Partitioning Divide inputs into classes Valid/invalid partitions

Boundary Value Analysis Test edge values Boundary conditions

Decision Table Testing Complex business rules Multiple input combinations

State Transition Testing State-based systems State changes

Use Case Testing Functional scenarios User interactions

Error Guessing Experience-based testing Likely error conditions

Test Cases for ATM System:

Detailed Test Case:

Test Case ID: TC003
Test Description: Withdraw cash with sufficient balance
Pre-conditions: Valid ATM card, sufficient account balance
Test Data: PIN=1234, Withdrawal amount=₹1000, Account balance=₹5000

Post-conditions: Account balance reduced by ₹1000, transaction recorded

Mnemonic: "VPCI" - Valid PIN, PIN error, Cash withdrawal, Insufficient funds

Question 5(c) OR [7 marks]
Enlist all black box testing methodologies. Explain why it is known as functional testing? Explain at least 2
methods with diagram

Answer:

Black Box Testing Methodologies:

Why called Functional Testing?
Black box testing focuses on what the system does rather than how it works. It validates functional requirements by
testing inputs and expected outputs without knowledge of internal code structure.

Software Engineering (4353202) - Summer 2025 Solution by Milav Dabgar

No. 22 / 23

1. Equivalence Partitioning:

Example: Age validation for job application

Valid partition: 18-65 years

Invalid partitions: <0, 0-17, 66-120, >120

Test cases: One from each partition (e.g., 25, -5, 10, 70, 130)

2. Boundary Value Analysis:

Example: Student score validation (0-100)

Test values: -1, 0, 1, 50, 99, 100, 101

Focus: Just inside and outside boundaries

Rationale: Most errors occur at boundaries

Benefits:

Independence: No programming knowledge required

User perspective: Tests from user's viewpoint

Requirement validation: Verifies functional specifications

Mnemonic: "EBDSUE" - Equivalence, Boundary, Decision, State, Use case, Error guessing

Input Range: Age (0-120)

Valid Partition: Invalid Partitions:
 18-65 years <0 0-17 66-120 >120
 | | | | |
 v v v v v
 [VALID] [INVALID INPUTS]

 Input Range: Score (0-100)

 Invalid | Valid Range | Invalid
 -1 0 | 1 99 100 | 101
 | | | | | | | |
 v v v v v v v v
 [Test boundary values]

Software Engineering (4353202) - Summer 2025 Solution by Milav Dabgar

No. 23 / 23

	Question 1(a) [3 marks]
	Question 1(b) [4 marks]
	Question 1(c) [7 marks]
	Question 1(c) OR [7 marks]
	Question 2(a) [3 marks]
	Question 2(b) [4 marks]
	Question 2(c) [7 marks]
	Question 2(a) OR [3 marks]
	Question 2(b) OR [4 marks]
	Question 2(c) OR [7 marks]
	Question 3(a) [3 marks]
	Question 3(b) [4 marks]
	Question 3(c) [7 marks]
	Question 3(a) OR [3 marks]
	Question 3(b) OR [4 marks]
	Question 3(c) OR [7 marks]
	Question 4(a) [3 marks]
	Question 4(b) [4 marks]
	Question 4(c) [7 marks]
	Question 4(a) OR [3 marks]
	Question 4(b) OR [4 marks]
	Question 4(c) OR [7 marks]
	Question 5(a) [3 marks]
	Question 5(b) [4 marks]
	Question 5(c) [7 marks]
	Question 5(a) OR [3 marks]
	Question 5(b) OR [4 marks]
	Question 5(c) OR [7 marks]

